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This study applies reinforcement learning to credit scoring by using the 

logistic bandit framework. The credit scoring and the credit underwriting are modeled 

into a single sequential decision problem where the credit underwriter takes a 

sequence of actions over an indefinite number of time steps. The traditional credit 

scoring approach considers the model construction separately from the underwriting 

process. This approach is identified as a greedy algorithm in the reinforcement 

learning literature, which is commonly believed to be inferior to an efficient 

reinforcement learning approach such as Thompson sampling. This is true under the 

simple setting, i.e., granting credit to a single borrower per action while the pool of 

the borrowers is fixed. However, under the more realistic scenario where these two 

conditions are relaxed, the greedy approach can outperform Thompson sampling 

since the greedy algorithm does not commit too early to an inferior action as it does 

in the simple setting. Still, the efficient exploration feature of Thompson sampling is 

beneficial. When the borrower characteristics are captured by a large number of 

features, the exploration mechanism enables Thompson sampling to outperform the 

greedy algorithm. The results from the simulation study permit a deeper 

understanding of the reinforcement learning approaches towards the logistic bandits, 

especially in the setting of credit scoring and credit underwriting processes. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Background and Rationale 

Credit risk is an uncertainty regarding whether the credit condition of a 

borrower worsens to a degree that the borrower could not repay the debt in a full amount. 

If a borrower defaults on a loan, the lender has to write off all or most of remaining 

balances, especially when the loan is unsecured. Compared with other types of risk, i.e. 

market risk, liquidity risk and operational risk, credit risk is the most important factor 

in deciding how loan should be valued. (Phillips, 2018) In the context of credit risk, 

three quantities need to be considered, i.e. probability of non-default, loss given default 

and exposure at default. However, the most important quantity is the probability of non-

default, defined as the probability that a borrower would pay back the loan amount in 

full. In the context of individual borrowers, one main reason of defaulting on loan is 

bad individual decision in applying for a loan or financial mismanagement after a loan 

is taken. To estimate the probability of non-default, modern approaches assume that the 

default is mainly due to poor individual decisions, and such history tends to repeat itself. 

(Phillips, 2018) This implies that there are variables on each individual which could 

explain why some people have higher non-default probabilities than others.  

There exist adverse selection and moral hazard problems between borrowers 

and lenders. Besides, it is extremely costly to manually screen each borrower and to 

closely monitor the borrower whom the loan has been granted to. Therefore, there have 

been a lot of attempts in developing an automated credit scoring model which predicts 

non-default probabilities given individual attributes. One of the most widely used credit 

scoring models is logistic regression, where the dependent variable, i.e. non-default 

indicator variable, is a non-linear function of individual features. The logistic regression 

could provide a relatively simple explanation why the loan was denied. Due to its 

tractability and convenience in inference, the logistic regression is used in most local 

banks in the Czech and Slovak Republics. (Vojtek & Koèenda, 2006) Even though 

several advanced models outperform logistic regression, the logistic regression is still 

considered the industry standard for banks today. (Lessmann et al., 2015) 
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Logistic regression belongs to the class of supervised machine learning models. 

In order to collect enough data for training such a model, lenders have to face credit 

risk, and incur financial losses by collecting the labels of default borrowers. If a lender 

tries to avoid such an exposure by collecting just a few observations, the estimated 

model would have a high variance problem, called overfitting.  In the opposite, if a 

lender collects too many observations, the improvement in the performance may not 

justify the financial losses from granting loan to default borrowers. To address the data 

acquisition cost in the model estimation process, reinforcement learning is proposed. In 

a reinforcement learning framework, an agent interacts with the environment several 

times to achieve some objective. (Sutton & Barto, 2018) In the credit scoring setting, 

an agent or lender chooses whom it should lend to, and feedbacks from such borrowers, 

either default or non-default, are returned to the agent to make this decision again in the 

next period. 

The framework used in this study is the logistic bandit framework, which is a 

reinforcement learning framework that models non-default probabilities by the logistic 

regression. In this framework, there are a certain number of borrowers who apply for 

loans, and a reinforcement learning agent has to select a small number of borrowers 

whom credit would be granted to. A traditional credit scoring approach considers the 

model estimation process separately from the underwriting. This approach is identified 

as a greedy algorithm in the reinforcement learning literature, which is known to be 

suboptimal because it lacks an environment exploration. (Sutton & Barto, 2018) To 

enable an efficient learning, the agent has to explore by getting more information about 

the environment to improve model estimates while exploiting the information it has 

already gotten. One algorithm to address exploration in the greedy algorithm is a slight 

variation called epsilon-greedy. (Sutton & Barto, 2018) According to Russo et al. 

(2018), an even more efficient algorithm is Thompson sampling algorithm where the 

model estimate is sampled from posterior distribution. If an agent could directly sample 

an observation from the posterior distribution, Thompson sampling enables the agent 

to learn faster than epsilon-greedy. (Russo et al., 2018) However, since a direct 

sampling is not available in the logistic bandit framework, two algorithms to 
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approximate posterior sampling are used in this study, i.e. Laplace approximation and 

Langevin Monte Carlo Markov Chain (Langevin MCMC). 

Many studies have performed comparisons on automated credit scoring systems 

in the form of machine learning classifiers using a fixed set of observations from 

datasets such as Vojtek and Koèenda (2006) and Lessmann et al. (2015). The limitation 

is that the model construction is considered separately from the underwriting process. 

Many studies have addressed the exploration problem in the logistic bandit framework 

such as Zhang et al. (2016), Dumitrascu et al. (2018) and Faury et al. (2020). The 

motivations of these studies are based on the recommender system and the online 

advertising, where an action is choosing one out of all possible products, and the set of 

products is fixed in every time step. However, in credit scoring, credit is often granted 

to multiple borrowers, and borrowers are not the same group of people in every time 

step. By allowing borrowers to be renewed from a population distribution, 

reinforcement learning would consider this as resampling an action set. 

This study combines the credit scoring and the credit underwriting into a single 

sequential decision process, modelled by a logistic bandit framework. The unique 

characteristic of this logistic bandit model, which makes it different from traditional 

logistic bandit model, is that the actions are not fixed, but are randomly chosen from a 

population distribution in every time step. Different reinforcement learning algorithms 

are applied to the logistic bandit without and with sampled actions, and their 

performances are investigated. This study would provide a deeper understanding in 

reinforcement learning towards the logistic bandits, especially in credit scoring during 

credit underwriting processes. 

 

1.2 Objectives 

To set a logistic bandit framework for credit scoring and credit underwriting 

process and to evaluate the performances of different reinforcement learning 

algorithms under this framework 
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1.3 Scope of Study 

The algorithms investigated in this study include the greedy algorithm, the 

epsilon-greedy algorithm (the probability of exploration 𝜀 = 0.05), and Thompson 

Sampling, where the approximation algorithms are Laplace approximation and 

Langevin Monte Carlo Markov Chain. The performances of each algorithm are 

calculated using reward and regret in 250 time steps on 100 trials with the number of 

dimensions 𝑝 = 2, 10, 20 under the following four scenarios. 

1) An agent selects a single borrower, and the pool of borrowers is fixed. (Simple 

Setting) 

2) An agent selects a single borrower, and the pool of borrowers is renewed under 

the same distribution after each time step. 

3) An agent selects multiple (10) borrowers, and the pool of borrowers is fixed. 

4) An agent selects multiple (10) borrowers, and the pool of borrowers is renewed 

under the same distribution after each time step. (Credit Scoring Setting) 

 

1.4 Expected Benefits 

A more efficient credit scoring and credit underwriting process is created under 

the reinforcement learning framework 
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CHAPTER II  

RELATED WORKS 

 

2.1 Logistic Regression 

Logistic regression is a generalized linear model that attempts to model the 

probability that an observation falls into either of two classes using a linear combination 

of individual features, shown in Equation (1). 

 
Pr(𝑦 = 1|𝑋 = 𝑥) =

1

1 + exp⁡(−𝛽0 − 𝛽1𝑥1 −⋯− 𝛽𝑝𝑥𝑝)
 

(1) 

The model is fit via maximum likelihood estimation (MLE), where log 

likelihood of 𝑁 observations 𝑙(𝛽) can be written as Equation (2). 

 

𝑙(𝛽) =∑{𝑦𝑖𝛽
𝑇𝑥𝑖 − log(1 + 𝑒

𝛽𝑇𝑥𝑖)}

𝑁

𝑖=1

 

(2) 

Setting the first-derivative of log-likelihood 𝑙(𝛽) with respect to 𝛽 equal to zero, 

the result would be a system of non-linear equations in 𝛽. According to Hastie et al. 

(2009), to solve such a system, a common approach is to use the Newton-Raphson 

algorithm, which uses a Hessian matrix of log-likelihood with respect to 𝛽 . The 

estimate of 𝛽, i.e. 𝛽̂, is updated repeatedly using Newton step, and this algorithm is 

called iteratively reweighted least squares (IRLS). Since the log-likelihood of logistic 

regression is concave, the algorithm would typically converge to the optimal value, and 

𝛽̂ = 0 is a good starting point for IRLS in this setting. (Hastie et al., 2009) 

 

2.2 Bernoulli Bandit 

This section presents the Bernoulli Bandit example from Russo et al. (2018).  

An agent is faced with three coins with probabilities of turning heads, i.e. 𝑝1, 𝑝2, 𝑝3 

which are unknown to the agent. In each time step, the agent selects one coin, and 

observes the tossing outcome in the next time step. The agent has to choose the coin 

with the highest probability turning head by repeatedly doing this several times. The 

objective is to maximize the cumulative rewards. The reinforcement learning 
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environment consists of an observation set, an action set and observation probabilities: 

ℇ = (𝑂, 𝐴, 𝜌) defined as follows. 

1) Action set specifies which coin would be chosen: 𝐴 = {1,2,3} 

2) Observation set specifies all possible outcomes, either head (1) or tail (0): 

𝑂 = {0,1} 

3) Observation probabilities specify the probability of a coin turning head given 

history and action: 𝜌(1|𝐻𝑡, 𝐴𝑡) = 𝑃(𝑂𝑡+1 = 1|𝐻𝑡, 𝐴𝑡) = 𝑝𝐴𝑡  

To measure the performance of an algorithm, a simple method is to give a reward 

to the agent, and observe the reward as time step progresses. (Sutton & Barto, 2018) In 

Bernoulli bandit, a reward (𝑅𝑡+1) is equal to an outcome (𝑂𝑡+1). Over several trials, 

the result would be summarized using an average reward. 

In an online learning, the performance is measured using regret. Regret is defined 

as the difference between expected reward of an optimal action and expected reward of 

the selected action. (Russo et al., 2018) In this setting, the regret from choosing an 

action 𝐴𝑡 is displayed in Equation (3). 

 𝑟𝑒𝑔𝑟𝑒𝑡(𝑡) = max
𝑎∈𝐴

𝑝𝑎 − 𝑝𝐴𝑡 (3) 

If the agent chooses the optimal action, the regret would be equal to zero. 

Otherwise, regret would be positive. Similar to rewards, the result would be 

summarized using an average regret over simulation trials. 

According to Sutton and Barto (2018), there is a trade-off between exploration 

and exploitation. Exploitation is when the current information is used to a full extent in 

order to select an action. Exploration is when an action with limited information is 

chosen in order to improve the estimate of how good that action actually is. Exploitation 

would maximize the reward in one step while exploration would compromise short-run 

reward in order to get large cumulative reward in the long-run. (Sutton & Barto, 2018) 

Since exploration and exploitation could not be done at the same time, Sutton and Barto 

(2018) concluded that there is a trade-off between these two.  
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(a)                                                                      (b) 

 

(c)                                                                      (d) 

Figure 1. Performance comparisons on Bernoulli bandit 

 

Four algorithms are used to select a coin, i.e. greedy, epsilon-greedy, Thompson 

Sampling (TS), and Upper Confidence Bound (UCB) illustrated in Figure 1. The greedy 

algorithm chooses the coin which maximizes the observed probability of turning head. 

According to Figure 1 (a) and (b), the greedy algorithm commits too early to just a few 

observations it had, and has not done any more explorations after a few time steps. This 

algorithm results in the lowest cumulative reward and the highest cumulative regret 

among all four algorithms in Figure 1 (c) and (d). A slight modification of greedy 

algorithm is the epsilon-greedy algorithm (Sutton & Barto, 2018), with a small 

probability to select one of three coins with an equal probability. The performance of 

this algorithm improves as the cumulative reward is higher and cumulative regret is 

lower in Figure 1 (c) and (d). However, the problem is that this algorithm does not 

efficiently explore the environment as it selects an action with an equal probability, 

regardless whether the action was actually a good action to explore. Two algorithms to 

solve such a problem are Thompson Sampling (TS) and Upper Confidence Bound 

(UCB). The TS chooses a coin by drawing the probability of turning head from a 

distribution, and selecting the coin with the highest such probability. The UCB 
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estimates the upper bound of the probability that each coin would turn head, and selects 

the coin with the highest such probability. In contrast to epsilon-greedy, both TS and 

UCB would spend efforts only on the coins where useful information could be obtained. 

(Russo et al., 2018) Therefore, both UCB and TS outperform epsilon-greedy due to 

higher cumulative rewards and lower cumulative regrets, shown in Figure 1 (c) and (d). 

 

 

(a)                                                                      (b) 

 

(c)                                                                      (d) 

Figure 2. Performances of epsilon-greedy (𝜀 = 0.01,0.05,0.1) on Bernoulli bandit 

 

Regarding the choices of epsilon ( 𝜀 ) in the epsilon-greedy algorithm on 

Bernoulli Bandit, the performances on the algorithm with 𝜀 = 0.01,0.05,0.1  are 

displayed in Figure 2. According to Figure 2 (a) and (b), small epsilon (0.01) results in 

the lowest per-period reward and the highest per-period regret. Even though large 

epsilon (0.1) triggers the lowest per-period regret during early time steps, its per-period 

regret becomes larger than the epsilon-greedy with epsilon of 0.05 in later time steps, 

shown in Figure 2 (b). Heavy exploration of epsilon 0.1 is beneficial at the beginning; 

however, once it is clear which coin yields the highest expected reward, the heavy 

exploration would become wasteful. Therefore, choosing epsilon (𝜀) in epsilon-greedy 
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algorithm involves a trade-off between exploration and exploitation. Still, with any 

levels of 𝜀, the epsilon-greedy algorithm is inferior to both TS and UCB, which are 

efficient reinforcement learning algorithms in Figure 2 (d). 

 

2.3 Logistic Bandit 

In the logistic bandit framework, there are a certain number of possible actions 

that an agent can select. By observing the features associated with each action, an agent 

has to select the action that it estimates as the optimal one. In the next time step, the 

agent could observe the outcomes associated with the selected action. Such outcomes 

and features associated with the selected action would become the additional 

information that the agent could incorporate in order to select an action again. 

