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การคัดเลือกผู้สมัครงานที่เหมาะสมสำหรับตำแหน่งงานที่บริษัทเปิดรับอาจเป็นงานที่

ซ้ำซากและใช้เวลานาน โดยเฉพาะอย่างยิ่งจากงานที่มีผู้สมัครจำนวนมาก นอกจากนี้ งานนี้อาจทำ
ให้การคัดกรองและการคัดเลือกอย่างยุติธรรมเป็นเรื่องที่น่าเบื่อหน่าย การสูญเสียโอกาสในการจ้าง
ผู้สมัครงานที่มีความสามารถระดับสูงเนื่องจากกระบวนการคัดกรองที่ช้าหรือการเลือกผิดโดยความ
ผิดพลาดของมนุษย์เป็นสิ่งที่ยอมรับไม่ได้ เอกสารนี้นำเสนอวิธีการสำหรับฝ่ายทรัพยากรบุคคลใน
การจำแนกและคัดเลือกผู้สมัครงานที่มีความสามารถอันดับต้นๆ สำหรับงานที่เปิดรับสมัคร ระบบที่
นำเสนอจะจำแนกผู้สมัครงานจากการเรียนรู้ของเครื่องออกเป็นกลุ ่ม  i) เหมาะสม และ ii) ไม่
เหมาะสม โดยวิธีการประมวลผลข้อมูลที่มีประสิทธิผลของงานที่เกี่ยวข้องจะถูกนำมาประยุกต์ใช้ใน
งานนี้ด้วย 8 แบบจำลองจะถูกนำมาเปรียบเทียบเพื่อหารูปแบบการจำแนกที่เหมาะสมที่สุด  ดังนี้ 
ต้นไม่ตัดสินใจ (Decision Tree) ซัพพอร์ตเวกเตอร์แมทชีน (Support Vector Machine) การ
จำแนกแบบเบย์ด้วยการแจกแจงแบบปกติ (Gaussian Naive Bayes) การสุ ่มป่าไม้ (Random 
Forest) การหาเพื่อนบ้านใกล้ที่สุด (K Nearest Neighbor) แคทบูสท์ (CatBoost) เอกซ์จีบูสท์ 
(Extreme Gradient Boosting) และโครงข่ายประสาทเทียมแบบคอนโวลูชัน  (Convolution 
Neural Network) จากนั้นระบบจะจัดอันดับผู้สมัครในกลุ่มเหมาะสมจากมากไปหาน้อย ระบบที่
นำเสนอมีค่าความถูกต้อง 83.5% ค่ามัชฌิมฮาร์มอร์นิกถ่วงน้ำหนัก 86% และค่าการจำได้ 79% 
จากแบบจำลองซัพพอร์ตเวกเตอร์แมทชีน ระบบที่นำเสนอนี้จะช่วยให้ธุรกิจสามารถระบุผู้สมัคร
งานที่เหมาะสมสำหรับตำแหน่งใดตำแหน่งหนึ่ง และตัดสินใจได้จากการวิเคราะห์ข้อมูลว่าควร
คัดเลือกใครเข้ารับการสัมภาษณ์งาน 
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Finding suitable candidates for an open job position could be a repetitive 
and time-consuming task, especially from a large pool of candidates. Besides, this 
task could truly make fair screening and shortlisting tedious. Losing the opportunity 
to hire top talent candidates due to the slow screening process or the wrong 
selection by human error is unacceptable. This paper presented a method for 
human resources to categorize and select the top candidates for job opening they 
applied for. The proposed system directed to alter a machine learning algorithm to 
classify the candidate into groups i) shortlist and ii) not-suitable. The productive 
preprocessing data approaches of many works were applied. The Decision Tree, 
Support Vector Machine, Gaussian Naive Bayes, Random Forest, k-Nearest Neighbour, 
CatBoost, Extreme Gradient Boosting, and Convolution Neural Network were 
compared to find the most suitable classification model. Then, the system ranked 
the candidates in a shortlist group in descending order. The proposed system 
operates an accuracy of 83.5%, weighted f1-score of 86%, and recall of 79% from 
the Support Vector Machine classifier. This enables the business to identify suitable 
candidates for a certain position and make more informed decisions about who to 
invite for an interview. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Motivation 

     Early on in the pandemic coronavirus disease 2019 (COVID-19), there is a significant 
turnover rate. In April 2020 [1], The workforce noticed an increase in the number of 
unemployed people with an unemployment rate of more than 15%. This percentage 
has dropped to 5.2 percent as of August 2021, indicating that most employees are no 
longer at risk of losing their jobs, but recruitment and personnel retention are now 
pressing concerns for many businesses. 

     The voluntary quit rate was increasing as the work-from-home lengthens due to 
the COVID-19 pandemic. In April 2021, 4 million employees voluntarily quit their 
employment. Another 3.9 million workers voluntarily left the company in June 2021, 
bringing the total to 3.9 million. Due to the large number of open roles created by this 
massive migration, business executives are scrambling to retain their finest and most 
difficult-to-replace employees. 

     According to job seeker jobsDB statistics from January to March 2020 [2], the 
website was seen more than 3.6 million times, with more than 1.6 million unique 
visitors, over 31.4 million page views, and an average of more than 20 minutes per 
person of website traffic. 

     From the preceding paragraph, this can be observed in the increased number of 
employment applications. The process of selecting persons to interview becomes 
more time-consuming. It also poses the risk that good people will leave because of 
the longer processes and the loss of skilled people leading to the cost of working 
chances rising. This is since other businesses are also competing for talent.  

     According to the Interview Success Formula [3], 80% of job applicants who submit 
resumes will not be invited for an interview. As can be seen, Human Resources (HR) 
must carefully analyze the selection of candidates to be invited for an interview out 
of the entire number of job applicants. This requires a significant amount of time and 
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consideration. There are many factors HR must consider, the Jobvite 2021 Recruiter 
Nation Report [4] explores what HR considers about a resume, including technical 
skills, experience, salary background, education history or degrees, and grade point 
average (GPA). In addition, HR may consider additional certificates, special training 
courses, languages, computer, and technology skills, etc.  

     In its 2018 Eye-Tracking Study [5], Ladders Inc. revealed that recruiters now scan 
resumes for an average of 7 seconds, compared to just 6 seconds in 2012. Recruiters 
today just skim at resumes for an average of 7.4 seconds. However, is it too rapid to 
choose people for a job interview from a resume in 7.4 seconds? It would have been 
possible if they had taken 7.4 seconds, but only for the first qualifying round. If the 
number of applicants who pass the first round of selection outnumbers the number 
of calls for interviews. Of course, there will be a second round of qualifying that is 
more comprehensive.  

     Experienced human resources professionals were questioned by Mark Slack, a 
certified professional resume writer, regarding resume screening, how long they 
typically spend looking at a resume and their opinions of the "6-second" rule. The 
responses are listed below: [6] 

1. “…Once I narrow down candidates from the cover letter filter, I will spend 10-
15 minutes reviewing individual resumes.” by Kim Kaupe, Co-Founder, ZinePak 
/ The SuperFan Company. 

2. “The 6-second rule? It varies from company to company. Here’s what I’ll say. 
Recruiters will spend less time reading a résumé for an entry or junior-level 
role. Positions that are more senior will be reviewed quite carefully by HR 
before they pass them on to the hiring manager.” by Glen Loveland, HR 
Manager, CCTV. 

3. “Initially, an average resume takes 2-3 minutes for me to scan.” by Heather 
Neisen, HR Manager, Technology Advice. 

     It may be concluded that, depending on the company and its HR, considering 
inviting people to interview takes more or less time. However, it is a repetitious task 
that is subject to human error or bias. If the procedure takes a lengthy period, it will 
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also have an impact on other processes of recruiting certainly. Statistics from Glassdoor 
indicate that each company's job offer attracts 250 resumes [7]. Four to six of those 
candidates will be contacted for interviews, but only one will be chosen for the 
position. This is another example of how all resumes might take a long time to be 
considered for one position, and this may make the process of recruiting people to 
work more time-consuming. The Jobvite 2021 Recruiter Nation Report found that only 
16% of recruiters are filling jobs in less than 14 days, but more than 54% and 21% of 
recruiters are filling jobs in 14-30 days and 31-60 days respectively. 

     Consequently, we will explore a system to classify candidates who apply for a job 
into 2 groups: shortlist items and not-suitable items and rank the score of candidates 
in the shortlist group for an interview to work for HR. Before making a final choice, the 
system is separated into two parts, with the results of both parts being used to rank 
the candidates who should be invited for an interview in descending order. The first 
part will be to provide demographic data into the supervised learning model, such as 
gender, age, education, and so on, for the model to learn whether to invite for an 
interview or not. This research will not use personally identifiable information, such as 
name, surname, and identification card number. The second part is to input skills and 
experiences data into the similarity function, which will rank candidates who have 
similar skills and experiences to the job description for the position the company 
wants to fill. The first part's findings will be used to categorize candidates, while the 
second part's results will be used to rank scores for each candidate invited to an 
interview. 

     This research aims to create an automated job-candidate classifying and ranking 
system that will help to shorten the amount of time it takes to classify the list of 
candidates to interview and select the right candidates for the desired position based 
on both skills, experiences, and demographics. 
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1.2 Objective 

     The primary goals of this research are  

1. Develop an automated job-candidate classifying and ranking system using 
supervised learning techniques. 

2. Find the most relevant resume with job posting-based similarity functions. 
3. Study supervised learning techniques for structure data. 
4. Study neural network techniques for structure data. 

 

1.3 Scope of Work 

     This research focuses on developing an automated job-candidate classifying and 
ranking system as a case study on 3 aspects, supervised learning, neural network, and 
similarity function.  
     For the supervised learning and neural network, focus on the demographic of 
candidates to predict who should be called for a job interview. The results of these 
aspects classified applicants into two classes: those who were called for a job interview 
and those who were not. The expected model accuracy rate is 90%. 
     For the Similarity function, focus on skills and experiences that are most related to 
the job description. The result of this aspect was to rank candidates with similar skills 
and experiences as the job description for the position the company was looking for. 
     STelligence Company Limited’s data was extracted for the research, with a total of 
2027 job applicants and 36 job openings. There were 1040 applicants who filled out 
the experience information and 987 applicants who did not fill out the experience 
information. The following are the examples of information from the candidate's side, 
such as previous job title, skills, experience, year of experience, education, major, 
university, gender, age, certificate, language, and expected salary. The following are 
the examples of information from the company such as job title, job description, 
qualifications, and work location. The programming language in this research is python 
3.8. 
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1.4 Contributions 

1. A proposed system for determining which candidates should be contacted for 

an interview.  

2. Job-candidate classifying and ranking algorithm by using a supervised model, 

convolutional neural network, and a cosine similarity algorithm. 

 

1.5 Research Methodology 

1. Study relevant materials and existing research. 

2. Data understanding by exploring the data. 

3. Study the supervised learning process to create a model for classifying 

candidates by using candidates' demographic. 

4. Study the neural network process to create a model for classifying candidates 

by using candidates' demographic. 

5. Study the similarity function to rank candidates using candidates’ skills and 

experiences. 

6. Design a preliminary process including measurements to evaluate the ability 

and efficiency of the training models. 

7. Develop the job-candidates classifying and ranking system. 

8. Evaluate the system from the test set. 

9. Conclusion of research results. 

10. Compile and prepare academic articles. 

 

1.6 Thesis Organization 

     The rest of the research is organized as follows. Chapter 2 presents the theoretical 
background. Chapter 3 describes the literature review, followed by a proposed method 
in Chapter 4. Chapter 5 contains the result and discussion. Section 6 is about the 
conclusion and future work. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

 

2.1 Machine Learning 

     Machine learning is the science and art of teaching computers to recognize patterns 
in data. Here is a definition that might be more common: “Machine Learning is the 
field of study that gives computers the ability to learn without being explicitly 
programmed.” by Arthur Samuel, 1959 [8], and a more engineering-oriented one: “A 
computer program is said to learn from experience E with respect to some task T and 
some performance measure P, if its performance on T, as measured by P, improves 
with experience E.” by Tom Mitchell, 1997 [7]. 
     Machine learning systems come in a wide variety, which is helpful to categorize 
target data into categories. They can be divided into four types depending on whether 
they receive training under human supervision. 
 

