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โรคฟันผุในเด็กจัดเป็นโรคเรื้อรังในช่องปากท่ีพบได้มากที่สุดและส่งผลเสียต่อคุณภาพชีวิตของเด็กรวมถึงการ

รบกวนพัฒนาการในด้านต่างๆ การป้องกันฟันผุตั้งแต่ระยะเริ่มต้นเป็นแนวทางสำคัญในการลดความชุกของโรคฟันผุใน
เด็กปฐมวัย ซ่ึงมีความเป็นไปได้ในทางปฏิบัติเมื่อใช้วิธีการป้องกันฟันผุแบบกำหนดกลุ่มเป้าหมาย อย่างไรก็ดียังไม่มีตัว
ทำนายฟันผุท่ีน่าเชื่อถือเพียงพอสำหรับการใช้งานในเด็กกลุ่มอายุดังกล่าว การศึกษาน้ีจึงมุ่งที่จะพัฒนาการทำนายความ
เสี่ยงของการเกิดฟันผุโดยใช้ไมโครไบโอมในน้ำลายของเด็กอายุ 1 ขวบท่ีปราศจากฟันผุ ตัวอย่างน้ำลาย 30 ตัวอย่างถูก
คัดเลือกมาจากการศึกษากลุ่มประชากรแบบไปข้างหน้า โดยท้ังหมดได้มาจากเด็กอายุ 1 ขวบท่ีปราศจากฟันผุท่ีมีปริมาณ
ตัวอย่างที่เพียงพอต่อการวิเคราะห์ แบ่งเป็น 3 กลุ่ม กลุ่มละ 10 ตัวอย่าง ตามสถานะฟันผุเมื่อเด็กมีอายุ 2 ขวบท่ีแตกต่าง
กัน ได้แก่ เด็กท่ีพบรอยโรคฟันผุในระยะเริ่มต้น เด็กท่ีพบโพรงฟันผุ และเด็กท่ีไม่พบรอยโรคฟันผุ นำมาวิเคราะห์ด้วย
วิธีการจัดลำดับยีน 16S rRNA พบว่าไมโครไบโอมในน้ำลายของเด็กท่ีไม่พบรอยโรคฟันผุในอนาคตมีความแตกต่างอย่างมี
นัยสำคัญเมื่อเปรียบเทียบกับเด็กท่ีพบโพรงฟันผุในอนาคต (unweighted UniFrac, ANOSIM, Benjamini-Hochberg 
corrected P = 0.042) โดยพบว่าปริมาณเชื้อสัมพัทธ์ของ  Prevotella nanceiensis Leptotrichia sp. HMT 215 
Prevotella melaninogenica และ Campylobacter concisus ในเด็กท่ีไม่พบรอยโรคฟันผุในอนาคตมีค่าสูงกว่าเด็กท่ี
พบโพรงฟันผุในอนาคตอย่างมีนัยสำคัญ (Wilcoxon rank-sum test, P = 0.024 0.040 0.049 และ 0.049 ตามลำดับ) 
และเชื้อท้ัง 4 ชนิดดังกล่าวยังถูกระบุว่าเป็นตัวบ่งชี้ทางชีวภาพสำหรับเด็กท่ีไม่พบรอยโรคฟันผุในอนาคต  (LEfSe, LDA 
score = 3.69 3.74 3.52 และ 3.46 ตามลำดับ) แบบจำลองการทำนายฟันผุท่ีสร้างขึ้นโดยแมชชีนเลิร์นนิงโดยใช้ปริมาณ
เชื้อสัมพัทธ์ของเชื้อท้ัง 4 ชนิดดังกล่าวสามารถทำนายการเกิดโพรงฟันผุในอนาคตของเด็กอายุ 1 ขวบได้ท่ีค่าความถูกต้อง
ร้อยละ 80 ความไวร้อยละ 80 และความจำเพาะร้อยละ 80 (AUC, 0.8; 95% CI, 44.4-97.5) ผลการศึกษาน้ีแสดงให้เห็น
ว่าไมโครไบโอมในน้ำลายของเด็กอายุ 1 ขวบท่ีปราศจากฟันผุสามารถใช้ทำนายความเสี่ยงในการเกิดฟันผุในอนาคตได้ ซ่ึง
สามารถพัฒนาต่อไปเพื่อใช้เป็นตัวทำนายฟันผุสำหรับการป้องกันฟันผุแบบกำหนดกลุ่มเป้าหมายได้ในอนาคต 
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ABSTRACT (ENGLISH) 

# # 6176055932 : MAJOR ORAL BIOLOGY 
KEYWORD: dental caries, biomarkers, microbiota, saliva, machine learning, infant 
 Ratcha Raksakmanut : Prediction of Future Caries in Toddlers via Salivary Microbiome: A 1-

Year Longitudinal Study.. Advisor: Assoc. Prof. PANIDA THANYASRISUNG, D.D.S., Ph.D. Co-
advisor: Assoc. Prof. ORANART MATANGKASOMBUT, D.D.S., Ph.D.,Assoc. Prof. WARANUCH 
PITIPHAT, D.D.S.,M.P.H.M., M.S., Sc.D. 

  
Dental caries in children is the most common chronic oral disease that could disturb their 

quality of life including their development. Early prevention is a key approach to reducing the 
prevalence of early childhood caries. However, a reliable caries predictor, as an essential tool for 
targeted prevention that is important to this approach, is still lacking for infants before caries onset. 
Therefore, we aimed to develop the caries risk prediction model based on the salivary microbiome of 
caries-free 1-year-old children to predict caries onset at 1-year follow-up. Using a nested case-control 
design within a prospective cohort study, 30 saliva samples, collected at a baseline time point, were 
selected based on sufficient sample quantity and caries status when children were 2-year-old: 10 
children who developed non-cavitated caries lesions, 10 who developed cavitated caries lesions, and 
10 who remained caries-free then 16S rRNA gene sequencing was performed. The salivary microbiota 
of the children who remained caries-free was significantly different when compared with those who 
developed cavitated caries lesions (unweighted UniFrac, ANOSIM, Benjamini-Hochberg corrected, P = 
0.042). The relative abundance of Prevotella nanceiensis, Leptotrichia sp. HMT 215, Prevotella 
melaninogenica, and Campylobacter concisus were significantly higher in the children who remained 
caries-free compared with those who developed cavitated caries lesions (Wilcoxon rank-sum test, P = 
0.024, 0.040, 0.049, and 0.049, respectively) and were identified as biomarkers for the children who 
remained caries-free (LEfSe, LDA score = 3.69, 3.74, 3.52, and 3.46, respectively). Caries prediction 
model generated by machine learning based on these 4 biomarkers differentiated the 1-year-old 
children between those who did and did not develop cavitated caries lesion at 2-year-old with an 
accuracy of 80%, sensitivity of 80%, and specificity of 80% (AUC, 0.8; 95% CI, 44.4-97.5). These findings 
suggest that the salivary microbiome of caries-free 1-year-old children could predict future caries 
onset in infants that could further develop into a promising caries predictor for targeted prevention. 
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Chapter I 

1. Introduction 
1.1. Background and rationale 
 Dental caries is one of the most prevalent diseases in humans, affecting 97% 
of the population at least once in a lifetime (Berg, 2006) with an estimated 2.8 billion 
people suffering from this disease (James et al., 2018). In children, dental caries is the 
most common chronic disease globally. The data collected from worldwide studies 
reported that the average prevalence of dental caries in 3-year-olds was 43% 
(Tinanoff et al., 2019). In Thailand, the prevalence was higher than that average, 
according to the national survey in 2017, the prevalence of dental caries in Thai 3-
year-olds was 52.9% (Keeddee et al., 2018). This disease is a hidden threat that 
usually has been overlooked. Although it is not life-threatening, it can cause many 
adverse effects on children both physically and psychologically that can have 
profoundly negative impacts on their growth and development, involving nutritional 
problems, and leading to oral health-related quality of life issues (AAPD, 2017; Zaror 
et al., 2022). Also, it is a reason that disturbs their learning development since it is 
associated with poor school performance and attendance (Rebelo et al., 2019). 
Moreover, this is a serious problem for their families, societies, and the health care 
system in terms of economic burden (Righolt et al., 2018). Therefore, preventing 
dental caries since childhood is likely to reduce the overall prevalence of caries and 
also help enhance the well-being of children and adults whom they become in the 
future. 
 In the past centuries, caries treatment had been focused on fixing the 
problems caused by dental caries, by removing caries lesions and restoring the 
functions of teeth, rather than controlling the process of disease. This might be a 
reason the caries prevalence is still high, in contrast to the current knowledge and 
advancements in dentistry. Recently, there have been increasing attempts to 
improve the effectiveness and efficiency of dental caries treatment. Nowadays, 
dentistry, including caries treatment, has entered an era of personalized care with a 
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customized treatment plan for each individual or group, based on their risks. Caries 
risk assessment tools have been developed, such as CAMBRA (Caries Management by 
Risk Assessment) (Featherstone et al., 2007) and CCI™ (CariesCare International) 
developed by ICDAS Foundation (Martignon et al., 2019). According to these systems, 
caries risk assessment is a crucial element that dictates the direction of disease 
management. The currently available caries risk assessments have a good 
performance in identifying the risk factors of each patient by considering the range of 
factors; including past caries experience, socio-economy, socio-demography, oral 
hygiene care, dietary habits, oral bacteria, fluoride usage, and saliva to predict the 
likelihood of caries progression and onset. Unfortunately, as disease predictors, most 
of them had limited accuracy, limited predictive value, or insufficiently supported 
evidence (Berkowitz et al., 2011; Tellez et al., 2013; Mejàre et al., 2014; Amin et al., 
2015; Christian et al., 2020). Only the past caries experience was considered the most 
powerful predictor in all age groups (Q. Zhang & van Palenstein Helderman, 2006; 
Hänsel Petersson et al., 2013; Mejàre et al., 2014; Senneby et al., 2015; Du et al., 
2017; Hu et al., 2018). However, this predictor is not practical to be used in the case 
of 1-year-old children with erupting baby teeth who mostly never experience caries 
(Tinanoff et al., 2019). The importance of this age group is emphasized in the “Early 
Childhood Caries: IAPD Bangkok Declaration” which recommended that providing 
preventive intervention within the first year of life is a key approach to reducing 
caries prevalence (Pitts et al., 2019). 
 The prediction of dental caries is complicated because dental caries is a 
multifactorial disease resulting from microbiological, genomic, behavioral, and social 
factors that are involved in the series of events that happen and last for years until 
the lesion is developed. Many caries risk assessment systems have been proposed 
but there is not sufficient scientific data that could confirm the effectiveness of these 
methods as a caries predictor (Cagetti et al., 2018) thus studies in this area are still in 
urgent need (Fontana et al., 2020). According to the ecological plaque hypothesis, 
dental caries is the result of an imbalance of the oral microbes within the biofilm 
due to ecological stress, resulting in an overgrowth of caries-related microbes (Marsh, 
1994). When we consider the currently used caries risk assessments, most of them 
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focus on factors related to changes in the ecology of the oral microbes, such as 
sugar consumption, oral health care, dental plaque accumulation, the oral health of 
the caregiver, and dental appliances. It could be said that changes in the oral 
microbial population are the end result of the majority of currently known caries risk 
factors. Therefore, the analysis of the patient’s oral microbes could be used as a 
simplified and comprehensive caries prediction. 
 Since the 1970s, many researchers had tried to identify caries-related 
microorganisms using culture-dependent techniques and microscopy with the hope 
that dental caries might be cured with antibiotics like other infectious diseases. 
Thereafter, Streptococcus mutans was recognized as a human odontopathogen since 
1986 (Loesche, 1986) and have been focused on as a key pathogen (Emilson & 
Krasse, 1985; Balakrishnan et al., 2000; Marsh, 2003). Although Streptococcus mutans 
was often observed at a high level in caries lesions at the early stage, it could be 
found in some caries-free subjects and was not associated with caries progression 
(Gross et al., 2010). The use of Streptococcus mutans level alone was not 
recommended for caries prediction (Hong & Hu, 2010). The culture-independent 
techniques, such as metagenomics which could explore genetic materials recovered 
directly from biological samples revealed that enormous microbial diversity had 
been missed when using the culture-dependent methods alone (Hugenholtz et al., 
1998). Accumulated evidence from the studies using genomic technologies, including 
next-generation sequencing (NGS) and bioinformatics, showed that a lot of other 
bacteria, such as Veillonella spp., Scardovia wiggsiae, Slackia exigua, Firmicutes, 
Granulicatella elegans, Bifidobacterium, Corynebacterium matruchotii, Streptococcus 
cristatus, Streptococcus gordonii, Neisseria flavescens, and Neisseria mucosa could 
be found in caries lesions and might relate to cariogenesis (Becker et al., 2002; Corby 
et al., 2007; Kreth et al., 2008; Ventura et al., 2009; Kanasi et al., 2010; Crielaard et 
al., 2011; Tanner et al., 2011; Gross et al., 2012; S. Jiang et al., 2016; Xiao et al., 2016; 
Agnello et al., 2017; Innes & Robertson, 2018; Xiao et al., 2018). These technologies 
allow us not just to identify novel disease-related microorganisms but give us a 
better understanding of the contribution of the oral microbiome to health. The 
relationship between microbiome and host is dynamic and is influenced by various 
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aspects of individual lifestyles, such as diet, smoking, and stress, which could create 
both healthy or dysbiotic ecology depending on the alteration of the microbiome 
and its properties (Kilian et al., 2016). This concept supports the ecological plaque 
hypothesis which stated that dental caries is developed as a result of an oral 
microbial imbalance (Hojo et al., 2009; Høiby et al., 2011; Marsh, 2012).  
 The microbial community structures between the caries-active and caries-free 
cohorts differ significantly (Gross et al., 2010; W. Jiang et al., 2013; W. Jiang et al., 
2014). Even within a caries-active individual, the oral microbiome could be different 
at each stage of the caries process due to environmental acidification which could 
affect both the genotypic and phenotypic changes that occur in the oral microbiome 
(Takahashi & Nyvad, 2011). The caries process consists of several reversible stages 
that could be intervened to revert the process from disease to health. If we could 
identify the biomarkers in the oral microbiome that could predict the future caries 
status prior to the cavitation, preventing or remineralizing initial caries lesions without 
the surgical approaches could be possible, and the use of oral microbiome analysis 
for caries prediction would be an interesting model to enhance caries management. 
A similar approach has been used in many microbiome studies worldwide to classify 
and predict various host states in other diseases using human microbiome data 
(Knights et al., 2011; Human Microbiome Project, 2012). 
 In this study, we aimed to examine the differences between the salivary 
microbiome of caries-free 1-year-old children who remained caries-free vs those who 
developed caries at 1-year follow-up. Our goal is to identify potential microbial 
biomarkers and develop the caries prediction model for future caries in 1-year-old 
children since they are a key target group for targeted prevention to reduce caries 
prevalence worldwide. 
 

1.2. Research Questions 
1. Are there any differences in the salivary microbiome of caries-free 1-year-old 

children between those who remained caries-free and who progressed to 
caries-active states? 
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2. Are there any microbial biomarkers in the salivary microbiome of caries-free 
1-year-old children that could reflect the future caries status in the next 1 
year? 

3. Can salivary microbiome be used as a predictor for future caries in caries-free 
1-year-old children? 

 

1.3. Objectives 
1. To determine the differences in the salivary microbiome of caries-free 1-year-

old children between those who remained caries-free and who progressed to 
caries-active states at 1-year follow-up. 

2. To identify the microbial biomarkers in the salivary microbiome of caries-free 
1-year-old children that could be used as a predictor for future caries. 

3. To analyze the salivary microbiome as a predictor for future caries in caries-
free 1-year-old children. 

 

1.4. Hypotheses 
1. The salivary microbiome of the caries-free 1-year-old children between those 

who remained caries-free and who progressed to caries-active states are 
different. 

2. There are microbial biomarkers in the salivary microbiome of caries-free 1-
year-old children that can reflect their future caries status. 

3. The salivary microbiome can be used as a predictor for future caries in caries-
free 1-year-old children. 

 

1.5. Keywords 
 Dental Caries, Saliva, Microbiota, Next Generation Sequencing, 16S rRNA, 
Machine Learning, Prediction model, Infant 
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1.6. Conceptual framework 

 
Figure 1: Conceptual framework (Caries predictors). 

 

1.7. Benefits of study 
 This study evaluated the performance of the caries prediction models 
generated using the salivary microbiome of caries-free 1-year-old children. This 
information could be beneficial as a part of the collective evidence that may lead to 
the future applications of salivary microbiome-based caries prediction for 1-year-old 
children, an important target group for caries control strategy but lacks a reliable 
caries predictor, as an additional tool that combines with the existing caries 
management systems to promote caries management in children. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter II 

2. Literature reviews 
2.1. Dental caries and current management 

2.1.1. Current situation of Dental Caries 
  From the earliest evidence of dental caries found in human skulls from the 
Paleolithic era (40,000 to 25,000 years ago) (Lufkin, 1938) to the understanding of 
microorganisms’ involvement in cariogenesis (Brock, 1961) and the discovery of the 
dynamic relationship within the dental biofilm (Marsh, 1994), this has been a long 
history of humanity and dental caries. However, even with accumulated knowledge 
on the pathogenesis of this disease, it is still the most prevalent oral disease in the 
world (James et al., 2018). Human is susceptible to caries as soon as the first tooth 
has erupted, which generally happens at the age of 6 months. The prevalence of 
dental caries greatly increased from 17% in 1-year-olds to 36% in 2-year-olds. 
Moreover, the caries prevalence continually increases to 43%, 55%, and 63% when 
children grow up to the age of 3, 4, and 5 years old, respectively (Tinanoff et al., 
2019). Dental caries in children is often going untreated (Kassebaum et al., 2015). In 
Thailand, most caries cases in 3 and 5-year-old children were left untreated 
(Keeddee et al., 2018). This data illustrates the attitude toward dental caries, 
especially among children, that they and their parents are unaware of the 
detrimental health effects that are associated with impairing quality of life, both 
physically and mentally (Åkesson et al., 2016) and disturbing development of their 
children with reduced weight and delayed growth were reported (Fung et al., 2013). 
When a caries lesion progresses to the cavitation state, that lesion would no longer 
be prevented or remineralized by the medical approach, instead, surgical 
intervention would be necessary to stop the disease symptoms. At that point, the 
damage is irreversible and the correction is more complicated and expensive 
depending on the severity of the disease. Therefore, cost-effective caries preventive 
interventions starting at early age should improve the health-related quality of life 
and reduce the economic burden (Kastenbom et al., 2019). 
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2.1.2. Dental Caries: Slow-progressed multifactorial disease 
 Dental caries is a biofilm-mediated disease modulated by diet (Takahashi & 
Nyvad, 2011, 2016; Ferreira Zandoná et al., 2019). Dysbiosis in the oral biofilm, over 
time, can lead to demineralization of adjacent tooth surfaces. The repeated 
demineralization eventually progresses to the destruction of the intact surfaces, 
forming cavitation on enamel. Theoretically, any caries lesion with the proper 
conditions could be remineralized and healed since it is an initially reversible, 
chronic disease that process with a known multi-factorial etiology (Fejerskov & Nyvad, 
2003). But once cavitation occurs, removal of biofilm is practically impossible then 
the surgical intervention will be necessary to stop caries progression. In the past, the 
treatment of dental caries had been focused on the removal and replacement of 
the damaged tooth structure rather than the correction of the root cause of the 
disease. In fact, the restoration of teeth can be found in ancient writings of many 
historical regions with the first description of the restoration of teeth being credited 
to Pierre Fauchard in 1728 (Ismail et al., 2001). This might be because dental caries is 
considered a complex and multifactorial disease, similar to diseases like cancer or 
diabetes with no single causation pathway (Fejerskov, 2004). Thus, it is easier to fix 
the obvious damage of caries lesions rather than control the complex causes of the 
disease that might not be successful. However, effective management strategies 
against dental caries that would give a long-lasting result are needed and should be 
based on the understanding of its complex etiology, and its multi-level influencing 
factors including biological, behavioral, and socioeconomic factors.  
 Dental caries is a chronic disease with slow progression in most cases. The 
caries lesion, which is the localized destruction of the tooth structure, is the sign of 
the disease (Fejerskov et al., 2015). The development of lesions is dynamic with the 
alternation of lesion progression and regression (Dirks, 1966; Nyvad et al., 2003). 
Lesion progression might be reverted at any stage of development when the proper 
environmental conditions are provided, such as biofilm control and an increase in 
topical fluoride exposure (Nyvad & Fejerskov, 1997). According to the extended caries 
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ecological hypothesis, the caries process consists of 3 reversible stages with the 
demineralization/remineralization balance of the process (Takahashi & Nyvad, 2008). 
If we can identify the current stage of the caries process, especially before the 
cavitation, it will be possible to design the appropriate caries management plan that 
is tailor-made for each patient. 
 

2.1.3. Early childhood caries 
 Early childhood caries (ECC), formerly known as nursing caries and baby 
bottle tooth decay (Cleaton-Jones, 2002), is tooth decay in preschool children which 
is common and mostly untreated. It is defined as the presence of one or more caries 
lesions (non-cavitated or cavitated), missing (as a result of caries), or filling in any 
primary tooth of children younger than 6 years old (AAPD, 2017). In more severe 
cases, severe early childhood caries (S-ECC) is defined as any sign of smooth-surface 
caries in a child younger than 3 years old, and from ages 3-5, one or more cavitated, 
missing (due to caries), or filled smooth surfaces in primary maxillary anterior teeth or 
a dmfs (decayed, missing, or filled surfaces) score of greater than or equal to four 
(age 3), greater than or equal to five (age 4), or greater than or equal to six (age 5) 
(Drury et al., 1999). Nowadays, ECC is still a common chronic disease of childhood 
that is a worldwide health challenge (Zou et al., 2022), especially in low- and 
middle-income countries where there is a rapidly growing number of cases 
(Phantumvanit et al., 2018). 
 As well as dental caries in general, ECC is not entirely associated with poor 
feeding behavior but rather reflects its multifactorial etiology. The primary teeth are 
difficult to clean for many reasons, such as their anatomy that is constricted in the 
cervical portion and the cooperation of children to allow parents to clean their teeth 
regularly. It also has a lower level of calcium content and mineralization with a 
thinner thickness than the permanent teeth (De Menezes Oliveira et al., 2010) which 
could be responsible for its susceptibility to dental caries. The caries microbiome 
plays an important role as a primary factor in cariogenesis. Cariogenic bacteria 
produce weak acids after their metabolism of fermentable carbohydrates within the 
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biofilm attached to the tooth surfaces. As a result, there is a decrease in local pH 
values, which causes the demineralization of dental hard tissues. Thus, the study of 
ECC etiology is focused on oral microbial ecological imbalance, caries-related 
microbiome, and their relationships with host genetics, which might provide the 
theoretical basis that can be developed for more effective prevention and treatment 
of ECC. For this reason, the current approach to finding the predictors and 
biomarkers of ECC has been focused on the oral microbiome. 
 In order to reduce the prevalence and impact of ECC worldwide, the IAPD 
Bangkok Declaration recommends the following actions. First, the awareness of ECC 
should be raised among all stakeholders including parents/caregivers, dentists, 
physicians, nurses, etc. Second, sugar intake in foods and drinks should be limited 
and free sugars should be avoided for children younger than 2 years old. Third, tooth 
brushing with at least 1000 ppm fluoridated toothpaste should be performed twice a 
day in all children. Lastly, preventive guidance should be provided within the first 
year of life by a health professional or community health worker. Ideally, a referral to 
a dentist for comprehensive dental care should be provided (Pitts et al., 2019). 
However, to achieve this recommendation using only limited resources, a targeted 
prevention strategy is required to select only high caries-risk children to receive 
appropriate caries prevention. Therefore, the current approach to finding the 
predictors and biomarkers of ECC has been focused on the oral microbiome that 
should be developed for the better prevention and treatment of ECC (Zou et al., 
2022). 
 

2.1.4. Management of Early Childhood Caries 
 In the past decades, attempts to overcome this disease have been 
developed. Many methods were proposed upon the understanding that dental caries 
is not developed by any specific pathogens but initiated by several microorganisms 
in a complex biofilm that changes dynamically due to its environmental factors such 
as the habitat for the microbes, nutrition, and saliva. Moreover, factors like 
educational level, income, occupation, and socioeconomic status are also associated 
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with dental caries (Costa et al., 2012; Engelmann et al., 2016). Thus, the direction of 
caries management has been changed to investigate which of many factors is causing 
the disease in each situation and correct them instead of finding the ultimate 
universal treatment for everybody.  
 The integration of Caries-risk assessment (CRA) into caries management is an 
important milestone in dental health care. This assessment consists of identifying 
and analyzing various factors that are related to dental caries based on the most 
updated evidence and developing a personalized caries care plan for individuals. 
Several CRA models related to ECC were proposed worldwide since the starting of 
the 21st century and most of them are still being developed since then, including the 
caries-risk assessment tool (CAT) by the American Academy of Pediatric Dentistry 
(AAPD) (AAPD, 2002, 2021), Caries Management By Risk Assessment (CAMBRA) by 
California Dental Association (Featherstone et al., 2003; Featherstone et al., 2007; 
Featherstone et al., 2019), American Dental Association (ADA) caries-risk assessment 
(ADA, 2011), and Cariogram (Bratthall & Hansel Petersson, 2005). Another guideline 
that has been proposed to be used on a global scale is CariesCare International 
(CCI™) by the ICDAS foundation. 
 CariesCare International is the latest guideline developed from ICDAS 
(International Caries Detection and Assessment System) (Martignon et al., 2019). 
Starting from 2002, they tried to develop a simple, logical, evidence-based system 
for caries detection and classification that could be used in dental education, clinical 
practice, dental research, and dental public health (Pitts & Stamm, 2004; Pitts, 2009). 
In 2013, ICDAS was developed by adding the guideline for management, thus the 
ICCMS™ Guide for Practitioners and Educators has been proposed (Pitts et al., 2014). 
The fundamental concept that influenced all decisions in the ICCMS™ is to “Preserve 
tooth structure and restore only when indicated”. A comprehensive assessment and 
personalized caries care plan will be made specifically for each individual. In 2019, 
CariesCare International (CCI™) was developed as the simpler and shorter version of 
the full ICCMS guide (Martignon et al., 2019) with the hope that this practice-friendly 
consensus guideline will be widely adopted into routine dental practice all over the 
world.  
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Figure 2: CariesCare 4D cycle (Martignon et al., 2019). 