Choosing a single action among all possible ones could be treated as selecting 

one of the coins in Bernoulli bandit. However, when the number of actions is very large, 

the problem will become difficult. (Zhang et al., 2016) Even Thompson sampling 

algorithm that is relatively good in exploration would suffer from having high regrets 

for a large number of time steps. Based on Zhang et al. (2016), one common approach 

to address this problem is using structural properties of reward function to build an 

efficient learning algorithm. The logistic bandit framework extends from Bernoulli 

bandit by incorporating generalization across actions. The generalization enables the 

information gained from selecting one action to be leveraged upon other actions. (Russo 

et al., 2018) 

Similar to Logistic regression, the main feature of the logistic bandit framework 

is that an agent would get a binary feedback from environment. Since this main feature 

appears in a number of applications, in addition to Thompson Sampling (TS) from 

Russo et al. (2018), a number of algorithms have been developed to allow an efficient 

exploration by the agent; for example, OL2M from Zhang et al. (2016), PG-TS from 

Dumitrascu et al. (2018), Logistic-UCB from Faury et al. (2020) and stochastic gradient 

descent with confidence ball strategy from Wang et al. (2017). However, these 

algorithms are based on Upper Confidence Bound strategy, except PG-TS which is 

based on Gibbs sampling, and they belong to different classes of algorithms from 
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Thompson Sampling in Russo et al. (2018). Therefore, they are not included in this 

study. 

In this study, the logistic bandit is generalized to accommodate actions of 

selecting multiple borrowers and a renewed pool of borrowers. In reinforcement 

learning, selecting multiple borrowers means the number of actions is very large, and 

the renewed pool of borrowers means that actions are sampled. 

 

2.4 Greedy Algorithm 

In the setting with generalization across actions, Russo et al. (2018) has 

proposed the greedy algorithm that incorporates the generalization. According to Sutton 

and Barto (2018), the greedy algorithm will exploit all the information that the agent 

has collected to maximize the immediate reward without considering an exploration. 

This concept can be shown in Equation (4), where 𝑄𝑡(𝑎) is the estimated value of an 

action 𝑎, and 𝑁𝑡(𝑎) is the number of time steps that the agent has chosen to take an 

action 𝑎. 

 𝐴𝑡 = argmax
𝑎∈𝐴

𝑄𝑡(𝑎) = argmax
𝑎∈𝐴

𝑅1+𝑅2+⋯+𝑅𝑁𝑡(𝑎)

𝑁𝑡(𝑎)
  (4) 

Hence, selecting 𝑘  borrowers resulting in the highest estimated reward is 

equivalent to finding the estimate 𝛽̂ that maximizes the posterior, given the history 𝐻𝑡, 

and using such estimated parameter 𝛽̂ to select 𝑘 borrowers with the highest estimated 

non-default probabilities. Then, the borrowing outcomes that the agent gets from the 

environment would be used to update the posterior. This is very similar to the greedy 

algorithm outlined in Russo et al. (2018).  

The epsilon-greedy algorithm, a slight variation of greedy, allows an 

exploration. With probability of exploration 𝜀, the algorithm could select 𝑘 borrowers 

randomly from the pool of 𝑛 borrowers where 𝑘 < 𝑛. This is equivalent to choosing an 

action from all possible actions randomly with equal probabilities. (Sutton & Barto, 

2018) With probability 1 − 𝜀, the algorithm estimates 𝛽̂ that maximizes such posterior, 

and selects 𝑘 borrowers with the highest estimated non-default probabilities. 
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2.5 Thompson Sampling 

According to Russo et al. (2018), Thompson sampling algorithm samples a 

parameter from a certain distribution, and the parameter is used to select the action that 

maximizes the estimated reward. Specifically, the agent starts with a prior distribution 

of the parameter 𝛽̂. After 𝛽̂ is sampled from this distribution, the estimated function is 

used to infer the probabilities of each individual falling into each class. Such estimates 

are used to select the action that would maximize the agent reward. In the next time 

step, the borrowing outcomes, together with features of selected borrowers, are used to 

update the posterior distribution of 𝛽̂. (Russo et al., 2018) In other words, the estimated 

parameter 𝛽̂ is updated using Bayes’ rule. (Dumitrascu et al., 2018) 

According to Russo et al. (2018), when posterior and prior are not conjugate 

distributions, an exact Bayesian inference would be difficult. To solve this problem, 

approximation methods are needed. In the logistic bandit setting, the functional form of 

logistic regression results in a computationally intractable posterior, which makes the 

implementation of Thompson sampling in this framework challenging. (Dumitrascu et 

al., 2018) In the following sections, two approximation algorithms are presented, i.e. 

Laplace approximation and Langevin MCMC. 

 

2.6 Laplace Approximation 

According to Gamerman and Lopes (2006), given the posterior 𝐿(𝛽) and its log 

transformation 𝑙(𝛽), Laplace approximation is based on a Taylor series expansion up 

until the second order around the presumably unique mode 𝑚, displayed in Equation 

(5), where 𝑅(𝛽)  contains the third and above order, thus not considered in the 

approximation. 

 𝑙(𝛽) = 𝑙(𝑚) + [
𝜕𝑙(𝑚)

𝜕𝛽
]
𝑇
(𝛽 − 𝑚) −

1

2!
(𝛽 − 𝑚)𝑇 [−

𝜕2 ⁡log𝐿(𝑚)

𝜕𝛽𝜕𝛽𝑇
] (𝛽 − 𝑚) + 𝑅(𝛽)  

(5) 

Since the posterior is often known only up to a proportionality constant, let 

𝐿∗(𝛽) = 𝑘𝐿(𝛽). The Equation (5) can be rewritten as Equation (6), where the constant 

𝑘 is displayed in Equation (7), where 𝑉 = [−
𝜕2 ⁡𝑙𝑜𝑔 𝐿∗(𝑚)

𝜕𝛽𝜕𝛽𝑇
]
−1

, that is negative of the 

inverse Hessian matrix on 𝑙𝑜𝑔 𝐿∗(𝛽) calculated at the mode 𝑚. 
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 𝐿∗(𝛽) ⁡≈ ⁡ 𝐿∗(𝑚) exp {−
1

2
(𝛽 − 𝑚)𝑇 [−

𝜕2 ⁡𝑙𝑜𝑔 𝐿∗(𝑚)

𝜕𝛽𝜕𝛽𝑇
] (𝛽 −𝑚)}  (6) 

 𝑘 = 𝐿∗(𝑚)(2𝜋)𝑑/2|𝑉|1/2 (7) 

Hence, 𝛽  is approximately normally distributed at mode 𝑚  and variance 𝑉 , 

displayed in Equation (8). 

 𝛽⁡~̇⁡𝑁(𝑚, 𝑉) (8) 

A further approximation could be done by replacing 𝑚 with 𝛽̂ and replacing  𝑉 

with 𝐼−1(𝛽̂) where 𝐼(∙) is the observed Fisher information matrix, shown in Equation 

(9).  

 𝛽⁡~̇⁡𝑁 (𝛽̂, 𝐼−1(𝛽̂)) (9) 

For Laplace approximation to work well, the posterior 𝐿 should be close in 

shape to a normal distribution as the approximation would ignore skewness and 

secondary mode. (Gamerman & Lopes, 2006) In the logistic bandit framework, Laplace 

approximation is a suitable algorithm since it could effectively fit a smooth density 

peaked around its mode. (Dumitrascu et al., 2018) 

 

2.7 Metropolis Hasting 

Hastings (1970) has proposed Metropolis Hasting as a sampling method based 

on Markov chain. Consider a distribution 𝜋 simulated using a Markov chain. Define 

transition 𝑝(𝑥𝑖, 𝑥𝑗) that satisfies reversibility condition in Equation (10). 

 𝜋(𝑥𝑖)𝑝(𝑥𝑖, 𝑥𝑗) = 𝜋(𝑥𝑗)𝑝(𝑥𝑗 , 𝑥𝑖) for all (𝑥𝑖, 𝑥𝑗) (10) 

Assume the functional form of 𝑝(𝑥𝑖 , 𝑥𝑗) follows Equation (11). 

 𝑝(𝑥𝑖 , 𝑥𝑗) = 𝑞(𝑥𝑖 , 𝑥𝑗)𝛼(𝑥𝑖, 𝑥𝑗) if 𝑥𝑖 ≠ 𝑥𝑗 (11) 

This implies the probability that the chain remains at 𝑥𝑖⁡follows Equation (12). 

   𝑝(𝑥𝑖, 𝑥𝑖) = 1 − ∫𝑞(𝑥𝑖 , 𝑥𝑗)𝛼(𝑥𝑖𝑥𝑗)𝑑𝑥𝑗 (12) 

In Gamerman and Lopes (2006), 𝑞(𝑥𝑖, 𝑥𝑗) is called a transition kernel, and 

𝛼(𝑥𝑖, 𝑥𝑗) is called an acceptance probability. Hastings (1970) defines the acceptance 

probability in Equation (13). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 13 

 

𝛼(𝑥𝑖 , 𝑥𝑗) = {
1⁡𝑖𝑓

𝜋(𝑥𝑗)𝑞(𝑥𝑗,𝑥𝑖)

𝜋(𝑥𝑖)𝑞(𝑥𝑖,𝑥𝑗)
≥ 1

𝜋(𝑥𝑗)𝑞(𝑥𝑗,𝑥𝑖)

𝜋(𝑥𝑖)𝑞(𝑥𝑖,𝑥𝑗)
⁡𝑖𝑓⁡

𝜋(𝑥𝑗)𝑞(𝑥𝑗,𝑥𝑖)

𝜋(𝑥𝑖)𝑞(𝑥𝑖,𝑥𝑗)
≤ 1

  

(13) 

Based on Gamerman and Lopes (2006), steps to implement Metropolis 

Hasting shall be outlined as follows. 

Algorithm of Metropolis Hasting 

1. Set 𝑖 = 0, and an initial value of 𝑥(0)  

2. Generate a new value 𝑦 from the transition kernel 𝑞(𝑥(𝑖), ∙⁡) 

3. Calculate the acceptance probability 𝛼(𝑥(𝑖), 𝑦), from Equation (13). 

4. The move is accepted with probability 𝛼(𝑥(𝑖), 𝑦). If the move is accepted, 

𝑥(𝑖+1) = 𝑦. Otherwise, the value remains as 𝑥(𝑖+1) = 𝑥(𝑖). 

5. Increment 𝑖 by 1, and repeat steps 2-4 for a number of times. 

 

 

2.8 Langevin Monte Carlo Markov Chain (Langevin MCMC) 

According to Karagulyan (2021), Langevin Monte Carlo sampling algorithm 

involves Euler-Maruyama discretization of the stochastic differential equation to 

Langevin diffusion. The discretization generates a proposal through the transition 

kernel. The proposal generation is displayed in Equation (14), where 𝜖(𝑖) is normally 

distributed with zero mean and unit variance. 

 𝑦 = 𝛽(𝑖) + ℎ
𝜕𝑙(𝛽(𝑖))

𝜕𝛽
+ √2ℎ𝜖(𝑖)  

(14) 

To correct the bias when discretizing, Metropolis-Hasting acceptance probability is 

used to either accept or reject the generated proposal in every number of iterations. 

(Karagulyan, 2021) The acceptance probability from Karagulyan (2021) is displayed in 

Equation (15). 

 

𝛼(𝛽(𝑖), 𝑦) = min

(

  
 
1,

exp(𝑙(𝑦)−(
1

4ℎ
)(‖𝛽(𝑖)−𝑦−ℎ

𝜕𝑙(𝑦)

𝜕𝛽
‖
2

2
))

exp(𝑙(𝛽(𝑖))−(
1

4ℎ
)(‖𝑦−𝛽(𝑖)−ℎ

𝜕𝑙(𝛽(𝑖))

𝜕𝛽
‖
2

2

))

)

  
 

  

(15) 
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The implementation of Langevin MCMC is outlined in Karagulyan (2021) as 

follows. 

Algorithm of Langevin Monte Carlo Markov Chain 

1. Set 𝑖 = 0, step size ℎ, and an initial value of 𝛽(0) 

2. Generate a new value 𝑦 from the proposal generation in Equation (14). 

3. Calculate the acceptance probability 𝛼(𝛽(𝑖), 𝑦), from Equation (15). 

4. The move is accepted with probability 𝛼(𝛽(𝑖), 𝑦). If the move is accepted, 

𝛽(𝑖+1) = 𝑦. Otherwise, the value remains as 𝛽(𝑖+1) = 𝛽(𝑖). 

5. Increment 𝑖 by 1, and repeat steps 2-4 for a number of times. 

 

However, Karagulyan (2021) recommended using Metropolis adjustment step 

in the implementation since this algorithm is extremely sensitive to a fixed step-size ℎ, 

and the chain could even be transient with a relatively large step size. Based on Russo 

et al. (2018), when a fixed step size is used in reinforcement learning, as time step 

progresses, the posterior density would become ill-conditioned, so an extremely small 

step size ℎ  is needed, causing the chain to converge very slowly. The approach 

suggested by Russo et al. (2018) is to adjust a step size using Hessian matrix, shown in 

Equation (16), where 𝐴 is defined as the negative of inverse of the Hessian matrix of 

log likelihood calculated at 𝛽(0),  𝐴 = [−
𝜕2 ⁡𝑙𝑜𝑔 𝐿∗(𝛽(0))

𝜕𝛽𝜕𝛽𝑇
]
−1

. 

 
𝑦 = 𝛽(𝑖) + ℎ𝐴

𝜕𝑙(𝛽(𝑖))

𝜕𝛽
+ √2ℎ𝐴1/2𝜖(𝑖)  

(16) 

Intuitively, whether a step size is adjusted or not, Euler-Maruyama 

discretization directs the move toward the proposal with high probability in 𝐿 using its 

gradient direction. (Wang et al., 2017) 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 

CHAPTER III  

METHODOLOGY 

 

This study models the credit scoring and underwriting into a logistic bandit, and 

conducts the simulation to evaluate reinforcement learning algorithms under different 

settings in the logistic bandit framework. The algorithms in this study include the 

greedy, the epsilon-greedy (the probability of exploration 𝜀 = 0.05) and Thompson 

Sampling, where the approximation algorithms employ Laplace approximation and 

Langevin MCMC.  Performances of each algorithm are calculated using reward and 

regret in 250  time steps averaged over 100  simulation trials with the number of 

dimensions 𝑝 = 2, 10, 20. The details of simulation are outlined in Section 3.1, the 

performance measures are indicated in Section 3.2, the implementations of each 

algorithm are specified in Section 3.3, and the diagram is presented in Section 3.4. 

 

3.1 Logistic Bandit Framework and Simulation Method 

In the traditional logistic bandit, the reinforcement learning agent chooses one 

of all available choices such as products, arms and borrowers. The agent attempts to 

select a single choice that yields the maximum expected reward. Furthermore, the 

action set available to the agent is fixed in every time step in the traditional logistic 

bandit. However, in credit scoring, the agent would grant loans to multiple borrowers, 

meaning that the agent would choose multiple borrowers per action. Also, the lender 

would face different borrowers in every time step, meaning that an action set is renewed. 

The main distinctions between these two settings are summarized in Table 1. 

Table 1. The comparison between traditional logistic bandit and credit scoring 
 

                  Settings 

Features 
Traditional Logistic Bandit Credit Scoring 

Action Specification Choosing a single borrower Choosing multiple borrowers 

Action Set Fixed action set Renewed action set 
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The logistic bandit environment has a ground truth parameter (𝛽) , a 𝑝 -

dimensional vector drawn from a standard normal distribution 𝑁(0, 𝐼𝑝)  with an 

intercept 𝛽0 of 1.5. Once 𝛽 is sampled from this distribution, the values 𝛽, 𝛽0 does not 

change in each time step until the end of a simulation trial. In every time step, there are 

𝑛 borrowers available for loan to be granted (𝑛 = 100), where the feature of each 

borrower (𝑋𝑖) is identically and independently distributed from a standard multivariate 

normal distribution with an identity covariance matrix. The parameter and feature 

vectors are independent. The probability of non-default on each borrower follows the 

logistic function with parameter (𝛽 ) and borrower feature (𝑋𝑖 ). The agent would 

observe a binary outcome {0,1} based on the calculated probability of non-default. If 

the borrower whom agent granted loan to does not default, the agent would get a reward 

or 𝑔𝑎𝑖𝑛. In case of default, the agent would be penalized with 𝑙𝑜𝑠𝑠. In summary, the 

logistic bandit environment consists of a set of observations, a set of actions and 

observation probabilities, i.e. ℇ = (𝑂, 𝐴, 𝜌) outlined as follows. 

