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CHAPTER I

INTRODUCTION

Let D be an integral domain with the quotient field K. An integer-valued

polynomial over D is a polynomial over K that maps D to itself. We denote

the set of all integer-valued polynomials over D by

Int(D) = {f(t) ∈ K[t] | f(D) ⊆ D}.

There has been numerous studies to investigate some properties of Int(D). For

example, it was shown in [4, Chapter I.1] and [12] that the set Int(D) is a subring

of K[t] containing D[t] and is also a D-module.

In the classical case where D = Z, [4, Proposition I.1.1] the Z-module Int(Z) is

free and one best known regular basis of free Z-module Int(Z) is the set of binomial

polynomials
{(

t
n

)}
n∈N0

, defined by

(
t

0

)
= 1,

(
t

n

)
=
t(t− 1) · · · (t− n+ 1)

n!
(n ∈ N).

One of the famous results concerning binomial polynomials is the Lucas theorem,

[10]: let p be a prime number and let m and n be nonnegative integers. Then

(
m

n

)
≡
(
m0

n0

)(
m1

n1

)
· · ·
(
md(n)

nd(n)

)
(mod p), (1.1)

where

n = n0 + n1p+ n2p
2 + · · ·+ nd(n)p

d(n) with 0 ≤ ni < p (nd(n) ̸= 0),

m = m0 +m1p+m2p
2 + · · ·+md(m)p

d(m) with 0 ≤ mj < p (md(m) ̸= 0)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

are base p expansions of n and m, respectively.

There is a simple short proof of this theorem in [10], where some results on the

number and conditions for binomial coefficients to be divisible by p are also ob-

tained. Another famous identity related to binomial polynomials is the Pascal

identity, [8, Theorem 26]: for n ∈ N and k ∈ N0, we have

(
k + 1

n

)
=

(
k

n− 1

)
+

(
k

n

)
,

which asserts that coefficient of the xn in the expansion of (1 + x)k+1 is resulted

from the sum of two neighboring coefficients of (1 + x)k.

For D = V , a discrete-valuation domain of the field K with finite residue field,

the unique principal maximal ideal of V is denoted by m. Let T be a generator

of m, and let q be the cardinality of the residue field V /m. Denote the set of

representatives of V /m by U = {u0 = 0, u1, . . . , uq−1}. The running index of the

sequence {un}n∈N0 is enlarged from q − 1 to the entire N0 := N ∪ {0} by the

following construction. For n ∈ N, n ≥ q, if the base q-representation of n is

n = n0 + n1q + · · ·+ nd(n)q
d(n) (0 ≤ ni < q), define

un = un0 + un1T + · · ·+ und(n)
T d(n).

Using the sequence {un}n∈N0 , a regular basis {Cn(t)}n∈N0 of the V -module Int(V )

is defined along the same line as that of Lagrange interpolating polynomials,

namely,

C0(t) = 1, Cn(t) =
(t− u0)(t− u1) · · · (t− un−1)

(un − u0)(un − u1) · · · (un − un−1)
(n ∈ N).

In 2001, Boulanger and Chabert [3] generalized Lucas’s theorem from Z to V

by showing that {Cn(t)}n∈N0 satisfies the congruence relation analogous to Lucas

theorem: if

n = n0 + n1q + · · ·+ nd(n)q
d(n) and A = A0 + A1T + · · ·



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

are the q-adic expansion of a positive integer n, and the T -adic expansion of an

element A of V , respectively, then

Cn(A) ≡ Cn0(A0)Cn1(A1) · · ·Cnd(n)
(Ad(n)) (mod m). (1.2)

In particular, if we replace V by Z, ν by νp (the p-adic order), and m by pZ, by

taking

un = n (n ∈ N0),

the basis element Cn(k) becomes the binomial polynomial
(
k
n

)
, which shows that

the congruence relation (1.2) does indeed imply (1.1).

In the case of K = Fq(x), the field of rational functions over the finite field Fq

of q elements, with the x-adic valuation whose discrete valuation domain is V , and

whose maximal ideal is m = (x) := xV . In [5], [6], and [7], Carlitz introduced the

following set of polynomials over Fq[x]:

ψ0(t) = t, ψn(t) =
∏

degM<n

(t−M) (n ∈ N),

where the last product extends over all polynomials M ∈ Fq[x] of degree < n,

including the zero polynomial. Carlitz defined the following elements in Fq[x]

which play the role analogous to the factorials in Z,

F0 = 1, Fn = ⟨n⟩⟨n− 1⟩q · · · ⟨1⟩qn−1

(n ∈ N),

where ⟨n⟩ := xq
n − x. The polynomials ψn(t) is generalized to the polynomials

Gn(t) defined by

G0(t) = 1, Gn(t) = ψn0
0 (t)ψn1

1 (t) · · ·ψnd(n)

d(n) (t) (n ∈ N),

where n = n0+n1q+ · · ·+nd(n)q
d(n) is its base q-representation. Correspondingly,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

the factorial-like elements generalizing the Fn’s are defined by

g0 = 1, gn = F n0
0 F n1

1 · · ·F nd(n)

d(n) (n ∈ N).

Carlitz proved that {Gn(t)/gn} is a regular basis of the Fq[x]-module Int(Fq[x]).

Our thesis is organized as follows. Chapter II consists of some notations, defini-

tions and related results using the entire thesis without proofs. In Chapter III, the

shapes of Lagrange type interpolation polynomials similar to {Cn(t)} which con-

stitute bases for Int(V ) and satisfy Lucas property are presented. Our results give

an extension to a result of Boulanger and Chabert in 2001. Moreover, we show

that the basis obtained by Carlitz satisfies Lucas property. The generalization

of Carlitz polynomials, namely, Carlitz-like polynomials are introduced. Criteria

guaranteeing that Carlitz-like polynomials which constitute a basis for Int(Fq[x])

enjoy the Lucas Theorem are derived. The necessary and/or sufficient conditions

on arbitrary polynomials over K of degree n which form a basis for Int(V ) and

satisfy Lucas property are also investigated. In the final chapter, a generalization

of Pascal property and criteria on polynomials satisfying Pascal property which

form a regular basis for Int(V ) are also established. An interesting application,

another horizontal recurrence relation related to Stirling numbers of the first kind,

is also presented.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARIES

2.1 Discrete valuation domains

We begin this section by recalling some basic knowledge in valuation theory. For

the general reference, we refer to [9] and [11]. Let K be a field.

Definition 2.1. A valuation of K is a function | · | : K −→ R+ ∪ {0} satisfying

these properties: for all a, b ∈ K

1. |a| = 0 if and only if a = 0,

2. |ab| = |a||b|,

3. |a+ b| ≤ |a|+ |b|. (Triangle inequality)

There is always at least one valuation on K given by setting |a| = 1 for all a ∈ K∗

and |0| = 0. This valuation is called the trivial valuation.

Definition 2.2. A valuation | · | is called non-Archimedean if it satisfies

|a+ b| ≤ max{|a|, |b|} for all a, b ∈ K.

Otherwise, the valuation | · | is called Archimedean.

The previous inequality becomes an equality under the following condition.

Theorem 2.3. Let | · | be a non-Archimedean valuation. If |a| ̸= |b|, then

|a+ b| = max{|a|, |b|}.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Definition 2.4. Let | · |1 and | · |2 be two valuations on K. They are equivalent

if and only if there exists a positive real number s such that

|a|1 = |a|s2 for all a ∈ K.

Some examples of certain fields with their valuations are shown as follows:

Example 2.5.

1. The usual absolute value on the real number R or the complex number C is

an Archimedean valuation.

2. Let K = Q. If we fix a prime number p, any non-zero rational number c can

be written in the form

c = pv · m
n
,

where v ∈ Z, m ∈ Z, n ∈ N and p ∤ mn. We then put

|c|p = p−v and |0|p = 0.

This defines a non-Archimedean valuation on Q, which is called the p-adic

valuation.

3. Let K = k(x), where k is any field, and p(x) an irreducible polynomial in

k[x]. Any non-zero rational function ϕ in x over k can be written as

ϕ = pv · f
g
,

where v ∈ Z, f, g ∈ k[x] and p ∤ fg. Then we obtain a non-Archimedean

valuation on the rational function field k(x) defined by

|ϕ|p(x) = 2−v and |0|p(x) = 0.

Moreover, the number 2 can be replaced by any real number greater than 1

and a new valuation is equivalent to the old one.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

Next, we introduce the symbol ∞ that ∞ + ∞ = ∞ and r + ∞ = ∞ for all

r ∈ R and define an exponential valuation on K as follows.

Definition 2.6. An exponential valuation on K is a function ν : K −→

R ∪ {∞} satisfying these properties, for all a, b ∈ K :

1. ν(a) = ∞ if and only if a = 0,

2. ν(ab) = ν(a) + ν(b),

3. ν(a+ b) ≥ min{ν(a), ν(b)}.

Note that if we set ν(a) = 0 for all a ∈ K∗ and ν(0) = ∞, we have an

exponential valuation corresponding to the trivial valuation on K and we call it

the trivial exponential valuation.

Proposition 2.7. Let ν be an exponential valuation on K. For all a, b ∈ K, if

ν(a) ̸= ν(b), then

ν(a+ b) = min{ν(a), ν(b)}.

We continue with two important definitions.

Definition 2.8. An exponential valuation ν on K is called discrete if ν(K∗) = sZ

for some real number s > 0. Moreover, ν is normalized if s = 1.

Definition 2.9. Two exponential valuations ν1 and ν2 are equivalent if there

exists a real s > 0 such that ν1 = sν2.

Notice that if ν is a discrete valuation on K, then there exists a uniquely de-

termined normalized valuation of K that is equivalent to ν. Thus, throughout

this thesis, the term “discrete valuation” means “normalized discrete exponen-

tial valuation”. Next, relations between the non-Archimedean valuations and the

exponential valuations on K are shown.

Theorem 2.10. Let | · | be a non-Archimedean valuation on K and s ∈ R+, then

the function νs : K −→ R ∪ {∞} defined by

νs(a) =

−s log |a| if a ̸= 0,

∞ if a = 0



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

is an exponential valuation on K. Furthermore, if s, s′ ∈ R+ and s ̸= s′, then νs

is equivalent to νs′. Conversely, if ν is an exponential valuation on K and q > 1,

then the function | · |q : K −→ R defined by

|a|q =

q
−ν(a) if a ̸= 0,

0 if a = 0

is a non-Archimedean valuation on K. Moreover, if q, q′ > 1 and q ̸= q′, then | · |q
is equivalent to | · |′q.

From the above relation, we always get the corresponding valuation when a non-

Archimedean valuation on K is given and vice versa. This leads us to consider

three important sets in the following theorems.

Theorem 2.11. Let ν be a discrete valuation on K and denote by | · | a corre-

sponding non-Archimedean valuation. Then

1. the set

V := {a ∈ K | ν(a) ∈ N0} = {a ∈ K | |a| ≤ 1}

is an integral domain, called the discrete valuation domain. Moreover

for all a ∈ K∗, we have a ∈ V or a−1 ∈ V ,

2. the set

m := {a ∈ K | ν(a) > 0} = {a ∈ K | |a| < 1} =
{
a ∈ V | a−1 ̸∈ V

}
is the unique principal maximal ideal of V ,

3. the set

V ∖m := {a ∈ K | ν(a) = 0} = {a ∈ K | |a| = 1}

is the group of units of V .

