

การระบุลักษณะเฉพาะที่เด่นที่สุดของคำตอบที่ดีสำหรับปัญหาการจัดเส้นทางเดินรถที่มี
ความจุจำกัดแบบไม่ยูคลิดโดยใช้ตัวแบบการเรียนรู้เชิงสถิติ

นายปิยะบุตร อินบุญส่ง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาคณิตศาสตร์ประยุกต์และวิทยาการคณนา
ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2565

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

IDENTIFYING THE MOST DISTINCTIVE CHARACTERISTICS OF A GOOD

SOLUTION FOR NON-EUCLIDEAN CVRP USING STATISTICAL LEARNING

MODEL

Mr. Piyabut Inbunsong

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Applied Mathematics and

Computational Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2022

Copyright of Chulalongkorn University

Thesis Title IDENTIFYING THE MOST DISTINCTIVE CHARACTER-

ISTICS OF A GOOD SOLUTION FOR NON-EUCLIDEAN

CVRP USING STATISTICAL LEARNING MODEL

By Mr. Piyabut Inbunsong

Field of Study Applied Mathematics and Computational Science

Thesis Advisor Assistant Professor Boonyarit Intiyot, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Master’s Degree

. Dean of the Faculty of Science

(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

. Chairman

(Associate Professor Dr. Krung Sinapiromsaran, Ph.D.)

. Thesis Advisor

(Assistant Professor Boonyarit Intiyot, Ph.D.)

. Examiner

(Associate Professor Dr. Phantipa Thipwiwatpotjana, Ph.D.)

. External Examiner

(Associate Professor Dr. Chawalit Jeenanunta, Ph.D.)

iv

ปิยะบุตร อินบุญส่ง : การระบุลักษณะเฉพาะที่ เด่นที่สุดของคำตอบที่ดีสำหรับปัญหา
การจัดเส้นทางเดินรถที่มีความจุจำกัดแบบไม่ยูคลิดโดยใช้ตัวแบบการเรียนรู้ เชิงสถิต.ิ
(IDENTIFYING THE MOST DISTINCTIVE CHARACTERISTICS OF A

GOOD SOLUTION FOR NON-EUCLIDEAN CVRP USING STATISTI-

CAL LEARNING MODEL) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ.ดร.บุญฤทธิ์ อินทิ
ยศ, 69 หน้า.

ปัญหาการจัดเส้นทางเดินรถที่มีความจุจำกัดหรือ CVRP เป็นปัญหาเอ็นพีแบบยากของ
การหาค่าเหมาะที่สุดเชิงการจัดที่เป็นที่รู้จักกันดี ดังนั้นฮิวริสติกจึงเป็นวิธีการที่นิยมใช้ในการหา
คำตอบที่ดี อัลกอริทึมดังกล่าวจะทำงานได้ดีขึ้นถ้ารู้จักลักษณะเฉพาะของคำตอบที่ดีของปัญหา
ทั้งนี้มีงานวิจัยที่ศึกษาลักษณะเฉพาะของคำตอบของปัญหา CVRP แบบยูคลิด และภายหลัง
ได้นำความรู้ที่ได้ไปประยุกต์ใช้กับเมธาฮิวริสติก งานวิจัยดังกล่าวได้กลายเป็นแรงบันดาลใจ
ของเราในการศึกษาลักษณะเฉพาะของคำตอบของปัญหา CVRP แบบไม่ยูคลิด ดังนั้นเพื่อ
ให้บรรลุเป้าหมายดังกล่าว เราพิจารณาคำตอบของปัญหา CVRP แบบไม่ยูคลิดในปริภูมิใหม่
แบบยูคลิดที่มีมิติเดียวกันหรือสูงกว่า โดยใช้ multi-dimensional scaling ที่ซึ่งลักษณะเฉพาะ
ของคำตอบสามารถถูกนิยามภายใต้คุณสมบัติของยูคลิด นอกจากนี้ตัวแบบการเรียนรู้เชิงสถิติ
ได้ถูกใช้เพื่อระบุลักษณะเฉพาะที่โดดเด่นที่สุด ที่ให้ความแม่นยำสูงสุดจากการทำนายการเป็น
คำตอบที่ดีในปริภูมิใหม่นี้ ยิ่งไปกว่านั้นยังมีการระบุกฎการตัดสินใจสำหรับใช้ตีความลักษณะ
เฉพาะของคำตอบที่ดีและไม่ดีสำหรับปัญหา CVRP แบบไม่ยูคลิด

ภาควิชาคณิตศาสตร์และ. ลายมือชื่อนิสิต .

. .วิทยาการคอมพิวเตอร์ ลายมือชื่อ อ.ที่ปรึกษาหลัก

สาขาวิชา .คณิตศาสตร์ประยุกต.์ ลายมือชื่อ อ.ที่ปรึกษาร่วม

. .และวิทยาการคณนา.
ปีการศึกษา2565. .

v

6270066923 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE

KEYWORDS : VEHICLE ROUTING PROBLEM/ STATISTICAL LEARNING MODEL /

MULTI-DIMENSIONAL SCALING

PIYABUT INBUNSONG : IDENTIFYING THE MOST DISTINCTIVE CHARACTER-

ISTICS OF A GOOD SOLUTION FOR NON-EUCLIDEAN CVRP USING STATISTI-

CAL LEARNING MODEL. ADVISOR : ASST. PROF. BOONYARIT INTIYOT, Ph.D.,

69 pp.

A capacitated vehicle routing problem (CVRP) is a well-known NP-hard combina-

torial optimization. Therefore, heuristics are the common methods used to search for a

good solution. The algorithms will perform better if characteristics of good solutions of

the problem are known. There was a research study in the characteristics of Euclidean

CVRP solutions and the knowledge was later applied in a metaheuristic. That study

becomes our motivation to study the characteristics of non-Euclidean CVRP solutions.

To that end, we considered the solutions of non-Euclidean CVRP in the new Euclidean

space with the same or higher dimensions using multi-dimensional scaling in which the

characteristics of the solutions can be defined under Euclidean properties. In addition,

the statistical learning models were employed to identify the most distinctive character-

istic which yields the highest accuracy of prediction of a good solution in the new space.

Moreover, decision rules were also determined for interpreting characteristics of good and

bad solutions of non-Euclidean CVRP.

Department :Mathematicsand Student’s Signature .

.Computer.Science. Advisor’s Signature .

Field of Study :AppliedMathematics.and. Co-advisor’s Signature

.ComputationalScience. . . .

Academic Year :2022. .

vi

ACKNOWLEDGEMENTS

วิทยานิพนธ์นี้สำเร็จได้ด้วยดีเพราะได้รับคำแนะนำในด้านความรู้ เทคนิค วิธีการ และ
ความเอาใจใส่ที่ดียิ่งจากอาจารย์ ผศ. ดร. บุญฤทธิ์ อินทิยศ ผู้เป็นอาจารย์ที่ปรึกษา ทำให้ผ่าน
พ้นช่วงเวลาที่เจอปัญหาและอุปสรรค และไม่ใช่เพียงด้านวิชาการเพียงเท่านั้น ผมขอขอบคุณที่
ให้คำปรึกษาเรื่องแนวทางการใช้ชีวิตด้วย สิ่งเหล่านี้เป็นประโยชน์มาก และทำให้งานวิทยานิพนธ์
นี้ออกมาเสร็จสมบูรณ์ ผมขอขอบพระคุณอาจารย์ เป็นอย่างสูงครับ และผมขอขอบพระคุณ
อาจารย์ภาควิชาคณิตศาสตร์ประยุกต์และวิทยาการทุกท่านที่ประสิทธิ์ประสาทวิชา ให้ได้รับ
ความรู้ ความเข้าใจและสามารถนำไปประยุกต์ใช้ในอนาคตได้

ขอบคุณพี่ตี๋ อำพล ดวงแป้น ที่ให้คำปรึกษาในเรื่องของประสบการณ์ชีวิต และธุรการ
ต่าง ๆในมหาวิทยาลัย รวมถึงทุกช่วงเวลาที่ได้ทำกิจกรรมร่วมกัน เป็นช่วงเวลาที่ดีมาก และ
ขอบคุณ หลี กร เจ เฟิร์ส หมิว แพรว เปิ้ล และพี่ชานนเพื่อน ๆในสาขาวิชาที่คอยแนะนำสิ่งที่
เป็นประโยชน์ และอยู่ด้วยกันเสมอมา รวมถึงรุ่นพี่ในสาขาวิชาคนอื่น ๆด้วย

ขอบพระคุณ คุณพ่อและคุณแม่ รวมถึงญาติพี่น้อง ที่คอยให้กำลังใจ เป็นแรงผลักดันและ
เบื้องหลังความสำเร็จ

ขอบพระคุณทุนพสวท.สำหรับทุนค่าใช้จ่ายเล่าเรียนเพื่อให้มาถึงจุดนี้

ผู้วิจัยมีความซาบซึ้งในความกรุณาของทุกท่านที่ได้กล่าวถึงซึ่งได้มีส่วนในการช่วยเหลือ
และให้กำลังใจเสมอมา จึงขอขอบพระคุณด้วยความจริงใจ

