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การศึกษาองค์ประกอบทางเคมีของพืช 2 ชนิดในวงศ์ Capparaceae คือชิงชี่และแจง 

สามารถสกัดแยกสารบริสุทธิ์ได้ทั้งหมด 13 ชนิด จากการพิสูจน์โครงสร้างด้วยเทคนิคทางสเปก
โทสโคป ีร่วมกับการเปรียบเทียบกับสารที่เคยมีการรายงานมาก่อน พบสารที่มีรายงานแล้วทั้งหมด 
5 ชนิด จากส่วนลำต้นของชิงชี่ (Capparis micracantha) ประกอบด้วยสารในกลุ่มอินโดลอัลคา
ลอยด์ 1 ชนิด คือ methyl 6-methoxy-3-indolecarbonate, สารในกลุ่มอนุพันธ์ของกรดเบนโซ
อิก 1 ชนิด คือ vanillic acid, สารในกลุ่มลิกแนน 1 ชนิด คือ (−)-syringaresinol และสารในกลุ่ม
สติลบีนไดเมอร์ 2 ชนิด คือ (+)-ampelopsin A และ (−)-pauciflorol E สำหรับรากของแจง 
(Maerua siamensis) พบสารใหม่ทั้งหมด 8 ชนิด ซึ่งเป็นสารในกลุ่มอินโดลอัลคาลอยด์ ได้แก่ 
(+)-maeruanitrile A, maeruanitrile B,  maeroximes A - C และ  maeruabisindoles A - 
C  สารที่แยกได้ทั้งหมดถูกนำมาทดสอบฤทธิ์ยับยั้งการสร้างไนตริกออกไซด์  ในเซลล์แมโครฟาจ 
RAW 264.7 ที ่ถ ูกเหนี ่ยวนำด้วยลิโปพอลิแซ ็กคาไรด์เปร ียบเทียบกับสารควบคุมผลบวก 
indomethacin พบว่าสาร (−)-pauciflorol E และ methyl 6-methoxy-3-indolecarbonate 
จากลำต้นชิงชี่ มีค่าความเข้มข้นที่ยับยั้งการสร้างไนตริกออกไซด์ได้  50 เปอร์เซ็นต์ IC50 เท่ากับ 
123.40 ± 4.51 และ 198.00 ± 5.57 ไมโครโมลาร์ ตามลำดับ สำหรับสาร maeruabisindoles 
B-C,  maeroxime C, (+)-maeruanitrile A และ maeruanitrile B จากรากแจง มีค่า IC50 เท่ากับ 
31.1 ± 1.04, 56.7 ± 2.2, 92.2 ± 5.1, 186.4 ± 13.0  และ 186.8 ± 13.3 ไมโครโมลาร์ ตามลำดับ 
ในขณะที่สาร indomethacin มีค่า IC50 อยู ่ในช่วง 150.0 - 166.3  ไมโครโมลาร์ การศึกษานี้
สนับสนุนการใช้ลำต้นชิงชี่และรากของแจงเพ่ือต้านอักเสบตามภูมิปัญญาการแพทย์แผนไทย 
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ABSTRACT (ENGLISH) # # 6076462533 : MAJOR PHARMACOGNOSY 
KEYWORD: Capparis micracantha Maerua siamensis nitric oxide production 
 Sasiwimon Nukulkit : CHEMICAL CONSTITUENTS AND NITRIC OXIDE 

INHIBITORY ACTIVITY OF CAPPARIS MICRACANTHA AND MAERUA SIAMENSIS. 
Advisor: Asst. Prof. CHAISAK CHANSRINIYOM, Ph.D. Co-advisor: Assoc. Prof. 
RUTT SUTTISRI, Ph.D., Mattaka Khongkow, Ph.D. 

  
The chemical investigation of two plants in Capparaceae family, which are 

Capparis micracantha and Maerua siamensis, leads to the isolation of 13 
compounds. The structures of the isolates were elucidated using spectroscopy 
techniques and comparison of the previous reports. Of five known compounds from 
the stems of C. micracantha were an indole alkaloid (methyl 6-methoxy-3-
indolecarbonate), a benzoic acid derivative (vanillic acid), a lignan [(−)-syringaresinol], 
and two stilbene dimers [(+)-ampelopsin A and (−)-pauciflorol E]. In addition, eight 
new indole alkaloids named (+)-maeruanitrile A, maeruanitrile B, maeroximes A-C 
and maeruabisindoles A-C were isolated from the roots of M. siamensis,. All isolates 
were tested for inhibition of nitric oxide production in lipopolysaccharide-induced 
RAW 264.7 macrophage cells compared with a positive control (indomethacin). (−)-
Pauciflorol E and methyl 6-methoxy-3-indolecarbonate from C. micracantha stems 
exhibited half maximum inhibitory concentration (IC50) values of 123.40 ± 4.51 
and 198.00 ± 5.57 µM, respectively. Moreover, maeruabisindoles B - C, maeroxime 
C, (+)-maeruanitrile A and maeruanitrile B from M. siamensis roots showed IC50 
values of 31.1±1.04, 56.7 ± 2.2, 92.2 ± 5.1, 186.4 ± 13.0 and 186.8 ± 13.3 µM, 
respectively, while the IC50 of indomethacin was in the range of 150.0 - 166.3 µM. 
This study supports the use of C. micracantha stems and M. siamensis roots for anti-
inflammation according to Thai traditional medicine knowledge. 
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CHAPTER I  
INTRODUCTION 

