

AN APPLICATION OF REINFORCEMENT LEARNING TO

CREDIT SCORING BASED ON THE LOGISTIC BANDIT

FRAMEWORK

Mr. Kantapong Visantavarakul

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Statistics

Department of Statistics

FACULTY OF COMMERCE AND ACCOUNTANCY

Chulalongkorn University

Academic Year 2022

Copyright of Chulalongkorn University

การประยกุตใ์ชก้ารเรียนรู้แบบเสริมก าลงัส าหรับการใหค้ะแนนเครดิตภายใตก้รอบปัญหาโลจิสติก
แบนดิต

นายกนัตพงษ ์วสิารทวรากูล

วทิยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวทิยาศาสตรมหาบณัฑิต
สาขาวชิาสถิติ ภาควชิาสถิติ

คณะพาณิชยศาสตร์และการบญัชี จุฬาลงกรณ์มหาวทิยาลยั
ปีการศึกษา 2565

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวทิยาลยั

Thesis Title AN APPLICATION OF REINFORCEMENT

LEARNING TO CREDIT SCORING BASED ON THE

LOGISTIC BANDIT FRAMEWORK

By Mr. Kantapong Visantavarakul

Field of Study Statistics

Thesis Advisor Associate Professor SEKSAN KIATSUPAIBUL, Ph.D.

Accepted by the FACULTY OF COMMERCE AND ACCOUNTANCY,

Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of

Science

Dean of the FACULTY OF

COMMERCE AND

ACCOUNTANCY

 (Associate Professor WILERT PURIWAT, Ph.D.)

THESIS COMMITTEE

Chairman

 (Associate Professor VITARA PUNGPAPONG, Ph.D.)

Thesis Advisor

 (Associate Professor SEKSAN KIATSUPAIBUL, Ph.D.)

Examiner

 (Assistant Professor NUTTIRUDEE CHAROENRUK,

Ph.D.)

External Examiner

 (Associate Professor SUNTI TIRAPAT, Ph.D.)

 iii

ABST RACT (THAI)

 กนัตพงษ ์วสิารทวรากูล : การประยกุตใ์ชก้ารเรียนรู้แบบเสริมก าลงัส าหรับการให้
คะแนนเครดิตภายใตก้รอบปัญหาโลจิสติกแบนดิต. (AN APPLICATION

OF REINFORCEMENT LEARNING TO CREDIT

SCORING BASED ON THE LOGISTIC BANDIT

FRAMEWORK) อ.ท่ีปรึกษาหลกั : รศ. ดร.เสกสรร เกียรติสุไพบูลย ์

งานวิจยัน้ีมีวตัถุประสงค์เพื่อประยุกต์ใช้การเรียนรู้แบบเสริมก าลังส าหรับการให้
คะแนนเครดิตภายใตก้รอบปัญหาโลจิสติกแบนดิต การให้คะแนนเครดิตและการให้สินเช่ือ
สามารถจดัอยูใ่นรูปแบบปัญหาการตดัสินใจอยา่งเป็นล าดบัโดยผูใ้หสิ้นเช่ือจะตดัสินใจเลือกการ
กระท าโดยท่ีจุดส้ินสุดของเวลานั้นไม่มีก าหนด วธีิการให้คะแนนเครดิตแบบดั้งเดิมพิจารณาการ
สร้างโมเดลแยกออกจากการให้สินเช่ือ ในการเรียนรู้แบบเสริมก าลงั วิธีน้ีเรียกว่า ขั้นตอนวิธี
แบบละโมบ (greedy algorithm) ซ่ึงเช่ือกนัอย่างแพร่หลายว่าให้ประสิทธิภาพท่ีด้อย
กว่าการ เ รียน รู้แบบเสริมก าลัง ท่ี มีประ สิทธิภาพ เ ช่น การ สุ่มตัวอย่างแบบทอมสัน

(Thompson sampling) สมมติฐานน้ีเป็นจริงในสถานการณ์แบบง่าย นัน่คือ ในแต่ละ
ช่วงเวลาผูใ้ห้กูจ้ะให้สินเช่ือไดแ้ค่คนเดียวในขณะท่ีผูกู้สิ้นเช่ือยงัเป็นรายเดิมอยูต่ลอด อยา่งไรก็
ตาม ในสถานการณ์ท่ีสมจริงมากข้ึน นั่นคือ ไม่มีเง่ือนไขทั้งสองขอ้ดงักล่าว ขั้นตอนวิธีแบบ
ละโมบสามารถให้ประสิทธิภาพท่ีดีกว่าการสุ่มตวัอยา่งแบบทอมสัน เน่ืองจาก ขั้นตอนวิธีแบบ
ละโมบไม่ได้ยึดติดเร็วเกินไปกับการกระท าท่ีให้ผลตอบแทนท่ีด้อยกว่าซ่ึงไม่เหมือนกับใน
สถานการณ์แบบง่าย ถึงแมจ้ะเป็นเช่นนั้น การส ารวจแบบมีประสิทธิภาพของการสุ่มตวัอย่าง
แบบทอมสันก็ยงัมีประโยชน์ในการเรียนรู้ภายใตส้ถานการณ์น้ี ในกรณีท่ีจ านวนตวัแปรท่ีอธิบาย
ลกัษณะของผูข้อกูสิ้นเช่ือมีจ านวนมาก การสุ่มตวัอยา่งแบบทอมสันสามารถให้ผลลพัธ์ท่ีดีกว่า
ขั้นตอนวธีิแบบละโมบ ผลลพัธ์ท่ีไดจ้ากการศึกษาน้ีคาดวา่จะเป็นประโยชน์ในการท าความเขา้ใจ
การเรียนรู้แบบเสริมก าลังภายใต้กรอบปัญหาโลจิสติกแบนดิตได้ดียิ่งข้ึน โดยเฉพาะใน
กระบวนการใหค้ะแนนเครดิตและการใหสิ้นเช่ือ

สาขาวชิา สถิติ ลายมือช่ือ
นิสิต ..
....

ปีการศึกษา 2565 ลายมือช่ือ อ.ท่ีปรึกษา
หลกั

 iv

ABST RACT (ENGLISH)
6480388626 : MAJOR STATISTICS

KEYWOR

D:

REINFORCEMENT LEARNING, CREDIT SCORING, LOGISTIC

BANDIT, GREEDY ALGORITHM, THOMPSON SAMPLING

 Kantapong Visantavarakul : AN APPLICATION OF REINFORCEMENT

LEARNING TO CREDIT SCORING BASED ON THE LOGISTIC

BANDIT FRAMEWORK. Advisor: Assoc. Prof. SEKSAN

KIATSUPAIBUL, Ph.D.

This study applies reinforcement learning to credit scoring by using the

logistic bandit framework. The credit scoring and the credit underwriting are modeled

into a single sequential decision problem where the credit underwriter takes a

sequence of actions over an indefinite number of time steps. The traditional credit

scoring approach considers the model construction separately from the underwriting

process. This approach is identified as a greedy algorithm in the reinforcement

learning literature, which is commonly believed to be inferior to an efficient

reinforcement learning approach such as Thompson sampling. This is true under the

simple setting, i.e., granting credit to a single borrower per action while the pool of

the borrowers is fixed. However, under the more realistic scenario where these two

conditions are relaxed, the greedy approach can outperform Thompson sampling

since the greedy algorithm does not commit too early to an inferior action as it does

in the simple setting. Still, the efficient exploration feature of Thompson sampling is

beneficial. When the borrower characteristics are captured by a large number of

features, the exploration mechanism enables Thompson sampling to outperform the

greedy algorithm. The results from the simulation study permit a deeper

understanding of the reinforcement learning approaches towards the logistic bandits,

especially in the setting of credit scoring and credit underwriting processes.

Field of Study: Statistics Student's

Signature

Academic

Year:

2022 Advisor's

Signature

 v

ACKNOWLEDGEMENT S

ACKNOWLEDGEMENTS

Regarding the thesis “AN APPLICATION OF REINFORCEMENT

LEARNING TO CREDIT SCORING BASED ON THE LOGISTIC BANDIT

FRAMEWORK”, I would like to offer special thanks to my advisor, Assoc. Prof. Seksan

Kiatsupaibul, Ph.D., for inspiring my interest in reinforcement learning and for the close

guidance in each step of the research, from setting up the research topic to giving advices

on revising and proofreading the paper. Due to his expertise in Mathematics and Finance,

I was able to successfully complete this research.

I would like to thank committee members, namely Assoc. Prof. Vitara

Pungpapong, Ph.D., Asst. Prof. Nuttirudee Charoenruk, Ph.D. and Assoc. Prof. Sunti

Tirapat, Ph.D., for giving insightful comments and practical suggestions on the study.

Their comments and suggestions led to considerable improvements in this research.

Finally, I would like to mention my family for their patience and emotional

support during this process. The motivations from my friends and seniors helped me in

this process as well.

Kantapong Visantavarakul

TABLE OF CONTENTS

 Page

ABSTRACT (THAI) ... iii

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

CHAPTER I INTRODUCTION ... 1

1.1 Background and Rationale ... 1

1.2 Objectives .. 3

1.3 Scope of Study ... 4

1.4 Expected Benefits .. 4

CHAPTER II RELATED WORKS .. 5

2.1 Logistic Regression ... 5

2.2 Bernoulli Bandit ... 5

2.3 Logistic Bandit ... 9

2.4 Greedy Algorithm .. 10

2.5 Thompson Sampling .. 11

2.6 Laplace Approximation ... 11

2.7 Metropolis Hasting .. 12

2.8 Langevin Monte Carlo Markov Chain (Langevin MCMC) 13

CHAPTER III METHODOLOGY ... 15

3.1 Logistic Bandit Framework and Simulation Method .. 15

3.2 Performance Measures ... 18

3.3 Reinforcement Learning Algorithms ... 19

3.4 Algorithm Flowchart ... 24

 vii

CHAPTER IV RESULTS ... 25

4.1 Small Number of Features (𝑝 = 2) .. 26

4.2 Medium Number of Features (𝑝 = 10) ... 30

4.3 Large Number of Features (𝑝 = 20) ... 35

CHAPTER V CONCLUSION AND DISCUSSION ... 41

5.1 Conclusion ... 41

5.2 Discussion .. 44

5.3 Future Research ... 48

REFERENCES .. 49

Appendix 1: Python code for Bernoulli bandit .. 50

A1.1 Package dependencies ... 50

A1.2 Bernoulli bandit environment ... 50

A1.3 Greedy and epsilon greedy algorithms ... 50

A1.4 Thompson sampling algorithm and Upper Confidence Bound algorithm 51

A1.5 Simulation ... 52

A1.6 Visualizations .. 53

Appendix 2: Python code for logistic bandit ... 56

A2.1 Dependencies .. 56

A2.2 Logistic bandit environment ... 56

A2.3 Greedy and epsilon-greedy algorithms ... 58

A2.4 Thompson sampling with Laplace / Langevin MCMC 60

A2.5 Simulation ... 63

A2.6 Visualizations .. 65

VITA .. 68

LIST OF TABLES

 Page

Table 1. The comparison between traditional logistic bandit and credit scoring 15

Table 2. The cumulative rewards of each algorithm under different feature dimensions

.. 42

Table 3. The cumulative regrets of each algorithm under different feature dimensions

.. 43

LIST OF FIGURES

 Page

Figure 1. Performance comparisons on Bernoulli bandit .. 7

Figure 2. Performances of epsilon-greedy (𝜀 = 0.01,0.05,0.1) on Bernoulli bandit 8

Figure 3. The interaction between agent and environment in logistic bandit framework

.. 17

Figure 4. Histogram of sample average signal-to-noise ratio and sample average non-

default probability under a small (2) and a large (20) number of features 18

Figure 5. Algorithm flowchart ... 24

Figure 6. Performance comparisons on two-dimensional features (single borrower

without renewal) .. 26

Figure 7. Performance comparisons on two-dimensional features (single borrower

with renewal) ... 27

Figure 8. Performance comparisons on two-dimensional features (multiple borrowers

without renewal) .. 29

Figure 9. Performance comparisons on two-dimensional features (multiple borrowers

with renewal) ... 30

Figure 10. Performance comparisons on ten-dimensional features (single borrower

without renewal) .. 31

Figure 11. Performance comparisons on ten-dimensional features (single borrower

with renewal) ... 32

Figure 12. Performance comparisons on ten-dimensional features (multiple borrowers

without renewal) .. 33

Figure 13. Performance comparisons on ten-dimensional features (multiple borrowers

with renewal) ... 34

Figure 14. Performance comparisons on twenty-dimensional features (single borrower

without renewal) .. 36

Figure 15. Performance comparisons on twenty-dimensional features (single borrower

with renewal) ... 37

Figure 16. Performance comparisons on twenty-dimensional features (multiple

borrowers without renewal) ... 38

 x

Figure 17. Performance comparisons on twenty-dimensional features (multiple

borrowers with renewal) .. 39

Figure 18. Non-default probability, signal-to-noise ratio and percentage improvement

across feature dimensions .. 46

Figure 19. Performance of Thompson sampling with Langevin MCMC when initial

parameter is deviated on twenty-dimensional features (multiple borrowers with

renewal).. 47

CHAPTER I

INTRODUCTION

1.1 Background and Rationale

Credit risk is an uncertainty regarding whether the credit condition of a

borrower worsens to a degree that the borrower could not repay the debt in a full amount.

If a borrower defaults on a loan, the lender has to write off all or most of remaining

balances, especially when the loan is unsecured. Compared with other types of risk, i.e.

market risk, liquidity risk and operational risk, credit risk is the most important factor

in deciding how loan should be valued. (Phillips, 2018) In the context of credit risk,

three quantities need to be considered, i.e. probability of non-default, loss given default

and exposure at default. However, the most important quantity is the probability of non-

default, defined as the probability that a borrower would pay back the loan amount in

full. In the context of individual borrowers, one main reason of defaulting on loan is

bad individual decision in applying for a loan or financial mismanagement after a loan

is taken. To estimate the probability of non-default, modern approaches assume that the

default is mainly due to poor individual decisions, and such history tends to repeat itself.

(Phillips, 2018) This implies that there are variables on each individual which could

explain why some people have higher non-default probabilities than others.

There exist adverse selection and moral hazard problems between borrowers

and lenders. Besides, it is extremely costly to manually screen each borrower and to

closely monitor the borrower whom the loan has been granted to. Therefore, there have

been a lot of attempts in developing an automated credit scoring model which predicts

non-default probabilities given individual attributes. One of the most widely used credit

scoring models is logistic regression, where the dependent variable, i.e. non-default

indicator variable, is a non-linear function of individual features. The logistic regression

could provide a relatively simple explanation why the loan was denied. Due to its

tractability and convenience in inference, the logistic regression is used in most local

banks in the Czech and Slovak Republics. (Vojtek & Koèenda, 2006) Even though

several advanced models outperform logistic regression, the logistic regression is still

considered the industry standard for banks today. (Lessmann et al., 2015)

 2

Logistic regression belongs to the class of supervised machine learning models.

In order to collect enough data for training such a model, lenders have to face credit

risk, and incur financial losses by collecting the labels of default borrowers. If a lender

tries to avoid such an exposure by collecting just a few observations, the estimated

model would have a high variance problem, called overfitting. In the opposite, if a

lender collects too many observations, the improvement in the performance may not

justify the financial losses from granting loan to default borrowers. To address the data

acquisition cost in the model estimation process, reinforcement learning is proposed. In

a reinforcement learning framework, an agent interacts with the environment several

times to achieve some objective. (Sutton & Barto, 2018) In the credit scoring setting,

an agent or lender chooses whom it should lend to, and feedbacks from such borrowers,

either default or non-default, are returned to the agent to make this decision again in the

next period.

The framework used in this study is the logistic bandit framework, which is a

reinforcement learning framework that models non-default probabilities by the logistic

regression. In this framework, there are a certain number of borrowers who apply for

loans, and a reinforcement learning agent has to select a small number of borrowers

whom credit would be granted to. A traditional credit scoring approach considers the

model estimation process separately from the underwriting. This approach is identified

as a greedy algorithm in the reinforcement learning literature, which is known to be

suboptimal because it lacks an environment exploration. (Sutton & Barto, 2018) To

enable an efficient learning, the agent has to explore by getting more information about

the environment to improve model estimates while exploiting the information it has

already gotten. One algorithm to address exploration in the greedy algorithm is a slight

variation called epsilon-greedy. (Sutton & Barto, 2018) According to Russo et al.

(2018), an even more efficient algorithm is Thompson sampling algorithm where the

model estimate is sampled from posterior distribution. If an agent could directly sample

an observation from the posterior distribution, Thompson sampling enables the agent

to learn faster than epsilon-greedy. (Russo et al., 2018) However, since a direct

sampling is not available in the logistic bandit framework, two algorithms to

 3

approximate posterior sampling are used in this study, i.e. Laplace approximation and

Langevin Monte Carlo Markov Chain (Langevin MCMC).