 
According to this concept, caries risk assessment is the first essential element 

(1st D: Determine Caries risk, Figure 2) that will aid clinical decision-making and dictate 
the development of a personalized caries management plan. Moreover, the level of 
risk of caries could help each patient to understand and illustrate their caries 
prediction which might increase their motivation to engage with better health care 
and improve their behavior to enhance their oral health. The currently used caries 
risk assessments were well-performed to identify the factors responsible for the 
disease in a particular patient (Fontana & Zero, 2006) and could be the foundation 
for caries management in all age groups (Featherstone et al., 2021). However, as a 
caries predictor, there is not enough evidence to prove that the caries predictive 
ability of the existing caries risk assessment systems is valid enough to be 
implemented in a clinical situation (Tellez et al., 2013). Moreover, the categorization 
is mostly subjective based on the experience of evaluators, which is prone to human 
bias and error. Therefore, a reliable method that lacks bias with accurate caries 
prediction is needed, especially for dental caries in children, to improve the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13 
 

 13 

efficiency of caries prevention under limited resource constraints. This development 
might fulfill the dream that everyone could stay cavity-free during their entire lives, 
as a goal of the Alliance for a Cavity-Free Future (ACFF) for every child born in 2026 
and thereafter (https://www.acffglobal.org). 

 

2.2. Oral microbiome and dental caries 
2.2.1. Oral microbes: a primary factor in cariogenesis 

 To predict any disease, we need to find the markers that are closely related 
to the disease condition. For dental caries, a caries lesion is occurred by the acid 
from bacteria in the biofilm that dissolves the mineralized tissues of the tooth 
(Segura et al., 2014). Caries lesions vary in severity, starting from clinically sound 
enamel surface, white spot lesion, and cavitated dentin lesion (Takahashi & Nyvad, 
2011). At each stage, the microfloral members within the dental biofilm are different 
due to the change in the microenvironment. The initial colonizers of freshly cleaned 
tooth surfaces are a highly selective group of microbes, mainly Streptococcus 
sanguinis, Streptococcus oralis, and Streptococcus mitis (Nyvad & Kilian, 1987) as well 
as Actinomyces (J. Li et al., 2004; Dige et al., 2009). In contrast, mutans streptococci 
which comprise only 2% or less of the initial streptococcal population (Nyvad & 
Kilian, 1990), when a lesion is developed, the proportion of mutans streptococci in 
biofilm covering white spot enamel lesions was found to be higher when compared 
to the clinically healthy area (van Houte et al., 1991). However, the majority of 
bacteria found in white spot lesions are still non-mutans streptococci (Sansone et al., 
1993; van Houte et al., 1996). In cavitated dentin lesions, mutans streptococci 
significantly increased to about 30% of the total flora (Loesche et al., 1984; Milnes & 
Bowden, 1985; Boue et al., 1987), suggesting that mutans streptococci are associated 
with extensive stages of caries. All of these studies proved that the microflora in the 
oral biofilm is changed during the caries lesions development. However, recent 
molecular identification methods have revealed that the microbial structure in the 
human oral cavity is much more diverse with over 700 prokaryote species (Paster et 
al., 2006; Chen et al., 2010), 50-60% of which are not cultivable (Aas et al., 2005; Aas 
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et al., 2008; Dewhirst et al., 2010). Compare with the traditional culture methods, 
next-generation sequencing of the 16S rRNA gene could discover about 3-times more 
unique bacterial species (S. Gupta et al., 2019). Therefore, using the evidence in the 
past that relied on culture-dependent techniques alone seems not enough to 
understand the relationship between microbes and the caries process. Instead, 
studying the oral microbiome as a whole microbial community using culture-
independent techniques can uncover the complexities of the microbial community 
with new insights into the role of microbial variation during the caries process. 
 

2.2.2. Human oral microbiome and dental caries 
 Humans are not autonomous organisms, instead, we are biological units that 
include abundant microbial symbionts and their genomes (Bordenstein & Theis, 
2015). In fact, the human body accompanies roughly as many microbial cells as 
human cells (Sender et al., 2016). The community of our microbial residents is 
referred to as our “microbiome” to convey the ecology of commensal, symbiotic, 
and dysbiotic microbes that live with us and have been all but neglected as 
determinants of health and disease (Lederberg & McCray, 2001). The oral microbiome 
is the second most diverse microbial community in humans, behind the gut 
microbiome (Kilian et al., 2016), and plays an important role in maintaining oral 
homeostasis, protecting the oral cavity, and preventing disease development (Gao et 
al., 2018). The relationship between the oral microbiome and dental caries could be 
explained using historical evidence combined with oral microbiome studies. In 
humans, dental caries was assumed to be associated with the introduction of 
agriculture, resulting in the consumption of farmed plants and animals (Braidwood et 
al., 1961), with greater carbohydrate content compared with a natural diet (M. P. 
Richards et al., 2003). It is very rare for dental caries to be found among hunter-
gatherers who broadly lived in the earlier period of time (Smith, 1984). Recent 
genetic analyses, both from the ancient fossils and currently available samples 
suggested that the transition of diet from hunter-gatherer to agricultural societies 
altered the composition of the oral microbiome and could be associated with the 
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development of dental caries (Contreras et al., 2010; Nasidze et al., 2011; Cornejo et 
al., 2013; Clemente et al., 2015). Moreover, during the Industrial Revolution, an 
increase in the consumption of processed flour and sugar did change the oral 
ecology in humans with the expansion of cariogenic bacteria which promoted dental 
caries to become a major endemic disease until this day (Adler et al., 2013).  
 

2.2.3. Next-generation sequencing in caries research 
 Next-generation sequencing (NGS) of the 16S ribosomal RNA (rRNA) gene is a 
widely used technique for the investigation of the microbiome in the past decades, 
especially in the classification and identification of bacteria from biological samples. 
16S rRNA is a component of the small subunit of ribosome in prokaryotes which is 
necessary for the synthesis of all prokaryotic proteins. The gene that encodes this 
RNA is one of the most conservative genes for all prokaryotes. However, the internal 
structure of this gene consists of both conserved and variable regions which interlace 
with each other (Figure 3). The conserved regions are shared by almost all 
prokaryotes and the variable regions are different among prokaryotes with different 
degrees due to their evolutionary relationships. According to this character, the 
identification could be performed by using the universal primers, designed to match 
the conserved regions, to pick up a specific region of 16S rRNA gene from all 
prokaryotes in samples, then amplify, sequence, and identify the generated 
sequences based on the similarity of variable regions compare to the reference 16S 
rRNA gene sequences available in public databases. This technique allows us to 
determine the relative abundance of all bacteria in the sample regardless of their 
cultivable ability. Due to the rapid increase in the availability of sequencing facilities 
and a decrease in sequencing cost over time, the use of 16S rRNA gene sequencing is 
not limited only to research fields, but may soon be implemented in clinical 
practices as well (Woo et al., 2008). 
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Figure 3: Shannon entropy across the 16S rRNA gene, based on the Greengenes database.  

V1-V9 refers to the variable regions of these genes (Johnson et al., 2019). 

 
 The NGS studies supported the findings from previous culture-based studies 
but also revealed a much more diverse bacteria associated with dental caries (Becker 
et al., 2002; Munson et al., 2004; Aas et al., 2008). Among the increasing numbers of 
studies about the oral microbiome in children with caries, even though members of 
mutans streptococci, in particular Streptococcus mutans, are still the key microbes 
found in many NGS studies (Kanasi et al., 2010; Soncini et al., 2010; Lif Holgerson et 
al., 2015; V. P. Richards et al., 2017; Wang et al., 2017; Qiao et al., 2018; Y. Zheng et 
al., 2018). However, there are a large number of acidogenic bacteria presented in the 
oral biofilm that could be caries-associated, such as members of the genera 
Bifidobacterium, Propionibacterium, and Scardovia (Munson et al., 2004; Downes et 
al., 2011; Tanner et al., 2011; Kaur et al., 2013). Moreover, Veillonella spp. has been 
found to have a role in caries-affected children (Kanasi et al., 2010; Xu et al., 2014; 
M. Zhang et al., 2015; Agnello et al., 2017; Wang et al., 2017; Y. Zheng et al., 2018) 
with the evidence suggesting that Veillonella may serve as a predictor for future 
caries (Gross et al., 2012). Furthermore, Prevotella spp. and Lactobacillus spp. were 
shown to have higher abundance in the caries-affected group compared with the 
caries-free group (Wang et al., 2017). In contrast, the abundance of specific taxa is 
reduced in the advanced stage of dental caries, for example, Streptococcus mitis 
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group, Neisseria, and Streptococcus sanguinis (Gross et al., 2012). At each stage of the 
caries process, gradual changes in the microbiota throughout the caries process had 
been found in previous NGS studies (W. Jiang et al., 2014; Kianoush et al., 2014; 
Rocas et al., 2016). The decrease in the diversity of bacteria was found as caries 
progressed from health to caries. The healthy subjects had a wider range of 
significantly enriched bacteria. In comparison, caries-affected subjects had a smaller 
number of enriched bacteria with different dominant genera at each stage, 
Actinomyces dominating white spot lesions, Streptococcus dominating enamel 
cavitated caries lesions, and Lactobacilli dominating dentin caries lesions (W. Jiang et 
al., 2014; Kianoush et al., 2014; Rocas et al., 2016). Nevertheless, many studies 
confirmed that dental caries was more complicated than being caused by a 
particular group of bacterial species (Yang et al., 2012; Kianoush et al., 2014; Rocas et 
al., 2016). The comparison of the oral microbiome between healthy and caries-active 
subjects showed that there were no “caries-specific” bacteria found completely 
absent in healthy subjects. Instead, the shifts in the abundance of bacteria were 
different between healthy and caries-active subjects and could be associated with 
dental caries (Yang et al., 2012). 
 Microbiomes across the body change rapidly in the first 3 years of life 
(Yatsunenko et al., 2012). In the oral cavity, the study about the maturation of the 
oral microbiome in children found a significant increase in species richness and taxa 
diversity from the age of 3 months to 3 years (Lif Holgerson et al., 2015). Moreover, 
specifically in 1-year-old children, their microbial diversity both within and between 
samples was significantly different when compared with other age groups (Dashper et 
al., 2019). In fact, the significant differences could be observed among the oral 
microbiome of 12, 18, and 24-month-old toddlers (F. Li et al., 2018), and fully 
eruption of all primary anterior teeth is a critical stage in the maturation of oral 
microbiota (Xu et al., 2022). Thus, data from children of a particular age could not 
apply to use with children of different ages. Most of the studies on children with 
caries focused on children aged below 7 years old or those with primary dentition 
with a few studies that collected samples from children younger than 1-year old 
(Ramli & Azmi, 2020). Therefore, oral microbiome studies in an early year of life are 
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needed to develop effective approaches in young children who are the target group 
for caries control strategy (Pitts et al., 2019). 
 Among the oral microbiome studies in children with caries, the variety of 
regions of the study was still limited, with most of the studies being conducted in 
the United States and China (Ramli & Azmi, 2020). However, there was considerable 
diversity in terms of racial differences because some studies focused on minorities in 
their country (Soncini et al., 2010; Han et al., 2016; Agnello et al., 2017), or mixed 
races in the same country were involved in their studies (Kanasi et al., 2010; 
Goldberg et al., 2015). Oral microbiome studies among healthy adults indicate that 
the diversity of the oral microbiome varies by geographical and racial variations (V. K. 
Gupta et al., 2017) indicating that the oral microbiome could be geographically 
dependent. Thus, information on the oral microbiome in children from various 
geographical regions is needed to expand the understanding of the relationship 
between the oral microbiome and dental caries in that particular population. 
 

2.2.4. Salivary microbiome and dental caries 
 Traditionally, microbiological analysis of patients with dental caries has been 
focused on the supragingival plaque, which is closely related to cariogenesis. 
However, the acquisition of this type of sample could be difficult because the 
procedure requires both dental healthcare personnel and some specific instruments. 
Moreover, in the case of good oral hygiene individuals, dental plaque might not be 
enough for collection. Furthermore, the plaque microbiome is sensitive to the 
severity of caries lesions rather than the caries status of the host (V. P. Richards et al., 
2017), so the plaque collecting procedure must be standardized to prevent the 
variation that could occur during the sample collection. Alternatively, a saliva sample 
is non-invasive and simple to collect and store which is easier for volunteers to 
cooperate (Bhattarai et al., 2018) even without the need of healthcare personnel as 
it is already available commercially as a self-collecting kit. Moreover, it is safe to 
handle, cost-effective, and contains high-quality DNA (Gura, 2008; C. Z. Zhang et al., 
2016). Saliva is sterile when secreted from the glands (Schrøder et al., 2017). 
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However, after the secretion into the oral cavity, salivary microbiota consists of 
bacteria shed from the oral surface (Segata et al., 2012) that is considerably 
individualized (Hall et al., 2017) and temporarily stable (Cameron et al., 2015) 
regardless of the type of saliva that has been collected, unstimulated or stimulated 
(Jo et al., 2019). From the comparison between saliva and supragingival plaque, 
although saliva showed different microbial structures from supragingival plaque in 
terms of diversities, compositions, and functional characters, the salivary microbiota 
showed positive associations with the supragingival microbiota and might be possible 
to use for monitoring supragingival microbiota (Shi et al., 2018). Moreover, the 
analysis of saliva could provide insights into caries-causing microbes (Bhaumik et al., 
2021). 
 Recent NGS-based studies reported caries-associated characteristics of salivary 
microbiota in children (Xiao et al., 2018; Hurley et al., 2019), adolescents (Eriksson, Lif 
Holgerson, Esberg, et al., 2017; Eriksson, Lif Holgerson, & Johansson, 2017), adults 
(Zhou et al., 2016), and elderly patients (Q. Jiang et al., 2018). The longitudinal study 
found that salivary microbiota has the potential to predict recurrent caries in 3-year-
old children using the salivary levels of Fusobacterium, Prevotella, Leptotrichia, and 
Capnocytophaga species (Zhu et al., 2018). Moreover, when combined with the 
salivary levels of host defense peptides, the salivary microbiota could be used to 
predict the caries progression in 4-year-old children (Simon-Soro et al., 2018). 
 The ultimate goal of the caries prediction is to be able to make a precise 
prediction before the occurrence of a cavitated caries lesion. Thus, we can give 
proper prevention to the ones who need it right before the point of no return 
without wasting the limited resources, and the cost of prevention is much cheaper 
than the restoration or replacement. Moreover, it is easier to motivate the patients 
to improve themselves when we can show scientific data to illustrate their risk of 
disease, like blood cholesterol or blood pressure level. Finally, this information could 
be used to monitor the caries-risk status in each further recall interval. 
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2.3. Caries prediction in children 
2.3.1. Current caries predictor 

 The etiology of dental caries in children is multifactorial, complicated, and 
can be viewed from various perspectives. Several comprehensive models had been 
proposed to explain the multilevel influences on children’s oral health, related 
health disparities, and even connecting multiple factors to create unifying conceptual 
models (Fisher-Owens et al., 2007; Seow, 2012; Lee & Divaris, 2014). These models 
are exceptional representations of multilayered determinants of early childhood 
caries (ECC) at the population level, such as family education and socioeconomic 
disparity. Same as diet and specifically sugar intake that recently re-emerged as a 
major influence on caries incidence at the population level (Meyer & Lee, 2015; 
Sheiham & James, 2015). However, these population-derived determinants are both 
theoretically and practically different from the causes of individual cases (Rose, 
1985). For example, dental caries can occur in both high and low socioeconomic 
children. To precisely predict the caries onset at the individual level, we need to find 
another model that does not use just the population-level parameters into 
consideration. 
 

2.3.2. Cariogenic bacteria in currently used caries risk assessment 
 The well-known published caries risk assessment tools, including Cariogram 
(Bratthall & Hansel Petersson, 2005), CAMBRA (Featherstone et al., 2019), American 
Dental Association caries risk assessment (ADA, 2011), and American Academy of 
Pediatric Dentistry Caries risk assessment (AAPD, 2021), rely on the biological and 
environmental factors that mostly evaluated by the healthcare provider which gave 
the different result when predicting the future risk of dental caries (Featherstone et 
al., 2021). Besides identifying the risk factors derived from the details gathered during 
the risk assessment, the prediction of the risk level for future caries occurrence is 
also an important element for successful caries management. From the various 
predictors that have been chosen for caries prediction, the previous caries 
experience was the most powerful predictor, especially in pre-school children 
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(Mejàre et al., 2014). However, this predictor is not practical to be used in the case of 
toddlers since most of them are innocent of caries experience. 
 The microbial factors associated with the activity within biofilms are promising 
candidates for caries prediction because they could reflect conditions in the oral 
cavity deriving from other cariogenic factors, such as diet, oral hygiene, and the 
characteristics of saliva. However, the bacterial level shows a poor accuracy as a 
univariate model (Mejàre et al., 2014) and could only moderately improve the 
predictive ability when combine with other factors (Demers et al., 1990; Krasse, 1990; 
Hong & Hu, 2010). The reason is probably those microbial factors depended on a 
particular species count such as Streptococcus mutans and Lactobacilli spp. which 
could only reflect the current caries status (Hong & Hu, 2010; Sounah & Madfa, 2020) 
but might not be able to predict the caries onset in the future. The NGS studies in 
recent decades make us to capable of expanding the understanding of the microbial 
contributions to the etiology of dental caries beyond the knowledge from culture-
dependent studies. Moreover, the differences in oral microbiota between healthy 
and caries-active children had been explained (Luo et al., 2012; S. Jiang et al., 2016; 
Hajishengallis et al., 2017). The discovery of various microbes associated with caries 
has been reported as mentioned suggests that the oral microbiome has the potential 
to be a robust predictor of dental caries in toddlers (Grassl et al., 2016; Hemadi et 
al., 2017; Kato et al., 2017). 
 

2.3.3. Oral microbiome and caries prediction in children 
 There were studies that proposed caries predictive models based on oral 
microbiome data (Table 1). Teng and colleagues used both plaque and saliva 
samples to develop a model that could predict future ECC onsets with 81% of 
accuracy (Teng et al., 2015). This study collected the samples from 4-year-old 
children and then tracked them longitudinally for 2 years. Another study, which used 
the samples from 3-year-old children with a 1-year follow-up, showed that they 
could construct a caries-onset prediction model with an accuracy of 93.1% using 
supragingival microbiome profiles (Xu et al., 2018). Both studies, with closely related 
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race and age of the population, 4 to 6-year-old and 3 to 4-year-old Chinese children, 
respectively, showed that the genera Streptococcus and Prevotella were found to be 
most discriminatory. The most recent study, conducted in the United States in 
children aged 1 to 3 years, showed that salivary microbiota profile could be used for 
the prediction of ECC onset (Grier et al., 2021). This study showed different taxa of 
the important discriminants which Rothia mucilaginosa, Streptococcus sp., and 
Veillonella parvula were represented as biomarkers of risk for ECC onset. These 
differences might arise from several factors. First, the geographical difference could 
affect the oral microbiota both in terms of genetic and environmental, since these 
two regions have vastly different cultures and practices, especially about the infant 
feeding (Schulze et al., 2009). Second, the age of subjects was crucially different in 
terms of oral habitat for microflora, erupting vs full deciduous dentition, which 
reported that microbial richness and diversity were different (Lif Holgerson et al., 
2015; Dashper et al., 2019). For example, R. mucilaginosa is a species that colonize 
and adhere to mucosal epithelial surfaces, so it could play a more important role in 
children with partial dentition than the complete-erupted dentition. Third, the types 
of samples that these studies used were all different, the combination of saliva and 
dental plaque (Teng et al., 2015) vs supragingival plaque (Xu et al., 2018) vs saliva 
(Grier et al., 2021). Lastly, they used different strategies to generate the prediction 
models. Although all of them used supervised machine learning based on oral 
microbiota composition but using different approaches. Grier and colleagues (2021) 
sought the signature of caries risk in the caries-free samples, rather than simpler 
implying to the oral microbiota of caries-free samples that are similar to caries-active 
samples are at higher risk of caries onset in the future, as were used in the previous 
studies (Teng et al., 2015; Xu et al., 2018). Moreover, they used the overall taxa to 
generate the prediction models rather than the selective biomarkers. 
 
Table 1: Previous ECC prediction studies using machine learning based on oral microbiome. 
Author 
(Year) 

Type of 
model 

Training 
group 

Variables Age 
(y) 
 

Race Algorithm Accuracy 
(%) 

Biomarkers 

Grier et al. 
(2021) 

Prediction Caries-free Salivary 
microbiome 
 

1-5 American RF,  
GB 

73.2-85.5%, 
71.4-83.6% 

R. mucilaginosa*, 
Streptococcus sp.*, 
V. parvula*, 
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etc. 
 

Xu et al. 
(2018) 

Prediction Mixed  
caries status 
 

Plaque 
microbiome 
 

3-4 Chinese RF 93.1% Streptococcus sp.*, 
Prevotella spp.*, 
Solobacterium sp.*, 
Kingella sp.†, 
Capnocytophaga sp.†, 
Neisseria sp.†, 
Fusobacterium sp.†, 
etc. 
 

Teng et 
al. (2015) 

Prediction Mixed  
caries status 

Plaque and  
Salivary 
microbiome 
 

4-6 Chinese RF 81% Streptococcus spp.*, 
Prevotella spp.*, 
etc. 

Abbreviation: RF (Random Forest), GB (Gradient Booster) 
*Enriched in caries-active children, †Enriched in caries-free children 
 

2.3.4. Machine learning in oral microbiome research 
 Microbiome data could be used for various analyzes such as to establish an 
association between microbiome and diseases, predict disease incidence, and classify 
various disease states. On this matter, machine learning (ML) can be used for in-
depth analysis by generating models that can predict the outputs of interest. ML 
trains and evaluates the generated models to identify, classify, and predict patterns 
from provided data. Unsupervised ML analyzes and clusters unlabeled datasets by 
discovering the hidden pattern in data without intervention from humans, while 
supervised ML used the labeled datasets to train the model and learn the pattern of 
input features to classify or predict the outcome. ML techniques can be used for 
various purposes when applied to microbiome studies. First, for the classification of 
microbial taxa and taxonomic assignment. Second, for the prediction of the host 
phenotype by associating microbial relative abundance to disease incidence or 
severities, for example, disease prediction. Lastly, to understand the disease 
mechanisms, for example, biomarker-finding. The supervised learning methods used 
in this study were Naïve Bayes classifiers (NB), Linear discriminant analysis (LDA), and 
Random forests (RF). NB is integrated with QIIME2 (Bolyen et al., 2019) used for the 
taxonomic classification of 16S rRNA gene sequences. LDA is a generalization of 
Fisher’s linear discriminant, a method used in statistics, to find a linear combination 
of variables by focusing on maximizing the separability among known categories. The 
LDA effect size (LEfSe) method, proposed by The Huttenhower Lab 
(http://huttenhower.sph.harvard.edu/lefse), was designed for biomarker discovery in 
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metagenomic data, including 16S rRNA gene datasets (Segata et al., 2011). RFs are the 
ensemble method that combines multiple classifiers to achieve better performance 
compare with a single classifier. In this case, RFs are made by combining many 
decision trees. The final output of RFs is the majority voting of the individual decision 
trees. RF classifiers are the widely used ML algorithm in oral microbiome studies 
including caries prediction studies in children (Teng et al., 2015; Xu et al., 2018; Grier 
et al., 2021). 
 

2.3.5. 1 year old: a critical age group for caries prevention 
 Caries prevalence in children could be controlled by giving preventive 
intervention within the first year of life (Pitts et al., 2019). With the limited resources, 
targeted prevention would be necessary for the distribution of adequate caries 
prevention to the high caries-risk children. Research on caries prediction in toddlers is 
largely missing and needed, especially in Thailand, to develop a caries prediction 
model that is reliable enough for clinical caries management in this region. The 
accurate caries risk prediction at the individual level, “precision dentistry”, is 
desirable and achievable but must be based on accumulated high-quality evidence 
(Divaris, 2016). In this study, we used the stored samples previously collected from 
Thai children in the project “Impact of prolonged and on demand breastfeeding on 
early childhood caries in Khon Kaen” (Sritangsirikul et al., 2021). This is a nested case-
control design within a prospective cohort study focused on identifying the microbial 
biomarkers as the potential caries predictors and developing prediction models using 
a machine learning approach to predict future caries onset in caries-free 1-year-old 
children.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III 

3. Materials and Methods 
3.1. Research Design 
 A nested case-control within a prospective cohort study 
 

3.2. Biosafety Consideration 
 This project was approved by The Institutional Biosafety Committee of the 
Faculty of Dentistry, Chulalongkorn University on May 27, 2021 (Approval No. DENT 
CU-IBC 016/2021). 
 

3.3. Ethical Consideration 
 This project was approved by The Human Research Ethics Committee of the 
Faculty of Dentistry, Chulalongkorn University on May 7, 2021 (Study Code: HREC-
DCU 2021-032). The cohort protocol from the previous study (Sritangsirikul et al., 
2021) was approved by Khon Kaen University Ethics Committee for Human Research 
(HE592266) and Human Research and Ethics Committees of University of Washington 
(HSD52258). 
 