Note that each element in the discrete valuation domain can be uniquely rep-

resented in terms of a fixed generator of the maximal ideal m. Some examples of
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discrete valuation corresponding to certain valuations are presented as follows.

Example 2.12.

1. Let K = Q. From Example 2.5(2), a discrete p-adic valuation corresponding

to the p-adic valuation | · |p is a function νp : Q −→ Z ∪ {∞} defined by

νp(0) := ∞ and νp(c) := − logp |c|p = v,

for all c = pv · m
n
∈ Q∗. Therefore, we have

V =
{a
b
∈ Q

∣∣∣ a, b ∈ Z, (a, b) = 1, and p ∤ b
}
,

m =
{a
b
∈ Q

∣∣∣ a, b ∈ Z, (a, b) = 1, p | a, and p ∤ b
}
,

V ∖m =
{a
b
∈ Q

∣∣∣ a, b ∈ Z, (a, b) = 1, and p ∤ ab
}
.

2. LetK = k(x), where k is any field. From Example 2.5(3), a discrete valuation

corresponding to the valuation | · |p(x) is a function νp(x) : k(x) −→ Z ∪ {∞}

defined by

νp(x)(0) := ∞ and νp(x)(ϕ) := − log2 |ϕ|p(x) = v,

for all ϕ = pv · f
g
∈ k(x)∗. So, we have

V =

{
f(x)

g(x)
∈ k(x)

∣∣∣∣ f, g ∈ k[x], (f, g) = 1, and p ∤ g
}
,

m =

{
f(x)

g(x)
∈ k(x)

∣∣∣∣ f, g ∈ k[x], (f, g) = 1, p | f, and p ∤ g
}
,

V ∖m =

{
f(x)

g(x)
∈ k(x)

∣∣∣∣ f, g ∈ k[x], (f, g) = 1, and p ∤ fg
}
.

Let V be a discrete valuation domain corresponding to a discrete valuation

ν, m the unique principal maximal ideal of V generated by T , and V /m is the

finite residue field of cardinal q > 1. Let U := {a0 = 0, a1, . . . , aq−1} be a set of

representative of V /m. Each element in V can be uniquely represented as power
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series in T with coefficients in U .

Theorem 2.13. For each A ∈ V , we can write

A = A0 + A1T + A2T
2 + · · · (Ai ∈ U).

Next, we introduce the notion of very well distributed and well ordered sequence

in V as defined in [4].

Definition 2.14. Denote by νq(ℓ) the largest power of q that divides ℓ ∈ N. A

sequence {an}n≥0 ⊆ V is said to be a very well distributed and well ordered

(VWDWO) if for all ℓ,m ∈ N0, the sequence elements satisfy

ν(aℓ − am) = νq(ℓ−m).

According to [4], some examples of VWDWO sequences are presented as follows.

Example 2.15.

1. For each prime number p, the natural sequence of positive integers is a

VWDWO sequence for the p-adic valuation of Q.

2. Let U := {a0 = 0, a1, . . . , aq−1} be a set of representative of V /m and T a

generator of maximal ideal m. Taking q as the basis of the numeration, that

is, decomposing n ∈ N as,

n = nrq
r + · · ·+ n1q + n0 (0 ≤ ni < q),

and letting

un = anrT
r + ·+ an1T + an0 ,

then {un} is a VWDWO sequence in V .

Moreover, an important property of VWDWO sequences is also established.
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Proposition 2.16. Let {un} be a sequence in V . The sequence {un} is VWDWO

if and only if for all s ∈ N, any choice of qs consecutive terms provides a complete

set of residues of ms in V.

2.2 Integer-valued polynomials

In this section, we give some notations, definitions and results concerning inte-

ger valued polynomials. For general references, we refer to [1], [2], [4] and [12].

Throughout, let D be an integral domain with quotient field K.

Definition 2.17. An integer-valued polynomial over D is a polynomial over

K which maps the set D to itself. The set of all integer-valued polynomials over

D is denoted by

Int(D) = {f(t) ∈ K[t] | f(D) ⊂ D} .

Example 2.18.

1. Each polynomial over D is an integer-valued polynomial over D.

2. The binomial polynomials, defined by

(
t

n

)
=
t(t− 1) · · · (t− n+ 1)

n!
(n ∈ N),

are polynomial over Q and also form a subset of Int(Z).

3. Consider the Lagrange interpolation polynomials: let n be a positive

integer and, for 0 ≤ h ≤ n, let πh be a polynomial of degree n such that

πh(k) = δhk (0 ≤ k ≤ n), where δhk is a Kroneker symbol. They may be

written

πh(t) =
∏

0≤k≤n,k ̸=h

t− k

h− k
= (−1)n−h

(
t

h

)(
t− h− 1

n− h

)
. (2.1)

These polynomials are integer-valued polynomials over Z.
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4. Let {un}n∈N0 be a VWDWO sequence of V . The sequence of polynomials

{fn}n∈N0 , constructed as Lagrange-type interpolation polynomial in the same

manner as in (2.1), i.e.,

f0(t) = 1 and fn(t) =
n−1∏
i=0

(t− u0)(t− u1) · · · (t− un−1)

(un − u0)(un − u1) · · · (un − un−1)
(n ∈ N),

forms a subset of Int(V ).

Let B be a domain which D[t] ⊂ B ⊂ K[t].

Definition 2.19. A basis {fn}n∈N0 of the D-module B is said to be a regular

basis if, for each n, the polynomial fn has degree n.

The fractional ideal J of D is a D-submodule of K which is fractional subset,

that is, there exists a nonzero element d of D such that dJ is an ideal of D. Then

the set of leading coefficients of polynomials in B forming the fractional ideal is

defined in the following.

Definition 2.20. For every n ∈ N0, the nth characteristic ideal of B is the

fractional ideal Jn(B) which is the set of leading coefficients of polynomials in B

of degree ≤ n (including 0):

Jn(B) = {0} ∪ {α ∈ K | ∃f ∈ B, f = αtn + αn−1t
n−1 + · · · }.

The relation between regular basis and fractional ideal Jn(B) is characterized

in [4, Proposition II.1.4] as follows.

Proposition 2.21. A sequence {fn(t)}n∈N0 of elements of B is a regular basis of

B if and only if, for each n, fn is a polynomial of degree n whose leading coefficient

generates the nth characteristic ideal of B as a D-module.

Now let V be a discrete valuation domain with finite residue field of q elements

and K its quotient field. Assume that T is a fixed generator of the unique principal
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maximal ideal of V . Next, we define an arithmetic function wq(n) on the positive

integers by

wq(n) =
∑
k∈N

⌊
n

qk

⌋
.

Recall Bhargava’s notion of T -ordering on V [1] and [2]:

Definition 2.22. A sequence {un}n∈N0 of elements of V is a T -ordering of V if,

one has

ν

(
n−1∏
k=0

(un − uk)

)
≤ ν

(
n−1∏
k=0

(t0 − uk)

)
for all n ∈ N, t0 ∈ V.

Two forms of regular bases for Int(V ) are constructed by using t-ordering se-

quence {un}, see [2, Theorem 9] and [1, Propostition7], respectively.

Proposition 2.23. Let {un}n∈N0 be a T -ordering of V . The V -module Int(V ) has

a regular basis

fn(t) =
n−1∏
k=0

t− uk
un − uk

(n ∈ N0).

Conversely, the set of polynomials {fn(t)} forms a regular basis for Int(V ) only if

{un}n≥0 be a T -ordering of V .

Proposition 2.24. Let {un}n∈N0 be a T -ordering of V . The sequence of polyno-

mials associated to the T -ordering {un}n∈N0

fn(t) = T−wq(n)

n−1∏
k=0

(t− uk)

is a regular basis of Int(V ).

It is noticed that any two T -ordering {un} and {u′n} of V result in the same

minimum condition:

ν

(
n−1∏
k=0

(un − uk)

)
= ν

(
n−1∏
k=0

(u′n − u′k)

)
(n ∈ N).
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By Proposition 2.24, Proposition 2.23 and Proposition 2.21, both T−wq(n) and∏n−1
k=0

1
un−uk

are generators of Jn(Int(V )). Therefore, for each T -ordering {un} of

V ,

wq(n) = ν

(
n−1∏
k=0

(un − uk)

)
. (2.2)

Moreover, if a sequence {un} satisfies (2.2), it becomes a T -ordering by Bhargava

[2].

The other basis of Int(V ) is defined as follows.

Definition 2.25. Let Fq be a polynomial

F0(t) = 1, F1(t) = t, and Fq(t) =
t− tq

T
.

Then, taking q as the basis of the numeration, and writing

n = n0 + n1q + · · ·+ nsq
s (0 ̸= ni < q),

we let

Fn(t) =
s∏

i=0

(F i
q(t))

ni (n ∈ N).

where F1(t) = F(t) and F i(t) = F(F i−1(t)). [4, Propositon II.2.12] We say that

Fn is the nth Fermat polynomial of V and it is an integer-valued polynomial

over V .

Theorem 2.26. The Fermat polynomials Fn(t) form a regular basis of V -module

Int(V ).

For the case of function field, let Fq[x] be the ring of polynomials over Fq, a finite

field of q elements, and Fq(x) its quotient field. In [5], [6] and [7], Carlitz defined

the polynomials ψk(t) for all k ∈ N0 in Fq[t], referred to as Carlitz poynomials,

which play the role analogous to the binomial expansions in Z as follows: define
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ψ0(t) = t and, for k ∈ N, define

ψk(t) =
∏

degM<k

(t−M), (2.3)

where the product extends over all polynomials M (including 0) in an indetermi-

nate x with coefficients in Fq of degree less than k. He also defined the following

plays in Fq[x] which play the role analogous to the factorials in Z: define F0 = 1

and for k ∈ N, define

Fk = [k][k − 1]q[k − 2]q
2 · · · [1]qk−1

,

where [r] = xq
r − x for all r ∈ N. As mentioned in [6], ψk(x

k) = ψk(M) = Fk for

each monic polynomial M of degree k, Fk is the product of all monic polynomials

in Fq[x] of degree k. In [7], Carlitz generalized ψk(t) to the polynomial Gk(t) and

Fk to the polynomial gk defined as follows: define G0(t) = 1 and g0 = 1. For

k ∈ N, if k is expressed with respect to base q as

k = α0 + α1q + α2q
2 + · · ·+ αd(k)q

d(k) (0 ⩽ αi < q),

then define

Gk(t) = ψα0
0 (t)ψα1

1 (t) · · ·ψαd(k)

d(k) (t)

and

gk = Fα0
0 Fα1

1 · · ·F αd(k)

d(k) .

From these polynomials, a basis of Int(Fq[x]) is established.

Theorem 2.27. Let k ∈ N0. For each K ∈ Fq[x], Gk(K)/gk is polynomials over

Fq[x]. Moreover, the polynomials Gk(t)/gk form a regular basis of Fq[x]-module

Int(Fq[x]).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

LUCAS PROPERTY

From now on, let V be a discrete valuation domain with respect to normalized

discrete valuation ν and a finite residue field, and let K be its quotient field. Let

m = (T ) be the unique principal maximal ideal of V generated by T , and let q be

the cardinality of the residue field V /m. Denote the set of representatives of V /m

by

U = {u0 = 0, u1, . . . , uq−1}.