Many studies have performed comparisons on automated credit scoring systems

in the form of machine learning classifiers using a fixed set of observations from

datasets such as Vojtek and Koèenda (2006) and Lessmann et al. (2015). The limitation

is that the model construction is considered separately from the underwriting process.

Many studies have addressed the exploration problem in the logistic bandit framework

such as Zhang et al. (2016), Dumitrascu et al. (2018) and Faury et al. (2020). The

motivations of these studies are based on the recommender system and the online

advertising, where an action is choosing one out of all possible products, and the set of

products is fixed in every time step. However, in credit scoring, credit is often granted

to multiple borrowers, and borrowers are not the same group of people in every time

step. By allowing borrowers to be renewed from a population distribution,

reinforcement learning would consider this as resampling an action set.

This study combines the credit scoring and the credit underwriting into a single

sequential decision process, modelled by a logistic bandit framework. The unique

characteristic of this logistic bandit model, which makes it different from traditional

logistic bandit model, is that the actions are not fixed, but are randomly chosen from a

population distribution in every time step. Different reinforcement learning algorithms

are applied to the logistic bandit without and with sampled actions, and their

performances are investigated. This study would provide a deeper understanding in

reinforcement learning towards the logistic bandits, especially in credit scoring during

credit underwriting processes.

1.2 Objectives

To set a logistic bandit framework for credit scoring and credit underwriting

process and to evaluate the performances of different reinforcement learning

algorithms under this framework

 4

1.3 Scope of Study

The algorithms investigated in this study include the greedy algorithm, the

epsilon-greedy algorithm (the probability of exploration 𝜀 = 0.05), and Thompson

Sampling, where the approximation algorithms are Laplace approximation and

Langevin Monte Carlo Markov Chain. The performances of each algorithm are

calculated using reward and regret in 250 time steps on 100 trials with the number of

dimensions 𝑝 = 2, 10, 20 under the following four scenarios.

1) An agent selects a single borrower, and the pool of borrowers is fixed. (Simple

Setting)

2) An agent selects a single borrower, and the pool of borrowers is renewed under

the same distribution after each time step.

3) An agent selects multiple (10) borrowers, and the pool of borrowers is fixed.

4) An agent selects multiple (10) borrowers, and the pool of borrowers is renewed

under the same distribution after each time step. (Credit Scoring Setting)

1.4 Expected Benefits

A more efficient credit scoring and credit underwriting process is created under

the reinforcement learning framework

 5

CHAPTER II

RELATED WORKS

2.1 Logistic Regression

Logistic regression is a generalized linear model that attempts to model the

probability that an observation falls into either of two classes using a linear combination

of individual features, shown in Equation (1).

Pr(𝑦 = 1|𝑋 = 𝑥) =

1

1 + exp⁡(−𝛽0 − 𝛽1𝑥1 −⋯− 𝛽𝑝𝑥𝑝)

(1)

The model is fit via maximum likelihood estimation (MLE), where log

likelihood of 𝑁 observations 𝑙(𝛽) can be written as Equation (2).

𝑙(𝛽) =∑{𝑦𝑖𝛽
𝑇𝑥𝑖 − log(1 + 𝑒

𝛽𝑇𝑥𝑖)}

𝑁

𝑖=1

(2)

Setting the first-derivative of log-likelihood 𝑙(𝛽) with respect to 𝛽 equal to zero,

the result would be a system of non-linear equations in 𝛽. According to Hastie et al.

(2009), to solve such a system, a common approach is to use the Newton-Raphson

algorithm, which uses a Hessian matrix of log-likelihood with respect to 𝛽 . The

estimate of 𝛽, i.e. 𝛽̂, is updated repeatedly using Newton step, and this algorithm is

called iteratively reweighted least squares (IRLS). Since the log-likelihood of logistic

regression is concave, the algorithm would typically converge to the optimal value, and

𝛽̂ = 0 is a good starting point for IRLS in this setting. (Hastie et al., 2009)

2.2 Bernoulli Bandit

This section presents the Bernoulli Bandit example from Russo et al. (2018).

An agent is faced with three coins with probabilities of turning heads, i.e. 𝑝1, 𝑝2, 𝑝3

which are unknown to the agent. In each time step, the agent selects one coin, and

observes the tossing outcome in the next time step. The agent has to choose the coin

with the highest probability turning head by repeatedly doing this several times. The

objective is to maximize the cumulative rewards. The reinforcement learning

 6

environment consists of an observation set, an action set and observation probabilities:

ℇ = (𝑂, 𝐴, 𝜌) defined as follows.

1) Action set specifies which coin would be chosen: 𝐴 = {1,2,3}

2) Observation set specifies all possible outcomes, either head (1) or tail (0):

𝑂 = {0,1}

3) Observation probabilities specify the probability of a coin turning head given

history and action: 𝜌(1|𝐻𝑡, 𝐴𝑡) = 𝑃(𝑂𝑡+1 = 1|𝐻𝑡, 𝐴𝑡) = 𝑝𝐴𝑡

To measure the performance of an algorithm, a simple method is to give a reward

to the agent, and observe the reward as time step progresses. (Sutton & Barto, 2018) In

Bernoulli bandit, a reward (𝑅𝑡+1) is equal to an outcome (𝑂𝑡+1). Over several trials,

the result would be summarized using an average reward.

In an online learning, the performance is measured using regret. Regret is defined

as the difference between expected reward of an optimal action and expected reward of

the selected action. (Russo et al., 2018) In this setting, the regret from choosing an

action 𝐴𝑡 is displayed in Equation (3).

 𝑟𝑒𝑔𝑟𝑒𝑡(𝑡) = max
𝑎∈𝐴

𝑝𝑎 − 𝑝𝐴𝑡 (3)

If the agent chooses the optimal action, the regret would be equal to zero.

Otherwise, regret would be positive. Similar to rewards, the result would be

summarized using an average regret over simulation trials.

According to Sutton and Barto (2018), there is a trade-off between exploration

and exploitation. Exploitation is when the current information is used to a full extent in

order to select an action. Exploration is when an action with limited information is

chosen in order to improve the estimate of how good that action actually is. Exploitation

would maximize the reward in one step while exploration would compromise short-run

reward in order to get large cumulative reward in the long-run. (Sutton & Barto, 2018)

Since exploration and exploitation could not be done at the same time, Sutton and Barto

(2018) concluded that there is a trade-off between these two.

 7

(a) (b)

(c) (d)

Figure 1. Performance comparisons on Bernoulli bandit

Four algorithms are used to select a coin, i.e. greedy, epsilon-greedy, Thompson

Sampling (TS), and Upper Confidence Bound (UCB) illustrated in Figure 1. The greedy

algorithm chooses the coin which maximizes the observed probability of turning head.

According to Figure 1 (a) and (b), the greedy algorithm commits too early to just a few

observations it had, and has not done any more explorations after a few time steps. This

algorithm results in the lowest cumulative reward and the highest cumulative regret

among all four algorithms in Figure 1 (c) and (d). A slight modification of greedy

algorithm is the epsilon-greedy algorithm (Sutton & Barto, 2018), with a small

probability to select one of three coins with an equal probability. The performance of

this algorithm improves as the cumulative reward is higher and cumulative regret is

lower in Figure 1 (c) and (d). However, the problem is that this algorithm does not

efficiently explore the environment as it selects an action with an equal probability,

regardless whether the action was actually a good action to explore. Two algorithms to

solve such a problem are Thompson Sampling (TS) and Upper Confidence Bound

(UCB). The TS chooses a coin by drawing the probability of turning head from a

distribution, and selecting the coin with the highest such probability. The UCB

 8

estimates the upper bound of the probability that each coin would turn head, and selects

the coin with the highest such probability. In contrast to epsilon-greedy, both TS and

UCB would spend efforts only on the coins where useful information could be obtained.

(Russo et al., 2018) Therefore, both UCB and TS outperform epsilon-greedy due to

higher cumulative rewards and lower cumulative regrets, shown in Figure 1 (c) and (d).

(a) (b)

(c) (d)

Figure 2. Performances of epsilon-greedy (𝜀 = 0.01,0.05,0.1) on Bernoulli bandit

Regarding the choices of epsilon (𝜀) in the epsilon-greedy algorithm on

Bernoulli Bandit, the performances on the algorithm with 𝜀 = 0.01,0.05,0.1 are

displayed in Figure 2. According to Figure 2 (a) and (b), small epsilon (0.01) results in

the lowest per-period reward and the highest per-period regret. Even though large

epsilon (0.1) triggers the lowest per-period regret during early time steps, its per-period

regret becomes larger than the epsilon-greedy with epsilon of 0.05 in later time steps,

shown in Figure 2 (b). Heavy exploration of epsilon 0.1 is beneficial at the beginning;

however, once it is clear which coin yields the highest expected reward, the heavy

exploration would become wasteful. Therefore, choosing epsilon (𝜀) in epsilon-greedy

 9

algorithm involves a trade-off between exploration and exploitation. Still, with any

levels of 𝜀, the epsilon-greedy algorithm is inferior to both TS and UCB, which are

efficient reinforcement learning algorithms in Figure 2 (d).

2.3 Logistic Bandit

In the logistic bandit framework, there are a certain number of possible actions

that an agent can select. By observing the features associated with each action, an agent

has to select the action that it estimates as the optimal one. In the next time step, the

agent could observe the outcomes associated with the selected action. Such outcomes

and features associated with the selected action would become the additional

information that the agent could incorporate in order to select an action again.

Choosing a single action among all possible ones could be treated as selecting

one of the coins in Bernoulli bandit. However, when the number of actions is very large,

the problem will become difficult. (Zhang et al., 2016) Even Thompson sampling

algorithm that is relatively good in exploration would suffer from having high regrets

for a large number of time steps. Based on Zhang et al. (2016), one common approach

to address this problem is using structural properties of reward function to build an

efficient learning algorithm. The logistic bandit framework extends from Bernoulli

bandit by incorporating generalization across actions. The generalization enables the

information gained from selecting one action to be leveraged upon other actions. (Russo

et al., 2018)

Similar to Logistic regression, the main feature of the logistic bandit framework

is that an agent would get a binary feedback from environment. Since this main feature

appears in a number of applications, in addition to Thompson Sampling (TS) from

Russo et al. (2018), a number of algorithms have been developed to allow an efficient

exploration by the agent; for example, OL2M from Zhang et al. (2016), PG-TS from

Dumitrascu et al. (2018), Logistic-UCB from Faury et al. (2020) and stochastic gradient

descent with confidence ball strategy from Wang et al. (2017). However, these

algorithms are based on Upper Confidence Bound strategy, except PG-TS which is

based on Gibbs sampling, and they belong to different classes of algorithms from

 10

Thompson Sampling in Russo et al. (2018). Therefore, they are not included in this

study.

In this study, the logistic bandit is generalized to accommodate actions of

selecting multiple borrowers and a renewed pool of borrowers. In reinforcement

learning, selecting multiple borrowers means the number of actions is very large, and

the renewed pool of borrowers means that actions are sampled.

2.4 Greedy Algorithm

In the setting with generalization across actions, Russo et al. (2018) has

proposed the greedy algorithm that incorporates the generalization. According to Sutton

and Barto (2018), the greedy algorithm will exploit all the information that the agent

has collected to maximize the immediate reward without considering an exploration.

This concept can be shown in Equation (4), where 𝑄𝑡(𝑎) is the estimated value of an

action 𝑎, and 𝑁𝑡(𝑎) is the number of time steps that the agent has chosen to take an

action 𝑎.

 𝐴𝑡 = argmax
𝑎∈𝐴

𝑄𝑡(𝑎) = argmax
𝑎∈𝐴

𝑅1+𝑅2+⋯+𝑅𝑁𝑡(𝑎)

𝑁𝑡(𝑎)
 (4)

Hence, selecting 𝑘 borrowers resulting in the highest estimated reward is

equivalent to finding the estimate 𝛽̂ that maximizes the posterior, given the history 𝐻𝑡,

and using such estimated parameter 𝛽̂ to select 𝑘 borrowers with the highest estimated

non-default probabilities. Then, the borrowing outcomes that the agent gets from the

environment would be used to update the posterior. This is very similar to the greedy

algorithm outlined in Russo et al. (2018).

The epsilon-greedy algorithm, a slight variation of greedy, allows an

exploration. With probability of exploration 𝜀, the algorithm could select 𝑘 borrowers

randomly from the pool of 𝑛 borrowers where 𝑘 < 𝑛. This is equivalent to choosing an

action from all possible actions randomly with equal probabilities. (Sutton & Barto,

2018) With probability 1 − 𝜀, the algorithm estimates 𝛽̂ that maximizes such posterior,

and selects 𝑘 borrowers with the highest estimated non-default probabilities.

 11

2.5 Thompson Sampling

According to Russo et al. (2018), Thompson sampling algorithm samples a

parameter from a certain distribution, and the parameter is used to select the action that

maximizes the estimated reward. Specifically, the agent starts with a prior distribution

of the parameter 𝛽̂. After 𝛽̂ is sampled from this distribution, the estimated function is

used to infer the probabilities of each individual falling into each class. Such estimates

are used to select the action that would maximize the agent reward. In the next time

step, the borrowing outcomes, together with features of selected borrowers, are used to

update the posterior distribution of 𝛽̂. (Russo et al., 2018) In other words, the estimated

parameter 𝛽̂ is updated using Bayes’ rule. (Dumitrascu et al., 2018)

According to Russo et al. (2018), when posterior and prior are not conjugate

distributions, an exact Bayesian inference would be difficult. To solve this problem,

approximation methods are needed. In the logistic bandit setting, the functional form of

logistic regression results in a computationally intractable posterior, which makes the

implementation of Thompson sampling in this framework challenging. (Dumitrascu et

al., 2018) In the following sections, two approximation algorithms are presented, i.e.

Laplace approximation and Langevin MCMC.

2.6 Laplace Approximation

According to Gamerman and Lopes (2006), given the posterior 𝐿(𝛽) and its log

transformation 𝑙(𝛽), Laplace approximation is based on a Taylor series expansion up

until the second order around the presumably unique mode 𝑚, displayed in Equation

(5), where 𝑅(𝛽) contains the third and above order, thus not considered in the

approximation.

 𝑙(𝛽) = 𝑙(𝑚) + [
𝜕𝑙(𝑚)

𝜕𝛽
]
𝑇
(𝛽 − 𝑚) −

1

2!
(𝛽 − 𝑚)𝑇 [−

𝜕2 ⁡log𝐿(𝑚)

𝜕𝛽𝜕𝛽𝑇
] (𝛽 − 𝑚) + 𝑅(𝛽)

(5)

Since the posterior is often known only up to a proportionality constant, let

𝐿∗(𝛽) = 𝑘𝐿(𝛽). The Equation (5) can be rewritten as Equation (6), where the constant

𝑘 is displayed in Equation (7), where 𝑉 = [−
𝜕2 ⁡𝑙𝑜𝑔 𝐿∗(𝑚)

𝜕𝛽𝜕𝛽𝑇
]
−1

, that is negative of the

inverse Hessian matrix on 𝑙𝑜𝑔 𝐿∗(𝛽) calculated at the mode 𝑚.

 12

 𝐿∗(𝛽) ⁡≈ ⁡ 𝐿∗(𝑚) exp {−
1

2
(𝛽 − 𝑚)𝑇 [−

𝜕2 ⁡𝑙𝑜𝑔 𝐿∗(𝑚)

𝜕𝛽𝜕𝛽𝑇
] (𝛽 −𝑚)} (6)

 𝑘 = 𝐿∗(𝑚)(2𝜋)𝑑/2|𝑉|1/2 (7)

Hence, 𝛽 is approximately normally distributed at mode 𝑚 and variance 𝑉 ,

displayed in Equation (8).

 𝛽⁡~̇⁡𝑁(𝑚, 𝑉) (8)

A further approximation could be done by replacing 𝑚 with 𝛽̂ and replacing 𝑉

with 𝐼−1(𝛽̂) where 𝐼(∙) is the observed Fisher information matrix, shown in Equation

(9).

 𝛽⁡~̇⁡𝑁 (𝛽̂, 𝐼−1(𝛽̂)) (9)

For Laplace approximation to work well, the posterior 𝐿 should be close in

shape to a normal distribution as the approximation would ignore skewness and

secondary mode. (Gamerman & Lopes, 2006) In the logistic bandit framework, Laplace

approximation is a suitable algorithm since it could effectively fit a smooth density

peaked around its mode. (Dumitrascu et al., 2018)

2.7 Metropolis Hasting

Hastings (1970) has proposed Metropolis Hasting as a sampling method based

on Markov chain. Consider a distribution 𝜋 simulated using a Markov chain. Define

transition 𝑝(𝑥𝑖, 𝑥𝑗) that satisfies reversibility condition in Equation (10).