3.4. Sample Size 
 With the limitation of sufficient sample quantity and caries status when 
children were 2 years old, a total of 40 saliva samples were used in this study. 30 
samples, 10 samples from caries-free 1-year-old children in each of the 3 groups, 
were used for differences analyses, biomarker discovery, and machine learning 
training. The other 10 samples from 1-year-old children with different future caries 
development were used as a testing group for validating the performance of 
prediction models. The details of how to use samples for each analysis will be 
explained in the results section. According to a previous study on the salivary 
microbiome in children, the species accumulation curves suggested that the data 
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reached a saturated point at 10 samples/set (Zhu et al., 2018). This data indicated 
that the sample size of 10 samples is sufficient from the sequencing aspect. 
 

3.5. Subjects and Grouping Criteria 
 The saliva samples in this study were the stored samples from the previous 
study (Sritangsirikul et al., 2021). The participants were recruited from the Thai 
Primary Health Centers and Mother and Child Health Center in Muang District, Khon 
Kaen province, Thailand. All participants were unrelated individuals, systemically 
healthy, and aged around 1 year old at the baseline time point (12.75m±1.10). The 
selected saliva samples used in this study were collected at the baseline time point 
in 2017. The information from oral examination and interview was collected at the 
baseline time point and repeated at the 6- and 12-month-follow-up visits. These 
time points were described as time point 1 (T1, baseline), time point 2 (T2, 6 
months), and time point 3 (T3, 12 months) (Figure 4). 
 A total of 568 participants voluntarily agreed to the survey and sample 
collection and passed all of the following criteria; 
1. The child was 1 year old when the survey was started, attending Thai Primary 
Health Centers and Mother and Child Health Center Muang District, Khon Kaen. 
2. The child had a routine well-baby visit at the selected Thai Primary Health 
Care Centers and Mother and Child Health Center Muang District, Khon Kaen. 
3. The child was a permanent resident in Khon Kaen without plans to relocate. 
4. His/her caregiver can understand the Thai language. 
5. The child had not taken any antibiotics for the last 30 days before the 
sample collection. 
 Of 331 one-year-old caries-free children, 30 samples from those children 
were selected for this study (age 12.57m 0.97), based on the sufficiency of the 
sample (volume at least 0.5 ml), the caries status at the baseline time point, and 
their longitudinal change of caries status at 1-year follow-up. From the oral 
examination, all of the selected subjects were not found any caries lesion at the 
baseline (T1) but had different caries statuses at the 1-year follow-up time point (T3), 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 27 

including 10 children who remained caries-free, 10 children developed at least 1 
non-cavitated caries lesion without any cavitated caries lesion, and 10 children who 
developed at least 1 cavitated caries lesion. These subjects were divided into three 
groups according to the longitudinal change of their caries statuses; caries-free to 
caries-free (F2F: caries-Free to caries-Free), caries-free to non-cavitated caries lesion 
(F2W: caries-Free to White spot), and caries-free to cavitated caries lesion (F2D: 
caries-Free to Decay), respectively (Figure 4). In addition, another 10 saliva samples 
from 1-year-old cavitated caries lesion-free children were selected to validate the 
performance of caries prediction models (testing group). 
 

 
Figure 4: Schematic of sample collection, data collection, and grouping of samples. F2F, caries-
Free-to-caries-Free; F2W, caries-Free-to-White spot (non-cavitated caries lesion); F2D, caries-Free-
to-Decay (cavitated caries lesion), based on caries status at 12-month-follow-up. 
 

3.6. Saliva Sampling 
 The saliva sampling protocol was described in the previous study 
(Sritangsirikul et al., 2021). In brief, the saliva collection was performed approximately 
at the same time of the day to avoid changes due to the circadian rhythm (Dawes, 
1972). Approximately 1-3 ml of saliva was obtained from each subject by dropper 
and saturating gauze in saliva that pooled on the floor of mouth. The whole process 
took around 3-5 minutes to be completed. The pH of saliva was immediately 
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measured using LAQUA twin pH 22 Pocket meter (HORIBA Instruments, Singapore) 
The sensor was calibrated before each measurement using standard buffer solutions 
of pH 4.0 and 7.0. Measurements were repeated in duplicates for each sample. The 
remaining sample was then transferred into the glycerol solution in a sterile plastic 
tube and kept in the transport container with frozen packs at 2-6°C until they were 
delivered to the laboratory at the Department of Oral Biology Laboratory, Faculty of 
Dentistry, Khon Kaen University to be stored at -80°C.  

Before the experiment of this study was started, all of the available samples 
were transferred to the laboratory at the Department of Microbiology, Faculty of 
Dentistry, Chulalongkorn University to be stored at -80°C for sample categorization 
prior to the DNA extraction.  

 

3.7. Data Collection and Analysis 
 The data from each subject was collected in the previous study (Sritangsirikul 
et al., 2021), including caries experiences, age and sex of children, number of erupted 
teeth, human milk feeding status, and pH of saliva. At baseline (T1), 6-month-follow-
up (T2), and 12-month-follow-up (T3) visits, each subject was examined his/her teeth 
by one calibrated dentist. Caries status was assessed using the WHO diagnostic 
criteria (WHO, 1997) for visible cavitated and non-cavitated caries lesions. The 
number of cavitated caries lesion on deciduous teeth (d) was used with the number 
of affected teeth (dt) and surfaces (ds) as the numerator. Moreover, the d1 subgroup 
for d was used to record caries lesions that extend to non-cavitated caries lesions 
(d1t and d1s), d1 is a detectable enamel lesion with a sound surface (Table 2). All 
tooth surfaces were carefully wiped with dry gauze to remove dental plaque before 
the examination. Under artificial light, the examination was conducted using a visual 
examination with a mouth mirror, while the subject was in the supine position. After 
each examination, the caregiver received a dental report card indicating further 
dental treatment if needed. In case of urgent or painful conditions, they had been 
referred to the Pediatric Department, Faculty of Dentistry, Khon Kaen University, or 
their family dentist, as appropriate. They also received the oral hygiene home-care 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 29 

recommendation and the oral hygiene pack consisted of a toothbrush, toothpaste, 
and handkerchief at each visit. The amount and position of caries lesions at each 
time point were recorded separately.  
 
Table 2: The number of caries lesions of subjects at each time point. 

Sample 
# 

Baseline (T1, 1-y-old) 6m-follow-up (T2, 1.5-y-old) 12m-follow-up (T3, 2-y-old) 

dt ds d1t d1s dt ds d1t d1s dt ds d1t d1s 

F2F01 0 0 0 0 0 0 0 0 0 0 0 0 

F2F02 0 0 0 0 0 0 0 0 0 0 0 0 

F2F03 0 0 0 0 0 0 0 0 0 0 0 0 

F2F04 0 0 0 0 0 0 0 0 0 0 0 0 

F2F05 0 0 0 0 0 0 0 0 0 0 0 0 

F2F06 0 0 0 0 0 0 0 0 0 0 0 0 

F2F07 0 0 0 0 0 0 0 0 0 0 0 0 

F2F08 0 0 0 0 0 0 0 0 0 0 0 0 

F2F09 0 0 0 0 0 0 0 0 0 0 0 0 

F2F10 0 0 0 0 0 0 0 0 0 0 0 0 

F2W01 0 0 0 0 0 0 6 6 0 0 4 4 

F2W02 0 0 0 0 0 0 2 2 0 0 8 8 

F2W03 0 0 0 0 0 0 6 6 0 0 6 6 

F2W04 0 0 0 0 0 0 0 0 0 0 6 6 

F2W05 0 0 0 0 0 0 8 8 0 0 10 10 

F2W06 0 0 0 0 0 0 4 4 0 0 4 4 

F2W07 0 0 0 0 0 0 0 0 0 0 6 6 

F2W08 0 0 0 0 0 0 0 0 0 0 6 6 

F2W09 0 0 0 0 0 0 0 0 0 0 8 8 

F2W10 0 0 0 0 0 0 4 4 0 0 3 3 

F2D01 0 0 0 0 1 1 4 4 2 2 6 6 

F2D02 0 0 0 0 6 6 6 6 12 13 12 13 

F2D03 0 0 0 0 2 2 5 5 2 2 4 4 

F2D04 0 0 0 0 0 0 0 0 1 1 11 11 

F2D05 0 0 0 0 0 0 3 3 2 2 6 6 
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Sample 
# 

Baseline (T1, 1-y-old) 6m-follow-up (T2, 1.5-y-old) 12m-follow-up (T3, 2-y-old) 

dt ds d1t d1s dt ds d1t d1s dt ds d1t d1s 

F2D06 0 0 0 0 0 0 4 4 12 12 12 12 

F2D07 0 0 0 0 0 0 6 6 4 12 10 18 

F2D08 0 0 0 0 0 0 4 4 3 4 5 6 

F2D09 0 0 0 0 0 0 0 0 4 4 4 4 

F2D10 0 0 0 0 0 0 0 0 2 2 6 6 

Yellow: found non-cavitated caries lesion without cavitated caries lesion 
Red: found cavitated caries lesion 
d is the number of cavitated caries lesions by teeth (dt) or surfaces (ds) in the deciduous teeth. 

d1 is the number of caries lesions both cavitated and non-cavitated by teeth (d1t) or surfaces (d1s). 

 
The caregivers were interviewed by the structured questionnaire, modified 

from the questionnaire developed by the WHO and 44 consortium members from 18 
countries and funded by the National Institute of Dental and Craniofacial Research 
(NIDCR) in 2006 and the Indicators for assessing infant and young child feeding 
practices: conclusions of a consensus meeting held 6-8 November 2007 in 
Washington DC., USA. (Sritangsirikul et al., 2021).  
 All data were described using percentages for categorical data and mean and 
standard deviation for continuous data. The comparisons of characteristics of 
subjects and samples between study groups were performed using Kruskal-Wallis 
test, One-Way Analysis of Variance (ANOVA) test, and Pearson’s chi-squared test. 
 

3.8. Extraction of Genomic DNA 
 The workflow of experiments from DNA extraction to bioinformatic analyses is 
illustrated in Figure 5. Total genomic DNA extraction was performed using DNeasy 
PowerSoil kit (Qiagen, Hilden, Germany) according to the manufacturer s instructions. 
Concentration and purity testing of the DNA were performed using NanoDrop 2000 
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). DNA samples were 
quantified using a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). The 
extracted DNA samples were stored at -80°C until further use. 
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Figure 5: Workflow of the experiments and analysis pipelilne. 

 

 All of the extracted DNA samples were stabilized with active chemical 
protection using GenTegra-DNA (GenTegra LLC, Pleasanton, CA, USA) and shipped to 
Vishuo Biomedical laboratory (Singapore) for the further sequencing process. 
 

3.9. Amplicon Generation, Library Preparation, and Sequencing 
 Next-generation sequencing library preparations and Illumina MiSeq 
sequencing were conducted at Vishuo Biomedical laboratory (Singapore). A total of 
30-50 ng of DNA was used to generate 16S rRNA amplicons using a MetaVx™ Library 
Preparation kit (GENEWIZ, Inc., South Plainfield, NJ, USA). V3 and V4 hypervariable 
regions of prokaryotic 16S rRNA gene were selected for generating amplicons and 
following taxonomy analysis. The laboratory designed a panel of proprietary primers 
aimed at relatively conserved regions bordering the V3 and V4 hypervariable regions 
of bacteria and archaea 16S rRNA gene. The V3 and V4 regions were amplified using 
forward primers containing the sequence CCTACGGRRBGCASCAGKVRVGAAT” and 
reverse primers containing the sequence GGACTACNVGGGTWTCTAATCC” (Teng et 
al., 2018). The first-round PCR products were used as templates for the second-round 
amplicon enrichment PCR. At the same time, indexed adapters were added to the 
ends of the 16S rRNA gene amplicons to generate indexed libraries ready for 
downstream NGS sequencing on Illumina Miseq. 
 DNA libraries were validated by Agilent 2100 Bioanalyzer (Agilent 
Technologies, Palo Alto, CA, USA), and quantified by Qubit 2.0 Fluorometer 
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(Invitrogen, Carlsbad, CA, USA). DNA libraries were multiplexed and loaded on an 
Illumina MiSeq instrument according to the manufacturer s instructions (Illumina, San 
Diego, CA, USA). Sequencing was performed using a 2x300/2x250 paired-end (PE) 
configuration; image analysis and base calling were conducted by the MiSeq Control 
Software (MCS) embedded in the MiSeq instrument. 
 

3.10. Bioinformatics and Statistical Analyses 
3.10.1. Data processing 

 Raw data from the Illumina MiSeq was first converted into FASTQ format 
paired-end sequence files using the bcl2fastq program, version 1.8.4, provided by 
Illumina. QIIME 1.9.1 was used for demultiplexing, by extracting the barcodes and 
sorting sequenced reads into separate files for each sample, then imported into 
QIIME2 V2021.8 (Bolyen et al., 2019), which was used to perform all subsequent 
processing.  
 Denoising was performed using DADA2 (The Divisive Amplicon Denoising 
Algorithm) (Callahan et al., 2016): forward and reverse reads were truncated to 240 
bps, inferred exact amplicon sequence variants (ASVs) from high-throughput 
amplicon sequencing data to the sequence variants and their sample-wise 
abundances after removing substitution and chimera errors. Phylogenetic trees were 
constructed for each cohort using MAFFT (Katoh & Standley, 2013) for sequence 
alignment and FastTree (Price et al., 2010) for tree construction. 
 

3.10.2. Alpha Diversity and Beta Diversity Analyses 
 All diversity metrics were calculated on the rarefied samples using QIIME2. 
Alpha diversity (α-diversity) is the mean species diversity within the sample. The 
meaning of species diversity includes richness which simply quantifies how many 
different species contains within the sample, evenness which refers to how close an 
abundance of each species within a sample is, and diversity which takes both count 
of species and the abundance of each species into consideration. All of these 3 
types of α-diversity were calculated using the Chao1, Pielou’s evenness, and 
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Shannon indices, respectively. Comparisons of α-diversity between groups were 
performed with the Kruskal-Wallis test and pairwise comparison using their P values 
with Benjamini-Hochberg correction. Beta diversity (β-diversity) is the differentiation 
among samples. β-diversity was calculated using the weighted and unweighted 
UniFrac (the unique fraction) metrics and then was visualized using the principal 
coordinate analysis (PCoA). Dissimilarity analysis of β-diversity was calculated using 
Analysis of similarities (ANOSIM) (Clarke, 1993). 
 

3.10.3. Taxonomic Assignment 
 Taxonomic classification was performed with a custom Naïve Bayesian 
classifier trained on the February 2021 release of the expanded Human Oral 
Microbiome Database (eHOMD, https://www.homd.org) (WHO, 2008; Escapa et al., 
2018) which has taxonomic categories predicted from phylum to the species level 
that used for the further analyses. In addition, the OSU CORE oral microbiome 
database (Griffen et al., 2011), the SILVA 138 database (Quast et al., 2013), and the 
Greengenes database (McDonald et al., 2012) were used for taxonomic assignment 
for the comparison of different databases usage. 
 

3.10.4. Biomarker Discovery 
 Multiple approaches were used for biomarker discovery. First, the comparison 
of differentially abundant microbial species between F2F and F2D groups was 
performed with the Wilcoxon rank-sum test using R software (version 4.1.0) with 
package stats 4.1.0. Next, the mean differences in the relative abundance of species 
between groups were evaluated using the linear discriminant analysis (LDA) effect 
size (LEfSe) (Segata et al., 2011), with an alpha value of 0.05 for the Wilcoxon test 
and a threshold of 2.0 for logarithmic LDA scores using the Galaxy web application 
(http://huttenhower.sph.harvard.edu/galaxy). 
 

https://www.homd.org/
http://huttenhower.sph.harvard.edu/galaxy
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3.10.5. Caries Prediction Model Development 

3.10.5.1. All-taxa model 
 Caries prediction models were constructed using Random Forest (RF) 
classifiers in R software with package randomForest 4.6-14 based on species-level 
taxa. “All-taxa model” was first constructed based on the relative abundance of the 
all species-level taxa of F2F and F2D groups.  
 

3.10.5.2. Important-features model 
Next, the sets of biomarkers were selected using 2 approaches to further 

develop caries prediction models. First, “Important-features model”, the important 
taxa were determined by their importance to the accuracy of the All-taxa model, 
using two variable important measures, mean decrease in accuracy (MDA) and mean 
decrease Gini (MDG). The important features were selected using 2 methods, Boruta 
(package Boruta 7.0.0) and recursive feature elimination (RFE) algorithms (package 
caret 6.0-88).  

 

3.10.5.3. Differential-abundance model 
Second, “Differential-abundance model”, the microbial biomarkers, were 

identified as the differentially abundant species between F2F and F2D groups using 
the Wilcoxon rank-sum test and as the biomarkers of each group using LEfSe, as 
described above. The modified prediction models were constructed based on the 
relative abundance of both sets of selected species.  

 

3.10.5.4. Single-species models 
Furthermore, the simplified version of prediction models, “Single-species 

model”, was constructed based on the relative abundance of every single species of 
the important taxa and microbial biomarkers, selected as described above.  
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3.10.6. Model Validation 
The performance of prediction models was validated using the salivary 

microbiome at the species level of the samples from unrelated 1-year-old cavitated-
caries-lesion-free children in the testing group (Table 3). 
 
Table 3: The number of cavitated caries lesion and d1s index in testing group. 

Sample# 

Baseline (T1, 1-y-old) 6m-follow-up (T2, 1.5-y-old) 12m-follow-up (T3, 2-y-old) 

ds d1s ds d1s ds d1s 

T01 0 4 0 12 2 8 

T02 0 8 0 6 3 4 

T03 0 4 0 12 1 7 

T04 0 2 0 0 0 6 

T05 0 2 0 4 0 4 

T06 0 4 0 2 0 12 

T07 0 4 4 5 6 6 

T08 0 4 0 6 0 6 

T09 0 4 0 9 0 2 

T10 0 4 4 16 39 41 

Red: found cavitated caries lesion 
ds is the number of surfaces of cavitated caries lesion. 
d1s is the sum of the number of surfaces of cavitated and non-cavitated caries lesion. 

 
 Moreover, the cross-study validation was performed using the selected 
salivary microbiome data, retrieved from BioProject ID PRJNA622300 (Grier et al., 
2021). The selection criteria were the age of children under 2 years old. 17 samples 
(age 20.47 months ± 2.61) were selected and used as the validating group (Table 4). 
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Table 4: The selected samples for validation were retrieved from the publicly available dataset 
through NCBI accession number PRJNA622300 (Grier et al., 2021). 

Sample# sample-id Status Host Age (months) 

V01 SRR11458012 Pre-caries 22.67 

V02 SRR11458024 Pre-caries 23.27 

V03 SRR11458035 Pre-caries 19.17 

V04 SRR11458047 Pre-caries 17.83 

V05 SRR11458055 Healthy Caries Free 22.63 

V06 SRR11458062 Healthy Caries Free 23.60 

V07 SRR11458082 Healthy Caries Free 22.70 

V08 SRR11458088 Pre-caries 21.27 

V09 SRR11458091 Healthy Caries Free 20.07 

V10 SRR11458098 Healthy Caries Free 16.03 

V11 SRR11458102 Healthy Caries Free 20.70 

V12 SRR11458105 Pre-caries 21.30 

V13 SRR11458109 Pre-caries 17.17 

V14 SRR11458139 Pre-caries 21.60 

V15 SRR11516738 Healthy Caries Free 16.13 

V16 SRR11516749 Healthy Caries Free 23.73 

V17 SRR11516753 Healthy Caries Free 18.17 

Healthy Caries free: Children who remained caries free for the 2-y study period 
Pre-caries: Children with ECC onset within 2-y study period



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV 

4. Results 
4.1. Overview of Participants and Samples 
 The selected children who remained caries-free (F2F) versus whom 
developed non-cavitated caries lesions (F2W) and cavitated caries lesions (F2D) 
within 12 months were similar in age, sex, number of teeth, the status of human milk 
consumption, and pH of saliva but significantly different in terms of caries experience 
at 12-month-follow-up (Table 5). 
 
Table 5: Characteristic table for the study cohorts and samples in each group at the baseline 
time point and the number of caries lesions at the 12-month-follow-up, presented as mean ± 
SD or %. 

Variable 
F2F  

(n = 10) 
F2W  

(n = 10) 
F2D  

(n = 10) 
P value 

Age, months 12.7 ± 1.3 12.6 ± 1.1 12.4 ± 0.5 0.99* 

Sex    0.87† 

   male 50% 60% 50%  

   female 50% 40% 50%  

No. of teeth at 1-y old 5.7 ± 2.2 5.4 ± 2.2 4.0 ± 1.9 0.19* 

No. of teeth at 2-y old 17.4 ± 2.3 16.6 ± 1.3 15.8 ± 1.3 0.28* 

Weaned (human milk) 90% 90% 60% 0.15† 

pH of saliva 7.2 ± 0.3 7.2 ± 0.6 7.4 ± 0.6 0.57‡ 

ds§ at 12m-follow-up 0a 0a 5.4 ± 4.9b <0.001* 

d1s¶ at 12m-follow-up 0a 6.1 ± 2.1b 8.6 ± 4.7b <0.001* 

*Kruskal-Wallis test, †Chi-squared test, ‡ANOVA test 
§ds is the number of cavitated caries lesion tooth surfaces in the deciduous teeth. 
¶d1s is the number of non-cavitated and cavitated caries lesion tooth surfaces in the deciduous teeth. 
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Lowercase letters indicate a significant difference among groups (P<0.05). 
 

The salivary microbiota composition was determined by 16S rRNA gene 
sequencing. Illumina MiSeq sequencing produced an average of >57,000 reads per 
sample after quality control and amplicon sequence variant identification among all 
sequenced samples. The minimum frequency among all samples was 18,207 with an 
average of 28,489.7 per sample. SILVA (Quast et al., 2013), Greengenes (DeSantis et 
al., 2006), OSU CORE (Griffen et al., 2011), and eHOMD (Escapa et al., 2018) databases 
were used to assign the taxonomy of the dataset. The 15-most-abundance genera 
and the 25-most-abundance species based on each database are showen in figure 6 
and 7, respectively. At the species level, the SILVA and Greengenes databases could 
classify the dominant species-level taxa as unclassified species with only 7 and 9 out 
of 25 most abundant species that could be classified, respectively (Figure 7A and B). 
The eHOMD and OSU CORE databases were able to classify the species-level taxa of 
19 and 21 out of the 25 most abundant species, respectively (Figure 7C and D). 
Therefore, the eHOMD database was chosen for further analysis since it is the most 
up-to-date oral microbiome-specific database that was publicly available at that 
moment, the last update of eHOMD was made in 2021 
(https://ehomd.org/download#refseq), while the OSU CORE database was updated in 
2017 (http://microbiome.osu.edu). The reads from this dataset represent 945 unique 
features, 160 distinct species-level taxonomic assignments, 74 genera, 46 families, 31 
orders, 20 classes, and 11 phyla, using the eHOMD database. The top 15 most 
abundant genera accounted for 94.70% of the overall composition across all 
samples, with Streptococcus being the most abundant (29.15% overall abundance), 
followed by Alloprevotella (12.52%), Veillonella (9.99%), Haemophilus (8.84%), 
Leptotrichia (6.18%), and Neisseria (6.09%) (Figure 6C), which all of the genera were 
not significantly different among these 3 groups (P>0.05, Kruskal-Wallis). The top 25 
most abundant species accounted for 87.91% of the overall composition across all 
samples, of which 6 out of 25 were unclassified species (Figure 7C). 
 

https://ehomd.org/download#refseq
http://microbiome.osu.edu/
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Figure 6: Relative abundance of bacterial genera in the salivary microbiome of caries-free 1-
year-old children by caries status at 12-month-follow up using (A) SILVA, (B) Greengenes, (C) 
eHOMD, and (D) OSU CORE databases. 
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Figure 7: Relative abundance of bacterial species in the salivary microbiome of caries-free 1-
year-old children by caries status at 12-month-follow up using (A) SILVA, (B) Greengenes, (C) 
eHOMD, and (D) OSU CORE databases. 
 

4.2. Microbiota Composition prior to the Caries Development 
 The diversity analyses were performed both within-sample (α-diversity) and 
between-samples (β-diversity). For α-diversity, the children who remained caries-free 
(F2F) showed the most diverse salivary microbiome but were not significant in terms 
of diversity and richness (Shannon and Chao1 s alpha diversity, P=0.11 and 0.30, 
respectively, Kruskal-Wallis; Figure 8A-B). Only the relative evenness of species 
richness of the children who remained caries-free was significantly higher than those 
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who develop non-cavitated caries lesions (F2W), evaluated using Pielou’s evenness 
(P=0.024, Kruskal-Wallis with Benjamini-Hochberg correction; Figure 8C).  

 
Figure 8: Boxplots of α-diversity, measured by (A) Shannon diversity index, (B) Chao 1 index, and 
(C) Pielou’s evenness index. Green boxplots represent F2F group, yellow boxplots represent F2W 
group, and red boxplots represent F2D group. Comparison between F2F and F2W groups was 
significantly different in terms of evenness (P=0.024, Kruskal-Wallis with Benjamini and Hochberg 
correction). 
 

 For β-diversity, principal coordinates analysis (PCoA) was conducted based on 
weighted and unweighted UniFrac distance. The result showed that, based on 
unweighted UniFrac distance, the salivary microbiota of the children who remained 
caries-free (F2F) was significantly different from those who developed cavitated caries 
lesions (F2D) (P=0.042, ANOSIM with Benjamini-Hochberg correction; Figure 9A). 
However, the differences were not significant when using weighted UniFrac distance 
(P=0.583, ANOSIM; Figure 9B). Therefore, the comparison between F2F and F2D 
groups was used for further analyses. 
 

4.3. Microbial Biomarkers for Future Caries Prediction 
 To identify the potential microbial biomarkers for predicting future caries. 
First, the univariate analyses were used to compare the relative abundance of each 
individual species between the F2F and F2D groups using the Wilcoxon rank-sum 
test. Prevotella nanceiensis, Leptotrichia sp. HMT 215, Prevotella melaninogenica, 
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and Campylobacter concisus were found significantly higher in the F2F group 
(P=0.024, 0.040, 0.049, and 0.049, respectively, Wilcoxon rank-sum test; Figure 10). 
 