Inflammation is a general mechanism of body tissues for the prevention of 
invasion by infectious agents e.g., microbes into hosts. It is part of the biological 
response to damages from trauma or burns and involves antigen-antibody reactions 
and several inflammatory mediators such as nitric oxide, prostaglandins and other 
cytokines. Pain, swelling, warmth, redness and loss of function are significant symptoms 
of inflammation (Turner et al., 2014). Inflammation can be classified into 3 stages which 
are acute, subacute or chronic inflammation. Acute inflammation rapidly happens after 
infection. Blood vessels are dilated and capillary permeability is increased in order to 
facilitate the movement of plasma and white blood cells to the injured area. Subacute 
inflammation after happens after acute stage. Leukocyte and chemical mediators are 
released. These states can be activated by the temperature in the body (fever). The 
last stage of inflammation, called chronic inflammation, can occur several months after 
the initial injury. Fibrosis can be found after long-term injury. Chronic inflammation is 
the cause of various diseases including rheumatoid arthritis and osteoarthritis (Robert 
and Morrow, 2006). The World Health Organization (WHO) has pointed out that chronic 
inflammation can lead to a variety of diseases e.g. stroke, respiratory diseases, 
cardiovascular diseases and cancer (Tsai et al., 2019). Although Inflammation is an 
important process for the defense mechanism of the body, large scale inflammation 
or long-term inflammation may contribute to degeneration of the body. Therefore, in 
order to prevent inflammatory diseases, controlling of chemical mediators is necessary.  

Nitric oxide is an important chemical mediator that plays a role in the 
inflammation process. It can be synthesized by neutrophils, monocytes and 
macrophages using the enzyme inducible nitric oxide synthase (iNOS) with oxygen and 
NADPH as co-factors and released into endothelial cells causing vasodilation. But large 
amount of nitric oxide can cause tissue to degenerate (Sharma et al., 2007).  Inhibition 
of nitric oxide is a needful method to control inflammation (Vane and Botting, 1998). 
Anti-inflammatory drugs, either steroids or non-steroids (NSAIDS), have been used for 
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this purpose. However, long-term treatment can lead to various side effects (e.g., 
peptic ulcer, cataract and osteoporosis).  

Many medicinal plants in traditional medicine have been used to treat 
inflammatory diseases, although there is little scientific evidence to support. Research 
study on the ability of extracts and chemical constituents of these plants to inhibit 
production of nitric oxide by macrophages is an alternative in the discovery and 
development of novel anti-inflammatory drugs for future use with minimal side effects 
and greater safety.   

Family Capparaceae (or Capparidaceae) is a family of flowering plants consisting 
of 40-45 genera (700-900 species) distributed in tropical and subtropical regions. It is 
closely related to family Brassicaceae (Cruciferae) (Cronquist, 1981; Heywood, 1993; 
Mabberley, 1997). Several members of this plant family have been used as herbal 
drugs, food or cosmetics. Some species have displayed various biological activities such 
as anti-diabetic, antimicrobial, anticancer and anti-inflammatory (Bektas et al., 2012; 
Nabavi et al., 2016; Verma et al., 2013). Capparis is the largest genus in this family 
(consisting about 250 species). Major chemical constituents of plants in this genus are 
alkaloids, glucosinolates and isothiocynates. Some Capparis species are used in 
traditional medicine to cure inflammatory diseases e.g., rheumatism and cystitis). In 
Thailand, the roots of Capparis micracantha have been used as a component of Ya-
Ha-Rak, a traditional Thai drug formula to treat fever symptoms (Palo et al., 2017). 
Extracts from several parts of C. spinosa, or caper bush, have been reported to possess 
several biological activities. Its fruit and leaf extracts showed antidiabetic activity in rats 
(Chen et al., 2017). The fruit extract also showed hypotensive effect, whereas both 
root and fruit extracts showed antimicrobial activity (Zhang and Ma, 2018). Extracts 
from a number of Capparis species including C. spinosa (Nabavi et al., 2016; Chen et 
al., 2017; Nabavi et al., 2016; Zhang and Ma, 2018), C. ovata (Bektas et al., 2012), C. 
decidua (Verma et al., 2013), C. tomentosa (Akoto et al., 2008) and C. acutifolia (Chen 
et al., 2017) were demonstrated to have anti-inflammatory activity. 