 𝜋(𝑥𝑖)𝑝(𝑥𝑖, 𝑥𝑗) = 𝜋(𝑥𝑗)𝑝(𝑥𝑗 , 𝑥𝑖) for all (𝑥𝑖, 𝑥𝑗) (10)

Assume the functional form of 𝑝(𝑥𝑖 , 𝑥𝑗) follows Equation (11).

 𝑝(𝑥𝑖 , 𝑥𝑗) = 𝑞(𝑥𝑖 , 𝑥𝑗)𝛼(𝑥𝑖, 𝑥𝑗) if 𝑥𝑖 ≠ 𝑥𝑗 (11)

This implies the probability that the chain remains at 𝑥𝑖⁡follows Equation (12).

 𝑝(𝑥𝑖, 𝑥𝑖) = 1 − ∫𝑞(𝑥𝑖 , 𝑥𝑗)𝛼(𝑥𝑖𝑥𝑗)𝑑𝑥𝑗 (12)

In Gamerman and Lopes (2006), 𝑞(𝑥𝑖, 𝑥𝑗) is called a transition kernel, and

𝛼(𝑥𝑖, 𝑥𝑗) is called an acceptance probability. Hastings (1970) defines the acceptance

probability in Equation (13).

 13

𝛼(𝑥𝑖 , 𝑥𝑗) = {
1⁡𝑖𝑓

𝜋(𝑥𝑗)𝑞(𝑥𝑗,𝑥𝑖)

𝜋(𝑥𝑖)𝑞(𝑥𝑖,𝑥𝑗)
≥ 1

𝜋(𝑥𝑗)𝑞(𝑥𝑗,𝑥𝑖)

𝜋(𝑥𝑖)𝑞(𝑥𝑖,𝑥𝑗)
⁡𝑖𝑓⁡

𝜋(𝑥𝑗)𝑞(𝑥𝑗,𝑥𝑖)

𝜋(𝑥𝑖)𝑞(𝑥𝑖,𝑥𝑗)
≤ 1

(13)

Based on Gamerman and Lopes (2006), steps to implement Metropolis

Hasting shall be outlined as follows.

Algorithm of Metropolis Hasting

1. Set 𝑖 = 0, and an initial value of 𝑥(0)

2. Generate a new value 𝑦 from the transition kernel 𝑞(𝑥(𝑖), ∙⁡)

3. Calculate the acceptance probability 𝛼(𝑥(𝑖), 𝑦), from Equation (13).

4. The move is accepted with probability 𝛼(𝑥(𝑖), 𝑦). If the move is accepted,

𝑥(𝑖+1) = 𝑦. Otherwise, the value remains as 𝑥(𝑖+1) = 𝑥(𝑖).

5. Increment 𝑖 by 1, and repeat steps 2-4 for a number of times.

2.8 Langevin Monte Carlo Markov Chain (Langevin MCMC)

According to Karagulyan (2021), Langevin Monte Carlo sampling algorithm

involves Euler-Maruyama discretization of the stochastic differential equation to

Langevin diffusion. The discretization generates a proposal through the transition

kernel. The proposal generation is displayed in Equation (14), where 𝜖(𝑖) is normally

distributed with zero mean and unit variance.

 𝑦 = 𝛽(𝑖) + ℎ
𝜕𝑙(𝛽(𝑖))

𝜕𝛽
+ √2ℎ𝜖(𝑖)

(14)

To correct the bias when discretizing, Metropolis-Hasting acceptance probability is

used to either accept or reject the generated proposal in every number of iterations.

(Karagulyan, 2021) The acceptance probability from Karagulyan (2021) is displayed in

Equation (15).

𝛼(𝛽(𝑖), 𝑦) = min

(

1,

exp(𝑙(𝑦)−(
1

4ℎ
)(‖𝛽(𝑖)−𝑦−ℎ

𝜕𝑙(𝑦)

𝜕𝛽
‖
2

2
))

exp(𝑙(𝛽(𝑖))−(
1

4ℎ
)(‖𝑦−𝛽(𝑖)−ℎ

𝜕𝑙(𝛽(𝑖))

𝜕𝛽
‖
2

2

))

)

(15)

 14

The implementation of Langevin MCMC is outlined in Karagulyan (2021) as

follows.

Algorithm of Langevin Monte Carlo Markov Chain

1. Set 𝑖 = 0, step size ℎ, and an initial value of 𝛽(0)

2. Generate a new value 𝑦 from the proposal generation in Equation (14).

3. Calculate the acceptance probability 𝛼(𝛽(𝑖), 𝑦), from Equation (15).

4. The move is accepted with probability 𝛼(𝛽(𝑖), 𝑦). If the move is accepted,

𝛽(𝑖+1) = 𝑦. Otherwise, the value remains as 𝛽(𝑖+1) = 𝛽(𝑖).

5. Increment 𝑖 by 1, and repeat steps 2-4 for a number of times.

However, Karagulyan (2021) recommended using Metropolis adjustment step

in the implementation since this algorithm is extremely sensitive to a fixed step-size ℎ,

and the chain could even be transient with a relatively large step size. Based on Russo

et al. (2018), when a fixed step size is used in reinforcement learning, as time step

progresses, the posterior density would become ill-conditioned, so an extremely small

step size ℎ is needed, causing the chain to converge very slowly. The approach

suggested by Russo et al. (2018) is to adjust a step size using Hessian matrix, shown in

Equation (16), where 𝐴 is defined as the negative of inverse of the Hessian matrix of

log likelihood calculated at 𝛽(0), 𝐴 = [−
𝜕2 ⁡𝑙𝑜𝑔 𝐿∗(𝛽(0))

𝜕𝛽𝜕𝛽𝑇
]
−1

.

𝑦 = 𝛽(𝑖) + ℎ𝐴

𝜕𝑙(𝛽(𝑖))

𝜕𝛽
+ √2ℎ𝐴1/2𝜖(𝑖)

(16)

Intuitively, whether a step size is adjusted or not, Euler-Maruyama

discretization directs the move toward the proposal with high probability in 𝐿 using its

gradient direction. (Wang et al., 2017)

 15

CHAPTER III

METHODOLOGY

This study models the credit scoring and underwriting into a logistic bandit, and

conducts the simulation to evaluate reinforcement learning algorithms under different

settings in the logistic bandit framework. The algorithms in this study include the

greedy, the epsilon-greedy (the probability of exploration 𝜀 = 0.05) and Thompson

Sampling, where the approximation algorithms employ Laplace approximation and

Langevin MCMC. Performances of each algorithm are calculated using reward and

regret in 250 time steps averaged over 100 simulation trials with the number of

dimensions 𝑝 = 2, 10, 20. The details of simulation are outlined in Section 3.1, the

performance measures are indicated in Section 3.2, the implementations of each

algorithm are specified in Section 3.3, and the diagram is presented in Section 3.4.

3.1 Logistic Bandit Framework and Simulation Method

In the traditional logistic bandit, the reinforcement learning agent chooses one

of all available choices such as products, arms and borrowers. The agent attempts to

select a single choice that yields the maximum expected reward. Furthermore, the

action set available to the agent is fixed in every time step in the traditional logistic

bandit. However, in credit scoring, the agent would grant loans to multiple borrowers,

meaning that the agent would choose multiple borrowers per action. Also, the lender

would face different borrowers in every time step, meaning that an action set is renewed.

The main distinctions between these two settings are summarized in Table 1.

Table 1. The comparison between traditional logistic bandit and credit scoring

 Settings

Features
Traditional Logistic Bandit Credit Scoring

Action Specification Choosing a single borrower Choosing multiple borrowers

Action Set Fixed action set Renewed action set

 16

The logistic bandit environment has a ground truth parameter (𝛽) , a 𝑝 -

dimensional vector drawn from a standard normal distribution 𝑁(0, 𝐼𝑝) with an

intercept 𝛽0 of 1.5. Once 𝛽 is sampled from this distribution, the values 𝛽, 𝛽0 does not

change in each time step until the end of a simulation trial. In every time step, there are

𝑛 borrowers available for loan to be granted (𝑛 = 100), where the feature of each

borrower (𝑋𝑖) is identically and independently distributed from a standard multivariate

normal distribution with an identity covariance matrix. The parameter and feature

vectors are independent. The probability of non-default on each borrower follows the

logistic function with parameter (𝛽) and borrower feature (𝑋𝑖). The agent would

observe a binary outcome {0,1} based on the calculated probability of non-default. If

the borrower whom agent granted loan to does not default, the agent would get a reward

or 𝑔𝑎𝑖𝑛. In case of default, the agent would be penalized with 𝑙𝑜𝑠𝑠. In summary, the

logistic bandit environment consists of a set of observations, a set of actions and

observation probabilities, i.e. ℇ = (𝑂, 𝐴, 𝜌) outlined as follows.

1) Action set (𝐴) specifies the borrowers whom loan would be granted, shown in

Equation (17), where 𝑘 is the number of borrowers that the agent could grant

loan to.

 𝐴 = {𝑎: 𝑎 ⊆ {1,2, … , 𝑛}, |𝑎| = 𝑘, 𝑘 < 𝑛} (17)

2) Observation set (𝑂) specifies whether each borrower is non-default (1) or

default (0), shown in Equation (18).

 𝑂 = {0,1}𝑘 (18)

3) Observation probabilities specify the probability of borrower 𝑖 being non-

default given history 𝐻𝑡 and action 𝐴𝑡, shown in Equation (19), where 𝑋𝑡,𝑖 is the

feature of borrower 𝑖 applying for a loan at time 𝑡.

 Ρ(𝑂𝑡+1,𝑖 = 1|𝐻𝑡, 𝐴𝑡 , ℇ) =
exp⁡(𝛽𝑇𝑋𝑡,𝑖)

1+exp⁡(𝛽𝑇𝑋𝑡,𝑖)
 for 𝑖 = 1, 2, … , 𝑘 and 𝑂𝑡+1,𝑖 are i.i.d. (19)

 17

Figure 3. The interaction between agent and environment in logistic bandit framework

The interaction between agent and environment is illustrated in Figure 3. The

environment is characterized by the ground-truth parameter 𝛽 , which is used to

generate an outcome 𝑂𝑡+1,𝑖 according to the non-default probability calculated using

Equation (19). The agent does not observe 𝛽, but could observe borrowers who were

applying for loan (𝑋𝑡,𝑖). It would have to estimate 𝛽̂ instead, which is used to infer the

non-default probabilities of all borrowers, and to select 𝑘 borrowers with the highest

perceived non-default probabilities. Then, the borrowing outcomes of selected 𝑘

borrowers would be returned to the agent as an additional information that agent would

use to estimate 𝛽̂ again.

The simulation is performed in 250 time steps on 100 simulation trials with the

number of dimensions 𝑝 = 2, 10, 20 under the following four scenarios.

1) An agent selects a single borrower, and the pool of borrowers is fixed. (Simple

Setting)

2) An agent selects a single borrower, and the pool of borrowers is renewed under

the same distribution after each time step.

3) An agent selects multiple (10) borrowers, and the pool of borrowers is fixed.

4) An agent selects multiple (10) borrowers, and the pool of borrowers is renewed

under the same distribution after each time step. (Credit Scoring Setting)

 18

(a) (b)

(c) (d)

Figure 4. Histogram of sample average signal-to-noise ratio and sample average non-

default probability under a small (2) and a large (20) number of features

This study evaluates the reinforcement learning algorithms not only on a small

number of features (𝑝 = 2), but also on a large number of features (𝑝 = 20). To make

different dimensional settings comparable, the adjustment coefficient √2/𝑝 is

multiplied with the borrower feature (𝑋𝑡,𝑖). The effects of the adjustment coefficient on

signal-to-noise ratio and non-default probability are displayed in Figure 4. Signal-to-

noise ratio is computed for the latent variable model with Logistic distribution using

the formula in Soch and Allefeld (2018). After the adjustment, the signal-to-noise ratio

is expected to be the same across different dimensions, and the sample means of signal-

to-noise ratio would be similar, shown in Figure 4 (a) and (b). The sample means of

non-default probabilities are also similar in both cases, shown in Figure 4 (c) and (d).

3.2 Performance Measures

The performance measures used in this study are rewards and regrets, following

Sutton and Barto (2018) and Russo et al. (2018).

 19

For the reward, if the borrower whom agent granted loan to does not default (the

outcome is 1), the agent would get a reward of 0.2. In case of default (the outcome is

0), the agent would be penalized with a reward of −1. In each of 250 time steps, the

reward or cumulative reward is summarized by averaging the (cumulative) reward on

100 simulation trials. According to Rosenberg et al. (2009) and Kneiding and

Rosenberg (2008), in 2006, the average microfinance loan interest rate was 35% while

the median interest rate was 26%. In Ethiopia and Sri Lanka, the interest rates were

lower than 20%. (Kneiding & Rosenberg, 2008) Therefore, 20% interest rate is

considered sustainable for microfinance loan. Without collaterals, a lender would lose

the whole principal in case of default. If the number of borrowers whom the loan is

granted (𝑘) is greater than one, reward is the sum of rewards on each borrower divided

by 𝑘.

According to Russo et al. (2018), regret is defined as the difference of maximum

expected reward over all possible actions and expected reward of the taken action. The

maximum expected reward is the expectation of reward based on 𝑘 borrowers with the

highest non-default probabilities, given 𝑔𝑎𝑖𝑛 and 𝑙𝑜𝑠𝑠. The expected reward of the

taken action is the expectation of reward based on 𝑘 borrowers that the agent has

selected, given 𝑔𝑎𝑖𝑛 and 𝑙𝑜𝑠𝑠 . This performance measure motivates the use of a

simulation study because we knew the ground-truth expected reward of each action,

which is required for the calculation of regret, and the regret is only available via the

simulation.

3.3 Reinforcement Learning Algorithms

Because of generalization across actions, the agent can estimate 𝛽̂ in order to

estimate non-default probabilities of all borrowers in the pool. In this setting, an agent

starts with prior of a standard normal distribution, indicated in Equation (20).

Furthermore, the estimated parameter 𝛽̂ is updated through the likelihood of logistic

function, indicated in Equation (21).

 𝑓(𝛽̂) =
1

(2𝜋)
𝑝+1
2

exp (−
1

2
𝛽̂𝑇𝛽̂) (20)

 20

𝑓(𝛽̂; 𝑋1, … , 𝑋𝑁, 𝑦1, … , 𝑦𝑁) = ∏ (

exp(𝛽̂𝑇𝑋𝑖)

1+exp(𝛽̂𝑇𝑋𝑖)
)
𝑦𝑖

(
1

1+exp(𝛽̂𝑇𝑋𝑖)
)
1−𝑦𝑖

𝑁
𝑖=1

(21)

 Based on Equation (20) and Equation (21), the posterior can be shown as

Equation (22).

 𝑓(𝛽̂|𝑋1, … , 𝑋𝑁 , 𝑦1, … , 𝑦𝑁) ∝

exp (−
1

2
𝛽̂𝑇𝛽̂)∏ (

exp(𝛽̂𝑇𝑋𝑖)

1+exp(𝛽̂𝑇𝑋𝑖)
)
𝑦𝑖
(

1

1+exp(𝛽̂𝑇𝑋𝑖)
)
1−𝑦𝑖

𝑁
𝑖=1

(22)

For the greedy and the epsilon-greedy algorithm, the agent has to find 𝛽̂ that

maximizes the posterior in Equation (22). Finding such 𝛽̂ is equivalent to fitting 𝛽̂ to

the logistic regression with L2 regularization. The implementation details of greedy and

epsilon-greedy algorithm shall be specified in Algorithm 1, with the probability of

exploration (𝜀) = 0.05. The choice of 𝜀 determines the trade-off between exploration

and exploitation. According to Figure 2 (b) in Section 2.2 (Bernoulli bandit), the larger

value of 𝜀 is, the better performance the algorithm achieved in the early time steps, but

the algorithm would stay at the higher level of per-period regret in long run. In Bernoulli

bandit setting, the epsilon-greedy algorithm is inferior to other algorithms with an

efficient exploration, regardless of the choice of 𝜀.