2.1.1 Supervised Learning 

     In supervised learning, the algorithm gets a training set that contains labels for the 
desired target. Classification is a classic supervised learning task. For example, if we 
want to educate kindergarten children on how to classify cats and dogs, children 
should be taught by showing them pictures of a cat and dog and telling them what 
picture is a cat and what picture is a dog. Continue to teach in this manner until the 
children can accurately respond, as shown in Figure 1. 
     Regression is a common activity that involves predicting a desired numerical 
number, like the cost of a car, using a set of factors like miles, age, brand, etc. You 
must provide the model with several examples of cars, together with their labels and 
features, to train it. Here are a few of the well-known supervised learning algorithms: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

 

Figure 1 - Example of classification in supervised learning 
 

2.1.1.1 Decision Tree (DT) 

     A non-parametric supervised learning technique for classification and regression is 
the decision tree (DT). The purpose is to create a model that predicts the value of a 
target variable using basic decision rules discovered from the features of the data. The 
decision tree has a tree structure similar to a flow diagram, where each internal node 
is a trial on the remaining features, each branch is an experiment result, and each leaf 
node is a class label. The root node is selected from the highest information gain 
feature [9], which is a method to calculate how much information a feature provides 
about classes. The equation of information gain is shown in Equation 1. 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 =  𝐸𝑝𝑎𝑟𝑒𝑛𝑡 −  𝐸𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛      (1) 
      
     Where 𝐸 in Equation 1 means entropy, a measure to estimate how impurity of 
observations is. It controls the way a decision tree chooses how to split data. The 
equation of entropy is shown in Equation 2 where pi means the probability of selecting 
an example in class i. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
𝑁
𝑖=1        (2) 
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2.1.1.2 Support Vector Machine (SVM) 

     SVM uses hyperplane to classify multidimensional data with the support of kernel 
functions. There are different types of kernels in SVM such as polynomial, radial, and 
linear kernels. Another data tuning parameter is called regularization (C), which allows 
for the decision of how strongly to penalize misclassified points. If we assign C to a 
large value that has the same meaning as a low-margin hyperplane, this means that 
we want the least amount of misclassification in the training set which could lead to 
overfitting [8]. On the other hand, If we assign C to a lower value that has the same 
meaning as a high-margin hyperplane, this means that we accept the amount of 
misclassification in the training set that could lead to underfitting. Therefore, for the 
model to be effective, we should define the C properly. The kernel function's width is 
specified by a gamma parameter. When the gamma value is low, the decision boundary 
is quite broad so far-away data points are also considered. Alternatively, when the 
gamma value is high, the decision boarder is quite narrow so only nearby data points 
are considered. Figure 2 shows a sample illustration to understand SVM in its entirety 
[10]. 
 

 

Figure 2 - Hyperplane, support vectors, and margin 
 

2.1.1.3 Gaussian Naive Bayes (GNB) 

     The Gaussian normal distribution is supported by and followed by the Naive Bayes 
variant GNB. This enables the conversion of each z-score distance into a p-value. The 
GNB predicts the likelihood that a specific data item will fall under a certain category 
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for each class in the dataset. The most likely class of data points is the one with the 
highest membership probability [11]. Figure 3 shows how the GNB classifier works [12]. 
 

 

Figure 3 - How Gaussian Naive Bayes classifier works 
 
     Where 𝜇 and σ are the mean and variance of predictor distribution while 𝑃(𝑥|𝑦) 
can be calculated from Equation 3. 

    𝑃(𝑥𝑖|𝑦) =  
1

√2𝜋𝜎2
exp (− 

 (𝑥𝑖− 𝜇𝑦)
2

2𝜎2
)      (3) 

 

2.1.1.4 Random Forest (RF) 

     Random Forest is a compilation or assemblage of classification and regression trees 
produced via resampling at random from the training set. By sampling with 
replacement to construct unique trees, it employs bootstrap aggregating, often 
referred to as bagging, to produce subsets of the training data [13] as shown in Figure 
4 [14]. To categorize incoming input data, each tree predicts one class, and the forest 
chooses the class with the most votes [15] as shown in Figure 5. 
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Figure 4 - The example of random forest classification 
 

 

Figure 5 - Majority vote of random forest classification 
 

2.1.1.5 k-Nearest Neighbor (k-NN) 

     k-NN classifies new data by its neighbor’s majority vote. The neighbors were 
selected from the top k nearest distance between that new data and its neighbors. A 
distance function that uses the Minkowski distance method, Manhattan distance, or 
Euclidean distance measures the distance. The number of neighbors is represented by 
the k value that will be used as references in the majority vote to classify data points. 
The results will be less stable if the k value is very low. On the other hand, the error 
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can be increased by increasing the k value, but stable results will be obtained. Figure 
6 shows an example of the k-NN algorithm [9]. If we choose k = 1, the new data point 
will be predicted to be class 1 because its nearest neighbor is in class 1. On the other 
hand, if we choose k = 3, class 2 will be predicted for the new data point because its 
top nearest neighbor is in class 1, but the next nearest 2 neighbors are in class 2 so 
this majority vote is class 2. 
 

 

Figure 6 - The example of k-Nearest Neighbor classification 
 

2.1.1.6 Catboost 

     Another machine learning method that is effective at classifying category features 
is CatBoost [16]. The name "CatBoost" is a combination of the phrases "Category" and 
"Boosting". CatBoost works well with many other data “categories”, such as audio,  
historical data, image, and text data. And “boosting” came from an implementation of 
gradient boosting which employs base predictors that are binary decision trees [17]. 
This learning task's purpose is to promote a function that discovers the minimal 
expected loss. The obvious difference between CatBoost and other algorithms is the 
data do not need to be converted to any specific formats to use CatBoost. 
 

2.1.1.7 Extreme Gradient Boosting (XGBoost) 

     XGBoost is a boosted tree algorithm that follows the gradient boosting principle 
through parallel processing, tree-pruning, handling missing values, and regularization 
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to prevent overfitting and bias [16]. In XGBoost, decision trees are generated 
sequentially. Before being fed into the decision tree that forecasts the result, each 
independent variable is given a weight. In addition, before being placed into the second 
decision tree, variables that the tree mistakenly anticipated are given extra weight. 
These unique classifiers are then combined to produce an accurate and robust model, 
so XGBoost is one of the efficient gradient-boosting algorithms. 
 

2.1.2 Unsupervised Learning 

     The training data in unsupervised learning is not labeled. Without a teacher, the 
system tries to teach itself as shown in Figure 7.  
 

 

Figure 7 - Example of clustering in unsupervised learning 
 
     The most significant unsupervised learning algorithms are listed here: 

2.1.2.1 Clustering 

     Dividing the population or set of data points into various groups is the goal of 
clustering. Each group's data points are more similar to one another and distinct from 
those in the other groups. Clustering clusters objects based on how similar and 
dissimilar they are to one another. Data analysis, consumer segmentation, 
recommender systems, search engines, image segmentation, and other applications 
benefit greatly from clustering [18]. Two popular clustering algorithms are k-Means and 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN). 
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2.1.2.2 Anomaly Detection 

     Finding data samples that are notably different from the majority of data instances 
is the process of anomaly detection. Other names for it include novelty discovery or 
outlier detection. Finding abnormalities in the data may be helpful immediately or as 
a starting point for new knowledge discovery. In many applications, anomaly detection 
is essential including applications for security, critical infrastructure, and health [19]. 
Figure 8 shows an example of an anomaly detection application for health that detects 
diseases or anomalies in chest radiographs. 
 

 

Figure 8 - Chest radiographs anomaly detection [20] 
 

2.1.2.3 Association Rule Learning 

     Association rule learning is one of the very important concepts of machine learning. 
It is a machine-learning technique that uses rules to find important connections among 
variables. It is not only for retail and supermarkets but includes the field of web 
analytics such as tracking, learning, and predicting user behavior on websites [18]. 
Examples of association rule algorithms are Apriori and Equivalence Class Clustering 
and bottom-up Lattice Traversal (ECLAT). 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 14 

2.1.3 Semi-supervised Learning 

     There will be a data set that has numerous unlabeled occurrences and few labeled 
ones because data labeling is often time-consuming and costly. Data that is only 
partially labeled can be handled by some algorithms, and semi-supervised learning is 
the term for this type of learning. We can apply semi-supervised learning with many 
use cases such as image and speech analysis because audio and image files typically 
lack labels. Labeling is a laborious task that is expensive as well. You can label a limited 
set of data using human skills. Once the data has been trained, we may use semi-
supervised learning to label the remaining audio and image files, which will enhance 
the speech and image analytic models. 
 

2.1.4 Reinforcement Learning 

     Reinforcement learning is referred to as an agent that can study its surroundings, 
choose and carry out activities, and receive rewards or punishments in the form of 
unfavorable rewards in return. It must determine for itself the appropriate course of 
action, or policy, for maximizing reward. A protocol defines the plan of action the agent 
should take [18]. Examples of reinforcement learning applications in real life such as 
self-driving cars, AlphaGo, and robot motion control. 
 

2.2 Deep Learning 

     Deep Learning (DL) is an execution of Artificial Intelligence (AI). The main goal of AI 
is to act and think as humans do in all aspects. It enhances computers' ability to 
perform tasks automatically by leaning on previous cases of experience. Deep Learning 
(DL) consists of three groups of layers. The first group is the input layer, which is 
responsible for receiving data to be processed. The second group is the hidden layer. 
A noticeable difference between deep learning and machine learning about the hidden 
layer is deep learning has more than one hidden layer for more complex processing, 
while machine learning has only one hidden layer. The last group is the output layer, 
which is causing the showing of the result after being processed. Deep learning is often 
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applied with the development of software that can gather data and use that data for 
learning [21]. 
 

2.2.1 Convolution Neural Network (CNN) 
     CNN is a type of deep learning model. This mathematical construction typically 
consists of three different kinds of layers: convolution, pooling, and fully connected 
layer. Layers of convolution and pooling extract features that can increasingly and 
hierarchically become more complex. The output of one layer is fed onto the next 
layer, whereas the retrieved features are mapped into the output using a fully 
connected layer as shown in Figure 9. The core of the CNN architecture is the 
convolution layer, which updates learnable parameters by backpropagation with a 
gradient descent optimization technique after feature extraction using forward 
propagation on a training dataset, such as kernels and weights. The dimensionality of 
the feature is decreased via a pooling layer to extract only important parts of the data, 
optimize processing faster, and lower the number of subsequently learnable 
parameters. The last convolution or pooling layer's output is often flattened, or 
changed into a one-dimensional array of integers, and connected to a fully connected 
layer, also known as a dense layer. After that, the final fully connected layer is mapped 
to output such as the likelihoods of each class in challenges involving classification 
[22]. 
 

 

Figure 9 - Convolution neural network layers 
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2.3 Cross-validation 

     A resampling approach called cross-validation is used to assess machine learning 
models on a collection of data. The k parameter of the process determines how many 
groups should be formed from a specific sample of data. Consequently, the process is 
sometimes referred to as “k-fold cross-validation”. When a k value is established, it 
can be used in place of k in the reference of the model, such as when k=5 denotes 5-
fold cross-validation. 
     The two main processes in cross-validation are folding the data and cycling 
between training and evaluation on each fold as shown in Figure 10. Each fold is 
roughly the same size, allowing for stratification, which means each fold has the same 
proportion of observations with a given label as shown in Figure 11. On the other hand, 
you can split the data by random selection. All folds are used to train the model, 
except for one that will be rotated as a validation fold, so that each fold has only ever 
behaved as a validation fold once. The accuracy of each fold will be calculated as the 
average accuracy for the entire data. 
 

 

Figure 10 - 5-fold cross-validation 
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Figure 11 - Stratified 5-fold cross-validation 
 

2.4 Classification Model Evaluation  

2.4.1 Confusion Matrix 

     When we solve classification problems, both for binary classification and multiclass 
classification, a confusion matrix is a common measurement to describe the 
performance of a model with testing data as shown in Figure 12. 
 

 

Figure 12 - Confusion matrix 
 
     The counts between actual and expected values are displayed in the confusion 
matrix. The outcome “TN” stands for the true negative and displays the quantity of 
accurately predicted negative class cases. Like this, how many positive classes were 
predicted with accuracy cases is shown by the abbreviation “TP”, which stands for 
true positive. The number of genuine negative cases for which erroneous positive 
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predictions were made is indicated by the letter “FP”, which appears as a false 
positive, while “FN” implies a false negative, which means the number of real positive 
cases that were mistakenly predicted as negative [23]. 
 

2.4.2 Classification Report 

     A classification report is a performance evaluation metric report in machine 
learning. Precision, recall, F1-score, and support in each class are the main 4 metrics 
that are presented.  
     Its correctness can be evaluated by its precision. It is described as the proportion 
of true positives to all true and false positives for each class. The other way refers to 
the percentage of all samples that were predicted to be positive. The equation of 
precision is shown in Equation 4.  

       𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
       (4) 

      
     A recall gauges a classifier's ability to correctly predict each positive sample. It is 
defined as the ratio of true positives to the total of true positives and false negatives 
for each class. The other way means what percentage of all samples that were positive 
were accurately predicted. The equation of precision is shown in Equation 5. 

         𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (5) 

      
     The F1-score, with 1.0 representing the best result and 0.0 the worst, is a weighted 
harmonic mean of recall and precision. The equation of precision is shown in Equation 
6. 

           𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (6) 

      
     Support in a dataset is the proportion of real samples in each class. In the training 
data, the necessity for stratified sampling or rebalancing may be suggested by 
imbalanced support which may point to structural problems in the model [24]. 
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CHAPTER 3 

LITERATURE REVIEW 

 
     Related literature for this research is focused on resume-job matching to locate 
the best candidates for the open position. Each relevant study employs a different 
approach to analyze and identify potential candidates. In any case, they significantly 
shorten the time spent selecting a candidate for HR. 
 

3.1 Matching Applicants with Positions for Better Allocation of Employees in the 

Job Market 

     The main processes in this system architecture are depicted in Figure 13, divided 
into five sections. First, data collection, data about resumes was gathered from various 
sources and job postings were collected from indeed.com. Second, all important 
information was taken from both resumes and job postings by using the SpaCy NLP 
library. Third, all letters were converted to lowercase, unnecessary words and spaces 
were removed, certain special characters were mapped, and others were removed. 
Fourth, by matching and scoring by using the SpaCy similarity function, it was 
determined how similar each resume category was to its corresponding one in the job 
offer. The last one is ranking and reporting, the results are used to put the candidates 
who are best qualified at the top and the candidates who are least qualified at the 
bottom. System accuracy was 83 percent overall [25]. 
     We then use the same method for collecting job postings and job applicant data 
from this paper, but we choose to retrieve from different job sites, using jobsdb.co.th 
instead of indeed.com. 
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Figure 13 - Recommendation system 
 

3.2 Feature Selection for Job Matching Application using Profile Matching Model 

     This research aims to choose the key features required for job matching. Using the 
candidate profile and company profile factors results in the development of match-
related people and positions. The system works by gathering data, which are age, 
gender, military status, highest education level, experience, and years of experience 
for the candidate data. On the other hand, the researchers collected job titles, the 
minimum highest education level, age, gender, military status, experience, and years 
of experience for job posting data. Processing integration involved information 
extraction, which included cleaning and integrating all obtained data to create a 
profile-matching model and data categorization. To determine whether a candidate's 
performance is appropriate for a certain group, the company's information and the 
candidate's information are combined and grouped into several clusters. For analysis, 
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the proposed approach calculated scores of similarity between the two profiles. The 
resulting similarity scores are then adjusted to have more accurate values that account 
for the weighting given to each attribute. In decision-making, whether the two profiles 
being compared are the same is what is returned by computing the weighted similarity 
scores. According to the ranking of the selected features, age and gender are ranked 
lower than a job title, work experience, highest education level, and military status, 
which each have an attribute value of 58.33. Which age and gender got only 41.66. 
Only openings that are present in large clusters will be eligible for matching by the 
matching algorithm, which will be able to identify these clusters. The recommendation 
of candidates to the company is executed when the matching is completed [26], as 
shown in Figure 14.  
  

 

Figure 14 - Profile matching framework 
 

     We will choose to select high-attribute-value features from this paper for the data 
preparation process of this research. This includes job title, work experience, highest 
education level, age, and gender information, as well as key features that HR considers 
about a resume from the Jobvite 2021 Recruiter Nation Report. 
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3.3 Design and Development of Machine Learning based Resume Ranking 

System 

     Finding the topmost qualified candidates for a certain job position is the purpose 
of this research based on two factors: (1) the candidate's abilities will be used to 
evaluate the test, and (2) The candidate's resume's experience must align with the 
company's criteria. 
     This research proposed a system, shown in Figure 15, that comprises two major 
sections. The first part is the candidate screening part, used to evaluate the candidate's 
qualifications using the multiple-choice question (MCQ) test. Candidates can submit 
resumes once they reach a minimal score. But, if they fall short of a minimal score, 
they will not be permitted to submit a resume. 
     Second, in the resume screening and ranking part, white spaces, digits, and stop 
words, e.g., and, etc. are removed from resumes. The words in the resumes are then 
converted to vectors using term frequency-inverse document frequency (TF-IDF) 
vectorization. TF-IDF vectorizer is also used to transform the text in the job description 
(JD) into vectors. The next step is to find resumes that closely match the JD provided 
by the recruiters using the k-nearest neighbors (k-NN) technique after the cosine 
distance is used to gauge how similar the resume and the JD offered are to one 
another. 
     To begin, this system used “Gensim”, an open-source library, to summarize the JD 
and resumes. Within the word limit, the information provided was summarized by this 
library. Before calculating the cosine similarity between the JD and resumes, the model 
combined the JD and the cleaned resume data into a single data set. Ranking resumes 
according to the job description following the similarity score achieved. The cosine 
similarity value of k-NN was utilized to get resumes that intimately matched the 
specified JD. Recruiters are given recommendations for the top-n ranked resumes 
based on assigned ranks. The system's scoring accuracy averages 92 percent and 
parsing accuracy is 85 percent [27]. 
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Figure 15 - Machine learning-based resume ranking system 
 
     We will take some steps from this research, which is to remove space, numbers, 
and stop words in the document parsing and preparation process respectively, and to 
find similarities between JD and resume using cosine similarity. 
 

3.4 A Machine Learning Approach for Automation of Resume Recommendation 

System 

     The goal of this research is to choose from a broad pool of resumes the finest 
candidates. The proposed model primarily operated in two steps: (1) prepare and (2) 
deploy and inference. It can be seen in Figure 16. 
     In the preprocessing part, The inputted resumes will be cleaned to get rid of any 
special or unnecessary characters. Additionally, during cleaning, all special characters, 
numerals, and words that consist of only a single letter are eliminated. For the next 
step, stop words like and, the, was, etc. that commonly appear in the text but are 
useless for prediction are consequently removed. Stemming, which distills word 
morphology to its basic forms, and lemmatization, dropping the s, es, or ing at the end 
of a word to confirm that the word has nothing to do with it, are the next steps. The 
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final step is feature extraction, which the researchers accomplished with the TF-IDF. As 
a result, the texts are converted to the desired vector length using the scikit-learn 
library to construct a TF-IDF vector, they calculate TF-IDF for each term in their dataset.  
 

 

Figure 16 - Recommendation system 
 
     In the deploy and inference part, The model would provide resumes that were 
relevant to the JD after comparing the tokenized resumes data with the JD. On the 
cleansed data, two models have been developed: (1) classification, the model was 
created to place the resume into the relevant category. (2) recommendation, based 
on the JD supplied by HR and the resume's comparability. 
     For the classification model, A selection of the most relevant resumes was 
produced by the model, which included defined a summary of the CV and JD. Using 
10-fold cross-validation, the average accuracy score of the linear support vector 
classifier was calculated to be 78.53 percent, which is higher than that of random 
forest, multinomial naive bayes, and logistic regression. 
     A job description and resumes were input into the recommendation algorithm, 
which then created a list of resumes that most closely matched the job description. 
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Two methods are used to do this: (1) Use of cosine similarity for content-based 
recommendations: the model combined the JD and cleansed resume data into a single 
data set before calculating the cosine similarity between them. (2) k-NN: the provided 
text was summarized by the “Gensim” library within the word limit, and then the 
purpose system used k-NN to find closely matched resumes with the provided JD [28]. 
     The cleaning, tokenization, and preparation in preprocessing part will be applied in 
this proposed research. This research includes using cosine similarity to calculate a 
similarity between JD and resumes in the deploy and inference part. The classification 
model is another step that will be used in this research as in this paper, but with 
different purposes. In this paper, the classification model is used to divide resumes 
into working categories (multiclass classification), such as accounting groups, computer 
groups, engineering groups, etc., while this research will build a classification model to 
predict whether the candidates are suitable for being called in for a job interview or 
not (binary classification). 
 

3.5 Machine Learned Resume-Job Matching Solution 

     The information extraction from the resume is the first step in this paper which can 
be categorized into 3 types of features. First, manual features, which are gender, age, 
major, the details and alterations of prior employment, the age at which one was hired, 
the highest salary, and so on. Numerical keys were used during training instead of the 
character feature values that were entered into a dictionary. The authors used the 
entire text of the résumé to train a Word2Vec model for cluster features. Additionally, 
a phrase's semantic meaning can now be represented via a phrase's typical word 
embeddings. Using the K-mean algorithm, sentences were divided into 64 and 128 
clusters. The writers turned a resume's previous work experience into an ordered list 
of phrases for the final feature category, the semantic feature. Each phrase would be 
presented by a vector of 10 dimensions and then calculated with the similarity of 
vectors. An example of all features is shown in Figure 17. 
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Figure 17 - Example of the manual, cluster, and semantic features 
 
     This research using the IBagging method improved from the Bagging method by 
voting based on the overall probability of each option [29]. 
     We will take some features in the manual and semantic features from this paper 
to prepare for the research such as gender, age, major, and so on. In addition, we will 
look at three models that the authors used to train data for this paper: XGBoost, 
Random Forest, and Convolutional Neural Network and apply them to train the data 
for this research. 
 

3.6 Embedding-based Recommender System for Job to Candidate Matching on 

Scale 

     This research proposed a candidate matching system which is a two-stage 
recommendation process made up of two main parts. In the first stage retrieval 
component, hundreds of candidates were selected from a pool of millions using a 
two-tower embedding structure. The second stage reranked components based on 
various contextual factors. The applicants were whittled down to a few dozen at this 
point. The authors proposed a fused embedding technique to learn representations 
from raw text, parsed text, and geolocation for both applicants and jobs in the first 
component, as shown in Figure 18. 
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Figure 18 - Embedding-based recommender system 
 

     For the deep-learning embedding model, the word2vec model is used to express 
words in vectors from job-candidate text pairs, which are subsequently sent to the 
convolutional neural network with the attention layer. The outcome is a context 
vector, which is then used to generate an embedding vector through the dropout layer, 
fully connected layer, and RELU activation. Job-skill information graph is used to learn 
the depiction of job title and skill, respectively. They converted the latitude and 
longitude indicated in spherical coordinates to cartesian coordinates in the spherical 
coordinate calculator part [30]. 
     In this research, the method for training a convolutional neural network and 
calculating distance will be applied. 
 

3.7 Comparing BERT against traditional machine learning text classification 

     This research compares classic machine learning methods that train machine 
learning algorithms in features derived from the data by the TF-IDF algorithm with 
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bidirectional encoder representations from transformers (BERT) from 4 datasets on text 
classification, both binary and multiclass. For TF-IDF, the authors used TfidfVectorizer 
from the sklearn library to preprocess the text, then predicted the data using Predictor 
from the auto_ml module and H2OAutoML from the h2o module respectively to find 
the best model for that data. For BERT, they used the pre-trained BERT model from 
the pre-trained module. The conclusions drawn from the comparison in this research 
found that BERT achieves higher accuracy than traditional methods in every dataset 
[31]. 
     For the proposed method, BERT will be applied to the vectorization process for 
similarity computation and ranking suggestions to see if BERT can do better on this 
dataset than TF-IDF. 
     According to the research, the majority of solutions have their limitations or can 
only be used in certain situations to complete a particular goal. In this thesis, we aim 
to demonstrate the combination of those methodologies so that the proposed system 
can be generalized and more effective. 
     The proposed method will extract data from a website, JobsDB, then clean the 
data before processing. Auto-filling is one step in the processing stage to handle missing 
data. After that, we will convert the experience text data to vectors using the 
bidirectional encoder representations from transformers (BERT) pre-trained model and 
calculate the similarity between the experience and the responsibilities of the job that 
the candidates applied for. On the other hand, we will classify the target group using 
a supervised learning model into 2 groups which are not-suitable items and shortlist 
items. The similarity score will be used to rank the candidates from the shortlist group 
in descending order. Finally, we will explore features that have an impact on target 
prediction. Table 1 summarizes the similarities and differences between the methods 
used by the authors in previous papers including the proposed method. 
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Table 1 - Method comparisons 

Step [25] [26] [27] [28] [29] [30] [31] 
Proposed 
method 

Crawler data ✓ ✓      ✓ 
Clean data ✓ ✓ ✓ ✓ ✓ ✓  ✓ 
Vectorization   ✓ ✓  ✓ ✓ ✓ 
Similarity 
computation 

✓ ✓ ✓ ✓ ✓  
 

✓ 

Work type 
classification 

   ✓   
 

 

Target group 
classification 

      
 

✓ 

Candidates 
ranking 

✓  ✓ ✓ ✓ ✓ 
 

✓ 

Features 
ranking 

 ✓     
 

✓ 
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CHAPTER 4 

PROPOSED METHOD 

 
     This proposed method aims to develop an automated job-candidate classifying 
and ranking system using supervised learning techniques. The method, as shown in 
Figure 19, starts with scraping candidate and job data from the JobsDB website, then 
proceeds to preprocess using multiple techniques, and the result from the 
preprocessing stage will be sent to the prediction stage. 
 

 

Figure 19 – Overview of the proposed system 
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4.1 Data Scraping 

     Data was collected from JobsDB.com excluding personally identifiable data, such 
as name, surname, and identification card number. The data is divided into two parts 
containing 2027 job applicants who applied for 36 job postings at STelligence Company 
Limited. There were 1040 applicants who filled out the experience information and 
987 applicants who did not. The data is presented in both Thai and English, so we 
need to convert all Thai text into English before using these data in the following step. 
Figure 20 and Figure 21 showed the example of candidate and job posting data 
respectively.  
 