By Theorem 2.13, each element A ∈ V can be uniquely represented as a base

T -representation (or power series in T over U) of the form

A0 + A1T + A2T
2 + · · · (Ai ∈ U).

The valuation ν(A) of A ∈ V ∗ := V ∖ {0} is a positive integer, indeed it is the

largest integer n such that A ∈ mn; in a similar manner, denote by νq(ℓ) the largest

power of q that divides ℓ ∈ N.

We first define the congruence relation analogous to Lucas theorem, referred to

as Lucas property in the following.

Definition 3.1. Let {Bn(t)}n∈N0 ⊂ K[t] be a sequence of polynomials forming

a basis for the V -module Int(V ). We say that the sequence {Bn(t)} satisfies the

Lucas property modulo m if for n ∈ N0 with base q-representation

n = n0 + n1q + · · ·+ nd(n)q
d(n) (0 ≤ ni < q, nd(n) ̸= 0 if n ∈ N), (3.1)
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and for A ∈ V with base T -representation

A = A0 + A1T + · · · (Ai ∈ U),

the congruence relation

Bn(A) ≡ Bn0(A0)Bn1(A1) · · ·Bnd(n)
(Ad(n)) (mod m) (3.2)

holds.

3.1 Lagrange-type interpolation polynomials

Let the polynomials {Bn(t)} be constructed as Lagrange-type interpolation poly-

nomials, i.e., there is a sequence {wn}n∈N0 of distinct elements in V such that

B0(t) = 1, Bn(t) =
(t− w0)(t− w1) · · · (t− wn−1)

(wn − w0)(wn − w1) · · · (wn − wn−1)
(n ∈ N).

Definition 3.2. The sequence {wn} is called a g-IVP (generating integer-

valued polynomial) sequence if its associated polynomial sequence {Bn(t)} is

a basis for Int(V ).

In this section, we determine those g-IVP sequences whose associated poly-

nomials satisfy the Lucas property. The results give an extension to a result of

Boulanger and Chabert [3]. Any g-IVP sequence {wn} is characterized by the next

theorem.

Theorem 3.3. If {wn} is a g-IVP sequence with w0 = 0, then w1, . . . , wq−1 are

units, each of which belonging to a distinct class in V /m.

Moreover, the first q elements of {wn} can be chosen to be all the elements of

the set of representatives U of V /m, i.e., {w0 = 0, w1, . . . , wq−1} = U .

Proof. Let {Bn(t)} be the polynomial sequence associated with {wn}. To show
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that w1 is a unit in V , consider

B1(t) =
t− w0

w1 − w0

=
t

w1

.

Since B1(t) is integer-valued, we have B1(1) = 1/w1 ∈ V, so w1 is a unit in V , and

we are done in the case q = 2.

If q > 2, we proceed by induction on k, assuming that w1, . . . , wk (1 ≤ k <

q − 1), are units belonging to different residue classes in V /m, so that

ν(wi − wj) = 0 (1 ≤ i < j ≤ k).

Consider

Bk+1(t) =
t(t− w1) · · · (t− wk)

wk+1(wk+1 − w1) · · · (wk+1 − wk)
.

Since k + 1 ≤ q − 1 < |V /m|, there exists a unit A ∈ V ∖ {0} belonging to a class

in V /m different from those of w0, w1, . . . , wk, and so

ν(A− wi) = 0 (0 ≤ i ≤ k).

Since

Bk+1(A) =
A(A− w1) · · · (A− wk)

wk+1(wk+1 − w1) · · · (wk+1 − wk)
∈ V

(i.e., ν(Bk+1(A)) ∈ N0) and ν(A(A− w1) · · · (A− wk)) = 0, we have

ν(wk+1(wk+1 − w1) · · · (wk+1 − wk)) ≤ 0.

As wk+1(wk+1 − w1) · · · (wk+1 − wk) ∈ V ∖ {0}, this forces

ν(wk+1(wk+1 − w1) · · · (wk+1 − wk)) = 0.

Because wi ∈ V , we deduce that

ν(wk+1) = ν(wk+1 − w1) = · · · = ν(wk+1 − wk) = 0,
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which shows wk+1 is a unit in V belonging to a class different from w1, . . . , wk in

V /m, and the induction is complete. The second assertion follows immediately

from the first.

The next technical lemma provides more informations about a congruence prop-

erty of the polynomials Bn(t).

Lemma 3.4. Let {wn} be a g-IVP sequence whose associated polynomial se-

quence is {Bn(t)}. Let the subset of the first q elements of {wn} be {w0 =

0, w1, . . . , wq−1} = U , and denote any other element by

wn = a
(n)
0 + a

(n)
1 T + · · ·+ a

(n)
j T j + · · · (a

(n)
j ∈ U, n ≥ q) (3.3)

(this representation is also applicable for n = 0, 1, . . . , q − 1). Let

A = A0 + A1T + · · ·+ AjT
j + · · · ∈ V. (3.4)

For a fixed m ∈ N0, if the condition on the digit values

a
(n)
0 = wn0 , a

(n)
1 = wn1 , . . . , a

(n)
m = wnm , (3.5)

holds for all n ∈ N0 whose base q-representation is (3.1), then for each k ∈

{0, 1, . . . , q − 2}, we have

B(k+1)qm+1(A) ≡
k∏

s=0

Am+1 − a
(sqm+1+rs)
m+1

a
((k+1)qm+1)
m+1 − a

(sqm+1)
m+1

(mod m),

where the integers rs ∈ {0, 1, . . . , qm+1−1} are uniquely determined and satisfy the

relation

wrs ≡ A0 + A1T + · · ·+ AmT
m (mod mm+1).

Proof. Assume that a(n)0 = wn0 , a
(n)
1 = wn1 , . . . , a

(n)
m = wnm . For 0 ≤ k ≤ q − 2,
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replacing A and wi by the expressions in (3.4), respectively, (3.3), we write

B(k+1)qm+1(A) =
k∏

s=0

Ωs,

where

Ωs :=

(s+1)qm+1−1∏
i=sqm+1

A− wi

w(k+1)qm+1 − wi

=
Λ1(s)

Λ2(s)
.

The numerator of Ωs is

Λ1(s) =

(s+1)qm+1−1∏
i=sqm+1

((A0 + · · ·+ AmT
m)− (a

(i)
0 + · · ·+ a(i)m T

m))

+ (Am+1 − a
(i)
m+1)T

m+1 + . . .

=
∏

N∈U [T ]
degN≤m

(A0 + · · ·+ AmT
m −N) + Σ0 · Π0

+ (terms with powers of T ≥ 2m+ 2), (3.6)

where

Σ0 :=

(s+1)qm+1−1∑
i=sqm+1

(Am+1 − a
(i)
m+1)T

m+1,

Π0 :=
∏

M∈U [T ]
degM≤m

M ̸=a
(i)
0 +···+a

(i)
m Tm

(A0 + · · ·+ AmT
m −M).

Since N and M run through all elements in U [T ] (including 0) of degree ≤ m

and M ̸= a
(i)
0 + · · · + a

(i)
m Tm, in the right-hand expression of (3.6) the first term

vanishes, while the second term reduces to

(Am+1 − a
(rs)
m+1)T

m+1
∏

M∈U [T ], degM≤m
M ̸=A0+···+AmTm

(A0 + · · ·+ AmT
m −M)
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for some uniquely determined rs ∈ {sqm+1, . . . , (s+ 1)qm+1 − 1} satisfying

a
(rs)
i = Ai (0 ≤ i ≤ m). (3.7)

Thus,

Λ1(s) = (Am+1 − a
(rs)
m+1) T

m+1
∏

degM≤m
M ̸=A0+···+AmTm

(A0 + · · ·+ AmT
m −M)

+ (terms with powers of T ≥ 2m+ 2). (3.8)

Note that the denominator Λ2(s) of Ωs takes exactly the same form as Λ1 but with

the coefficients Ai of A being replaced by the coefficients a((s+1)qm+1)
i of w(s+1)qm+1 ,

and so in an expression similar to the right-hand side of (3.8) for Λ2(s), the first

term of expansion vanishes and the second term reduces to

(a
((s+1)qm+1)
m+1 −a(r

′
s)

m+1)T
m+1

∏
M ′∈U [T ], degM ′≤m

M ′ ̸=a
((s+1)qm+1)
0 +···+a

((s+1)qm+1)
m Tm

(
m∑
i=0

a
((s+1)qm+1)
i T i −M ′

)

for some uniquely determined r′s ∈ {sqm+1, . . . , (s+ 1)qm+1 − 1} satisfying

a
(r′s)
i = a

((s+1)qm+1)
i (0 ≤ i ≤ m). (3.9)

By the assumption (3.5), we have

a
((s+1)qm+1)
0 = a

((s+1)qm+1)
1 = · · · = a((s+1)qm+1)

m = w0 = 0

and

a
(sqm+1)
0 = a

(sqm+1)
1 = · · · = a(sq

m+1)
m = w0 = 0,
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so (3.9) shows that r′s = sqm+1, and the second term of Λ2 becomes

(a
((s+1)qm+1)
m+1 − a

(sqm+1)
m+1 )Tm+1

∏
degM ′≤m

M ′ ̸=0

(0−M ′).

Thus,

Λ2(s) = (a
((s+1)qm+1)
m+1 − a

(sqm+1)
m+1 )Tm+1

∏
degM ′≤m

M ′ ̸=0

(0−M ′)

+ (terms with powers of T ≥ 2m+ 2). (3.10)

We claim now that
∏k

s=0 Λ2(s) ̸= 0, i.e., the denominator of B(k+1)qm+1(A) does

not vanish. To verify this, observe that since k + 1 ≤ q − 1, choosing Am+1 in

such a way that
∏k

s=0

(
Am+1 − a

(rs)
m+1

)
̸= 0 yields the non-vanishing numerator of

B(k+1)qm+1(A), i.e.,
∏k

s=0 Λ1(s) ̸= 0. This together with the fact that B(k+1)qm+1(A)

is integer-valued, i.e., belongs to V , shows that its denominator
∏k

s=0 Λ2(s) does

not vanish. Since both the sets

{A0+A1T+· · ·+AmT
m−M |M ∈ U [T ], degM ≤ m, M ̸= A0+A1T+· · ·+AmT

m}

and

{−M ′ |M ′ ∈ U [T ], degM ′ ≤ m and M ′ ̸= 0}

are identical with the set of all nonzero residue classes modulo mm+1, we have

∏
degM≤m

M ̸=A0+···+AmTm

(A0 + · · ·+ AmT
m −M) ≡

∏
degM ′≤m

M ′ ̸=0

(0−M ′) (mod mm+1). (3.11)

By (3.8), (3.10) and (3.11), we get

B(k+1)qm+1(A) =
k∏

s=0

Λ1(s)

Λ2(s)
≡

k∏
s=0

(Am+1 − a
(rs)
m+1)

(a
((s+1)qm+1)
m+1 − a

(sqm+1)
m+1 )

(mod m),
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for some sqm+1 ≤ rs ≤ (s + 1)qm+1 − 1 and by (3.3) and (3.7), we get a(rs)i = Ai

(0 ≤ i ≤ m), i.e.,

wrs ≡ A0 + A1T + · · ·+ AmT
m (mod mm+1),

as required.