Algorithm 1: Greedy and Epsilon-Greedy

1: Input: 𝑛, 𝑘, 𝜀, 𝑡𝑖𝑚𝑒⁡𝑠𝑡𝑒𝑝𝑠, 𝑔𝑎𝑖𝑛, 𝑙𝑜𝑠𝑠, 𝑟𝑒𝑛𝑒𝑤⁡

2: Output: 𝑟𝑒𝑤𝑎𝑟𝑑𝑠, 𝑟𝑒𝑔𝑟𝑒𝑡𝑠

3: 𝑋 ← ∅, 𝑌 ← ∅, 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 ← [], 𝑟𝑒𝑔𝑟𝑒𝑡𝑠 ← [],𝑤𝑎𝑟𝑚⁡𝑠𝑡𝑎𝑟𝑡 ← 𝑇𝑟𝑢𝑒

4: Initialize the time-step counter 𝑡 ← 1

5: while (𝑡 < 𝑡𝑖𝑚𝑒⁡𝑠𝑡𝑒𝑝𝑠):

6: Sample 𝑢 from 𝑈𝑛𝑖𝑓(0,1)

7: If (𝑤𝑎𝑟𝑚⁡𝑠𝑡𝑎𝑟𝑡 or 𝑢 ≤ 𝜀): choose 𝑘 borrowers from 𝑛 borrowers randomly

8: Else: find 𝛽̂ that maximizes the posterior in Equation (22), and use that 𝛽̂ to select

𝑘 borrowers with the estimated highest non-default probabilities

9: Append 𝑟𝑒𝑤𝑎𝑟𝑑𝑠, 𝑟𝑒𝑔𝑟𝑒𝑡𝑠 using the current period reward and regret calculated

 using 𝑔𝑎𝑖𝑛, 𝑙𝑜𝑠𝑠

10: Update the history: 𝑋 ← 𝑋 ∪ {𝑋1,𝑡, … , 𝑋𝑘,𝑡}, 𝑌⁡ ← 𝑌 ∪ {𝑦1,𝑡, … , 𝑦𝑘,𝑡}

11: If (𝑌 contains both 0 and 1): 𝑤𝑎𝑟𝑚⁡𝑠𝑡𝑎𝑟𝑡 ← 𝐹𝑎𝑙𝑠𝑒

12: If (𝑟𝑒𝑛𝑒𝑤): Resample 𝑝-dimensional features of 𝑛 borrowers

13: 𝑡 ← 𝑡 + 1

14: end

 21

For Thompson sampling, the algorithm samples an estimated parameter 𝛽̂ from

the posterior distribution, and its value is used to select the action that maximizes the

estimated expected reward. Then, the borrowing outcomes and individual features of 𝑘

selected borrowers are used to update the posterior distribution of 𝛽̂ via Bayes’ rule.

(Dumitrascu et al., 2018) The implementation details of Thompson sampling shall be

specified in Algorithm 2.

Algorithm 2: Thompson Sampling

1: Input: 𝑛, 𝑘, 𝑡𝑖𝑚𝑒⁡𝑠𝑡𝑒𝑝𝑠, 𝑔𝑎𝑖𝑛, 𝑙𝑜𝑠𝑠, 𝑟𝑒𝑛𝑒𝑤⁡

2: Output: 𝑟𝑒𝑤𝑎𝑟𝑑𝑠, 𝑟𝑒𝑔𝑟𝑒𝑡𝑠

3: 𝑋 ← ∅, 𝑌 ← ∅, 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 ← [], 𝑟𝑒𝑔𝑟𝑒𝑡𝑠 ← [],𝑤𝑎𝑟𝑚⁡𝑠𝑡𝑎𝑟𝑡 ← 𝑇𝑟𝑢𝑒

4: Initialize the time-step counter 𝑡 ← 1

5: while (𝑡 < 𝑡𝑖𝑚𝑒⁡𝑠𝑡𝑒𝑝𝑠):

6: If (𝑤𝑎𝑟𝑚⁡𝑠𝑡𝑎𝑟𝑡): choose 𝑘 borrowers from 𝑛 borrowers randomly

7: Else: Draw 𝛽̂ from the posterior distribution using an approximation algorithm,

and use that 𝛽̂ to select 𝑘 borrowers with the estimated highest non-

default probabilities

8: Append 𝑟𝑒𝑤𝑎𝑟𝑑𝑠, 𝑟𝑒𝑔𝑟𝑒𝑡𝑠 using the current period reward and regret calculated

using 𝑔𝑎𝑖𝑛, 𝑙𝑜𝑠𝑠

9: Update the history: 𝑋 ← 𝑋 ∪ {𝑋1,𝑡, … , 𝑋𝑘,𝑡}, 𝑌⁡ ← 𝑌 ∪ {𝑦1,𝑡, … , 𝑦𝑘,𝑡}

10: If (𝑌 contains both 0 and 1): 𝑤𝑎𝑟𝑚⁡𝑠𝑡𝑎𝑟𝑡 ← 𝐹𝑎𝑙𝑠𝑒

11: If (𝑟𝑒𝑛𝑒𝑤): Resample 𝑝-dimensional features of 𝑛 borrowers

12: 𝑡 ← 𝑡 + 1

13: end

However, if the posterior distribution is not a conjugate of the prior distribution,

an exact Bayesian inference would be difficult. (Russo et al., 2018) In the logistic bandit

framework, the functional form of logistic regression results in computationally

intractable posterior, which makes the application of Thompson sampling in this

framework challenging. Dumitrascu et al. (2018) To address this problem, an

approximation method will be used. This study uses Laplace approximation and

Langevin Monte Carlo Markov Chain algorithm, which are both popular approximation

algorithms for Thompson sampling.

Laplace approximation algorithm follows Gamerman and Lopes (2006), where

the estimated parameter 𝛽̂ is fit using the logistic regression with L2 regularization,

 22

similar to Algorithm 1, and covariance matrix is negative of the inverse Hessian matrix

on 𝑙𝑜𝑔 𝐿∗(𝛽) (𝐿∗(𝛽) = 𝑘𝐿(𝛽)) calculated at the estimated 𝛽̂ . The implementation

details of Laplace approximation shall be specified in Algorithm 3.

Algorithm 3: Laplace Approximation

1: Input: 𝑋, 𝑌

2: Output: 𝛽̂

3: Let 𝑚𝑜𝑑𝑒 ← 𝛽̂⁡that maximizes the posterior probability in Equation (22), given

𝑋, 𝑌

4: Let 𝑐𝑜𝑣 ← the inverse of Fisher information matrix with respect to the posterior

distribution calculated at 𝑚𝑜𝑑𝑒, given 𝑋, 𝑌

5: Sample 𝛽̂⁡from the normal distribution: 𝛽̂⁡~𝑁(𝑚𝑜𝑑𝑒, 𝑐𝑜𝑣)

Langevin Monte Carlo Markov Chain consists of a proposal generation and an

acceptance probability. The proposal generation follows the algorithm with an

adaptive step size from Russo et al. (2018), which is specified in Equation (23),

where 𝜖(𝑖) is normally distributed with zero mean and unit variance, 𝑙(𝛽) is

logarithm of posterior, and the adaptive step-size matrix 𝐴 is indicated in Equation

(24).

 𝑦 = 𝛽(𝑖) + ℎ𝐴
𝜕𝑙(𝛽(𝑖))

𝜕𝛽
+ √2ℎ𝐴1/2𝜖(𝑖)

(23)

𝐴 = [−

𝜕2𝑙(𝛽(0))

𝜕𝛽𝜕𝛽𝑇
]
−1

(24)

For the acceptance probability, Metropolis-Hasting acceptance probability from

Hastings (1970) and Karagulyan (2021) is used to either accept or reject the generated

proposal in every iteration. By incorporating the adaptive step-size, the acceptance

probability can be derived as Equation (25).

 𝛼(𝛽(𝑖), 𝑦) = min (1,
exp⁡(𝑢𝑝𝑝𝑒𝑟)

exp⁡(𝑙𝑜𝑤𝑒𝑟)
) (25)

 𝑢𝑝𝑝𝑒𝑟 = 𝑙(𝑦) − (
1

4ℎ
) (𝛽(𝑖) − 𝑦 − ℎ𝐴

𝜕𝑙(𝑦)

𝜕𝛽
)
′
𝐴−1 (𝛽(𝑖) − 𝑦 − ℎ𝐴

𝜕𝑙(𝑦)

𝜕𝛽
)

𝑙𝑜𝑤𝑒𝑟 = 𝑙(𝛽(𝑖)) − (

1

4ℎ
) (𝑦 − 𝛽(𝑖) − ℎ𝐴

𝜕𝑙(𝛽(𝑖))

𝜕𝛽
)
′

𝐴−1 (𝑦 − 𝛽(𝑖) − ℎ𝐴
𝜕𝑙(𝛽(𝑖))

𝜕𝛽
)

The implementation details of Langevin Monte Carlo Markov Chain shall be

specified in Algorithm 4 with the step size ℎ is 2, and the 𝑛𝑢𝑚⁡𝑖𝑡𝑒𝑟𝑠 are 100.

 23

Algorithm 4: Langevin Monte Carlo Markov Chain

1: Input: 𝑋, 𝑌, ℎ, 𝑛𝑢𝑚⁡𝑖𝑡𝑒𝑟𝑠

2: Output: 𝛽̂

3: Initialize 𝛽(0) ← 𝛽̂⁡that maximizes the posterior probability in Equation (22) given

𝑋, 𝑌

4: Initialize the counter 𝑖 ← 1

5: while (𝑖 < 𝑛𝑢𝑚⁡𝑖𝑡𝑒𝑟𝑠):

6: Generate a proposal 𝑦 using the proposal generation in Equations (23-24)

7: Calculate the Metropolis-Hasting acceptance probability 𝛼(𝛽(𝑖), 𝑦) in Equation

(25)

8: Sample 𝑢 from 𝑈𝑛𝑖𝑓(0,1)

9: If (𝑢 ≤ 𝛼(𝛽(𝑖), 𝑦)): assign 𝛽(𝑖+1) ← 𝑦

10: Else: the chain does not move 𝛽(𝑖+1) ← 𝛽(𝑖)

11: 𝑖 ← 𝑖 + 1

12: end

13: Retrieve the last value as the estimated parameter: 𝛽̂ ← 𝛽(𝑖)

 24

3.4 Algorithm Flowchart

The algorithm flowchart of modelling credit scoring and underwriting, and

evaluating reinforcement learning algorithms under the simulation study is outlined in

Figure 5.

Figure 5. Algorithm flowchart

Start

Set up Logistic Bandit Environment

Set up Greedy agent and

Thompson Sampling agent

Set up Laplace and Langevin MCMC

approximation methods

Input Scenario:

𝑘, 𝑟𝑒𝑛𝑒𝑤, 𝑝

Compute reward and regret of four

algorithms: greedy, epsilon-greedy,

Laplace (TS) and Langevin (TS)

Complete

100 trials

Calculate average reward and average

regret in each time step

Complete all

Scenarios

Stop

No

Yes

Yes

No

 25

CHAPTER IV

 RESULTS

The purpose of this study is to model the credit scoring and underwriting into a

logistic bandit, and evaluate the performances of four reinforcement learning

algorithms based on the logistic bandit framework. The algorithms used in this study

include the greedy, the epsilon-greedy, Thompson sampling with Laplace

approximation and Thompson sampling with Langevin Monte Carlo Markov Chain.

The greedy can be deemed as the traditional approach for credit scoring and

underwriting while Thompson sampling can be deemed as a reinforcement learning

algorithm that includes an efficient exploration.

Two performance measures used to evaluate these algorithms are rewards and

regrets over 250 time steps, averaged on 100 simulation trials under the number of

dimensions 𝑝 = 2, 10, 20. For rewards, if the borrower did not default on loan, the

agent would get a reward of 0.2. Otherwise, the agent would get a reward of −1. If 𝑘

borrowers are granted loans, the reward would be the sum of reward on each of the

borrower divided by 𝑘. The regret is the difference between the maximum expected

reward over all possible actions, and the expected reward of the selected action.

Two performance measures on four reinforcement learning algorithms are

investigated under the following scenarios.

1) Scenario 1: The agent selects a single borrower while the pool of borrowers

is fixed. This is the traditional logistic bandit usually found in literatures discussing the

logistic bandit framework.

2) Scenario 2: The agent selects a single borrower while the pool of borrowers

is renewed after each time step. In credit scoring, lenders would actually find new

customers applying for a loan.

3) Scenario 3: The agent selects multiple (10) borrowers while the pool of

borrowers is fixed. In microfinance or consumer loans, lenders would give small

amounts of loans to many customers at once.

 26

4) Scenario 4: The agent selects multiple (10) borrowers while the pool of

borrowers is renewed after each time step. This is the credit scoring setting that

incorporates two modifications which capture the main characteristics of the credit

scoring and underwriting processes.

4.1 Small Number of Features (𝒑 = 𝟐)

This section shows the performances of each reinforcement learning algorithm

when borrower characteristics are captured by a small number of features (𝑝 = 2)

under the following four scenarios.

1) Scenario 1: Selecting a Single Borrower without Renewal

(a) (b)

(c) (d)

Figure 6. Performance comparisons on two-dimensional features (single borrower

without renewal)

Figure 6 illustrates the performance of each algorithm when the borrower

characteristics are captured by a two-dimensional vector, where the setting is that a

single borrower is selected per action while the pool of borrowers is fixed. The greedy

algorithm chooses the action based on the parameter which maximizes the posterior,

which is based on only a few observations in early time steps. According to Figure 6

 27

(c) and (d), the greedy performs the worst due to its lowest cumulative reward and its

highest cumulative regret as the algorithm commits too early to an inferior action. The

epsilon-greedy algorithm modifies the greedy algorithm by incorporating an

exploration: with a small chance, the algorithm selects one of all possible actions with

equal probabilities. The epsilon-greedy algorithm performs better than the greedy

algorithm; however, its cumulative regret increases in a linear fashion, shown in Figure

6 (d). Thompson sampling algorithms conduct an efficient exploration by exploring an

action with limited information. With either Laplace approximation or Langevin

MCMC, Thompson sampling algorithms perform quite well by achieving high

cumulative rewards and low cumulative regrets, shown in Figure 6 (c) and (d). Based

on Figure 6 (d), the cumulative regrets of Thompson sampling are high in early time

steps due to heavy exploration whereas the cumulative regrets become lower in later

time steps because the agent has enough information for exploitation.

2) Scenario 2: Selecting a Single Borrower with Renewal

(a) (b)

(c) (d)

Figure 7. Performance comparisons on two-dimensional features (single borrower

with renewal)

 28

Figure 7 illustrates the performance of each algorithm when the borrower

characteristics are captured by a two-dimensional vector, where the setting is that a

single borrower is selected per action while the pool of borrowers is renewed. The

epsilon-greedy performs the worst due to its lowest cumulative reward and highest

cumulative regret, shown in Figure 7 (c) and (d). The algorithm selects an action

randomly with a small chance in every time step, causing the linear increase in

cumulative regret, shown in Figure 7 (d). In Figure 7 (c) and (d), Thompson sampling

algorithms with either approximation method perform better than the epsilon-greedy

because they conduct an efficient exploration, i.e. heavy exploration in beginning time

steps, and heavy exploitation in later time steps. Unlike Scenario 1 in Figure 6, the

greedy algorithm achieves higher cumulative rewards than Thompson sampling with

Laplace approximation, and the greedy algorithm achieves lower cumulative regrets

than Thompson sampling algorithms with either approximation method, shown in

Figure 7 (c) and (d). The result implies that the renewal of borrowers allows the greedy

algorithm to perform quite well as the algorithm would not commit too early to an

inferior action. In other words, there is no single inferior borrower for the greedy

algorithm to commit to since the pool of borrowers is renewed in every time step. In a

sense, the renewal of the borrower pool enables a kind of exploration into the greedy

algorithm that otherwise would not explore the action space.

3) Scenario 3: Selecting Multiple (10) Borrowers without Renewal

(a) (b)

 29

(c) (d)

Figure 8. Performance comparisons on two-dimensional features (multiple borrowers

without renewal)

Figure 8 illustrates the performance of each algorithm when the borrower

characteristics are captured by a two-dimensional vector, where the setting is that

multiple (10) borrowers are selected per action while the pool of borrowers is fixed. In

Figure 8 (d), the epsilon-greedy performs the worst because of the linear increase in

cumulative regret, similar to Figure 7 (d). Based on Figure 8 (c) and (d), Thompson

sampling algorithms with either approximation method perform significantly better

than the epsilon-greedy in terms of the cumulative rewards and the cumulative regrets

because of efficient exploration. Unlike Scenario 1 in Figure 6, the greedy algorithm

achieves higher cumulative rewards and lower cumulative regrets than Thompson

sampling algorithms with either approximation method, shown in Figure 8 (c) and (d).

By choosing multiple borrowers per action, the agent has enough information to choose

the parameter that results in borrowers with the highest non-default probabilities

without explicitly exploring the action space as Thompson sampling algorithms, shown

in Figure 8 (a) and (b).