1) Action set (𝐴) specifies the borrowers whom loan would be granted, shown in 

Equation (17), where 𝑘 is the number of borrowers that the agent could grant 

loan to. 

 𝐴 = {𝑎: 𝑎 ⊆ {1,2, … , 𝑛}, |𝑎| = 𝑘, 𝑘 < 𝑛}  (17) 

2) Observation set (𝑂) specifies whether each borrower is non-default (1) or 

default (0), shown in Equation (18). 

 𝑂 = {0,1}𝑘  (18) 

3) Observation probabilities specify the probability of borrower 𝑖 being non-

default given history 𝐻𝑡 and action 𝐴𝑡, shown in Equation (19), where 𝑋𝑡,𝑖 is the 

feature of borrower 𝑖 applying for a loan at time 𝑡. 

 Ρ(𝑂𝑡+1,𝑖 = 1|𝐻𝑡, 𝐴𝑡 , ℇ) =
exp⁡(𝛽𝑇𝑋𝑡,𝑖)

1+exp⁡(𝛽𝑇𝑋𝑡,𝑖)
  for 𝑖 = 1, 2, … , 𝑘 and 𝑂𝑡+1,𝑖 are i.i.d. (19) 
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Figure 3. The interaction between agent and environment in logistic bandit framework 

 

The interaction between agent and environment is illustrated in Figure 3. The 

environment is characterized by the ground-truth parameter 𝛽 , which is used to 

generate an outcome 𝑂𝑡+1,𝑖 according to the non-default probability calculated using 

Equation (19). The agent does not observe 𝛽, but could observe borrowers who were 

applying for loan (𝑋𝑡,𝑖). It would have to estimate 𝛽̂ instead, which is used to infer the 

non-default probabilities of all borrowers, and to select 𝑘 borrowers with the highest 

perceived non-default probabilities. Then, the borrowing outcomes of selected 𝑘 

borrowers would be returned to the agent as an additional information that agent would 

use to estimate 𝛽̂ again.  

The simulation is performed in 250 time steps on 100 simulation trials with the 

number of dimensions 𝑝 = 2, 10, 20 under the following four scenarios. 

1) An agent selects a single borrower, and the pool of borrowers is fixed. (Simple 

Setting) 

2) An agent selects a single borrower, and the pool of borrowers is renewed under 

the same distribution after each time step. 

3) An agent selects multiple (10) borrowers, and the pool of borrowers is fixed. 

4) An agent selects multiple (10) borrowers, and the pool of borrowers is renewed 

under the same distribution after each time step. (Credit Scoring Setting) 
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(a)                                                                 (b) 

 

(c)                                                                 (d) 

Figure 4. Histogram of sample average signal-to-noise ratio and sample average non-

default probability under a small (2) and a large (20) number of features 

 

This study evaluates the reinforcement learning algorithms not only on a small 

number of features (𝑝 = 2), but also on a large number of features (𝑝 = 20). To make 

different dimensional settings comparable, the adjustment coefficient √2/𝑝  is 

multiplied with the borrower feature (𝑋𝑡,𝑖). The effects of the adjustment coefficient on 

signal-to-noise ratio and non-default probability are displayed in Figure 4.  Signal-to-

noise ratio is computed for the latent variable model with Logistic distribution using 

the formula in Soch and Allefeld (2018). After the adjustment, the signal-to-noise ratio 

is expected to be the same across different dimensions, and the sample means of signal-

to-noise ratio would be similar, shown in Figure 4 (a) and (b). The sample means of 

non-default probabilities are also similar in both cases, shown in Figure 4 (c) and (d). 

 

3.2 Performance Measures 

The performance measures used in this study are rewards and regrets, following 

Sutton and Barto (2018) and Russo et al. (2018).  
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For the reward, if the borrower whom agent granted loan to does not default (the 

outcome is 1), the agent would get a reward of 0.2. In case of default (the outcome is 

0), the agent would be penalized with a reward of −1. In each of 250 time steps, the 

reward or cumulative reward is summarized by averaging the (cumulative) reward on 

100  simulation trials. According to Rosenberg et al. (2009) and Kneiding and 

Rosenberg (2008), in 2006, the average microfinance loan interest rate was 35% while 

the median interest rate was 26%. In Ethiopia and Sri Lanka, the interest rates were 

lower than 20%. (Kneiding & Rosenberg, 2008) Therefore, 20% interest rate is 

considered sustainable for microfinance loan. Without collaterals, a lender would lose 

the whole principal in case of default. If the number of borrowers whom the loan is 

granted (𝑘) is greater than one, reward is the sum of rewards on each borrower divided 

by 𝑘. 

According to Russo et al. (2018), regret is defined as the difference of maximum 

expected reward over all possible actions and expected reward of the taken action. The 

maximum expected reward is the expectation of reward based on 𝑘 borrowers with the 

highest non-default probabilities, given 𝑔𝑎𝑖𝑛 and 𝑙𝑜𝑠𝑠. The expected reward of the 

taken action is the expectation of reward based on 𝑘  borrowers that the agent has 

selected, given 𝑔𝑎𝑖𝑛  and 𝑙𝑜𝑠𝑠 . This performance measure motivates the use of a 

simulation study because we knew the ground-truth expected reward of each action, 

which is required for the calculation of regret, and the regret is only available via the 

simulation. 

 

3.3 Reinforcement Learning Algorithms 

Because of generalization across actions, the agent can estimate 𝛽̂ in order to 

estimate non-default probabilities of all borrowers in the pool. In this setting, an agent 

starts with prior of a standard normal distribution, indicated in Equation (20). 

Furthermore, the estimated parameter 𝛽̂ is updated through the likelihood of logistic 

function, indicated in Equation (21). 

 𝑓(𝛽̂) =
1

(2𝜋)
𝑝+1
2

exp (−
1

2
𝛽̂𝑇𝛽̂)  (20) 
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𝑓(𝛽̂; 𝑋1, … , 𝑋𝑁, 𝑦1, … , 𝑦𝑁) = ∏ (

exp(𝛽̂𝑇𝑋𝑖)

1+exp(𝛽̂𝑇𝑋𝑖)
)
𝑦𝑖

(
1

1+exp(𝛽̂𝑇𝑋𝑖)
)
1−𝑦𝑖

𝑁
𝑖=1   

(21) 

 Based on Equation (20) and Equation (21), the posterior can be shown as 

Equation (22). 

 𝑓(𝛽̂|𝑋1, … , 𝑋𝑁 , 𝑦1, … , 𝑦𝑁) ∝

exp (−
1

2
𝛽̂𝑇𝛽̂)∏ (

exp(𝛽̂𝑇𝑋𝑖)

1+exp(𝛽̂𝑇𝑋𝑖)
)
𝑦𝑖
(

1

1+exp(𝛽̂𝑇𝑋𝑖)
)
1−𝑦𝑖

𝑁
𝑖=1   

(22) 

For the greedy and the epsilon-greedy algorithm, the agent has to find 𝛽̂ that 

maximizes the posterior in Equation (22). Finding such 𝛽̂ is equivalent to fitting 𝛽̂ to 

the logistic regression with L2 regularization. The implementation details of greedy and 

epsilon-greedy algorithm shall be specified in Algorithm 1, with the probability of 

exploration (𝜀) = 0.05. The choice of 𝜀 determines the trade-off between exploration 

and exploitation. According to Figure 2 (b) in Section 2.2 (Bernoulli bandit), the larger 

value of 𝜀 is, the better performance the algorithm achieved in the early time steps, but 

the algorithm would stay at the higher level of per-period regret in long run. In Bernoulli 

bandit setting, the epsilon-greedy algorithm is inferior to other algorithms with an 

efficient exploration, regardless of the choice of 𝜀. 

 

Algorithm 1: Greedy and Epsilon-Greedy 

1: Input: 𝑛, 𝑘, 𝜀, 𝑡𝑖𝑚𝑒⁡𝑠𝑡𝑒𝑝𝑠, 𝑔𝑎𝑖𝑛, 𝑙𝑜𝑠𝑠, 𝑟𝑒𝑛𝑒𝑤⁡ 

2: Output: 𝑟𝑒𝑤𝑎𝑟𝑑𝑠, 𝑟𝑒𝑔𝑟𝑒𝑡𝑠 

3: 𝑋 ← ∅, 𝑌 ← ∅, 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 ← [ ], 𝑟𝑒𝑔𝑟𝑒𝑡𝑠 ← [ ],𝑤𝑎𝑟𝑚⁡𝑠𝑡𝑎𝑟𝑡 ← 𝑇𝑟𝑢𝑒  

4: Initialize the time-step counter 𝑡 ← 1 

5: while (𝑡 < 𝑡𝑖𝑚𝑒⁡𝑠𝑡𝑒𝑝𝑠): 

6:  Sample 𝑢 from 𝑈𝑛𝑖𝑓(0,1) 

7:  If (𝑤𝑎𝑟𝑚⁡𝑠𝑡𝑎𝑟𝑡 or 𝑢 ≤ 𝜀): choose 𝑘 borrowers from 𝑛 borrowers randomly 

8:  Else: find 𝛽̂ that maximizes the posterior in Equation (22), and use that 𝛽̂ to select 

𝑘 borrowers with the estimated highest non-default probabilities 

9:  Append 𝑟𝑒𝑤𝑎𝑟𝑑𝑠, 𝑟𝑒𝑔𝑟𝑒𝑡𝑠 using the current period reward and regret calculated  

    using 𝑔𝑎𝑖𝑛, 𝑙𝑜𝑠𝑠 

10:  Update the history: 𝑋 ← 𝑋 ∪ {𝑋1,𝑡, … , 𝑋𝑘,𝑡}, 𝑌⁡ ← 𝑌 ∪ {𝑦1,𝑡, … , 𝑦𝑘,𝑡} 

11:  If (𝑌 contains both 0 and 1): 𝑤𝑎𝑟𝑚⁡𝑠𝑡𝑎𝑟𝑡 ← 𝐹𝑎𝑙𝑠𝑒 

12:  If (𝑟𝑒𝑛𝑒𝑤): Resample 𝑝-dimensional features of 𝑛 borrowers 

13:  𝑡 ← 𝑡 + 1  

14: end 
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For Thompson sampling, the algorithm samples an estimated parameter 𝛽̂ from 

the posterior distribution, and its value is used to select the action that maximizes the 

estimated expected reward. Then, the borrowing outcomes and individual features of 𝑘 

selected borrowers are used to update the posterior distribution of 𝛽̂ via Bayes’ rule. 

(Dumitrascu et al., 2018) The implementation details of Thompson sampling shall be 

specified in Algorithm 2. 

 

Algorithm 2: Thompson Sampling 

1: Input: 𝑛, 𝑘, 𝑡𝑖𝑚𝑒⁡𝑠𝑡𝑒𝑝𝑠, 𝑔𝑎𝑖𝑛, 𝑙𝑜𝑠𝑠, 𝑟𝑒𝑛𝑒𝑤⁡ 

2: Output: 𝑟𝑒𝑤𝑎𝑟𝑑𝑠, 𝑟𝑒𝑔𝑟𝑒𝑡𝑠 

3: 𝑋 ← ∅, 𝑌 ← ∅, 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 ← [ ], 𝑟𝑒𝑔𝑟𝑒𝑡𝑠 ← [ ],𝑤𝑎𝑟𝑚⁡𝑠𝑡𝑎𝑟𝑡 ← 𝑇𝑟𝑢𝑒  

4: Initialize the time-step counter 𝑡 ← 1 

5: while (𝑡 < 𝑡𝑖𝑚𝑒⁡𝑠𝑡𝑒𝑝𝑠): 

6:  If (𝑤𝑎𝑟𝑚⁡𝑠𝑡𝑎𝑟𝑡): choose 𝑘 borrowers from 𝑛 borrowers randomly 

7:  Else: Draw 𝛽̂ from the posterior distribution using an approximation algorithm, 

and use that 𝛽̂ to select 𝑘 borrowers with the estimated highest non-

default probabilities 

8:  Append 𝑟𝑒𝑤𝑎𝑟𝑑𝑠, 𝑟𝑒𝑔𝑟𝑒𝑡𝑠 using the current period reward and regret calculated 

using 𝑔𝑎𝑖𝑛, 𝑙𝑜𝑠𝑠 

9:  Update the history: 𝑋 ← 𝑋 ∪ {𝑋1,𝑡, … , 𝑋𝑘,𝑡}, 𝑌⁡ ← 𝑌 ∪ {𝑦1,𝑡, … , 𝑦𝑘,𝑡} 

10:  If (𝑌 contains both 0 and 1): 𝑤𝑎𝑟𝑚⁡𝑠𝑡𝑎𝑟𝑡 ← 𝐹𝑎𝑙𝑠𝑒 

11:  If (𝑟𝑒𝑛𝑒𝑤): Resample 𝑝-dimensional features of 𝑛 borrowers 

12:  𝑡 ← 𝑡 + 1  

13: end 

 

However, if the posterior distribution is not a conjugate of the prior distribution, 

an exact Bayesian inference would be difficult. (Russo et al., 2018) In the logistic bandit 

framework, the functional form of logistic regression results in computationally 

intractable posterior, which makes the application of Thompson sampling in this 

framework challenging. Dumitrascu et al. (2018) To address this problem, an 

approximation method will be used. This study uses Laplace approximation and 

Langevin Monte Carlo Markov Chain algorithm, which are both popular approximation 

algorithms for Thompson sampling.  

Laplace approximation algorithm follows Gamerman and Lopes (2006), where 

the estimated parameter 𝛽̂ is fit using the logistic regression with L2 regularization, 
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similar to Algorithm 1, and covariance matrix is negative of the inverse Hessian matrix 

on 𝑙𝑜𝑔 𝐿∗(𝛽)  (𝐿∗(𝛽) = 𝑘𝐿(𝛽) ) calculated at the estimated 𝛽̂ . The implementation 

details of Laplace approximation shall be specified in Algorithm 3. 

 

Algorithm 3: Laplace Approximation 

1: Input: 𝑋, 𝑌 

2: Output: 𝛽̂ 

3: Let 𝑚𝑜𝑑𝑒 ← 𝛽̂⁡that maximizes the posterior probability in Equation (22), given 

𝑋, 𝑌 

4: Let 𝑐𝑜𝑣 ← the inverse of Fisher information matrix with respect to the posterior 

distribution calculated at 𝑚𝑜𝑑𝑒, given 𝑋, 𝑌 

5: Sample 𝛽̂⁡from the normal distribution: 𝛽̂⁡~𝑁(𝑚𝑜𝑑𝑒, 𝑐𝑜𝑣) 

 

Langevin Monte Carlo Markov Chain consists of a proposal generation and an 

acceptance probability. The proposal generation follows the algorithm with an 

adaptive step size from Russo et al. (2018), which is specified in Equation (23), 

where 𝜖(𝑖)  is normally distributed with zero mean and unit variance, 𝑙(𝛽)  is 

logarithm of posterior, and the adaptive step-size matrix 𝐴 is indicated in Equation 

(24). 