  
Figure 9: Principal coordinate analysis (PCoA) plot of β-diversity based on (A) the unweighted 
UniFrac and (B) the weighted UniFrac distance matrices, with samples colored by groups, green 
for F2F, yellow for F2W, and red for F2D. Based on the unweighted UniFrac distance, there was a 
significant difference between F2F and F2D groups (P=0.042, ANOSIM with Benjamini and 
Hochberg correction). 
 

 
Figure 10: Boxplots of differential relative abundant microbes between F2F (green) and F2D (red) 
groups. There were 4 species found to be significantly different which were (A) Prevotella 
nanceiensis, (B) Leptocrichia sp. HMT 215, (C) Prevotella melaninogenica, (D) Campylobacter 
concisus.  
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 Next, the specifically designed method for biomarker discovery in 16S rRNA 
gene sequencing data, Linear discriminant analysis (LDA) Effect size (LEfSe) (Segata et 
al., 2011), was performed to identify the biomarker species of the F2F and F2D 
groups. LDA focuses on maximizing the separation between the classes, by increasing 
the variability between the classes while decreasing it within the classes, to evaluate 
their differences. LEfSe identifies the important features that could explain those 
differences. The results were consistent with the previous analysis which revealed 
that Leptotrichia sp. HMT 215, Prevotella nanceiensis, Prevotella melaninogenica, 
and Campylobacter concisus, same as the previous result, are the biomarkers of the 
F2F group (LDA Score=3.74, 3.69, 3.52, and 3.46, respectively; Figure 11). It could 
imply that if these 4 species are found in relatively high abundance, there would be 
a lower risk of caries developing a year later suggesting their potential to be used as 
the caries predictor in the saliva of caries-free 1-year-old children. 
 

 
Figure 11: Histogram of the LDA scored for differentially abundant features between F2F and 
F2D groups. The threshold on the logarithmic LDA score for discriminative features was set to 
2.0. 
 

4.4. Caries Prediction Models Based on Salivary Microbiome 
 Based on our finding that the salivary microbiome structural differences could 
be observed prior to the onset of dental caries when compare between the children 
who remained caries-free (F2F) and those who developed cavitated caries lesions 
within 12 months (F2D). The supervised machine learning models (Random Forest; 
RF) for future caries prediction were developed using the combination of salivary 
microbiome data from these 2 groups, as the training group. Then validated their 
predictive performances using another set of salivary microbiome data from 
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unrelated 1-year-old cavitated-caries-lesion-free children, as the testing group. “All-
taxa model” was first generated based on the relative abundance of overall 
microbiota composition including all species-level taxa as joint predictors. This 
model could give an accuracy of 70%, sensitivity of 60%, and specificity of 80% (AUC, 
0.7; 95% confidence interval (CI), 34.8-93.3; Figure 12A). 
 

 
Figure 12: Confusion matrix evaluation of RF models based on multi-species relative abundance, 
including (A) All-taxa model, (B) Important-features model, and (C) Differential-abundance 
model. Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and 
P value [Acc >No Information Rate] of models are shown, as calculated by caret package for R. 

 
 To improve the generalization of the model, the overfitting was corrected by 
developing RF models based on only the meaningful features to reduce the noise 
that could be picked up during the model training process, using 2 approaches. First, 
“Important-features model”, this RF model was generated based on the relative 
abundance of the species that were important to the performance of the All-taxa 
model. Prevotella melaninogenica, Campylobacter concisus, Prevotella nanceiensis, 
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Leptotrichia sp. HMT 215, and Leptotrichia goodfellowii were selected as the 
important features due to their importance to the accuracy of the All-taxa model 
using Boruta (Kursa & Rudnicki, 2010) and recursive feature elimination (RFE) 
algorithms (Figure 13). This model exhibited an equal predictive performance when 
compared to the All-taxa model, giving an accuracy of 70%, sensitivity of 60%, and 
specificity of 80% (AUC, 0.7; 95% CI, 34.8-93.3; Figure 12B). Next, “Differential-
abundance model”, this RF model was generated based on the relative abundance 
of the identified biomarker species from previous analyses including Prevotella 
nanceiensis, Leptotrichia sp. HMT 215, Prevotella melaninogenica, and 
Campylobacter concisus. This approach could slightly improve the predictive 
performance of the model, giving an accuracy of 80%, sensitivity of 80%, and 
specificity of 80% (AUC, 0.8; 95% CI, 44.4-97.5; Figure 12C). 

 
Figure 13: Caries-predictive taxa were determined by applying Random Forests analysis using the 
overall species dataset against the future caries status (All-taxa model). Bacterial taxa that are 
most discriminatory were ranked in descending order of their importance to the accuracy of the 
model. Their importance was determined based on (A) the mean decrease in accuracy (MDA) of 
microbiota prediction when the relative abundance of each species was randomly permuted 
and (B) mean decrease in Gini coefficient which is a measure of how each variable contributes 
to the homogeneity of the nodes and leaves in the resulting random forest. The species showed 
in red with asterisk were the confirmed important features by Boruta algorithm and Recursive 
Feature Elimination (RFE). 

 
 Next, the simplified version of caries prediction models was further generated 
based on each species of potential biomarkers and important features, “Single-
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species models”. Only the model that used the relative abundance of 
Campylobacter concisus exhibited a predictive performance that was comparable to 
the multi-species models, giving an accuracy of 80%, sensitivity of 80%, and 
specificity of 80% (AUC, 0.8; 95% CI, 44.4-97.5; Figure 14A). For the other Single-
species models, their performances were reduced drastically (Figure 14B-E). 
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Figure 14: Confusion matrix evaluation of RF models based on single-species relative 
abundance, including (A) C. concisus model, (B) L. sp. HMT215 model, (C) P. melaninogenica 
model, (D) P. nanceiensis model, and (E) L. goodfellowii model. Accuracy, sensitivity, specificity, 
positive predictive value, negative predictive value, and P value [Acc >No Information Rate] of 
models are shown, as calculated by caret package for R. 
 

 Lastly, our best-performed model, Differential-abundance model, was further 
challenged by validating its performance using a cross-study approach. The selected 
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salivary microbiome data, retrieved from the publicly available dataset of the 
previous study conducted in the United States (Grier et al., 2021), was used as the 
validating group. The predictive performance of this model was reduced with an 
accuracy of 58.82%, sensitivity of 50%, and specificity of 66.67% (AUC, 0.58; 95% 
confidence interval (CI), 32.92-81.56; Figure 15A). 
 

  
Figure 15: (A) Confusion matrix evaluations of Differential- model in cross-study validation by 
predicting the selected samples retrieved from BioProject ID PRJNA622300 (Grier et al., 2021). 
Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and P value 
[Acc >No Information Rate] of models are shown, as calculated by caret package for R. (B) 
Prediction results of validating samples based on probability. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V 

5. Discussion 
5.1. Summary of Findings 
 Dental caries is a preventable disease but yet the most common oral disease, 
especially in children. Providing the proper preventive interventions as early as within 
the first year of life is a key strategy for reducing the caries prevalence in children 
(Pitts et al., 2019). With the lack of a reliable caries predictor for children at this age, 
targeted prevention could not be achieved. This will lead to the overall failure of 
caries prevention due to the constrained resource both in terms of healthcare 
personnel and allocated budget. The currently used Caries risk assessments have 
some limitations in data collection, most of the information is obtained from 
interviews with parents or caregivers, which is prone to error in the acquisition. For 
example, the information is often categorical data due to the limitations in the 
informant’s self-assessment, such as the oral hygiene practice has often used the 
frequency of tooth brushing, which may not always reflect the quality of oral hygiene 
practice. Another example is the information about caries-associated diet, which is 
difficult to obtain accurate and complete information by short questioning. All of this 
may lead to incomplete information that will affect the caries risk prediction. 
Moreover, some risk factors require clinical examination, such as past caries 
experience, plaque score, and salivary flow rate, which some populations may not 
be able to access especially in populations of low socioeconomic status. In Thailand, 
the accessibility rate to dental care is very low with over 90% of the population that 
did not receive any dental service (Jaichuen, 2018). Using data collection that is 
proactive and does not rely on dental services should help to expand the survey to 
reach more populations, especially vulnerable groups. 
 The oral microbiome is a promising candidate for caries prediction because it 
could reflect conditions in the oral cavity deriving from various currently known 
caries risk factors by analyzing the biological sample. Previous studies demonstrated 
that the oral microbiome could be developed into the caries predictive models with 
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desirable performances (Teng et al., 2015; Xu et al., 2018; Grier et al., 2021). 
However, all of them were conducted in children older than 1 year, thus that 
information might not be applicable for 1-year-old children due to significant 
differences in the oral microbial compositions between children of different ages (F. 
Li et al., 2018; Dashper et al., 2019). In this study, we aimed to construct the dental 
caries prediction model for 1-year-old children using bacterial biomarkers that could 
reflect the ongoing change in the oral microbiome during the caries process prior to 
the occurrence of caries lesions. 
 The oral microbiome of the 1-year-old caries-free children who remained 
caries-free (F2F) was the most diverse microbial community within the sample when 
compared with those who developing caries, not significantly different except for the 
relative evenness of species richness between the children who remained caries-free 
(F2F) and who developed non-cavitated caries lesions (F2W) (Figure 8). Our finding is 
consistent with the previous evidence showing that the α-diversity is decreasing 
during the caries progression (Gross et al., 2010) and the children who suffer from 
dental caries had much less diverse oral microbiome than caries-free children (Kanasi 
et al., 2010). Our results showed that the difference in α-diversity could be detected 
as early as the children are still caries-free. When compare between groups, the 
microbial community structure exhibited significant differences between the children 
who remained caries-free (F2F) and who developed cavitated caries lesions (F2D) 
based on the unweighted UniFrac distance metric (Figure 9A). This difference is 
consistent with the previous study that found differences in the oral microbiome 
between the children who developed the recurrent ECC within 12 months and those 
who did not (Zhu et al., 2018). A recent study indicated that no significant differences 
were found between the children with different caries statuses (Caries Free, Pre-
caries, and Caries Active) (Grier et al., 2021). However, that result was based on the 
weighted UniFrac distance metric which corresponded with our analysis when using 
the same index (Figure 9B). Unfortunately, they did not perform the unweighted 
UniFrac β-diversity analysis, thus we cannot compare the results from every aspect. 
 UniFrac distance is a phylogenetic-based β-diversity using the percentage of 
observed branch length that unique to either compared samples, in other words, the 
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unique fraction of the phylogenic tree. The weighted UniFrac distance uses 
abundance information and weights the branch length with abundance differences, 
which makes it most sensitive to detect the changes in abundant lineages. On the 
contrary, the unweighted UniFrac distance is suitable for detecting the changes in 
rare lineages. From the biomarker discovery analyses, 4 bacterial species were 
discovered as the microbial biomarkers for future caries prediction and all of these 
species were rare taxa with a relative abundance lower than 1% (Figure 7C). Based 
on univariate tests and LEfSe, we identified 4 species including L. sp. HMT 215, C. 
concisus, P. nanceiensis, and P. melaninogenica as biomarkers for caries-free 1-year-
old children who remained caries-free for the next 12 months. In addition, these 4 
species were selected as important features of the All-taxa prediction model using 
the Boruta algorithm, which is considered the most powerful method among the 
variable selection methods of random forest (Degenhardt et al., 2017), as well as 
RFE, a popular feature selection method that can discover a minimal set of variables 
with a good prediction (Diaz-Uriarte & Alvarez de Andres, 2006) (Figure 13). These 
findings indicated that these 4 species could be effective biomarkers for the early 
detection of dental caries up to 12 months before it appears. 
 The etiological factors are usually used interchangeably with the predictors 
because they share some common methodologies, such as multivariable modeling. 
However, the aim of usage and interpretation of results are very different (van 
Diepen et al., 2017), which should be clearly understood before being applied. 
Etiology aims to reveal the cariogenic effect of risk factors for caries that would help 
caries management by reducing each of the specific etiological factors. In contrast, 
prediction aims to precisely predict the future caries risk using caries predictors that 
may not necessarily be the causative factor of dental caries. For example, the 
previous caries experience is a strong predictor of caries (Mejàre et al., 2014) but it is 
not the causal pathway of the disease. The microbial biomarkers found in this study 
were diminished in the children who developed cavitated caries lesions. Although 
they are not the causal factors of dental caries, they could be used as potential 
biomarkers for caries prediction. 
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 To assess the predictive performance of the oral microbiome of caries-free 1-
year-old children as the caries predictor, the supervised machine learning models 
were developed using various combinations of multi-species and single-species 
biomarkers. When compared to the All-taxa model, the Important-feature model 
based on 5 important species (L. sp. HMT 215, P. nanceiensis, P. melaninogenica, C. 
concisus, and L. goodfellowii) could maintain the performance by using much fewer 
biomarkers. Moreover, using 4 species that were identified as the potential 
biomarkers (L. sp. HMT 215, P. nanceiensis, P. melaninogenica, and C. concisus), as in 
the Differential-abundance model, could improve the prediction accuracy to 80% 
(Figure 12C). Our findings, however, revealed that for single-species models, apart 
from C. concisus, their performances were reduced drastically (Figure 14B-E). These 
findings imply that the accuracy of the prediction model could have deteriorated 
when a model learns too much detail, including noise in the training process. 
Moreover, the smaller set of variables is preferable for implementation in practical 
situations. Also, using just one biomarker could reduce the accuracy of a prediction 
model due to the sparsity nature of microbiome data that some species could be 
missed in some samples. Therefore, an effective model should include an 
appropriate biomarker combination. The only single-species model based on C. 
concisus abundance could perform a comparable accuracy to the multi-species 
models (Figure 14A), suggesting that this species might be a member of the core 
microbiome that play an important role in inhibiting cariogenesis. 
 

5.2. Microbial Biomarkers 
 Campylobacter concisus, which was found relatively higher in the remained-
caries-free group (F2F), was one of the important features in the All-taxa model 
(Figure 14). The presence of these bacteria has been associated with gingival 
inflammation and the onset of periodontal disease (Macuch & Tanner, 2000), as well 
as inflammatory bowel disease (Li Zhang et al., 2009). However, the high prevalence 
of C. concisus could be detected in the saliva of healthy persons (L. Zhang et al., 
2010) and it is a member of the core salivary microbiome in children from newborn 
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to 4-year-old (Dashper et al., 2019), suggesting that these bacteria could be part of 
the normal human oral microbiota. Moreover, C. concisus ATCC 51562 strain was 
identified as the biomarker for caries-free children in middle childhood (Al-Hebshi et 
al., 2019), and some Campylobacter species were significantly reduced in severe 
caries in teenagers (Gross et al., 2010). Because of their ability of biofilm formation 
(Lavrencic et al., 2012), combined with their survivability in a low pH environment 
(Kaakoush et al., 2016), they might compete with other acidic biofilm producers, such 
as Streptococcus mutans, that could reduce their virulence during the caries process. 
Based on this assumption, C. concisus could have inhibiting effects on cariogenesis 
that could lower the risk of having caries. 
 The overabundance of Prevotella spp. has been associated with caries-active 
individuals (Yang et al., 2012), including P. melaninogenica in middle childhood (Al-
Hebshi et al., 2019). Using the relative abundance of seven Prevotella spp. (P. 
pallens, P. denticola, P. verovalis, P. salivae, P. histicola, P. DO039, and P. 
maculosa), which were found higher relative abundance in caries-active samples, was 
able to construct the caries prediction model for the new onset of ECC in preschool 
children with an accuracy of 74% (Teng et al., 2015). These studies showed the 
opposite results from what we found in our study. However, on the contrary, a 
recent study in Thai 3-year-old children reported that P. melaninogenica was more 
prevalent and enriched in caries-free children when compared with ECC children (Wu 
et al., 2022). Moreover, the relative abundance of the Prevotella genus was found 
significantly higher in the salivary microbiome of the preschool children who did not 
develop the recurrent ECC within 12 months than of those who did, which could be 
used as the predictor for the recurrence of ECC (Zhu et al., 2018). Therefore, further 
studies of these bacterial species, especially at the species level, both in terms of 
their existence and functions are needed to validate our findings and to understand 
their roles during the caries process. 
 The mutans streptococci (MS) have been associated with dental caries 
(Tanzer et al., 2001). However, it is understandable that the changes in their relative 
abundance were not recognized as the biomarkers in our study since we were 
investigating the saliva of caries-free children while the high MS level is positively 
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associated with increasing caries lesions in children (Thibodeau & O'Sullivan, 1999; 
Edelstein et al., 2016). Moreover, MS is rarely detected in 1-year-old children and is 
usually found in plaque earlier than in saliva (Seki et al., 2003). Using the culture-
based analysis, there were no significant differences in the MS level were found 
when compared between groups (P=0.092, Kruskal-Wallis; Figure 16). Nevertheless, 
the most abundant species that we found in all groups were unclassified 
Streptococcus species (Figure 7). Using a more refined sequencing technique that 
provides a better taxonomic resolution might be able to reveal the hidden 
biomarkers in this data. 
 

 
Figure 16: The mean (SD) of the mutans streptococci count (CFU/ml) in the saliva at the 
baseline time point from caries-free 1-y-old children in each group including the children who 
remained caries-free (F2F, green), those who developed non-cavitated caries lesions (F2W, 
yellow), and those who developed cavitated caries lesions (F2D, red). (P=0.092, Kruskal-Wallis) 

 
 Another essential factor that could affect biomarker discovery is the reference 
database used for taxonomy assignment. Taxonomic identification based on 16S 
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rRNA gene sequencing data requires taxonomic information from the public 
databases for the annotation. Greengenes database 
(https://greengenes.secondgenome.com) (DeSantis et al., 2006) is the most popular 
and widely used database that is the default database in the QIIME pipeline 
(Caporaso et al., 2010). However, it is considered obsolete as it has not been 
updated since 2013. The SILVA database (https://www.arb-silva.de) (Quast et al., 
2013) provides comprehensive and updated datasets of aligned 16S rRNA sequences 
for bacteria, archaea, and eukarya, which were updated in 2020. Although these 2 
databases were widely used in microbiome studies, the oral microbiome-specific 
database might be more appropriate to be used for oral microbiome analysis 
especially when species-level resolution is required. The Ohio State University (OSU) 
CORE database (http://microbiome.osu.edu) is a phylogenetically-curated database of 
16S rRNA gene sequences that represent the core oral microbiome (Griffen et al., 
2011). This database provides a comprehensive and minimally redundant 
representation of the oral bacteria with the classification at the level of genus and 
species, the latest version was released in 2017. The expanded Human Oral 
Microbiome Database (eHOMD) (https://www.homd.org) is the most up-to-date public 
database that provides comprehensive curated information on bacteria in the human 
oral cavity (Escapa et al., 2018). This database consists of 774 oral bacteria species, 
58% are officially named with a provisional naming scheme for the unnamed taxa, 
based on the 16S rRNA sequence phylogeny with the latest update in 2021. We used 
these 4 databases to assign the taxonomy of our data at the genus and species level. 
At the genus level, all databases gave a comparable result both in terms of the type 
and abundance of each assigned genus (Figure 6). However, at the species level, 
SILVA and Greengenes databases could classify most of the species-level taxa as 
unclassified species with only 7 and 9 out of 25 species that could be classified from 
the top 25 most abundant species using Greengenes and SILVA databases (Figure 7B 
and A, respectively). In contrast, eHOMD and CORE databases were able to classify 
the species-level taxa of 19 and 21 out of 25 of the top 25 most abundant species 
(Figure 7C and D, respectively), suggesting that the oral microbiome-specific database 
has a good performance in identifying the species-level taxa from the oral 

https://greengenes.secondgenome.com/
https://www.arb-silva.de/
http://microbiome.osu.edu/
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microbiome data. Therefore, we chose the eHOMD database for our analysis since it 
is the most up-to-date oral microbiome-specific database that was publicly available 
at that moment. 
 

5.3. Caries Prediction Models 
 To validate the performance of each generated prediction model, the 
unrelated 1-year-old children who developed cavitated caries lesions differently at 
the age of 2 years old, with or without cavitated caries lesions, were used as the 
testing group (Table 3). The Differential-abundance model was highly predictive in 
the sample with an early change in the caries development when looking at the 
predictive probability. For example, in T07 and T10, these children had been early 
diagnosed with cavitated caries lesion at the 6-month-follow-up (Table 3) which 
could be correctly predicted with a probability of over 90% (Table 6). 
 
Table 6: Prediction results of testing samples based on probability when using the top-
performed prediction models. 

  
All-taxa  
model 

Important-features 
model 

Differential-
abundance model 

C. concisus  
model 

Sample
# 

Status at 
12m-follow-up 

Probability  
of decay at  

12m-follow-up 
Result 

Probability  
of decay at  

12m-follow-up 
Result 

Probability  
of decay at  

12m-follow-up 
Result 

Probability  
of decay at  

12m-follow-up 
Result 

T01 Decay 0.644 correct 0.636 correct 0.898 correct 0.992 correct 

T02 Decay 0.566 correct 0.542 correct 0.740 correct 0.992 correct 

T03 Decay 0.450 incorrect 0.200 incorrect 0.084 incorrect 0.006 incorrect 

T04 No Decay 0.550 incorrect 0.518 incorrect 0.392 correct 0.022 correct 

T05 No Decay 0.408 correct 0.426 correct 0.412 correct 0.876 incorrect 

T06 No Decay 0.676 incorrect 0.660 incorrect 0.658 incorrect 0.272 correct 

T07 Decay 0.530 correct 0.674 correct 0.994 correct 0.992 correct 

T08 No Decay 0.464 correct 0.404 correct 0.164 correct 0.052 correct 

T09 No Decay 0.420 correct 0.260 correct 0.404 correct 0.012 correct 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57 

57 

T10 Decay 0.506 correct 0.674 correct 0.994 correct 0.992 correct 

 
 On the other hand, the testing samples that most of the models gave a 
wrong prediction could be related to the detail in the severity of caries during the 
observation. For example, the testing sample that all of the top-performed models 
gave the wrong prediction was T03, predicted as “no decay at 2-year-old” (Table 6). 
This child was diagnosed with only 1 cavitated caries lesion at the 12-month-follow-
up, while the examination at 6-month-follow-up showed no cavity (Table 3). Another 
example is T06 which the d1mfs index was 12, increased by 3 times compared to at 
the baseline time point (Table 3). All of the multi-species models gave the prediction 
as “have decay at 2-year-old” (Table 6), which was incorrect since there was no 
cavitated caries lesion was detected at the 12-month-follow-up. All of these show 
that the performance of prediction models was impaired when predicting samples in 
the borderline scenarios with obscure caries development. A way to improve a 
model to better predict the complex problem is to increase the training data. We 
recognize that the small sample size used in the current analysis might be a 
limitation. However, it could be improved in further studies when we can analyze 
the entire cohort of over a hundred caries-free 1-year-old children from the stored 
samples. 
 A practical prediction model should perform reasonably well across different 
datasets with comparable but not identical populations. A cross-study performance 
testing can be performed using sequencing data from previous studies deposited in 
public databases such as GenBank (www.ncbi.nlm.nih.gov/Genbank), EMBL 
(www.ebi.ac.uk/ena/browser/), and DDBJ (www.ddbj.nig.ac.jp/). Unfortunately, 
available 16S rRNA gene sequencing data of oral microbiome is limited, especially in 
infants. Moreover, the provided metadata of each dataset is mostly insufficient to be 
applied for cross-study comparison and the different experimental protocols, such as 
hyper-variable region selection, might affect the results of the analysis as well (W. 
Zheng et al., 2015). However, with these limitations, the salivary microbiome dataset 
from 17 samples (age 20.47 months ± 2.61), retrieved from BioProject ID 

http://www.ncbi.nlm.nih.gov/Genbank
http://www.ebi.ac.uk/ena/browser/
http://www.ddbj.nig.ac.jp/
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PRJNA622300 (Grier et al., 2021), was selected and used for model validation (Table 
4). Our best-performed prediction model, the Differential-abundance model, was 
challenged by validating its performance using a cross-study approach. The predictive 
performance of this model was reduced with an accuracy of 58.82%, sensitivity of 
50%, and specificity of 66.67% (AUC, 0.58; 95% confidence interval (CI), 32.92-81.56; 
Figure 15A). There are several factors that could affect the performance of our 
model. First, the inclusion criteria for the pre-caries sample in the validating group 
included non-cavitated caries lesions as diagnostic criteria for ECC, according to the 
American Academy of Pediatric Dentistry Guidelines (AAPD, 2011). Thus, we cannot 
differentiate the pre-caries samples with cavitated caries lesions to match our 
supervised training process which labeled only cavitated caries lesions as developed 
decay. As a result, our prediction model could predict future caries with only 50% of 
accuracy when analyzing the pre-caries samples (Figure 15B). Second, the ages of 
children were different when compared between the training and validating groups, 
12.57 months ± 0.97 and 20.47 months ± 2.61, respectively (Table 5 and 4). The 
children of these two ages had different salivary microbiomes both in terms of 
within- and between-sample diversity (Dashper et al., 2019). Moreover, the races of 
children were different, with our study conducted on Thai children while the 
previous study was on American children. The diversity of the oral microbiome varies 
by geography and race/ethnicity (V. K. Gupta et al., 2017), which may be due to 
cultural differences such as diet and lifestyle. Moreover, genetic factors could 
influence the oral microbial community as well since their differences could be 
found in populations of different races who have shared similar environmental 
factors over several generations (Mason et al., 2014). Although this difference was 
found mostly in adults, it is likely to be found in young children as well because 
their oral microbiome was similar to those found in their mothers due to the vertical 
transmission that could share both commensal and disease-related bacteria (Jo et 
al., 2021). All of these reasons could explain the reduced performance in this 
validation. However, we found consistent results with our findings that the relative 
abundance of C. concisus and P. nanceiensis were higher in the children who 
remained caries-free compared with those who developed ECC within 2 years in 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 59 

59 

validating group, but not statistically different (P=0.743 and 0.160, respectively, 
Wilcoxon rank-sum test; Figure. 17A, B). 
 