CONTENTS
Page

ABSTRACT IN THAI . iv

ABSTRACT IN ENGLISH . v

ACKNOWLEDGEMENTS . vi

CONTENTS . vii

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND KNOWLEDGE . 3

2.1 Capacitated Vehicle Routing Problem . 3

2.1.1 Components of CVRP . 3

2.1.2 Notation . 4

2.1.3 Exact solution of CVRP . 5

2.1.4 Heuristic algorithms for CVRP . 6

2.1.4.1 Constructive heuristic . 7

2.1.4.2 Classical improvement heuristic 8

2.1.4.3 Metaheuristics . 9

2.1.5 Google OR-tools . 11

2.2 Statistical learning model . 12

2.2.1 Decision tree . 13

2.2.2 Support vector machine . 14

2.2.3 Feature importance . 15

2.3 Multi-dimensional Scaling . 16

2.4 Similarity between distance matrices . 17

2.4.1 Matrix norm . 17

2.4.2 Mantel test . 18

2.4.3 non-Euclidean vs. Euclidean Distance 19

2.5 Characteristics of CVRP solutions . 19

viii

CHAPTER Page

3 METHODOLOGY . 25

3.1 Generating non-Euclidean CVRP instances 26

3.2 Mapping to Euclidean space using multi-dimensional scaling 27

3.3 Non-Euclidean CVRP solutions . 29

3.4 Building a dataframe of features of CVRP solutions 30

3.5 Statistical learning framework for measuring features performance 32

4 EXPERIMENTS AND RESULTS . 34

4.1 Predictive power of solution metrics . 34

4.2 Identifying the most distinctive characteristic 36

4.3 Decision rules . 39

5 CONCLUSIONS AND FUTURE WORK . 43

REFERENCES . 46

APPENDICES . 48

BIOGRAPHY . 69

ix

LIST OF TABLES

Table Page

2.1 Operations in First Solution Strategy of Google OR-tools 12

3.1 Details of generated CVRP instances . 27

3.2 Input dataframe for SVM . 33

3.3 Input dataframe for decision tree . 33

4.1 Average prediction accuracy by SVM from 5-fold cross-validation using all

features . 36

4.2 Rounded average prediction accuracy by the decision tree from 5-fold cross-

validation of each solution metric . 37

4.3 Wilcoxon signed-rank test results for accuracy comparison between S5 and

others . 38

4.4 Decision rules of SMALL classes . 41

4.5 Decision rules of BIG classes . 42

1 Comparison between CVRP solutions and solution metrics 52

x

LIST OF FIGURES

Figure Page

2.1 An example of a subtour in CVRP . 6

2.2 The illustration of the decision tree . 15

2.3 An example of SVM . 15

3.1 Overview of the methodology of the thesis . 25

3.2 Overview of the methodology of applying MDS 28

3.3 Visualization of the redefined solution metric S5 31

3.4 Visualization of the new solution metric S11 . 31

3.5 Visualization of the new solution metric S12 . 32

4.1 Example of non-Euclidean SMALL and BIG CVRP solution after approx-

imating location by MDS . 35

4.2 Feature importance of S4,S5, S12 and all instance metrics in all classes 40

1 An example of 2-OPT operator . 49

2 An example of 2-OPT* operator . 49

3 An example of SWAP operator . 50

4 An example of RELOCATE operator . 50

5 Visualization of solution metrics S5 and S6 . 51

6 Visualization of different solutions of the same CVRP 51

7 Boxplots of number of nodes of SMALL and BIG instances 53

8 Boxplots of number of routes of solutions in SMALL and BIG instances 54

9 Boxplots of Total demand of SMALL and BIG instances 54

10 Boxplot of difference between cost of non-optimal solution and near-optimal

solution in BIG . 55

11 Boxplots of capacity utilization of SMALL and BIG instances 55

12 Boxplots of the number of dimension of approximated Euclidean locations

in SMALL and BIG instances . 56

13 Boxplots of Frobenius norm from MDS step in SMALL and BIG instances . . 56

14 Boxplots of Mantel correlation coefficient from MDS step of BIG instances

of SMALL and BIG instances . 57

xi

Figure Page

15 Boxplots of S2 by size of instance and label of solution 58

16 Boxplots of S3 by size of instance and label of solution 59

17 Boxplots of S4 by size of instance and label of solution 60

18 Boxplots of S5 by size of instance and label of solution 61

19 Boxplots of S6 by size of instance and label of solution 62

20 Boxplots of S7 by size of instance and label of solution 63

21 Boxplots of S8 by size of instance and label of solution 64

22 Boxplots of S9 by size of instance and label of solution 65

23 Boxplots of S10 by size of instance and label of solution 66

24 Boxplots of S11 by size of instance and label of solution 67

25 Boxplots of S12 by size of instance and label of solution 68

CHAPTER I

INTRODUCTION

This thesis presents a research study on a real-world-based Capacitated Vehicle

Routing Problem (CVRP). The CVRP is a generalization of the Traveling Salesman

Problem(TSP) which attempts to find optimal routes for a fleet of vehicles that minimize

the total cost of delivering products to customers under the condition that is, every

vehicle has limited capacity. Since TSP is NP-hard, so is CVRP, and this implies that

the problem takes impracticable time to solve for an optimal solution in a large-sized

problem. Therefore, solving for an exact solution is not satisfying for running a business

that needs to complete a daily plan of routing on time. Then, (meta)heuristic algorithms

are employed for handling this kind of problem. The algorithms are very fast even in large-

sized problems. However, designing them to be efficient in terms of speed and quality is

difficult. There are many research studies that proposed heuristic algorithms for CVRP

and many of them can obtain the remarkable solution of benchmark problems. However,

there is scarce research that deeply studies why heuristics work well. Recently, Arnold and

Sörensen [1] presented problem-specific knowledge for heuristics in CVRP. They defined

the structural characteristics of CVRP solutions. The characteristics, then, are adapted in

the guiding part of a metaheuristic algorithm [2] which can reach a near-optimal solution

more quickly than a metaheuristic using only cost to lead the search. Although the

characteristics are practical, it needs to work in Euclidean space which is a necessary

condition. However, this is not acceptable in a real-world problem because the distance

is rarely Euclidean. Therefore, we are interested in extending Arnold and Sörensen’s

ideas about the characteristics of CVRP solutions in the scope of the non-Euclidean

CVRP. In non-Euclidean space, we cannot determine the characteristics following their

definitions. Therefore, we decide to consider the problem in a new abstract space in

which the components of non-Euclidean CVRP such as the coordinate of the nodes are

treated as if they have Euclidean properties. To that end, multi-dimensional scaling

2

is our answer to determine approximated locations of customer nodes in the abstract

space we mentioned. This will allow us to extend Arnold and Sörensen’s ideas to non-

Euclidean CVRP solutions. Finally, the most distinctive characteristic is identified using

a statistical learning framework. This also returns the specific knowledge related to the

quality of non-Euclidean CVRP solutions.

The remainder of this thesis is organized as follows. In Chapter 2, we introduce

background knowledge and related works. Chapter 3 explains the methodology of the

whole study, and then the result will be shown in Chapter 4 and reveal the most distinctive

characteristics of the non-Euclidean CVRP solution. Next, we discuss our results and

conclude the study in Chapter 5.

CHAPTER II

BACKGROUND KNOWLEDGE

In this chapter, the essential definitions and theories are described. The chapter

begins with an explanation of the CVRP and the algorithms to solve such a problem.

Then the main techniques and methods we use in the study come next.

2.1 Capacitated Vehicle Routing Problem

The family of vehicle routing problems (VRPs) is combinatorial optimization prob-

lems which generally have the same purpose [3],[4]. Given a fleet of vehicles and trans-

portation requirements, the task is to determine a set of vehicle routes that suit trans-

portation requests at the minimum cost. The CVRP is the simplest and the most studied

research topic in the family of VRPs. The problem description is given below.

Given a set of capacitated vehicles and a set of clients with the number of orders

and their locations including a depot, each client must receive his order from the depot,

which is delivered by a vehicle. Each vehicle must start from the depot to serve several

clients and return to the depot after completing the delivery. Each client must be done

exactly once i.e. each order cannot be split. The products that each vehicle carries must

not exceed its capacity. Then, the task is to find optimal routes for the set of vehicles to

complete all clients’ orders.

2.1.1 Components of CVRP

In general, CVRP consists of the following components:

1. Set of nodes : Nodes are a set of customers and a depot. There can be

multiple depots in the problem which is considered as multi-depot CVRP. Each node

must be labeled by an amount of demand. In addition, the demand of the depot is set to

4

zero.

2. Fleet of vehicles : Vehicles are used in delivery to serve all customers’ demands.

Each vehicle must have limited capacity and the number of vehicles in a fleet must be

large enough to satisfy the total demand in CVRP.

3. Cost : There are various costs in CVRP depending on factors such as truck

rental cost, fuel cost, and traveling distance. The cost can be designed to make CVRP

the simplest by only considering it as a distance between two nodes where the location

of each node is given. In addition, the distance is typically assumed to be Euclidean

distance, actual road distance, or it can be considered as the actual cost calculated by

multiple factors such as distance, fuel cost, and rental cost.

2.1.2 Notation

All transportation requirements above can be written in mathematical notation.

The CVRP is usually represented by an undirected complete graph G = (V,E), where

V = {0, 1, 2, . . . , n} is a set of nodes with 0 being the depot and the set of customers

being V ′ = {1, 2, . . . , n}. Every node is labeled by a demand qi ≤ Q, where i ∈ V ′,

and Q is a truck capacity, except for the depot whose demand is zero. The CVRP

becomes the TSP when only one vehicle can serve all products to all customers, that

is
∑
i∈V ′

qi ≤ Q. The set of edges is denoted by E = {(i, j) | i, j ∈ V and i ̸= j} and

similarly, every edge is labeled by a cost dij , where dij is the cost of traveling from i to

j. A route is a set r = {n1, n2, . . . , nr} ⊂ V ′ and all connecting segments between each

node are {(0, n1), (n1, n2), . . . , (nr, 0)}. Let m be the number of trucks in the fleet and

a set of vehicles K = {1, 2, . . . ,m}. Each truck in K is assumed to be homogeneous,

where every vehicle has the same capacity Q > 0. Therefore, the number of vehicles,

m = ceil
(∑

n∈V
qn/Q

)
is enough for all customers’ demand. The route is feasible for

CVRP if and only if the total demand in the route does not exceed the vehicle limit

capacity Q and the same customer is not repeated in the route i.e.
∑
n∈r

qn ≤ Q and

ni ̸= nj for all ni, nj ∈ r. Similarly, a solution R = {r1, r2, . . . , rm} is feasible if and

only if all routes ri ∈ R are feasible and
m⋃
i=1

(ri) = V ′, which means all routes are the

5

partitions of the set of customer nodes. In this thesis, we study Euclidean CVRP and

non-Euclidean CVRP. The Euclidean CVRP is the CVRP where the cost dij is Euclidean

i.e. d2ij = (xi−xj)2+(yi−yj)2 for all i, j ∈ V where (xi, yi) and (xj , yj) are coordinates of

nodes i and j in V , respectively. Otherwise, The non-Euclidean CVRP has non-Euclidean

CVRP distance such that d2ij ̸= (xi − xj)
2 + (yi − yj)

2 for some i, j ∈ V .

Define a distance matrix D, the (n+1)× (n+1) matrix, contains a cost dij for all

i, j ∈ V . Note that a Euclidean distance matrix is a distance matrix that contains only

Euclidean distance. Otherwise, a non-Euclidean distance matrix is a distance matrix that

contains non-Euclidean costs for some i, j ∈ V .

2.1.3 Exact solution of CVRP

The CVRP can be formulated as a mixed integer linear program (MILP) problem.

The most straightforward formulation is the following.

min
∑
i∈V

∑
j∈V

dijxij (2.1)

subject to
∑
i∈V

xij = 1 for all j ∈ V \ {0} (2.2)

∑
j∈V

xij = 1 for all i ∈ V \ {0} (2.3)

∑
i∈V

xi0 = |K| (2.4)

∑
j∈V

x0j = |K| (2.5)

∑
i/∈S

∑
j∈S

xij ≥ γ(S) for all S ⊂ V \ {0}, |S| ≥ 2 (2.6)

xij ∈ {0, 1} for all i, j ∈ V (2.7)

Binary variables xij for i, j ∈ V indicate the inclusiveness of arc (i, j) in the solution.