 𝑦 = 𝛽(𝑖) + ℎ𝐴
𝜕𝑙(𝛽(𝑖))

𝜕𝛽
+ √2ℎ𝐴1/2𝜖(𝑖)  

(23) 

 
𝐴 = [−

𝜕2𝑙(𝛽(0))

𝜕𝛽𝜕𝛽𝑇
]
−1

  
(24) 

For the acceptance probability, Metropolis-Hasting acceptance probability from 

Hastings (1970) and Karagulyan (2021) is used to either accept or reject the generated 

proposal in every iteration. By incorporating the adaptive step-size, the acceptance 

probability can be derived as Equation (25). 

 𝛼(𝛽(𝑖), 𝑦) = min (1,
exp⁡(𝑢𝑝𝑝𝑒𝑟)

exp⁡(𝑙𝑜𝑤𝑒𝑟)
)  (25) 

 𝑢𝑝𝑝𝑒𝑟 =  𝑙(𝑦) − (
1

4ℎ
) (𝛽(𝑖) − 𝑦 − ℎ𝐴

𝜕𝑙(𝑦)

𝜕𝛽
)
′
𝐴−1 (𝛽(𝑖) − 𝑦 − ℎ𝐴

𝜕𝑙(𝑦)

𝜕𝛽
)  

 
𝑙𝑜𝑤𝑒𝑟 = 𝑙(𝛽(𝑖)) − (

1

4ℎ
) (𝑦 − 𝛽(𝑖) − ℎ𝐴

𝜕𝑙(𝛽(𝑖))

𝜕𝛽
)
′

𝐴−1 (𝑦 − 𝛽(𝑖) − ℎ𝐴
𝜕𝑙(𝛽(𝑖))

𝜕𝛽
)  

 

The implementation details of Langevin Monte Carlo Markov Chain shall be 

specified in Algorithm 4 with the step size ℎ is 2, and the 𝑛𝑢𝑚⁡𝑖𝑡𝑒𝑟𝑠 are 100. 
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Algorithm 4: Langevin Monte Carlo Markov Chain 

1: Input: 𝑋, 𝑌, ℎ, 𝑛𝑢𝑚⁡𝑖𝑡𝑒𝑟𝑠 

2: Output: 𝛽̂ 

3: Initialize 𝛽(0) ← 𝛽̂⁡that maximizes the posterior probability in Equation (22) given 

𝑋, 𝑌 

4: Initialize the counter 𝑖 ← 1 

5: while (𝑖 < 𝑛𝑢𝑚⁡𝑖𝑡𝑒𝑟𝑠): 

6:  Generate a proposal 𝑦 using the proposal generation in Equations (23-24) 

7:  Calculate the Metropolis-Hasting acceptance probability 𝛼(𝛽(𝑖), 𝑦) in Equation 

(25) 

8:  Sample 𝑢 from 𝑈𝑛𝑖𝑓(0,1) 

9:  If (𝑢 ≤ 𝛼(𝛽(𝑖), 𝑦)): assign 𝛽(𝑖+1) ← 𝑦 

10:  Else: the chain does not move 𝛽(𝑖+1) ← 𝛽(𝑖) 

11:  𝑖 ← 𝑖 + 1  

12: end 

13: Retrieve the last value as the estimated parameter: 𝛽̂ ← 𝛽(𝑖) 
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3.4 Algorithm Flowchart 

The algorithm flowchart of modelling credit scoring and underwriting, and 

evaluating reinforcement learning algorithms under the simulation study is outlined in 

Figure 5. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Algorithm flowchart 
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CHAPTER IV 

 RESULTS 

 

The purpose of this study is to model the credit scoring and underwriting into a 

logistic bandit, and evaluate the performances of four reinforcement learning 

algorithms based on the logistic bandit framework. The algorithms used in this study 

include the greedy, the epsilon-greedy, Thompson sampling with Laplace 

approximation and Thompson sampling with Langevin Monte Carlo Markov Chain. 

The greedy can be deemed as the traditional approach for credit scoring and 

underwriting while Thompson sampling can be deemed as a reinforcement learning 

algorithm that includes an efficient exploration. 

Two performance measures used to evaluate these algorithms are rewards and 

regrets over 250 time steps, averaged on 100 simulation trials under the number of 

dimensions 𝑝 = 2, 10, 20. For rewards, if the borrower did not default on loan, the 

agent would get a reward of 0.2. Otherwise, the agent would get a reward of −1. If 𝑘 

borrowers are granted loans, the reward would be the sum of reward on each of the 

borrower divided by 𝑘. The regret is the difference between the maximum expected 

reward over all possible actions, and the expected reward of the selected action. 

Two performance measures on four reinforcement learning algorithms are 

investigated under the following scenarios.  

1) Scenario 1: The agent selects a single borrower while the pool of borrowers 

is fixed. This is the traditional logistic bandit usually found in literatures discussing the 

logistic bandit framework. 

2) Scenario 2: The agent selects a single borrower while the pool of borrowers 

is renewed after each time step. In credit scoring, lenders would actually find new 

customers applying for a loan. 

3) Scenario 3: The agent selects multiple (10) borrowers while the pool of 

borrowers is fixed. In microfinance or consumer loans, lenders would give small 

amounts of loans to many customers at once. 
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4) Scenario 4: The agent selects multiple (10) borrowers while the pool of 

borrowers is renewed after each time step. This is the credit scoring setting that 

incorporates two modifications which capture the main characteristics of the credit 

scoring and underwriting processes. 

 

4.1 Small Number of Features (𝒑 = 𝟐) 

This section shows the performances of each reinforcement learning algorithm 

when borrower characteristics are captured by a small number of features (𝑝 = 2) 

under the following four scenarios. 

1) Scenario 1: Selecting a Single Borrower without Renewal 

 

(a)                                                                   (b) 

 

(c)                                                                   (d) 

Figure 6. Performance comparisons on two-dimensional features (single borrower 

without renewal) 
 

Figure 6 illustrates the performance of each algorithm when the borrower 

characteristics are captured by a two-dimensional vector, where the setting is that a 

single borrower is selected per action while the pool of borrowers is fixed. The greedy 

algorithm chooses the action based on the parameter which maximizes the posterior, 

which is based on only a few observations in early time steps. According to Figure 6 
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(c) and (d), the greedy performs the worst due to its lowest cumulative reward and its 

highest cumulative regret as the algorithm commits too early to an inferior action. The 

epsilon-greedy algorithm modifies the greedy algorithm by incorporating an 

exploration: with a small chance, the algorithm selects one of all possible actions with 

equal probabilities. The epsilon-greedy algorithm performs better than the greedy 

algorithm; however, its cumulative regret increases in a linear fashion, shown in Figure 

6 (d). Thompson sampling algorithms conduct an efficient exploration by exploring an 

action with limited information. With either Laplace approximation or Langevin 

MCMC, Thompson sampling algorithms perform quite well by achieving high 

cumulative rewards and low cumulative regrets, shown in Figure 6 (c) and (d). Based 

on Figure 6 (d), the cumulative regrets of Thompson sampling are high in early time 

steps due to heavy exploration whereas the cumulative regrets become lower in later 

time steps because the agent has enough information for exploitation. 

 

2) Scenario 2: Selecting a Single Borrower with Renewal 

   

(a)                                                                   (b) 

 

(c)                                                                   (d) 

Figure 7. Performance comparisons on two-dimensional features (single borrower 

with renewal) 
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Figure 7 illustrates the performance of each algorithm when the borrower 

characteristics are captured by a two-dimensional vector, where the setting is that a 

single borrower is selected per action while the pool of borrowers is renewed. The 

epsilon-greedy performs the worst due to its lowest cumulative reward and highest 

cumulative regret, shown in Figure 7 (c) and (d). The algorithm selects an action 

randomly with a small chance in every time step, causing the linear increase in 

cumulative regret, shown in Figure 7 (d). In Figure 7 (c) and (d), Thompson sampling 

algorithms with either approximation method perform better than the epsilon-greedy 

because they conduct an efficient exploration, i.e. heavy exploration in beginning time 

steps, and heavy exploitation in later time steps. Unlike Scenario 1 in Figure 6, the 

greedy algorithm achieves higher cumulative rewards than Thompson sampling with 

Laplace approximation, and the greedy algorithm achieves lower cumulative regrets 

than Thompson sampling algorithms with either approximation method, shown in 

Figure 7 (c) and (d). The result implies that the renewal of borrowers allows the greedy 

algorithm to perform quite well as the algorithm would not commit too early to an 

inferior action. In other words, there is no single inferior borrower for the greedy 

algorithm to commit to since the pool of borrowers is renewed in every time step. In a 

sense, the renewal of the borrower pool enables a kind of exploration into the greedy 

algorithm that otherwise would not explore the action space. 

 

3) Scenario 3: Selecting Multiple (10) Borrowers without Renewal 

 

(a)                                                                   (b) 
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(c)                                                                   (d) 

Figure 8. Performance comparisons on two-dimensional features (multiple borrowers 

without renewal) 

 

Figure 8 illustrates the performance of each algorithm when the borrower 

characteristics are captured by a two-dimensional vector, where the setting is that 

multiple (10) borrowers are selected per action while the pool of borrowers is fixed. In 

Figure 8 (d), the epsilon-greedy performs the worst because of the linear increase in 

cumulative regret, similar to Figure 7 (d). Based on Figure 8 (c) and (d), Thompson 

sampling algorithms with either approximation method perform significantly better 

than the epsilon-greedy in terms of the cumulative rewards and the cumulative regrets 

because of efficient exploration. Unlike Scenario 1 in Figure 6, the greedy algorithm 

achieves higher cumulative rewards and lower cumulative regrets than Thompson 

sampling algorithms with either approximation method, shown in Figure 8 (c) and (d).  

By choosing multiple borrowers per action, the agent has enough information to choose 

the parameter that results in borrowers with the highest non-default probabilities 

without explicitly exploring the action space as Thompson sampling algorithms, shown 

in Figure 8 (a) and (b). 

 

4) Scenario 4: Selecting Multiple (10) Borrowers with Renewal 
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(a)                                                                   (b) 

   

(c)                                                                   (d) 

Figure 9. Performance comparisons on two-dimensional features (multiple borrowers 

with renewal) 
 

Figure 9 illustrates the performance of each algorithm when the borrower 

characteristics are captured by a two-dimensional vector, where the setting is that 

multiple (10) borrowers are selected per action while the pool of borrowers is renewed 

at every time step. In Figure 9 (c) and (d), the epsilon-greedy algorithm performs the 

worst due to the linear increase in the cumulative regret, similar to Figure 7 (d) and 

Figure 8 (d). Thompson sampling algorithms with either approximation method 

performs an efficient exploration, resulting in higher cumulative rewards and lower 

cumulative regrets than the epsilon-greedy, shown in Figure 9 (c) and (d). Unlike 

Scenario 1 in Figure 6, the greedy algorithm could outperform Thompson sampling 

algorithms in terms of cumulative rewards and cumulative regrets, shown in Figure 9 

(c) and (d). In this scenario, the pool of borrowers is renewed, enabling a kind of 

exploration in the greedy algorithm in Scenario 2 whereas the agent could provide loans 

to multiple borrowers per action, resulting in enough information to select borrowers 

by the agent in Scenario 3. These two modifications allow the greedy algorithm to 

outperform Thompson sampling algorithms. 

 

4.2 Medium Number of Features (𝒑 = 𝟏𝟎) 

This section shows the performances of each reinforcement learning algorithm 

when borrower characteristics are captured by a medium number of features (𝑝 = 10) 

under the following four scenarios. 
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1) Scenario 1: Selecting a Single Borrower without Renewal 

 

(a)                                                                   (b) 

   

(c)                                                                   (d) 

Figure 10. Performance comparisons on ten-dimensional features (single borrower 

without renewal) 
 

Figure 10 illustrates the performance of each algorithm when the borrower 

characteristics are captured by a ten-dimensional vector, where the setting is that a 

single borrower is selected per action while the pool of borrowers is fixed. Overall, by 

increasing the number of features used to capture borrower characteristics, per-period 

regrets in later time steps of each algorithm are higher, implying that this setting is more 

difficult for reinforcement learning algorithms, shown in Figure 10 (b). In Figure 10 

(b), per-period regret of the greedy algorithm is still higher than other algorithms, 

similar to Scenario 1 in Figure 6. Thompson sampling algorithm with Langevin MCMC 

performs a heavy exploration before reaching lower per-period regret than the greedy 

algorithm, shown in Figure 10 (b). The number of time steps the algorithm needs to 

perform heavy exploration is higher than Scenario 1 in Figure 6 as the number of 

features capturing borrower characteristics increases from two to ten. Thompson 

sampling with Laplace approximation performs heavy exploration in fewer number of 

time steps than Thompson sampling with Langevin MCMC, resulting in better 

performances in cumulative rewards and cumulative regrets, shown in Figure 10 (c) 
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and (d). The epsilon-greedy algorithm does not conduct heavy exploration, but its per-

period regret is greater than Thompson sampling with Laplace approximation in later 

time steps, shown in Figure 10 (b). This implies that the epsilon-greedy does not 

conduct an efficient exploration, resulting in the linear increase in cumulative regret in 

Figure 10 (d). 

 

2) Scenario 2: Selecting a Single Borrower with Renewal 

 

(a)                                                                   (b) 

 

(c)                                                                   (d) 

Figure 11. Performance comparisons on ten-dimensional features (single borrower 

with renewal) 
 

Figure 11 illustrates the performance of each algorithm when the borrower 

characteristics are captured by a ten-dimensional vector, where the setting is that a 

single borrower is selected per action while the pool of borrowers is renewed in every 

time step. As the number of borrower features increases from two to ten, the setting 

becomes more difficult, and Thompson sampling with Laplace approximation needs to 

perform heavy exploration in a number of time steps before reaching same level of per-

period regret as other algorithms, shown in Figure 11 (c). This results in the lowest 

cumulative regret and the highest cumulative reward of this algorithm in Figure 11 (d). 

As Thompson sampling with Langevin MCMC does not perform such the heavy 
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exploration as Thompson sampling with Laplace approximation, shown in Figure 11 

(b), the algorithm reaches higher cumulative reward and lower cumulative regret, 

shown in Figure 11 (c) and (d). The epsilon-greedy achieves low cumulative regret in 

early time step due to a small chance of exploration in every time step, and its 

cumulative regret increases linearly, resulting in higher cumulative regrets than 

Thompson sampling with Langevin MCMC. Similar to Scenario 2 in Figure 7, the 

renewal of borrower pool allows the greedy algorithm to outperform other algorithms 

in terms of cumulative rewards and cumulative regrets, shown in Figure 11 (c) and (d). 

 

3) Scenario 3: Selecting Multiple (10) Borrowers without Renewal 

   

(a)                                                                   (b) 

   

(c)                                                                   (d) 

Figure 12. Performance comparisons on ten-dimensional features (multiple borrowers 

without renewal) 

 

Figure 12 illustrates the performance of each algorithm when the borrower 

characteristics are captured by a ten-dimensional vector, where the setting is that 

multiple (10) borrowers are selected per action while the pool of borrowers is fixed. In 

Figure 12 (b) and (d), the epsilon-greedy results in the highest cumulative regret as the 

cumulative regret increases linearly due to a small chance of an exploration in every 
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time step. Similar to Scenario 2 in Figure 11, Thompson sampling algorithm with 

Laplace approximation needs to perform quite a heavy exploration in beginning time 

steps, indicated by high per-period regret in Figure 12 (c), but it managed to achieve 

lower cumulative regret than the epsilon-greedy in later time steps, shown in Figure 12 

(d). Because Thompson sampling with Langevin MCMC does not perform such the 

heavy exploration as Thompson sampling with Laplace approximation, the algorithm 

manages to get higher cumulative reward and lower cumulative regret, shown in Figure 

12 (c) and (d). The greedy algorithm achieves the performance close to Thompson 

sampling with Langevin MCMC, shown in Figure 12 (c) and (d). Unlike Scenario 3 in 

Figure 8, as the number of features to capture borrower characteristics is greater, the 

greedy algorithm would face some difficulties in utilizing the same number of 

borrowers in each time step in order to find parameters that could maximize cumulative 

rewards. 