Maerua is another genus of family Capparaceae. It consists of approximately 
90 species (Chayamarit, 1991).  Major chemical constituents of Maerua were reported 
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to be alkaloids, flavonoids, glucosinolates and isothiocyanates (Nobsathian et al., 
2018).  Members of this genus have been employed to treat several ailments such as 
fever, stomach ache, skin infection, diabetes, and urinary calculi. Biological activities of 
extracts from Maerua species have also been reported. Methanol extracts of Maerua 
angolensis and M. pseudopetalosa showed antimicrobial activity.  Extracts from M. 
crassifolia, M. angolensis and M. apetala were reported as exhibiting anti-inflammatory 
activity (Lincy et al., 2014).  Extracts from M. siamensis showed anti-inflammatory 

property by inhibition of albumin denaturation (Theanphong andSomwong, 2022).  
Therefore, this study focused on Capparis micracantha and Maerua siamensis, 

two members of family Capparaceae used in traditional Thai medicine for treatment 
of diseases and symptoms associated with inflammation. Preliminary study of the 
extracts from the stems of C. micracantha and the roots M. siamensis showed their 
ability to inhibit nitric oxide production. Attempt to isolate their chemical constituents 
and evaluate their inhibitory activity on nitric oxide production might support the uses 
of these plants in traditional medicine and yield new anti-inflammatory drugs for the 
future, as well as providing chemotaxonomic information in the study of family 
Capparaceae. 
 
The major objectives of this study were as follows. 
 

1. To isolate and purify the chemical constituents from Capparis micracantha 
and Maerua siamensis. 

2. To elucidate the chemical structures of the isolated compounds. 

3. To examine inhibitory activity of these compounds on nitric oxide production 
in macrophages.  
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CHAPTER II  
LITERATURE REVIEWS 

2.1 Order Brassicales   
 Order Brassicales (or Capparales) is a group of dicotyledons in the APG III 
system, which consists of 17 families including Akaniaceae, Bataceae, Brassicaceae, 
Capparaceae, Caricaceae, Cleomaceae, Emblingiaceae, Gyrostemonaceae, 
Koeberliniaceae, Limnanthaceae, Moringaceae, Pentadiplandraceae, Resedaceae, 
Salvadoraceae, Setchellanthaceae, Tovariaceae and Tropaeolaceae  (Hall et al., 2002). 
A characteristic of these families within the order is the production of indole 
glucosinolates, which can protect the plant itself from herbivore and parasitism and 
can sometimes be used as flavoring agent eliciting pungent taste (Simpson, 2019). 
 Within this order, family Brassicaceae is the largest with approximately 340 
genera and 3,350 species that are economically important as food, such as many 
vegetables including broccoli, brussels sprouts, cauliflowers and cabbages, industrial 
crops, and ornamental plants. These families are distributed worldwide, but most of 
them are found in northern regions, around Mediterranean basin, south-western and 
central Asia. Although Capparaceae is related to the herbaceous Brassicaceae, some 
species can sometimes be big woody trees. These Capparaceae plants usually have 
elongate gynophore or androgynophore, many stamens and unilocular ovary in a 
parietal placentation (Al-Shehbaz et al., 2006; Bailey et al., 2006; Beilstein et al., 2008). 
In the past, Cleomaceae used to be a genus (Cleome) within family Capparaceae. But 
in 2016, APG IV classification system has separated this genus into a new monophyletic 
family (Simpson, 2019). Cleome species have different characteristics from other plants 
in the family Capparaceae including being herbaceous, having dehiscent fruit with a 
replum and unilocular ovary. Recently, chemical constituents and DNA phylogeny of 
Brassicaceae and Capparaceae have been studied to provide their chemotaxonomic 
data.  
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2.2 Family Capparaceae  
 Capparaceae (or Capparidaceae) is a medium-size family in order Brassicales 
that is closely related to family Brassicaceae (Cruciferae). It consists of approximately 
29 genera and 381 species. This family used to be divided into 2 subfamilies: 
Capparoideae and Cleomoideae.  There are about 25 genera and 440 species within 
subfamily Capparoideae which are shrub or small tree bearing fleshy fruit (dehiscent 
or indehiscent). Subfamily Cleomoideae consisted of about 8 genera and 275 species 
which were herbaceous and had dehiscent fruits. Plants in this family are widely 
distributed in the tropical and subtropical regions (Kamel et al., 2009). In Thailand, 
three genera of this family have been recorded, including Capparis, Crateva and 
Maerua.  