If the arc (i, j) is in the route, then xij = 1, otherwise xij = 0. The value |K| is the

6

minimum number of vehicles used for the delivery and γ(S) is the minimum number of

vehicles needed for serving customers in the subset S ⊂ V \ {0}. The objective function

(2.1) is to minimize the total traveling cost from nodes by summing all cost dij where

arc (i, j) is used. Constraints (2.2) and (2.3) guarantee that all clients are visited exactly

once. Constraints (2.4) and (2.5) confirm that all vehicles leave the depot at the beginning

of delivery and return to the depot. Constraints (2.6) are the general subtour elimination

constraints. An example of a subtour in CVRP is illustrated in Figure 2.1.

Figure 2.1: Example of a subtour in CVRP

Although the above formulation is the most straightforward, it generates many

constraints, especially constraint (2.6). The total number of constraints is O(2n) which

is equal to a number of subset S. To solve the above formulation, families of MILP-based

branch-and-cut algorithms are widely used [5, 6, 7]. Other formulations are proposed

for CVRP to reduce the number of constraints or to obtain a good bound from its LP

relaxation, such as the Two-Commodity Flow Formulation proposed by Baldacci et al.

[8]

2.1.4 Heuristic algorithms for CVRP

Heuristic algorithms are popular for solving CVRP because of its speed in problem

solving. Although all heuristic algorithms have to trade off between time complexity and

the quality of solution, heuristic is still faster than the exact algorithms and the quality

of solution is acceptable. There are many heuristic algorithms that are purposed since

CVRP has been explored and they are classified into three categories [9] as follows.

7

2.1.4.1 Constructive heuristic

Constructive heuristics have been proposed for years; however, only some are com-

monly used. Although the algorithms are very fast for solving CVRP, their solution

quality is not great. This is why they are usually included in metaheuristics (explained

in the next section) for providing an initial solution. The following are examples of con-

structive heuristics which are currently in use :

1. Sequential insertion algorithm

The subsequential insertion algorithm constructs a route one by one. At the first

step, the algorithm randomly chooses unrouted node i to begin forming the route with

depot i.e. (0, i, 0). Next, another unrouted node is inserted into the route if the node

gives the least cost and the route is still feasible. The route is constructed this way until

no more node can be inserted, in which case the algorithm repeats with a new route. The

algorithm continues until all nodes are picked. A modified version of this algorithm is

called Improved Parallel Insertion Algorithm. This algorithm first forms as many routes

as the total number of vehicles and then inserts unrouted nodes simultaneously.

2. Clarke and Wright Savings heuristic

Clark and Wright Savings algorithm starts by forming routes (0, i, 0) for all i ̸= 0.

Secondly, it calculates the saving of two nodes i and j, say s(i, j) = di0+ d0j − dij , which

infers to the saving after two routes are combined by linking i and j. The set of savings,

F = {s(i, j) | i ̸= j and i, j ̸= 0} remains the same throughout the algorithm and it is

sorted in decreasing order. Then, two routes, say r1 and r2 are combined following the

order of savings s(i, j) in F under two conditions: (1) an edge (i, 0) is in r1 and an edge

(0, j) is in r2 and (2) the total demand does not exceed the truck capacity. The algorithm

repeats until no more routes can be combined.

3. Cluster-First-Route-Second Heuristic

Cluster-First-Route-Second heuristic [10] has two process stages as its name implies.

8

The algorithm begins with partitioning a set of nodes into different clusters and then

determines routes on each cluster. The sweep algorithm is one type of the Cluster-First-

Route-Second heuristic. The algorithm first normalizes all nodes by shifting the depot

to the center of the coordinates (0, 0) and other nodes in the same direction through

the translation process. Then the coordinate of nodes are transformed into the polar

coordinates and the nodes are sorted in increasing order by the angle parameter. In

the next step, the first cluster is formed from the initial node n0 and then the nodes

are inserted into the cluster one by one following order in the sorted set until the truck

capacity is full and the clustering process stops when all nodes are clustered. Finally, all

nodes in each cluster are routed by the sequential insertion algorithm for TSP. The sweep

algorithm is restricted to the non-Cartesian coordinate. In addition, another algorithm

called Fisher and Jakumar algorithm can be applied for non-Euclidean CVRP instances.

The algorithm is also in the cluster-first-route-second algorithm and it works based on a

Generalized Assignment Problem (GAP).

2.1.4.2 Classical improvement heuristic

Classical improvement heuristic performs a local search (LS) on an existing solution

of CVRP which makes minor changes to the solution that decreases objective function

value. There are many different operations in LS, but they all work on the same process.

Let S be a solution space of CVRP and its neighborhood N(S). LS operator makes

a new move s′ ∈ N(S) which provides the minimum value for objective function i.e.

f(s′) ≤ f(s) ∀s ∈ N(S), where f : S → R is an objective function. There are two main

operations of move in LS. First, the intra-route operator makes changes within a route

only. For example, the 2-OPT operator seeks minimum cost yielded by removing two

edges and replacing two edges within the route as shown by Figure 1 in Appendix A. In

general, it is possible to perform a local search on multiple edges which is known as the

λ−OPT operator, where λ is the number of edges used to perform. Second, the inter-route

operator such as RELOCATE, SWAP, and 2-OPT* make changes between two routes.

The RELOCATE removes k consecutive customers from their current route and reinserts

them elsewhere in another route. The SWAP operator swaps customers between two

9

different routes. Finally, the 2-OPT* removes an edge from each route and reconnects

them differently. The illustration of RELOCATE, SWAP, and 2-OPT* are shown in

Figure 4 to Figure 2 in Appendix A, respectively. In addition, the intra-route operators

are performed before the inter-route operators because the size of the neighborhood when

performing the intra-route operator is smaller.

2.1.4.3 Metaheuristics

Metaheuristic algorithms mix multiple ideas of the above methods to explore more

parts of the search space. The algorithms have a mechanic to escape from the local

optimum after performing a local search on the neighborhood of the solution. Exam-

ples of metaheuristic algorithms are Simulated Annealing, Tabu Search, Guided Local

Search (GLS), and Population-based algorithms. In addition, the concept of different

metaheuristic algorithms can be combined to create state-of-the-art methods called hy-

bridization algorithms. However, many hybridization algorithms have high computational

complexity, so it needs to trade off between computation time and the quality of the so-

lution. Among many metaheuristic algorithms are proposed in recent years, GLS is the

one we use in this study.

GLS is a penalty-based metaheuristic. The algorithm employs a set of solution

features which can be any characteristics of the solution for guiding the search. Each

defined solution feature has its own cost which represents the information related to the

problem. The cost of the feature is used to strengthen the objective function called the

augmented objective function. For example in the traveling salesman problem, the feature

can simply be an edge between any two nodes and the cost of the feature is the distance

of the edge. To explain the GLS in detail, some notations need to be declared. Define an

augmented objective function as follows:

O′(s) = O(s) + λ
∑
i∈F

Indi(s) · pi · ci (2.8)

10

where s is a candidate solution, O(s) is the original objective value of the solution s.

The number i ranges over the set of features F and the value pi is the penalty parameter

for a feature i with the corresponding cost ci, and Indi is an indicator function of whether

feature i exists in solution s i.e. Indi(s) = 1 if feature i exists in the solution s, otherwise

Indi(s) = 0. The λ is a hyperparameter in GLS for scaling the product of the penalty cost

term. The GLS repeatedly calls the local search to minimize the augmented objective

function. One may be tempted to penalize only the high-cost features. However, doing so

is biased against the features with expensive costs, which is not necessarily a good thing.

For example, we know that long edges are a bad characteristic of solutions in TSP since

they have a high cost. Therefore, for each iteration, the algorithm will keep penalizing only

the same long edges over and over making the search space that the algorithm explores

too limited. To remedy this, the utility function is defined to be a criterion for selecting

the feature to penalize. The utility of feature i, utili is defined as follows:

utili(s) = Indi(s)×
ci

1 + pi
(2.9)

The utility function is a key to selecting unfavorable features that need to be penal-

ized by selecting a feature that maximizes the utility function. First, the utility function

of feature i has a positive value when feature i exists in the solution. The higher the cost

ci is, the greater the value of the utility function of feature i will be. Moreover, the larger

in pi or the number of times feature i is penalized, then the lower the utility function

will be. This makes the GLS change the penalized target on other features. GLS can be

simply implemented as follows:

11

Algorithm 1 Simple implementation of guided local search algorithm
//Initialize//
k ← 0
s0 ← initial solution inS
s∗ ← s0 //s∗ is expected output of the algorithm//
for each feature i do

pi ← 0 //set all penalties to 0//
O′ ← O + λ ·

∑
Indi × pi × ci //Set an augmented objective function//

while not StoppingCondition() do
sk+1 ← LocalSearch(sk, O′) //call a local search operator on O′//
for each feature i do

utili(sk+1)← Indi(sk+1)× ci
1+pi

if a then feature i makes utili maximum
pi ← pi + 1

if O(sk+1) < O(sk) then
s∗ ← sk+1 //update the improved solution//
k ← k + 1

return s∗

At first, the algorithm initializes a solution, all penalty parameters, and an aug-

mented objective function. After that, the algorithm repeats the penalization process. It

starts to find a new solution sk+1 by the local search on the augmented objective function

of the solution sk. Then determines a penalized feature i that gives the highest value

of utili of the solution sk+1 and also increments the parameter pi. This process repeats

until the expected solution s∗ is a new local optimum. Finally, the desired solution s∗ is

returned when the stop criterion is reached.

2.1.5 Google OR-tools

Google OR-tools [11] is an open-source software suite developed by the Google Opti-

mization team. The suite contains many solvers for combinatorial optimization problems

such as assignment problems, routing problems, bin packing problems, network flows

problems, and scheduling problems. Google OR-Tools won four gold medals in the 2021

MiniZinc Challenge which is the international constraint programming competition. This

will guarantee the efficiency of the Google OR-Tools suite. The solvers are written in

C++ and provide wrappers in Python, C# and Java. For routing problems, Google

12

OR-Tools has packages to solve TSP and varieties of VRP, such as CVRP and VRP with

time windows (VRPTW).

There are two phases for using Google OR-tools to solve CVRP. The first phase

is called the first solution strategy which contains some operations shown in Table 2.1.

Details of each operation are already explained in Section 2.1.4.1.

Operation Description

PATH_CHEAPEST_ARC Sequential Insertion algorithm

PARALLEL_CHEAPEST_INSERTION Improved Parallel Insertion algorithm

SAVINGS Clarke&Wright Savings algorithm

SWEEP Sweep algorithm

Table 2.1: Operations in First Solution Strategy of Google OR-tools

The second phase is called the local search. It employs metaheuristics which involve

classical improvement heuristics to improve the solution from the first phase. There are

some of the local search options provided and one of them is GUIDED_LOCAL_SEARCH which

is GLS in Section 2.1.4.3.