 

4) Scenario 4: Selecting Multiple (10) Borrowers with Renewal 

   

(a)                                                                   (b) 

 

(c)                                                                   (d) 

Figure 13. Performance comparisons on ten-dimensional features (multiple borrowers 

with renewal) 
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Figure 13 illustrates the performance of each algorithm when the borrower 

characteristics are captured by a ten-dimensional vector, where the setting is that 

multiple (10) borrowers are selected per action while the pool of borrowers is renewed 

in every time step. In Figure 13 (b) and (d), the cumulative regret of the epsilon-greedy 

increases linearly, resulting in the worst performance in later time steps. Similar to 

Scenario 2 in Figure 11 and Scenario 3 in Figure 12, Thompson sampling with Laplace 

approximation results in higher per-period regrets in beginning time steps and lower 

cumulative regrets in later time steps due to efficient exploration, shown in Figure 13 

(b) and (d). Compared with Scenario 4 in Figure 9, as the number of borrower features 

is greater, Thompson sampling with Laplace approximation needs to perform a heavier 

exploration in a number of time steps before settling down to lower level of per-period 

regret. Thompson sampling with Langevin MCMC does not conduct quite heavy 

exploration as Thompson sampling with Laplace approximation, resulting in lower 

cumulative regrets, shown in Figure 13 (b) and (d). As Scenario 4 incorporates two 

modifications which allows the greedy algorithm to perform better, the greedy 

algorithm achieves the lowest cumulative regret in Figure 13 (d). Unlike Scenario 4 in 

Figure 9, as the number of borrower features is greater, the gap in cumulative regrets 

between the greedy and Thompson sampling with Langevin MCMC narrows down 

considerably. 

 

4.3 Large Number of Features (𝒑 = 𝟐𝟎) 

This section shows the performances of each reinforcement learning algorithm 

when borrower characteristics are captured by a large number of features (𝑝 = 20) 

under the following four scenarios. 
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1) Scenario 1: Selecting a Single Borrower without Renewal 

     

(a)                                                                   (b) 

     

(c)                                                                   (d) 

Figure 14. Performance comparisons on twenty-dimensional features (single borrower 

without renewal) 
 

Figure 14 illustrates the performance of each algorithm when the borrower 

characteristics are captured by a twenty-dimensional vector, where the setting is that a 

single borrower is selected per action while the pool of borrowers is fixed. Overall, by 

increasing the number of borrower features from ten to twenty, per-period regrets in 

later time steps of each algorithm are higher, indicating that the problem is more 

difficult for reinforcement learning algorithms. The greedy algorithm results in the 

lowest cumulative reward and the highest cumulative regret, similar to Scenario 1 in 

Figure 6 and Figure 10. Thompson sampling with either approximation algorithm 

requires a larger number of time steps to perform efficient exploration than Scenario 1 

in Figure 6 and Figure 10 because of greater number of borrower features. The epsilon-

greedy achieves the highest cumulative reward and the lowest cumulative regret; 

however, the cumulative regret increases linearly as there is a small chance that the 

algorithm performs exploration in every time step, shown in Figure 14 (d). 
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2) Scenario 2: Selecting a Single Borrower with Renewal 

   

(a)                                                                   (b) 

   

(c)                                                                   (d) 

Figure 15. Performance comparisons on twenty-dimensional features (single borrower 

with renewal) 

 

Figure 15 illustrates the performance of each algorithm when the borrower 

characteristics are captured by a twenty-dimensional vector, where the setting is that a 

single borrower is selected per action while the pool of borrowers is renewed in every 

time step. Due to an increase in the borrower features, Thompson sampling with 

Laplace approximation needs to perform heavy exploration in a number of time steps 

before reaching per-period regret comparable to other algorithms. This results in its 

lowest cumulative reward and highest cumulative regret, shown in Figure 15 (c) and 

(d). The epsilon-greedy algorithm performs an exploration with a small probability in 

every time step, resulting in the linear increase in cumulative regret, shown in Figure 

15 (d). Because Thompson sampling with Langevin MCMC does not perform such the 

heavy exploration as Thompson sampling with Laplace approximation in early time 

steps, evident in Figure 15 (b), the algorithm achieves higher cumulative reward and 

lower cumulative regret in Figure 15 (c) and (d). Unlike Scenario 2 in Figure 7 and 

Figure 11, the renewal of borrower pool allows the greedy algorithm to perform better 
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than Scenario 1; however, because of an increase in borrower features, its performance 

is not quite different from Thompson sampling with Langevin MCMC.  

 

3) Scenario 3: Selecting Multiple (10) Borrowers without Renewal 

   

(a)                                                                   (b) 

 

(c)                                                                   (d) 

Figure 16. Performance comparisons on twenty-dimensional features (multiple 

borrowers without renewal) 
 

Figure 16 illustrates the performance of each algorithm when the borrower 

characteristics are captured by a twenty-dimensional vector, where the setting is that 

multiple (10) borrowers are selected per action while the pool of borrowers is fixed. 

The epsilon-greedy has a small chance of an exploration in every time step, resulting in 

the linear increase in the cumulative regret. In Figure 16 (c) and (d), the algorithm 

results in the lowest cumulative reward and the highest cumulative regret. As the 

number of borrower features is greater, Thompson sampling with Laplace 

approximation would perform heavy exploration in a number of time steps before 

achieving comparable per-period regret in later time steps, shown in Figure 16 (b). As 

Thompson sampling with Langevin MCMC does not perform quite heavy exploration 

in early time steps, the algorithm results in higher cumulative reward and lower 

cumulative regret than Thompson sampling with Laplace approximation, shown in 
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Figure 16 (c) and (d). As the number of borrower features is greater than Scenario 3 in 

Figure 8 and Figure 12, Thompson sampling with Langevin MCMC outperforms the 

greedy algorithm. When the number of borrower features increases, with the same 

number of borrowers per action, the greedy algorithm would experience difficulties in 

using such information to find parameters that could generalize well. In this setting, 

Thompson sampling with Langevin MCMC and the greedy algorithm are not much 

different in that Langevin MCMC starts at the mode, which is the parameter that the 

greedy algorithm uses. 

 

4) Scenario 4: Selecting Multiple (10) Borrowers with Renewal 

   

(a)                                                                   (b) 

 

(c)                                                                   (d) 

Figure 17. Performance comparisons on twenty-dimensional features (multiple 

borrowers with renewal) 
 

Figure 17 illustrates the performance of each algorithm when the borrower 

characteristics are captured by a twenty-dimensional vector, where the setting is that 

multiple (10) borrowers are selected per action while the pool of borrowers is renewed 

in every time step. The epsilon-greedy exhibits a linear increase in the cumulative regret, 

due to a small chance of exploration in every time step, resulting in the lowest 

cumulative reward and the highest cumulative regret in Figure 17 (c) and (d). As the 
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number of features capturing borrower characteristics increases, Thompson sampling 

with Laplace approximation needs to perform heavy exploration in the parameter space 

before reaching lower level of per-period regret in later time steps, shown in Figure 17 

(b).  Because Thompson sampling with Langevin MCMC does not perform such the 

heavy exploration in early time steps, shown in Figure 17 (b), its cumulative reward is 

larger, and its cumulative regret is lower than Thompson sampling with Laplace 

approximation. Incorporating two modifications in Scenario 4 would allow the greedy 

to perform much better than Scenario 1; however, a large number of borrower features 

cause some difficulties for the greedy algorithm, given the same action specification. 

In Figure 17 (c) and (d), Thompson sampling with Langevin MCMC performs slightly 

better than the greedy algorithm.  Hence, the efficient exploration by Langevin MCMC 

in Thompson sampling is still beneficial in the credit scoring setting, when the borrower 

characteristics are captured by a large number of features.  
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CHAPTER V  

CONCLUSION AND DISCUSSION 

 

This study applies the logistic bandit framework, which is a reinforcement 

learning framework, to credit scoring under the number of feature dimensions 𝑝 =

2, 10, 20. Four different scenarios are studied. Scenario 1 (simple setting) is that the 

agent would select a single borrower while the pool of borrowers is fixed. Scenario 2 

adds a renewal on the group of borrowers in each time step. Scenario 3 allows the agent 

to choose multiple (10) borrowers. Scenario 4 (credit scoring setting) incorporate both 

modifications. In this study, reinforcement learning algorithms include the greedy, the 

epsilon-greedy, Thompson sampling with Laplace approximation and Thompson 

sampling with Langevin MCMC. To measure the performance of each algorithm under 

different scenarios, two performance measures, i.e. regrets and rewards, are measured 

over 250 time steps, averaged on 100 simulation trials. Scenario 1 is a simple logistic 

bandit environment while Scenario 4 simulates the credit scoring and underwriting 

processes. 

 

5.1 Conclusion 

Cumulative reward is a measure that shows the net financial outcome 

accumulated from giving out a unit of loans (equally divided among borrowers in case 

agent gives loan to multiple borrowers) over each time step. Cumulative regret is a 

measure that shows the true opportunity cost accumulated over each time step. Table 2 

and 3 show cumulative rewards and cumulative regrets, respectively, averaged on all 

simulation trials and computed at the final time step of each algorithm under different 

feature dimensions, where four scenarios are divided into panels (a) - (d). 
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Table 2. The cumulative rewards of each algorithm under different feature dimensions 
 

                              Feature Dimensions 

Algorithm  2-dim 10-dim 20-dim 

greedy 33.22 28.78 20.68 

epsilon greedy 36.74 32.7 28.78 

Thompson sampling (Laplace) 37.74 33.44 27.58 

Thompson sampling (Langevin MCMC) 37.47 29.52 22.93 

(a) Scenario 1 

                              Feature Dimensions 

Algorithm 2-dim 10-dim 20-dim 

greedy 34.1 35.9 32.44 

epsilon greedy 33.04 32.88 29.86 

Thompson sampling (Laplace) 33.36 31.29 26.47 

Thompson sampling (Langevin MCMC) 36.49 34.48 31.59 

(b) Scenario 2 

                              Feature Dimensions 

Algorithm 2-dim 10-dim 20-dim 

greedy 37.74 39.24 37.64 

epsilon greedy 33.4 36.42 35.92 

Thompson sampling (Laplace) 35.47 37.71 36.33 

Thompson sampling (Langevin MCMC) 36.92 38.96 38.45 

(c) Scenario 3 

                              Feature Dimensions 

Algorithm 2-dim 10-dim 20-dim 

greedy 34.44 38.58 37.6 

epsilon greedy 30.3 36.3 34.51 

Thompson sampling (Laplace) 31.63 36.91 35.19 

Thompson sampling (Langevin MCMC) 32.63 38.4 38.35 

(d) Scenario 4 

 

According to Table 2, the cumulative rewards generally decrease as the number 

of borrower features increases, indicating the increased complexity of the problem that 

the reinforcement learning agent is facing. In Scenario 1, Thompson sampling with 

Laplace approximation performs the best in two-dimensional and ten-dimensional 

cases while the epsilon-greedy performs the best in twenty-dimensional case, followed 

closely by Thompson sampling with Laplace approximation. This demonstrates the 

algorithm with efficient exploration performs the best; however, such efficient 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 43 

exploration incurred higher financial losses than the exploration by epsilon-greedy, 

especially in beginning time steps. In Scenario 2, Thompson sampling with Langevin 

MCMC performs the best in two-dimensional case while the greedy algorithm performs 

the best in other cases. In Scenario 3, the greedy algorithm performs the best in two-

dimensional and ten-dimensional cases while Thompson sampling with Langevin 

MCMC performs the best in twenty-dimensional case. The same conclusion holds in 

Scenario 4. These results generally illustrate that the greedy algorithm performs better 

than other algorithms when the setting changes from traditional logistic bandit to credit 

scoring. Nevertheless, when the number of borrower features increases to twenty, the 

exploration feature from Langevin MCMC in Thompson sampling leads to slightly 

better performance than the greedy algorithm. 

 

Table 3. The cumulative regrets of each algorithm under different feature dimensions 
 

                              Feature Dimensions 

Algorithm 2-dim 10-dim 20-dim 

greedy 9.16 18.04 25.11 

epsilon greedy 6.28 13.54 17.73 

Thompson sampling (Laplace) 5.13 13.91 19.28 

Thompson sampling (Langevin MCMC) 5.1 17.83 23.03 

(a) Scenario 1 

                              Feature Dimensions 

Algorithm 2-dim 10-dim 20-dim 

greedy 4.81 11.13 14.63 

epsilon greedy 7.13 12.06 17 

Thompson sampling (Laplace) 5.8 14.71 21.21 

Thompson sampling (Langevin MCMC) 4.92 11.56 14.71 

(b) Scenario 2 

                              Feature Dimensions 

Algorithm 2-dim 10-dim 20-dim 

greedy 0.81 3.1 4.8 

epsilon greedy 3.83 5.85 7.01 

Thompson sampling (Laplace) 1.34 4.23 6.35 

Thompson sampling (Langevin MCMC) 1.2 3.1 4.62 

(c) Scenario 3 
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                              Feature Dimensions 

Algorithm 2-dim 10-dim 20-dim 

greedy 0.98 2.93 4.57 

epsilon greedy 3.43 5.76 7.64 

Thompson sampling (Laplace) 1.37 4.39 7.01 

Thompson sampling (Langevin MCMC) 1.39 3.06 4.5 

(d) Scenario 4 

 

Based on Table 3, the cumulative regrets generally increase as the number of 

borrower features increases. This could be explained by the increased complexity of the 

problem induced by the greater number of features. In Scenario 1, Thompson sampling 

with Langevin MCMC performs the best while the epsilon-greedy performs the best in 

other cases. This result demonstrates that the efficient exploration from Langevin 

MCMC leads to its best performance; however, with increased number of dimensions, 

this algorithm requires an exploration in longer time steps, causing the epsilon-greedy 

algorithm to perform the best. In Scenario 2, the greedy algorithm performs the best in 

all feature dimensions. In Scenario 3, the greedy algorithm performs the best in two-

dimensional and ten-dimensional cases while Thompson sampling with Langevin 

MCMC performs the best in twenty-dimensional case. Similar results are shown in 

Scenario 4. Both changes from the traditional logistic bandit to credit scoring provide 

enough information for the greedy algorithm to select borrowers without the explicit 

exploration by the algorithm. When the borrower characteristics is captured by twenty 

dimensional features, the problem agent is facing becomes more complicated, so the 

exploration from Langevin MCMC in Thompson sampling allows the algorithm to 

perform slightly better than the greedy algorithm. 