4) Scenario 4: Selecting Multiple (10) Borrowers with Renewal

 30

(a) (b)

(c) (d)

Figure 9. Performance comparisons on two-dimensional features (multiple borrowers

with renewal)

Figure 9 illustrates the performance of each algorithm when the borrower

characteristics are captured by a two-dimensional vector, where the setting is that

multiple (10) borrowers are selected per action while the pool of borrowers is renewed

at every time step. In Figure 9 (c) and (d), the epsilon-greedy algorithm performs the

worst due to the linear increase in the cumulative regret, similar to Figure 7 (d) and

Figure 8 (d). Thompson sampling algorithms with either approximation method

performs an efficient exploration, resulting in higher cumulative rewards and lower

cumulative regrets than the epsilon-greedy, shown in Figure 9 (c) and (d). Unlike

Scenario 1 in Figure 6, the greedy algorithm could outperform Thompson sampling

algorithms in terms of cumulative rewards and cumulative regrets, shown in Figure 9

(c) and (d). In this scenario, the pool of borrowers is renewed, enabling a kind of

exploration in the greedy algorithm in Scenario 2 whereas the agent could provide loans

to multiple borrowers per action, resulting in enough information to select borrowers

by the agent in Scenario 3. These two modifications allow the greedy algorithm to

outperform Thompson sampling algorithms.

4.2 Medium Number of Features (𝒑 = 𝟏𝟎)

This section shows the performances of each reinforcement learning algorithm

when borrower characteristics are captured by a medium number of features (𝑝 = 10)

under the following four scenarios.

 31

1) Scenario 1: Selecting a Single Borrower without Renewal

(a) (b)

(c) (d)

Figure 10. Performance comparisons on ten-dimensional features (single borrower

without renewal)

Figure 10 illustrates the performance of each algorithm when the borrower

characteristics are captured by a ten-dimensional vector, where the setting is that a

single borrower is selected per action while the pool of borrowers is fixed. Overall, by

increasing the number of features used to capture borrower characteristics, per-period

regrets in later time steps of each algorithm are higher, implying that this setting is more

difficult for reinforcement learning algorithms, shown in Figure 10 (b). In Figure 10

(b), per-period regret of the greedy algorithm is still higher than other algorithms,

similar to Scenario 1 in Figure 6. Thompson sampling algorithm with Langevin MCMC

performs a heavy exploration before reaching lower per-period regret than the greedy

algorithm, shown in Figure 10 (b). The number of time steps the algorithm needs to

perform heavy exploration is higher than Scenario 1 in Figure 6 as the number of

features capturing borrower characteristics increases from two to ten. Thompson

sampling with Laplace approximation performs heavy exploration in fewer number of

time steps than Thompson sampling with Langevin MCMC, resulting in better

performances in cumulative rewards and cumulative regrets, shown in Figure 10 (c)

 32

and (d). The epsilon-greedy algorithm does not conduct heavy exploration, but its per-

period regret is greater than Thompson sampling with Laplace approximation in later

time steps, shown in Figure 10 (b). This implies that the epsilon-greedy does not

conduct an efficient exploration, resulting in the linear increase in cumulative regret in

Figure 10 (d).

2) Scenario 2: Selecting a Single Borrower with Renewal

(a) (b)

(c) (d)

Figure 11. Performance comparisons on ten-dimensional features (single borrower

with renewal)

Figure 11 illustrates the performance of each algorithm when the borrower

characteristics are captured by a ten-dimensional vector, where the setting is that a

single borrower is selected per action while the pool of borrowers is renewed in every

time step. As the number of borrower features increases from two to ten, the setting

becomes more difficult, and Thompson sampling with Laplace approximation needs to

perform heavy exploration in a number of time steps before reaching same level of per-

period regret as other algorithms, shown in Figure 11 (c). This results in the lowest

cumulative regret and the highest cumulative reward of this algorithm in Figure 11 (d).

As Thompson sampling with Langevin MCMC does not perform such the heavy

 33

exploration as Thompson sampling with Laplace approximation, shown in Figure 11

(b), the algorithm reaches higher cumulative reward and lower cumulative regret,

shown in Figure 11 (c) and (d). The epsilon-greedy achieves low cumulative regret in

early time step due to a small chance of exploration in every time step, and its

cumulative regret increases linearly, resulting in higher cumulative regrets than

Thompson sampling with Langevin MCMC. Similar to Scenario 2 in Figure 7, the

renewal of borrower pool allows the greedy algorithm to outperform other algorithms

in terms of cumulative rewards and cumulative regrets, shown in Figure 11 (c) and (d).

3) Scenario 3: Selecting Multiple (10) Borrowers without Renewal

(a) (b)

(c) (d)

Figure 12. Performance comparisons on ten-dimensional features (multiple borrowers

without renewal)

Figure 12 illustrates the performance of each algorithm when the borrower

characteristics are captured by a ten-dimensional vector, where the setting is that

multiple (10) borrowers are selected per action while the pool of borrowers is fixed. In

Figure 12 (b) and (d), the epsilon-greedy results in the highest cumulative regret as the

cumulative regret increases linearly due to a small chance of an exploration in every

 34

time step. Similar to Scenario 2 in Figure 11, Thompson sampling algorithm with

Laplace approximation needs to perform quite a heavy exploration in beginning time

steps, indicated by high per-period regret in Figure 12 (c), but it managed to achieve

lower cumulative regret than the epsilon-greedy in later time steps, shown in Figure 12

(d). Because Thompson sampling with Langevin MCMC does not perform such the

heavy exploration as Thompson sampling with Laplace approximation, the algorithm

manages to get higher cumulative reward and lower cumulative regret, shown in Figure

12 (c) and (d). The greedy algorithm achieves the performance close to Thompson

sampling with Langevin MCMC, shown in Figure 12 (c) and (d). Unlike Scenario 3 in

Figure 8, as the number of features to capture borrower characteristics is greater, the

greedy algorithm would face some difficulties in utilizing the same number of

borrowers in each time step in order to find parameters that could maximize cumulative

rewards.

4) Scenario 4: Selecting Multiple (10) Borrowers with Renewal

(a) (b)

(c) (d)

Figure 13. Performance comparisons on ten-dimensional features (multiple borrowers

with renewal)

 35

Figure 13 illustrates the performance of each algorithm when the borrower

characteristics are captured by a ten-dimensional vector, where the setting is that

multiple (10) borrowers are selected per action while the pool of borrowers is renewed

in every time step. In Figure 13 (b) and (d), the cumulative regret of the epsilon-greedy

increases linearly, resulting in the worst performance in later time steps. Similar to

Scenario 2 in Figure 11 and Scenario 3 in Figure 12, Thompson sampling with Laplace

approximation results in higher per-period regrets in beginning time steps and lower

cumulative regrets in later time steps due to efficient exploration, shown in Figure 13

(b) and (d). Compared with Scenario 4 in Figure 9, as the number of borrower features

is greater, Thompson sampling with Laplace approximation needs to perform a heavier

exploration in a number of time steps before settling down to lower level of per-period

regret. Thompson sampling with Langevin MCMC does not conduct quite heavy

exploration as Thompson sampling with Laplace approximation, resulting in lower

cumulative regrets, shown in Figure 13 (b) and (d). As Scenario 4 incorporates two

modifications which allows the greedy algorithm to perform better, the greedy

algorithm achieves the lowest cumulative regret in Figure 13 (d). Unlike Scenario 4 in

Figure 9, as the number of borrower features is greater, the gap in cumulative regrets

between the greedy and Thompson sampling with Langevin MCMC narrows down

considerably.

4.3 Large Number of Features (𝒑 = 𝟐𝟎)

This section shows the performances of each reinforcement learning algorithm

when borrower characteristics are captured by a large number of features (𝑝 = 20)

under the following four scenarios.

 36

1) Scenario 1: Selecting a Single Borrower without Renewal

(a) (b)

(c) (d)

Figure 14. Performance comparisons on twenty-dimensional features (single borrower

without renewal)

Figure 14 illustrates the performance of each algorithm when the borrower

characteristics are captured by a twenty-dimensional vector, where the setting is that a

single borrower is selected per action while the pool of borrowers is fixed. Overall, by

increasing the number of borrower features from ten to twenty, per-period regrets in

later time steps of each algorithm are higher, indicating that the problem is more

difficult for reinforcement learning algorithms. The greedy algorithm results in the

lowest cumulative reward and the highest cumulative regret, similar to Scenario 1 in

Figure 6 and Figure 10. Thompson sampling with either approximation algorithm

requires a larger number of time steps to perform efficient exploration than Scenario 1

in Figure 6 and Figure 10 because of greater number of borrower features. The epsilon-

greedy achieves the highest cumulative reward and the lowest cumulative regret;

however, the cumulative regret increases linearly as there is a small chance that the

algorithm performs exploration in every time step, shown in Figure 14 (d).

 37

2) Scenario 2: Selecting a Single Borrower with Renewal

(a) (b)

(c) (d)

Figure 15. Performance comparisons on twenty-dimensional features (single borrower

with renewal)

Figure 15 illustrates the performance of each algorithm when the borrower

characteristics are captured by a twenty-dimensional vector, where the setting is that a

single borrower is selected per action while the pool of borrowers is renewed in every

time step. Due to an increase in the borrower features, Thompson sampling with

Laplace approximation needs to perform heavy exploration in a number of time steps

before reaching per-period regret comparable to other algorithms. This results in its

lowest cumulative reward and highest cumulative regret, shown in Figure 15 (c) and

(d). The epsilon-greedy algorithm performs an exploration with a small probability in

every time step, resulting in the linear increase in cumulative regret, shown in Figure

15 (d). Because Thompson sampling with Langevin MCMC does not perform such the

heavy exploration as Thompson sampling with Laplace approximation in early time

steps, evident in Figure 15 (b), the algorithm achieves higher cumulative reward and

lower cumulative regret in Figure 15 (c) and (d). Unlike Scenario 2 in Figure 7 and

Figure 11, the renewal of borrower pool allows the greedy algorithm to perform better

 38

than Scenario 1; however, because of an increase in borrower features, its performance

is not quite different from Thompson sampling with Langevin MCMC.

3) Scenario 3: Selecting Multiple (10) Borrowers without Renewal

(a) (b)

(c) (d)

Figure 16. Performance comparisons on twenty-dimensional features (multiple

borrowers without renewal)

Figure 16 illustrates the performance of each algorithm when the borrower

characteristics are captured by a twenty-dimensional vector, where the setting is that

multiple (10) borrowers are selected per action while the pool of borrowers is fixed.

The epsilon-greedy has a small chance of an exploration in every time step, resulting in

the linear increase in the cumulative regret. In Figure 16 (c) and (d), the algorithm

results in the lowest cumulative reward and the highest cumulative regret. As the

number of borrower features is greater, Thompson sampling with Laplace

approximation would perform heavy exploration in a number of time steps before

achieving comparable per-period regret in later time steps, shown in Figure 16 (b). As

Thompson sampling with Langevin MCMC does not perform quite heavy exploration

in early time steps, the algorithm results in higher cumulative reward and lower

cumulative regret than Thompson sampling with Laplace approximation, shown in

 39

Figure 16 (c) and (d). As the number of borrower features is greater than Scenario 3 in

Figure 8 and Figure 12, Thompson sampling with Langevin MCMC outperforms the

greedy algorithm. When the number of borrower features increases, with the same

number of borrowers per action, the greedy algorithm would experience difficulties in

using such information to find parameters that could generalize well. In this setting,

Thompson sampling with Langevin MCMC and the greedy algorithm are not much

different in that Langevin MCMC starts at the mode, which is the parameter that the

greedy algorithm uses.

4) Scenario 4: Selecting Multiple (10) Borrowers with Renewal

(a) (b)

(c) (d)

Figure 17. Performance comparisons on twenty-dimensional features (multiple

borrowers with renewal)

Figure 17 illustrates the performance of each algorithm when the borrower

characteristics are captured by a twenty-dimensional vector, where the setting is that

multiple (10) borrowers are selected per action while the pool of borrowers is renewed

in every time step. The epsilon-greedy exhibits a linear increase in the cumulative regret,

due to a small chance of exploration in every time step, resulting in the lowest

cumulative reward and the highest cumulative regret in Figure 17 (c) and (d). As the

 40

number of features capturing borrower characteristics increases, Thompson sampling

with Laplace approximation needs to perform heavy exploration in the parameter space

before reaching lower level of per-period regret in later time steps, shown in Figure 17

(b). Because Thompson sampling with Langevin MCMC does not perform such the

heavy exploration in early time steps, shown in Figure 17 (b), its cumulative reward is

larger, and its cumulative regret is lower than Thompson sampling with Laplace

approximation. Incorporating two modifications in Scenario 4 would allow the greedy

to perform much better than Scenario 1; however, a large number of borrower features

cause some difficulties for the greedy algorithm, given the same action specification.

In Figure 17 (c) and (d), Thompson sampling with Langevin MCMC performs slightly

better than the greedy algorithm. Hence, the efficient exploration by Langevin MCMC

in Thompson sampling is still beneficial in the credit scoring setting, when the borrower

characteristics are captured by a large number of features.

 41

CHAPTER V

CONCLUSION AND DISCUSSION

This study applies the logistic bandit framework, which is a reinforcement

learning framework, to credit scoring under the number of feature dimensions 𝑝 =

2, 10, 20. Four different scenarios are studied. Scenario 1 (simple setting) is that the

agent would select a single borrower while the pool of borrowers is fixed. Scenario 2

adds a renewal on the group of borrowers in each time step. Scenario 3 allows the agent

to choose multiple (10) borrowers. Scenario 4 (credit scoring setting) incorporate both

modifications. In this study, reinforcement learning algorithms include the greedy, the

epsilon-greedy, Thompson sampling with Laplace approximation and Thompson

sampling with Langevin MCMC. To measure the performance of each algorithm under

different scenarios, two performance measures, i.e. regrets and rewards, are measured

over 250 time steps, averaged on 100 simulation trials. Scenario 1 is a simple logistic

bandit environment while Scenario 4 simulates the credit scoring and underwriting

processes.

5.1 Conclusion

Cumulative reward is a measure that shows the net financial outcome

accumulated from giving out a unit of loans (equally divided among borrowers in case

agent gives loan to multiple borrowers) over each time step. Cumulative regret is a

measure that shows the true opportunity cost accumulated over each time step. Table 2

and 3 show cumulative rewards and cumulative regrets, respectively, averaged on all

simulation trials and computed at the final time step of each algorithm under different

feature dimensions, where four scenarios are divided into panels (a) - (d).

 42

Table 2. The cumulative rewards of each algorithm under different feature dimensions

 Feature Dimensions

Algorithm 2-dim 10-dim 20-dim

greedy 33.22 28.78 20.68

epsilon greedy 36.74 32.7 28.78

Thompson sampling (Laplace) 37.74 33.44 27.58

Thompson sampling (Langevin MCMC) 37.47 29.52 22.93

(a) Scenario 1

 Feature Dimensions

Algorithm 2-dim 10-dim 20-dim

greedy 34.1 35.9 32.44

epsilon greedy 33.04 32.88 29.86

Thompson sampling (Laplace) 33.36 31.29 26.47

Thompson sampling (Langevin MCMC) 36.49 34.48 31.59

(b) Scenario 2

 Feature Dimensions

Algorithm 2-dim 10-dim 20-dim

greedy 37.74 39.24 37.64

epsilon greedy 33.4 36.42 35.92

Thompson sampling (Laplace) 35.47 37.71 36.33

Thompson sampling (Langevin MCMC) 36.92 38.96 38.45

(c) Scenario 3

 Feature Dimensions

Algorithm 2-dim 10-dim 20-dim

greedy 34.44 38.58 37.6

epsilon greedy 30.3 36.3 34.51

Thompson sampling (Laplace) 31.63 36.91 35.19

Thompson sampling (Langevin MCMC) 32.63 38.4 38.35

(d) Scenario 4

According to Table 2, the cumulative rewards generally decrease as the number

of borrower features increases, indicating the increased complexity of the problem that

the reinforcement learning agent is facing. In Scenario 1, Thompson sampling with

Laplace approximation performs the best in two-dimensional and ten-dimensional

cases while the epsilon-greedy performs the best in twenty-dimensional case, followed

closely by Thompson sampling with Laplace approximation. This demonstrates the

algorithm with efficient exploration performs the best; however, such efficient

 43

exploration incurred higher financial losses than the exploration by epsilon-greedy,

especially in beginning time steps. In Scenario 2, Thompson sampling with Langevin

MCMC performs the best in two-dimensional case while the greedy algorithm performs

the best in other cases. In Scenario 3, the greedy algorithm performs the best in two-

dimensional and ten-dimensional cases while Thompson sampling with Langevin

MCMC performs the best in twenty-dimensional case. The same conclusion holds in

Scenario 4. These results generally illustrate that the greedy algorithm performs better

than other algorithms when the setting changes from traditional logistic bandit to credit

scoring. Nevertheless, when the number of borrower features increases to twenty, the

exploration feature from Langevin MCMC in Thompson sampling leads to slightly

better performance than the greedy algorithm.