2.2 Statistical learning model

Let Y be a response variable in the experiment with p independent variables or

features denoted by X1, X2, . . . , Xp. Assume that there is a relationship between Y and

X = (X1, X2, . . . , Xp) which can be written in a form:

Y = f(X) + ϵ (2.10)

where f is an unknown function and ϵ is a random error term. A statistical learning

model for supervised learning can be referred to as a set of approaches for estimating

the function f . There are two reasons one would want to estimate f , [12]. The first

13

one is for prediction. The features x = (x1, . . . , xp) are treated as inputs and fed into

the function f to obtain the estimated value of observation ŷ = f(x). The second is for

interference, in other words, to understand the association between observation Y and

its features X. This is useful because understanding a relationship between the response

variable and its features provides specific or deep knowledge of a problem. Sometimes

it is easy to identify some important features among a large set of features X. If we

expect the function f as a predictor, the estimated value y should be precise. Otherwise,

f will be interpretable and can tell the association between Y and features X when f

has less complexity. However, the results obtained might be low in precision. A trade-off

between precision and interpretability must be considered before employing a statistical

learning model. There are many practical learning models in real-world problems and in

this study, we only introduced two well-known models in detail: decision tree and support

vector machine.

2.2.1 Decision tree

The decision tree model is good for making an inference between observation values

and features because it represents their relationship by a top-down tree chart illustrated

by Figure 2.2(a). The example shows decisions based on the observed data which has two

features sex and age to get the rules telling the personal status of people. The tree keeps

splitting into branches following the logical condition of the features and then stops when

a decision is made. The branch in which the tree stops splitting is called the leaf.

A decision tree divides feature space X into some non-overlapping regions and these

regions are referred as conditions of features used for classifying observation value. The

regions are shown in Figure 2.2(b). A strategy for dividing regions depends on how

much accuracy we will get compared to the observed data. The accuracy we mentioned

corresponds to the cost function we want to minimize. If the cost is very low, then the

tree fits the observed data or the accuracy is high. An example of the cost is a Gini index

which indicates an impurity from classification. The Gini index is calculated from the

amount of probability of a specific feature that is classified incorrectly, Gini = 1−
∑
i
p2i .

14

A value pi is the probability of an element being classified for a distinct class. The Gini

index ranges between 0 to 0.5 for two-label classification. It is zero when a node is split

and no other classes are classified incorrectly. Otherwise, The index is highest at 0.5 when

the actual class and incorrect class are distributed equally. In addition, there are some

hyperparameters to control the tree to stop growing and reduce overfitting such as the

maximum depth, and the minimum number of samples in each leaf. This can help reduce

the complexity of the model and makes it less overfitting.

2.2.2 Support vector machine

Support vector machine or SVM performs well in a classification task. The model

attempts to determine two hyperplanes on the feature space X, so that it can separate

observed data into their classes in the condition that the data is linearly separable. The

region between two hyperplanes is called a margin. In fact, many hyperplanes can achieve

the task and the one we are seeking has the maximum margin i.e. the distance between

two hyperplanes is maximized as shown in Figure 2.3(a). The maximum margin ensures

to some extent that the hyperplane will also classify new data which is never observed.

The margin which has no data points lie in is called the hard margin. Unfortunately, the

data in a real-world problem may not be separated clearly by linear hyperplanes. The

margin which allows some misclassification lie in is called the soft margin for handling

such a problem and making the result as good as possible. The example of a soft margin

is shown in Figure 2.3(b). In addition, if there are p features of observations, the model

will seek two hyperplanes which are p− 1 dimensional subspace.

We can see that the SVM is unlike the decision tree in interpretability. It is easy

to interpret how the decision tree works by the tree chart even though we are dealing

with many features. However, the SVM works like a black box when there are more

than three features because we cannot draw the illustration and see the relation between

features. Nevertheless, the advantage of the SVM is that it can handle the non-linear

problem smoother than the decision tree (since the decision tree divides feature space

into some partitions) by a kernel method. The method maps the original features not

15

linearly separable to the higher dimensional space and determines hyperplanes to separate

data that lies in the higher dimension.

(a) The tree chart
(b) The partitioning of the decision
tree

Figure 2.2: The illustration of the decision tree

(a) An example of a hard margin (b) An example of a soft margin

Figure 2.3: An example of SVM

2.2.3 Feature importance

A feature importance is a score that represents the impact of each feature with

respect to a learning model. In the decision tree, we split any nodes by selecting a feature

yielding the lowest impurity of the classification task to divide the feature space. This

implies that the selected feature once has an impact on the model. Therefore, feature

importance of each feature is determined by the frequency they are being used to split a

node in the tree. Note that, the feature importance does not indicate predictive power

by itself but indicates how important this feature is for a particular model. In addition,

it is difficult to calculate feature importance in some models such as non-linear models.

A permutation feature importance is a method that can generate a feature importance

for those models, see [13].

16

2.3 Multi-dimensional Scaling

Multi-dimensional scaling (MDS) is a tool mainly to represent similarity or dis-

similarity among pairs of objects as a distance in the low-dimensional space. The main

purposes of MDS are in the scope of visualization [14], and in the thesis, it is a necessary

measurement to bridge between the Euclidean and the non-Euclidean space. The MDS

can determine the new position of points in the preferred k-dimensional Euclidean space

related to information in a distance matrix of the problem using the idea of principle com-

ponent analysis (PCA) [15]. Given a distance matrix D and let Xn×k be a matrix of the

coordinate of n points in k-dimensional space. Many applications of MDS are purposed,

and one of them is feature extraction in CVRP. Jussi Raku et al. [16] presented hun-

dreds of features related to CVRP instances used for improving the automatic algorithm

configuration i.e. the algorithms to help automatically configure hyperparameters of the

heuristic algorithm for the CVRP being considered. One category of features requires

nodes information. Unfortunately, some benchmark instances they used provide only a

distance matrix. Then, the MDS is employed to determine the coordinate matrix X:

Step 1 Let B = XX⊤ be Gram matrix.

Step 2 Rewrite B in terms of a distance matrix D: B = J(−D2/2)J⊤, where D2 =
[
d2ij

]
and J = I − 11⊤/n

Step 3 By the idea of PCA, M = −D2/2 ≈ QΛQ⊤, where Λk×k is a diagonal matrix

formed by positive eigenvalues of D sorted in decreasing order and Qn×k are formed

by the corresponding eigenvectors.

Step 4 XX⊤ = JMJ⊤ ≈ (JQΛ1/2)(JQΛ1/2)⊤, where Λ1/2 =
[
λ
1/2
ij

]
and λij is the

elements of Λ.

Step 5 X = JQΛ1/2

The coordinate of points contained in X lie in k-dimensional Cartesian coordinate

and their centroid (average coordinate of points in each axis) is located at the origin.

17

However, the new Euclidean distance matrix D′ yielded by MDS only approximates the

original distance matrix D. Therefore, measurement of similarity between the two dis-

tance matrices is necessary to measure how close they are.

2.4 Similarity between distance matrices

In this section, we introduce two different matrix similarity measurements, namely,

matrix norm and Mantel test.

2.4.1 Matrix norm

A classic tool for measuring distance between two matrices is the matrix norm. The

distance is determined by calculating a norm of the difference of both matrices. There

are some well-known matrix norms, for example:

Let A = [aij]n×n.

1. Frobenius norm

||A||2 =

 m∑
j=1

m∑
i=1

|a2ij |

1/2

(2.11)

2. Lp norm

||A||p =

 m∑
j=1

m∑
i=1

|apij |

1/p

(2.12)

3. Max norm

||A||max = max
i,j=1,...,m

|aij | (2.13)

Let A and B be n × n matrices, then the distance between matrices A and B is

||A−B||, where || · || can be one of the norms defined above.

18

2.4.2 Mantel test

The previous measurement represents the numerical closeness between two matrices.

Next, we introduce a statistical approach to measure a correlation between two distance

matrices: the Mantel test [17]. The test is commonly used in Ecology. For example, to get

a correlation between two distance matrices corresponding to their metrics in the ecology

field. Let us say the first metric calculates the genetic distance between species and the

second calculates distance data from geographical information. Then, the Mantel test is

employed to test a correlation between the two distance matrices generated before. The

procedure of the test is based on a randomization test. To implement the test, first let

two distance matrices from different metrics be Dx and Dy, where entries of Dx are a

distance between objects xi and xj or dxij and also similar to Dy which contains dyij . The

two distance matrices must be symmetric and have the same dimension. Next, compute

a correlation as follows:

r =

∑
i

∑
j
(dxij − D̄x)× (dyij − D̄y)√
var(Dx)× var(Dy)

(2.14)

where D̄ and var(D) are the mean and variance of all entries in the distance matrix,

respectively. This standardized version of the Mantel test is the Pearson correlation

efficient. The value of r ranges between -1 (perfect negative correlated) to 1 (perfect

positive correlated). However, if r = 0, it indicates no relationship between the matrices.

Simultaneously, the collection of r′s is computed by randomly permuting rows of Dy.

The idea of the test is, r should be higher than r′ since the value of r is not disturbed

by randomizing the rows that will make a change in the relationship. Next, the empirical

test is performed to get a probability of observing r′s that are higher than r, then return

the probability which is a p-value under the null hypothesis that there is no relationship

between two distance matrices. For example, if 999 of r′s are lower than r, then the

probability is 1/(999+1) where 1 is also observed which means to r, so that the p-value =

0.001.

19

2.4.3 non-Euclidean vs. Euclidean Distance

There is a numerical value indicating the difference between two distance matrices

[18] called deviation factor DF(Dx, Dy) =
(|V |

2

)−1 ∑
i,j∈V

dx
ij

dy
ij
which is the average of the ratio

between distances of each pair of nodes. The study [18] computes DF of an actual road

distance and a Euclidean distance between cities in well-known countries. The number

of nodes is different for each country corresponding to the availability of the geographical

data. The result is that DF is ranging between 1.12 and 2.10. The value of DF depends

on many factors such as node sample size, road density and connectivity, transportation

rules, and geographical obstacles like mountains, rivers, and hilliness. If two distance

matrices are close, then DF is close to 1. Otherwise, DF will be much different from 1.

In addition, there is the study of outcomes from solving TSP in real road networks

and Euclidean TSP [19]. They collected the road network distance within big cities such

as Paris, London, and Seoul. Then, two distance matrices were generated to be used in

the TSPs of each city. Note that the non-Euclidean distance they used was the shortest

path based on the real road network. The DF of two distance matrices for each city

ranged between 1.1 to 1.4 and the Pearson correlation coefficients were around 9.7 which

is very high. They solved both TSPs to find an optimal solution and the result shows that

the ratio between the optimal solution from TSP with a non-Euclidean distance matrix

and the Euclidean one was ranging around 1.2 to 1.5 which reflected a large gap between

them.