The explicit shape of a g-IVP sequence {wn} which is VWDWO, stated in Def-

inition 2.14, and satisfies the Lucas property is obtained in the following theorem.

Theorem 3.5. Let {wn} := {w0 = 0, w1, w2, . . .} be a g-IVP sequence whose

associated w-polynomial sequence is {Bn(t)}n∈N0. Assume that

1. the sequence {Bn(t)} satisfies the Lucas property modulo m, and

2. the sequence {wn} is a VWDWO sequence.

Then the sequence {wn} is uniquely determined in the sense that for each n written

with respect to the base q-representation (3.1), we have

wn = wn0 + wn1T + · · ·+ wnd(n)
T d(n). (3.12)

( Since the sequence {wn} mentioned above depends on the choice of w1, . . . , wq−1

and on the choice of T , its asserted uniqueness is implicitly subjected to this

dependence.)

Proof. Since {wn} is a g-IVP sequence with w0 = 0, by Theorem 3.3, we can take

its first q elements to be those of U , i.e.,

{w0 = 0, w1, . . . , wq−1} = U. (3.13)

Using the notation as set out in (3.3) of Lemma 3.4, the set (3.13) shows that

a
(0)
0 (= 0), a

(1)
0 , · · · , a(q−1)

0 ∈ U, (3.14)

a
(0)
i = a

(1)
i = · · · = a

(q−1)
i = 0 (i). (3.15)
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We prove the theorem by establishing (3.12) component-wise that a(n)j = wnj
.

As the first step, we show that

a
(n)
0 = wn0 for all n ∈ N0. (3.16)

This clearly holds for n ∈ {0, 1, . . . , q − 1} because of (3.14). Since {wn} is a

VWDWO sequence, by Proposition 2.16, any q consecutive terms in the sequence

form a complete set of residues modulo m. Thus, for 0 ≤ i ≤ q − 1, we get

wq+i ≡ wi (mod m) (0 ≤ i ≤ q − 1),

and so

a
(q+i)
0 ≡ wi (mod m);

proceeding inductively, we have

wjq+i ≡ w(j−1)q+i ≡ · · · ≡ wq+i ≡ wi (mod m) (j ∈ N). (3.17)

Using the notation (3.1), we deduce from (3.17) for n ∈ N0 that

a
(n)
0 ≡ wn ≡ wn0 (mod m).

Being elements of U shows then that (3.16) is fulfilled.

As our second (general) step, for e ∈ N0, we show that

a
(n)
e+1 = wne+1 for all n ∈ N0. (3.18)

We prove by using two induction processes. We proceed by induction on e, assum-

ing that

a
(n)
0 = wn0 , a

(n)
1 = wn1 , · · · , a(n)e = wne ;

with the case e = 0 being just verified above. Taking any A = A0+A1T + · · · ∈ V ,
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using Lemma 3.4 with m = e, k = 0 and (3.15), we have

Bqe+1(A) ≡
Ae+1 − a

(r0)
e+1

a
(qe+1)
e+1 − a

(0)
e+1

=
Ae+1 − a

(r0)
e+1

a
(qe+1)
e+1

(mod m),

for some r0 ∈ {0, 1, . . . , qe+1 − 1} satisfying wr0 ≡ A0 + · · ·+ AeT
e (mod me+1).

If a(r0)e+1 ̸= 0, then a
(r0)
e+1 = wℓ for some ℓ ∈ {1, 2, . . . , q − 1}. Putting Ae+1 = wℓ, we

get

Bqe+1(A) ≡ 0 (mod m). (3.19)

On the other hand, since Bqe+1(A) satisfies the Lucas property, we get

Bqe+1(A) ≡ B1(Ae+1) =
Ae+1 − w0

w1 − w0

=
wℓ

w1

̸= 0 (mod m),

contradicting (3.19). Thus, a(r0)e+1 = 0 = w0; this being true for any such r0 implies

then that

a
(n)
e+1 = 0 = wne+1 (0 ≤ n ≤ qe+1 − 1). (3.20)

Next, using Lemma 3.4 with k = 1,m = e, we have

B2qe+1(A) ≡ α0 · α1 (mod m),

where

α0 :=
Ae+1 − a

(r0)
e+1

a
(2qe+1)
e+1 − a

(0)
e+1

, α1 :=
Ae+1 − a

(qe+1+r1)
e+1

a
(2qe+1)
e+1 − a

(qe+1)
e+1

(3.21)

for some 0 ≤ ri ≤ qe+1 − 1 (i ∈ {0, 1}) satisfying

wri ≡ A0 + · · ·+ AeT
e (mod me+1). (3.22)

Using (3.15) and (3.20), we see that α0 =
Ae+1

a
(2qe+1)
e+1

. We turn now to α1. Since {wn}

is a VWDWO sequence, by Proposition 2.16, the set {w0 = 0, w1, . . . , wqe+2−1}

constitutes a residue class modulo me+2. Thus, from (3.20), for larger n in the

next range, i.e., for qe+1 ≤ n ≤ qe+2 − 1 we must have a
(n)
e+1 ̸= w0 (= 0); in
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particular, a(q
e+1+r1)

e+1 ̸= w0.

If a(q
e+1+r1)

e+1 ̸= w1, then a
(qe+1+r1)
e+1 = wℓ for some ℓ ∈ {2, 3, . . . , q − 1}. Putting

Ae+1 = wℓ in (3.21), we have

α1 = 0. (3.23)

However, the Lucas property implies that

α0 · α1 ≡ B2qe+1(A) ≡ B2(Ae+1)

=
Ae+1(Ae+1 − w1)

w2(w2 − w1)
≡ wℓ(wℓ − w1)

w2(w2 − w1)

̸= 0 (mod m),

contradicting (3.23), and so a
(qe+1+r1)
e+1 = w1. Since r1 satisfies (3.22) and the

elements A0, A1, . . . , Ae can take any values in U , the “for some” restriction on

r1 can be removed, and so

a
(n)
e+1 = w1 = wne+1 (qe+1 ≤ n ≤ 2qe+1 − 1). (3.24)

From the VWDWO property modulo me+2, because of (3.20) and (3.24), the

residues w0 and w1 have already been exhausted by those a(n)e+1 with n ∈ {0, 1, . . . ,

2qe+1 − 1}. Thus, for larger n in the next range, we have

ane+1 ̸∈ {w0, w1} for all n ∈ {2qe+1, 2qe+1 + 1, . . . , qe+2 − 1}. (3.25)

We pause here to remark that the ongoing proof of (3.18) for q = 2 is now complete

from (3.20), (3.24) and the VWDWO property, while for q = 3, since there are

three residue classes, the proof of (3.18) is also complete from (3.20), (3.24), (3.25)

and the VWDWO property. This leaves us to consider henceforth only the case

q > 3. We now proceed by induction on h = 1, 2, . . . , q − 3 to show that

a
(n)
e+1 = wne+1 for all n ∈ {(h+ 1)qe+1, . . . , (h+ 2)qe+1 − 1}.
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The induction hypothesis asserts that for each 0 ≤ s ≤ qe+1 − 1, we have

a
(s)
e+1 = w0, a

(qe+1+s)
e+1 = w1, . . . , a

(hqe+1+s)
e+1 = wh and a

((h+1)qe+1)
e+1 ̸∈ {w0, . . . , wh};

this hypothesis holds when h = 1 as already shown in (3.20), (3.24) and (3.25).

Applying Lemma 3.4 with k = h+ 1,m = e, we get

B(h+2)qe+1(A) ≡
h+1∏
s=0

αs (mod m), αs :=
Ae+1 − a

(sqe+1+rs)
e+1

a
((h+2)qe+1)
e+1 − a

(sqe+1)
e+1

for some rs ∈ {0, 1, . . . , qe+1 − 1} satisfying wrs ≡ A0 + · · · + AeT
e (mod me+1).

Using the induction hypothesis, we get

αs =
Ae+1 − ws

a
(h+2)qe+1

1 − ws

(0 ≤ s ≤ h).

Turning now to αh+1, by arguments similar to those leading to (3.24), we deduce

that a(rh+1)
e+1 = wh+1 which in turn implies that

a
(k)
e+1 = wh+1 ((h+ 1)qe+1 ≤ k ≤ (h+ 2)qe+1 − 1).

Invoking upon the VWDWO property, we arrive at a((h+2)qe+1)
e+1 ̸∈ {w0, . . . , wh+1},

which completes the induction on h.

So far we have found that

• a
(0)
e+1 = · · · = a

(qe+1−1)
e+1 = w0,

• a
(qe+1)
e+1 = · · · = a

(2qe+1−1)
e+1 = w1,

• a
((h+1)qe+1)
e+1 = · · · = a

((h+2)qe+1−1)
e+1 = wh+1 and, for 2 ≤ h+ 1 ≤ q − 2,

a
(h+2)qe+1

e+1 ̸∈ {w0, . . . , wh+1} .

By the VWDWO property modulo me+2, we must have

a
((q−1)qe+1+s)
e+1 = wq−1 (0 ≤ s ≤ qe − 1).
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Since {wn} is a VWDWO sequence, considering modulo me+2, we get

wqe+2+i ≡ wi (mod me+2) (0 ≤ i ≤ qe+2 − 1);

proceeding successively through the VWDWO property, we arrive at

wjqe+2+i ≡ w(j−1)qe+2+i ≡ · · · ≡ wqe+2+i ≡ wi (mod me+2),

for each j ∈ N0 and 0 ≤ i ≤ qe+2−1. Thus, for any n = n0+n1q+ · · ·+nd(n)q
d(n) ≥

qe+2 (for the case where n ≤ qe+2 − 1, the required result has already been found),

we have, from what we have found,

a
(n)
0 + a

(n)
1 T + · · ·+ a

(n)
e+1T

e+1 ≡ wn ≡ wn0+···+ne+1qe+1

≡ a
(n0+···+ne+1qe+1)
0 + · · ·+ a(n0+···+ne+1qe+1)

e

+ a
(n0+···+ne+1qe+1)
e+1 T e+1

= wn0 + · · ·+ wneT
e + wne+1T

e+1 (mod me+2).

Comparing the coefficients of T e+1, we conclude that a(n)e+1 = wne+1 , which completes

the induction on e and finishes the proof of the theorem.

Applying Theorem 3.5 to the case of function field, we immediately obtain

Corollary 3.6. Let Fq(x) be the field of rational functions over Fq (the finite field

with q elements) equipped with the x-adic valuation. Let {w0 = 0, w1, w2, . . .} be

a g-IVP sequence in the corresponding discrete valuation domain of Fq(x) whose

associated w-polynomial sequence is {Bn(t)}. Assume that

• the sequence {wn} is a VWDWO sequence;

• the sequence {Bn(t)} satisfies the Lucas property modulo the ideal (x)

Then

wn = wn0 + wn1x+ · · ·+ wnd(n)
xd(n), (3.26)

where the base q-representation of n ∈ N0 is as in (3.1).
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In passing, it is easily checked that the following converse of Corollary 3.6 is

valid: if the relation (3.26) holds and {wn} is a VWDWO sequence, then the

sequence {Bn(t)} satisfies the Lucas property modulo (x).