 
Figure 17: Relative abundance of the Differential-abundance species including (A) 
Campylobacter concisus, (B) Prevotella nanceiensis, and (C) Prevotella melaninogenica in the 
selected samples retrieved from BioProject ID PRJNA622300 (Grier et al., 2021), between Healthy 
caries-free subgroup (green) and Pre-caries subgroup (red). The comparison between these 
subgroups was performed using the Wilcoxon rank-sum test. Leptotrichia sp. HMT 215 was 
absent in this dataset. 

 

5.4. Comparison to the Previous Evidence 
There were only 3 longitudinal studies had proposed future caries prediction 

models based on oral microbiota using a supervised machine learning approach 
(Teng et al., 2015; Xu et al., 2018; Grier et al., 2021). Apart from the different ages of 
the children, several differences could distinguish our study from the previous 
reports. First, the prediction models reported by Teng and colleagues (2015), and Xu 
and colleagues (2018) used the differences between the caries-free and caries-active 
oral microbiota to define the high risk of having caries, by classifying the caries-free 
children who had the oral microbial composition that similar to caries-active state as 
a high risk of ECC. This interpretation should be validated since each stage of the 
caries process consists of different microbial members (Takahashi & Nyvad, 2008), the 
oral microbiota of pre-caries and caries-active children could be different as well. Our 
models exclusively used the oral microbiota of caries-free children who developed 
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caries differently for the training process, the same approach as Grier and colleagues 
(2021), which is a more straightforward approach for future caries prediction of caries-
free children before the caries onset. Second, the prediction models based on the 
overall microbial taxa reported by Grier and colleagues (2021) show a good 
predictive power with an accuracy of 83.6-85.5%, a sensitivity of 77.1-85.7%, and a 
specificity of 85.0-95.0%. However, this performance could be accomplished only 
when the models learned from the caries-free samples 6 months prior to caries 
diagnosis. When the training group was changed to be the samples with a longer 
prediction period, 12 months, the accuracy was slightly decreased with a drastic 
reduction of specificity (an accuracy of 71.4-73.2%, a sensitivity of 80.6-86.1%, and a 
specificity of 45.0-60.0%). Our approach, using the selected biomarkers for model 
training, could achieve an accuracy of 80% with a good balance between sensitivity 
and specificity when predicting the caries-free children 12 months prior to the caries 
onset. This approach could be a robust alternative that could the predictive 
performance by solving some limitations of the training process of machine learning. 
Moreover, it is possible for the cross-study analysis and more practical when it comes 
to clinical practice. Furthermore, our study developed caries prediction models 
based on the Southeast Asian population for the first time. Since the oral 
microbiome varies by geography and race/ethnicity (V. K. Gupta et al., 2017), our 
study should expand this information to a region that has never been explored. Two 
previous studies on the Chinese population (Teng et al., 2015; Xu et al., 2018) 
reported that the genera Streptococcus and Prevotella were found to be the most 
discriminatory taxa in their models. While the most recent study conducted on the 
Americans (mixed both African and Caucasian) reported that Streptococcus sp., 
Rothia mucilaginosa, and Veilonella parvula were the important features in all of 
their prediction models (Grier et al., 2021). Our study could identify the biomarkers 
that are different from these previous reports, showing that the caries risk prediction 
could be geographically dependent. Therefore, the development of models should 
be based on specifically each population to ensure that they are suitable for use in 
that particular population. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 61 

61 

5.5. Future Work 
 Some limitations should be considered for our study. Apart from the 
relatively small sample size, the sequencing technology used in this study was based 
on amplicon sequencing, in which reliable bacterial classification is mostly possible 
down to only at the genus level (Yarza et al., 2014; Winand et al., 2019), especially 
when using amplicons of selected parts of this gene (Caudill & Brayton, 2022) due to  
the false-positive results on classification caused by a high similarity of 16S rRNA gene 
sequences. Using the method that provides a more extensive read could be the 
alternative technique to accomplish a more refined biomarker discovery, such as 16S 
full-length-based synthetic long-read sequencing (sFL16S) that showed a better 
resolution in the analyses of α-diversity, relative abundance frequency, and 
identification accuracy (Jeong et al., 2021) and shallow shotgun metagenomic 
sequencing (SSMS), using few as 500K sequences per sample, that could recover 
more-accurate species-level taxonomic at possibly the same per-sample cost as 16S 
sequencing (Hillmann et al., 2018). The DNA extraction is also a factor involved in the 
result as well, specifically Streptococcus species that are tenacious to be lysed (Cho 
et al., 2021) which could be another reason that the genus Streptococcus was not 
classified well at the species level in our results. 
 Finally, using the saliva from the caries-free 1-year-old children, we found 
promising evidence of the microbiota-based caries prediction for future caries 
specifically for this targeted-age group that currently lacks a reliable caries predictor. 
However, this study is classified as level 3 of evidence with a narrow validation 
(McGinn et al., 2015) that we applied our models to validate a slightly different 
population. The next step will be a broad validation that the model should be 
applied in multiple clinical settings with varying prevalence and outcomes of dental 
caries, level 2 of evidence. Lastly, level 1 of evidence is needed to be accomplished 
before the clinical application by impact evaluation. The caries prediction model 
needs to be tested in randomized controlled trials to ensure that it improves the 
outcomes of prevention, is cost-effective, practical, and improves clinical decision-
making (Moons et al., 2009). In caries management, caries prediction is not expected 
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to replace the currently used caries risk assessments, but rather be integrated to 
enhance caries management for better efficiency. Reliable and practical caries 
prediction can help in a proactive broad survey to find the children who have a high 
risk of having caries, then initiate an intervention to provide a thorough assessment 
to determine the caries risk factors and to provide appropriate caries prevention for 
each individual. With this approach, effective targeted prevention with limited 
resources could be possible and that would lead to a decrease in the overall caries 
prevalence in the future. 

6. Conclusion 
 In conclusion, our study found a difference between the salivary microbiome 
of 1-year-old children who remained caries-free and who developed cavitated caries 
lesions during the 1-year observation. We found a low relative abundance of four 
bacterial biomarkers associated with the future caries onset in 1-year-old children. 
The caries prediction model constructed based on these four biomarkers yielded a 
desirable predictive performance for future caries prediction in 1-year-old cavity-free 
children up to 1 year prior to caries onset. 
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1. Sequencing details 
Demultiplexed sequence counts summary 

 forward reads reverse reads 

Minimum 51093 51093 

Median 56693.0 56693.0 

Mean 57261.9 57261.9 

Maximum 65114 65114 

Total 1717857 1717857 

 
 
Forward Reads Frequency Histogram 
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Reverse Reads Frequency Histogram 

 
 
Per-sample sequence counts 
Total Samples: 30 (forward) 30 (reverse) 

sample ID forward sequence count reverse sequence count 

F2D04 65114 65114 

F2F04 64590 64590 

F2W08 63802 63802 

F2F06 62774 62774 

F2D08 61587 61587 

F2W09 60095 60095 

F2F01 59893 59893 
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sample ID forward sequence count reverse sequence count 

F2F10 59869 59869 

F2D03 59691 59691 

F2D07 59070 59070 

F2W02 58556 58556 

F2D10 57895 57895 

F2F09 57696 57696 

F2F07 57610 57610 

F2D01 56701 56701 

F2W06 56685 56685 

F2D09 56352 56352 

F2D05 56042 56042 

F2D06 56015 56015 

F2F02 55346 55346 

F2W07 55233 55233 

F2F05 54773 54773 

F2D02 54252 54252 

F2W04 53809 53809 

F2F03 53547 53547 

F2W05 52885 52885 

F2W03 52883 52883 

F2W10 52343 52343 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 93 

sample ID forward sequence count reverse sequence count 

F2F08 51656 51656 

F2W01 51093 51093 

 
 
Demultiplexed sequence length summary 
Forward Reads 

Total Sequences Sampled 10000.0 

2% 250 nts 

9% 250 nts 

25% 250 nts 

50% (Median) 250 nts 

75% 250 nts 

91% 250 nts 

98% 250 nts 

 
 
Reverse Reads 

Total Sequences Sampled 10000.0 

2% 250 nts 

9% 250 nts 

25% 250 nts 

50% (Median) 250 nts 

75% 250 nts 
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91% 250 nts 

98% 250 nts 
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Summary of DADA2 run statistics 

sample-id input filtered percentage 
of input 
passed filter 

denoised non-chimeric percentage 
of input non-
chimeric 

#q2:types numeric numeric numeric numeric numeric numeric 

F2D01 56701 50696 89.41 49335 30543 53.87 

F2D02 54252 48485 89.37 47650 28519 52.57 

F2D03 59691 52936 88.68 52179 28503 47.75 

F2D04 65114 59302 91.07 58441 28013 43.02 

F2D05 56042 49684 88.65 48892 28308 50.51 

F2D06 56015 50338 89.87 49505 29037 51.84 

F2D07 59070 53188 90.04 52174 32297 54.68 

F2D08 61587 54513 88.51 53656 28912 46.94 

F2D09 56352 49778 88.33 48873 23402 41.53 

F2D10 57895 52215 90.19 51522 31619 54.61 

F2F01 59893 52927 88.37 52199 29680 49.56 

F2F02 55346 49258 89 48415 24428 44.14 

F2F03 53547 47963 89.57 47253 25408 47.45 

F2F04 64590 58554 90.65 57271 37828 58.57 

F2F05 54773 49233 89.89 48300 28602 52.22 

F2F06 62774 56587 90.14 55783 32402 51.62 

F2F07 57610 51912 90.11 51011 29765 51.67 

F2F08 51656 46449 89.92 45767 28871 55.89 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 96 

sample-id input filtered percentage 
of input 
passed filter 

denoised non-chimeric percentage 
of input non-
chimeric 

#q2:types numeric numeric numeric numeric numeric numeric 

F2F09 57696 51781 89.75 51018 29924 51.86 

F2F10 59869 53821 89.9 53161 27262 45.54 

F2W01 51093 45685 89.42 45256 18207 35.64 

F2W02 58556 51781 88.43 51136 29483 50.35 

F2W03 52883 47115 89.09 46473 24621 46.56 

F2W04 53809 48378 89.91 47760 24755 46.01 

F2W05 52885 47583 89.97 46719 30959 58.54 

F2W06 56685 51215 90.35 50397 28590 50.44 

F2W07 55233 49845 90.24 49186 24056 43.55 

F2W08 63802 58183 91.19 57657 27055 42.4 

F2W09 60095 54398 90.52 53501 31893 53.07 

F2W10 52343 47032 89.85 46336 31749 60.66 

 
 
Table summary 

Metric Sample 

Number of samples 30 

Number of features 945 

Total frequency 854,691 
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Frequency per sample 

 Frequency 

Minimum frequency 18,207.0 

1st quartile 27,106.75 

Median frequency 28,736.5 

3rd quartile 30,388.25 

Maximum frequency 37,828.0 

Mean frequency 28,489.7 

 
 
Frequency per sample detail 
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Frequency per feature 

 Frequency 

Minimum frequency 2.0 

1st quartile 48.0 

Median frequency 187.0 

3rd quartile 652.0 

Maximum frequency 46,195.0 

Mean frequency 904.43 

 
 
Frequency per feature detail 
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Feature count in each sample 

Sample ID Feature Count 

F2F04 37828 

F2F06 32402 

F2D07 32297 

F2W09 31893 

F2W10 31749 

F2D10 31619 

F2W05 30959 

F2D01 30543 

F2F09 29924 

F2F07 29765 

F2F01 29680 

F2W02 29483 

F2D06 29037 

F2D08 28912 

F2F08 28871 

F2F05 28602 

F2W06 28590 

F2D02 28519 

F2D03 28503 

F2D05 28308 
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Sample ID Feature Count 

F2D04 28013 

F2F10 27262 

F2W08 27055 

F2F03 25408 

F2W04 24755 

F2W03 24621 

F2F02 24428 

F2W07 24056 

F2D09 23402 

F2W01 18207 

 
 
Feature detail 

 Frequency # of Samples Observed In 

4cf73cff34ec1e1fad4b3485b060f2a8 46,195 29 

fc38a354a7217151ea797502380e976c 39,493 29 

5411b490ac1ea4b24f99d790bfe98250 38,460 29 

32d2b339d4f15316e8d9196976d393f8 24,295 17 

9ce625cc75c536cab814de241d7a04de 19,932 10 

b08a9b66256c867dceb6eaf682f2a64b 17,204 15 

20443bad42654f6016224a61ad6f08bf 14,076 23 

0f7c4fda4f4db224b4bf526229ae2d56 13,017 30 

bd03ed65a8296835ebf9bc0bd49c1d45 12,503 12 
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 Frequency # of Samples Observed In 

100250149a161bdd6b0f91e2af354157 12,030 12 

1a26690ed6103f33fafea102e270ef54 11,984 29 

8d0b3f3c723b9f9e8776efddd5425559 10,537 10 

7d81ce8699a74343a55d39f989e894a2 10,002 7 

85b311bb5dde236817b6021bb9b4f1fe 9,315 6 

703c33259c384682a0e092b26985e25b 9,171 14 

23a00e8312408d4229316b83174e8da4 8,900 30 

649613f7161ac9af412238df5ea5f5ad 8,775 15 

422a9557d95fdb77f808bf36b0562442 8,492 20 

c532ec32b0c0e01f556aab710eeac530 8,242 30 

d43c3957d6ceac23cb16db39163b6dc1 8,239 9 

d849304d9ebff36f1cc4be30596e3479 7,887 12 

881a45e8228f920312d8788e0d1eb158 6,872 13 

e5286d2bcbd90faaee13161f10421f28 6,728 19 

b18de10b2d1c64dc6dea08b706f8bba0 6,605 19 

8407da518e5703caff1fe314b1deecc2 6,549 30 

0d2da84018b5ec61b1106ed2eec21324 6,228 19 

d92c76b469e9cfbfa214b5e721107c62 6,053 12 

6bf054aa5cb55226856496f403d57dd6 5,702 14 

df6ee4a08f85b4cf4674284898f2a4c8 5,468 8 

15954ffc3f5d9c5437272c19a74cb692 5,442 5 

e9d5e493edbb20a1a18c25fae392d82e 5,372 5 

557588347979532cd37abddaf70a2462 5,345 3 
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 Frequency # of Samples Observed In 

e304fd4c064b7021229b587a19691fc2 5,191 6 

5723a380772a1c3fa0719f3b9d5367cb 5,124 16 

3781316a3cd7289328ed973eab77ff51 4,697 18 

115da0da7eeced4c6b168832ec616978 4,673 5 

9f3122b9db83ac0a7d2f9974dec24d54 4,611 23 

7190f13305c8837d8b9c9c193467d969 4,576 5 

4fc5591b266c4274bac5911d57c47e36 4,549 22 

84de3c2855e938b6a02d90fe08a29add 4,273 8 

62f9c0f8be078d3dd34460e48d412c81 4,095 11 

eb53e450d944dbaa69e6c4577d25831a 3,754 9 

c5ff80489f369205419a19042a1902b1 3,672 4 

c4773ebdb4173dca07bf3aaba0c84538 3,654 4 

eceb098726d3066efc315ae749af7ce5 3,560 6 

7d710be491d9d1dc8c0d46cd8837841c 3,435 3 

d988a16828ec2a47b8507a796c64a2ce 3,315 13 

abfe99a3b7196fcd6dbfca5857c31480 3,203 18 

c97bfb2d73133acc09035bb2cf84a9c8 3,155 4 

bdc423d8cd5c2236eec1a29d559ee498 3,114 6 

53abab2d024f795dc7aea08a32a70beb 3,104 6 

b538f0d4606cc874d5b6d1ad03a3aee6 3,084 3 

dbd950c92afd0106567ee05d517302c7 3,046 2 

81048cbc5dce5355af45d92f7eb90e90 3,026 16 

4f60449b91f1840ef5323d912f1f1437 2,943 10 
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 Frequency # of Samples Observed In 

6aaa7a94e04d1b8830cdfb011bc4bf98 2,793 5 

a576e2094a11183b6e7098ef2df66ee7 2,782 3 

a140f920875450d955faa975cb697c0d 2,762 3 

5216aeed2be23c6eddc5224a948782a5 2,742 3 

e2d04a3cdf4f8effbdedc98b2f364b8f 2,713 8 

f3fe6a265563583664050ac8a74a71b4 2,674 6 

5a5f8e668f8d37039f4cf471d32de183 2,666 4 

d648417d8ae27ef63cf87df9f5d1defa 2,632 3 

44678eb70622de779c9730e7d9ffaba6 2,616 6 

9d44c7350f634a4bbf2282d58e4f28ed 2,582 5 

8164d42c05d73a67ef418b6c6ced6faa 2,564 4 

07a7fda1379642dc5908ac3c7dd5957d 2,564 3 

346b43eb18e06717b725cb75f21b41ec 2,537 6 

2d72922c386a4518cbcd6bc94d0c5a12 2,464 5 

5443ae28761fcc5725a25c1a09159dbb 2,459 12 

3b3c82890e6dd54895d9088342eefc61 2,454 5 

e36185fe279017c52513e2ef0a5e86d7 2,430 3 

f5f709b2f303e66c552f4f2dd338a8a8 2,429 2 

60aed765105aed7678299d66e045b726 2,415 2 

c55a4fe1fe619140bea1a877686fff06 2,401 4 

22c7e4325e8fd8dc7c1cb4b90ae7110d 2,381 2 

3d8c1563a3e0a023f47688c2434b04a0 2,369 4 

e85a8227df4dd759e42a760fad3c3e67 2,359 10 
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 Frequency # of Samples Observed In 

dda4a1cd8836e76789197267b5e705db 2,352 8 

251c76de24e7714ae1faf89bfaea1e56 2,348 2 

c53ce795226bd77a21d8c4b428a068ff 2,334 6 

21ba99e1a58b905504d927d86875bba8 2,287 2 

a952d4b4042c0d4e162cf57ece10016f 2,245 3 

fe2f82a5344823387dbb4512823ba2e7 2,233 6 

81764ffd3e58bbbb33fb968dfe46757c 2,226 7 

33d139ea24c2a75f3bb4764dbc86526f 2,222 9 

7eb5e02a48bc966103cae776ca64add9 2,180 2 

04d5bffd94aa3c4572444d888802e619 2,151 9 

df1971a0a8c06f3c5949e1ec928d089c 2,113 18 

7c2a97c884f223f2d155787677d665e2 2,091 6 

ca0f40d28db6cfaa8a86158b048abe0e 2,012 3 

48f69e4344582efc2ba801ff3c1b3c7b 1,990 5 

fb6aab3ac80742d780a51336e8a56114 1,901 5 

644d34797a6d8912004f53a2a9b91934 1,868 9 

a77d978333d690a86ced7a28ce57e529 1,847 4 

d9310683843e0aa8bbc50b5f948e2bbe 1,763 3 

3cbb483273842a92e4a3c3209c681ac2 1,700 2 

d7754a67fd0a2a2b51dbf5fc19167af2 1,699 3 

ebcae4fa2868c0d27b01061a91ad0b03 1,699 5 

61fea6763759370d20b155df325cc7bc 1,662 2 

2f4f4b4fcdfdc073d6d963ff2bf1b0af 1,636 3 
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 Frequency # of Samples Observed In 

13ceeba63d37722b6260b61722836d09 1,634 4 

e56ed8c9b3b6bb463cdf16a2f30300ae 1,626 3 

bf7ef3dc6a00561b6b92c1ff2f06ba26 1,553 3 

93c91a2c0a61accc0e4e5693a7126cbc 1,550 1 

ae56c826e826412e8fa8217751eb595d 1,543 3 

f07e8c000c23e462b5bc592bccd85478 1,542 1 

1c5dffb8938c304a570448bd04fd5cfa 1,522 1 

37f9ad242ed72f927f4f1c577de73763 1,510 2 

31acaee353c19e2da8b89724c3b73311 1,501 3 

ed6231ed0f5f5c60f9a72aff03b8a686 1,484 1 

3c1e9f7979bdee1d61204e9ae0e72519 1,429 4 

6f715a7f32509807b94ace0158fee16a 1,400 2 

2f27df775d541c0d877ee6898e0789f7 1,394 4 

1127b1c5113e540ed28109c43714230d 1,384 2 

f8b455b2c00715e8f9ed52b8914e6ad1 1,360 3 

d7f3d864229eefe566d2d2270ed2913c 1,356 1 

fb29b6851a27e3e0d654acf294b484ea 1,352 2 

71ff8243573ae3adb272e891ced4dfdd 1,338 1 

10d2662f22735b091059db7aff7d5b33 1,337 4 

3ffbb98f77cac33f0f6c9df5fc5da11a 1,331 4 

1456993147cd3d7a5ce63413bfc78f80 1,327 3 

2c6fb94ab738cb7add923408c215ee42 1,326 1 

fbe901934ab023bcda410ca2f25c3d5e 1,322 5 
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 Frequency # of Samples Observed In 

ff2cbad91d34a2b5b051df2b36083d1a 1,310 1 

32a0d02ff594884708a07da5fc618818 1,302 1 

d5515fb61179db25cc1a30950ac449ac 1,298 1 

a6752365acb0ed90846e3eea97c537c5 1,294 1 

29e423b29c029a48d160a24ee7f0cebe 1,289 1 

db560ef2e2cf7be33c684de43aa48942 1,280 1 

215fee3cfe20774769d72e5db016793d 1,276 2 

655d24e16cb567adef4d50a8544c85f7 1,250 1 

86357b11bd59ae9912c1d1e416cd8efc 1,245 1 

23db4cb9f04c11a3c20da0c9dcdc507f 1,238 1 

840f7cdd9a87e3f232590665a50059c7 1,231 4 

4c62004242a77b2d76e72dee358eea32 1,222 4 

13a2a23793e6b4583a53e2d8edb57c23 1,220 1 

f43e05e185a5b7e116d171a624f4bfcb 1,203 1 

e8c1a0e110b4db118ab7864c9959fa25 1,200 1 

f66b05d3ecfb2be5b1e02d1379cac29e 1,199 1 

6cd282be94801fc420ce43856c542346 1,191 3 

03f0eec0d2fef1b0a59a40c6d2a5302e 1,189 1 

38cd1a3661f5c15c4e76224928e21422 1,184 8 

0b0938a63a2b9f169f17fbc89d330680 1,177 1 

f99ae09068271675a18b6f04056c688b 1,174 1 

6597213a9b6fef8da224f17a414665ba 1,166 4 

699fa6b5b4a491d6b5c41ecd2fbdb6b0 1,156 1 
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 Frequency # of Samples Observed In 

677ccd5d6ef498a23babb02630b60f32 1,149 1 

15f875e5464fdfe87144c0237b6d6acc 1,136 1 

65ab6d5cfe155aa4949ef0bee78cbb46 1,131 2 

bbb7909a4d2e725a230083e6f53c2e56 1,130 1 

ea7e16b613a2f829cc301a4d8018763d 1,128 4 

6bee4001f9da30080ef22c9e25ad6b6b 1,128 2 

a7ba1ab79345294600e8e9f5e5347ffd 1,121 1 

fa2381a453d641f38dc2fd49c3922fa6 1,117 14 

f8eda33e8c63ae2274b8ccfc97e8875c 1,101 1 

8b6ab29ff64b50c66644b56ed1a79a3e 1,100 1 

e04f0110e83930eedddb1610c768242b 1,084 5 

7de3603c80efd9c4f7ca0115b548339b 1,076 5 

d765a44fea61a3b47be2ea9b5defde05 1,066 2 

0357026e65a0255497f5d860ab762a35 1,058 4 

64e406c068eb2e2f0d0865ba396df1b5 1,054 2 

fec2153fa4d8b2be91f54c0a9f958bcd 1,038 2 

489037f060a5d5a1c423ff850413c421 1,031 1 

d552e6d7f4543d8eb8ad5c63d5409da5 1,026 1 

6aa4e721b5d46d636039999891ff6f46 1,025 1 

f72247585585d13420756f565cdaed1e 1,024 2 

95f6585457205325f9292a0c93edea28 1,013 3 

f76a4c64d1364e656ce8c1c4e703df37 1,008 1 

1b3db460ff7801a9a41203f8f97685ed 994 1 
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 Frequency # of Samples Observed In 

b2bda9b755becbcfb6a847342aa923d7 989 1 

a0713ff079dc11fc51cae1ccd58cb269 961 1 

d9212ccf7295cf558da87b5f0d51ab77 952 3 

0acd35896a14175bf8fd990d4362015e 941 5 

183ead9d96861a09c5e2b6a5bd147d77 931 2 

bbdcb524a2eb55e34f16fe2fe4447da5 923 1 

a52da5b84a1481d92e05b32f7d16815a 921 2 

e44b29e86c70d1c19ba4aad11710d9f9 911 1 

5655f5645e5f6a07d0d62af974ccc3a0 910 1 

9753c8d44cd57f31f8ed635417dc2b6c 907 1 

17811ace7662a019fcef97ddab63c191 907 1 

8e35dccf7d058315b2b4c612700c3a4c 899 1 

89d7fdffffbd327219f3bce35f4fda14 895 2 

b45f83146c3ceb0fe07f6b89c82dbf40 894 2 

a52ed69d81ca5ab208f7a2076e3947df 894 1 

758900d5be0d0ff03fdc533544b43cba 883 1 

9b4ad931ff0ddd855046b0bacc788beb 880 2 

7d8e6d8c302469f864cb2e255245b4dd 865 1 

6190ae8a2c89a8bebba999a8de081997 855 2 

1eaef510cc370187f7675a0e852cc9bf 854 3 

0775de959985d62457a75343798ef7d3 851 1 

2df41a9e219d216368b20343a398d601 851 2 

b353012c3d041762d13e9b0b2b25c7f4 844 2 
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 Frequency # of Samples Observed In 