2.5 Characteristics of CVRP solutions

Arnold and Sörensen proposed a framework to obtain problem-specific knowledge

that can distinguish characteristics of good CVRP solutions from bad ones. The authors

defined ten solution metrics representing the appearance of the solutions. Then they

used these features to classify high-quality and low-quality solutions through a statistical

learning model to see which ones perform well in classifying near-optimal and non-optimal

solutions. They also applied the knowledge for guiding a search in their modified GLS

and their result showed improvement in search compared with the original GLS. Arnold

20

and Sörensen’s work is engaging with promising applications.

To explain Arnold and Sörensen’s work, let us expand the CVRP notations as

follows. Let G = (V,E) be a graph representing CVRP, where V is a set of nodes and all

nodes lie in two-dimensional space and V ′ be a set of customer nodes. Let R be a solution

of CVRP contains all routes r = {nr
1, n

r
2, . . . , n

r
|r|}, where n

r
i is the ith customer in route r

and all connecting segments between each node are in {(0, nr
1), (n

r
1, n

r
2), . . . , (n

r
|r|, 0)}. Let

Gr be the centroid of nodes in route and LGr be the line that passes through the depot

and the centroid. A Euclidean distance between node n1 and n2 is denoted by d(n1, n2)

and a Euclidean distance between a node n and the line LGr is d(LGr , n) which can be

positive and negative depending whether the node is on the right and the left side of the

line respectively. An angle between node n1 and n2 with respect to the depot is denoted

by rad(n1, n2). Finally, I(ri, rj) represents the total number of times the segments of

route ri intersect segments of route rj . Arnold and Sörensen’s solution metrics considered

in this paper are defined below.

S1 - Average number of intersections per customer

|R|−1∑
i=1

|R|∑
j=i+1

I(ri, rj)

N
(2.15)

S2 - Average longest distance between two connected customers per route

∑
r∈R

max
i∈{1,...,|r|−1}

d(nr
i, n

r
i+1)

|R|
(2.16)

S3 - Average distance between depot to directly-connected

∑
r∈R

(
d(0, nr

1) + d(nr
|r|, 0)

)
2|R|

(2.17)

21

S4 - Average distance between routes (their centers of gravity)

∑
r1∈R

∑
r2∈R\r1

d(Gr1 , Gr2)

2|R|
(2.18)

S5 - Average width per route

∑
r∈R

(
max

i∈1,...,|r|
d(LGr , ni)− min

i∈1,...,|r|
d(LGr , ni)

)
|R|

(2.19)

S6 - Average span in radian per route

∑
r∈R

max
i,j∈{1,...,|r|}

rad(nr
i, n

r
j)

|R|
(2.20)

S7 - Average compactness per route, measured by width

∑
r∈R

|r|∑
i=1
| d(LGr , ni)|

N
(2.21)

S8 - Average compactness per route, measured by radian

∑
r∈R

|r|∑
i=1

rad(Gr, ni)

N
(2.22)

S9 - Average depth per route

∑
r∈R

max
i∈{1,...,|r|}

d(nr
i, 0)

|R|
(2.23)

22

S10 - Standard deviation of the number of customers per route

√√√√ ∑
r∈R

(|r| − N
|R|)

2

|R|
(2.24)

These solution metrics are defined under the hypothesis that they can be the fea-

tures which are able to be a separating criterion of solution quality. Behind the idea

of design, the solution metrics are expected to be a criterion for the guided local search

mentioned in Section 2.1.4.3. To roughly explain, the design is based on hypothesis that

good solutions should contain routes that rarely overlap and this can be indicated using

the solution metric (S1). The overlapping of segments of different routes refers to the

frequency that different trucks travelling to the near region. The good CVRP solutions

should also have short edges (S2) and the edges connected to the depot should also be

short (S3). The solution metric (S4) measures how well the routes separated as well and

good solutions should ideally have clearly separated non-overlapping routes because oth-

erwise the routes that are too close to one another or overlapping may be combined and

yield a better solution. Moreover, to reduce overlapping, the average width per route (S5)

should be small. The solution metric (S6) measures the average route span around the

line LGr by looking at the average maximum angle between two customers with respect

to the depot per route. Having a small (S6) value indicates most routes are in slender

tapered shape. The solution metrics (S7) and (S8) give the average route compactness

measured by the width and the radian, respectively. They can also be interpreted as

the average broadness per route. If these values are small, the segments of most routes

are close to LGr . The metric (S9) gives the average depth of the route measured by the

average distance between the farthest customer and the depot per route. The metric (S9)

should be small for a good solution. Lastly, the balance of the number of customers in

each route is measured by the solution metric (S10). The visualization of some solution

metrics is shown in Figure 5 in Appendix B. We also give three solutions from the same

Euclidean CVRP which have three different appearances as shown in Figure 6 with values

of each solution metric and costs of the solutions in Table 1 in Appendix B.

23

In addition, Arnold and Sörensen also defined features called instance metrics. The

metrics are characteristics of CVRP instance which have a purpose to make CVRP so-

lutions different at the instance level while solution metrics make solutions different at

the solution level. The instance metrics are calculated using parameters from a corre-

sponding CVRP instance and the solution metrics are calculated using parameters from

a corresponding CVRP solution as defined above. Each instance metric is defined as

follows:

I1 - Number of customers

N (2.25)

I2 - Number of routes (trucks)

m (2.26)

I3 - Degree of capacity utilization

∑
i∈V ′

qi

m× C
(2.27)

I4 - Average distance between each pair of customers

mean({d(i, j) | i, j ∈ V ′, i ̸= j}) (2.28)

I5 - Standard deviation of the pair-wise distance between customers

std({d(i, j) | i, j ∈ V ′, i ̸= j}) (2.29)

I6 - Average distance from customers to the depot

mean({d(i, 0) | i ∈ V ′}) (2.30)

24

I7 - Standard deviation of the distance from customers to the depot

std({d(i, 0) | i ∈ V ′}) (2.31)

I8 - Standard deviation of the radians of customers towards the depot

std({rad(i, 0) | i, j ∈ V ′, i ̸= j}) (2.32)

CHAPTER III

METHODOLOGY

In this chapter, we explain our methodology in detail from the beginning until we

reach our goal of identifying the most distinctive characteristics of non-Euclidean CVRP

solutions. The process is summarized by the diagram in Figure 3.1. First of all, we

generated our non-Euclidean CVRP datasets. Then MDS is employed to provide a local

requirement for calculating solution metrics and instance metrics of the non-Euclidean

CVPR solution. In addition, the instances are simultaneously solved by using a routing

solver package in Google OR-tools. After that, we had sufficient information to calculate

the instance metrics and solution metrics. Then we used them as features to process

in the statistical learning framework and the most distinctive characteristic was finally

returned. Each step we mentioned will be clarified in the following sections.

Figure 3.1: Overview of the methodology of the thesis

26

3.1 Generating non-Euclidean CVRP instances

In this study, we generated eight classes of non-Euclidean CVRP instances. Each

class varies in the following attributes to complete all components of CVRP mentioned

in Chapter 2.

1. Node attributes: We considered three attributes of nodes including the number

of nodes, the location of a depot, and the customer’s demand. There are two sizes of

problem instances where the numbers of nodes are different. The small and big sizes

are denoted by SMALL and BIG, respectively. The SMALL instances contain 20 to 50

customers and the BIG instances contain 70 to 100 customers. Each node is located on a

200× 200 grid in the first quadrant. Likewise, the demand is either randomly generated

from 1 to 5, or is set to be the same for all customers and the demand of a depot is zero.

A depot location is either located at the center of the grid at position (100, 100) or at

the edge of grid (0, 100). This will generate two types of instances: one with a depot at

the center and another with a depot located at the middle of the left edge. The number

of instances in each class and the overview is shown below in Table 3.1. We name each

class by three characters to indicate variant in three attributes: (1) size is aliased by

S=SMALL and B=BIG, (2) demand is aliased by F=FIXED and V=VARIED, and (3)

depot location is aliased by C=CENTER and E=EDGE.

2. Fleet attributes: An amount of truck capacity is generated depending on the

size of CVRP instances. The SMALL instances are served by trucks with 10-unit capacity

and the BIG instances are served by trucks with 30-unit capacity. A truck capacity is

assumed to be the same for all instances in the same class, but the number of routes will

vary depending on the total demand of each generated instance.

27

Classes Size #Nodes Demand Truck Cap. Depot pos. #Instances

class1-SFC SMALL 20-50 1 10 center 2000

class2-SVC SMALL 20-50 1-5 10 center 2000

class3-SFE SMALL 20-50 1 10 edge 2000

class4-SVE SMALL 20-50 1-5 10 edge 2000

class5-BFC BIG 70-100 1 30 center 2000

class6-BVC BIG 70-100 1-5 30 center 2000

class7-BFE BIG 70-100 1 30 edge 2000

class8-BVE BIG 70-100 1-5 30 edge 2000

Table 3.1: Details of generated CVRP instances

In addition, the distance matrix of each instance is calculated using the Manhattan

distance. This is assumed that all nodes take place in a block-shaped city like Manhattan,

making the instances non-Euclidean. We choose the Manhattan norm because it has an

example in the real world. Demographic information of the generated non-Euclidean

CVRP classes are shown as boxplots in Figure 7 - 11 in Appendix C.

3.2 Mapping to Euclidean space using multi-dimensional scaling

Although we generate the Manhattan distance from the coordinates of each node

of the problem, we cannot use both the distance and the coordinates to determine the

solution metrics defined in Section 2.5. The reason is that the solution metrics are defined

under the Euclidean space. Therefore, we attempt to consider the non-Euclidean CVRP

in the new space in which components of the non-Euclidean problem can be treated as

Euclidean. In other words, if we can find the coordinate of each node of the CVRP in that

space and the corresponding distance matrix is the same as the original, then it is able to

calculate the solution metrics under Euclidean space. Such a problem is called Euclidean

distance geometry problem or Euclidean-DGP [20]. There are some methods for solving

DGP. However, Euclidean-DGP is an NP-hard problem which implies that it consumes

a lot of time to solve for an exact solution. Therefore, we choose MDS which provides

an approximated solution to the problem. The MDS returns the new position of nodes

28

that lie in the preferred k-dimensional Euclidean space and a new corresponding distance

matrix will become Euclidean. Note that we call the location which is the outcome from

MDS an approximated Euclidean location and its corresponding distance matrix is called

an approximated Euclidean distance matrix. We varied the number k from 1 to 5. The

number k that makes the approximated distance matrix get close to the original one as

much as possible is selected. The closeness between the new and the original matrices

is quantified by the similarity measurement described in Chapter 2: Frobenius matrix

norm. The number k is selected if it produces the least matrix norm. We also perform

the mantel test for monitoring a correlation between the two distance matrices. The

mantel correlation coefficient is very high, more than 0.9 and the p-value is less than 0.05

to reject the null hypothesis. From the experiment, k is unsurprisingly mostly equal to

2 because the instances are initially generated in two-dimensional space and Manhattan

distance is close to Euclidean distance. Nevertheless, a value of 3 is more suitable for k

in some instances. We show the overview of the process in Figure 3.2.