Table 3. The cumulative regrets of each algorithm under different feature dimensions

 Feature Dimensions

Algorithm 2-dim 10-dim 20-dim

greedy 9.16 18.04 25.11

epsilon greedy 6.28 13.54 17.73

Thompson sampling (Laplace) 5.13 13.91 19.28

Thompson sampling (Langevin MCMC) 5.1 17.83 23.03

(a) Scenario 1

 Feature Dimensions

Algorithm 2-dim 10-dim 20-dim

greedy 4.81 11.13 14.63

epsilon greedy 7.13 12.06 17

Thompson sampling (Laplace) 5.8 14.71 21.21

Thompson sampling (Langevin MCMC) 4.92 11.56 14.71

(b) Scenario 2

 Feature Dimensions

Algorithm 2-dim 10-dim 20-dim

greedy 0.81 3.1 4.8

epsilon greedy 3.83 5.85 7.01

Thompson sampling (Laplace) 1.34 4.23 6.35

Thompson sampling (Langevin MCMC) 1.2 3.1 4.62

(c) Scenario 3

 44

 Feature Dimensions

Algorithm 2-dim 10-dim 20-dim

greedy 0.98 2.93 4.57

epsilon greedy 3.43 5.76 7.64

Thompson sampling (Laplace) 1.37 4.39 7.01

Thompson sampling (Langevin MCMC) 1.39 3.06 4.5

(d) Scenario 4

Based on Table 3, the cumulative regrets generally increase as the number of

borrower features increases. This could be explained by the increased complexity of the

problem induced by the greater number of features. In Scenario 1, Thompson sampling

with Langevin MCMC performs the best while the epsilon-greedy performs the best in

other cases. This result demonstrates that the efficient exploration from Langevin

MCMC leads to its best performance; however, with increased number of dimensions,

this algorithm requires an exploration in longer time steps, causing the epsilon-greedy

algorithm to perform the best. In Scenario 2, the greedy algorithm performs the best in

all feature dimensions. In Scenario 3, the greedy algorithm performs the best in two-

dimensional and ten-dimensional cases while Thompson sampling with Langevin

MCMC performs the best in twenty-dimensional case. Similar results are shown in

Scenario 4. Both changes from the traditional logistic bandit to credit scoring provide

enough information for the greedy algorithm to select borrowers without the explicit

exploration by the algorithm. When the borrower characteristics is captured by twenty

dimensional features, the problem agent is facing becomes more complicated, so the

exploration from Langevin MCMC in Thompson sampling allows the algorithm to

perform slightly better than the greedy algorithm.

5.2 Discussion

It is commonly believed that an algorithm with an exploration such as the

epsilon-greedy would perform better than the greedy (Sutton & Barto, 2018), and an

algorithm with an efficient exploration such as Thompson sampling would even

perform better than the epsilon-greedy. (Russo et al., 2018) In the simple setting where

an agent could grant credit to only one borrower while the pool of borrowers is fixed

as in Scenario 1, this statement is true under the small number of dimensions of

 45

borrower features, see Figure 6. An algorithm without explorations would commit too

early to an inferior action. An efficient exploration would perform a heavy exploration

in the beginning while exploiting the information that agent acquired in later time steps.

The algorithm would sacrifice short-term reward in order to increase long-term

cumulative rewards. When the number of feature dimensions increases (Figure 10, 14),

Thompson sampling algorithms with Laplace approximation and Langevin MCMC

need to perform an exploration in many more time steps, resulting in the worse

performance in terms of the cumulative reward and the cumulative regret. Still, the

greedy algorithm is outperformed by algorithms with an efficient exploration, such as

Thompson sampling, supporting the common belief.

Scenario 4 models a more realistic credit scoring and underwriting process using

the logistic bandit. The setting includes two modifications: the lender would grant the

credit to multiple borrowers per action while the pool of borrowers is renewed in every

time step. By incorporating both modifications, in Figure 9, the epsilon-greedy

algorithm performs the worst as the cumulative regret increases linearly because of a

small chance of the exploration in every time step. Efficient reinforcement learning

algorithms, such as Thompson sampling algorithms with Laplace approximation and

Langevin MCMC, could achieve better performances because the algorithms perform

a heavy exploration in early time steps, but focus on an exploitation in later time steps.

However, the greedy algorithm could perform better than Thompson sampling. In

contrast to Figure 6, the greedy algorithm does not commit too early to an inferior action

under the credit scoring setting in Figure 9. By selecting multiple borrowers per action,

the greedy algorithm has enough information to select the parameter without explicitly

exploring the action space. When the borrower pool is renewed, a type of exploration

is embedded into the learning algorithm without explicitly performing an exploration.

According to Sutton and Barto (2018) and Russo et al. (2018), there is a trade-

off between the exploration and the exploitation. The greedy algorithm exploits all the

information that the agent currently has in order to select the action with the maximum

estimated reward. In contrast, an efficient reinforcement learning algorithm, such as

Thompson sampling, would sacrifice per-period reward in early time steps in order to

achieve the higher cumulative reward in later time steps. This study has also found that

 46

the exploration is still useful when borrower characteristics are captured by a large

number of features.

(a) (b) (c)

Figure 18. Non-default probability, signal-to-noise ratio and percentage improvement

across feature dimensions

Figure 18 shows the sample average of non-default probability, the sample

average of signal-to-noise ratio and the percentage improvement from the greedy

algorithm to Thompson sampling with Langevin MCMC along different feature

dimensions under Scenario 4. The percentage improvement uses the cumulative reward

at the time step 250 under the setting of credit scoring, i.e. an agent selects multiple

(10) borrowers per action while the pool of borrowers is renewed in every time step.

Because of the adjustment coefficient, the sample average non-default probabilities and

signal-to-noise ratios would be very similar along different dimensions, shown in

Figure 18 (a) and (b). When borrower characteristics are described by a two-

dimensional vector, based on Figure 9 (c), the percentage improvement is negative,

indicating that the credit scoring setting allows the greedy algorithm to perform better

than Thompson sampling with Langevin MCMC. However, as the number of

dimensions increases to twenty, based on Figure 17 (c), the percentage improvement is

positive, implying that an efficient exploration by Langevin MCMC in Thompson

sampling is still useful when borrower characteristics are captured by a large number

of features, shown in Figure 18 (c). An increase in the borrower features causes

difficulties for reinforcement learning algorithms as they require more time steps to

perform an exploration. With the same amount of information available for the greedy

 47

algorithm, an increase in borrower features means the greedy would experience

difficulties in selecting the parameter which maximizes the cumulative reward.

(a) (b)

(c) (d)

Figure 19. Performance of Thompson sampling with Langevin MCMC when initial

parameter is deviated on twenty-dimensional features (multiple borrowers with

renewal)

The initialization of Langevin MCMC at posterior mode is crucial for

Thompson sampling to work well. Figure 19 shows the performance of such algorithm

when the parameter of the model is initialized one standard deviation away from the

posterior mode, with respect to each parameter. The setting is that multiple (10)

borrowers are selected per action while the pool of borrowers is renewed in every time

step, and the borrower characteristics are captured by a twenty-dimensional vector.

From Figure 19 (a) and (c), given a particular level of per-period reward or regret, the

algorithm with the deviation during initialization needs a larger number of time steps

than the algorithm that starts with posterior mode in order to reach that particular level.

Therefore, the deviation from posterior mode during the initialization results in lower

cumulative reward and higher cumulative regret, shown in Figure 19 (b) and (d).

 48

5.3 Future Research

This study provides a deeper understanding of reinforcement learning towards

the logistic bandit under the setting of credit scoring and underwriting. The credit

scoring proposed by this study is more complicated than the setting usually studied in

reinforcement learning literature. With different settings, the results are different from

what is usually found in other reinforcement learning literatures: the greedy approach

can outperform Thompson sampling.

Still, this setting is far from the reality of credit scoring. One recommended

direction of future research is to evaluate reinforcement learning algorithms in a more

complicated setting; for example, when the environment is contextualized, where the

optimal action also depends on which group a borrower belongs to. (Russo et al., 2018)

When the process of generating ground truth labels given the borrower features is more

complicated than the credit scoring model, how would the reinforcement learning

algorithms suffer from such complexity, and how would the greedy algorithm perform,

compared with reinforcement learning algorithms with efficient exploration?

REFE REN CES

REFERENCES

Dumitrascu, B., Feng, K., & Engelhardt, B. (2018). Pg-ts: Improved thompson sampling

for logistic contextual bandits. Advances in neural information processing

systems, 31.

Faury, L., Abeille, M., Calauzènes, C., & Fercoq, O. (2020). Improved optimistic

algorithms for logistic bandits. International Conference on Machine Learning,

Gamerman, D., & Lopes, H. F. (2006). Markov chain Monte Carlo: stochastic simulation

for Bayesian inference. CRC press.

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of

statistical learning: data mining, inference, and prediction (Vol. 2). Springer.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their

applications.

Karagulyan, A. (2021). Sampling with the Langevin Monte-Carlo Institut Polytechnique

de Paris].

Kneiding, C., & Rosenberg, R. (2008). Variations in microcredit interest rates.

Lessmann, S., Baesens, B., Seow, H.-V., & Thomas, L. C. (2015). Benchmarking state-

of-the-art classification algorithms for credit scoring: An update of research.

European Journal of Operational Research, 247(1), 124-136.

Phillips, R. L. (2018). Pricing credit products. In Pricing Credit Products. Stanford

University Press.

Rosenberg, R., Gonzalez, A., & Narain, S. (2009). Are microcredit interest rates

excessive? CGAP brief.

Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., & Wen, Z. (2018). A tutorial on

thompson sampling. Foundations and Trends® in Machine Learning, 11(1), 1-96.

Soch, J., & Allefeld, C. (2018). MACS–a new SPM toolbox for model assessment,

comparison and selection. Journal of neuroscience methods, 306, 19-31.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Vojtek, M., & Koèenda, E. (2006). Credit-scoring methods. Czech Journal of Economics

and Finance (Finance a uver), 56(3-4), 152-167.

Wang, J.-K., Lu, C.-J., & Lin, S.-D. (2017). Fast Algorithm for Logistic Bandit.

Zhang, L., Yang, T., Jin, R., Xiao, Y., & Zhou, Z.-H. (2016). Online stochastic linear

optimization under one-bit feedback. International Conference on Machine

Learning,

Appendix 1: Python code for Bernoulli bandit

A1.1 Package dependencies

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LogisticRegression

import scipy

import pandas as pd

seed = 546279

np.random.seed(seed)

A1.2 Bernoulli bandit environment

class BernoulliBandit:

 def __init__(self, num_groups = 3, true_p = [0.9, 0.8, 0.7]):

 assert len(true_p) == num_groups

 self.num_groups = num_groups

 self.true_p = true_p

 def act(self, action: int):

 assert (action > 0) and (action <= self.num_groups)

 regret = max(self.true_p) - self.true_p[action-1]

 if np.random.random() <= self.true_p[action-1]: # Head

 return 1, regret

 else: # Tail

 return 0, regret

A1.3 Greedy and epsilon greedy algorithms

class EpsilonGreedy_BernoulliBandit:

 def __init__(self, env: BernoulliBandit, epsilon = 0.05):

 self.env = env

 self.num_groups = self.env.num_groups # same as number of

actions

 self.epsilon = epsilon

 def run(self, horizon = 2000):

 rewards = np.zeros(horizon)

 regrets = np.zeros(horizon)

 # Record # of successes and failures

 num_successes = np.zeros(self.num_groups)

 num_failures = np.zeros(self.num_groups)

 for i in range(horizon):

 if np.random.random() <= self.epsilon: # Choose randomly

 action = np.random.choice(self.num_groups) + 1

 else: # Greedily choosing the optimal one

 p_hat = (num_successes + 1)/(num_successes +

num_failures + 2)

 51

 max_p = max(p_hat)

 max_idx = np.where(p_hat == max_p)[0]

 action = np.random.choice(max_idx) + 1

 reward, regret = self.env.act(action)

 # Save the values in reward, regret

 rewards[i] += reward

 regrets[i] += regret

 if reward > 0:

 num_successes[action-1] += 1

 else:

 num_failures[action-1] += 1

 # Calculate cumulative regrets and rewards

 cum_rewards = np.cumsum(rewards)

 cum_regrets = np.cumsum(regrets)

 return rewards, cum_rewards, regrets, cum_regrets

A1.4 Thompson sampling algorithm and Upper Confidence Bound algorithm

def TS_BB(num_successes, num_failures):

 p_hat = np.random.beta(num_successes + 1, num_failures + 1)

 return p_hat

def UCB_BB(num_successes, num_failures):

 t = sum(num_successes + num_failures)

 p_hat = [scipy.stats.beta.ppf(t/(t+1), num_successes[i] + 1,

num_failures[i] + 1) for i in range(len(num_successes))]

 return p_hat

class TS_BernoulliBandit:

 def __init__(self, env: BernoulliBandit, f):

 self.env = env

 self.num_groups = self.env.num_groups

 self.updater = f

 def run(self, horizon = 2000):

 rewards = np.zeros(horizon)

 regrets = np.zeros(horizon)

 # Record # of successes and failures

 num_successes = np.zeros(self.num_groups)

 num_failures = np.zeros(self.num_groups)

 for i in range(horizon):

 p_hat = self.updater(num_successes, num_failures)

 max_p = max(p_hat)

 max_idx = np.where(p_hat == max_p)[0]

 action = np.random.choice(max_idx) + 1

 reward, regret = self.env.act(action)

 # Save the values in reward, regret

 rewards[i] += reward

 regrets[i] += regret

 if reward > 0:

 num_successes[action - 1] += 1

 else:

 52

 num_failures[action-1] += 1

 # Calculate cumulative regrets and rewards

 cum_rewards = np.cumsum(rewards)

 cum_regrets = np.cumsum(regrets)

 return rewards, cum_rewards, regrets, cum_regrets

A1.5 Simulation

rewards_g = np.zeros(2000)

cum_rewards_g = np.zeros(2000)

regrets_g = np.zeros(2000)

cum_regrets_g = np.zeros(2000)

n_rounds = 2000

for i in range(n_rounds):

 bb = BernoulliBandit(num_groups = 3, true_p = [0.9, 0.8, 0.7])

 agent = EpsilonGreedy_BernoulliBandit(bb, epsilon = 0)

 a,b,c,d = agent.run()

 rewards_g = rewards_g + a

 cum_rewards_g = cum_rewards_g + b

 regrets_g = regrets_g + c

 cum_regrets_g = cum_regrets_g + d

rewards_g /= n_rounds

cum_rewards_g /= n_rounds

regrets_g /= n_rounds

cum_regrets_g /= n_rounds

rewards = np.zeros(2000)

cum_rewards = np.zeros(2000)

regrets = np.zeros(2000)

cum_regrets = np.zeros(2000)

n_rounds = 2000

for i in range(n_rounds):

 bb = BernoulliBandit(num_groups = 3, true_p = [0.9, 0.8, 0.7])

 agent = EpsilonGreedy_BernoulliBandit(bb, epsilon = 0.05)

 a,b,c,d = agent.run()

 rewards = rewards + a

 cum_rewards = cum_rewards + b

 regrets = regrets + c

 cum_regrets = cum_regrets + d

rewards /= n_rounds

cum_rewards /= n_rounds

regrets /= n_rounds

cum_regrets /= n_rounds

rewards_TS = np.zeros(2000)

cum_rewards_TS = np.zeros(2000)

regrets_TS = np.zeros(2000)

cum_regrets_TS = np.zeros(2000)

n_rounds = 2000

for i in range(n_rounds):

 bb = BernoulliBandit(num_groups = 3, true_p = [0.9, 0.8, 0.7])

 53

 agent = TS_BernoulliBandit(bb, TS_BB)

 a,b,c,d = agent.run()

 rewards_TS = rewards_TS + a

 cum_rewards_TS = cum_rewards_TS + b

 regrets_TS = regrets_TS + c

 cum_regrets_TS = cum_regrets_TS + d

rewards_TS /= n_rounds

cum_rewards_TS /= n_rounds

regrets_TS /= n_rounds

cum_regrets_TS /= n_rounds

rewards_UCB = np.zeros(2000)

cum_rewards_UCB = np.zeros(2000)

regrets_UCB = np.zeros(2000)

cum_regrets_UCB = np.zeros(2000)

n_rounds = 2000

for i in range(n_rounds):

 bb = BernoulliBandit(num_groups = 3, true_p = [0.9, 0.8, 0.7])

 agent = TS_BernoulliBandit(bb, UCB_BB)

 a,b,c,d = agent.run()

 rewards_UCB = rewards_UCB + a

 cum_rewards_UCB = cum_rewards_UCB + b

 regrets_UCB = regrets_UCB + c

 cum_regrets_UCB = cum_regrets_UCB + d

rewards_UCB /= n_rounds

cum_rewards_UCB /= n_rounds

regrets_UCB /= n_rounds

cum_regrets_UCB /= n_rounds

output_dict = {"greedy_reward": rewards_g, "greedy_cum_reward":

cum_rewards_g, "greedy_regret": regrets_g, "greedy_cum_regret":

cum_regrets_g,

"epsilon_greedy_reward": rewards, "epsilon_greedy_cum_reward":

cum_rewards, "epsilon_greedy_regret": regrets,

"epsilon_greedy_cum_regret": cum_regrets,

 "TS_reward": rewards_TS, "TS_cum_reward":

cum_rewards_TS, "TS_regret": regrets_TS, "TS_cum_regret":

cum_regrets_TS,

 "UCB_reward": rewards_UCB, "UCB_cum_reward":

cum_rewards_UCB, "UCB_regret": regrets_UCB, "UCB_cum_regret":

cum_regrets_UCB}

df = pd.DataFrame(output_dict)

df.to_csv("Bernoulli_Bandit_2000.csv", index = False)