Applying Theorem 3.5 to the case of rational number field together with an

extra condition about the representative set U , more precise information can be

obtained as shown next.

Corollary 3.7. Let p be a prime, let Vp be the valuation domain of Q with respect

to the p-adic valuation, and let {wn} be a g-IVP sequence in Vp whose associated

w-polynomial sequence is {Bn(t)}. Assume that

• the sequence {wn} is a VWDWO sequence;

• the sequence Bn(t) satisfies Lucas property modulo the principal ideal (p).

Then

wn = wn0 + wn1p+ · · ·+ wnd(n)
pd(n), (3.27)

where the base p-representation of n ∈ N0 is as in (3.1).

Moreover, if

w0 = 0, w1 = 1, . . . , wp−1 = p− 1,

then wn = n (n ∈ N0).

Proof. The first part is immediate from Theorem 3.5. To check the last assertion,

we assume that wi = i ∈ {0, 1, . . . , p− 1}. With the base p-representation (3.1) of

n, we get

wn = wn0 + wn1p+ · · ·+ wnd(n)
pd(n) = n0 + n1p+ · · ·+ nd(n)p

d(n) = n.

Similar to the remark after the preceding corollary, the following converse of

Corollary 3.7 is true: if the relation (3.27) holds and {wn} is a VWDWO sequence,

then the sequence {Bn(t)} satisfies the Lucas property modulo (p).
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3.2 Carlitz and Carlitz-like polynomials

From Theorem 2.27, Carlitz proved that the sequence {Gn(t)/gn} is a basis for

the Fq[x]-module Int(Fq[x]). This sequence is different from the basis {Bn(t)}

in Section 3.1. In this section, we first confirm that {Gn(t)/gn}n∈N0
satisfies the

Lucas property. Then we derive conditions on the sequence {wn} generating a

basis {Gn(t)} of Carlitz-like polynomials which satisfies the Lucas property.

We proceed now to verify our first objective.

Theorem 3.8. The sequence of Carlitz polynomials {Gn(t)/gn}n∈N0 satisfies the

Lucas property modulo the principal ideal (x).

Proof. Recall that the sequence {Gn(t)/gn}, with G0(t)/g0 = 1, is a basis for the

Fq[x]-module Int(Fq[x]). When n = 0, the Lucas property holds because both sides

of (3.2) are equal to 1. For n ∈ N with base q-representation as in (3.1), we have

Gn(t)

gn
=
ψn0
0 (t)ψn1

1 (t) · · ·ψnd(n)

d(n) (t)

F n0
0 F n1

1 · · ·F nd(n)

d(n)

.

Let A = A0 + A1x + · · · ∈ Fq[x]. If degA < d(n), by (2.3), we get ψd(n)(A) = 0.

Since Ad(n) = 0, we have
Gnd(n)(Ad(n))

gd(n)
= 0,

and so
Gn(A)

gn
= 0 =

Gn0(A0)

gn0

· · ·
Gnd(n)

(Ad(n))

gnd(n)

.

Assume henceforth that deg(A) ≥ d(n). If there is an index k ∈ {1, 2, . . . , d(n)}

such that Ak = 0, then

(A− (A0 + A1x+ · · ·+ Ak−1x
k−1)) = Ak+1x

k+1 + Ak+2x
k+2 + · · ·

≡ 0 (mod (x)),

and so

ψk(A) =
∏

degM<k

(A−M) ≡ 0 (mod (x)).
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Note also that ψ0(Ak)/F0 = 0. Thus,

Gn(A)

gn
=

d(n)∏
i=0

(
ψi(A)

Fi

)ni

≡ 0 =

d(n)∏
i=0

(
ψ0(Ai)

F0

)ni

=

d(n)∏
i=0

Gni
(Ai)

gni

(mod (x)),

validating the Lucas property in this case. There remains the case where Ak ̸= 0

for all k ∈ {1, 2, . . . , d(n)}. Since Fk is the product of all monic polynomial in

Fq[x] of degree k, we see that

ψk(A) =
∏

degM<k

(A−M) =
∏

degM<k

((Akx
k + · · ·+ A1x+ A0 −M) + Ak+1x

k+1)

=
∏

degM ′=k
M ′monic

(AkM
′ + Ak+1x

k+1 + terms with higher powers of x)

= Aqk

k Fk +Nkx
deg(Fk)+1 = AkFk +Nkx

deg(Fk)+1,

for some Nk ∈ Fq[x]. From [7, Lemma1], we know that ψk(t)/Fk is an integer-

valued polynomial, and so ψk(A)/Fk = Ak + N ′
kx for some N ′

k ∈ Fq[x]. Using

ψ0(A) = A, F0 = 1, we have

Gn(t)

gn
=

(
ψ0(A)

F0

)n0 d(n)∏
k=1

(
ψk(A)

Fk

)nk

= An0

d(n)∏
k=1

(Ak +N ′
kx)

nk ≡ An0
0 A

n1
1 · · ·And(n)

d(n)

=

(
ψ0(A0)

F0

)n0
(
ψ0(A1)

F0

)n1

· · ·
(
ψ0(Ad(n))

F0

)nd(n)

=
Gn0(A0)

gn0

· Gn1(A1)

gn1

· · ·
Gnd(n)

(Ad(n))

gnd(n)

(mod (x)),

showing finally that the Carlitz polynomials basis satisfies the Lucas property

modulo (x).

To extend Theorem 3.8, we introduce:

Definition 3.9. Let {wn}n∈N0 be a given sequence of distinct elements in Fq[x].
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• Define the interpolating w-polynomial sequence {ϕn(t)}n∈N0 by

ϕ0(t) =
t− w0

w1 − w0

, ϕk(t) =
(t− w0)(t− w1) · · · (t− wqk−1)

(wqk − w0)(wqk − w1) · · · (wqk − wqk−1)
(k ∈ N)

and define the w-Carlitz like polynomial (w-CLP) sequence {Gn(t)}n∈N0

of Fq(x)[t] by

G0(t) = 1, Gn(t) = ϕn0
0 (t)ϕn1

1 (t) · · ·ϕnd(n)

d(n) (t) (n ∈ N as in (3.1)),

• If w0 = 0 and if the w-CLP sequence is a basis for Int(Fq[x]), then {wn} is

called a g-CLP (generating Carlitz like polynomial) sequence.

Observe from Definition 3.9 that

1. the sequence of Carlitz polynomials {Gn(t)/gn} is a special case of w-CLP

sequence with {w0 = 0, w1 = 1, . . . , wq−1} = Fq and wn = wn0 + wn1x +

wnd(n)
xd(n);

2. though the polynomials Gn(t) and Bn(t) (in Section 2) are of the same degree

n, they are not the same because all factors of Bn(t) are distinct, while Gn(t)

contains repeated factors.

Keeping the notation set out in Section 1, we first prove an auxiliary result,

Lemma 3.10. Let

A = A0 + A1T + A2T
2 + · · · (Ai ∈ U)

B = B0 +B1T +B2T
2 + · · · (Bi ∈ U)

be two nonzero elements in V . If B is a divisor of A in V , then ν(A) ≥ ν(B) and

A

B
≡
Aν(B)

Bν(B)

(mod m). (3.28)
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Proof. Let r = ν(A) and s = ν(B). If r < s, then

A

B
=
ArT

r + Ar+1T
r+1 + · · ·

BsT s +Bs+1T s+1 + · · ·
=

Ar + Ar+1T + · · ·
T s−r(Bs +Bs+1T · · · )

̸∈ V,

which is a contradiction. Thus, r ≥ s, and we see that

A

B
=
ArT

r−s + Ar+1T
r−s+1 + · · ·

Bs +Bs+1T + · · ·
=
Ar

Bs

T r−s +N ′T r−s+1

for some N ′ ∈ V . If r = s, (3.28) is immediate, while if r > s, both sides of (3.28)

are congruent to 0 modulo m.

Our extension of Theorem 3.8 reads:

Theorem 3.11. Given a g-CLP sequence {wn}, let {Gn(t)} be its associated w-

CLP sequence. If {Gn(t)} satisfies the Lucas property modulo (x), then for each

k ∈ N, we have

1. {w0 = 0, . . . , wqk−1} is the set of all polynomials in Fq[x] of degree < k; in

particular {w0 = 0, w1, . . . , wq−1} = Fq;

2. the sequence element wqk is a polynomial in Fq[x] of degree k with leading

coefficient w1.

Proof. We first claim that {w0 = 0, w1, · · · , wqk−1} constitute a complete residue

system modulo (x)k in the ring Fq[x], or equivalently,

(wi) mod xk := a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
k−1x

k−1 (0 ≤ i ≤ qk − 1).

To verify this claim, consider G1(t) = ϕ0(t) = t/w1. Since G1(t) ∈ Int(Fq[x]), we

get G1(1) = 1/w1 ∈ Fq[x] showing that w1 is a unit in Fq[x], i.e., w1 ∈ F∗
q which

affirms the first assertion when k = 0. Next, for the case k = 1, since

Gq(t) = ϕ1(t) =
t(t− w1) · · · (t− wq−1)

wq(wq − w1) · · · (wq − wq−1)
,
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by the Lucas property modulo (x), for each A = A0 + A1x+ · · · ∈ Fq[x], we get

A1

B1

=:
A(A− w1) · · · (A− wq−1)

wq(wq − w1) · · · (wq − wq−1)
= Gq(A) ≡ G1(A1) = ϕ0(A1) =

A1

w1

(mod (x)).

The numerator and the denominator are

A1 =

q−1∏
i=0

(
(A0 − a

(i)
0 ) + (A1 − a

(i)
1 )x+ (A2 − a

(i)
2 )x2 + · · ·

)
=

q−1∏
i=0

(A0 − a
(i)
0 ) +

q−1∑
j=0

(A1 − a
(j)
1 )x

q−1∏
i=0
i̸=j

(A0 − a
(i)
0 )

+ (terms with x of powers ≥ 2)

B1 =

q−1∏
i=0

(a
(q)
0 − a

(i)
0 ) +

q−1∑
j=0

(a
(q)
1 − a

(j)
1 )x

q−1∏
i=0
i̸=j

(a
(q)
0 − a

(i)
0 )

+ (terms with x of powers ≥ 2).

If
∏q−1

i=0 (A0 − a
(i)
0 ) ̸= 0, then

A1

w1

=

q−1∏
i−0

(A0 − a
(i)
0 )

(a
(q)
0 − a

(i)
0 )

;

this relation holds for any A1 ∈ Fq on the left, while the right-hand side is indepen-

dent of A1, which is untenable. Thus,
∏q−1

i=0 (A0− a
(i)
0 ) = 0, implying that A0 ∈ Fq.

This being true for any A0 ∈ Fq, we must have {a(0)0 , a
(1)
0 , . . . , a

(q−1)
0 } = Fq, affirm-

ing the first assertion when k = 1.

Proceeding to general k, consider the set {w0 = 0, w1, . . . , wqk−1} of qk − 1

elements. Since

Gqk(t) = ϕk(t) =
t(t− w1) · · · (t− wqk−1)

wqk(wqk − w1) · · · (wqk − wqk−1)
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satisfies the Lucas property modulo (x), we get

Ak

Bk

=:
A(A− w1) · · · (A− wqk−1)

wqk(wqk − w1) · · · (wqk − wqk−1)
= Gqk(A) ≡ G1(Ak) =

Ak

w1

(mod (x)).