Figure 3.2: Overview of the methodology of applying MDS

The Frobenius matrix norm of the difference between the approximated Euclidean

distance matrix and the original distance matrix is shown by a boxplot in Figure 13

and the correlation coefficient from Mantel test between both matrices is shown by a

boxplot in Figure 14 in Appendix C. We also calculate the deviation factor between an

approximated Euclidean matrix and the original one. The average value of DF is around

1.05 and the standard deviation of DF is around 0.005 for all classes. This implies that

the elements of the original Euclidean distance matrix are greater than the approximated

29

Euclidean distance matrix around 5%.

3.3 Non-Euclidean CVRP solutions

As mentioned in the previous chapter, we use Google OR-tools routing packages

to solve the non-Euclidean CVRP instances where the process can be divided into two

phases. For the first phase, we obtain an initial solution of CVRP using First Solution

Strategy and the PATH_CHEAPEST_ARC is selected. Next, we improve the initial solution

using the local search operator GUIDED_LOCAL-SEARCH. In this study, we do not require

a solver which provides excellent quality of the solution. We select this option for solving

non-Euclidean CVRP because the option is consistent in performance. It can solve every

generated CVRP instances and the design of its algorithm is deterministic.

For each non-Euclidean CVPR that is solved, two solutions are collected and la-

beled. The first solution is an initial solution provided by PATH_CHEAPEST_ARC and is

labeled as non-optimal solution. The initial solution then is improved by using

GUIDED_LOCAL_SEARCH for searching for another better solution in the neighborhood of

the initial solution. The solution from the improvement process will be labeled as a near-

optimal solution. Note that to clearly separate the difference between the non-optimal

solution and the near-optimal solution, we specify a gap in cost between both solutions.

Indeed, we set the gap of solution cost in SMALL instances and BIG instances to be 5%-

10% and 3%-10%, respectively. We extend the range of the gap of BIG instances because

it takes a long time to search for the improved solution which has a gap between 5%-10%

due to the large neighborhood of an initial solution. As described before, we generated

2,000 instances in each class and we obtained two solutions for each instance, namely a

non-optimal solution and a near-optimal solution, then our dataset contains 4000 data

points for all data classes. In addition, We draw a boxplot to summarize a difference in

cost between two solutions for each class as shown in Figure 10 in Appendix C.

30

3.4 Building a dataframe of features of CVRP solutions

The characteristic of CVRP solution or solution metrics S2 to S10 defined by Arnold

and Sörensen in Chapter 2 was adopted. Note that the solution metric S1 does not

perform well in the experiment because it requires a long computational time, so we

drop it from our consideration. Because of the MDS, some of the approximated locations

are determined to be in 3D Euclidean space. This makes the definition of one solution

metric incompatible with the higher dimensional space of node locations. Therefore, we

adjust the definition of the solution metric to fit the solutions in 3D Euclidean space.

The solution metric which must be adjusted is the solution metric S5. Originally, S5

characterizes the width of a route in the solution by summing up the distance between

the center line LGr and the two farthest points on both sides of the center line as shown in

the Figure 5(a) in Appendix B. Therefore, we redesign the solution metric S5 in a similar

way. The width of each route in a solution lies in the higher dimensional would be a

diameter of a cylinder centered along LGr which wraps all customers in the route tightly.

We also define our solution metrics called S11 and S12. S11 is the average radius per

route, where the radius of a route is the maximum distance between its centroid and its

nodes. S12 is another version of route compactness measured by the average distance of

each node from its center of gravity. The figures of the three mentioned solution metrics

are shown in Figures 3.3 to 3.5 and the definitions are as follows:

S5* - Redefined solution metric S5

∑
r∈R

(
max

i∈1,...,|r|
2 d(LGr , ni)

)
|R|

(3.1)

S11 - Average radius per route

∑
r∈R

(
max

i∈1,...,|r|
d(Gr, ni)

)
|R|

(3.2)

31

S12 - Average compactness per route, measured by average distance of each node

from its centroid ∑
r∈R

|r|∑
i=1

d(Gr, ni)

N
(3.3)

Figure 3.3: Visualization of the redefined solution metric S5

Figure 3.4: Visualization of the new solution metric S11

In each generated instance, a value of each instance metric I1 to I8 and each solution

metric S2 to S10 is determined by the definitions using the approximated information

obtained in Section 3.2 and Section 3.3. The overview of each solution metric is visualized

by boxplots by the size of instances and label of solution in Appendix D. Note that we also

call the instance metrics and the solution metrics as the features of non-Euclidean CVRP

solution. The instance metrics and solution metrics are collected to build a dataframe

of features of each non-Eucldean CVRP solution. In addition, the dataframe includes a

label of the solution (near-optimal and non-optimal). We do the same process for all eight

32

Figure 3.5: Visualization of the new solution metric S12

classes mentioned in Section 3.1 and we will obtain total eight dataframes. The dataframes

will fuel a data-driven technique to determine the most distinctive characteristic of a non-

Euclidean CVRP.

3.5 Statistical learning framework for measuring features performance

Statistical learning models such as SVM and decision tree are employed to be as

a tool to measure the performance of each solution metric. First, we test the overall

performance of features by feeding all of the features to SVM. After that we employ an-

other model, a decision tree, to measure the performance of each solution metric. Instead

of feeding the whole dataframe, we select only the instance metrics I1 to I8 and only

one solution metric as features. Then, the accuracy of the prediction of each solution

metric corresponding to the one we push to the model is collected. The most distinctive

characteristic as we said before is the solution metric which yields the highest accuracy

of prediction. We use a decision tree to extract some rules from the results; these rules

might be practical for guiding the search. The example of the dataframe used for SVM

and decision tree is shown in Table 3.2 and Table 3.3.

The implementation is written in Python on Google Colaboratory. We import

SVM and decision tree from scikit-learn [21], a popular library package. In addition,

every parameters we set for running SVM is the default. It is optional for us to adjust

the SVM to get a better result because we only want to test if the given features have

any predictive power. For the decision tree, We set the Gini index for the criterion of

33

splitting and maximum depth for splitting branch from the start node or maxdepth to be

9 which is equal to the total number of features feeding to the model.

Data Instance metrics Solution metrics Label

points I1 I2 · · · I8 S2 S3 · · · S12

1 non-opt

2 near-opt

3 non-opt
...

...

Table 3.2: Input dataframe for SVM

Data Instance metrics Solution Label

points I1 I2 I3 I4 I5 I6 I7 I8 metric

1 non-opt

2 near-opt

3 non-opt
...

...

Table 3.3: Input dataframe for decision tree

CHAPTER IV

EXPERIMENTS AND RESULTS

4.1 Predictive power of solution metrics

As mentioned in the previous chapter, we first test whether the given features

have any predictive power by feeding all of them to the support vector machine model.

The average accuracy of prediction from 5-fold cross-validation is shown in Table 4.1.

All average accuracy obtained is more than 79% which is quite high. This implies the

features have the potential for the model to learn patterns of the solutions and their

features. These results can be discussed from two perspectives.

• SMALL instances versus BIG instances: The accuracy of prediction BIG in-

stance datasets (classes 5-8) is generally higher than SMALL instances datasets

(classes 1-4). Since the BIG instances are rich in information, so the characteris-

tics of solutions stand out and the solution will become easier to classify by the

hyperplanes of SVM.

• depot at the center versus depot at the edge: the datasets which have a depot

at the center (classes 1,2,5,6) obtain higher accuracy than the datasets which have a

depot at the edge (classes 3,4,7,8). The depot position makes the appearance of the

solution different as shown in Figure 4.1. The figures below are obtained by plotting

approximated locations of each node and then are scaled to range 0 to 200 which

is the original range. Notice that the edged-depot instances have many overlapped

routes and each route is narrow. This might make the appearance of near-optimal

solution and non-optimal solution similar and the learning model cannot separate

them very well.

35

(a) SMALL with centered depot (b) SMALL with edged depot

(c) BIG with centered depot (d) BIG with edged depot

Figure 4.1: Example of non-Euclidean SMALL and BIG CVRP solution after approx-
imating location by MDS

36

Classes #Data points Average Prediction of Accuracy (%)

class1-SFC 4000 83.05

class2-SVC 4000 80.65

class3-SFE 4000 79.67

class4-SVE 4000 78.78

class5-BFC 4000 86.65

class6-BVC 4000 86.32

class7-BFE 4000 81.95

class8-BVE 4000 81.12

Table 4.1: Average prediction accuracy by SVM from 5-fold cross-validation using all
features (I1-I8 and S2-S10)

4.2 Identifying the most distinctive characteristic

Next, to find the most distinctive characteristic, the decision tree is selected. We

feed all instance metrics I1 to I8 and only one solution metric to the model to get an

accuracy of prediction. Then, the solution metric that yields the highest accuracy of

prediction will be the most distinctive characteristic of non-Euclidean CVRP solutions.

The rounded average accuracy by the decision tree from 5-fold cross-validation which is

higher than 55% is presented in Table 4.2

37

Classes Rounded average accuracy of prediction (%)

S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

class1-SFC 65 59 69 66 66 65 69 55 64 69

class2-SVC 64 58 64 66 64 65 66 66 67

class3-SFE 62 66 61 55 61 58 56 57 56 64

class4-SVE 61 55 64 62 55 60 57 57 56 58 60

class5-BFC 68 64 71 71 64 69 68 55 66 71

class6-BVC 67 67 62 71 64 68 67 55 68 67

class7-BFE 59 57 65 61 55 64 58 58 56 62

class8-BVE 55 65 58 63 52 61 56 58 56 58 56

average 62 59 64 65 59 64 62 55 55 60 64

Table 4.2: Rounded average prediction accuracy by the decision tree from 5-fold
cross-validation of each solution metric

From Table 4.2, the solution metrics which have low predictive power (accuracy of

prediction lower than 60) are S9 and S10. The solution metric which gives the highest

accuracy on average is S5. This is confirmed by Table 4.3 which shows the one-tailed

Wilcoxon signed-rank test between the accuracy obtained by solution metric S5 and oth-

ers. The result shows that the accuracy obtained by the solution metric S5 is significantly

higher than the accuracy obtained by another solution metric at 99% confidence level,

except for solution metric S4 (average distance between routes) and S12 (average com-

pactness by the distance between nodes and a centroid).