 

5.2 Discussion 

It is commonly believed that an algorithm with an exploration such as the 

epsilon-greedy would perform better than the greedy (Sutton & Barto, 2018), and an 

algorithm with an efficient exploration such as Thompson sampling would even 

perform better than the epsilon-greedy. (Russo et al., 2018) In the simple setting where 

an agent could grant credit to only one borrower while the pool of borrowers is fixed 

as in Scenario 1, this statement is true under the small number of dimensions of 
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borrower features, see Figure 6. An algorithm without explorations would commit too 

early to an inferior action. An efficient exploration would perform a heavy exploration 

in the beginning while exploiting the information that agent acquired in later time steps. 

The algorithm would sacrifice short-term reward in order to increase long-term 

cumulative rewards. When the number of feature dimensions increases (Figure 10, 14), 

Thompson sampling algorithms with Laplace approximation and Langevin MCMC 

need to perform an exploration in many more time steps, resulting in the worse 

performance in terms of the cumulative reward and the cumulative regret. Still, the 

greedy algorithm is outperformed by algorithms with an efficient exploration, such as 

Thompson sampling, supporting the common belief.  

Scenario 4 models a more realistic credit scoring and underwriting process using 

the logistic bandit. The setting includes two modifications: the lender would grant the 

credit to multiple borrowers per action while the pool of borrowers is renewed in every 

time step. By incorporating both modifications, in Figure 9, the epsilon-greedy 

algorithm performs the worst as the cumulative regret increases linearly because of a 

small chance of the exploration in every time step. Efficient reinforcement learning 

algorithms, such as Thompson sampling algorithms with Laplace approximation and 

Langevin MCMC, could achieve better performances because the algorithms perform 

a heavy exploration in early time steps, but focus on an exploitation in later time steps. 

However, the greedy algorithm could perform better than Thompson sampling. In 

contrast to Figure 6, the greedy algorithm does not commit too early to an inferior action 

under the credit scoring setting in Figure 9. By selecting multiple borrowers per action, 

the greedy algorithm has enough information to select the parameter without explicitly 

exploring the action space. When the borrower pool is renewed, a type of exploration 

is embedded into the learning algorithm without explicitly performing an exploration. 

According to Sutton and Barto (2018) and Russo et al. (2018), there is a trade-

off between the exploration and the exploitation. The greedy algorithm exploits all the 

information that the agent currently has in order to select the action with the maximum 

estimated reward. In contrast, an efficient reinforcement learning algorithm, such as 

Thompson sampling, would sacrifice per-period reward in early time steps in order to 

achieve the higher cumulative reward in later time steps. This study has also found that 
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the exploration is still useful when borrower characteristics are captured by a large 

number of features. 

 

 

(a)                                         (b)                                          (c) 

Figure 18. Non-default probability, signal-to-noise ratio and percentage improvement 

across feature dimensions 

 

Figure 18 shows the sample average of non-default probability, the sample 

average of signal-to-noise ratio and the percentage improvement from the greedy 

algorithm to Thompson sampling with Langevin MCMC along different feature 

dimensions under Scenario 4. The percentage improvement uses the cumulative reward 

at the time step 250 under the setting of credit scoring, i.e. an agent selects multiple 

(10) borrowers per action while the pool of borrowers is renewed in every time step. 

Because of the adjustment coefficient, the sample average non-default probabilities and 

signal-to-noise ratios would be very similar along different dimensions, shown in 

Figure 18 (a) and (b). When borrower characteristics are described by a two-

dimensional vector, based on Figure 9 (c), the percentage improvement is negative, 

indicating that the credit scoring setting allows the greedy algorithm to perform better 

than Thompson sampling with Langevin MCMC. However, as the number of 

dimensions increases to twenty, based on Figure 17 (c), the percentage improvement is 

positive, implying that an efficient exploration by Langevin MCMC in Thompson 

sampling is still useful when borrower characteristics are captured by a large number 

of features, shown in Figure 18 (c). An increase in the borrower features causes 

difficulties for reinforcement learning algorithms as they require more time steps to 

perform an exploration. With the same amount of information available for the greedy 
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algorithm, an increase in borrower features means the greedy would experience 

difficulties in selecting the parameter which maximizes the cumulative reward.  

 

   

(a)                                                                   (b) 

   

(c)                                                                   (d) 

Figure 19. Performance of Thompson sampling with Langevin MCMC when initial 

parameter is deviated on twenty-dimensional features (multiple borrowers with 

renewal) 

 

The initialization of Langevin MCMC at posterior mode is crucial for 

Thompson sampling to work well. Figure 19 shows the performance of such algorithm 

when the parameter of the model is initialized one standard deviation away from the 

posterior mode, with respect to each parameter. The setting is that multiple (10) 

borrowers are selected per action while the pool of borrowers is renewed in every time 

step, and the borrower characteristics are captured by a twenty-dimensional vector. 

From Figure 19 (a) and (c), given a particular level of per-period reward or regret, the 

algorithm with the deviation during initialization needs a larger number of time steps 

than the algorithm that starts with posterior mode in order to reach that particular level. 

Therefore, the deviation from posterior mode during the initialization results in lower 

cumulative reward and higher cumulative regret, shown in Figure 19 (b) and (d). 
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5.3 Future Research 

This study provides a deeper understanding of reinforcement learning towards 

the logistic bandit under the setting of credit scoring and underwriting. The credit 

scoring proposed by this study is more complicated than the setting usually studied in 

reinforcement learning literature. With different settings, the results are different from 

what is usually found in other reinforcement learning literatures: the greedy approach 

can outperform Thompson sampling. 

Still, this setting is far from the reality of credit scoring. One recommended 

direction of future research is to evaluate reinforcement learning algorithms in a more 

complicated setting; for example, when the environment is contextualized, where the 

optimal action also depends on which group a borrower belongs to. (Russo et al., 2018) 

When the process of generating ground truth labels given the borrower features is more 

complicated than the credit scoring model, how would the reinforcement learning 

algorithms suffer from such complexity, and how would the greedy algorithm perform, 

compared with reinforcement learning algorithms with efficient exploration? 
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Appendix 1: Python code for Bernoulli bandit 

 

A1.1 Package dependencies 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.linear_model import LogisticRegression 

import scipy 

import pandas as pd 

 

seed = 546279 

np.random.seed(seed) 

 

 

A1.2 Bernoulli bandit environment 

class BernoulliBandit: 

     

    def __init__(self, num_groups = 3, true_p = [0.9, 0.8, 0.7]): 

        assert len(true_p) == num_groups 

        self.num_groups = num_groups 

        self.true_p = true_p 

         

    def act(self, action: int): 

        assert (action > 0) and (action <= self.num_groups) 

        regret = max(self.true_p) - self.true_p[action-1] 

        if np.random.random() <= self.true_p[action-1]: # Head 

            return 1, regret 

        else: # Tail 

            return 0, regret 

 

 

A1.3 Greedy and epsilon greedy algorithms 

class EpsilonGreedy_BernoulliBandit: 

     

    def __init__(self, env: BernoulliBandit, epsilon = 0.05): 

        self.env = env 

        self.num_groups = self.env.num_groups # same as number of 

actions 

        self.epsilon = epsilon 

         

    def run(self, horizon = 2000): 

         

        rewards = np.zeros(horizon) 

        regrets = np.zeros(horizon) 

        # Record # of successes and failures 

        num_successes = np.zeros(self.num_groups) 

        num_failures = np.zeros(self.num_groups) 

         

        for i in range(horizon): 

            if np.random.random() <= self.epsilon: # Choose randomly 

                action = np.random.choice(self.num_groups) + 1 

            else: # Greedily choosing the optimal one 

                p_hat = (num_successes + 1)/(num_successes + 

num_failures + 2) 
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                max_p = max(p_hat) 

                max_idx = np.where(p_hat == max_p)[0] 

                action = np.random.choice(max_idx) + 1 

            reward, regret = self.env.act(action) 

             

            # Save the values in reward, regret 

            rewards[i] += reward 

            regrets[i] += regret 

            if reward > 0: 

                num_successes[action-1] += 1 

            else: 

                num_failures[action-1] += 1 

         

        # Calculate cumulative regrets and rewards 

        cum_rewards = np.cumsum(rewards) 

        cum_regrets = np.cumsum(regrets) 

         

        return rewards, cum_rewards, regrets, cum_regrets 

 

 

A1.4 Thompson sampling algorithm and Upper Confidence Bound algorithm 

def TS_BB(num_successes, num_failures): 

    p_hat = np.random.beta(num_successes + 1, num_failures + 1) 

    return p_hat 

 

def UCB_BB(num_successes, num_failures): 

    t = sum(num_successes + num_failures) 

    p_hat = [scipy.stats.beta.ppf(t/(t+1), num_successes[i] + 1, 

num_failures[i] + 1) for i in range(len(num_successes))] 

    return p_hat 

 

class TS_BernoulliBandit: 

     

    def __init__(self, env: BernoulliBandit, f): 

        self.env = env 

        self.num_groups = self.env.num_groups 

        self.updater = f 

         

    def run(self, horizon = 2000): 

        rewards = np.zeros(horizon) 

        regrets = np.zeros(horizon) 

        # Record # of successes and failures 

        num_successes = np.zeros(self.num_groups) 

        num_failures = np.zeros(self.num_groups) 

         

        for i in range(horizon): 

            p_hat = self.updater(num_successes, num_failures) 

            max_p = max(p_hat) 

            max_idx = np.where(p_hat == max_p)[0] 

            action = np.random.choice(max_idx) + 1 

            reward, regret = self.env.act(action) 

            # Save the values in reward, regret 

            rewards[i] += reward 

            regrets[i] += regret 

            if reward > 0: 

                num_successes[action - 1] += 1 

            else: 
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                num_failures[action-1] += 1 

                 

        # Calculate cumulative regrets and rewards 

        cum_rewards = np.cumsum(rewards) 

        cum_regrets = np.cumsum(regrets) 

         

        return rewards, cum_rewards, regrets, cum_regrets      

    

A1.5 Simulation 

rewards_g = np.zeros(2000) 

cum_rewards_g = np.zeros(2000) 

regrets_g = np.zeros(2000) 

cum_regrets_g = np.zeros(2000) 

n_rounds = 2000 

 

for i in range(n_rounds): 

    bb = BernoulliBandit(num_groups = 3, true_p = [0.9, 0.8, 0.7]) 

    agent = EpsilonGreedy_BernoulliBandit(bb, epsilon = 0) 

    a,b,c,d = agent.run() 

    rewards_g = rewards_g + a 

    cum_rewards_g = cum_rewards_g + b 

    regrets_g = regrets_g + c 

    cum_regrets_g = cum_regrets_g + d 

     

rewards_g /= n_rounds 

cum_rewards_g /= n_rounds 

regrets_g /= n_rounds 

cum_regrets_g /= n_rounds 

 

rewards = np.zeros(2000) 

cum_rewards = np.zeros(2000) 

regrets = np.zeros(2000) 

cum_regrets = np.zeros(2000) 

n_rounds = 2000 

 

for i in range(n_rounds): 

    bb = BernoulliBandit(num_groups = 3, true_p = [0.9, 0.8, 0.7]) 

    agent = EpsilonGreedy_BernoulliBandit(bb, epsilon = 0.05) 

    a,b,c,d = agent.run() 

    rewards = rewards + a 

    cum_rewards = cum_rewards + b 

    regrets = regrets + c 

    cum_regrets = cum_regrets + d 

     

rewards /= n_rounds 

cum_rewards /= n_rounds 

regrets /= n_rounds 

cum_regrets /= n_rounds 

 

rewards_TS = np.zeros(2000) 

cum_rewards_TS = np.zeros(2000) 

regrets_TS = np.zeros(2000) 

cum_regrets_TS = np.zeros(2000) 

n_rounds = 2000 

 

for i in range(n_rounds): 

    bb = BernoulliBandit(num_groups = 3, true_p = [0.9, 0.8, 0.7]) 
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    agent = TS_BernoulliBandit(bb, TS_BB) 

    a,b,c,d = agent.run() 

    rewards_TS = rewards_TS + a 

    cum_rewards_TS = cum_rewards_TS + b 

    regrets_TS = regrets_TS + c 

    cum_regrets_TS = cum_regrets_TS + d 

     

rewards_TS /= n_rounds 

cum_rewards_TS /= n_rounds 

regrets_TS /= n_rounds 

cum_regrets_TS /= n_rounds 

 

rewards_UCB = np.zeros(2000) 

cum_rewards_UCB = np.zeros(2000) 

regrets_UCB = np.zeros(2000) 

cum_regrets_UCB = np.zeros(2000) 

n_rounds = 2000 

 

for i in range(n_rounds): 

    bb = BernoulliBandit(num_groups = 3, true_p = [0.9, 0.8, 0.7]) 

    agent = TS_BernoulliBandit(bb, UCB_BB) 

    a,b,c,d = agent.run() 

    rewards_UCB = rewards_UCB + a 

    cum_rewards_UCB = cum_rewards_UCB + b 

    regrets_UCB = regrets_UCB + c 

    cum_regrets_UCB = cum_regrets_UCB + d 

     

rewards_UCB /= n_rounds 

cum_rewards_UCB /= n_rounds 

regrets_UCB /= n_rounds 

cum_regrets_UCB /= n_rounds 

 

output_dict = {"greedy_reward": rewards_g, "greedy_cum_reward": 

cum_rewards_g, "greedy_regret": regrets_g, "greedy_cum_regret": 

cum_regrets_g, 

"epsilon_greedy_reward": rewards, "epsilon_greedy_cum_reward": 

cum_rewards, "epsilon_greedy_regret": regrets, 

"epsilon_greedy_cum_regret": cum_regrets, 

              "TS_reward": rewards_TS, "TS_cum_reward": 

cum_rewards_TS, "TS_regret": regrets_TS, "TS_cum_regret": 

cum_regrets_TS, 

              "UCB_reward": rewards_UCB, "UCB_cum_reward": 

cum_rewards_UCB, "UCB_regret": regrets_UCB, "UCB_cum_regret": 

cum_regrets_UCB} 

df = pd.DataFrame(output_dict) 

df.to_csv("Bernoulli_Bandit_2000.csv", index = False) 

 

 

A1.6 Visualizations 

df = pd.read_csv("Bernoulli_Bandit_2000.csv") 

rewards_g = df["greedy_reward"] 

rewards = df["epsilon_greedy_reward"] 

rewards_TS = df["TS_reward"] 

rewards_UCB = df["UCB_reward"] 

cum_rewards_g = df["greedy_cum_reward"] 

cum_rewards = df["epsilon_greedy_cum_reward"] 

cum_rewards_TS = df["TS_cum_reward"] 
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cum_rewards_UCB = df["UCB_cum_reward"] 

regrets_g = df["greedy_regret"] 

regrets = df["epsilon_greedy_regret"] 

regrets_TS = df["TS_regret"] 

regrets_UCB = df["UCB_regret"] 

cum_regrets_g = df["greedy_cum_regret"] 

cum_regrets = df["epsilon_greedy_cum_regret"] 

cum_regrets_TS = df["TS_cum_regret"] 

cum_regrets_UCB = df["UCB_cum_regret"] 

 

color_scheme = {"Greedy": "purple", "TS": "orange", "Greedy0": 