 

Figure 20 - Example of candidate data 
 

 

Figure 21 - Example of job opening data 
 

4.2 Data Preprocessing 

     The most time-consuming process is data preprocessing or data cleaning. When 
high-quality data is entered into the model, the model's output is also of high quality. 
However, if the data fed to the model is of bad quality, the model's output will be 
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poor as well. As quoted in “Garbage in, garbage out”, by Nick Harkaway, The Gone-
Away World. 
 

4.2.1 Natural Language Processing (NLP) Process 

     Before stepping into the NLP process, we need to translate Thai to English text for 
the data that candidates fill in the form in the Thai language first by using The Google 
Translate Application Program Interface (API) in Python. This API is well-known and 
trustworthy whether it is used for translating short or long text messages. The examples 
of translation from Thai to English text are shown in Figure 22.  
 

 

Figure 22 - The examples of translation using the Google Translate API 
 
     The next step is summarization, we will summarize the candidate's experience and 
the job opening description using the “Gensim” library. After that, we will go through 
the NLP process. This process contains 2 steps: stop word removal and lemmatization. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 33 

In the first step, stop word removal, we will delete the word that does not have 
significant meaning such as a, an, the, etc. For the second step, lemmatization, we are 
going to transform the word to its root word by cutting its postfix or changing its form. 
For example, the word “go”, “went”, “gone”, and “going” will be transformed to 
“go”. 
 

4.2.2 Feature Engineering 

     From already existing features, we can create new ones using business knowledge 
and data understanding. For example, the distance between home and workplace can 
be calculated. Long-distance may affect a candidate's journey, making it take longer 
and cost more. This may affect the decision to hire employees. 
     Another undeniable factor that most Thai organizations consider is the university 
ranking from where job applicants graduated. So, we will create a new feature by 
calculating the score from the university that the candidate graduated from by using 
Quacquarelli Symonds (QS) world university rankings. The candidate will obtain a higher 
score if the university he or she graduated from is ranked in the university ranking. The 
higher the university they graduated from was ranked, the higher the candidate's score. 
On the other hand, if the candidate graduates from a university that has a low ranking, 
they will receive a lower score. They will get a zero if the university where they studied 
is not included in the rankings. 
 

4.2.3 Missing Value Handling 

     There are a lot of techniques for dealing with missing values ranging from simple 
to complex. Figure 23 summarizes the techniques, including deletion and imputation. 
We can delete or impute missing data depending on how many missing values and 
what effect deleting data has on predictions. The first technique is data deletion which 
can be divided into 3 more ways: pairwise deletion, listwise deletion, and dropping 
entire columns. Pairwise deletion is the way to delete only missing values. Listwise 
deletion is a technique for deleting the row containing the missing value, and dropping 
entire columns means deleting the column containing the missing value. However, 
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pairwise and listwise techniques are not suitable for our data because some columns 
have missing values of more than 50% so we will use the dropping entire columns 
technique. 
 

 

Figure 23 - Missing value handling techniques 
 
     The other way to handle missing value is imputations. According to the complexity 
of the technique, it can be divided into 2 groups: general and advanced. For general 
techniques, if the data is not a time series, missing data can be filled with any value 
such as mean, median, mode, etc. If the data is a time series, the appropriate method 
is forward fill, backward fill, or linear interpolation. For advanced techniques, k-NN 
Based and Multivariate Imputation by Chained Equations (MICE) are some examples.  
     We design to use both general and advanced techniques. We will drop the entire 
column. If the columns are categorical and have a lot of unique values, missing values 
are imputed with mode value for that column such as nationality feature because 90% 
of all values are Thailand, so imputation by mode is the appropriate way. A k-NN-based 
method is used to handle the remaining columns with missing values. 
 

4.2.4 Dealing with Categorical Features 

     For the nominal feature, a feature that consists of a finite number of discrete values 
with no relationship between them, we will use the one-hot-encoder technique even 
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though there is some natively supported categorical feature model. The caution of this 
method is it could lead to a massive amount of dimensionality. 
     For the ordinal feature, a feature indicating a variable has a finite set of discrete 
values that can be ranked, we will use the label encoder technique. The example of 
nominal and ordinal features is shown in Figure 24. 
 

 

Figure 24 - Example of nominal and ordinal feature 
 

4.2.5 Feature Scaling 

     We want to rescale the value of all columns. There are 2 ways to do this: 
normalization and standardization. Normalization is the technique to rescale the value 
into a range of 0 to 1. This method is useful when all parameters need to have the 
same positive scale. The equation of normalization is shown in Equation 7. 

𝑥 =  
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
                                                   (7) 

 
     On the other hand, standardization is a technique to rescale the data to have a 
mean of 0 and a deviation of 1. The distribution produced by setting the feature's 
mean to zero has a value of standard deviation equal to one. The values are not 
limited to a specific range. The equation of standardization is shown in Equation 8.  

      𝑥 =  
𝑥− 𝜇

𝜎
         (8) 
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     To get the best results, we will fit the model to raw, normalized, and standardized 
data, then compare the results to determine the best ones. 
 

4.2.6 Handling Imbalance Class 

     An imbalanced classification problem is one where samples are distributed 
unevenly throughout the identified classes. The distribution can vary from a bias to a 
major imbalance. This problem causes a challenge for predictive modeling because 
most machine learning methods for classification assume that each class has an equal 
number of examples. Subsequently, models can have higher prediction accuracy in 
the train set, particularly for the majority class. But, lower prediction accuracy in the 
test set. In a nutshell, we need to deal with this problem by ensuring that all target 
classes have the same number of rows. 
     To get the best results, we will fit the model to raw, over-sampling, and under-
sampling data, then compare the results to determine the best ones.  For over-
sampling, we decide to use the Synthetic Minority Oversampling Technique (SMOTE). 
It is the less time-consuming step of oversampling methods because It generates 
oversampled datasets that enable supervised classifier training to provide classification 
outcomes that are statistically comparable to those from other approaches, but in 
much less runtime [32]. For over-sampling, we select a random-under-sampling 
technique. 
 

4.3 Data Prediction 

     In the data prediction part, the data will be divided into training and testing sets. 
The training data is used to train and evaluate the models using the cross-validation 
technique whereas the testing data is used to apply the most appropriate model to 
make predictions and finally evaluate unseen data. 
 

4.3.1 Split Training and Testing Set 

     We will segment the data into two groups based on their experience data: a group 
of job applicants who fill their experience and a group who don’t. After that, we will 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 37 

divide the data in each group into 90% of the training data and 10% of the testing data 
as shown in Figure 25 using the same label ratio in both training and testing data. 
Model learning and model validation will be done using data from the training set 
using 5-fold cross-validation, while data from the testing set will be utilized to test the 
model's results with unseen data and display the proposed system's output.  
 

 

Figure 25 - Split training and testing set 
 

4.3.2 Define Models and Hyperparameter Tuning  
     We will train a variety of classification models to see which one gives the best 
performance with this dataset. Moreover, we decide to find the appropriate value of 
each variable that will be used with models using the GridSearch technique. The 
following are the models that will be experimented with: 

- Decision Tree (DT) 
- Suport Vector Machine (SVM) 
- Gaussian Naive Bayes (GNB) 
- Random Forest (RF) 
- k-Nearest Neighbour (k-NN) 
- CatBoost 
- Extreme Gradient Boosting (XGBoost) 
- Convolution Neural Network (CNN) 

     The next section provides a description of these techniques' specifics as well as 
the parameter values. 

4.3.2.1 Decision Tree (DT) 

     The decision Tree is the first supervised learning technique that we will experiment 
with classification to find the most appropriate value for 4 parameters. The detail of 
each parameter that we will experiment with is shown in Table 2 [33].  
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Table 2 - Parameters and values that will be tested in the DT model 

parameter description experiment value 

criterion The function for evaluating a split 

efficiency 

entropy, gini, 

log_loss 

splitter The method for choosing the split  best, random 

max_depth The tree's maximum depth 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10 

min_samples_ 

split 

The minimum number of samples 

required to split an internal node 

1, 2, 3, 4, 5, 6, 7, 8, 

9, 10 

 

4.3.2.2 Suport Vector Machine (SVM) 

     A Support Vector Machine (SVM) is a powerful and flexible machine learning model 
that can perform linear or nonlinear classification, regression, and outlier detection. 
     There are 3 parameters that we will experimentally adjust values for the Support 
Vector Machine model which are C, kernel, and gamma as shown in Table 3 [34]. 
 

Table 3 - Parameters and values that will be tested in the SVM model 

parameter description experiment value 

C Regularization parameter 0.05, 0.03, 0.01, 

0.5, 1, 3, 5 

kernel The type of kernel to employ in the 

algorithm 

linear, 

precomputed, 

poly, rbf, sigmoid 

gamma Kernel coefficient auto, scale 
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4.3.2.3 Gaussian Naive Bayes (GNB) 

     The Naive Bayes variant known as Gaussian Naive Bayes supports continuous data 
and conforms to the Gaussian normal distribution. We will demonstrate and change 
the value of just one parameter, var_smoothing,  as shown in Table 4 [35]. 
 

Table 4 - Parameters and values that will be tested in the GNB model 

parameter description experiment value 

var_smoothing A fraction of all features' biggest 

deviations that are contributed to 

variances for computation stability 

10-10, 10-9, 10-8,  

10-7, 10-6, 10-5 

 

4.3.2.4 Random Forest (RF) 

      In Random Forest, a collection or ensemble of classification, there are 4 tuning 
parameters, 3 of these are as same as the decision tree model parameters which are 
criterion, max_depth, and min_samples_split, with only one difference parameter 
being n_estimators as shown in Table 5 [36]. 
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Table 5 - Parameters and values that will be tested in the RF model 

parameter description experiment value 

n_estimators How many trees there are in the forest 50, 60, 70, 80, 90, 

100 

criterion The function for evaluating a split 

efficiency 

entropy, gini, 

log_loss 

max_depth The maximum depth of the tree 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10 

min_samples_split The minimum number of samples 

required to split an internal node 

1, 2, 3, 4, 5, 6, 7, 8, 

9, 10 

 

4.3.2.5 k-Nearest Neighbour (k-NN) 

     The k-NN model is one of many models to be turned for the proper parameter 
value by changing the value of n_neighbors, weights, algorithm, and p to optimize the 
model's performance as shown in Table 6 [37]. 
 

Table 6 - Parameters and values that will be tested in the k-NN model 

parameter description experiment value 

n_neighbors How many neighbors to utilize 1, 3, 5, 7, 9, 11, 13, 

15 

weights What weight function is needed distance, uniform 

algorithm The algorithm for calculating the nearest 

neighbors 

auto, ball_tree, 

brute, kd_tree 

p Power parameter for the Minkowski metric 1, 2, 3 
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4.3.2.6 CatBoost 

     Another machine learning method that is successful at forecasting categorical 
features is the CatBoost classifier, 4 parameters which are iterations, learning rate, 
depth, and l2-leaf-reg will have their values experimentally changed as shown in Table 
7 [38].  
 

Table 7 - Parameters and values that will be tested in the CatBoost model 

parameter description experiment value 

iterations The maximum number of trees that can 

be constructed 

100, 200, 300, 400, 

500, 1000, 1500, 

2000 

Learning_rate The method for choosing the split at 

each node 

0.001, 0.01, 0.02, 

0.03, 0.04, 0.5, 0.1 

depth The trees' highest point in depth 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10 

l2_leaf_reg Cost function coefficient at the L2 

regularization term 

1, 2, 3, 4, 5, 6, 7, 8, 

9, 10 

 

4.3.2.7 Extreme Gradient Boosting (XGBoost) 

     To determine the optimal value of parameters for the XGBoost model, one of the 
gradient-boosting boosted tree methods that uses parallel processing, tree-pruning, 
handling missing values, and regularization to prevent bias and overfitting, we will 
experimentally adjust 5 parameters which are booster, eta, max_depth, lambda, and 
alpha as shown in Table 8 [39]. 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 42 

Table 8 - Parameters and values that will be tested in the XGBoost model 

parameter description experiment value 

booster The booster to use in prediction dart, gblinear, 

gbtree 

eta Minimum loss reduction is needed to 

create a new division on a tree leaf node 

0, 0.1, 0.2, 0.3, 0.4, 

0.5, 1 

max_depth The tree's maximum height 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10 

lambda L2 regularization term on weights 0, 0.05, 0.03, 0.01, 

0.5, 1, 3, 5 

alpha L1 regularization term on weights 0, 0.05, 0.03, 0.01, 

0.5, 1, 3, 5 

 

4.3.2.8 Convolution Neural Network (CNN) 

     The structure of a CNN in this research composes of the convolution layer that has 
32 filters with a 3x3 kernel size. Max-pooling of size 2x2 is then used to reduce the 
dimensions of the output and flatten the output to 1 dimension. Next to a flattened 
layer is 2 dense layers, 100 units with the relu activation function and 10 units with 
the relu activation function, alternate with a dropout layer. The output layer will 
contain 2 nodes of classification with a sigmoid activation function and categorical 
cross-entropy will be used as the loss function [22].  
     The optimizer and dropout parameter will be tuned for the neural network model 
while batch_size and epoch value will be adjusted in the model training process as 
shown in Table 9.  
 