Our proposed solution metrics S11 and S12 have comparable performance with

others although S11 does not perform better than S12 in most classes. We can interpret

the meaning of the definition of S11 as the average radius of routes in solution, which is

similar to S9 (average depth of routes). However, the accuracy of prediction obtained by

S11 is higher than by S9. Moreover, the new solution metric S12 performs very well and

better than other solution metrics which reflect the compactness of a route such as S7

(compactness by width) and S8 (compactness by radian). Therefore, it will be better if

38

we consider the compactness by the distance between nodes and the centroid instead.

pair of difference of difference of accuracy

solution metrics average accuracy of prediction tested by

to compare of prediction (%) Wilcoxon Signed-Rank Test

(S5,S2) 3.86 S5 gives significantly higher accuracy.

(W=723.0, p<0.001)

(S5,S3) 8.95 S5 gives significantly higher accuracy.

(W=810.0, p<0.001)

(S5,S4) 1.38 Not statistically different.

(W=455.0, p=0.15)

(S5,S6) 9.03 S5 gives significantly higher accuracy.

(W=806.0, p<0.001)

(S5,S7) 2.70 S5 gives significantly higher accuracy.

(W=652.0, p<0.001)

(S5,S8) 5.52 S5 gives significantly higher accuracy.

(W=728.5, p<0.001)

(S5,S9) 15.65 S5 gives significantly higher accuracy.

(W=820.0, p<0.001)

(S5,S10) 16.17 S5 gives significantly higher accuracy.

(W=820.0, p<0.001)

(S5,S11) 7.55 S5 gives significantly higher accuracy.

(W=791.5, p<0.001)

(S5,S12) 1.34 Not statistically different.

(W=482.0, p=0.17)

Table 4.3: Wilcoxon signed-rank test results at 99% confidence level for accuracy
comparison between S5 and every other solution metrics

Note that we cannot and should not directly compare our results and Arnold and

Sörensen’s study because there are two major differences. Firstly, our solution metrics

are generated from an approximated Euclidean locations and distance matrix, so the

information which the solution metrics represent is approximated. The main disadvantage

39

of the approximated Euclidean distance matrix obtained from MDS is that the pair-

distance ordering does not remain the same. In other words, if the elements dij and dkl

of a non-Euclidean distance matrix D are such that dij < dkl, then it might be the case

that the approximated Euclidean distance matrix D′ given by MDS occurs d′ij > d′kl.

Therefore, this makes the two problems inequivalent.

4.3 Decision rules

The decision rule is a set of logical conditions of features used to determine what

class of a datapoint is. In the decision tree, a decision rule is obtained from conditions

corresponding to a leaf node of a tree diagram as described in Section 2.2.1. At this time,

we feed the model by only three features S4, S5, and S12 which yield a high accuracy

of prediction for the classification task to help determine the decision rules. In addition,

we do not use the instance metrics because of two reasons:(1) the feature importance

of instance metrics compared to the solution metrics is very low for most classes, and

(2) the small number of features makes it easy to determine decision rules. The feature

importance of each instance metric and solution metric S4, S5, and S12 are shown in

Figure 4.2. We set the Gini index for the criterion of splitting and maxdepth to be 11

which is equal to the number of features we use. The decision rules are shown in Tables

4.4 and 4.5. In the tables, we select the decision rules of each class that has the least Gini

index in both non-optimal solution and near-optimal solution leaf nodes. For example, for

the decision rules in class1-SFC in Table 4.4, the solution is non-optimal if S4 < 115 and

S12 > 67. This rule has a Gini index of 0.368 which reflects the impurity of the leaf node

that contains 779 non-optimal solutions (actual class) and 250 near-optimal solutions

For each label, the decision rules from each class are similar. On one hand, we

interpret that the routes of each non-optimal solution might be close together since S4

is small. And routes are also wide and not compact (each node in a route is located far

from the centroid) since the values of S5 and S12 are big. On the other hand, the routes

of a near-optimal solution are not overlapped much (S4 is big) and each route tends to be

narrow or compact (S5 and S12 are small). However, the rules only cover some solutions

40

(a) Feature importance in SMALL classes

(b) Feature importance in BIG classes

Figure 4.2: Feature importance of S4,S5, S12 and all instance metrics in all classes

in our dataset. They cover 25%-39% of total non-optimal solutions and 2%-34% of total

near-optimal solutions for SMALL classes. Likewise, the rules cover 14%-37% of total

non-optimal solutions and 6%-39% of total near-optimal solutions for BIG classes.

41

Classes Decision rules Label Score

S4 S5 S12 (Gini)

class1-SFC < 115 > 67 non-optimal 0.368

[non=779,near=250]

(non-opt 39% of 2000)

> 126 < 124 < 67 near-optimal 0.172

[non=49,near=467]

(near-opt 23% of 2000)

class2-SFE < 113 > 158 > 77 non-optimal 0.259

[non=476,near=86]

(non-opt 24% of 2000)

< 113 < 126 < 77 near-optimal 0.193

[non=4,near=33]

(near-opt 2% of 2000)

class3-SVC < 129 > 162 > 70 non-optimal 0.349

[non=680,near=198]

(non-opt 34% of 2000)

> 123 < 123 < 70 near-optimal 0.218

[non=72,near=505]

(near-opt 25% of 2000)

class4-SVE < 104 > 132 non-optimal 0.276

[non=500,near=99]

(non-opt 25% of 2000)

> 114 < 141 < 84 near-optimal 0.304

[non=131,near=569]

(near-opt 28% of 2000)

Table 4.4: Decision rules of SMALL classes

42

Classes Decision rules Label Score

S4 S5 S12 (Gini)

class5-BFC < 124 > 103 non-optimal 0.159

[non=746,near=71]

(non-opt 37% of 2000)

< 78 < 58 near-optimal 0.135

[non=34,near=434]

(near-opt 22% of 2000)

class6-BFE < 123 > 123 non-optimal 0.214

[non=361,near=50]

(non-opt 18% of 2000)

< 100 < 71 near-optimal 0.193

[non=228,near=787]

(near-opt 39% of 2000)

class7-BVC < 117 > 116 non-optimal 0.099

[non=345,near=19]

(non-opt 17% of 2000)

< 79 near-optimal 0.19

[non=54,near=454]

(near-opt 23% of 2000)

class8-BVE > 137 >67 non-optimal 0.183

[non=282,near=32]

(non-opt 14% of 2000)

< 80 near-optimal 0.114

[non=8,near=124]

(near-opt 6% of 2000)

Table 4.5: Decision rules of BIG classes

CHAPTER V

CONCLUSIONS AND FUTURE WORK

This thesis aims to find the most distinctive characteristic of the non-Euclidean

CVRP solution to extend Arnold and Sörensen’s work. We generated non-Euclidean

CVRP for eight classes which were different in size, variation of demand, and depot lo-

cation. We proposed the idea of using MDS to overcome the non-Euclidean condition.

To that end, the MDS helped determine the k-dimensional coordinate of nodes in non-

Euclidean CVRP. Therefore, we could treat the non-Euclidean CVRP as Euclidean by

using approximated Euclidean locations and its distance matrix. This allowed us to calcu-

late the solution metrics proposed by Arnold and Sörensen. We followed their definition

of solution metrics S1-S10. However, we did not use S1 due to high computational time.

In addition, we needed to adjust the definition of solution metric S5 to be compatible

with approximated locations which sometimes lie in the higher dimensional space. We

also defined new solution metrics S11 (an average radius per route) and S12 (average

compactness per route by an average distance of each node from its centroid). We cal-

culated the values of the solution metrics of non-Euclidean CVRP and used them for the

statistical learning framework. For each solution metric S2 to S12, we fed them one by

one with all instance metrics I1 to I8 to the decision tree and got an accuracy of prediction

corresponding to the solution metric.

The results from the decision tree showed that S4, S5, and S12 are the top three

solution metrics in terms of prediction accuracy with S5 being the highest. Although

MDS gave us an approximated location and distance matrices, it provided us with results

comparable to Arnold Sörensen’s work in terms of the solution metric which gave the

highest accuracy of prediction. Moreover, our solution metric S12 performed better than

S7 and S8 which were also average compactness of routes. Although the solution metric

S11 did not stand out in performance, it gave much higher accuracy of prediction com-

44

pared to S9 (average depth of routes) which was similar to S11. In addition, the statistical

Wilcoxon signed rank test of the difference between the accuracy of prediction obtained

by S5 and others suggested that S4 (average distance between routes) and S12 also gave

a comparable performance to that of S5. Therefore, the most distinctive solution metrics

could be S4, S5, and S12.

To obtain an insight into non-optimal and near-optimal characteristics using the

influential solution metrics, we selected S4, S5, and S12 to make decision rules by feeding

them to the decision tree again. At this time, we extracted a decision rule of non-Euclidean

CVRP solutions from the leaf node with the minimum Gini index of non-optimal and near-

optimal solutions. From the rules, non-optimal solutions generally have small S4 and high

S5 and S12. This could be implied that non-optimal solutions have wide routes, are less

compact (not compressed to the centroid), and there is a lot of overlap between routes.

These were the opposite of the rules of near-optimal solutions. In addition, the rules

covered up to 37% of total non-optimal solutions and 39% of total near-optimal solutions.

These decision rules are specific knowledge that can be used to guide a local search to a

promising area.

This study can still be improved in many aspects. In fact, the most important key

of this study is MDS. The more we can improve the outcome of MDS, the better results

for our work can be. In addition, if there exists a method to replace MDS which preserves

the paired-distance ordering in the new distance matrix, our results will have a much

more impact. Developing such a method could be interesting and challenging research

work. Moreover, the distance matrix with non-Euclidean distance other than Manhattan

distance should also be explored since Manhattan distance is not enough to represent

real-world problems. It would be interesting to see if real-world datasets would yield the

same results. Furthermore, the application of the outcome of this study can be further

explored by applying our most solution metric to the guided local search similar to Arnold

and Sörensen’s other work [2]. The study adopted the most distinctive characteristic

and applied it in their modified GLS which give remarkable results in their large-sized

Euclidean CVRP (up to 10,000 nodes). Although our work is similar to theirs, we cannot

45

do as they did directly since we consider the problem based on the approximation. We

should always realize that our current method is an approximation under the new space

from MDS. To apply any knowledge from the work in a guided search, we first must

transform them back to the original space. The transformation step is also challenging in

its own right.

REFERENCES

[1] F. Arnold and K. Sörensen, “What makes a vrp solution good? the generation

of problem-specific knowledge for heuristics,” Computers & Operations Research,

vol. 106, pp. 280–288, 2019.

[2] F. Arnold, M. Gendreau, and K. Sörensen, “Efficiently solving very large-scale rout-

ing problems,” Computers & operations research, vol. 107, pp. 32–42, 2019.

[3] P. Toth and D. Vigo, Vehicle Routing. Philadelphia, PA: Society for Industrial and

Applied Mathematics, 2014.