7f332539645bbd62bc6a0e2d61bc8c5e 843 1 

f155a2a9cd6479146fef894da26db7d9 836 2 

e20a4ab18ce6e3232e8ed4f8ae589ddf 828 4 

033d9e287270833dbd272e919c3f13c1 825 1 

51254e3411b27b03a03f779e67e5987d 816 1 

b0fb78d824f10bdf4966e91c18590751 814 3 

2ab4ce388f076e620667cc34e3707866 801 3 

98e135ad2255ac91333072ea01ce65aa 799 1 

6e99ffb781824b3901afe093e6e13b81 794 2 

f1ee1e5c8fd29eeeb25fcb06d4ccd0cf 788 3 

dd5fcc6566119ebee8a97938707d3e22 786 1 

26faa6c4b2f60e8718b1c106366aac7a 782 1 

bbc602b197ec62daf3093fc94c18921d 779 1 

ee4b34c374c04d35057bac984b703f28 773 3 

d3818dae776eac1ad69822525d0b5c77 771 10 

6efdab2e34ee877d47fed621d7bc40c1 767 2 

9421f8eba60d0c2202564422d70f3324 763 4 

843c29cc8a795efb81ba959c1e5fe55b 754 3 

bd21c36b70e1e9af4b1ba3fba0a84c90 754 1 

d0fdfdd70419780017380cb894919e8a 748 1 

00e510e968dcf023b70b158d10e25fd5 741 3 

60c722450f8e3f4be80327f977f84af7 740 5 

ef705168b866db69a2b1091cfba71e4a 736 3 
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 Frequency # of Samples Observed In 

6b118ca4ad65714569cd236032b9cac9 732 1 

645a86e3db60b1b6eaba5bbf8a943aac 726 2 

355d9e189c0d5459fb4487ad2a7261bc 720 2 

1b924bf32a152e3b188273bd69e9283e 716 1 

45dab101dc7ef071233605bdef2bf10f 711 3 

4fb5b5c690b17e77f3bd257d5a0e25a7 709 2 

965a0c01f78e36af3793b313df426f3e 708 7 

99e7205b7f9f518773b14a96bbb716dd 707 1 

6baa82b870f439cf572c386cff2040c0 697 3 

bc26b843d94135c6d69e0ae01452baf6 697 1 

27f2e2fd013379ec02ef33e590f0d2d0 682 1 

2b739af2453c13f09881051d5f463591 682 1 

44257e017d61aab5b621f0c028f91b21 678 1 

adad18f2e1484f65a6f6ac8300dec3b5 672 2 

274781a9b7a59d7ed4dc3489dae072c9 671 1 

cf52f56d488117ac5e03c8ab5d4b0cdd 669 4 

7c984317e7b98330265dbf37333bcace 664 1 

794993bec9d7f9c171f14a729047ab8c 664 1 

7412d9ec9a1e7b3f07a8b8d5e168acb4 662 1 

09184d6dc484f07ae43b339db28179cb 658 4 

c17868131c91a329a98b03393ca1c7e3 652 1 

111403548eb91f6107d3f4dcf640ba8f 639 2 

25421b96fd9ce2b756b68f7046ba1855 638 3 
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 Frequency # of Samples Observed In 

4636325fdc85efa47f287963a6df3cb3 630 1 

73e7bf14e4ccde6f73f5dc561f1ba65d 624 1 

85fddad762228ec866310951354e2b36 618 1 

6d54daa041d47743168f7c28e308deed 616 3 

ecb7abab734008e804aa7ce2fdfa7af2 615 1 

d11a67a8957fb5b5e1d3976dd5349287 612 2 

a2a7bbfe38abafd2f896dbe87a79334a 608 1 

75a8739894c23a30d3d8acd6ff9450b2 607 1 

ab4e981b308dc28a3c09686c44d35654 605 1 

b7da704bfed3859ef3efa8bd188214a1 595 1 

e443bc23d2e01daec7b8f708f2da4589 595 1 

c4d36369a8146cb33074d7c0b89f192c 593 4 

a0ec2c7825935897b8acbbec43c592e9 592 1 

b6d718ca8b2e7dd959dd63549a33010d 588 3 

cc3e1a1e0f459f2d610b4a336dce5d6b 587 1 

5a2daabe2b2fec36455c0e67f1b97db5 586 2 

dc118a34eb35363f28fd6622f488b14f 571 1 

9ab429aa28d743ea920abd0a66d9fc74 570 3 

058256901ac8365887c3e0c3c19cf469 564 1 

b03d8ef52f7c2e6819eb02fdebb2e6fc 560 1 

6aa49f4de24a79f80029fbc6237e3ba8 559 1 

81be2fc44b238a8a64b8869f591e189e 552 1 

c492c8b6316b0959109e7e2010083bc9 547 1 
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 Frequency # of Samples Observed In 

2272e25f719cea2b2101ef4114dd2286 546 1 

30327184862e0449147204eb0b2acb90 546 2 

13ba3e889ad58fe17ef0e12fb40a9757 544 1 

616294db19f2fc4785a02648609592f5 542 3 

653db4a1723b106eea69f340372be513 541 1 

fc4d7ee9f5f4ed5da3a4a990d3a97a8a 538 2 

c78a911eb4dbd6eea90be0086379e51a 535 1 

b49bd6a1d281c77b8a5544147c302451 534 1 

ba972647db1d99f21d21320fffa5466f 532 1 

bcfc6c1782ffce9634029e2d47caabca 531 1 

158a4612a4282a8746be0ed6b1ce5878 523 1 

70dd4460693acae5dbc1399026b80586 522 2 

249230558a60f2ec85cd876f61d7cf1f 519 1 

cd54fc4000ec3c91b625d985944ecfc0 515 1 

299bc5e935415d95a026d208987598f2 507 1 

8d3cb75e8ca2d1dbbf98daf31be3e8a4 505 1 

7c27be8390cf1def665727f81801febc 504 1 

d54e5d4e9f9d9f4b400653861f9411d9 501 1 

7801263af66a4b0c02e22d0e46bfa66c 492 1 

544fc9778e9209d51f053b2cab6581c5 488 1 

7d85cf02ae1f15bb8b4983986908df8f 488 1 

683253b425187e988cb628480de7fae0 487 1 

31197929d5a35310692efad17b4c3d3c 487 3 
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 Frequency # of Samples Observed In 

bd90542801791bd5827b9d2cad04b8f8 486 1 

56e44373d36e5302e71a7b28e95d9a97 484 5 

8715b89d2fbbd5ed2c378afe03496e22 482 1 

8389224a0c3e8c424fb0c67195454cd8 479 1 

cda3eefdb688d34c1a883c6daf43a3e5 478 1 

d23d95e8edc0da3416efdd0fe0b60420 476 1 

79109664ffccf55685f79194e8058b78 475 3 

1eb0b862ba25f3749bfd9122e69e8d6d 470 2 

6da6f665e32a8b0eace590b0936a964a 465 1 

1e3320a94522ac0e15616c1c1eb47246 464 1 

e18b2ba4965b17f16f79f0be205d9592 461 1 

2de29a9bb8ab5471644b7cc167ee516b 461 1 

912ecc50d78084373ad5d22d9ccc3cde 456 1 

8f14b08e04d058809483582a07cfb13c 454 1 

b28b3d82bfd4bc6329298200f89dbe16 454 1 

45f84f9d834e248c33bc7609176318ea 451 1 

6b43dd0f7ce0f15d60408a51f18aff80 446 1 

f9b3b9031044af09ea40007c8b3296f3 445 1 

23512897fe7ad9a9bb7c7acc97f2885c 445 1 

dd93194efe67eec62bb5917c6987e3aa 444 1 

4032b7083318c948a18c7ee60f7697f2 444 1 

1b22e4bf6fa4b5fe23cf545f4f0aa773 442 1 

d8526e3c6d8c5c8ee19ed4eb32eae9ea 440 3 
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 Frequency # of Samples Observed In 

f169416487ddece9d4e6643703ed7732 440 1 

80985dddcd9731ec913ad6bcc87d6165 439 1 

277226f5c06f3759d48511f375d5b8ed 436 1 

d1ba999da67447c4cc93deee5b9e5b8f 436 1 

c49b198f3cce09edf559c904a080767d 434 2 

de8302683e1ce5f9325a00ea2e5bbbd0 434 2 

5c7cb5e967272b7c20b3a3d3fbcce775 431 1 

b4641aebf94899e104afc485eade8711 430 8 

45bd89862406ea1da249de8377478372 429 1 

0a79b1f053bd5ca2c53597b67676acff 428 1 

66fe05eb8ae6dcf4c60806296bc9f1d9 424 1 

84a2fc5004b72eef339be7b31c6cebf8 424 1 

c5a91bae99c959ce5b5c23bd924578dd 422 1 

8df3a2a90c77b864f21dcd7f07de0586 422 1 

ddada3383b1b3b2d146c39080a6b6c4e 417 1 

e93b1f6cc584c9664a9c1fda71d2ae45 412 2 

4491efff629439b1051fd19259e779f7 409 1 

0150c8b9569e2998e742dc80bbd8b9ea 397 1 

8fa23b717b6d6909d0be7ca547e85ad6 394 1 

de9b6b4b499795e7b8134985c17890e9 393 1 

de5698e14c1ed2c01e392a6f08429b1c 385 1 

e47202322d19467c2bfa78cf71fa2b07 383 3 

aa3859ae9f06fefbba12e4a7420bb7aa 383 1 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 116 

 Frequency # of Samples Observed In 

72d76ff4c0ae4027a35e93e4527f1806 380 2 

7ff407f96400124f04c0e0eff70d7bb3 379 1 

d39dabd4d38b27608f9a62b2eaf80e2d 377 2 

aa8b2144ae0c63f134eac8122fea8720 375 1 

4f9b95a143f71b08d4f25cfba2657f32 375 1 

16c579388266debd23ba595a0d62b3b3 374 1 

fda2b750e2203bbc012a545c280700ee 370 1 

747b24a59088d2ac7c7fda24ebd43366 369 3 

f29bde4ec11692c6b85dadf17d54cb07 364 1 

11463f956b5943e769000c40ddc51c62 364 1 

b6177d0e61c273bd2eb4c29bc738351a 363 1 

1febeb3eb05f1a2e959ebc8cb4738437 361 2 

8b8400e7d99b73cbdabd04f03bbef79e 360 1 

98400c9c6b9ef7bd01c975f69b77ba99 358 1 

f2fe7962bebded971fe1cc3cff0c1ad0 350 2 

719a20fc31bbe704be36d06b89abe616 350 1 

2758cae224d634e279238f14a395c125 346 1 

ae86ad0a07cb6273e28366800c08362a 342 2 

6d75310405c122ee67d5504824f4fa26 340 4 

fd43f335c4e59f7d63d24360125d6df7 340 1 

932997c11f6f0e47e2b7c3879bcaac73 340 1 

b5cec4c0cab735a5bc9edb4bc4e9b0a3 339 1 

2bdbf7e548a29525b7f622e44d49a9ff 338 1 
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 Frequency # of Samples Observed In 

40e8adf94124091eca4d66396a0b0fc1 333 1 

191cd805d9877b0af7694f6aa3a659d4 332 1 

da465f1f4cdb2f706a24883db48fee34 330 1 

2973e95c2874780053362eda44e87f26 329 1 

31833996528d5fedd3f2e8250cd88562 325 1 

c0db3bddf4c7b0afb60dac2c466de505 325 1 

237e171ebf574ddcbaa7b1980a3f4c54 323 1 

bc9ec63394ae8fc7d14f6e7a5eb4dc97 323 2 

7817ad1c2215d3d900a6e4703d494893 321 1 

b659f07f7411a8d142c4590dbd4f3f6f 320 1 

a7608034cf4a2cde02b1c2af8760f813 320 1 

0e9b447237a98ad7573efb4dc43d0e37 319 1 

16b55063b8a71be530be8e52c88d1d66 318 1 

da8c2335f36250c8cffd892c66654896 318 1 

2c6a3d81a116ae4ce6b187675071196b 318 1 

2b9e5bfcc099ed5101b559486dc0ab3d 313 1 

4970943f013dc3274fecd6e186adf0ff 310 1 

516ec942895665d811353af5d052a5bf 309 1 

bc641131cbbc5ec57671a4d55775055f 309 1 

accb3a89a64d13bfa4b9bc62572b9a45 307 1 

a8bcf4cdf5b35ac0a28199d2cefea203 306 1 

6f9bd2e5b50ef3042656a60936188d77 302 1 

5105f826e316bf50d3b1d2181b254cd6 299 1 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 118 

 Frequency # of Samples Observed In 

2ed0b9764e0717ab3d8e799b1182450d 298 1 

10790e5126b4bd2db6e9d1b34e9fd2f3 295 5 

5d603a63feb7cae6a2f4fe7c043108c1 293 1 

5ab0738efeeb581acad9bd6d9c801822 292 1 

8ec8bfcb66095f975ba8c9bf3c485f0a 288 1 

0aeadd2522eea3c6f677fe1fbc7d98df 286 1 

05d383a0209b10f54806b3b8e11bfb7c 285 1 

fd0ed24def3e9782f8945791932d023a 284 1 

d093161fe8da7871806658216f9192c0 284 1 

ca816aedcce3ad50804f4affdaeba637 283 1 

60be133672fe16ebfccec837a97a0564 281 1 

f0d8e41db1291e11c0f25824e2e34842 280 1 

55ca69e34c379bfb49da82138fe799dc 279 1 

84c644018cae5b5fc83910faee7c18b6 277 1 

1e04fd2bb0c35b64705f3a98c58c1c09 277 1 

2ad3892d93cc46fd5404c7cc6f37f549 277 1 

621dc8ea3922809e3d5bb726d2102076 275 1 

0f967c3cdf2aa6bd7ae8e15ec9051459 272 2 

b3da695a65b7b1ba9d457da4e565cf6a 271 1 

64d4510d116168167aca968d79e7d407 269 2 

6086360609bbf267564e8068768813b7 269 1 

9dbe9bbbf5ef4a1776df2989bdaeda89 269 1 

ac2782870a1419b6ba7115c1385d99a6 268 1 
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 Frequency # of Samples Observed In 

ce5b548a8a6e872f096cd9c9c56c3586 266 2 

38286ae48eca2ee15d5e753ce09ff804 266 1 

b9c3f60f7846829d726789dbf4aae8f2 264 1 

e1297d42591f9f6dd60d7b8e324e6a2b 263 1 

4968b42bc17d62cc76074514a5bdaf9f 262 1 

3728ba756fb18824392759b1560ad149 261 1 

ecf8c46c1af810a41031356c0eb2d068 260 1 

e9eb3cd36ec834e3f7ef4b8f9983d876 259 1 

c43d8ca507770d99d2474f37abdfa307 259 1 

dabf6955d97e8007c5672efe0c6c9df7 258 1 

88dcb5f3342206b0d262da57c4cfefe3 257 1 

21f6dedac2a137835ae9ccf42797a4bc 257 1 

e3cef310df8f472e2ca6c8e8f82a4e34 255 1 

dc401640b279ebaf57c61f590554cf04 255 1 

7c65d6385227f20efd9eedc1310bd57c 251 1 

d66b6424dc3a4e4a25c80eb44df1d0f5 251 1 

3ac2d4b89c5758b468d14a97652e0702 248 1 

2a2ed58a0b9e8f6be9e2eeba4b015a28 246 1 

da0fdc25b33b08b84619c3afb10aabbe 245 5 

974aeae7064a2a97ca1813af50314d08 245 1 

d1ea8b834d8c94110785dc8b091ac57d 243 1 

0e4313ddca6ab4c1721747c46450c4e7 242 1 

e6e83bc745b5a7f22910cb3a433e4320 241 1 
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ddfe66912fe0e9f05ee8172e7ccf9d05 239 1 

0ca304494871c8422d60d2ccc73ed14f 239 1 

a1da6d20889a67feb434169329d72f10 238 1 

78e33f1503d385757946592f9fa348e6 237 1 

76e6545b8a6cb7f99a3815e717385302 234 1 

48beec2c94dd1c6d7d3872f3e50cfaa6 232 2 

9eff0a4fa1ed1e4f911c6a05feaff3fa 231 2 

382a18b40f74a049e99c5f463cc98ffa 230 1 

beac40c63e4fa9c9ff0b543cb2451a49 229 1 

81b800de0622923306c7992860d37a1d 228 1 

33be0eeeb744c7fa3537be81a58ae6e6 227 2 

eb980ea4ae622e8df3790185aa1213b5 227 1 

decc2ea371605e9239598b687580e3a0 227 1 

aab787522a0def952d283155e5209ed8 227 1 

592f0f093007de2672553482d7b5a9d4 225 1 

c39c1bb7c0bbb0fa7bad31e0a89af87e 224 1 

1fa271b4f0164797f331577117e62e09 223 1 

db010d3e05c06787665b321f168ffc55 223 1 

108be5192e0ca38a1694544efc3775fe 222 1 

2f4595c5a4518a264a8e78ad388c5e9b 222 1 

74bad92b8dd3c70f2f85e82a8cd34d43 221 1 

f53dcb10fe00c6510e75dc6a9652f859 220 1 

97ff21939b956d0b58dca0d54dc8c5ac 216 1 
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e418f5d8282f01e36695b571291de8a1 215 1 

d292f4ef0f9c4d13880db3d0c4973e34 213 1 

558bf707e258b69ef1a004a67390699c 213 1 

77a82685c190925fa5f76877dc4588ed 212 1 

f3d9ac50c5a82d0368104ebcad607e3b 210 4 

f8e2bc2a15b7943fe0d8dd1dce771a8b 210 1 

1fdf2ea71bea2b52a4489f53b6bbf37c 209 2 

acff88777a210543cd0eab85ce9646af 206 1 

9e3ad279b06b66a8d8cefb9caab205af 206 1 

841ac7c62fdfd8936ec25c8cddfb6d0f 205 1 

a1ae82d937c38480d885dc9b024a5f25 201 1 

9e958b42b96d1b843dfecfda68d79f81 200 1 

b0ec342bc905b3997987c47e797c4d60 200 1 

0ae7b576a66192741bfade44706234c4 200 1 

238d25d4e8397a7a1af1210e15a5609e 198 1 

a2dedf642ef6dc68fed94fb568dd9a8f 197 3 

47bb94fc2bf455d1ce96832d8e756945 197 1 

e591fc3dd991d516b9facac91bed22e0 197 1 

c8904746ab24082a975a5dc8b0c1ec7a 195 1 

bcafed60059e76273dce9984a2fa0615 194 1 

e76db4d0ceead9bd07bf8a903f866161 193 1 

f8aba27bdbd6c3ba9a8917aa30cd76ba 193 2 

d0ff1043c5970bbd4cf48560bb84b7d5 192 1 
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89b019c7ecf7fe95733c66b03da762cb 192 1 

9cab3715f64993d159e6ee3a62598fc8 191 1 

2ae0ffc1e19eed8bd000aaa7c34ac75f 190 1 

6552dde3e0c73a783233a3d5fc84f9dd 187 1 

678f763f6b4c8ca27dda357e8f57db06 185 1 

32a42d4d29ab3611302550300c0f8ae7 185 1 

f75b2d49fba0563704f78fb127c2a554 184 1 

3ee7620c980edddeab6ccf9422640c0c 183 5 

ffcffe55f2719bf20b7a8ab1040bd922 181 1 

dd85a9362458e1af9e667707510750a4 181 1 

1e8d1139569050b5911ca78622d06830 180 1 

1ce8ed8ae6615218b902ef7e7e61f6a3 180 1 

dad218d3ed8d5f56a72a2dbbd6130f33 180 1 

8b344e6cdc20b919dcf445ec3690e5e7 179 1 

4267b39e24b4e11c799973a4afe7c03b 178 1 

4aaedba49b8cd7d050e0b0c098035cfe 178 1 

83ba39e8927ac01f3f9c43bd7c3a589f 178 1 

3a18041f30d1dc39542a3ec1ec019ecb 178 7 

5d2addaaff770de4ba4bbe43f323a8a7 176 3 

2b7728df4e23cfe8dac1fe25567bf62d 176 1 

b1436232f3e091f215147d283541f332 175 1 

d922057ea6d8a14b79a32ebfca50ce2a 174 3 

c476b00e26d0b15ba5b96cb424f96af0 173 1 
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6b0bf33726fbfbd78dcf70ce05cfc93c 173 1 

b5a12d12394e4bdfc4250b150b78d57e 172 1 

0136edd19b6116e1b1f51b2c9f502f0b 171 1 

5f3ef951f64050ce814a72b5848b18b0 169 1 

c90b2ba95b88136f5f4c407b6690d47b 169 1 

5b2fc65fef51b415e71a43ef94bc1e33 169 1 

71ef4c47ffe35ae2624705ec169fa0eb 168 1 

b84a11390f172a8958e63c7ac3275171 167 1 

4a5bc1d41e40250fbe74b69d35758c53 167 2 

3d37c203448a855c42440f7985578ba2 165 1 

24cdeefbc6b38c10bc51adc2734029b4 164 1 

ac6fd7c1fccad58cc6d4496fabbecbb2 164 1 

9fa6b787e43e41f1b23f93de12435476 164 1 

e89703dca71ef978b852a76f5ad33e5a 163 1 

8ad554bd1df04f85ff7d8f0e347d9dcd 162 2 

7b3931b3e4141a3c3011d26229dc2973 162 2 

969f247af14d5258ba691787e8a9841c 161 1 

ed6487fa5e444e0e801f7defc3fda3f4 161 1 

54c1a0d548ea4d141290701d1397ec96 161 1 

cb6470394cf73d69cb4326636398cabc 160 2 

f7139ddbae2d74b1863111a6a670a539 160 1 

eb666c0091a87e79f79701a6d45d45f7 158 1 

1e80056e9ebf91a0eea4ab58661c2863 158 3 
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55b5da798124cf921d3f7e78ccbf83b8 158 1 

3833dca3b8e23088ca141c42a9e304b5 157 1 

5a078fbe863eb17d511191de3548a8e0 156 1 

1742d12de08a73e35cbfa9ab09364249 154 1 

9e3750234d9760450fcbdcd3a98449f3 154 3 

bf949c3ce2e58063778fec435a13f2f5 154 1 

fba7cceaf882b8d74dbf543e2249a924 153 1 

d6a18a6eeb321e4e884721c858ac6dab 153 1 

f772c6cab604d209140824dbe4075aac 152 1 

a49691ef0139cfd8ab8f655286cdda49 151 1 

69b4cb916eac3a98e4fd9314f8b4c6ac 151 1 

9709c95e737b1f1ab80e94949fb14b40 151 1 

747fac4e413b740150fdd7dd89bca983 151 1 

4e5e4762643a3ada4f18377af41c8767 145 1 

e0259e94b8943b6646842b9ab1ff1695 145 1 

bfd0c791e84940737b24df4e1b2daab2 145 1 

f920e41e815e5a1e31fde01bdd873ca6 144 1 

346a822df956d834aeb5561ce6528eec 144 1 

164ce7a1560ba9aab32873fc7f558380 143 1 

b31285a97747c759d2248c3be68a57fe 143 1 

27ae7b72987af334135a0bb16ba68757 142 1 

6ada132dd037bcb4e09f074f2748180a 141 1 

7fbc39f634636ae08461cefcba70d08d 141 1 
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a57efee0b70943a24f80f12bc856adcb 140 1 

5886b3f2277135adad46300dba86a6d3 140 1 

95b78451b40831688bccf91745e2b6dd 140 1 

cad5d3b06c064be2fdb2b687c045f62d 139 1 

d9331e83abe8d1b1763cb8007c91bd0c 139 1 

7c6524a576b867bc2b05e903bbf95edf 137 1 

8db38fb7c5c617c308fec20ad5b3675e 137 1 

f77d0b3f4681ba6d83c3daeaeb0a0d3d 137 1 

e6d9701fac813123b92c38c252532b67 136 1 

e9af5c565342971f32fb7d940b99142a 133 1 

40898f612c0398550af7d723fb490662 132 2 

6a1c977142858d1148bc41bec207d462 131 1 

1f266e9f3639f651278a44515077e372 131 1 

10bb3f13d98930f51c21e58747fa5026 131 1 

accd96aca10031d84ee13fea206d31e3 130 2 

db45b3580bfa8f29abd95547d673508e 130 4 

3664cd8742f96a93a83c58c988395dc5 130 1 

0ea1d75cc3b133594fc22bbe83b47a62 129 1 

190e48aa7eef5757db172a3844d554bf 128 1 

33fee3b186495367bf294bdc9329d47b 128 1 

ecf99bed296dbdcace50651d8d31d5f1 127 1 

6ed934d7624673bcf8a12626cf0412d0 127 6 

2fa163361a19c86a1310db5450302e32 126 1 
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9889101906c8d5674eb0f1568be4cd44 126 5 

27858bf0d08f0c2fa18d4a3d58c63b0e 122 1 

2fd30e29f009b5ca3272fb2dd09287fa 122 1 

9e407f5c61e03ea8dad0162e08c9b4e4 122 1 

47948ab2032e9155c87048e159251fc2 122 1 

d967125bb6a28843d2257fcfd0eef876 121 4 

35459fb96913eeb7f117c9da1e3dc87c 121 1 

c4510c7cc6f68ed0023a78b4dc7e8422 121 1 

13791f4f7650485718bae707e883e261 120 1 

b143ca2b409db08388cf3bf0ec0105e9 120 1 

f7862ea4d057098bac02b0a58cb45caf 119 1 

40bb838beb1405e01f5f79eb4c6d5d96 117 1 

a0e579591262e7e74111807f38e43ef1 116 2 

2fb1ecc78075fe7bdfc90f21c2b27e54 116 1 

008c50b71483761f65b8301411c46c04 116 1 

30e01a525fa4630b1222e37fe4b74b13 115 1 

45d2358b70b407700f9ea2122a21f2fc 114 2 

11f867b6c41eb061b6c817dd39b22a42 113 1 

d47a8ca3cecf46c87a0e889f79cf9382 111 1 

a66e2b5dafb3d72ea7c7025d2533afe2 111 1 

267f3130ff411f3d2b9584a0c2a7138b 111 1 

fb495c5d973e733bcad11f86f53bffa5 109 1 

bc34e2c4ce8d0692925cb39a68576637 109 1 
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 Frequency # of Samples Observed In 