 

Table 9 - Parameters and values that will be tested in the CNN model 
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parameter description experiment value 

batch_size The number of training examples utilized 

in one iteration 

16, 32, 64 

dropout The ratio that nullifies the contribution of 

some neurons towards the next layer 

0.1, 0.2, 0.3, 0.4, 

0.5 

epoch The number of times the algorithm has 

iterated through the training dataset 

100, 200, 300, 400, 

500, 1000 

optimizer The methods used to minimize an error 

function 

Adam, SGD 

 

4.3.3 Evaluate Metrics for Classification Model 

     We compare the performance of each model with 4 measures to get the most 
suitable model in terms of accuracy and productivity. 
 

4.3.3.1 Accuracy 

     The overall performance of this proposed method will be measured by accuracy. 
We are going to calculate the average accuracy from all iterations of cross-validation 
for the training set. The equation of accuracy is shown in Equation 9. 

     𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (9) 

 

4.3.3.2 Weighted F1-score 

     We want a model that balances precision and recall because we want to minimize 
total errors, which means low bias and low variance. Low variance algorithms (high 
bias) will be less complex and consistent, but inaccurate on average which can lead 
to underfitting. On the other hand, low bias algorithms (high variance) will be more 
complex and accurate on average, but inconsistent which can lead to overfitting. The 
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equation of weighted F1-score is shown in Equation 10 when W represents the weight 
of each class, and the equation of F1-score is shown in Equation 6. 
 

     𝐹1𝑐𝑙𝑎𝑠𝑠1𝑊1  +  𝐹1𝑐𝑙𝑎𝑠𝑠2𝑊2  + ⋅⋅⋅  + 𝐹1𝑐𝑙𝑎𝑠𝑠𝑁𝑊𝑁   (10) 
 

4.3.3.3 Recall 

     We want the FN to be as low as possible for this classification problem. This means 
that we do not want any potential candidates predicted as not-suitable, leading to the 
shortlisted candidate being dismissed from the interview call. That is because we do 
not want to lose someone who could be effective for a job interview and join the 
company. On the other hand, we want the TP to be as high as possible as well. This 
means that we want the model to be able to predict the candidates to be shortlisted 
as accurately as possible for the effectiveness of the system results. Consequently, to 
be able to evaluate both FN and TP simultaneously, recall value will be used to 
evaluate system performance. The higher the recall value, the better. The equation of 
recall is shown in Equation 5.  
 

4.3.3.4 Computation Time 

     Another factor to consider is the computation time. Since time is valuable in 
practice, the proposed method should reduce the amount of time spent on human 
work. The computer used in this research is a 64-bit operating system with an Intel(R) 
Core (TM) i7-10510U CPU @ 1.80GHz 2.30GHz and 16.0 gigabytes (GB) of random-access 
memory (RAM). 
     These 4 measures will give the proper model with high reliability and require less 
computation time. After we get the most suitable model and parameters. We will 
retrain the model with the training set through the 5-fold cross-validation technique 
to find the optimal threshold for each iteration, then take those thresholds to calculate 
the median to determine the final optimal threshold for the testing set. 
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4.3.4 Similarity Computation and Ranking Suggestion 

     After the model can predict who should be in the shortlist group, we will rank the 
candidates in this group. There are two ways to rank depending on whether the 
candidate fills in his or her experience information as shown in Figure 25. 
     Applicants who fill out their experience data will have their experience data 
converted to vectors of numbers, as well as job description data. The two vectors are 
then calculated for the cosine similarity value. Finally, the computed value by the sum 
of cosine similarity and predict probability will be used to display the candidates 
ranking in descending order that grouping them according to the job title that they 
apply for. 
 

 

Figure 26 - The candidates ranking approach 
      
     On the other hand, candidates who do not fill out their experience are ranked by 

combining the probability of predicting as a shortlist group from the 3 best models 

and sorted by the sum in descending order that grouping them according to the job 

title that they apply for. The final ranking suggestion will order candidates who fill in 

experience data first, then those who do not. 
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CHAPTER 5 

RESULT AND DISCUSSION 

 
     This research compares the classification of data with 8 methods to select the most 
appropriate one. The following part will provide an explanation of the procedure's 
details. 
 

5.1 Experimental Dataset Preparation  

     After data was collected from JobsDB.com, the data was put through many data 
preparation processes, such as converting Thai to English text, creating new columns 
from existing columns, missing value handling, categorical features handling, feature 
scaling, and handling imbalance class. The data after being transformed through the 
preparation step will be put into the models. The feature details are shown in Table 
10. 
 

Table 10 – The feature details 
Feature name Description 

age Candidate's age 

can_speak_en Can the candidate communicate in English? 
cosine_sim The similarity between the candidate's experience 

data and the job description of the position applied 
for 

count_certificates The number of certificates that the candidate has 

count_extract_skills The number of candidate’s skills that match the skills 
of the position applied for 

count_lang The number of languages the candidate can 
communicate 

count_same_keyword The number of important keywords extracted from 
candidates' work experience data that match the 
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important keywords extracted from the job opening 
data 

fill_expr_in_en Does the candidate fill in the information in JobsDB in 
English? 

filter_age Does the candidate’s age meet the qualification of 
the job the candidate applied for? 

filter_minimum_degree Does the candidate’s minimum education level meet 
the qualification of the job the candidate applied for? 

filter_minimum_exp Does the candidate’s year of experience meet the 
qualification of the job the candidate applied for? 

filter_national_only Does the candidate’s nationality meet the 
qualification of the job the candidate applied for? 

gender_Female Is the applicant a female? 
gender_Male Is the applicant a male? 

haversine_distance The distance between the candidate's residence and 
the workplace 

highest_edu The highest education level of the candidate 

ins_in_topu_score The total score of the university where the candidate 
has graduated 

nice_to_have_major_scores The total score of the major where the candidate has 
graduated 

similar_job_title The similarity between the candidate’s recent job 
title and the position applied for 

thai_nationality Is the applicant a Thai national? 

year_of_experiences Total years of work experience 
target The classification target (1 = shortlist, 0 = not suitable) 

 
     The difference between the data that we took into the model for those who filled 
in experience data and those who did not is the cosine_sim column. The candidates 
who filled in the experience data will have this column in the model, while those who 
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did not fill in the experience data will not have it. The 2027 candidates consist of 1218 
who fill in experience data and 809 who did not. Figures 27 and 28 show the 
percentage of candidates in different groups for candidates who filled in experience 
and did not respectively. 
 

 

Figure 27 - The percentage of the target group for candidates who filled in the 
experience 

 

 

Figure 28 - The percentage of the target group for candidates who did not fill in the 
experience 

 

5.2 Modeling 

     We did hyperparameter tuning with 5 StratifiedKFold using the GridsearchCV 
technique by separating the data between those who filled in the experience and 
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those who did not. Moreover, we experimented with normalization and imbalance 
class handling. For normalization, we experimented in 3 ways, which are without 
normalization, min-max scaler, and standard scaler. For imbalance class handling, we 
experimented in 3 ways, which are without imbalance class handling, oversampling, 
and undersampling.  
     Table 11 shows the most proper parameter value for the Decision Tree model 
using the GridsearchCV technique for the data with experimental normalization and 
imbalance class handling. 
 

Table 11 - The most proper parameter value for the DT model 
Experience 
data 

Normalization Imbalance class 
handling 

Parameters 
criterion splitter max_ 

depth 
min_samples_ 

split 

Fill - - gini best 10 2 
oversampling entropy random 7 9 

undersampling entropy random 4 6 
min-max 
scaler 

- entropy best 10 3 

oversampling entropy best 5 4 

undersampling gini random 2 6 
standard 
scaler 

- entropy best 10 2 

oversampling gini random 9 6 
undersampling gini random 2 9 

Not fill - - gini best 10 2 
oversampling entropy best 10 7 

undersampling entropy random 9 1 
min-max 
scaler 

- entropy best 10 2 

oversampling gini best 10 10 
undersampling entropy random 2 5 

standard 
scaler 

- gini best 10 2 

oversampling gini best 10 10 
undersampling gini random 8 8 
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     Table 12 shows the most proper parameter value for the Support Vector Machine 
model using the GridsearchCV technique for the data with experimental normalization 
and imbalance class handling. 
 

Table 12 - The most proper parameter value for the SVM model 
Experience 
data 

Normalization Imbalance class 
handling 

Parameters 
C gamma kernel 

Fill - - 0.01 scale linear 
oversampling 1 scale rbf 

undersampling 0.01 scale linear 
min-max 
scaler 

- 3 scale rbf 

oversampling 3 scale rbf 
undersampling 1 auto linear 

standard 
scaler 

- 0.5 auto poly 
oversampling 5 scale rbf 

undersampling 0.5 scale rbf 
Not fill - - 0.01 scale linear 

oversampling 3 scale poly 

undersampling 0.03 auto linear 
min-max 
scaler 

- 0.5 auto poly 

oversampling 5 scale poly 
undersampling 1 scale rbf 

standard 
scaler 

- 3 scale poly 
oversampling 5 scale rbf 

undersampling 0.05 scale rbf 

 
     Table 13 shows the most proper parameter value for the Gaussian Naïve Bay model 
using the GridsearchCV technique for the data with experimental normalization and 
imbalance class handling. 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 51 

Table 13 - The most proper parameter value for the GNB model 
Experience 
data 

Normalization Imbalance class 
handling 

Parameters 
var_smoothing 

Fill - - 1e-06 
oversampling 1e-10 

undersampling 1e-09 
min-max 
scaler 

- 1e-05 

oversampling 1e-05 
undersampling 1e-05 

standard 
scaler 

- 1e-05 

oversampling 1e-05 
undersampling 1e-05 

Not fill - - 1e-06 
oversampling 1e-10 

undersampling 1e-09 
min-max 
scaler 

- 1e-05 

oversampling 1e-05 
undersampling 1e-06 

standard 
scaler 

- 1e-05 
oversampling 1e-05 

undersampling 1e-05 
 

     Table 14 shows the most proper parameter value for the Random Forest model 
using the GridsearchCV technique for the data with experimental normalization and 
imbalance class handling. 
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Table 14 - The most proper parameter value for the RF model 
Experience 
data 

Normalization Imbalance class 
handling 

Parameters 
criterion max_ 

depth 

min_samples
_split 

n_estimators 

Fill - - entropy 3 1 100 
oversampling gini 6 1 100 

undersampling gini 1 1 80 
min-max 
scaler 

- entropy 2 1 100 

oversampling entropy 5 1 80 
undersampling gini 8 1 60 

standard 
scaler 

- entropy 4 1 100 
oversampling entropy 1 1 50 

undersampling entropy 8 1 80 

Not fill - - entropy 1 1 60 
oversampling entropy 5 1 90 

undersampling entropy 9 1 80 
min-max 
scaler 

- entropy 2 1 90 

oversampling entropy 2 1 90 
undersampling entropy 2 1 60 

standard 
scaler 

- entropy 5 1 60 
oversampling entropy 2 1 80 

undersampling entropy 2 1 70 

 
     Table 15 shows the most proper parameter value for the k-Nearest Neighbors 
model using the GridsearchCV technique for the data with experimental normalization 
and imbalance class handling. 
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Table 15 - The most proper parameter value for the k-NN model 
Experience 
data 

Normalization Imbalance class 
handling 

Parameters 
algorithm n_neighbors p weights 

Fill - - auto 15 1 uniform 
oversampling auto 1 1 distance 

undersampling auto 1 1 distance 
min-max 
scaler 

- auto 13 1 distance 

oversampling auto 1 1 distance 
undersampling auto 11 3 distance 

standard 
scaler 

- auto 1 2 distance 

oversampling auto 1 1 distance 
undersampling auto 13 3 distance 

Not fill - - auto 5 2 uniform 
oversampling auto 1 1 distance 

undersampling auto 1 1 distance 
min-max 
scaler 

- auto 9 1 uniform 

oversampling auto 1 1 distance 
undersampling auto 3 1 uniform 

standard 
scaler 

- entropy 5 1 60 
oversampling entropy 2 1 80 

undersampling entropy 2 1 70 

 
     Table 16 shows the most proper parameter value for the CatBoost model using 
the GridsearchCV technique for the data with experimental normalization and 
imbalance class handling. 
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Table 16 - The most proper parameter value for the CatBoost model 
Experience 
data 