[4] S. Irnich, P. Toth, and D. Vigo, Chapter 1: The Family of Vehicle Routing Problems,

pp. 1–33. Society for Industrial and Applied Mathematics, 2014.

[5] F. Semet, P. Toth, and D. Vigo, Chapter 2: Classical Exact Algorithms for the

Capacitated Vehicle Routing Problem, pp. 37–57. Society for Industrial and Applied

Mathematics, 2014.

[6] M. Poggi and E. Uchoa, Chapter 3: New Exact Algorithms for the Capacitated Vehicle

Routing Problem, pp. 59–89. Society for Industrial and Applied Mathematics, 2014.

[7] L. Gilbert, “What you should know about the vehicle routing problem,” Naval Re-

search Logistics (NRL), vol. 54, pp. 811 – 819, 12 2007.

[8] R. Baldacci, E. Hadjiconstantinou, and A. Mingozzi, “An exact algorithm for the

capacitated vehicle routing problem based on a two-commodity network flow formu-

lation,” Operations Research, vol. 52, pp. 723–738, 10 2004.

[9] G. Laporte, S. Ropke, and T. Vidal, Chapter 4: Heuristics for the Vehicle Routing

Problem, pp. 87–116. Society for Industrial and Applied Mathematics, 11 2014.

[10] S. Avdoshin and E. Beresneva, “Constructive heuristics for capacitated vehicle rout-

ing problem: a comparative study,” Proceedings of the Institute for System Program-

ming of the RAS, vol. 31, pp. 145–156, 09 2019.

47

[11] L. Perron and V. Furnon, “Or-tools (version 7.2),” 2019.

[12] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical

Learning: with Applications in R. Springer Texts in Statistics, Springer New York,

2014.

[13] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[14] I. Borg and P. J. F. Groenen, Modern multidimensional scaling: Theory and appli-

cations, 2nd ed. Springer Science + Business Media, Springer New York, 2005.

[15] J. C. Gower, “Principal coordinates analysis,” Wiley StatsRef: Statistics Reference

Online, pp. 1–7, 2014.

[16] R. Jussi, K. Tommi, and M. Nysret, “Feature extractors for describing vehicle routing

problem instances,” OASICS; 50, pp. 1–13, 2016.

[17] A. Diniz-Filho, T. Soares, V. L. Jacqueline Lima, Ricardo Dobrovolski, M. Telles,

T. Rangel, and L. Bini, “Mantel test in population genetics,” Genetics and molecular

biology, vol. 36, pp. 475–485, 2013.

[18] R. Ballou, H. Rahardja, and N. Sakai, “Selected country circuity factors for road

travel distance estimation,” Transportation Research Part A: Policy and Practice,

vol. 36, no. 9, pp. 843–848, 2002.

[19] B. Boyacı, T. H. Dang, and A. N. Letchford, “Vehicle routing on road networks:

How good is euclidean approximation?,” Computers & Operations Research, vol. 129,

p. 105197, 2021.

[20] L. Liberti and C. Lavor, Euclidean distance geometry, vol. 133. Springer, 2017.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in

Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

APPENDIX

49

APPENDIX A : Local search operators in CVRP

• Intra-route operator.

– 2-OPT operator

(a) before performing 2-OPT (b) after performing 2-OPT

Figure 1: An example of 2-OPT operator

• Inter-route operator

– 2-OPT* operator

(a) before performing 2-OPT* (b) after performing 2-OPT*

Figure 2: An example of 2-OPT* operator

50

– SWAP operator

(a) before performing SWAP (b) after performing SWAP

Figure 3: An example of SWAP operator

– RELOCATE operator

(a) before performing RELOCATE (b) after performing RELOCATE

Figure 4: An example of RELOCATE operator

51

APPENDIX B : Solution metrics and CVRP solutions

Some solution metrics can reflect a geometrical appearance of each route in the

solution such as the solution metric S5 and S6 which can be implied to a width of each

route. The figures below show a component for calculating the solution metric S5 and

the solution metric S6.

(a) Components for calculating S5 (b) Components for calculating S6

Figure 5: Visualization of solution metrics S5 and S6

(a) Solution-A (b) Solution-B (c) Solution-C

Figure 6: Visualization of different solutions of the same CVRP

We genarate a Euclidean CVRP instance and determine three solutions which are

different in an appearance as the following.

52

• Solution-A consists of narrow routes and n

• Solution-B consists of wide routes

• Solution-C consists of overlapped routes

The solution metrics S1 to S12 of each solution is calculated in Table 1. The cost

of each solution metrics is also included in the table.

Metrics solution-A solution-B solution-C

S1 0 0.25 1.75

S2 35.25 56.50 63.0

S3 20.00 28.75 29.37

S4 38.40 31.97 22.71

S5 13.73 55.86 63.73

S6 0.54 1.58 2.30

S7 4.11 19.28 27.17

S8 0.18 0.72 1.03

S9 52.00 50.500 48.25

S10 0.90 0.87 0.90

S11 29.96 35.57 38.59

S12 28.68 33.79 33.5

COST 130 145 174

Table 1: Comparison between CVRP solutions and solution metrics

53

APPENDIX C : Demographic information by CVRP attributes

We draw boxplots to show overall and distribution of attribute values of the gener-

ated non-Euclidean CVRP instances. The plots are as follows:

• the number of nodes

(a) The number of nodes of SMALL in-
stances (b) The number of nodes of BIG instances

Figure 7: Boxplots of number of nodes of SMALL and BIG instances

• the number of routes

54

(a) The number of routes of solution
in SMALL instances

(b) The number of routes of solution
in BIG instances

Figure 8: Boxplots of number routes of solutions in SMALL and BIG instances

• total demand

(a) Total demand of SMALL instances (b) Total demand of BIG instances

Figure 9: Boxplots of total demand of SMALL and BIG instances

• difference of cost between near-optimal and non-optimal solutions

• capacity utilization

capacity utilization of solution =
total demand

#routes× truck capacity (1)

55

(a) percentage of difference between
cost of non-optimal solution and near-
optimal solution in SMALL instances

(b) percentage of difference between
cost of non-optimal solution and near-
optimal solution in BIG instances

Figure 10: Boxplot of difference between cost of non and near optimal solution

(a) Capacity utilization of SMALL in-
stances

(b) Capacity utilization of BIG in-
stances

Figure 11: Boxplots of capacity utilization of SMALL and BIG instances

APPENDIX D : Demographic information of outcome of MDS

• The number of dimension of approximated Euclidean locations

• Frobenius norm of difference between an approximated Euclidean distance matrix

and non-Euclidean distance matrix

• Mantel correlation coefficient between an approximated Euclidean distance matrix

and non-Euclidean distance matrix

56

(a) #dimension in SMALL instances (b) #dimension in BIG instances

Figure 12: Boxplots of the number of dimension of approximated Euclidean locations
in SMALL and BIG instances

(a) Frobenius norm from MDS step of
SMALL instances

(b) Frobenius norm from MDS step of
BIG instances

Figure 13: Boxplots of Frobenius norm from MDS step in SMALL and BIG instances

APPENDIX E : Overview of solution metrics

57

(a) Mantel correlation coef. from
MDS step of SMALL instances

(b) Mantel correlation coef. from
MDS step of BIG instances

Figure 14: Boxplots of Mantel correlation coefficient from MDS step of BIG instances
of SMALL and BIG instances

58

(a) S2 of non-optimal solution in
SMALL

(b) S2 of near-optimal solution in
SMALL

(c) S2 of non-optimal solution in BIG (d) S2 of near-optimal solution in BIG

Figure 15: Boxplots of S2 by size of instance and label of solution

59

(a) S3 of non-optimal solution in
SMALL

(b) S3 of near-optimal solution in
SMALL

(c) S3 of non-optimal solution in BIG (d) S3 of near-optimal solution in BIG

Figure 16: Boxplots of S3 by size of instance and label of solution

60

(a) S4 of non-optimal solution in
SMALL

(b) S4 of near-optimal solution in
SMALL

(c) S4 of non-optimal solution in BIG (d) S4 of near-optimal solution in BIG

Figure 17: Boxplots of S4 by size of instance and label of solution

61

(a) S5 of non-optimal solution in
SMALL

(b) S5 of near-optimal solution in
SMALL

(c) S5 of non-optimal solution in BIG (d) S5 of near-optimal solution in BIG

Figure 18: Boxplots of S5 by size of instance and label of solution

62

(a) S6 of non-optimal solution in
SMALL

(b) S6 of near-optimal solution in
SMALL

(c) S6 of non-optimal solution in BIG (d) S6 of near-optimal solution in BIG

Figure 19: Boxplots of S6 by size of instance and label of solution

63

(a) S7 of non-optimal solution in
SMALL

(b) S7 of near-optimal solution in
SMALL

(c) S7 of non-optimal solution in BIG (d) S7 of near-optimal solution in BIG

Figure 20: Boxplots of S7 by size of instance and label of solution

64

(a) S8 of non-optimal solution in
SMALL

(b) S8 of near-optimal solution in
SMALL

(c) S8 of non-optimal solution in BIG (d) S8 of near-optimal solution in BIG

Figure 21: Boxplots of S8 by size of instance and label of solution

65

(a) S9 of non-optimal solution in
SMALL

(b) S9 of near-optimal solution in
SMALL

(c) S9 of non-optimal solution in BIG (d) S9 of near-optimal solution in BIG

Figure 22: Boxplots of S9 by size of instance and label of solution

66

(a) S10 of non-optimal solution in
SMALL

(b) S10 of near-optimal solution in
SMALL

(c) S10 of non-optimal solution in BIG
(d) S10 of near-optimal solution in
BIG

Figure 23: Boxplots of S10 by size of instance and label of solution

67

(a) S11 of non-optimal solution in
SMALL

(b) S11 of near-optimal solution in
SMALL

(c) S11 of non-optimal solution in BIG
(d) S11 of near-optimal solution in
BIG

Figure 24: Boxplots of S11 by size of instance and label of solution

68

(a) S12 of non-optimal solution in
SMALL

(b) S12 of near-optimal solution in
SMALL

(c) S12 of non-optimal solution in BIG
(d) S12 of near-optimal solution in
BIG

Figure 25: Boxplots of S12 by size of instance and label of solution

69

BIOGRAPHY

Name MR. Piyabut Inbunsong

Date of Birth March 5, 1997

Place of Birth Lampang, Thailand

Educations B.Sc. (Mathematics), Chiang Mai University, 2018

Scholarships Development and Promotion of Science and Technology Talents

Project (DPST), Institute of the Promotion of Teaching Science

and Technology (IPST)

Publications

• Piyabut, I & Boonyarit, I 2022, ‘Identifying the most distinctive characteristics of a

good solution for non-Euclidean CVRP using statistical learning model’, Operations

Research Network 2022 Conference, Songkla, Thailand, 16-18 March 2022, pp. 176-

182.