A1.6 Visualizations

df = pd.read_csv("Bernoulli_Bandit_2000.csv")

rewards_g = df["greedy_reward"]

rewards = df["epsilon_greedy_reward"]

rewards_TS = df["TS_reward"]

rewards_UCB = df["UCB_reward"]

cum_rewards_g = df["greedy_cum_reward"]

cum_rewards = df["epsilon_greedy_cum_reward"]

cum_rewards_TS = df["TS_cum_reward"]

 54

cum_rewards_UCB = df["UCB_cum_reward"]

regrets_g = df["greedy_regret"]

regrets = df["epsilon_greedy_regret"]

regrets_TS = df["TS_regret"]

regrets_UCB = df["UCB_regret"]

cum_regrets_g = df["greedy_cum_regret"]

cum_regrets = df["epsilon_greedy_cum_regret"]

cum_regrets_TS = df["TS_cum_regret"]

cum_regrets_UCB = df["UCB_cum_regret"]

color_scheme = {"Greedy": "purple", "TS": "orange", "Greedy0":

"violet", "UCB": "deepskyblue"}

plt.rcParams.update({'font.size': 14})

fig, ax = plt.subplots(4,1, figsize = (10, 20))

ax[0].plot(np.arange(len(rewards)), rewards_g, label = "Greedy",

color = color_scheme["Greedy0"])

ax[0].plot(np.arange(len(rewards)), rewards, label = "Epsilon-

Greedy", color = color_scheme["Greedy"])

ax[0].plot(np.arange(len(rewards)), rewards_TS, label = "TS", color =

color_scheme["TS"])

ax[0].plot(np.arange(len(rewards)), rewards_UCB, label = "UCB", color

= color_scheme["UCB"])

ax[0].legend()

ax[0].set(title = f"Rewards Comparison: Bernoulli Bandit", xlabel =

"time period (t)", ylabel = "per-period reward")

ax[1].plot(np.arange(len(rewards)), cum_rewards_g, label = "Greedy",

color = color_scheme["Greedy0"])

ax[1].plot(np.arange(len(rewards)), cum_rewards, label = "Epsilon-

Greedy", color = color_scheme["Greedy"])

ax[1].plot(np.arange(len(rewards)), cum_rewards_TS, label = "TS",

color = color_scheme["TS"])

ax[1].plot(np.arange(len(rewards)), cum_rewards_UCB, label = "UCB",

color = color_scheme["UCB"])

ax[1].set(title = f"Cumulative Rewards Comparison: Bernoulli Bandit",

xlabel = "time period (t)", ylabel = "cumulative reward")

ax[1].legend()

ax[2].plot(np.arange(len(rewards)), regrets_g, label = "Greedy",

color = color_scheme["Greedy0"])

ax[2].plot(np.arange(len(rewards)), regrets, label = "Epsilon-

Greedy", color = color_scheme["Greedy"])

ax[2].plot(np.arange(len(rewards)), regrets_TS, label = "TS", color =

color_scheme["TS"])

ax[2].plot(np.arange(len(rewards)), regrets_UCB, label = "UCB", color

= color_scheme["UCB"])

ax[2].axhline(y = 0, color = 'black', linestyle = '--')

ax[2].set(title = f"Regrets Comparison: Bernoulli Bandit", xlabel =

"time period (t)", ylabel = "per-period regret")

ax[2].legend()

ax[3].plot(np.arange(len(rewards)), cum_regrets_g, label = "Greedy",

color = color_scheme["Greedy0"])

ax[3].plot(np.arange(len(rewards)), cum_regrets, label = "Epsilon-

Greedy", color = color_scheme["Greedy"])

ax[3].plot(np.arange(len(rewards)), cum_regrets_TS, label = "TS",

color = color_scheme["TS"])

ax[3].plot(np.arange(len(rewards)), cum_regrets_UCB, label = "UCB",

color = color_scheme["UCB"])

 55

ax[3].set(title = f"Cumulative Regrets Comparison: Bernoulli Bandit",

xlabel = "time period (t)", ylabel = "cumulative regret")

ax[3].legend()

plt.tight_layout()

plt.show()

 56

Appendix 2: Python code for logistic bandit

A2.1 Dependencies

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LogisticRegression

import scipy

import pandas as pd

seed = 491372

n_rounds = 1

np.random.seed(seed)

top_str = "10"

refresh_str = "refresh"

top_display = "multiple (10) borrowers"

refresh_display = "with renewal"

A2.2 Logistic bandit environment

Parameters:

- num_borrowers (default: 100) is the number of borrowers applying for loan in

each iteration

- dim (default: 2) is the number of feature dimensions (excluding intercept)

- sigma_p (default: 1) is the standard deviation of parameter beta, representing the

uncertainty of environment

- gain (default: 0.2) is the interest rate that borrower pays when he does not default

- loss (default: -1) is the loss incurred to the lender when borrower defaults

- intercept (default: 1.5) is the actual beta0, implying the average non-default

probability.

- refresh (default: False) represents whether the group of borrowers is renewed

after each iteration.

- top_k (default: 1) indicates the number of borrowers who would get loan in each

iteration.

Methods:

- get_borrowers_attributes(): Get the features from the environment

- act(action): given the weight given to each borrower (total sum = 1), return the

observation, rewards and regrets

 57

class LogisticBandit:

 def __init__(self, num_borrowers = 100, dim = 2, sigma_p = 1,

gain = 0.2, loss = -1, intercept = 1.5, refresh = False, top_k = 1):

 # Record all parameters as instance variables

 self.num_borrowers = num_borrowers

 self.dim = dim

 self.sigma_p = sigma_p

 self.gain = gain

 self.loss = loss

 self.intercept = intercept

 self.refresh = refresh

 self.top_k = top_k

 # Generate ground-truth beta based on the given dimension and

given SD (sigma_p)

 self.beta = sigma_p * np.random.randn(dim, 1)

 # Generate borrower features based on the number of

dimensions and number of borrowers

 self.feature = np.random.randn(num_borrowers, dim) *

np.sqrt(2/self.dim)

 # If intercept is not zero, increment the dimension,

concatenate intercept with beta and concatenate ones with features

 if intercept != 0:

 self.dim += 1

 self.beta = np.concatenate(([[intercept]], self.beta))

 self.feature =

np.concatenate((np.ones((num_borrowers,1)), self.feature), axis = 1)

 # Calculate the true probabilities of non-default recorded as

true_ps

 exp_logits = np.exp(np.matmul(self.feature, self.beta))

 self.true_ps = exp_logits/(1 + exp_logits)

 # Calculate the expected rewards based on true_ps and gain

with loss

 exp_rewards = np.dot(self.true_ps, self.gain) + np.dot(1-

self.true_ps, self.loss)

 # Calculate top k average reward as the maximum expected

reward over all possible actions

 top_k_avg = np.sum(-np.sort(-

exp_rewards[:,0])[:self.top_k])/self.top_k

 # Calculate regret of each borrower as top_k_avg subtracted

by expected reward of each borrower

 self.regrets = top_k_avg - exp_rewards

 def get_borrowers_attributes(self):

 return self.feature

 def act(self, action):

 # Assert the equality of dimension and the sum of all weights

must be equal to one

 assert (len(action) == self.num_borrowers) and

(abs(sum(action)-1) < 0.0005)

 # Randomize the default and non-default outcome based on

true_ps

 # 1 represents non-default while 0 represents default

 actual_observations =

np.where(np.random.random((self.num_borrowers, 1)) <= self.true_ps,

1, 0)

 # Assign the returns of each borrower based on

actual_observations to the gain and loss

 58

 returns = np.where(actual_observations == 1, self.gain,

self.loss)

 # Get the actual reward by dot product the returns and the

actions (representing the weight)

 actual_rewards = np.dot(np.squeeze(returns), action)

 # Get the actual regret by dot product regrets with the

action

 actual_regrets = np.dot(np.squeeze(self.regrets), action)

 # If refresh = TRUE, then randomize the feature, calculate

true_ps, expected rewards, regrets again

 if self.refresh:

 if self.intercept == 0:

 self.feature = np.random.randn(self.num_borrowers,

self.dim) * np.sqrt(2/self.dim)

 else:

 self.feature = np.random.randn(self.num_borrowers,

self.dim-1) * np.sqrt(2/self.dim)

 self.feature =

np.concatenate((np.ones((self.num_borrowers,1)), self.feature), axis

= 1)

 exp_logits = np.exp(np.matmul(self.feature, self.beta))

 self.true_ps = exp_logits/(1 + exp_logits)

 exp_rewards = np.dot(self.true_ps, self.gain) + np.dot(1-

self.true_ps, self.loss)

 top_k_avg = np.sum(-np.sort(-

exp_rewards[:,0])[:self.top_k])/self.top_k

 self.regrets = top_k_avg - exp_rewards

 # Return the actual observations, actual rewards and actual

regrets

 return np.squeeze(actual_observations), actual_rewards,

actual_regrets

A2.3 Greedy and epsilon-greedy algorithms

Parameters:

- env: LogisticBandit

- epsilon (default: 0.05) : the probability that the agent would explore on any one of

all possible actions

Methods:

- run(horizon = 250): Perform the algorithm in the number of time steps (horizon)

and return rewards, cumulative rewards, regrets and cumulative regrets in each

time step

Helper Function: Find the index of top k from an array x

Source: https://stackoverflow.com/questions/6910641/how-do-i-get-

indices-of-n-maximum-values-in-a-numpy-array

def find_top_k_idx(x, k):

 top_k_idx = np.argpartition(x, -k)[-k:]

 return top_k_idx

 59

class EpsilonGreedy_LogisticBandit:

 def __init__(self, env: LogisticBandit, epsilon = 0.05):

 # Record all parameters as instance variables

 self.env = env

 self.epsilon = epsilon

 # Record necessary variables: dimension, number of borrowers,

feature top_k from the environment

 self.dim = self.env.dim

 self.num_borrowers = self.env.num_borrowers

 self.feature = self.env.get_borrowers_attributes()

 self.top_k = self.env.top_k

 # The solver is LogisticRegression with L2 regularization and

C depends on sigma_p from the environment

 self.solver = LogisticRegression(penalty='l2',

 C=2*(self.env.sigma_p**2),

 fit_intercept=False,

 warm_start=True)

 def run(self, horizon = 250):

 # Set initialization phase to True and it will be false if

there exists at least one observation of both classes

 initialization_phase = True

 # Initialize rewards and regrets

 rewards = np.zeros(horizon)

 regrets = np.zeros(horizon)

 # Initialize theta

 theta = np.zeros(self.dim)

 # Record the previous observations on X and y

 X = np.zeros((horizon*self.top_k, self.dim))

 y = np.zeros(horizon*self.top_k)

 for i in range(horizon):

 # If in initialization phrase or exploration, then choose

one action randomly

 if initialization_phase or np.random.random() <=

self.epsilon:

 action_idx = np.random.choice(self.num_borrowers,

size = self.top_k, replace = False)

 # Conduct an exploitation

 else:

 # Fit the Logistic Regression on all previous

observations

 self.solver.fit(X[:self.top_k*(i+1),],

y[:self.top_k*(i+1)])

 # Get theta from the solver

 theta = self.solver.coef_.reshape(self.dim)

 # Find the index of top_k from the given feature and

estimated theta

 action_idx = find_top_k_idx(np.dot(self.feature,

theta), self.top_k)

 # Convert the index of targeted borrowers to the weight

 action = [(1/self.top_k) if j in action_idx else 0 for j

in range(self.num_borrowers)]

 # Get observation, reward and regret from interacting

with the environment

 observation, reward, regret = self.env.act(action)

 60

 # Get start_idx and end_idx, and assign the additional

features and observation

 start_idx = i * self.top_k

 end_idx = (i+1) * self.top_k

 X[start_idx:end_idx,:] = self.feature[action_idx, :]

 y[start_idx:end_idx] = observation[action_idx]

 # Assign the reward and regret at the i-th timestep

 rewards[i] = reward

 regrets[i] = regret

 # Get the new feature if refresh is TRUE

 if self.env.refresh:

 self.feature = self.env.get_borrowers_attributes()

 # If we have both 0 and 1 class, stop the initialization

phase

 if initialization_phase and len(np.unique(y[:end_idx]))

== 2:

 initialization_phase = False

 # Calculate cumulative regrets and rewards

 cum_rewards = np.cumsum(rewards)

 cum_regrets = np.cumsum(regrets)

 return rewards, cum_rewards, regrets, cum_regrets

A2.4 Thompson sampling with Laplace / Langevin MCMC

Parameters:

- env: LogisticBandit

- f : the updater function (either LaplaceTS_LB or LangevinTS_LB)

Methods:

- run(horizon = 200): Perform the algorithm in the number of time steps (horizon)

and return rewards, cumulative rewards, regrets and cumulative regrets in each

time step

Helper function: calculate Logistic Log Likelihood given normal

prior

def Logistic_Log_Likelihood(X, y, sigma_p_squared, beta, prior_mean):

 prior_constant = -

0.5*beta.shape[0]*np.log(2*np.pi*sigma_p_squared)

 prior_ll = -np.dot((beta-prior_mean).T, (beta-

prior_mean))/(2*sigma_p_squared)

 logistic_ll = np.sum(y*np.dot(X, beta) -

np.log(1+np.exp(np.dot(X, beta))))

 return prior_constant + prior_ll + logistic_ll

Helper function: calculate the first derivative of Logistic

Likelihood given normal prior

def Logistic_Log_Likelihood_D1(X, y, sigma_p_squared, beta,

prior_mean):

 prior_D1 = -(beta-prior_mean)/(sigma_p_squared)

 y_hat = 1/(1+np.exp(-np.dot(X, beta)))

 61

 logistic_D1 = np.dot(X.T, (y - y_hat))

 return prior_D1 + logistic_D1

Helper function: calculate the second derivative of Logistic

Likelihood given normal prior

def Logistic_Log_Likelihood_D2(X, y, sigma_p_squared, beta,

prior_mean):

 prior_D2 = -np.eye(beta.shape[0])/sigma_p_squared

 y_hat = 1/(1+np.exp(-np.dot(X, beta)))

 D = np.diag(np.multiply(y_hat, 1-y_hat).reshape(y_hat.shape[0]))

 logistic_D2 = -np.dot(np.dot(X.T, D), X)

 return prior_D2 + logistic_D2

Helper function: Sample beta_hat using Laplace approximation

def LaplaceTS_LB(X, y, sigma_p_squared, beta, prior_mean):

 mode = beta.reshape(beta.shape[0])

 cov = -np.linalg.inv(Logistic_Log_Likelihood_D2(X, y,

sigma_p_squared, beta, prior_mean))

 beta_hat = np.random.multivariate_normal(mode, cov)

 return beta_hat

Helper function: Sample beta_hat using Langevin MCMC

def LangevinTS_LB(X, y, sigma_p_squared, beta, prior_mean, step_size

= 2, num_steps = 100):

 beta_hat = beta

 A_inv = -Logistic_Log_Likelihood_D2(X, y, sigma_p_squared, beta,

prior_mean)

 A = np.linalg.inv(A_inv)

 A_sqrt = scipy.linalg.sqrtm(A)

 for k in range(num_steps):

 epsilon = np.random.normal(size = beta.shape)

 proposal = beta_hat + step_size*(np.dot(A,

Logistic_Log_Likelihood_D1(X, y, sigma_p_squared, beta_hat,

prior_mean))) + np.sqrt(2*step_size)*np.dot(A_sqrt, epsilon)

 upper_tmp = beta_hat - proposal - step_size*np.dot(A,

Logistic_Log_Likelihood_D1(X, y, sigma_p_squared, proposal,

prior_mean))

 upper = Logistic_Log_Likelihood(X, y, sigma_p_squared,

proposal, prior_mean)-(1/(4*step_size))*np.dot(upper_tmp.T,

np.dot(A_inv, upper_tmp))

 lower_tmp = proposal - beta_hat - step_size*np.dot(A,

Logistic_Log_Likelihood_D1(X, y, sigma_p_squared, beta_hat,

prior_mean))

 lower = Logistic_Log_Likelihood(X, y, sigma_p_squared,

beta_hat, prior_mean)-(1/(4*step_size))*np.dot(lower_tmp.T,

np.dot(A_inv, lower_tmp))

 p_accept = np.minimum(1, np.exp(upper-lower))

 if np.random.random() <= p_accept:

 beta_hat = proposal

 return beta_hat

 62

class TS_LogisticBandit:

 def __init__(self, env: LogisticBandit, f):