Normalization Imbalance class 
handling 

Parameters 
iterations learning_rate depth l2_leaf_reg 

Fill - - 100 0.1 3 6 
oversampling 2000 0.1 4 2 

undersampling 400 0.03 1 10 
min-max 
scaler 

- 100 0.1 3 6 

oversampling 2000 0.03 4 5 
undersampling 400 0.03 1 10 

standard 
scaler 

- 100 0.1 3 6 

oversampling 1500 0.1 3 3 
undersampling 400 0.03 1 10 

Not fill - - 1500 0.1 1 3 
oversampling 2000 0.05 7 10 

undersampling 500 0.01 2 8 
min-max 
scaler 

- 2000 0.03 7 3 

oversampling 1500 0.1 5 1 
undersampling 2000 0.1 3 8 

standard 
scaler 

- 1500 0.1 1 3 
oversampling 2000 0.04 5 1 

undersampling 2000 0.1 3 8 

 
     Table 17 shows the most proper parameter value for the XGBoost model using the 
GridsearchCV technique for the data with experimental normalization and imbalance 
class handling. 
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Table 17 - The most proper parameter value for the XGB model 
Experience 
data 

Normalization Imbalance class 
handling 

Parameters 
booster eta max_depth lambda alpha 

Fill - - dart 0.1 6 0 5 
oversampling dart 0 1 0 0 

undersampling dart 0 1 0 0 
min-max 
scaler 

- dart 0.1 6 0 5 

oversampling dart 0 1 0 0 
undersampling dart 0 1 0 0 

standard 
scaler 

- dart 0.1 6 0 5 
oversampling dart 0 1 0 0 

undersampling dart 0 1 0 0 
Not fill - - dart 1 1 0.05 0.05 

oversampling dart 0 1 0 0 
undersampling dart 0 1 0 0 

min-max 
scaler 

- dart 1 1 0.05 0.05 

oversampling dart 0 1 0 0 
undersampling dart 0 1 0 0 

standard 
scaler 

- dart 1 1 0.05 0.05 
oversampling dart 0 1 0 0 

undersampling dart 0 1 0 0 

 
     Table 18 shows the most proper parameter value for the Convolutional Neural 
Network model using the GridsearchCV technique for the data with experimental 
normalization and imbalance class handling. The learning rate we use is initialed from 
0.001 then multiple that learning rate with 0.1 when running over 80% epoch.  
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Table 18 - The most proper parameter value for the CNN model 
Experience 
data 

Normalization Imbalance class 
handling 

Parameters 
batch_size dropout epoch optimizer 

Fill - - 16 0.4 1000 Adam 
oversampling 16 0.5 1000 SGD 

undersampling 32 0.3 1000 Adam 
min-max 
scaler 

- 32 0.4 1000 Adam 

oversampling 32 0.2 1000 Adam 
undersampling 32 0.1 300 Adam 

standard 
scaler 

- 64 0.2 1000 Adam 

oversampling 16 0.4 1000 SGD 
undersampling 64 0.3 1000 SGD 

Not fill - - 16 0.5 100 Adam 
oversampling 16 0.5 100 Adam 

undersampling 16 0.1 100 Adam 
min-max 
scaler 

- 16 0.5 100 Adam 

oversampling 16 0.2 100 Adam 
undersampling 16 0.1 100 Adam 

standard 
scaler 

- 16 0.5 100 Adam 
oversampling 16 0.1 100 Adam 

undersampling 16 0.5 100 Adam 

 

5.3 Model Performance Comparison 

     After we knew the best parameter value of each model, we trained the models 
with the 5-StratifiedKFold cross-validation technique again to calculate average 
accuracy, average weighted f1-score, average recall, and average computation time. 
Where the higher the values of average accuracy, average weighted f1-score, and 
average recall, the better. However, the lower the value of the average computation 
time, the better. The value is highlighted in bold, denoting the best value, whereas 
underlined indicates the second-best value. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57 

     For the Decision Tree model, the data that the candidates filled the experience 
without normalization and imbalance class handling gained the best average accuracy 
but obtained low recall also. The data with normalization using a min-max scaler but 
without imbalance class handling gets the 2nd highest average accuracy. While 
oversampling gets the 2nd highest average weighted f1-score. But these 2 ways acquired 
a low recall which is less than 0.5. The data with imbalance class handling using 
undersampling get a high recall. By not normalizing, the highest average accuracy and 
recall are obtained. So, the data without normalization but undersampling gave the 
best performance for the Decision Tree model. Although it was not the least time-
consuming, the time it took is considered less. It took an average of 0.01076 
milliseconds per person. 
     On the other hand, the data that the candidates did not fill the experience with 
min-max scaler normalization and imbalance class handling using oversampling 
technique gained the best average accuracy and average weighted f1-score. But it also 
obtained a less average recall. While the data without normalization but with 
imbalance class handling using undersampling acquired the highest recall. But its 
average accuracy is less than 0.5. The data with normalization using a min-max scaler 
and imbalance class handling using undersampling is the 3rd highest average recall, 
while average accuracy and average weighted f1-score were higher than 0.6. So, the 
data with min-max scaler and undersampling gave the best performance for the 
Decision Tree model. Although it was not the least time-consuming, the time it took is 
considered less. It took an average of 0.09072 milliseconds per person as shown in 
Table 19. 
     For the Support Vector Machine model, the data that the candidates filled the 
experience with normalization using a standard scaler and oversampling imbalance 
class handling gained the best average accuracy and average weight f1-score. But its 
average recall is less than 0.5. While the data with min-max scaler and oversampling 
obtained the second-best average accuracy and average weight f1-score. But its 
average recall is also not too high. The data with min-max scaler normalization but 
without imbalance class handling acquired average accuracy and weighted f1-score 
slightly lower, but the average recall is higher, making all 3 values close. So, the data 
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with min-max scaler normalization but without imbalance class handling gave the best 
performance for the Support Vector Machine model. Although it is not the least time-
consuming, the time it took is considered less. It took an average of 0.10262 
milliseconds per person. 
 

Table 19 - The DT evaluation of the training set 
Experience 
data 

Normalization Imbalance class 
handling 

Evaluation (average) of the training set 
Accuracy Weighted  

f1-score 
Recall Computation 

time (sec) 

Fill - - 0.86314 0.87060 0.47787 0.05253 

oversampling 0.83577 0.85291 0.52332 0.12475 
undersampling 0.77829 0.81760 0.76601 0.01180 

min-max 
scaler 

- 0.86040 0.86509 0.39684 0.13660 
oversampling 0.85858 0.86760 0.46917 0.07019 

undersampling 0.77280 0.81201 0.74822 0.01038 
standard 
scaler 

- 0.85675 0.86170 0.38775 0.04764 

oversampling 0.82299 0.84431 0.55059 0.01699 
undersampling 0.76275 0.80549 0.77549 0.03088 

Not fill - - 0.85711 0.87058 0.24000 0.02474 
oversampling 0.85299 0.87194 0.34000 0.07340 

undersampling 0.46965 0.53360 0.66000 0.07129 
min-max 
scaler 

- 0.85444 0.87037 0.28000 0.05377 

oversampling 0.85989 0.87294 0.24000 0.05207 

undersampling 0.69991 0.75352 0.60000 0.06605 
standard 
scaler 

- 0.85436 0.86692 0.20000 0.09499 

oversampling 0.84342 0.86336 0.26000 0.08645 
undersampling 0.59347 0.69074 0.56000 0.06579 

 
     On the other hand, the data that the candidates did not fill the experience with 
min-max scaler normalization but without imbalance class handling gained the best 
average accuracy and average weighted f1-score. But it also obtained the least average 
recall. While the data without normalization but with imbalance class handling using 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 59 

undersampling acquired the highest recall. But its average accuracy is between 0.5 and 
0.6. The data with normalization using a standard scaler and imbalance class handling 
using undersampling is the 4th highest average recall, while average accuracy and 
average weighted f1-score were higher than 0.72. So, the data with standard scaler and 
undersampling gave the best performance for the Support Vector Machine model. 
Although it was not the least time-consuming, the time it took is considered less. It 
took an average of 0.05655 milliseconds per person as shown in Table 20. 
 

Table 20 - The SVM evaluation of the training set 
Experience 
data 

Normalization Imbalance class 
handling 

Evaluation (average) of the training set 
Accuracy Weighted  

f1-score 
Recall Computation 

time (sec) 

Fill - - 0.73995 0.7889 0.77549 0.65038 

oversampling 0.75201 0.75846 0.70853 days 
undersampling 0.71167 0.76761 0.81107 0.37538 

min-max 
scaler 

- 0.80474 0.83563 0.71186 0.12500 

oversampling 0.82846 0.85086 0.62134 0.25400 
undersampling 0.78010 0.81884 0.76640 0.01793 

standard 
scaler 

- 0.82484 0.84659 0.65810 0.06298 
oversampling 0.84307 0.85728 0.49526 0.13091 

undersampling 0.79380 0.82777 0.70316 0.01667 
Not fill - - 0.49991 0.60857 0.62000 0.28426 

oversampling 0.53657 0.57680 0.58000 days 
undersampling 0.51923 0.62613 0.64000 0.03435 

min-max 
scaler 

- 0.93132 0.89820 0.00000 0.19317 
oversampling 0.74596 0.80323 0.50000 0.20869 

undersampling 0.62768 0.71876 0.58000 0.05233 
standard 
scaler 

- 0.77332 0.81958 0.36000 0.08343 

oversampling 0.78574 0.82658 0.28000 0.18506 

undersampling 0.72378 0.78954 0.52000 0.04575 
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     For the Gaussian Naïve Bay model, the data that the candidates filled the 
experience without normalization and imbalance class handling gained the best 
average accuracy and average weighted f1-score, but it also obtained the worst average 
recall. While the data without normalization but with imbalance class handling using 
oversampling acquired the second-best average accuracy and average weighted f1-
score. Its recall was not the highest but not too less. So, the data without normalization 
but oversampling gave the best performance for the Gaussian Naïve Bay model. 
Although it was not the least time-consuming, the time it took is considered less. It 
took an average of 0.02228 milliseconds per person. 
     On the other hand, the data that the candidates did not fill the experience without 
normalization but imbalance class handling using oversampling gained the best 
average accuracy and average weighted f1-score. While its average recall was the worst. 
The data with a min-max scaler but without imbalance class handling obtained the 
best average recall. Its average accuracy and weighted f1-score were not too bad. While 
the data with standard scaler normalization and imbalance class handling using 
oversampling acquired better average accuracy and average weighted f1-score. Its 
recall is almost the same. So, the data with standard scaler normalization and 
oversampling imbalance class handling gave the best performance for the Gaussian 
Naïve Bay model. Although it was not the least time-consuming, the time it took is 
considered less. It took an average of 0.07557 milliseconds per person as shown in 
Table 21. 
     For the Random Forest model, the data that the candidates filled the experience 
with min-max scaler normalization but without imbalance class handling gained the 
best average recall. Which is equal to the data with standard scaler and handling 
imbalance class handling using the undersampling technique. But they obtained low 
average accuracy and weighted f1-score. The 2nd highest average recall gave the highest 
average accuracy and weighted f1-score for the data with min-max scaler and 
imbalance class handling using the oversampling technique. So, the data with min-max 
scaler normalization and oversampling gave the best performance for the Random 
Forest model. Although it was not the least time-consuming, the time it took is 
considered less. It took an average of 0.01491 milliseconds per person. 
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Table 21 - The GNB evaluation of the training set 
Experience 
data 

Normalization Imbalance class 
handling 

Evaluation (average) of the training set 
Accuracy Weighted 

f1-score 
Recall Computation 

time (sec) 

Fill - - 0.89873 0.85079 0.00000 0.01120 
oversampling 0.77645 0.81347 0.63913 0.02442 

undersampling 0.69255 0.75270 0.75692 0.02060 
min-max 
scaler 

- 0.34764 0.41461 0.92846 0.02028 

oversampling 0.41517 0.49623 0.84743 0.02428 
undersampling 0.35672 0.42076 0.89249 0.01737 

standard 
scaler 

- 0.2345 0.25533 0.94625 0.01248 

oversampling 0.35493 0.42422 0.89209 0.01798 

undersampling 0.30017 0.34681 0.91028 0.01147 

Not fill - - 0.93132 0.89820 0.00000 0.02638 
oversampling 0.59347 0.69168 0.58000 0.04907 

undersampling 0.49991 0.61004 0.70000 0.05591 
min-max 
scaler 

- 0.51368 0.62295 0.72000 0.06667 

oversampling 0.52192 0.63038 0.70000 0.07816 
undersampling 0.53933 0.61958 0.58000 0.03805 

standard 
scaler 

- 0.52037 0.62406 0.72000 0.05022 
oversampling 0.53275 0.63621 0.70000 0.05502 

undersampling 0.53522 0.61683 0.60000 0.07189 

 
     On the other hand, the data that the candidates did not fill the experience with 
min-max scaler normalization but without imbalance class handling gained the best 
average accuracy and average weighted f1-score, it also gained the worst average recall. 
While the data with standard scaler normalization and imbalance class handling using 
the undersampling technique obtained the best average recall, it also obtained less 
average accuracy and average weighted f1-score. The data without normalization but 
imbalance class handling using the undersampling technique acquired the 2nd highest 
average recall. Its average accuracy and average weighted f1-score were not bad. So, 
the data without normalization but with imbalance class handling using the 
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undersampling technique gave the best performance for the Random Forest model. 
Although it was not the least time-consuming, the time it took is considered less. It 
took an average of 0.44833 milliseconds per person as shown in Table 22. 
 