"violet", "UCB": "deepskyblue"} 

 

plt.rcParams.update({'font.size': 14}) 

fig, ax = plt.subplots(4,1, figsize = (10, 20)) 

ax[0].plot(np.arange(len(rewards)), rewards_g, label = "Greedy", 

color = color_scheme["Greedy0"]) 

ax[0].plot(np.arange(len(rewards)), rewards, label = "Epsilon-

Greedy", color = color_scheme["Greedy"]) 

ax[0].plot(np.arange(len(rewards)), rewards_TS, label = "TS", color = 

color_scheme["TS"]) 

ax[0].plot(np.arange(len(rewards)), rewards_UCB, label = "UCB", color 

= color_scheme["UCB"]) 

ax[0].legend() 

ax[0].set(title = f"Rewards Comparison: Bernoulli Bandit", xlabel = 

"time period (t)", ylabel = "per-period reward") 

ax[1].plot(np.arange(len(rewards)), cum_rewards_g, label = "Greedy", 

color = color_scheme["Greedy0"]) 

ax[1].plot(np.arange(len(rewards)), cum_rewards, label = "Epsilon-

Greedy", color = color_scheme["Greedy"]) 

ax[1].plot(np.arange(len(rewards)), cum_rewards_TS, label = "TS", 

color = color_scheme["TS"]) 

ax[1].plot(np.arange(len(rewards)), cum_rewards_UCB, label = "UCB", 

color = color_scheme["UCB"]) 

ax[1].set(title = f"Cumulative Rewards Comparison: Bernoulli Bandit", 

xlabel = "time period (t)", ylabel = "cumulative reward") 

ax[1].legend() 

ax[2].plot(np.arange(len(rewards)), regrets_g, label = "Greedy", 

color = color_scheme["Greedy0"]) 

ax[2].plot(np.arange(len(rewards)), regrets, label = "Epsilon-

Greedy", color = color_scheme["Greedy"]) 

ax[2].plot(np.arange(len(rewards)), regrets_TS, label = "TS", color = 

color_scheme["TS"]) 

ax[2].plot(np.arange(len(rewards)), regrets_UCB, label = "UCB", color 

= color_scheme["UCB"]) 

ax[2].axhline(y = 0, color = 'black', linestyle = '--') 

ax[2].set(title = f"Regrets Comparison: Bernoulli Bandit", xlabel = 

"time period (t)", ylabel = "per-period regret") 

ax[2].legend() 

ax[3].plot(np.arange(len(rewards)), cum_regrets_g, label = "Greedy", 

color = color_scheme["Greedy0"]) 

ax[3].plot(np.arange(len(rewards)), cum_regrets, label = "Epsilon-

Greedy", color = color_scheme["Greedy"]) 

ax[3].plot(np.arange(len(rewards)), cum_regrets_TS, label = "TS", 

color = color_scheme["TS"]) 

ax[3].plot(np.arange(len(rewards)), cum_regrets_UCB, label = "UCB", 

color = color_scheme["UCB"]) 
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ax[3].set(title = f"Cumulative Regrets Comparison: Bernoulli Bandit", 

xlabel = "time period (t)", ylabel = "cumulative regret") 

ax[3].legend() 

plt.tight_layout() 

plt.show() 
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Appendix 2: Python code for logistic bandit 

A2.1 Dependencies 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.linear_model import LogisticRegression 

import scipy 

import pandas as pd 

 

seed = 491372 

n_rounds = 1 

 

np.random.seed(seed) 

 

top_str = "10" 

refresh_str = "refresh" 

 

top_display = "multiple (10) borrowers" 

refresh_display = "with renewal" 

 

A2.2 Logistic bandit environment 

Parameters: 

- num_borrowers (default: 100) is the number of borrowers applying for loan in 

each iteration 

- dim (default: 2) is the number of feature dimensions (excluding intercept) 

- sigma_p (default: 1) is the standard deviation of parameter beta, representing the 

uncertainty of environment 

- gain (default: 0.2) is the interest rate that borrower pays when he does not default 

- loss (default: -1) is the loss incurred to the lender when borrower defaults 

- intercept (default: 1.5) is the actual beta0, implying the average non-default 

probability. 

- refresh (default: False) represents whether the group of borrowers is renewed 

after each iteration. 

- top_k (default: 1) indicates the number of borrowers who would get loan in each 

iteration. 

Methods: 

- get_borrowers_attributes(): Get the features from the environment 

- act(action): given the weight given to each borrower (total sum = 1), return the 

observation, rewards and regrets 
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class LogisticBandit: 

    def __init__(self, num_borrowers = 100, dim = 2, sigma_p = 1, 

gain = 0.2, loss = -1, intercept = 1.5, refresh = False, top_k = 1): 

        # Record all parameters as instance variables 

        self.num_borrowers = num_borrowers 

        self.dim = dim 

        self.sigma_p = sigma_p 

        self.gain = gain 

        self.loss = loss 

        self.intercept = intercept 

        self.refresh = refresh  

        self.top_k = top_k 

        # Generate ground-truth beta based on the given dimension and 

given SD (sigma_p) 

        self.beta = sigma_p * np.random.randn(dim, 1) 

        # Generate borrower features based on the number of 

dimensions and number of borrowers 

        self.feature = np.random.randn(num_borrowers, dim) * 

np.sqrt(2/self.dim) 

        # If intercept is not zero, increment the dimension, 

concatenate intercept with beta and concatenate ones with features 

        if intercept != 0: 

            self.dim += 1 

            self.beta = np.concatenate(([[intercept]], self.beta)) 

            self.feature = 

np.concatenate((np.ones((num_borrowers,1)), self.feature), axis = 1) 

        # Calculate the true probabilities of non-default recorded as 

true_ps 

        exp_logits = np.exp(np.matmul(self.feature, self.beta)) 

        self.true_ps = exp_logits/(1 + exp_logits)  

        # Calculate the expected rewards based on true_ps and gain 

with loss 

        exp_rewards = np.dot(self.true_ps, self.gain) + np.dot(1-

self.true_ps, self.loss) 

        # Calculate top k average reward as the maximum expected 

reward over all possible actions 

        top_k_avg = np.sum(-np.sort(-

exp_rewards[:,0])[:self.top_k])/self.top_k 

        # Calculate regret of each borrower as top_k_avg subtracted 

by expected reward of each borrower 

        self.regrets = top_k_avg - exp_rewards 

         

    def get_borrowers_attributes(self): 

        return self.feature 

     

    def act(self, action): 

        # Assert the equality of dimension and the sum of all weights 

must be equal to one 

        assert (len(action) == self.num_borrowers) and 

(abs(sum(action)-1) < 0.0005) 

        # Randomize the default and non-default outcome based on 

true_ps 

        # 1 represents non-default while 0 represents default 

        actual_observations = 

np.where(np.random.random((self.num_borrowers, 1)) <= self.true_ps, 

1, 0) 

        # Assign the returns of each borrower based on 

actual_observations to the gain and loss 
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        returns = np.where(actual_observations == 1, self.gain, 

self.loss) 

        # Get the actual reward by dot product the returns and the 

actions (representing the weight) 

        actual_rewards = np.dot(np.squeeze(returns), action) 

        # Get the actual regret by dot product regrets with the 

action 

        actual_regrets = np.dot(np.squeeze(self.regrets), action) 

        # If refresh = TRUE, then randomize the feature, calculate 

true_ps, expected rewards, regrets again 

        if self.refresh: 

            if self.intercept == 0: 

                self.feature = np.random.randn(self.num_borrowers, 

self.dim)  * np.sqrt(2/self.dim) 

            else: 

                self.feature = np.random.randn(self.num_borrowers, 

self.dim-1)  * np.sqrt(2/self.dim) 

                self.feature = 

np.concatenate((np.ones((self.num_borrowers,1)), self.feature), axis 

= 1) 

            exp_logits = np.exp(np.matmul(self.feature, self.beta)) 

            self.true_ps = exp_logits/(1 + exp_logits)  

            exp_rewards = np.dot(self.true_ps, self.gain) + np.dot(1-

self.true_ps, self.loss) 

            top_k_avg = np.sum(-np.sort(-

exp_rewards[:,0])[:self.top_k])/self.top_k 

            self.regrets = top_k_avg - exp_rewards 

        # Return the actual observations, actual rewards and actual 

regrets 

        return np.squeeze(actual_observations), actual_rewards, 

actual_regrets 
 

A2.3 Greedy and epsilon-greedy algorithms 

Parameters: 

- env: LogisticBandit 

- epsilon (default: 0.05) : the probability that the agent would explore on any one of 

all possible actions 

Methods: 

- run(horizon = 250): Perform the algorithm in the number of time steps (horizon) 

and return rewards, cumulative rewards, regrets and cumulative regrets in each 

time step 

 

# Helper Function: Find the index of top k from an array x 

# Source: https://stackoverflow.com/questions/6910641/how-do-i-get-

indices-of-n-maximum-values-in-a-numpy-array 

 

def find_top_k_idx(x, k): 

    top_k_idx = np.argpartition(x, -k)[-k:] 

    return top_k_idx 
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class EpsilonGreedy_LogisticBandit: 

     

    def __init__(self, env: LogisticBandit, epsilon = 0.05): 

        # Record all parameters as instance variables 

        self.env = env 

        self.epsilon = epsilon 

        # Record necessary variables: dimension, number of borrowers, 

feature top_k from the environment 

        self.dim = self.env.dim 

        self.num_borrowers  = self.env.num_borrowers 

        self.feature = self.env.get_borrowers_attributes() 

        self.top_k = self.env.top_k 

        # The solver is LogisticRegression with L2 regularization and 

C depends on sigma_p from the environment 

        self.solver = LogisticRegression(penalty='l2',  

                                     C=2*(self.env.sigma_p**2), 

                                     fit_intercept=False, 

                                     warm_start=True) 

         

    def run(self, horizon = 250): 

        # Set initialization phase to True and it will be false if 

there exists at least one observation of both classes 

        initialization_phase = True 

        # Initialize rewards and regrets 

        rewards = np.zeros(horizon) 

        regrets = np.zeros(horizon) 

        # Initialize theta 

        theta = np.zeros(self.dim) 

        # Record the previous observations on X and y 

        X = np.zeros((horizon*self.top_k, self.dim)) 

        y = np.zeros(horizon*self.top_k) 

         

        for i in range(horizon): 

            # If in initialization phrase or exploration, then choose 

one action randomly 

            if initialization_phase or np.random.random() <= 

self.epsilon:  

                action_idx = np.random.choice(self.num_borrowers, 

size = self.top_k, replace = False) 

            # Conduct an exploitation 

            else: 

                # Fit the Logistic Regression on all previous 

observations 

                self.solver.fit(X[:self.top_k*(i+1),], 

y[:self.top_k*(i+1)]) 

                # Get theta from the solver 

                theta = self.solver.coef_.reshape(self.dim) 

                # Find the index of top_k from the given feature and 

estimated theta 

                action_idx = find_top_k_idx(np.dot(self.feature, 

theta), self.top_k) 

            # Convert the index of targeted borrowers to the weight 

            action = [(1/self.top_k) if j in action_idx else 0 for j 

in range(self.num_borrowers)] 

            # Get observation, reward and regret from interacting 

with the environment 

            observation, reward, regret = self.env.act(action) 
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            # Get start_idx and end_idx, and assign the additional 

features and observation 

            start_idx = i * self.top_k 

            end_idx = (i+1) * self.top_k 

            X[start_idx:end_idx,:] = self.feature[action_idx, :] 

            y[start_idx:end_idx] = observation[action_idx] 

            # Assign the reward and regret at the i-th timestep 

            rewards[i] = reward 

            regrets[i] = regret 

            # Get the new feature if refresh is TRUE 

            if self.env.refresh: 

                self.feature = self.env.get_borrowers_attributes() 

            # If we have both 0 and 1 class, stop the initialization 

phase 

            if initialization_phase and len(np.unique(y[:end_idx])) 

== 2: 

                initialization_phase = False 

                 

        # Calculate cumulative regrets and rewards 

        cum_rewards = np.cumsum(rewards) 

        cum_regrets = np.cumsum(regrets) 

         

        return rewards, cum_rewards, regrets, cum_regrets 

 

A2.4 Thompson sampling with Laplace / Langevin MCMC 

Parameters: 

- env: LogisticBandit 

- f : the updater function (either LaplaceTS_LB or LangevinTS_LB) 

Methods: 

- run(horizon = 200): Perform the algorithm in the number of time steps (horizon) 

and return rewards, cumulative rewards, regrets and cumulative regrets in each 

time step 

 

# Helper function: calculate Logistic Log Likelihood given normal 

prior 

def Logistic_Log_Likelihood(X, y, sigma_p_squared, beta, prior_mean): 

    prior_constant = -

0.5*beta.shape[0]*np.log(2*np.pi*sigma_p_squared) 

    prior_ll = -np.dot((beta-prior_mean).T, (beta-

prior_mean))/(2*sigma_p_squared) 

    logistic_ll = np.sum(y*np.dot(X, beta) - 

np.log(1+np.exp(np.dot(X, beta)))) 

    return prior_constant + prior_ll + logistic_ll 

 

# Helper function: calculate the first derivative of Logistic 

Likelihood given normal prior 

def Logistic_Log_Likelihood_D1(X, y, sigma_p_squared, beta, 

prior_mean): 

    prior_D1 = -(beta-prior_mean)/(sigma_p_squared) 

    y_hat = 1/(1+np.exp(-np.dot(X, beta))) 
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    logistic_D1 = np.dot(X.T, (y - y_hat)) 

    return prior_D1 + logistic_D1 

 

# Helper function: calculate the second derivative of Logistic 

Likelihood given normal prior 

def Logistic_Log_Likelihood_D2(X, y, sigma_p_squared, beta, 

prior_mean): 

    prior_D2 = -np.eye(beta.shape[0])/sigma_p_squared 

    y_hat = 1/(1+np.exp(-np.dot(X, beta))) 

    D = np.diag(np.multiply(y_hat, 1-y_hat).reshape(y_hat.shape[0])) 

    logistic_D2 = -np.dot(np.dot(X.T, D), X) 

    return prior_D2 + logistic_D2 

 

# Helper function: Sample beta_hat using Laplace approximation 

def LaplaceTS_LB(X, y, sigma_p_squared, beta, prior_mean): 

    mode = beta.reshape(beta.shape[0]) 

    cov = -np.linalg.inv(Logistic_Log_Likelihood_D2(X, y, 

sigma_p_squared, beta, prior_mean)) 

    beta_hat = np.random.multivariate_normal(mode, cov) 

    return beta_hat 

 

# Helper function: Sample beta_hat using Langevin MCMC 

def LangevinTS_LB(X, y, sigma_p_squared, beta, prior_mean, step_size 

= 2, num_steps = 100): 

 

    beta_hat = beta 

    A_inv = -Logistic_Log_Likelihood_D2(X, y, sigma_p_squared, beta, 

prior_mean) 

    A = np.linalg.inv(A_inv) 

    A_sqrt = scipy.linalg.sqrtm(A) 

     

    for k in range(num_steps): 

        epsilon = np.random.normal(size = beta.shape) 

        proposal = beta_hat + step_size*(np.dot(A, 

Logistic_Log_Likelihood_D1(X, y, sigma_p_squared, beta_hat, 

prior_mean))) + np.sqrt(2*step_size)*np.dot(A_sqrt, epsilon) 

        upper_tmp = beta_hat - proposal - step_size*np.dot(A, 

Logistic_Log_Likelihood_D1(X, y, sigma_p_squared, proposal, 

prior_mean)) 

        upper = Logistic_Log_Likelihood(X, y, sigma_p_squared, 

proposal, prior_mean)-(1/(4*step_size))*np.dot(upper_tmp.T, 

np.dot(A_inv, upper_tmp)) 

        lower_tmp = proposal - beta_hat - step_size*np.dot(A, 

Logistic_Log_Likelihood_D1(X, y, sigma_p_squared, beta_hat, 

prior_mean)) 

        lower = Logistic_Log_Likelihood(X, y, sigma_p_squared, 

beta_hat, prior_mean)-(1/(4*step_size))*np.dot(lower_tmp.T, 

np.dot(A_inv, lower_tmp)) 