(3.29)

The numerator is

Ak =

qk−1∏
i=0

{(
(A0 + A1x+ · · ·+ Ak−1x

k−1)− (a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
k−1x

k−1)
)

+(Ak − a
(i)
k )xk + (Ak+1 − a

(i)
k+1)x

k+1 + terms with higher powers of x
}

=

qk−1∏
i=0

(
(A0 + A1x+ · · ·+ Ak−1x

k−1)− (a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
k−1x

k−1)
)

+

qk−1∑
j=0

(Ak − a
(j)
k )xk

qk−1∏
i=0
i̸=j

(
(A0 + · · ·+ Ak−1x

k−1)− (a
(i)
0 + · · ·+ a

(i)
k−1x

k−1)
)

+ (terms with higher powers of x),

and the denominator is

Bk =

qk−1∏
i=0

(
(a

(qk)
0 + a

(qk)
1 x+ · · ·+ a

(qk)
k−1x

k−1)− (a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
k−1x

k−1)
)

+

qk−1∑
j=0

(a
(qk)
k − a

(j)
k )xk

qk−1∏
i=0
i̸=j

(
(a

(qk)
0 + · · ·+ a

(qk)
k−1x

k−1)− (a
(i)
0 + · · ·+ a

(i)
k−1x

k−1)
)

+ (terms with higher powers of x).

Let

N =

qk−1∏
i=0

(
(A0 + A1x+ · · ·+ Ak−1x

k−1)− (a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
k−1x

k−1)
)

(3.30)

D =

qk−1∏
i=0

(
(a

(qk)
0 + a

(qk)
1 x+ · · ·+ a

(qk)
k−1x

k−1)− (a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
k−1x

k−1)
)
.

If N ̸= 0, then there is a least positive integer r such that r = νq(N ). Lemma 3.10
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now ensures that D ̸= 0 and together with (3.29), we deduce that Ak/w1 = α1/α2,

where α1 and α2 are the coefficients of xr in N and D, respectively. But α1/α2 is

independent of Ak, which is untenable, implying that N = 0. Appealing to (3.30),

using the fact that A0, A1, . . . , Ak−1 are arbitrary elements in Fq, and their total

number is equal to qk, the number of elements in the set

{(w0) mod xk , (w1) mod xk , . . . , (wqk−1) mod xk},

we conclude that this last set is identical with the set of all polynomials in Fq[x]

of degree < k. This completes the proof of our claim.

Next, we claim that the mod xk can be removed, i.e., the set {w0, w1, . . . , wqk−1}

is indeed the set of all polynomials of degree < k. Assume to the contrary that

there exists n ≤ qk − 1 such that degwn ≥ k. Writing

wn = a
(n)
0 + a

(n)
1 x+ · · ·+ a(n)s xs, s ≥ k, a(n)s ̸= 0,

and substituting for t by wn in Gqs(t), we get

0 = Gqs(wn) ≡ G1(a
(n)
s ) = ϕ0(a

(n)
s ) =

a
(n)
s

w1

(mod (x)),

contradicting what we found earlier that a(n)s /w1 ∈ F∗
q. Thus, the second claim is

verified which in turns affirms the first assertion.

Next, we prove the second assertion. We note from the first assertion that

{w0, w1, . . . , wqk−1} is the set of all polynomials of degree < k and we have that

{w0, w1, . . . , wqk+1−1} is the set of all polynomials of degree < k + 1, and so each

element of the set {wqk , wqk+1, . . . , wqk+1−1} is of degree k, showing that a(q
k)

k ̸= 0.

For A = A0 + A1x+ · · · ∈ Fq[x] with Ak ̸= 0, we get

Gqk(A) = ϕk(A) =

qk−1∏
i=0

A− wi

wqk − wi

=
∏

degM<k

A−M

wqk −M



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

=
∏

degM<k

(
A0 + · · ·+ Ak−1x

k−1 + Akx
k −M

)
+ Ak+1x

k+1 + · · ·(
a
(qk)
0 + · · ·+ a

(qk)
k−1x

k−1 + a
(qk)
k xk −M

)
+ a

(qk)
k+1x

k+1 + · · ·

=
Aqk

k Fk +N1x
1+degFk

(a
(qk)
k )qkFk +N2x1+degFk

Ak

a
(qk)
k

(mod (x)),

where N1, N2 ∈ Fq[x]. On the other hand, the Lucas property modulo (x) yields

Gqk(A) ≡ G1(Ak) = ϕ0(Ak) =
Ak

w1

(mod (x)).

Thus, a(q
k)

k = w1 for all k ∈ N and the second assertion is established.

Specializing the value of w1, Theorem 3.11 yields at once:

Corollary 3.12. If {wn} is a g-CLP sequence with w1 = 1, then its associated

w-polynomial sequence {ϕn(t)} satisfies

ϕn(t) =
ψn(t)

Fn

(n ∈ N0),

and its associated w-CLP sequence {Gn(t)} is identical with the set of Carlitz

polynomials {Gn(t)/gn}.

3.3 Polynomials in additive expansion

There are bases of Int(V ) that do not satisfy the Lucas property. One such basis

is that of Fermat polynomials Fn(t), defined in Definition 2.25, by

F0(t) = 1, F1(t) = t, Fq(t) =
t− tq

T
, Fqh+1(t) = Fq(Fqh),

Fn(t) =

d(n)∏
j=0

(Fqj)
nj for n ∈ N as in (3.1).

Note that Fermat polynomials are neither of the same form as the Lagrange-

type interpolation polynomials Bn(t), nor of the same form as the Carlitz-type

polynomials. This leads us to ask for necessary condition(s) on general polynomials
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which form a basis for Int(V ) and satisfy the Lucas property.

For each i ∈ N0, let {P (n)
i }n∈N0 be a sequence in V with P

(n)
n ̸= 0, and let

{
Q0 = 1, Qn := Q

(n)
0 +Q

(n)
1 T + · · · (n ∈ N)

}
be a sequence in V ∗. Define {Hn(t)}n∈N0 ⊆ K[t], a general sequence of polynomials

associated with the sequences {P (n)
i }, {Qn}, by

H0(t) = 1, Hn(t) =
P

(n)
0 + P

(n)
1 t+ · · ·+ P

(n)
n tn

Qn

(n ∈ N).

Observe that degHn(t) = n. We shall find it convenient to use the notation

(
P

(n)
0 + P

(n)
1 A+ · · ·+ P (n)

n An
)

mod mr

to represent the residue of the expression P (n)
0 + P

(n)
1 A+ · · ·+ P

(n)
n An modulo the

principal ideal mr.

Our next theorem gives necessary conditions for Int(V ).

Theorem 3.13. If {Hn(t)} is a basis of the V -module Int(V ), then for each

A = A0 + A1T + · · ·+ AjT
j + · · · ∈ V , the following statements hold:

1. if Q(n)
0 ̸= 0, then Hn(A) ≡ P

(n)
0 +P

(n)
1 A0+···+P

(n)
n An

0

Q
(n)
0

(mod m);

2. for r ∈ N, if Q(n)
0 = Q

(n)
1 = · · · = Q

(n)
r−1 = 0, Q

(n)
r ̸= 0, then

(
P

(n)
0 + P

(n)
1 A+ · · ·+ P (n)

n An
)

mod mr
= 0.

Proof. Since Hn(t) ∈ Int(V ), we have

Hn(A) =
P

(n)
0 + P

(n)
1 A+ · · ·+ P

(n)
n An

Qn

∈ V.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39

1. If Q(n)
0 ̸= 0, by Lemma 3.10, we have

Hn(A) =
P

(n)
0 + P

(n)
1 (A0 + A1T + · · · ) + · · ·+ P

(n)
n (A0 + A1T + · · · )n

Q
(n)
0 +Q

(n)
1 T + · · ·

≡P
(n)
0 + P

(n)
1 A0 + · · ·+ P

(n)
n An

0

Q
(n)
0

(mod m).

2. If Q(n)
0 = Q

(n)
1 = · · · = Q

(n)
r−1 = 0, Q

(n)
r ̸= 0, then

Hn(A) =
P

(n)
0 + P

(n)
1 A+ · · ·+ P

(n)
n An

Q
(n)
r T r +Q

(n)
r+1T

r+1 + · · ·
.

Since the numerator is a multiple of T r, the assertion follows from the fact that

Hn(A) ∈ V .

Using Theorem 3.13, we now derive a necessary condition for a basis of Int(V )

to satisfy the Lucas property.

Corollary 3.14. Assume that {Hn(t)}n∈N0 is a basis of the V -module Int(V ). If

{Hn(t)} satisfies the Lucas property modulo m, then for each n ≥ q with its base q

representation as in (3.1) and A = A0 + A1q + · · ·+ Ajq
j + · · · ∈ V , we have

(
P

(n)
0 + P

(n)
1 A+ · · ·+ P

(n)
n An

)
mod ms+1

Q
(n)
s T s

≡
d(n)∏
i=0

P
(ni)
0 + P

(ni)
1 Ai + · · ·+ P

(ni)
ni Ani

i

Qni

(mod m), (3.31)

where s = ν(Qn).

Proof. If s = 0, by Theorem 3.13 part 1 and Lemma 3.10, we get

Hn(A) ≡
P

(n)
0 + P

(n)
1 A0 + · · ·+ P

(n)
n An

0

Q
(n)
0

≡

(
P

(n)
0 + P

(n)
1 A+ · · ·+ P

(n)
n An

)
mod m

Q
(n)
0

(mod m).
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If s ∈ N, by Theorem 3.13 part 2, we can write

P
(n)
0 + P

(n)
1 A+ · · ·+ P (n)

n An = RsT
s +Rs+1T

s+1 + · · · (Ri ∈ U),

and invoking upon Lemma 3.10, we get

Hn(A) =
RsT

s +Rs+1T
s+1 + · · ·

Q
(n)
s T s +Q

(n)
s+1T

s+1 + · · ·

≡ Rs

Q
(n)
s

=

(
P

(n)
0 + P

(n)
1 A+ · · ·+ P

(n)
n An

)
mod ms+1

Q
(n)
s T s

(mod m). (3.32)

Since {Hn(t)} satisfies the Lucas property modulo m, we have

Hn(A) ≡ Hn0(A0)Hn1(A1) · · ·Hnd(n)
(Ad(n))

=

d(n)∏
i=0

P
(ni)
0 + P

(ni)
1 Ai + · · ·+ P

(ni)
ni Ani

i

Qni

(mod m). (3.33)

The desired result follows at once from (3.32) and (3.33).

As an application of Corollary 3.14, we give another proof that the sequence

of Fermat polynomials Fn(t) does not satisfy the Lucas property. Taking in this

case, K = F2(x) equipped with the x-adic valuation so that the discrete valuation

domain is

V =

{
f(x)

g(x)
∈ F2(x) ; x ∤ g(x)

}
.