Table 22 - The RF evaluation of the training set 
Experience 
data 

Normalization Imbalance class 
handling 

Evaluation (average) of the training set 
Accuracy Weighted  

f1-score 
Recall Computation 

time (sec) 

Fill - - 0.73891 0.68406 0.20000 0.23730 

oversampling 0.57909 0.51734 0.40000 0.16046 

undersampling 0.74054 0.68554 0.20000 0.08486 
min-max 
scaler 

- 0.42091 0.35208 0.60000 0.25862 

oversampling 0.58073 0.51881 0.40000 0.16350 
undersampling 0.57909 0.51734 0.40000 0.22978 

standard 
scaler 

- 0.89873 0.85079 0.20000 0.34378 
oversampling 0.57909 0.51734 0.40000 0.13513 

undersampling 0.41927 0.41927 0.60000 0.32541 
Not fill - - 0.75890 0.72042 0.20000 0.31989 

oversampling 0.58611 0.58611 0.40000 0.55462 
undersampling 0.41370 0.36454 0.60000 0.32639 

min-max 
scaler 

- 0.75890 0.72042 0.20000 0.64001 

oversampling 0.58630 0.54248 0.40000 0.55260 
undersampling 0.41370 0.36454 0.60000 0.36580 

standard 
scaler 

- 0.41370 0.36454 0.60000 0.34394 
oversampling 0.58630 0.54248 0.40000 0.53638 

undersampling 0.24128 0.18677 0.80000 0.41088 

 
     For the k-Nearest Neighbors model, the data that the candidates filled the 
experience with standard scaler normalization and undersampling gained the best 
average recall. While its average accuracy and weighted f1-score were high even though 
there was not the highest. So, the data with standard scaler normalization and 
undersampling gave the best performance for the k-Nearest Neighbors model. 
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Although it was not the least time-consuming, the time it took is considered less. It 
took an average of 0.02496 milliseconds per person. 
     On the other hand, the data that the candidates did not fill the experience without 
normalization and imbalance class handling gained the best average accuracy and 
average weighted f1-score, it also obtained a less average recall. While the data with 
standard normalization and imbalance class handling using the undersampling 
technique acquired the best average recall. Its average accuracy and average weighted 
f1-score were not bad. So, the data with standard scaler normalization and imbalance 
class handling using the undersampling technique gave the best performance for the 
k-Nearest Neighbors model. Although it was not the least time-consuming, the time it 
took is considered less. It took an average of 0.07359 milliseconds per person as shown 
in Table 23. 
     For the CatBoost model, the data that the candidates filled the experience without 
normalization but imbalance class handling using the oversampling technique gained 
the best average recall. Its average accuracy and average weighted f1-score were in 
the range of 0.79 to 0.82. So, the data without normalization but with imbalance class 
handling using the oversampling technique gave the best performance for the 
CatBoost. Although it was not the least time-consuming, the time it took is considered 
less. It took an average of 0.05275 milliseconds per person. 
     On the other hand, the data that the candidates did not fill the experience without 
normalization and imbalance class handling gained the best average accuracy and 
average weighted f1-score, it also obtained a less average recall. Which are the same 
result as the data with standard scaler but without imbalance class handling us. While 
The data without normalization but with imbalance class handling using the 
undersampling technique acquired the best average recall. Its average accuracy and 
average weighted f1-score were not bad. So, without normalization but imbalance 
class handling using the undersampling technique gave the best performance for the 
CatBoost model. Although it is not the least time-consuming, the time it took is 
considered less. It took an average of 0.09793 milliseconds per person as shown in 
Table 24. 
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Table 23 - The k-NN evaluation of the training set 
Experience 
data 

Normalization Imbalance class 
handling 

Evaluation (average) of the training set 
Accuracy Weighted  

f1-score 
Recall Computation 

time (sec) 

Fill - - 0.90200 0.85562 0.00000 0.01484 
oversampling 0.84123 0.85047 0.36957 0.16422 

undersampling 0.60125 0.67848 0.66759 0.09547 
min-max 
scaler 

- 0.90147 0.88106 0.20711 0.09533 

oversampling 0.86586 0.86809 0.37787 0.14983 
undersampling 0.41370 0.36454 0.60000 0.32639 

standard 
scaler 

- 0.86769 0.86666 0.33281 0.02655 
oversampling 0.86315 0.86380 0.34190 0.03524 

undersampling 0.74269 0.79041 0.72134 0.02736 

Not fill - - 0.93133 0.90066 0.02000 0.02599 
oversampling 0.84065 0.85924 0.02000 0.05389 

undersampling 0.52751 0.63440 0.58000 0.06408 
min-max 
scaler 

- 0.93132 0.89820 0.00000 0.06847 

oversampling 0.87778 0.87779 0.12000 0.05166 
undersampling 0.57267 0.67551 0.54000 0.07512 

standard 
scaler 

- 0.89557 0.88855 0.10000 0.06358 
oversampling 0.87636 0.87877 0.14000 0.05168 

undersampling 0.59889 0.69656 0.58000 0.05358 

 
     For the Extreme Gradient Boosting model, the data that the candidates filled the 
experience without imbalance class handling gained the same best average recall no 
matter what technique of normalization. The score of average accuracy, average 
weighted f1-score, and average recall are the same for every normalization technique 
without imbalance class handling. The only difference is the average computation 
time, which the min-max scaler obtained the least. So, the data with min-max scaler 
normalization but without imbalance class handling gave the best performance for the 
Extreme Gradient Boosting model. Although it was not the least time-consuming, the 
time it took is considered less. It took an average of 0.33688 milliseconds per person. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 65 

Table 24 - The CatBoost evaluation of the training set 
Experience 
data 

Normalization Imbalance class 
handling 

Evaluation (average) of the training set 
Accuracy Weighted  

f1-score 
Recall Computation 

time (sec) 

Fill - - 0.91333 0.89081 0.21581 0.04466 
oversampling 0.90148 0.89928 0.46917 1.36063 

undersampling 0.78013 0.81631 0.77470 0.05782 
min-max 
scaler 

- 0.91333 0.89081 0.21581 0.04681 

oversampling 0.89873 0.89397 0.40593 1.67562 
undersampling 0.79013 0.82631 0.77470 0.06921 

standard 
scaler 

- 0.91333 0.89081 0.21581 0.04966 
oversampling 0.89873 0.89531 0.43241 0.97947 

undersampling 0.79013 0.82631 0.77470 0.06757 

Not fill - - 0.93404 0.91710 0.18000 0.33639 
oversampling 0.91620 0.91031 0.26000 2.33214 

undersampling 0.67718 0.74643 0.74000 0.07130 
min-max 
scaler 

- 0.91893 0.90632 0.16000 1.49103 

oversampling 0.88874 0.89459 0.32000 1.06017 
undersampling 0.54948 0.65344 0.74000 0.34659 

standard 
scaler 

- 0.93404 0.91710 0.18000 0.33493 
oversampling 0.88186 0.88970 0.32000 1.54922 

undersampling 0.55085 0.65460 0.74000 0.35240 

 
     On the other hand, the data that the candidates who did not fill the experience 
without imbalance class handling gained the same best average recall no matter what 
technique of normalization. The score of average accuracy, average weighted f1-score, 
and average recall are the same for every normalization technique without imbalance 
class handling. The only difference is the average computation time, which those 
without normalization acquired the least. So, the data without normalization and 
imbalance class handling gave the best performance for the Extreme Gradient Boosting 
model. Although it was not the least time-consuming, the time it took is considered 
less. It took an average of 0.33635 milliseconds per person as shown in Table 25. 
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Table 25 - The XGB evaluation of the training set 
Experience 
data 

Normalization Imbalance class 
handling 

Evaluation (average) of the training set 
Accuracy Weighted  

f1-score 
Recall Computation 

time (sec) 

Fill - - 0.86499 0.87355 0.55798 0.60949 
oversampling 0.89873 0.85079 0.00000 0.44505 

undersampling 0.89873 0.85079 0.00000 0.24371 
min-max 
scaler 

- 0.86499 0.87355 0.55798 0.41033 

oversampling 0.89873 0.85079 0.00000 0.65710 
undersampling 0.89873 0.85079 0.00000 0.20964 

standard 
scaler 

- 0.86499 0.87355 0.55798 0.45088 
oversampling 0.89873 0.85079 0.00000 0.44562 

undersampling 0.89873 0.89873 0.00000 0.63732 

Not fill - - 0.93405 0.91693 0.18000 0.27211 
oversampling 0.93132 0.89820 0.00000 0.29285 

undersampling 0.93132 0.89820 0.00000 0.23296 
min-max 
scaler 

- 0.93405 0.91693 0.18000 0.36774 

oversampling 0.93132 0.89820 0.00000 0.41885 
undersampling 0.93132 0.89820 0.00000 0.34206 

standard 
scaler 

- 0.93405 0.91693 0.18000 0.37007 
oversampling 0.93132 0.89820 0.00000 0.92105 

undersampling 0.93132 0.89820 0.00000 0.31987 

      
     For the Convolutional Neural Network model, the data that the candidates filled 
the experience without normalization and imbalance class handling gained the best 
average accuracy, average weighted f1-score, and average recall. So, the data without 
normalization and imbalance class handling using the oversampling technique gave 
the best performance for the Extreme Gradient Boosting model. Although it was not 
the least time-consuming, the time it took is considered less. It took an average of 
121.83199 milliseconds per person.  
     On the other hand, the data with all experiments gained the same average 
accuracy, average weighted f1-score, and average recall. The difference is computation 
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time. The data with standard scaler normalization but without imbalance class 
handling took the least computation time. So, the data with standard scaler 
normalization but without imbalance class handling gave the best performance for the 
Convolutional Neural Network model as shown in Table 26.  
 

Table 26 - The CNN evaluation of the training set 
Experience 
data 

Normalization Imbalance class 
handling 

Evaluation (average) of the training set 
Accuracy Weighted  

f1-score 
Recall Computation 

time (sec) 

Fill - - 0.90056 0.86121 0.05415 148.5132 

oversampling 0.89237 0.85246 0.05415 142.9685 
undersampling 0.89599 0.85888 0.05415 86.70492 

min-max 
scaler 

- 0.89508 0.85235 0.01818 90.75551 
oversampling 0.89416 0.85797 0.05415 103.4803 

undersampling 0.89963 0.85294 0.00870 25.77450 
standard 
scaler 

- 0.89873 0.85079 0.01779 63.46495 

oversampling 0.89416 0.85503 0.03597 156.5284 
undersampling 0.89873 0.85405 0.01818 57.02587 

Not fill - - 0.93132 0.89820 0.00000 11.55358 
oversampling 0.93132 0.89820 0.00000 9.28251 

undersampling 0.93132 0.89820 0.00000 11.12407 
min-max 
scaler 

- 0.93132 0.89820 0.00000 11.32896 

oversampling 0.93132 0.89820 0.00000 10.81690 

undersampling 0.93132 0.89820 0.00000 11.32815 
standard 
scaler 

- 0.93132 0.89820 0.00000 8.42467 

oversampling 0.93132 0.89820 0.00000 10.97375 
undersampling 0.93132 0.89820 0.00000 8.69763 

      
     There are several reasons why CNN takes much longer time to train than other 
models. The appropriate epoch value was determined via hyperparameter turning to 
1000 for the data that the candidate filled in experience and 100 for the candidate 
who did not, which required CNN time to finish the epoch training. Another reason is 
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CNN is more complex in terms of Big O notation because they share their parameters 
within the network. This implies that even if they have fewer parameters, they are still 
used frequently. 
 

5.4 Summary of Model Comparison 

     Table 27 shows the best data preparation way for each model for the data that 
candidates filled in experience. Each model is suitable for different data preprocessing 
ways. According to average accuracy, weighted f1-score, recall, and computation time, 
the most suitable model for our data is the SVM. A suitable data preparation way for 
the SVM is min-max scaler normalization without imbalance class handling. 
 