3fba03e2f606f60d1fbf8e66197828a4 109 1 

2f33ef0f1e322ded6bbd05b78cc026c1 108 1 

304a6475097536c08abe20ce071cb0a5 106 4 

e4877d8d6fa9e60c4fe4b857a4604465 106 1 

7de9230551c73d4e597d25e52152743c 105 1 

d74c5f18bd231431fbff25f4623546c9 105 1 

000760fd0df204d8af62efefdac99a29 104 1 

df8aa33ac159c19dd8e0ef074005c0e0 104 1 

a2c53066b5015311021bcf8ca589e5fd 103 1 

aafa38e0f95aff1b8f65614dbc847e21 103 1 

db289130865951d0fc8df1b06548478c 103 1 

e5b84a81de95fa83e6c7daab08084cd5 102 1 

bc114e94819ff44207566732f7bc9c61 101 1 

a32b38f2c848ae383ca52d3c441a754c 101 1 

99d9967d7a09d67c427323bde61b28e2 101 1 

55ef87814a69a1e0a9defff416aef9d4 100 1 

7b74ae0861fab3990e20df721c879a30 100 1 

349c047c567abb99f28d008091e97321 99 1 

a0988b91063e8507a3c1f29e3a8425a5 99 2 

2a40c63047f9221af6d6d0a1091b629e 99 1 

a2555a1261c9209c54a4645b6a21a359 98 3 

d553e851e782e5028c5106f2b9d86408 98 1 

71e3fa22192bdddd68a1ed51e40a3468 97 1 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 128 

 Frequency # of Samples Observed In 

da2de2adbdfa157bd62776433d6c50a9 97 1 

561587a8db1beeb2928fda92f6be63ce 95 1 

a63d7bdec51e1b9318ef67408f08beaf 95 1 

f248f6d53dbb93b82efb0e2fa762ad41 95 1 

7eda57bce9679d6bb7c950d528715feb 94 1 

a5e9e52ed592028707083a32e92db10f 94 1 

b2e12d4020f790ffb6e362c99d7b820c 94 1 

7b8f79e290e7eaa96b8f4db4c0610aad 93 1 

f08dd769fe370f83ec37d93f92362982 93 1 

7dce551de1d79168678e76af0af6fd2f 93 1 

d4a90a494496bb7dd4fcfc540d6a0af4 93 1 

2369cbc196871fdeab74c3fb56661b67 93 1 

1383c12970b73e9aad78883dd966e4f0 93 1 

59444dddae7d2e9b7ee21ef709744c2c 93 1 

241b187a6b57c435f3323eaff9e69a18 92 1 

f94cb99ded9bc1f974f76e2c971d2712 92 1 

652fafb39f24ccf5d5d720df3813cf60 92 1 

d6591defe7248b8a6791466a6a246c88 92 4 

47d21323164abdb57ae5da03cd7e2782 92 1 

1b28191f1b07710cff8c4641946a1d94 91 1 

832c53c8ad9ec723f59a5374f47ecd61 91 1 

39796e0d1217f3938bac2b9bd272e5cf 91 1 

55031d8c22abf6f8769287b50a948418 89 1 
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 Frequency # of Samples Observed In 

036497d57758d4a8b437b985aab86265 88 1 

867de7c9328cc775428f311ed66993e4 87 1 

3a8ccb79922c8c46190eeced0154ef01 86 1 

75faa77c92262607a397181918b867da 86 1 

7a9ac30748131e321ddca43193b68704 85 1 

da51318dd4ab8ce85e4d65632ef3c854 84 1 

78d5db145ea8d27dac6a729f68749ccc 84 1 

e0e242b7800226249ad148d0878f9736 84 1 

d1e9b9fe7f3a1ca87dc7a31d73605dae 83 1 

5f92fac893e5412ba120d58197e69cbc 83 1 

1c2c3d1e9d84efb94f685d60583b8344 83 1 

e7283ecc878d827e3c2550ee11efecc4 83 1 

38f5039b94347fd4b272a28d0ee628b3 83 1 

1a31a96286eceb156435b88a9a9de702 82 1 

adf7e01cab9032bd0c54bb5624b33c71 80 1 

d6c116e865a05bd41a3dc7c8a3f309f5 80 1 

4dc5ac768a688d2e304e137024d3004d 80 1 

1f0ddf269388ad8ca07fb70755f9ce4b 79 1 

4130a3874a94a2fd6412e9e4a9e53409 78 1 

7eae189444cda928bd5a0ef6ba8f75a2 78 1 

36845defdc8c74a1edd0c124f279512a 77 1 

4701ab4d14efcb855ef3a8789104f465 77 1 

309280d205275981908deec0177091b5 76 1 
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 Frequency # of Samples Observed In 

13eb5360d9ffacd41dbf8fe61a1f1108 76 2 

6dd385e2c2f0bdc6880a9c227533eea2 75 1 

5d1c95ad28a69aa3eaf67fafcf06d84f 75 1 

4a7ca189fe0d0f5afee33c55ce26053b 75 1 

df3241e0e1926e65b6275114aa948cd4 74 1 

9d52b5cafe2e235a0b492ee70f3728f0 74 1 

7cecaa1f10917429193451bf95acbe52 74 2 

540a9dc9669b1a77766799c6f859b9d9 73 1 

e694b2189d2134adceebd3d1c097ef1c 72 1 

42f9f5c76555dbc80ec30d14cc1bd293 71 1 

6624aa58d845eb9fa7de1097b1ad25be 71 1 

1ece76d118de4bf7f10d537c7f4f913d 70 1 

a6a8515bb0dca8100fe8abf727c012fb 69 1 

f57699d89e2cda2a118058c657a0ebb4 68 1 

07ebd1ee5cbaa7716106df0c7b46da44 68 1 

0bd40067bd02ae5da73b7f6ccd68b807 66 1 

4dd9abd5fe396101b4c29f2611bc846f 66 1 

bee8087742cb2cf27bdcfabc4fa40535 65 1 

9c21401dfefca70da18b5f92803e0d7f 65 1 

450d93d1ae2bb1287b03b8433c0e5fea 65 1 

b85f32e9788b57ad07e3cbc658f03e5a 65 1 

f608f0da0277ae3dc1d643c0d3c4d30b 65 1 

cb002dcf78d0b2fc3ce098105d04a345 65 1 
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 Frequency # of Samples Observed In 

3225da7190308bf09edb25d8c6c63427 64 1 

dcb2d79a3a0c0157c0169eca6d6193e8 64 1 

ef0b10fafdeb152f699fd1ac87a01024 64 1 

6140570d52371d4c1605d5aa2c7e9278 63 2 

8ac93c2d771e4250f7f54cce868312d5 63 1 

d35adaea845961635ef9da979f670800 62 1 

4059a21cc96afd6997ebfa04c6e1bcd5 61 2 

e84fc83610a9d4b8a1582166f3996747 61 3 

5149c23501b97a7904c547d508df2314 61 1 

66a9732bd49e4130f1b67d74a9890167 60 1 

8ec0e5c3653b0e0d0fba84e657f771b2 60 1 

72cb297bd4fe6c60b693a7639e3523fb 60 1 

9dbe45a9e1471967a842a22ea3d225e9 58 1 

c4b82668dbd417c78318120fd1a38050 58 1 

e4c8c68a9c69cd0ccccf715b010cb214 57 1 

7b97c7ab2a4ea9f2b3f12e4c1004da44 57 2 

24a9b9c0504bd56339974d2696229fc3 57 1 

c825e2b4e52e41704fe47480bc42a67e 56 1 

99a4b96e8d14ada9789c6e46f960c18e 56 1 

a26931635040a0ff4086f8b6bc72560d 56 1 

41321ce62bd0cf90954235544dfbe583 56 1 

6fdbbedd9d7b83a3069c08e844b46e80 56 4 

f8e8420ce06c8c0637467b695a71ba49 54 1 
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 Frequency # of Samples Observed In 

1933a75feb05764413367060624f384a 54 1 

368f0faf6c9c592fd774fa097dd12590 53 1 

f8a80efc00f962a5000faf6d15260206 52 3 

2e1e28a5eef4b3868ec18f11bf58aadc 52 2 

6b5f35bb6734b666ac02075c406eb62b 52 3 

d2372b90b22377b41786cfae1ec54b72 52 1 

9ac6d338661e86dec5cfb3b434237790 51 1 

e720f9b84810d590da73c5f398bc7b00 50 1 

6b59b25157d5f0e93a6505173e1664bc 49 1 

b70b46e823236c0f052a5982d2e11597 48 1 

c82068a53dd45730b64884cf5728c74e 48 1 

c9db2c0cb2a78dd477630130ea6faca7 47 1 

3ba0a61327ab7603e6457506ea47c76a 46 1 

64018917b341c76abf5a26eb50965433 46 1 

8d66750badfe99dc6efe704434b4d015 46 1 

64cc6e10f88fe9a17c7032974badc31c 45 1 

abeebf2cb1f8a6d9b776be8770bdd067 45 1 

c9221537e35169901ab09403072d8d48 45 1 

7f1cc0cec693188073dec4e2594d5e82 44 1 

fe694ca30247fbf379bfd88f9adfe686 44 1 

77b393df3fcae00fd9aaffa0af36cfa2 43 1 

c36d31d7526f2510c5524a30b655bd05 43 1 

11d92d3f9ef489cc00b8d5900147d4e7 42 1 
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 Frequency # of Samples Observed In 

38137b00d0869d9a4584e39b3a385764 42 1 

8be3eba94a0aab17ec8a9205f177b344 42 1 

9646cbd39cf13ff74aa2498f74d33269 42 1 

23a7599e6f9741899b150d92614ef01b 41 1 

550d7a5fd7cfef4660ffb56dd42217a3 41 1 

b941f7d41581fcd500076ff463cad580 40 1 

95c0423a0dcd37a1c8e16d1c82530f58 40 1 

f133a85952341aebdce67e67e3c9d778 40 1 

2faf5efe675bf50fc2305756b4713871 40 1 

f10e74f27c0d859a47f3fe1f8d528f27 40 1 

e0378f74f896e563f87e80d490c5ff49 40 1 

3e663cf2fa3aecb5301836b1fc46f03b 39 1 

acbb339a63ba2954be9b099b0faeffbe 39 1 

0b77f8b406074583d271464bbff2a72a 39 1 

27161108f541611c024bc1efa6b23726 39 1 

a2067d9ff08e884e803745516e377f46 38 1 

9c1c3ff8f8c02a322206b9f3bb89d32e 38 1 

0be63e7cca84b251fe573e591f06caa4 38 1 

af9d5b71ad29ad99a78bb96aae5f3bef 38 2 

4e2a22c909a7fc8b50112efc8195ca25 38 2 

ee85b01154af6a8a26ff9eb9fe8d19fb 38 1 

4f18ac7e0ad9a3a376a14a1e39891670 37 1 

5ebd4275c44cbb3fcb80fca68a3095bf 37 1 
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 Frequency # of Samples Observed In 

d33da4aff45460ece3ee14546fe95276 37 1 

95c3ac5e47b846f16d05c87beb10934a 37 1 

77b8f83c891d9d147048588487c51b3f 37 1 

462e3114fe9e135bee202bd19152d50b 36 1 

d6068797252a5b7d994d8c090d4985a0 36 4 

1a1cacc8890eb72a61ca075c23db1fbd 36 1 

53263eaa91b8c66aa308b796419d78ea 36 1 

b05e9f1ac744b64d6e35c3ee65e379e7 35 1 

5192e1f5ec47e817dc3c3c9ea1f7e97d 35 1 

3f376cd7c6af18b1b45f23a912eb7efb 35 1 

30a1f44816a74e4a188d322fc3deeb86 35 1 

d93c99dd814396b089ec21076b91ffab 35 1 

6619853c10993fe80d513455bec5dc02 35 1 

c35981f8b56a75fc44de3a5180b36ace 34 1 

daa114d72149b0d760614edfba75e05f 34 1 

cd08fa7c19c774477b2412d1fa2ebf1c 34 2 

e3210eefe2301699d14de70a76c8a614 34 1 

59e8378fafc9b8637835c6ea5778c808 34 1 

0b4843367d2550cd3cefda8ca0378ef8 34 1 

548ff7f9fc41bc51a6f7e6cdd14397ff 33 1 

a550996afb7652eb4595d5192f19d788 33 2 

06ddbbc9242f08a43db5a088b9d88e27 33 1 

a8851447f9e53cabec81e4e01eb8eb76 33 1 
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 Frequency # of Samples Observed In 

65651271976a1fe04849fe649c2fcaba 32 1 

2f020018878638b9b0a088170f1999e8 32 2 

26328e87c7906b844284a19fc7c608e1 32 1 

e1123a4a0827959776421957f5bdbaa5 32 1 

ecab0d288c06f32ddce4c8c808cc37b1 32 1 

7d2f0951586f7192b3c6be0a7b31fe1e 32 1 

14520ad2a846f78708d193e4d621026e 31 1 

098ed39b13cfca9703a19b27038575da 31 1 

63911fc79fac2d1133168e744b8d2fee 31 1 

b025b64a27db72d0a231619eac056ecd 31 1 

9f8f19c6f999752b06fc985f59019d48 31 1 

b5764c68d157ff5b09ca6ed2137fbfc2 31 1 

a478e128e6641961c98ade127d0bb267 31 1 

61a487495d720402cb70fa9d527ec75a 30 1 

adf54af13ddf38b69d98677092579b72 30 1 

2d4c12d3c44f749e4aebbb35ceb5b670 30 1 

d5c7ad0d2ab67e5ae373324298baaa79 30 1 

6b308a79fadaefb6d2fe7c3720de305f 30 1 

a736eb7a13acce17431149250c952e7a 29 1 

89a412837abe692bb7e7528f07b6a5ac 29 1 

b34b95ed17a20f8db6988dac6ec4ac26 29 1 

babcec1ae7485a0c31f0428469b1d963 28 1 

1718a3465a56102da49b564450841cc7 28 1 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 136 

 Frequency # of Samples Observed In 

30d428fda673ad8bcabc5a4184d1f287 28 1 

0e643f06cbaa06999656faf244e36272 27 2 

3c03774aa8cd76dfd791af651d7ec41a 27 1 

bd6d9a19652697b491c6d9f47c50e1a1 27 1 

71af8fa501f19b1f06c0687704413dfe 27 1 

af6983ba85555f3e47eb9ab8db824cd7 27 1 

54191b4777e24de27d34a737b4c7842f 27 1 

61fb0f64dde933104a4df347a9faf9b4 26 1 

5fac07edfb1ed313f53e9eaa55f550af 26 1 

eeed50b8965d8fb00cc1075ecd908f16 26 1 

7832316426a02a0b19648deb088cc18a 25 1 

b7dd8d79a097f9e04a9f2917d23e1507 25 1 

04da17e85384dbdd2ecdc675195401f4 25 1 

48384847ebef96cbf26a0be13212a9aa 25 2 

83fc1dbaea3ca289e34ab992c19466d2 25 1 

182c3994239333a1896904302ef69c6a 25 1 

be45ee678f894eb9dc264206f829b934 25 1 

c74965dda48c4e300e5d01e3e3638893 25 1 

44e9d50158a8042aa015dbc2db19aded 25 1 

f4e4609a25565469e96bb18ef8eaaf6d 25 1 

d421dba7a16ffbd061e46d440786dc1d 25 1 

bce4b9ff0cb1a29bec45ccc23ece74ff 24 1 

64f8588a5beaa3f544892ba991066e26 24 1 
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e93ab8e6d49c2454b3698ed48ed5f76c 24 1 

96a97cea91fd3da909a6cb2273c5af3b 24 1 

2a4c0d66e241830699d99f7ed8783f39 24 1 

c78d2ebbe048ceb807b559e60639fd9e 24 1 

51d4c464ec9cb72dfba0adca24948a59 24 1 

e7ee430e93800004f21293a6becb99c7 23 1 

9beb14cbd8fc89da7aceda26095cfd68 23 1 

700b99ca548341cac9edda0cdbce2e6b 23 1 

a7a7dfc94fa3b677e6354e367a0f046e 23 1 

e3b6ddf335a69df05de1720f2906707e 22 1 

bfce5724f071fb1571fc76f57161f25b 22 1 

30cb6b0e6d0ed0a982b5b88b9fe6b7ff 22 1 

59b424ab669b3af910fd1bac7bec31eb 22 1 

6daae29652f538adfc5cf36316a9cdf3 22 1 

812122a21304f9f57dc225056d472c11 22 1 

43effe984f9d140b134f0697ad894f15 22 2 

ab1a2a53d53956b3c17988eb713fab36 22 1 

987c05ae3d48eb97e7977a166da2d816 21 2 

ca7a84dbf3b99cb90b15bcf4fc965cbd 21 1 

698969486f5018dbfbf79f0425b50e04 21 1 

fd01239ab2c5e655728c4d0cfe59f4c3 21 1 

217c68b6365a52e87e2c33156ef40aeb 21 1 

6403f3b0ab729a3321d58162eea91ecb 21 1 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 138 

 Frequency # of Samples Observed In 

19a15460f24e454ce7ba173bfa852f66 21 1 

f15237fcca0b92b2f812553f4adddcfc 21 1 

3c4489ecb0ffcc250b3f091626bcf0df 20 1 

6ca9686a9aeaa800e704673112d01684 20 1 

70a8c6b8f02502cd28e404f5fa0fc106 20 1 

da1c0514e8af3ae21018c95fd0db49d4 20 1 

a114134c503b90b894f96b36819c0e30 20 1 

e5ff2fcf167a2e81b2257aa09dd7f5a9 20 1 

05106fa1067a64ecb2218c89a6da313d 19 1 

022afc77021bc0654a163d423ffdacf2 19 1 

aee85f6bb07988d3b5f7e2c93d252835 18 1 

6db31ae1f4add429aabc84420bdeec84 18 1 

c1fa01d749832ed1b6737e11191d9ecb 18 1 

316a22ccca6d73751628d33a45735aee 18 1 

3cc54305ba9c9e11597593761e7be6ff 18 1 

81dd9d3cabb1ae61e19abbd25e874dce 18 1 

c3ab0a201aa6669a4add9cbffd565584 18 1 

bd1749818ad9d523909e75b06e74ffb8 17 1 

70575a8cb61ffb99eb1246653faca194 17 1 

d824eef4449ec68a9cc28b809b353877 17 1 

18481445ece46196fa6cd62b782f3ed8 17 1 

57289f53648fee82e6a843a6a7b157e7 17 1 

713993e57c9fe537def4e472811638ab 17 1 
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e946c36266ceb50e0193c9c7f08b5b51 17 1 

76b250fe7f2082147de2b48d90dd079b 16 1 

ccaa42dde153a8157033a6f31088e889 16 1 

9efa507dacd5b14a70f023bad0f87c57 16 2 

67870fb42912dcd87b232664a1f173d2 16 2 

52cfada5f10419e4f6a3695dfb61bdf1 16 1 

7a0e3d360ac317f1c95b22bb196a7b24 15 1 

d280fd356fdf76ab1df44814b0e9bdf8 15 1 

4ddd8007f515fa0383bd9849074bbea9 14 1 

3975b5d434076b273706b0ccb0b581e8 14 1 

447a2be0578af6180d43706381d50c5d 13 1 

417062f8f06c8fa367115cf3c3a38438 13 1 

cfb3eabb0cd4166fbf4708afb6233f09 13 1 

e1921cb7e4080e3b518699c8a861a128 12 1 

2bdb4924fdd70d688557c80ea7fe6b29 12 1 

c63f01a33331ca04016aa4e597de1546 12 1 

c9c83e97fe9e72d43e36bab1a106e119 12 1 

a705501a0abe4b868aaa826ea86c48b8 12 1 

dbe0d4f2c5ac4d10320b9f8d0e38ea5b 12 1 

752bbb762d73090b12a2416a825dd332 11 1 

c8e73d7f93a10554c557a1b31159043b 11 1 

077db4f17f6e777407f21fd32e12168b 11 1 

bdb8d9da33cdc819f2f0172d36328d82 11 1 
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 Frequency # of Samples Observed In 

443e1d6cdd34d009482d26547c6cbfee 11 1 

1d23abb636c036d453713406630d474b 11 1 

aa8e87e9eafc67991279936fc2dc4cf1 10 1 

2032956e8e4b02f45105cd3f398a74d4 10 1 

18bf1231b8256ca54ef2cac512ddc63e 10 1 

7ab22d1f6a60b32aadc63dba790aef30 10 1 

73992e0423f0f8bf2bd6955682e7b500 10 1 

af9bec14ef4a9443b1a24d36e3012308 10 1 

de0269f5b94562cb84d16ec6aa1ca941 10 1 

7bd40d2d447ea0e287f379d54b97d81d 10 1 

dcf5fc016dbb665c322dd526b73935d9 10 1 

d4f7d1295b56600a6a750874eadbc9d9 9 1 

88eb24c01d1ebfb092e8f23d0a95f4cf 9 1 

7aa4ee0cc11aaf77beed6d156523b99b 9 1 

9ac453bd29dd646b33a1b0c8e1195db2 9 1 

466681ddefe252851d7c62c1526fae6c 9 1 

edbf50cb3a56598c9c681981b7813ffd 9 1 

5ca83d5a217afc8ecbb0b19b223f0b99 9 1 

d0e9a55189967f0674caec81458812d1 9 1 

b4212576a04f219a8611792e2580e283 9 1 

e2a2f02e47dd7d6282e87918f2b96152 8 1 

a658afd6439e256a7984f82023ad9116 8 1 

06ea9e331fcbe9bea1c902097af83235 8 1 
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 Frequency # of Samples Observed In 

e56275709ef8d009370ade472970cb73 7 1 

0e646ce871146a86cb6c1102d10cc1ee 7 1 

60f4177fb9bc9b70f14621a08fd10e6f 7 1 

16583df801aa25cd7874b16eebea0a8f 7 1 

2f4679a1b75b6d91a308b5c1a404521e 7 1 

aa06b573f0a6b4fbc36ce94a7268d4f0 6 1 

477cde4762ee0adf2eff820ebd98c3e8 6 1 

608556ecff0e8838f76a41d72b8ac9d1 6 1 

58d877a60ea863a45a20f4f49174df3a 6 1 

208ded2edcc52ad570f37df372f9d2d3 6 1 

86989d0d580fc80c8712c110fa60b39b 6 1 

68e6c50907f4582c51d34edc8461acfc 6 1 

39b688211bf3a44c46f06cbcbfb9ef5a 6 1 

c3fbc69e12d855426f9c6c7c8ec684dd 6 1 

cb9e35554c906453c167be8301255af3 6 1 

0257462ea3f63df940407090e5cf86c6 6 1 

8101c01c85ade81233d4196036bbf5ba 5 1 

aa134ce70df1c9fa3f9b7e7be8a4eb4c 5 1 

63fedf988bf99809a44ac77c09dc04b0 5 1 

b487b550c323044942e04979bb5ff91c 5 1 

bc5ad9e6c93b66388a925794145a46c2 4 1 

647239b3e7c30dd8cfdd9d44974d42e1 4 1 

4f24db4c29b44008c54158c17015a732 4 1 
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 Frequency # of Samples Observed In 

7d7f7a98dc58d8485ba2607226168614 4 1 

1740c35f8a62dee2e94ddb090c80e1d5 4 1 

1959d6fcafd2a4326797a4b2360fe819 4 1 

7c40ac18c0cda71804963d069531227e 3 1 

133dc3a639631b8305842da7bb1db221 3 1 

130b5c5d84dd19d822d5b16e09fe694f 3 1 

04ec7fa83aedf3ef2d3bb8a3e0655d17 3 1 

3b459dfb825eb508c8b43ad41447604b 3 1 

336c0e09827717afff030223af32c8b9 3 1 

c7be18139e645dbf8235991f7bae85c8 3 1 

d2164aa481aba405008d30648c2bd324 3 1 

381399920a70388dc32db7756e8af804 3 1 

308b57dc29911c7a62bca5a77ac05b0d 2 1 

a42c07abe9fef9e738c2002f5dfd595f 2 1 

789b4e59738f78b5327f1efe4c3b3f34 2 1 

f37661c842c974a8881c8d96ac8e2619 2 1 
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2. α-diversity 
2.1. Chao1 Index 

 Boxplots 

 
Kruskal-Wallis (all groups) 

 Result 

H 2.40901182244033 

p-value 0.2998401105546 

 
Kruskal-Wallis (pairwise) 

  H p-value q-value* 

Group 1 Group 2    

F2D (n=10) F2F (n=10) 1.961614 0.161341 0.317150 

F2W (n=10) 0.035795 0.849939 0.849939 

F2F (n=10) F2W (n=10) 1.561585 0.211433 0.317150 

 
*q-value: p-value with a Benjamini & Hochberg correction 
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2.2. Pielou’s evenness index 
 Boxplots 

 
Kruskal-Wallis (all groups) 

 Result 

H 7.09161290322579 

p-value 0.0288453507475363 

 
 
Kruskal-Wallis (pairwise) 

  H p-value q-value* 

Group 1 Group 2    

F2D (n=10) F2F (n=10) 0.462857 0.496292 0.496292 

F2W (n=10) 3.022857 0.082099 0.123148 

F2F (n=10) F2W (n=10) 7.000000 0.008151 0.024453 

 
*q-value: p-value with a Benjamini & Hochberg correction  
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2.3. Shanon index 
 Boxplots 

 
Kruskal-Wallis (all groups) 

 Result 

H 4.35354838709677 

p-value 0.113406769517536 

 
 