Consider the Fermat polynomials

F0(t) = 1, F1(t) = t, F2(t) =
t− t2

x
,

F4(t) = F2(F2(t)) =
0 + xt− (1 + x)t2 − 0 · t3 − t4

x3
.
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Let n = 4 = 0 + 0 · 2 + 1 · 22 and

P
(0)
0

Q0

= H0(t) = F0(t) =
1

1
,

P
(1)
0 + P

(1)
1 t

Q1

= H1(t) = F1(t) =
t

1
,

P
(2)
0 + P

(2)
1 t+ P

(2)
2 t2

Q2

= H2(t) = F2(t) =
t− t2

x
,

P
(4)
0 + P

(4)
1 t+ · · ·+ P

(4)
4 t4

Q4

= H4(t) = F4(t) =
0 + xt− (1 + x)t2 + 0 · t3 − t4

x3
,

so that

d(4) = 2, n0 = n1 = 0, n2 = 1,

Q0 = Q1 = 1, Q2 = x, Q4 = x3 = 0 + 0 · x+ 0 · x2 + 1 · x3,

s = ν(Q4) = 3, Q
(4)
3 = 1.

Taking A = x = 0+1 ·x, A1 = 1, Ai = 0 (i ̸= 1), the left-hand expression of (3.31)

is
(0 + x · x− (1 + x)x2 + 0 · x3 − x4) mod (x)4

1 · x3
= 1,

while the right-hand expression of (3.31) is

2∏
i=0

P
(ni)
0 + P

(ni)
1 Ai + · · ·+ P

(ni)
ni Ani

i

Qni

=
P

(0)
0

Q0

· P
(0)
0

Q0

· P
(1)
0 + P

(1)
1 A2

Q1

= 0.

These two values contradict the result of Corollary 3.14 implying that the sequence

of Fermat polynomials does not satisfy the Lucas property.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

PASCAL PROPERTY

Throughout this chapter, let K be a field of characteristic 0. The generalization

of Pascal property is defined as follows.

Definition 4.1. Let u = {uk}k≥0 be a sequence of distinct elements in K and P =

{Pn(t)}n≥0 be a sequence of polynomials in K[t] with P0(t) = 1 and degPn(t) = n

for all n. We say that the pair (P , u) satisfies the Pascal property (or the

sequence P satisfies the Pascal property with respect to {uk}) if, for each n ∈ N,

Pn(uk+1) = Pn(uk) + Pn−1(uk) (k ∈ N0).

4.1 Pascal property for polynomials

Let {uk}k≥0 be a sequence of distinct elements in K. Set the polynomials Pn(t)

over K in the following.

P0(t) = 1 and Pn(t) =
1

dn

n∑
i=0

an,it
i (n ∈ N), (4.1)

where dn ∈ K and an,n = 1 for all n ∈ N. The sequence of polynomials {Pn(t)} is

denoted by P . A characterization of the pair (P , u) satisfying Pascal property is

presented in the following theorem.

Theorem 4.2. Let P be a sequence of polynomials over K as in (4.1). The pair

(P , u) satisfies the Pascal property if and only if all of following conditions are

true: for each k ∈ N and n ∈ N,

1. uk = u0 + kd1,

2. dn = n! · dn1 ,
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3. for 0 ≤ m ≤ n,

an,m =
1

n+ 1

n−m∑
i=0

(
m+ 1 + i

m

)
an+1,m+1+id

i
1. (4.2)

Proof. Assume that (P , u) satisfies the Pascal property. Then we obtain the fol-

lowing results.

For each k ∈ N, we have

1 = P0(uk−1) = P1(uk)− P1(uk−1) =
uk + a1,0

d1
− uk−1 + a1,0

d1
=
uk − uk−1

d1
,

i.e.,

uk = uk−1 + d1 (k ∈ N). (4.3)

By (4.3), for each k ∈ N, we obtain

uk = uk−1 + d1 = uk−2 + 2d1 = · · · = u0 + kd1;

which completes 1.

Next, let n ∈ N. For each k ∈ N0, consider

1

dn

n∑
m=0

an,mu
m
k = Pn(uk) = Pn+1(uk+1)− Pn+1(uk)

=
1

dn+1

n+1∑
j=0

an+1,j(uk + d1)
j − 1

dn+1

n+1∑
j=0

an+1,j(uk)
j.

Then, the right hand side becomes

1

dn+1

n+1∑
j=1

an+1,j((uk + d1)
j − ujk) =

1

dn+1

n+1∑
j=1

an+1,j

(
j−1∑
r=0

(
j

r

)
dj−r
1 urk

)

=
1

dn+1

n∑
j=0

(
j∑

r=0

(
j + 1

r

)
an+1,j+1 d

j+1−r
1 urk

)
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=
1

dn+1

n∑
m=0

(
n+1∑

i=m+1

(
i

m

)
an+1,i d

i
1

)
umk

=
1

dn+1

n∑
m=0

(
n−m∑
i=0

(
m+ 1 + i

m

)
an+1,m+1+id

i+1
1

)
umk .

We then have

n∑
m=0

an,mu
m
k =

dn
dn+1

n∑
m=0

(
n−m∑
i=0

(
m+ 1 + i

m

)
an+1,m+1+id

i+1
1

)
umk (k ∈ N0). (4.4)

We can rewrite (4.4) in the form

A0 + A1uk + · · ·+ Anu
n
k = 0 (k ∈ N0),

where

Am = an,m − dn
dn+1

n−m∑
i=0

(
m+ 1 + i

m

)
an+1,m+1+i d

i+1
1 (0 ≤ m ≤ n).

Since n is arbitrary, we obtain the system of equations:

A0 + A1u0 + · · ·+ Anu
n
0 = 0

A0 + A1u1 + · · ·+ Anu
n
1 = 0

...

A0 + A1un + · · ·+ Anu
n
n = 0,

which is equivalent to


1 u0 u20 · · · un0

1 u1 u21 · · · un1
... ... ... . . . ...

1 un u2n · · · unn




A0

A1

...

An

 =


0

0
...

0

 .

Since {uk} is the sequence of distinct elements in K, the determinant of coeffi-
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cient matrix is not equal to 0 by Vandermonde determinant. This implies that

(A0, A1, . . . , An) has the unique solution, and so 0 = A0 = A1 = · · · = An. This

implies that

an,m =
dn
dn+1

n−m∑
i=0

(
m+ 1 + i

m

)
an+1,m+1+i d

i+1
1 (0 ≤ m ≤ n). (4.5)

Since dn+1 = (n+ 1)d1dn, by (4.5), we get

an,m =
1

n+ 1

n−m∑
i=0

(
m+ 1 + i

m

)
an+1,m+1+i d

i
1 (0 ≤ m ≤ n);

this gives 3. Since an,n = 1, by (4.5) again, we also obtain

1 =
dn
dn+1

(n+ 1)d1.

Hence,

dn+1 = (n+ 1) · d1dn (n ∈ N).

By iteration,

dn = n · d1dn−1 = n(n− 1) · d21dn−2 = · · · = n! · dn1 for all n ∈ N.

This implies that 2. is proved.

Conversely, assume that the statements 1.-3. hold. Let n ∈ N0 and k ∈ N0.

To show that the pair (P , u) satisfies the Pascal property, we consider

Pn+1(uk+1)− Pn+1(uk) = Pn+1(uk + d1)− Pn+1(uk) (by 1.)

=
1

(n+ 1)! · dn+1
1

n+1∑
j=0

an+1,j(uk + d1)
j

− 1

(n+ 1)d1

n+1∑
l=0

an+1,l(uk)
l (by 2.)

=
1

(n+ 1)! · dn+1
1

n+1∑
j=1

an+1,j((uk + d1)
j − ujk)
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=
1

(n+ 1)! · dn+1
1

n∑
j=0

an+1,j+1

(
j∑

r=0

(
j + 1

r

)
dj+1−r
1 urk

)

=
1

(n+ 1)! · dn+1
1

n∑
m=0

(
n+1∑

i=m+1

(
i

m

)
an+1,i d

i
1

)
umk

=
1

(n+ 1)! · dn+1
1

n∑
m=0

(
n−m∑
i=0

(
m+ 1 + i

m

)
an+1,m+1+i d

i+1
1

)
ukn

=
1

(n+ 1)! · dn1

n∑
m=0

(
n−m∑
i=0

(
m+ 1 + i

m

)
an+1,m+1+i d

i
1

)
umk

=
1

(n+ 1)! · dn1

n∑
m=0

(n+ 1)an,mu
m
k (by 3.)

=
1

n! · dn1

n∑
m=0

an,mu
m
k =

1

dn

n∑
m=0

an,mu
m
k

= Pn(uk),

as desired.

The next corollary shows that the pair (P , u) satisfying the Pascal property is

a generalization of binomial polynomials.

Corollary 4.3. Let K = Q. Let {uk} be a sequence of distinct elements in K with

u0 = 0 and P = {Pn(t)} a sequence of polynomial over K as in (4.1). Assume

that the pair (P , u) satisfying the Pascal property. If d1 = 1 and an,0 = 0 for all

n ∈ N, then

Pn(t) =

(
t

n

)
(n ∈ N0).

Proof. Clearly, the identity holds for n = 0. Since a1,0 = 0 and d1 = 1, we obtain

P1(t) = t =

(
t

1

)
.

Note that, by d1 = 1, u0 = 0 and Theorem 4.2, we get

dn = n! and uk = k (n ∈ N0, k ∈ N0).

Let n ≥ 2. Assume that Pn−1(t) =
(

t
n−1

)
. We will show that Pn(t) =

(
t
n

)
, by
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comparing their coefficients. Observe that

(
k

n− 1

)
= Pn−1(k) = Pn(k + 1)− Pn(k) (k ∈ N0).

Therefore, for k ∈ N0,

k(k − 1) · · · (k − (n− 2))

(n− 1)!
=

1

n!

n∑
r=0

an,r(k + 1)r − 1

n!

n∑
r′=0

an,r′k
r′

=
1

n!

n∑
r=0

an,r((k + 1)r − kr).

Since an,0 = 0, we deduce that

n(k)(k − 1) · · · (k − (n− 2)) =
n∑

r=1

an,r((k + 1)r − kr) (k ∈ N0).

Substituting k = 0, 1, . . . , n− 2, we get the system of equations

0 = (1n − 0n) + (1n−1 − 0n−1)an,n−1 + · · ·+ (11 − 01)an,1,

0 = (2n − 1n) + (2n−1 − 1n−1)an,n−1 + · · ·+ (21 − 11)an,1,

...

0 = ((n− 1)n − (n− 2)n) + ((n− 1)n−1 − (n− 2)n−1)an,n−1

+ · · ·+ ((n− 1)1 − (n− 2)1)an,1,

which equivalent to 
−1n + 0n

−2n + 1n

...

−(n− 1)n + (n− 2)n

 = A


an,1

an,2
...

an,n−1

 ,
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where

A =


11 − 01 12 − 02 · · · 1n−1 − 0n−1

21 − 11 22 − 12 · · · 2n−1 − 1n−1

... ... . . . ...

(n− 1)1 − (n− 2)1 (n− 1)2 − (n− 2)2 · · · (n− 1)n−1 − (n− 2)n−1

 .

Consider the matrix

A =


11 − 01 12 − 02 · · · 1n−1 − 0n−1

21 − 11 22 − 12 · · · 2n−1 − 1n−1

... ... . . . ...

(n− 1)1 − (n− 2)1 (n− 1)2 − (n− 2)2 · · · (n− 1)n−1 − (n− 2)n−1



∼



1 1 · · · 1

21 22 · · · 2n−1

31 − 21 32 − 22 · · · 3n−1 − 2n−1

... ... . . . ...