Table 27 - Summary of model comparison for candidates who filled in the 
experience 

Model Normalization Imbalance class 
handling 

Evaluation (average) 

Standard 
scaler 

Min-max 
scaler 

Over 
sampling 

Under 
sampling 

Accuracy Weighted  
f1-score 

Recall Computation 
time (sec) 

DT    ✓ 0.77829 0.81760 0.76601 0.01180 

SVM  ✓   0.80474 0.83563 0.71186 0.12500 

GNB   ✓  0.77645 0.81347 0.63913 0.02442 

RF  ✓ ✓  0.58073 0.51881 0.40000 0.16350 

k-NN ✓   ✓ 0.74269 0.79041 0.72134 0.02736 

CatBoost    ✓ 0.78013 0.81631 0.77470 0.05782 

XGBoost  ✓   0.86499 0.87355 0.55798 0.41033 

CNN     0.90056 0.86121 0.05415 148.5132 

 
     Table 28 shows the best data preparation for each model for the data that 
candidates did not fill experience. 4 of 8 models show that the standard scaler 
normalization technique is the best way compared to without normalization, standard 
scaler normalization, and min-max scaler normalization. While 5 of 8 models show 
that the undersampling technique is the best way, compared without imbalance class 
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handling, oversampling, and undersampling. According to average accuracy, weighted 
f1-score, recall, and computation time, the most suitable model is the DT. The 2nd and 
3rd best models are the CatBoost and SVM respectively. 
 

Table 28 - Summary of model comparison for candidates who did not fill in the 
experience 

Model Normalization Imbalance class 
handling 

Evaluation (average) 

Standard 
scaler 

Min-max 
scaler 

Over 
sampling 

Under 
sampling 

Accuracy Weighted  
f1-score 

Recall Computation 
time (sec) 

DT  ✓  ✓ 0.69991 0.75352 0.60000 0.06605 

SVM ✓   ✓ 0.72378 0.78954 0.52000 0.04575 

GNB ✓  ✓  0.53275 0.63621 0.70000 0.05502 

RF    ✓ 0.41370 0.36454 0.60000 0.32639 

k-NN ✓   ✓ 0.59889 0.69656 0.58000 0.05358 

CatBoost    ✓ 0.67718 0.74643 0.74000 0.07130 

XGBoost     0.93405 0.91693 0.18000 0.27211 

CNN ✓    0.93132 0.89820 0.00000 8.42467 

      

5.5 The Most Suitable Model Training  

     After we gained the most suitable model on the data that candidates filled in 
experience, SVM, we trained the models again to find the best threshold used for the 
testing set. The best threshold will then be compared between 0.5, an average of 
threshold values from a 5-fold cross-validation, and a median of threshold values from 
a 5-fold cross-validation. Table 29 showed a threshold value in each fold for the data 
that candidates filled in experience. Figure 29 shows the receiver operating 
characteristic (ROC) curve in each fold with the best threshold value in the training set. 
The average area under the ROC curve (AUC) is 0.82764. The best threshold is 0.13229 
as shown in Table 30. 
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Table 29 - A threshold value in each fold of the SVM model for candidates who 
filled in the experience 

Model A threshold value in each fold 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 
SVM 0.10058 0.17399 0.16123 0.17196 0.05369 

 

 
Figure 29 – The ROC curve in each fold of the SVM model for candidates who filled 

in the experience 
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Table 30 - The best threshold value of the SVM model for candidates who filled in 
the experience 

Threshold  Evaluation (average)  

Type Value Accuracy Weighted f1-score Recall 
 Default 0.50000 0.89689 0.85456 0.02687 

 Mean 0.13229 0.80655 0.83696 0.71185 

 Median 0.16123 0.82207 0.84806 0.69407 
 
     On the other hand, after we acquired the most suitable model on the data that 
candidates did not fill in experience, DT, we trained the models again to find the best 
threshold used for the testing set. The best threshold will then be compared between 
0.5, an average of threshold values from a 5-fold cross-validation, and a median of 
threshold values from a 5-fold cross-validation. Table 31 showed a threshold value in 
each fold for the data that candidates filled in experience.  
 
Table 31 - A threshold value in each fold of the DT model for candidates who did 

not fill in the experience 

Model A threshold value in each fold 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 
DT 0.48837 0.53125 0.90476 0.50000 0.47500 

 
Table 32 - The best threshold value of the DT model for candidates who did not fill 

in the experience 

Threshold  Evaluation (average)  
Type Value Accuracy Weighted f1-score Recall 

 Default 0.50000 0.67613 0.73194 0.46000 
 Mean 0.57987 0.81586 0.84165 0.24000 

 Median 0.50000 0.67613 0.73194 0.46000 
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     Figure 30 shows the ROC curve in each fold with the best threshold value in the 
training set. The average AUC is 0.61363. The best threshold is 0.5 as shown in Table 
32. The DT, CatBoost, and SVM will be used to predict the target probability. Each 
model’s probability will be then used for candidate ranking by sum as well. 
 

 

Figure 30 - The ROC curve in each fold of the DT model for candidates who did not 
fill in the experience 

 

5.6 The Most Suitable Model Testing 

     For the data that the candidate filled in the experience, the RBF SVM model with 
min-max scaler normalization but without imbalance class handling was used to 
classify the testing set into 2 groups. The parameter value used consists of C equal to 
3, scale gamma, and RBF kernel. Figure 30 shows the classification report of the SVM 
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model for candidates who filled in the experience. The “0” means the not-suitable 
class and “1” means the shortlist class. From all 122 testing data, we obtained 97 TN, 
13 FP, 3 FN, and 9 TP as shown in Figure 31. The recall is 75% while the weighted f1-
score is 88%. 
 

 

Figure 31 - Classification report of the RBF SVM model for candidates who filled in 
the experience 

 

 

Figure 32 - Confusion matrix of the RBF SVM model for candidates who filled in the 
experience 

 

 

Figure 33 - ROC curve of the RBF SVM model for candidates who filled in the 
experience 
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     The Receiver Operating Characteristic (ROC) curve for the RBF SVM is shown in 
Figure 33 which is more similar to the ideal clinical discriminator curve than the no-
predictive curve (45-degree line). The Area Under the curve (AUC) of not-suitable and 
shortlist classes are equal, 88%. The AUC of micro average ROC is 97% while the AUC 
of macro average ROC is 89%. In the False Positive Rate (FPR) range of 0 to 0.2, the 
True Positive Rate (TPR) of the shortlist class increases significantly. Thereafter, it slows 
to 1 as the FPR approaches 0.4. The ROC curve for the not-suitable class is similar, but 
on the other side, the FPR value rises sharply when the TPR is between 0.6 and 0.9, 
after which it rises steadily. 
     For the data that the candidate did not fill in the experience, the DT model with 
min-max scaler normalization and undersampling imbalance class handling, the 
CatBoost model without normalization but undersampling imbalance class handling, 
and the SVM model with standard scaler normalization and undersampling imbalance 
class handling is used to classify the testing set into 2 groups. For the DT, the parameter 
value used consists of entropy criterion, splitter by random, max_depth equal to 2, 
and 5 min_samples_split. For the CatBoost, the parameter value used consists of 
iterations equal to 500, 0.01 learning rate, depth is 2, and 8 l2_leaf_reg. For the RBF 
SVM, the parameter value used consists of C equal to 0.05, scale gamma, and RBF 
kernel. Figure 34 shows the classification report of the DT model for candidates who 
did not fill in the experience. The DT acquired an accuracy of 80% and a weighted f1-
score of 84%. Figure 35 shows the confusion matrix of the DT model for candidates 
who did not fill in the experience. From all 122 testing data, We acquired 60 TN, 15 
FP, 1 FN, and 5 TP from the DT model. The DT’s recall is 83%. We obtained 26 TN, 49 
FP, 3 FN, and 3 TP from the SVM model. The SVM’s recall is 50%. For the Catboost, 
we gained 46 TN, 29 FP, 1 FN, and 5 TP. The CatBoost’s recall is 83%. The ROC curve 
for the DT model is shown in Figure 36. The AUC of not-suitable and shortlist classes 
are equal, 61%. The AUC of micro average ROC is 69% while the AUC of macro average 
ROC is 61%. 
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Figure 34 - Classification report of the DT model for candidates who did not fill in 
the experience 

 

 

Figure 35 - Confusion matrix of the DT model for candidates who did not fill in the 
experience 

 

 

Figure 36 - ROC curve of the DT model for candidates who did not fill in the 
experience 
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5.7 Ranking Suggestion 

     From the previous section, we already classify the candidates into 2 groups: the 
shortlist group and the not-suitable group. The candidates who fill experience will be 
ranked in descending order based on the similarity between their experience and the 
job description they applied for. Figure 37 shows the example ranking of the HR 
manager and senior HR officer positions that candidates applied for. If anyone has the 
same cosine similarity value, the system will sort from predicted probability instead. 
The system can sort candidates in the shortlist group in descending order satisfactorily. 
 

 

Figure 37 - Ranking of the HR manager and senior HR officer 
 
     The candidates who did not fill experience will be ranked in descending order 
based on a summarization of the predicted probability of the best 3 models, which 
are the DT, CatBoost, and SVM. The ranking suggestion will be ranked from the 
candidates who fill experience first. Because this group of candidates shows their 
intention to apply for a job more than those who did not fill their experience. The 
ranking will be displayed separately according to the job title the candidates applied 
for. Figure 38 shows the example ranking of the HR manager and senior HR officer 
positions that candidates applied for. The predict column is the result of the DT 
classification. The system can sort candidates in the shortlist group in descending order 
satisfactorily even though some rows are not perfectly correct. 
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Figure 38 - Ranking of the senior accountant and senior HR officer 
 

 

Figure 39 - The final ranking of the senior HR officer 
 

     Figure 39 previews the results of the ranking suggestion of candidates for the senior 
HR officer position. Candidates 1st through 5th have filled their experience on 
JobsDB.com, while candidates 6th and lower are those who did not. The ranking after 
classification will help the efficiency of the system in recruiting people for job 
interviews better. 
 

5.8 Discussion 

     A direct comparison of any existing approaches presented in various publications 
may not be fair due to the lack of a sizable dataset, the limitation of some tasks, or 
the difference in the effectiveness of methods. Our work focuses on considering which 
candidates to invite for an interview for a certain job opening while taking into 
consideration both general information and experience. Techniques are used in the 
proposed method at each step deriving from the fusion of interesting and effective 
techniques from related works. The results compared with other methods are based 
on the overall accuracy mentioned therein. 
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     P. K. Roy et al. (2020) [28] used linear SVM to classify candidates into job function 
groups which is a different objective from our work. They serve the same purpose in 
recommending top candidates and obtained an accuracy of 78%. Z. Elgammal et al. 
(2021) [25] made use of the SpaCy library to calculate the similarity between jobs and 
candidates and then rank candidates to arrive at an accuracy of 83%. The method 
described by Tejaswini et al. (2021) [27] gives an accuracy of 92% using a smaller 
dataset and the accuracy significantly decreased as the number of candidates 
increased. The accuracy decreases by an average of 7.5% when there are 5 more 
candidates. 
     The proposed method got an average accuracy of 83.5%, a weighted F1 score of 
86%, and a recall of 79%. Compared to other existing works by accuracy score, our 
work has higher accuracy than some and less than some. The cause of our lower 
accuracy due to the imbalance of data for the two classes. As mentioned in the 
previous section, we got the shortlist group data in just 10%, compared to up to 90% 
of the not-suitable group data. Further, our approach focuses on precisely classifying 
the shortlist group because we do not want to miss the chance to schedule interviews 
with qualified candidates with which we have this class data for ML to learn less. 
     The similarity between the experience of the candidates and the job description 
of the position they are applying for is one of the most important features used in 
considering candidates for interviews. This is because companies will always require 
employees who are knowledgeable about the types of positions that the company 
opens to be immediately workable with little training needed. Other features should 
always be taken into consideration, such as years of experience, the similarity between 
a previous job title and a job title they applied for, the distance between residence 
and workplace (in case of work from the office), and the highest education level, etc. 
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

 

6.1 Summary 

     The procedure of screening candidates for job interviews from among all job 
applicants is a repetitive task that takes a lot of time and resources. This could be 
caused by human error also. To address this issue, we have proposed a job-candidate 
classifying and ranking system-based machine learning method that recommends 
suitable candidates to human resources (HR) based on the job description and 
candidate profile. The NLP approach which consists of summarization, stop word 
removal, and lemmatization is used in our work for preprocessing the job opening and 
experience data. The Decision Tree (DT), Support Vector Machine (SVM), Gaussian Naïve 
Bay (GNB), Random Forest (RF), k-Nearest Neighbors (k-NN), CatBoost, Extreme Gradient 
Boosting (XGB), and Convolutional Neural Network (CNN) were compared. As the result, 
the RBF SVM classifier is the most suitable for our objective and for the data that 
candidates fill in experience. This part yielded an accuracy of 87%. On the other hand, 
the DT classifier is the most suitable for our objective and for the data that candidates 
did not fill in experience and acquire an accuracy of 80%. Resulting in an overall 
accuracy of 83.5%. Involving domain experts, and HR professionals, assist in developing 
a more accurate model, and their feedback helps to enhance the model repeatedly. 
 

6.2 Recommendation for Future Work 

     For future work, the work can (a) add more training data from the candidate and 
company, (b) compare with another classification model, and (c) perform an end-to-
end classification and ranking software. 
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