 # Record environment with its associated variables and

updater function

 self.env = env

 self.dim = self.env.dim

 self.num_borrowers = self.env.num_borrowers

 self.feature = self.env.get_borrowers_attributes()

 self.top_k = self.env.top_k

 # The solver is Logistic Regression with L2 penalty

 self.solver = LogisticRegression(penalty='l2',

 C=2*(self.env.sigma_p**2),

 fit_intercept=False,

 warm_start=True)

 self.updater = f

 def run(self, horizon = 200):

 # Set initialization phase to True

 initialization_phase = True

 # Initialize rewards and regrets

 rewards = np.zeros(horizon)

 regrets = np.zeros(horizon)

 # Initialize theta and prior mean

 theta = np.zeros((self.dim,1))

 prior_mean = np.zeros((self.dim, 1))

 # Record all previous observations in X and y

 X = np.zeros((horizon*self.top_k, self.dim))

 y = np.zeros((horizon*self.top_k,1))

 for i in range(horizon):

 # If in the initialization phase, choose one of all

possible actions randomly

 if initialization_phase:

 action_idx = np.random.choice(self.num_borrowers,

size = self.top_k, replace = False)

 # If not in the initialization phase, find the action idx

that exploits the information

 else:

 # Fit the solver with all previous information

 self.solver.fit(X[:self.top_k*(i+1),],

y[:self.top_k*(i+1),].reshape(self.top_k*(i+1)))

 # Get the solver coefficient as mode

 mode = self.solver.coef_.T

 # Get the theta from either Laplace Approximation or

Langevin MCMC (in updater)

 theta = self.updater(X[:self.top_k*(i+1),],

y[:self.top_k*(i+1),], self.env.sigma_p**2, mode, prior_mean)

 # Choose index of k borrowers by using the observed

features and estimated theta

 action_idx = find_top_k_idx(np.dot(self.feature,

theta.reshape(self.dim)), self.top_k)

 # Convert the index of k borrowers into the action as

weight

 action = [(1/self.top_k) if j in action_idx else 0 for j

in range(self.num_borrowers)]

 # Get observation, reward and regret from the interaction

with environment

 63

 observation, reward, regret = self.env.act(action)

 # Update the observation on X and y

 start_idx = i * self.top_k

 end_idx = (i+1) * self.top_k

 X[start_idx:end_idx,] = self.feature[action_idx,]

 y[start_idx:end_idx,0] = observation[action_idx]

 # Record the reward and regret on the i-th timestep

 rewards[i] = reward

 regrets[i] = regret

 # If refresh is TRUE, get the feature again from the

environment

 if self.env.refresh:

 self.feature = self.env.get_borrowers_attributes()

 # If we have both 0 and 1 stop the initialization phase

 if initialization_phase and len(np.unique(y[:end_idx,]))

== 2:

 initialization_phase = False

 # Calculate cumulative regrets and rewards

 cum_rewards = np.cumsum(rewards)

 cum_regrets = np.cumsum(regrets)

 return rewards, cum_rewards, regrets, cum_regrets

A2.5 Simulation

num_rounds = 100

rewards_g = np.zeros((250, num_rounds))

cum_rewards_g = np.zeros((250, num_rounds))

regrets_g = np.zeros((250, num_rounds))

cum_regrets_g = np.zeros((250, num_rounds))

for i in range(num_rounds):

 if i%10 == 0:

 print(i)

 lb = LogisticBandit(refresh = True, top_k = 10, dim = 20)

 agent = EpsilonGreedy_LogisticBandit(lb, epsilon = 0)

 a,b,c,d = agent.run(horizon = 250)

 rewards_g[:,i] = a

 cum_rewards_g[:,i] = b

 regrets_g[:,i] = c

 cum_regrets_g[:,i] = d

x = pd.DataFrame(rewards_g)

x.to_csv(f"greedy_reward_top_{top_str}_{refresh_str}_20D_R{n_rounds}.

csv", index = False)

x = pd.DataFrame(cum_rewards_g)

x.to_csv(f"greedy_cum_reward_top_{top_str}_{refresh_str}_20D_R{n_roun

ds}.csv", index = False)

x = pd.DataFrame(regrets_g)

x.to_csv(f"greedy_regret_top_{top_str}_{refresh_str}_20D_R{n_rounds}.

csv", index = False)

x = pd.DataFrame(cum_regrets_g)

x.to_csv(f"greedy_cum_regret_top_{top_str}_{refresh_str}_20D_R{n_roun

ds}.csv", index = False)

 64

rewards = np.zeros((250, num_rounds))

cum_rewards = np.zeros((250, num_rounds))

regrets = np.zeros((250, num_rounds))

cum_regrets = np.zeros((250, num_rounds))

for i in range(num_rounds):

 if i%10 == 0:

 print(i)

 lb = LogisticBandit(refresh = True, top_k = 10, dim = 20)

 agent = EpsilonGreedy_LogisticBandit(lb, epsilon = 0.05)

 a,b,c,d = agent.run(horizon = 250)

 rewards[:,i] = a

 cum_rewards[:,i] = b

 regrets[:,i] = c

 cum_regrets[:,i] = d

x = pd.DataFrame(rewards)

x.to_csv(f"epsilon_greedy_reward_top_{top_str}_{refresh_str}_20D_R{n_

rounds}.csv", index = False)

x = pd.DataFrame(cum_rewards)

x.to_csv(f"epsilon_greedy_cum_reward_top_{top_str}_{refresh_str}_20D_

R{n_rounds}.csv", index = False)

x = pd.DataFrame(regrets)

x.to_csv(f"epsilon_greedy_regret_top_{top_str}_{refresh_str}_20D_R{n_

rounds}.csv", index = False)

x = pd.DataFrame(cum_regrets)

x.to_csv(f"epsilon_greedy_cum_regret_top_{top_str}_{refresh_str}_20D_

R{n_rounds}.csv", index = False)

rewards_LTS = np.zeros((250, num_rounds))

cum_rewards_LTS = np.zeros((250, num_rounds))

regrets_LTS = np.zeros((250, num_rounds))

cum_regrets_LTS = np.zeros((250, num_rounds))

for i in range(num_rounds):

 if i%10 == 0:

 print(i)

 lb = LogisticBandit(refresh = True, top_k = 10, dim = 20)

 agent = TS_LogisticBandit(lb, LaplaceTS_LB)

 a,b,c,d = agent.run(horizon = 250)

 rewards_LTS[:,i] = a

 cum_rewards_LTS[:,i] = b

 regrets_LTS[:,i] = c

 cum_regrets_LTS[:,i] = d

x = pd.DataFrame(rewards_LTS)

x.to_csv(f"thompson_laplace_reward_top_{top_str}_{refresh_str}_20D_R{

n_rounds}.csv", index = False)

x = pd.DataFrame(cum_rewards_LTS)

x.to_csv(f"thompson_laplace_cum_reward_top_{top_str}_{refresh_str}_20

D_R{n_rounds}.csv", index = False)

x = pd.DataFrame(regrets_LTS)

x.to_csv(f"thompson_laplace_regret_top_{top_str}_{refresh_str}_20D_R{

n_rounds}.csv", index = False)

x = pd.DataFrame(cum_regrets_LTS)

x.to_csv(f"thompson_laplace_cum_regret_top_{top_str}_{refresh_str}_20

D_R{n_rounds}.csv", index = False)

 65

rewards_L = np.zeros((250, num_rounds))

cum_rewards_L = np.zeros((250, num_rounds))

regrets_L = np.zeros((250, num_rounds))

cum_regrets_L = np.zeros((250, num_rounds))

for i in range(num_rounds):

 if i%10 == 0:

 print(i)

 lb = LogisticBandit(refresh = True, top_k = 10, dim = 20)

 agent = TS_LogisticBandit(lb, LangevinTS_LB)

 a,b,c,d = agent.run(horizon = 250)

 rewards_L[:,i] = a

 cum_rewards_L[:,i] = b

 regrets_L[:,i] = c

 cum_regrets_L[:,i] = d

x = pd.DataFrame(rewards_L)

x.to_csv(f"thompson_langevin_reward_top_{top_str}_{refresh_str}_20D_R

{n_rounds}.csv", index = False)

x = pd.DataFrame(cum_rewards_L)

x.to_csv(f"thompson_langevin_cum_reward_top_{top_str}_{refresh_str}_2

0D_R{n_rounds}.csv", index = False)

x = pd.DataFrame(regrets_L)

x.to_csv(f"thompson_langevin_regret_top_{top_str}_{refresh_str}_20D_R

{n_rounds}.csv", index = False)

x = pd.DataFrame(cum_regrets_L)

x.to_csv(f"thompson_langevin_cum_regret_top_{top_str}_{refresh_str}_2

0D_R{n_rounds}.csv", index = False)

A2.6 Visualizations

def get_avg_output(df_initial):

 filename = f"{df_initial}_R1.csv"

 df = pd.read_csv(filename)

 n = df.shape[1]

 rowsum = df.sum(axis = "columns")

 return rowsum/n

rewards_g =

get_avg_output(f"greedy_reward_top_{top_str}_{refresh_str}_20D")

cum_rewards_g =

get_avg_output(f"greedy_cum_reward_top_{top_str}_{refresh_str}_20D")

regrets_g =

get_avg_output(f"greedy_regret_top_{top_str}_{refresh_str}_20D")

cum_regrets_g =

get_avg_output(f"greedy_cum_regret_top_{top_str}_{refresh_str}_20D")

rewards =

get_avg_output(f"epsilon_greedy_reward_top_{top_str}_{refresh_str}_20

D")

cum_rewards =

get_avg_output(f"epsilon_greedy_cum_reward_top_{top_str}_{refresh_str

}_20D")

regrets =

get_avg_output(f"epsilon_greedy_regret_top_{top_str}_{refresh_str}_20

D")

 66

cum_regrets =

get_avg_output(f"epsilon_greedy_cum_regret_top_{top_str}_{refresh_str

}_20D")

rewards_LTS =

get_avg_output(f"thompson_laplace_reward_top_{top_str}_{refresh_str}_

20D")

cum_rewards_LTS =

get_avg_output(f"thompson_laplace_cum_reward_top_{top_str}_{refresh_s

tr}_20D")

regrets_LTS =

get_avg_output(f"thompson_laplace_regret_top_{top_str}_{refresh_str}_

20D")

cum_regrets_LTS =

get_avg_output(f"thompson_laplace_cum_regret_top_{top_str}_{refresh_s

tr}_20D")

rewards_L =

get_avg_output(f"thompson_langevin_reward_top_{top_str}_{refresh_str}

_20D")

cum_rewards_L =

get_avg_output(f"thompson_langevin_cum_reward_top_{top_str}_{refresh_

str}_20D")

regrets_L =

get_avg_output(f"thompson_langevin_regret_top_{top_str}_{refresh_str}

_20D")

cum_regrets_L =

get_avg_output(f"thompson_langevin_cum_regret_top_{top_str}_{refresh_

str}_20D")

color_scheme = {"Greedy": "purple", "Laplace": "blue", "Langevin":

"green", "Greedy0": "violet"}

plt.rcParams.update({'font.size': 14})

fig, ax = plt.subplots(4,1, figsize = (10, 20))

ax[0].plot(np.arange(len(rewards)), rewards_g, label = "Greedy",

color = color_scheme["Greedy0"])

ax[0].plot(np.arange(len(rewards)), rewards, label = "Epsilon-

Greedy", color = color_scheme["Greedy"])

ax[0].plot(np.arange(len(rewards)), rewards_LTS, label = "Laplace",

color = color_scheme["Laplace"])

ax[0].plot(np.arange(len(rewards)), rewards_L, label = "Langevin",

color = color_scheme["Langevin"])

ax[0].legend()

ax[0].set(title = f"Rewards Comparison on Twenty-Dimensional Features

\n ({top_display} {refresh_display})", xlabel = "time period (t)",

ylabel = "per-period reward")

ax[1].plot(np.arange(len(rewards)), cum_rewards_g, label = "Greedy",

color = color_scheme["Greedy0"])

ax[1].plot(np.arange(len(rewards)), cum_rewards, label = "Epsilon-

Greedy", color = color_scheme["Greedy"])

ax[1].plot(np.arange(len(rewards)), cum_rewards_LTS, label =

"Laplace", color = color_scheme["Laplace"])

ax[1].plot(np.arange(len(rewards)), cum_rewards_L, label =

"Langevin", color = color_scheme["Langevin"])

ax[1].set(title = f"Cumulative Rewards Comparison on Twenty-

Dimensional Features \n ({top_display} {refresh_display})", xlabel =

"time period (t)", ylabel = "cumulative reward")

ax[1].legend()

 67

ax[2].plot(np.arange(len(rewards)), regrets_g, label = "Greedy",

color = color_scheme["Greedy0"])

ax[2].plot(np.arange(len(rewards)), regrets, label = "Epsilon-

Greedy", color = color_scheme["Greedy"])

ax[2].plot(np.arange(len(rewards)), regrets_LTS, label = "Laplace",

color = color_scheme["Laplace"])

ax[2].plot(np.arange(len(rewards)), regrets_L, label = "Langevin",

color = color_scheme["Langevin"])

ax[2].axhline(y = 0, color = 'black', linestyle = '--')

ax[2].set(title = f"Regrets Comparison on Twenty-Dimensional Features

\n ({top_display} {refresh_display})", xlabel = "time period (t)",

ylabel = "per-period regret")

ax[2].legend()

ax[3].plot(np.arange(len(rewards)), cum_regrets_g, label = "Greedy",

color = color_scheme["Greedy0"])

ax[3].plot(np.arange(len(rewards)), cum_regrets, label = "Epsilon-

Greedy", color = color_scheme["Greedy"])

ax[3].plot(np.arange(len(rewards)), cum_regrets_LTS, label =

"Laplace", color = color_scheme["Laplace"])

ax[3].plot(np.arange(len(rewards)), cum_regrets_L, label =

"Langevin", color = color_scheme["Langevin"])

ax[3].set(title = f"Cumulative Regrets Comparison on Twenty-

Dimensional Features \n ({top_display} {refresh_display})", xlabel =

"time period (t)", ylabel = "cumulative regret")

ax[3].legend()

plt.tight_layout()

plt.show()

VITA

VITA

NAME Kantapong Visantavarakul

DATE OF BIRTH 1 Jan 1999

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS

ATTENDED

Bachelor of Economics, Thammasat University (First

Class Honours)

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I INTRODUCTION
	1.1 Background and Rationale
	1.2 Objectives
	1.3 Scope of Study
	1.4 Expected Benefits

	CHAPTER II RELATED WORKS
	2.1 Logistic Regression
	2.2 Bernoulli Bandit
	2.3 Logistic Bandit
	2.4 Greedy Algorithm
	2.5 Thompson Sampling
	2.6 Laplace Approximation
	2.7 Metropolis Hasting
	2.8 Langevin Monte Carlo Markov Chain (Langevin MCMC)

	CHAPTER III METHODOLOGY
	3.1 Logistic Bandit Framework and Simulation Method
	3.2 Performance Measures
	3.3 Reinforcement Learning Algorithms
	3.4 Algorithm Flowchart

	CHAPTER IV RESULTS
	4.1 Small Number of Features (𝒑=𝟐)
	4.2 Medium Number of Features (𝒑=𝟏𝟎)
	4.3 Large Number of Features (𝒑=𝟐𝟎)

	CHAPTER V CONCLUSION AND DISCUSSION
	5.1 Conclusion
	5.2 Discussion
	5.3 Future Research

	REFERENCES
	Appendix 1: Python code for Bernoulli bandit
	A1.1 Package dependencies
	A1.2 Bernoulli bandit environment
	A1.3 Greedy and epsilon greedy algorithms
	A1.4 Thompson sampling algorithm and Upper Confidence Bound algorithm
	A1.5 Simulation
	A1.6 Visualizations

	Appendix 2: Python code for logistic bandit
	A2.1 Dependencies
	A2.2 Logistic bandit environment
	A2.3 Greedy and epsilon-greedy algorithms
	A2.4 Thompson sampling with Laplace / Langevin MCMC
	A2.5 Simulation
	A2.6 Visualizations

	VITA