(n− 1)1 − (n− 2)1 (n− 1)2 − (n− 2)2 · · · (n− 1)n−1 − (n− 2)n−1


...

∼



1 1 · · · 1

21 22 · · · 2n−1

31 32 · · · 3n−1

... ... . . . ...

(n− 1)1 (n− 1)2 · · · (n− 1)n−1


= B.

Since B is a Vandermonde matrix, detA = detB ̸= 0. So, the system of equations

has the unique solution, say (an,1, an,2, . . . , an,n−1). Since
(

k
n−1

)
=
(
k+1
n

)
−
(
k
n

)
, by

repeating the same process, all coefficients of
(
t
n

)
form a solution of the system.

This implies that

Pn(t) =

(
t

n

)
.
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The following example shows an interesting application of our results in the

classical case K = Q.

Example 4.4. Recall the notion of Stirling numbers of the first kind. Consider

the falling factorial polynomials of degree n:

(t)n := n! ·
(
t

n

)
= t(t− 1) · · · (t− n+ 1).

Expanding the multiplications and arranging the terms of powers of indeterminate

t, we get

(t)n =
n∑

m=0

s(n,m) tm (n ∈ N0). (4.6)

The coefficients s(n,m) of expression (4.6) of the falling factorial (t)n are called

Stirling numbers of the first kind. Clearly, the definition implies s(n,m) = 0

if m > n and s(n, n) = 1 for all n ∈ N0.

As the result of and Corollary 4.3, if we substitute d1 = 1, u0 = 0 and an,0 =

0 (n ∈ N0),

Pn(t) =

(
t

n

)
=

(t)n
n!

=
1

n!

n∑
m=0

s(n,m)tm (n ∈ N0).

By (4.1) and Theorem 4.2, for each n ∈ N0, we have

Pn(t) =
1

n!

n∑
m=0

an,mt
m.

Comparing the coefficients of tm, we conclude that

an,m = s(n,m) (0 ≤ m ≤ n).

By (4.2), we obtain a recurrence relation on the Stirling numbers of the first kind

s(n,m):

s(n,m) =
1

n+ 1

n−m∑
i=0

(
m+ 1 + i

m

)
s(n+ 1,m+ 1 + i). (4.7)
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By [8, Theorem 8.7], the Stirling numbers of the first kind s(n,m) satisfy the

triangular recurrence relation

s(n+ 1,m) = s(n,m− 1)− n · s(n,m). (4.8)

Combining (4.7) and (4.8), we get

(n+ 1) · s(n,m) =
n−m∑
i=0

(
m+ 1 + i

m

)
s(n+ 1,m+ 1 + i)

=
n−m∑
i=0

(
m+ 1 + i

m

)
(s(n,m+ i)− k · s(n,m+ 1 + i))

= (m+ 1)s(n,m) +
n−m∑
i=1

(
m+ 1 + i

m

)
s(n,m+ i)

− n

n−m∑
i=0

(
m+ 1 + i

m

)
s(n,m+ 1 + i)

= (m+ 1)s(n,m) +
n−m∑
i=1

((
m+ 1 + i

m

)
− n

(
m+ i

m

))
s(n,m+ i).

Finally, we also obtain another horizontal recurrence relation

s(n,m) =
1

n−m

n−m∑
i=1

((
m+ 1 + i

m

)
− n

(
m+ i

m

))
s(n,m+ i).

4.2 Pascal property for bases of integer-valued polynomials

In this section, criteria on polynomials forming a basis of Int(V ) having Pascal

property is characterized. By the same setting as in (4.1), we immediately obtain

from the definition of Int(V ) and Theorem 4.2 that if, for each t0 ∈ V ,

ν(tn0 + tn−1
0 an,n−1 + · · ·+ an,0) ≥ ν(dn1 · n!),
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then

Pn(t) =
1

dn

n∑
i=0

an,it
i ∈ Int(V ).

A characterization of Pn(t) states as follows.

Theorem 4.5. Let (P , u) be a pair satisfying the Pascal property. Let P =

P ∩ Int(V ) and Q ⊂ P . Then the elements of Q form a regular basis for V -module

Int(V ) if and only if the following three conditions are fulfilled:

1. the set Q contains exactly one polynomial of each degree n ∈ N0,

2. the element d1 (in the first degree polynomial of Q) is a unit in V ,

3. the valuation values ν(k!) = wq(k) hold for all k ∈ N.

Proof. Assume that Q is a regular basis for V -module Int(V ). Based on the def-

inition of regular basis, we get 1. By Proposition 2.21, for each n, 1
dn

generates

Jn(Int(V)). Since T−wq(n) generates Jn(Int(V)) and generators of any fractional

ideal are unique up to multiplication by units, we deduce that ν(dn) = wq(n). We

then have ν(d1) = wq(1) = 0, i.e., d1 is a unit in V . This implies that, for each n,

wq(n) = ν(dn) = ν(dn1 · n!) = ν(dn1 ) + ν(n!) = ν(n!).

Conversely, assume that 1.-3. hold. From 2. and 3., we have

wq(n) = ν(n! · dn1 ) = ν(dn).

In view of Proposition 2.24, 1
dn

generates Jn(Int(V)). By Proposition 2.21 and

assumption 1., the set Q is a regular basis for V -module Int(V ).

Next, let {un}n≥0 be a sequence of distinct elements of V with u0 = 0. Define

polynomials Cn(t) over K in the shape of the Lagrange-type by

C0(t) = 1 and Cn(t) =
n−1∏
i=0

t− ui
un − ui

(n ∈ N). (4.9)
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Theorem 4.6. The sequence of Lagrange-type polynomials Cn(t) as defined in

(4.9) satisfy the Pascal property with respect to {uk} if and only if uk = ku1 for all

n ∈ N0.

Proof. Assume that the sequence {Cn(t)} satisfies the Pascal property with respect

to {uk}, that is,

Cn(uk) + Cn−1(uk) = Cn(uk+1) for all n ∈ N and k ∈ N0.

Substituting n = 1, we get

C1(uk) + C0(uk) = C1(uk+1) (k ∈ N0),

and so,
uk
u1

+ 1 =
uk+1

u1
(k ∈ N0).

Thus, uk + u1 = uk+1 for all k ≥ 0. By iteration and the assumption u0 = 0, we

have

uk = uk−1 + u1 = uk−2 + 2u1 = · · · = u0 + ku1 = ku1 (k ∈ N0).

To prove the converse, assume that uk = ku1 for all k ≥ 0. We first have

C1(uk) + C0(uk) =
uk
u1

+ 1 =
(k + 1)u1

u1
=
uk+1

u1
= C1(uk+1).

For each n ≥ 2, we consider

Cn(uk) + Cn−1(uk) =
n−1∏
i=0

uk − ui
un − ui

+
n−2∏
j=0

uk − uj
un−1 − uj

=
n−1∏
i=0

ku1 − iu1
nu1 − iu1

+
n−2∏
j=0

ku1 − ju1
(n− 1)u1 − ju1

=
n−1∏
i=0

k − i

n− i
+

n−2∏
j=0

k − j

n− 1− j



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

53

=

(
k

n

)
+

(
k

n− 1

)
=

(
k + 1

n

)
=

n−1∏
i=0

(k + 1− i)u1
(n− i)u1

=
n−1∏
i=0

uk+1 − ui
un − ui

= Cn(uk+1),

as desired.

Remark that upn = 0 for all n ∈ N0, if the domain V has characteristic p. This

implies that Cnp(t) are non-defined.

Now, we ready to determine Lagrange type polynomials which satisfy Pascal

property and form a regular basis of Int(V ). Let u ∈ V ∗. With uk = ku for all

k ∈ N0, by Theorem 4.6, the Lagrange-type polynomials

(
t

0

)
u

:= 1 and
(
t

n

)
u

:=
n−1∏
i=0

t− iu

(n− i)u
(n ∈ N) (4.10)

satisfy the Pascal property. Next, the characterization of
(
t
n

)
u

to be a regular basis

of Int(V ) is presented as follows..

Theorem 4.7. The sequence {
(
t
n

)
u
}n≥0 as defined in (4.10) is a regular basis of

V -module Int(V ) if and only if u is a unit in V and ν(n!) = wq(n) for all n ∈ N.

Proof. Assume that polynomials
(
t
n

)
u
= t(t−u)(t−2u)···(t−(n−1)u)

un·n! form a basis of V -

module Int(V ). By Proposition 2.23, the sequence {ku}k∈N is T -ordering and so

a g-IVP sequence. Then, by Theorem 3.3, the first q − 1 terms of the sequence

{nu}n∈N are units in V . This implies that u is a unit in V . It remains to show that

ν(n!) = wq(n) for all n ∈ N. Since 1
un·n! is a generator of Jn(Int(V )) and ν(u) = 0,

by the same argument as in (2.2), we have

wq(n) = ν(un · n!) = ν(un) + ν(n!) = ν(n!) (n ∈ N).

On the other hand, assume that u is a unit of V and ν(n!) = wq(n) for all

n ∈ N0. By Proposition 2.24, it suffices to show that {0, u, 2u, . . . } is a T -ordering
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of V by showing that ν(
∏n−1

i=0 (n− i)u) = wq(n) for all n ∈ N. For each n ∈ N, we

have

ν

(
n−1∏
i=0

(n− i)u

)
= ν

(
n−1∏
i=0

(n− i)

)
+ ν(u) = ν(n!) + 0 = wq(n).

Return to the polynomials Cn(t) as in (4.9). From [4, Theorem II.2.7], the

polynomials Cn(t) form a regular basis for V -module Int(V ) if the corresponding

sequence {uk} agrees with VWDWO condition defined in (2.14). Recall the result

of [3, Theorem 2.2] on Cn(t) with the setting of VWDWO sequence {uk}:

Theorem 4.8. If n = n0+n1q+ · · ·+nd(n)q
d(n) is a q-adic expansion of a positive

integer n, and if A = A0 +A1T + · · · is a T -adic expansion of an element A of V ,

then

Cn(A) ≡ Cn0(A0)Cn1(A1) · · ·Cnd(n)
(Ad(n)) (mod m).

In the case of K = Q, let Vq be a discrete valuation domain of the field of

rational number Q. We have that the number q, the cardinal of residue field,

becomes a prime number and ν = νq, a q-adic valuation. A unit u in V ∗
q is of the

form a
b

where a, b ∈ Z and q ∤ ab. It easy to see that

νq(nu−mu) = νq

(
n · a

b
−m · a

b

)
= νq

(
(n−m) · a

b

)
= νq(n−m) (n,m ∈ N0).

This implies that {0, u, 2u, . . . } is a VWDWO sequence. The final proposition

shows that the polynomials
(
t
n

)
u

satisfy the Lucas property modulo (q). Its proof

is immediately from Theorem 4.8.

Proposition 4.9. If n = n0 + n1q + · · · + nd(n)q
d(n) is the q-adic expansion of

n ∈ N, and if

A = A0 + A1q + A2q
2 + · · · (Ai ∈ {u0 = 0, u1, · · · , uq−1})
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is the q-adic expansion of an element A of Vq, then

(
A

n

)
u

≡
(
A0

n0

)
u

(
A1

n1

)
u

· · ·
(
Ad(n)

nd(n)

)
u

(mod (q)).
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