Kruskal-Wallis (pairwise) 

  H p-value q-value* 

Group 1 Group 2    

F2D (n=10) F2F (n=10) 2.285714 0.130570 0.195855 

F2W (n=10) 0.280000 0.596701 0.596701 

F2F (n=10) F2W (n=10) 3.862857 0.049366 0.148099 

 
*q-value: p-value with a Benjamini & Hochberg correction  
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3. β-diversity 
3.1. unweighted UniFrac distance 

Overview 

 ANOSIM results 

method name ANOSIM 

test statistic name R 

sample size 30 

number of groups 3 

test statistic 0.065481 

p-value 0.048 

number of permutations 999 

 
 
Group significance plots 
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Pairwise anosim results 

  Sample size Permutations R p-value q-value* 

Group 1 Group 2      

F2D F2F 20 999 0.124000 0.014 0.042 

F2W 20 999 0.012000 0.344 0.344 

F2F F2W 20 999 0.055778 0.152 0.228 

 
*q-value: p-value with a Benjamini & Hochberg correction 
 

3.2. weighted UniFrac distance 
Overview 

 ANOSIM results 

method name ANOSIM 

test statistic name R 

sample size 30 

number of groups 3 

test statistic -0.017778 

p-value 0.583 

number of permutations 999 
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Group significance plots 
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Pairwise anosim results 

  Sample size Permutations R p-value q-value* 

Group 1 Group 2      

F2D F2F 20 999 -
0.018889 

0.553 0.553 

F2W 20 999 -
0.023111 

0.552 0.553 

F2F F2W 20 999 -
0.019111 

0.526 0.553 

 
*q-value: p-value with a Benjamini & Hochberg correction



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX B 
Results from LEfSe  
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LDA Effect Size (LEfSe) 
 The highest mean 

among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Alloprevotella__
_ 

1.74440591437   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Bacillales_f
__Gemellaceae_g
__Gemella_s__ha
emolysans 

4.51972723813   - 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Actinomycetales
_f__Actinomyceta
ceae_g__Schaalia
_s__lingnae__Not
_Validly_Publishe
d_ 

3.34547542045   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Lachnosp
iraceae__XIV__g_
_Oribacterium_s_
_parvum 

3.29346085957   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Pseud
omonadales_f__
Moraxellaceae_g_
_Moraxella_s__os
loensis 

2.02868703366   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Alloprevotella_s
__sp__HMT_914 

3.81458312814   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__S
accharibacteria__
TM7__c__Sacchar
ibacteria__TM7__
_C_1__o__Saccha
ribacteria__TM7_
__O_1__f__Sacch
aribacteria__TM7
___F_1_______ 

1.74611032159   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Prevotella_s__s
hahii 

1.93747818195   - 

k__Bacteria_p__P
roteobacteria_c_
_Alphaproteobac
teria_o__Sphingo
monadales_f__Sp
hingomonadacea
e______ 

2.25399631539   - 

k__Bacteria_p__B
acteroidetes_c__
Flavobacteriia_o_
_Flavobacteriales
_f__Flavobacteria
ceae_g__Capnoc
ytophaga_s__ging
ivalis 

1.59426955388   - 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Actinomycetales
_f__Actinomyceta
ceae_g__Actinom
yces_s__graevenit
zii 

3.26079258853   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
orphyromonadac
eae_g__Porphyro
monas_s__sp__H
MT_930 

3.56290695294   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Fusobacteriace
ae_g__Fusobacte
rium_s__nucleatu
m_subsp__vincen
tii 

0.0   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Paste
urellales_f__Past
eurellaceae_g__H
aemophilus_s__p
araphrohaemolyti
cus 

3.43640316448   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Peptostre
ptococcaceae__X
I__g__Peptostrep
tococcus_s__sto
matis 

2.05565507522   - 

k__Bacteria_p__P
roteobacteria_c_
_Betaproteobact
eria_o__Neisserial
es_f__Neisseriace
ae_g__Kingella__
_ 

2.93338959915   - 

k__Bacteria_p__
Bacteroidetes_c
__Bacteroidia_o
__Bacteroidales
_f__Prevotellace
ae_g__Prevotell
a_s__melaninog
enica 

3.88239880062 remained 
CariesFree 

3.51754532769 0.044627707796
3 

k__Bacteria_p__Fi
rmicutes_c__Neg
ativicutes_o__Veil
lonellales_f__Veil
lonellaceae_g__V
eillonella_s__sp_
_HMT_917 

3.62061102086   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Enter
obacterales_f__E
nterobacteriacea
e______ 

3.15837692586   - 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Corynebacterial
es_f__Corynebact
eriaceae_g__Cory
nebacterium_s__
matruchotii 

3.66672925264   - 

k__Bacteria_p__B
acteroidetes_c__
Flavobacteriia_o_
_Flavobacteriales
_f__Flavobacteria
ceae_g__Bergeyel
la_s__sp__HMT_9
31 

3.84159958755   - 

k__Bacteria_p__P
roteobacteria_c_
_Betaproteobact
eria_o__Neisserial
es_f__Neisseriace
ae_g__Kingella_s
__sp__HMT_012 

2.62528169546   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Paste
urellales_f__Past
eurellaceae_g__A
ggregatibacter_s_
_sp__HMT_513 

3.77872437642   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Prevotella_s__hi
sticola 

3.17303461034   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Actinomycetales
_f__Actinomyceta
ceae_g__Schaalia
_s__sp__HMT_18
0 

2.8646663887   - 

k__Bacteria_p__Fi
rmicutes_c__Neg
ativicutes_o__Veil
lonellales_f__Veil
lonellaceae_g__V
eillonella___ 

4.29677733373   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Lachnosp
iraceae__XIV____
___ 

3.38327725974   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Fusobacteriace
ae_g__Fusobacte
rium_s__sp__HM
T_248 

3.23096026709   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Sneathia_s_
_amnii__Not_Vali
dly_Published_ 

2.65673555342   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Prevotella_s__s
p__HMT_472 

2.5775226571   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Leptotrichia
___ 

4.65778710396   - 

k__Bacteria_p__P
roteobacteria_c_
_Betaproteobact
eria_o__Burkhold
eriales_f__Burkho
lderiaceae_g__La
utropia_s__mirabi
lis 

3.77911517226   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Pseud
omonadales_f__
Moraxellaceae_g_
_Acinetobacter_s
__baumannii 

3.9435588512   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Ruminoc
occaceae_g__Ru
minococcaceae__
G_2__s__bacteriu
m_HMT_085 

2.38597444698   - 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Actinomycetales
_f__Actinomyceta
ceae_g__Actinom
yces_s__sp__HM
T_170 

2.52569359905   - 

k__Bacteria_p__P
roteobacteria_c_
_Betaproteobact
eria_o__Neisserial
es_f__Neisseriace
ae_g__Neisseria_s
__flavescens 

3.06411320819   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__P
roteobacteria_c_
_Betaproteobact
eria_o__Neisserial
es_f__Neisseriace
ae_g__Eikenella_
s__corrodens 

0.0   - 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Propionibacteria
les_f__Propioniba
cteriaceae_g__Ar
achnia_s__propio
nica 

2.92869165204   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Fusobacteriace
ae_g__Fusobacte
rium___ 

4.09750904571   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Peptostre
ptococcaceae__X
I__g__Mogibacteri
um___ 

2.22453608613   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Enter
obacterales_____
____ 

2.12210871882   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Paste
urellales_f__Past
eurellaceae_____
_ 

3.1290643272   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Actinomycetales
_f__Micrococcace
ae_g__Rothia_s__
mucilaginosa 

4.20457785946   - 

k__Bacteria_p__P
roteobacteria_c_
_Betaproteobact
eria_o__Neisserial
es_f__Neisseriace
ae_g__Neisseria__
_ 

4.76315668126   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Paste
urellales_f__Past
eurellaceae_g__A
ggregatibacter_s_
_paraphrophilus 

0.0   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Pseud
omonadales_f__
Moraxellaceae_g_
_Moraxella___ 

3.04219823374   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Bacillales_f
__Staphylococca
ceae_g__Staphyl
ococcus___ 

2.35502289459   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Fusobacteriace
ae_g__Fusobacte
rium_s__periodo
nticum 

4.2975002849   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Paste
urellales_f__Past
eurellaceae_g__A
ggregatibacter_s_
_aphrophilus 

2.00465735811   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Prevotella___ 

3.69450428801   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Cardio
bacteriales_f__Ca
rdiobacteriaceae_
g__Cardiobacteriu
m_s__hominis 

2.55269364971   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Prevotella_s__s
p__HMT_942 

3.92170441671   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Lactobacill
ales_f__Aerococc
aceae_g__Abiotro
phia_s__defectiva 

3.18254126072   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
orphyromonadac
eae_g__Porphyro
monas_s__pasteri 

4.65670352075   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__B
acteroidetes_c__
Flavobacteriia_o_
_Flavobacteriales
_f__Flavobacteria
ceae_g__Capnoc
ytophaga___ 

3.26938791948   - 

k__Bacteria_p__A
ctinobacteria_c__
Coriobacteriia_o_
_Coriobacteriales
_f__Coriobacteria
ceae_g__Atopobi
um_s__parvulum 

2.93280092862   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Paste
urellales_f__Past
eurellaceae_g__A
ggregatibacter___ 

3.2785163014   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__B
acteroidaceae_g_
_Bacteroides_s__
zoogleoformans 

1.10786827971   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Leptotrichia
_s__sp__HMT_22
5 

3.17973028339   - 

k__Bacteria_p__S
accharibacteria__
TM7__c__Sacchar
ibacteria__TM7__
_C_1__o__Saccha
ribacteria__TM7_
__O_1__f__Sacch
aribacteria__TM7
___F_1__g__Sacc
haribacteria__TM
7___G_1____ 

3.25558373532   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Prevotella_s__o
ulorum 

1.79452418804   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Leptotrichia
_s__sp__HMT_22
1 

3.51105132611   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Leptotrichia
_s__sp__HMT_39
2 

3.25068720753   - 

k__Bacteria_p__B
acteroidetes_c__
Flavobacteriia_o_
_Flavobacteriales
_f__Flavobacteria
ceae_g__Capnoc
ytophaga_s__lea
dbetteri 

3.56653692902   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Leptotrichia
_s__shahii 

2.30300021192   - 

k__Bacteria_p__B
acteroidetes_c__
Flavobacteriia_o_
_Flavobacteriales
_f__Flavobacteria
ceae_g__Capnoc
ytophaga_s__spu
tigena 

3.87854658175   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Paste
urellales_f__Past
eurellaceae_g__H
aemophilus_s__s
p__HMT_036 

4.55175375519   - 

k__Bacteria_p__Fi
rmicutes_c__Neg
ativicutes_o__Veil
lonellales_f__Veil
lonellaceae_g__
Megasphaera_s__
micronuciformis 

3.06481522009   - 

k__Bacteria_p__Fi
rmicutes_c__Neg
ativicutes_o__Sel
enomonadales_f
__Selenomonada
ceae_g__Seleno
monas_s__noxia 

2.7232166153   - 

k__Bacteria_p__P
roteobacteria_c_
_Betaproteobact
eria_o__Neisserial
es_f__Neisseriace
ae_g__Kingella_s
__oralis 

3.32720246387   - 

k__Bacteria_p__P
roteobacteria_c_
_Epsilonproteoba
cteria_o__Campyl
obacterales_f__C
ampylobacterace
ae_g__Campylob
acter___ 

2.99621788736   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Prevotella_s__sa
livae 

2.79140247705   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__S
accharibacteria__
TM7__c__Sacchar
ibacteria__TM7__
_C_1__o__Saccha
ribacteria__TM7_
__O_1__f__Sacch
aribacteria__TM7
___F_1__g__Sacc
haribacteria__TM
7___G_6__s__bac
terium_HMT_870 

3.79739709729   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Paste
urellales_f__Past
eurellaceae_g__H
aemophilus_s__p
arainfluenzae 

4.61215578308   - 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Actinomycetales
_f__Actinomyceta
ceae_g__Actinom
yces___ 

2.27096316351   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Lactobacill
ales_f__Carnobac
teriaceae_g__Gra
nulicatella_s__adi
acens 

4.13325203433   - 

k__Bacteria_p__S
pirochaetes_c__S
pirochaetia_o__S
pirochaetales_f__
Spirochaetaceae_
g__Treponema_s
__lecithinolyticu
m 

0.0   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__S
accharibacteria__
TM7__c__Sacchar
ibacteria__TM7__
_C_1__o__Saccha
ribacteria__TM7_
__O_1__f__Sacch
aribacteria__TM7
___F_1__g__Sacc
haribacteria__TM
7___G_1__s__bac
terium_HMT_347 

2.96139057715   - 

k__Bacteria_p__A
bsconditabacteria
__SR1__c__Absco
nditabacteria__SR
1___C_1__o__Ab
sconditabacteria_
_SR1___O_1__f__
Absconditabacteri
a__SR1___F_1__g
__Absconditabact
eria__SR1___G_1
__s__bacterium_
HMT_875 

3.13300603336   - 

k__Bacteria_p__A
bsconditabacteria
__SR1__c__Absco
nditabacteria__SR
1___C_1__o__Ab
sconditabacteria_
_SR1___O_1__f__
Absconditabacteri
a__SR1___F_1__g
__Absconditabact
eria__SR1___G_1
__s__bacterium_
HMT_874 

2.9990854239   - 

k__Bacteria_p__P
roteobacteria_c_
_Betaproteobact
eria_o__Neisserial
es_f__Neisseriace
ae_g__Neisseria_s
__oralis 

3.38963038323   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__G
racilibacteria__GN
02__c__Gracilibac
teria__GN02___C
_1__o__Graciliba
cteria__GN02___
O_1__f__Graciliba
cteria__GN02___F
_1__g__Gracilibac
teria__GN02___G
_1__s__bacteriu
m_HMT_872 

2.48712412194   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Leptotrichia
_s__sp__HMT_21
2 

0.0   - 

k__Bacteria_p__
Fusobacteria_c_
_Fusobacteriia_o
__Fusobacterial
es_f__Leptotrich
iaceae_g__Lepto
trichia_s__sp__H
MT_215 

3.66321481977 remained 
CariesFree 

3.74447320547 0.035999193276
9 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Paste
urellales_f__Past
eurellaceae_g__H
aemophilus___ 

4.43049402431   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Peptonip
hilaceae_g__Parvi
monas_s__micra 

0.0   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Leptotrichia
_s__sp__HMT_21
8 

0.0   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
orphyromonadac
eae_g__Tannerell
a_s__sp__HMT_2
86 

1.67745912474   - 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Actinomycetales
_f__Micrococcace
ae_g__Rothia_s__
aeria 

3.53938912718   - 

k__Bacteria_p__Fi
rmicutes_c__Neg
ativicutes_o__Veil
lonellales_f__Veil
lonellaceae_g__V
eillonella_s__aty
pica 

3.9570151157   - 

k__Bacteria_p__P
roteobacteria_c_
_Epsilonproteoba
cteria_o__Campyl
obacterales_f__C
ampylobacterace
ae_g__Campylob
acter_s__gracilis 

1.42218661964   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Leptotrichia
_s__goodfellowii 

4.50419988003   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Lachnosp
iraceae__XIV__g_
_Stomatobaculu
m_s__longum 

0.0   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Leptotrichia
_s__hongkongens
is 

2.26898906687   - 

k__Bacteria_p__C
yanobacteria_c__
Oscillatoriophycid
eae_o__Oscillator
iophycideae_f__O
scillatoriales_g__
Arthrospira_s__pl
atensis 

2.40244192362   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Lachnosp
iraceae__XIV__g_
_Lachnoanaeroba
culum___ 

3.16048301469   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Lactobacill
ales_f__Streptoc
occaceae_g__Stre
ptococcus_s__sal
ivarius 

4.39284756872   - 

k__Bacteria_p__B
acteroidetes_c__
Flavobacteriia_o_
_Flavobacteriales
_f__Flavobacteria
ceae_g__Bergeyel
la_s__sp__HMT_3
22 

3.40817248706   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Actinomycetales
_f__Actinomyceta
ceae_g__Actinom
yces_s__oris 

3.2960882175   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Lactobacill
ales_f__Streptoc
occaceae_g__Stre
ptococcus___ 

5.50863617092   - 

k__Bacteria_p__B
acteroidetes_c__
Flavobacteriia_o_
_Flavobacteriales
_f__Flavobacteria
ceae_g__Bergeyel
la_s__sp__HMT_2
06 

3.96219702504   - 

k__Bacteria_p__Fi
rmicutes_c__Neg
ativicutes_o__Sel
enomonadales_f
__Selenomonada
ceae_g__Seleno
monas_s__artemi
dis 

1.89529954955   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Peptococ
caceae_g__Pepto
coccus_s__sp__H
MT_167 

0.0   - 

k__Bacteria_p__Fi
rmicutes_c__Neg
ativicutes_o__Veil
lonellales_f__Veil
lonellaceae_g__V
eillonella_s__rog
osae 

3.19185871876   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Prevotella_s__or
is 

0.0   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Bacillales_f
__Gemellaceae_g
__Gemella___ 

3.32817151782   - 

k__Bacteria_p__Fi
rmicutes_c__Neg
ativicutes_o__Veil
lonellales_f__Veil
lonellaceae_g__V
eillonella_s__sp_
_HMT_780 

4.75205873579   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Lachnosp
iraceae__XIV__g_
_Lachnospiraceae
__G_2__s__bacte
rium_HMT_088 

1.02198696152   - 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Actinomycetales
_f__Actinomyceta
ceae_g__Actinom
yces_s__naeslun
dii 

0.0   - 

k__Bacteria_p__P
roteobacteria___
____________ 

0.0   - 

k__Bacteria_p__Fi
rmicutes_c__Neg
ativicutes_o__Veil
lonellales_f__Veil
lonellaceae_g__V
eillonella_s__disp
ar 

2.12975679573   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
orphyromonadac
eae_g__Tannerell
a___ 

0.992209562554   - 

k__Bacteria_p__B
acteroidetes_c__
Flavobacteriia_o_
_Flavobacteriales
_f__Flavobacteria
ceae_g__Capnoc
ytophaga_s__sp_
_HMT_332 

2.56816675132   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Fusobacteriace
ae_g__Fusobacte
rium_s__sp__HM
T_203 

3.00645000167   - 

k__Bacteria_p__P
roteobacteria_c_
_Betaproteobact
eria_o__Neisserial
es_f__Neisseriace
ae_g__Neisseriace
ae__G_1__s__bac
terium_HMT_174 

1.67213971015   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Lachnosp
iraceae__XIV__g_
_Lachnoanaeroba
culum_s__orale 

2.37735564318   - 

k__Bacteria_p__P
roteobacteria_c_
_Alphaproteobac
teria_o__Rhizobia
les_f__Brucellace
ae_g__Ochrobact
rum_s__anthropi 

2.16222594203   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Enter
obacterales_f__E
nterobacteriacea
e_g__Enterobact
er___ 

3.43352075028   - 

k__Bacteria_p__G
racilibacteria__GN
02__c__Gracilibac
teria__GN02___C
_2__o__Graciliba
cteria__GN02___
O_2__f__Graciliba
cteria__GN02___F
_2__g__Gracilibac
teria__GN02___G
_2__s__bacteriu
m_HMT_873 

2.71098796024   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Sneathia___ 

0.0   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Paste
urellales_f__Past
eurellaceae_g__H
aemophilus_s__s
p__HMT_908 

3.89418177591   - 

k__Bacteria_____
_____________ 

1.21417208   - 

k__Bacteria_p__Fi
rmicutes_c__Neg
ativicutes_o__Veil
lonellales_f__Veil
lonellaceae_g__V
eillonella_s__par
vula 

3.17971538854   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Enter
obacterales_f__E
nterobacteriacea
e_g__Escherichia_
s__coli 

2.23789186912   - 

k__Bacteria_p__P
roteobacteria_c_
_Betaproteobact
eria_o__Neisserial
es_f__Neisseriace
ae_g__Neisseria_s
__lactamica 

0.0   - 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Actinomycetales
_f__Actinomyceta
ceae_g__Schaalia
___ 

3.60835327436   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Ruminoc
occaceae______ 

1.14566358902   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Bacillales_f
__Gemellaceae_g
__Gemella_s__m
orbillorum 

2.79612122506   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Bacillales_f
__Staphylococca
ceae_g__Staphyl
ococcus_s__aure
us 

0.0   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Ruminoc
occaceae_g__Ru
minococcaceae__
G_1__s__bacteriu
m_HMT_075 

3.91264911949   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Lactobacill
ales_f__Lactobaci
llaceae_g__Lacto
bacillus_s__saliva
rius 

2.4979632571   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Lactobacill
ales_f__Lactobaci
llaceae_g__Lacto
bacillus_s__gasse
ri 

2.3840199048   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Paste
urellales_f__Past
eurellaceae_g__H
aemophilus_s__s
putorum 

3.81894848595   - 

k__Bacteria_p__
Bacteroidetes_c
__Bacteroidia_o
__Bacteroidales
_f__Prevotellace
ae_g__Prevotell
a_s__nanceiensi
s 

3.8360676946 remained 
CariesFree 

3.68751960309 0.021101057281
1 

k__Bacteria_p__P
roteobacteria_c_
_Betaproteobact
eria_o__Burkhold
eriales_f__Coma
monadaceae_g__
Ottowia_s__sp__
HMT_894 

2.48357125639   - 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 176 

 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__S
accharibacteria__
TM7__c__Sacchar
ibacteria__TM7__
_C_1__o__Saccha
ribacteria__TM7_
__O_1__f__Sacch
aribacteria__TM7
___F_1__g__Sacc
haribacteria__TM
7___G_3__s__bac
terium_HMT_351 

2.41817829483   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Prevotella_s__s
p__HMT_306 

0.0   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Lachnosp
iraceae__XIV__g_
_Lachnospiraceae
__G_3__s__bacte
rium_HMT_100 

1.89529954955   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Lactobacill
ales_f__Streptoc
occaceae_g__Stre
ptococcus_s__sa
nguinis 

2.98328800328   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_o__Paste
urellales_f__Past
eurellaceae_g__A
ggregatibacter_s_
_actinomycetemc
omitans 

0.0   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Lachnosp
iraceae__XIV__g_
_Catonella_s__m
orbi 

2.994418954   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Alloprevotella_s
__sp__HMT_308 

2.92124815637   - 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Corynebacterial
es_f__Corynebact
eriaceae_g__Cory
nebacterium_s__
durum 

2.67262503681   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Lactobacill
ales_f__Streptoc
occaceae_g__Stre
ptococcus_s__pa
rasanguinis_clade
_411 

4.17592995699   - 

k__Bacteria_p__P
roteobacteria_c_
_Betaproteobact
eria_o__Neisserial
es_f__Neisseriace
ae_g__Neisseria_s
__elongata 

2.95947152477   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
orphyromonadac
eae_g__Porphyro
monas___ 

3.38650076318   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__S
accharibacteria__
TM7__c__Sacchar
ibacteria__TM7__
_C_1__o__Saccha
ribacteria__TM7_
__O_1__f__Sacch
aribacteria__TM7
___F_1__g__Sacc
haribacteria__TM
7___G_1__s__bac
terium_HMT_352 

1.21417208   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__P
revotellaceae_g_
_Alloprevotella_s
__sp__HMT_473 

5.13487830683   - 

k__Bacteria_p__B
acteroidetes_c__
Bacteroidia_o__B
acteroidales_f__B
acteroidales__F_
2__g__Bacteroida
les__G_2__s__ba
cterium_HMT_27
4 

1.69117956689   - 

k__Bacteria_p__Fi
rmicutes_c__Neg
ativicutes_o__Sel
enomonadales_f
__Selenomonada
ceae_g__Seleno
monas___ 

2.88516952814   - 

k__Bacteria_p__Fi
rmicutes_c__Clos
tridia_o__Clostridi
ales_f__Lachnosp
iraceae__XIV__g_
_Catonella_s__sp
__HMT_451 

0.0   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Propionibacteria
les_f__Propioniba
cteriaceae_g__Cu
tibacterium_s__a
cnes 

2.13589700331   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Leptotrichia
_s__sp__HMT_49
8 

2.26327633484   - 

k__Bacteria_p__F
usobacteria_c__F
usobacteriia_o__
Fusobacteriales_f
__Leptotrichiacea
e_g__Leptotrichia
_s__sp__HMT_41
7 

3.0487167801   - 

k__Bacteria_p__P
roteobacteria_c_
_Gammaproteob
acteria_________
___ 

0.0   - 

k__Bacteria_p__A
ctinobacteria_c__
Actinobacteria_o_
_Micrococcales_f
__Brevibacteriace
ae_g__Brevibacte
rium_s__paucivor
ans 

2.19894874906   - 

k__Bacteria_p__Fi
rmicutes_c__Bacil
li_o__Lactobacill
ales_f__Carnobac
teriaceae_g__Gra
nulicatella_s__el
egans 

4.56297609903   - 
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 The highest mean 
among all the 
classes (log10) 

The class with the 
highest mean LDA score (log10) p-value* 

k__Bacteria_p__Fi
rmicutes_c__Neg
ativicutes_o__Sel
enomonadales_f
__Selenomonada
ceae_g__Mitsuok
ella_s__sp__HMT
_521 

1.72128673787   - 

k__Bacteria_p__
Proteobacteria_
c__Epsilonprote
obacteria_o__Ca
mpylobacterales
_f__Campylobac
teraceae_g__Ca
mpylobacter_s_
_concisus 

3.7600567867 remained 
CariesFree 

3.46201126053 0.044627707796
3 

k__Bacteria_p__P
roteobacteria_c_
_Epsilonproteoba
cteria_o__Campyl
obacterales_f__C
ampylobacterace
ae_g__Campylob
acter_s__rectus 

3.10726506523   - 

 
The class with the highest mean, LDA score (log10), and p-value are shown if the 
feature is discriminative. 
*p-value: Wilcoxon test  
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