 

        p_accept = np.minimum(1, np.exp(upper-lower)) 

         

        if np.random.random() <= p_accept: 

            beta_hat = proposal 

             

    return beta_hat 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 62 

class TS_LogisticBandit: 

     

    def __init__(self, env: LogisticBandit, f): 

        # Record environment with its associated variables and 

updater function 

        self.env = env 

        self.dim = self.env.dim 

        self.num_borrowers  = self.env.num_borrowers 

        self.feature = self.env.get_borrowers_attributes() 

        self.top_k = self.env.top_k 

        # The solver is Logistic Regression with L2 penalty 

        self.solver = LogisticRegression(penalty='l2',  

                                     C=2*(self.env.sigma_p**2), 

                                     fit_intercept=False, 

                                     warm_start=True) 

        self.updater = f 

         

    def run(self, horizon = 200): 

        # Set initialization phase to True 

        initialization_phase = True 

        # Initialize rewards and regrets 

        rewards = np.zeros(horizon) 

        regrets = np.zeros(horizon) 

        # Initialize theta and prior mean 

        theta = np.zeros((self.dim,1)) 

        prior_mean = np.zeros((self.dim, 1)) 

        # Record all previous observations in X and y 

        X = np.zeros((horizon*self.top_k, self.dim)) 

        y = np.zeros((horizon*self.top_k,1)) 

         

        for i in range(horizon): 

            # If in the initialization phase, choose one of all 

possible actions randomly 

            if initialization_phase:  

                action_idx = np.random.choice(self.num_borrowers, 

size = self.top_k, replace = False) 

            # If not in the initialization phase, find the action idx 

that exploits the information 

            else: 

                # Fit the solver with all previous information 

                self.solver.fit(X[:self.top_k*(i+1),], 

y[:self.top_k*(i+1),].reshape(self.top_k*(i+1))) 

                # Get the solver coefficient as mode 

                mode = self.solver.coef_.T 

                # Get the theta from either Laplace Approximation or 

Langevin MCMC (in updater) 

                theta = self.updater(X[:self.top_k*(i+1),], 

y[:self.top_k*(i+1),], self.env.sigma_p**2, mode, prior_mean) 

                # Choose index of k borrowers by using the observed 

features and estimated theta 

                action_idx = find_top_k_idx(np.dot(self.feature, 

theta.reshape(self.dim)), self.top_k) 

            # Convert the index of k borrowers into the action as 

weight 

            action = [(1/self.top_k) if j in action_idx else 0 for j 

in range(self.num_borrowers)] 

            # Get observation, reward and regret from the interaction 

with environment 
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            observation, reward, regret = self.env.act(action) 

            # Update the observation on X and y 

            start_idx = i * self.top_k 

            end_idx = (i+1) * self.top_k 

            X[start_idx:end_idx,] = self.feature[action_idx,] 

            y[start_idx:end_idx,0] = observation[action_idx] 

            # Record the reward and regret on the i-th timestep 

            rewards[i] = reward 

            regrets[i] = regret 

            # If refresh is TRUE, get the feature again from the 

environment 

            if self.env.refresh: 

                self.feature = self.env.get_borrowers_attributes()             

            # If we have both 0 and 1 stop the initialization phase 

            if initialization_phase and len(np.unique(y[:end_idx,])) 

== 2: 

                initialization_phase = False 

                 

        # Calculate cumulative regrets and rewards 

        cum_rewards = np.cumsum(rewards) 

        cum_regrets = np.cumsum(regrets) 

         

        return rewards, cum_rewards, regrets, cum_regrets 

 

A2.5 Simulation 

num_rounds = 100 

 

rewards_g = np.zeros((250, num_rounds)) 

cum_rewards_g = np.zeros((250, num_rounds)) 

regrets_g = np.zeros((250, num_rounds)) 

cum_regrets_g = np.zeros((250, num_rounds)) 

 

for i in range(num_rounds): 

    if i%10 == 0: 

        print(i) 

    lb = LogisticBandit(refresh = True, top_k = 10, dim = 20) 

    agent = EpsilonGreedy_LogisticBandit(lb, epsilon = 0) 

    a,b,c,d = agent.run(horizon = 250) 

    rewards_g[:,i] = a 

    cum_rewards_g[:,i] = b 

    regrets_g[:,i] = c 

    cum_regrets_g[:,i] = d 

  

x = pd.DataFrame(rewards_g) 

x.to_csv(f"greedy_reward_top_{top_str}_{refresh_str}_20D_R{n_rounds}.

csv", index = False) 

x = pd.DataFrame(cum_rewards_g) 

x.to_csv(f"greedy_cum_reward_top_{top_str}_{refresh_str}_20D_R{n_roun

ds}.csv", index = False) 

x = pd.DataFrame(regrets_g) 

x.to_csv(f"greedy_regret_top_{top_str}_{refresh_str}_20D_R{n_rounds}.

csv", index = False) 

x = pd.DataFrame(cum_regrets_g) 

x.to_csv(f"greedy_cum_regret_top_{top_str}_{refresh_str}_20D_R{n_roun

ds}.csv", index = False) 
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rewards = np.zeros((250, num_rounds)) 

cum_rewards = np.zeros((250, num_rounds)) 

regrets = np.zeros((250, num_rounds)) 

cum_regrets = np.zeros((250, num_rounds)) 

 

for i in range(num_rounds): 

    if i%10 == 0: 

        print(i) 

    lb = LogisticBandit(refresh = True, top_k = 10, dim = 20) 

    agent = EpsilonGreedy_LogisticBandit(lb, epsilon = 0.05) 

    a,b,c,d = agent.run(horizon = 250) 

    rewards[:,i] = a 

    cum_rewards[:,i] = b 

    regrets[:,i] = c 

    cum_regrets[:,i] = d 

 

x = pd.DataFrame(rewards) 

x.to_csv(f"epsilon_greedy_reward_top_{top_str}_{refresh_str}_20D_R{n_

rounds}.csv", index = False) 

x = pd.DataFrame(cum_rewards) 

x.to_csv(f"epsilon_greedy_cum_reward_top_{top_str}_{refresh_str}_20D_

R{n_rounds}.csv", index = False) 

x = pd.DataFrame(regrets) 

x.to_csv(f"epsilon_greedy_regret_top_{top_str}_{refresh_str}_20D_R{n_

rounds}.csv", index = False) 

x = pd.DataFrame(cum_regrets) 

x.to_csv(f"epsilon_greedy_cum_regret_top_{top_str}_{refresh_str}_20D_

R{n_rounds}.csv", index = False) 

 

rewards_LTS = np.zeros((250, num_rounds)) 

cum_rewards_LTS = np.zeros((250, num_rounds)) 

regrets_LTS = np.zeros((250, num_rounds)) 

cum_regrets_LTS = np.zeros((250, num_rounds)) 

 

for i in range(num_rounds): 

    if i%10 == 0: 

        print(i) 

    lb = LogisticBandit(refresh = True, top_k = 10, dim = 20) 

    agent = TS_LogisticBandit(lb, LaplaceTS_LB) 

    a,b,c,d = agent.run(horizon = 250) 

    rewards_LTS[:,i] = a 

    cum_rewards_LTS[:,i] = b 

    regrets_LTS[:,i] = c 

    cum_regrets_LTS[:,i] = d 

 

x = pd.DataFrame(rewards_LTS) 

x.to_csv(f"thompson_laplace_reward_top_{top_str}_{refresh_str}_20D_R{

n_rounds}.csv", index = False) 

x = pd.DataFrame(cum_rewards_LTS) 

x.to_csv(f"thompson_laplace_cum_reward_top_{top_str}_{refresh_str}_20

D_R{n_rounds}.csv", index = False) 

x = pd.DataFrame(regrets_LTS) 

x.to_csv(f"thompson_laplace_regret_top_{top_str}_{refresh_str}_20D_R{

n_rounds}.csv", index = False) 

x = pd.DataFrame(cum_regrets_LTS) 

x.to_csv(f"thompson_laplace_cum_regret_top_{top_str}_{refresh_str}_20

D_R{n_rounds}.csv", index = False) 
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rewards_L = np.zeros((250, num_rounds)) 

cum_rewards_L = np.zeros((250, num_rounds)) 

regrets_L = np.zeros((250, num_rounds)) 

cum_regrets_L = np.zeros((250, num_rounds)) 

 

for i in range(num_rounds): 

    if i%10 == 0: 

        print(i) 

    lb = LogisticBandit(refresh = True, top_k = 10, dim = 20) 

    agent = TS_LogisticBandit(lb, LangevinTS_LB) 

    a,b,c,d = agent.run(horizon = 250) 

    rewards_L[:,i] = a 

    cum_rewards_L[:,i] = b 

    regrets_L[:,i] = c 

    cum_regrets_L[:,i] = d 

 

x = pd.DataFrame(rewards_L) 

x.to_csv(f"thompson_langevin_reward_top_{top_str}_{refresh_str}_20D_R

{n_rounds}.csv", index = False) 

x = pd.DataFrame(cum_rewards_L) 

x.to_csv(f"thompson_langevin_cum_reward_top_{top_str}_{refresh_str}_2

0D_R{n_rounds}.csv", index = False) 

x = pd.DataFrame(regrets_L) 

x.to_csv(f"thompson_langevin_regret_top_{top_str}_{refresh_str}_20D_R

{n_rounds}.csv", index = False) 

x = pd.DataFrame(cum_regrets_L) 

x.to_csv(f"thompson_langevin_cum_regret_top_{top_str}_{refresh_str}_2

0D_R{n_rounds}.csv", index = False) 

 

A2.6 Visualizations 

def get_avg_output(df_initial): 

    filename = f"{df_initial}_R1.csv" 

    df = pd.read_csv(filename) 

    n = df.shape[1] 

    rowsum = df.sum(axis = "columns") 

    return rowsum/n 

 

rewards_g = 

get_avg_output(f"greedy_reward_top_{top_str}_{refresh_str}_20D") 

cum_rewards_g = 

get_avg_output(f"greedy_cum_reward_top_{top_str}_{refresh_str}_20D") 

regrets_g = 

get_avg_output(f"greedy_regret_top_{top_str}_{refresh_str}_20D") 

cum_regrets_g =  

get_avg_output(f"greedy_cum_regret_top_{top_str}_{refresh_str}_20D") 

 

rewards = 

get_avg_output(f"epsilon_greedy_reward_top_{top_str}_{refresh_str}_20

D") 

cum_rewards = 

get_avg_output(f"epsilon_greedy_cum_reward_top_{top_str}_{refresh_str

}_20D") 

regrets = 

get_avg_output(f"epsilon_greedy_regret_top_{top_str}_{refresh_str}_20

D") 
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cum_regrets =  

get_avg_output(f"epsilon_greedy_cum_regret_top_{top_str}_{refresh_str

}_20D") 

 

rewards_LTS = 

get_avg_output(f"thompson_laplace_reward_top_{top_str}_{refresh_str}_

20D") 

cum_rewards_LTS = 

get_avg_output(f"thompson_laplace_cum_reward_top_{top_str}_{refresh_s

tr}_20D") 

regrets_LTS = 

get_avg_output(f"thompson_laplace_regret_top_{top_str}_{refresh_str}_

20D") 

cum_regrets_LTS =  

get_avg_output(f"thompson_laplace_cum_regret_top_{top_str}_{refresh_s

tr}_20D") 

 

rewards_L = 

get_avg_output(f"thompson_langevin_reward_top_{top_str}_{refresh_str}

_20D") 

cum_rewards_L = 

get_avg_output(f"thompson_langevin_cum_reward_top_{top_str}_{refresh_

str}_20D") 

regrets_L = 

get_avg_output(f"thompson_langevin_regret_top_{top_str}_{refresh_str}

_20D") 

cum_regrets_L =  

get_avg_output(f"thompson_langevin_cum_regret_top_{top_str}_{refresh_

str}_20D") 

 

color_scheme = {"Greedy": "purple", "Laplace": "blue", "Langevin": 

"green", "Greedy0": "violet"} 

plt.rcParams.update({'font.size': 14}) 

fig, ax = plt.subplots(4,1, figsize = (10, 20)) 

ax[0].plot(np.arange(len(rewards)), rewards_g, label = "Greedy", 

color = color_scheme["Greedy0"]) 

ax[0].plot(np.arange(len(rewards)), rewards, label = "Epsilon-

Greedy", color = color_scheme["Greedy"]) 

ax[0].plot(np.arange(len(rewards)), rewards_LTS, label = "Laplace", 

color = color_scheme["Laplace"]) 

ax[0].plot(np.arange(len(rewards)), rewards_L, label = "Langevin", 

color = color_scheme["Langevin"]) 

ax[0].legend() 

ax[0].set(title = f"Rewards Comparison on Twenty-Dimensional Features 

\n ({top_display} {refresh_display})", xlabel = "time period (t)", 

ylabel = "per-period reward") 

ax[1].plot(np.arange(len(rewards)), cum_rewards_g, label = "Greedy", 

color = color_scheme["Greedy0"]) 

ax[1].plot(np.arange(len(rewards)), cum_rewards, label = "Epsilon-

Greedy", color = color_scheme["Greedy"]) 

ax[1].plot(np.arange(len(rewards)), cum_rewards_LTS, label = 

"Laplace", color = color_scheme["Laplace"]) 

ax[1].plot(np.arange(len(rewards)), cum_rewards_L, label = 

"Langevin", color = color_scheme["Langevin"]) 

ax[1].set(title = f"Cumulative Rewards Comparison on Twenty-

Dimensional Features \n ({top_display} {refresh_display})", xlabel = 

"time period (t)", ylabel = "cumulative reward") 

ax[1].legend() 
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ax[2].plot(np.arange(len(rewards)), regrets_g, label = "Greedy", 

color = color_scheme["Greedy0"]) 

ax[2].plot(np.arange(len(rewards)), regrets, label = "Epsilon-

Greedy", color = color_scheme["Greedy"]) 

ax[2].plot(np.arange(len(rewards)), regrets_LTS, label = "Laplace", 

color = color_scheme["Laplace"]) 

ax[2].plot(np.arange(len(rewards)), regrets_L, label = "Langevin", 

color = color_scheme["Langevin"]) 

ax[2].axhline(y = 0, color = 'black', linestyle = '--') 

ax[2].set(title = f"Regrets Comparison on Twenty-Dimensional Features 

\n ({top_display} {refresh_display})", xlabel = "time period (t)", 

ylabel = "per-period regret") 

ax[2].legend() 

ax[3].plot(np.arange(len(rewards)), cum_regrets_g, label = "Greedy", 

color = color_scheme["Greedy0"]) 

ax[3].plot(np.arange(len(rewards)), cum_regrets, label = "Epsilon-

Greedy", color = color_scheme["Greedy"]) 

ax[3].plot(np.arange(len(rewards)), cum_regrets_LTS, label = 

"Laplace", color = color_scheme["Laplace"]) 

ax[3].plot(np.arange(len(rewards)), cum_regrets_L, label = 

"Langevin", color = color_scheme["Langevin"]) 

ax[3].set(title = f"Cumulative Regrets Comparison on Twenty-

Dimensional Features \n ({top_display} {refresh_display})", xlabel = 

"time period (t)", ylabel = "cumulative regret") 

ax[3].legend() 

plt.tight_layout() 

plt.show() 
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