 Plants in Capparaceae can be herb, shrub or, sometimes, woody tree. Their 
leaves are simple or palmately compound. The leaf arrangement is alternate or, rarely, 
opposite.  The texture of leaves is glabrous or furnished with glands or glandular hairs. 
These leaves are either stipulate or exstipulate. The flower is solitary or in axillary or 
terminal inflorescence, of racemes or corymbs. Flowers are bisexual or rarely unisexual, 
actinomorphic or zygomorphic. There are 4-8 sepals and 4-16 petals. The stamens are 
free, few to many. The ovary is superior, mostly borne on gynophore, or sessile. Ovules 
are few to many.  Fruit is berry, drupe, nutlet or siliquiform. Seeds are often many 
(Kamel et al., 2009). 

2.3 Genus Capparis  
 Capparis is a big genus in the family Capparaceae consisting of 250 species 
which are distributed worldwide in the tropical and subtropical regions. Their flowers 
have numerous stamens and a short or elongated androgynophore. Plants in this genus 
can strongly grow in adverse conditions (water stresses, photo-inhibition and high 
irradiance) (Cristina et al., 2006). Historically, several Capparis species have been used 
since ancient times as drug and food. For example, the roots of Capparis spinosa were 
consumed by Egyptians and Arabs to treat kidney disease, liver disease and stomach 
problem. The leaves of this plants were used to cure skin diseases and earache, 
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whereas the buds were used to treat disease of the spleen. Pickled flower buds, unripe 
fruits and shoots of some Capparis plants are usually stored in salt, vinegar and brine 
for used as appetizer (Tlili et al., 2011).  In Thailand, there are 17 species of the genus 
Capparis as listed below.  

 
No. Name of species Thai names  
1 Capparis acuminata Willd. แมงซอ 
2 C. acutifolia Sw. subsp. sabiaefolia Jacobs ตาฉู่แม 
3 C. diffusa Ridl. หนามเกี่ยวไก่ 
4 C. echinocarpa Pierre ex Gagnep. เกี่ยวไก่ 
5 C. flavicans Kurz. งัวเลีย 
6 C. floribunda Wight. เปดาดเขา 

7 C. glauca Wall. หางนกกะลิง 
8 C. grandis Linn. f. ค้อนกลอง 
9 C. micracantha DC. ชิงชี่ 
10 C. pranensis Jacobs. เพ็ดตึงตัง 
11 C. pyrifolia Lamk. หนามหางนกกะลิง 
12 C. radula Gagnep. หนามดำ 
13 C. sepiaria Linn. หนามวัวซัง 
14 C. siamensis Kurz. พุงแก 
15 C. tenera Dalz. หนามเล็บแมว  
16 C. thorelii Gagnep.  งัวซัง 
17 C. zeylanica Linn. สะแอะ 

 

2.4 Capparis micracantha DC. 
  Capparis micracantha DC. is a shrub or small tree that can grows up to 2-6 
meters. The plant can sometimes have spines on its stem, the length of spines is about 
2-4 mm. The leaves are simple, 3-5 cm long and 9.4-24 cm wide. The shape of these 
leaves is ovate-lanceolate or oblong-lanceolate or oblong to elliptic. The leaves are 
glabrous and light green in color. Their petioles are 0.1-1 cm long. The flowers are 
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solitary, or in clusters of 1-7 flowers, with peduncles which are 1-2 cm in length.  The 
shape of sepals is ovate to oblong, the petals are free, nearly boat-shaped or oblong 
to oblanceolate, 3-7 mm wide and 10-22 long. The petals are white, with dark red, 
dark violet or brownish spots. The number of stamens is 20-35. The filaments are 18-
30 mm long. The ovary is borne on a gynophore of 2-3.5 cm in length. Its fruit is simple, 
ovoid or rounded. The color of fruits is yellow, red, or black. (Chayamarit, 1991).   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Capparis micracantha DC. 
A) Flowers   B) Habit    C) Leaves 
    (Photos by L. Nonthalert.) 
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2.5 Genus Maerua  

 Genus Maerua comprises 90 species in family Capparaceae. Most of these 
plants are distributed in tropical Asia and Africa. There is only one Maerua species in 
Thailand (M. siamensis). Plants of this genus are either shrub or tree. Their leaves are 
compound, 3-folioate. The flowers are in clusters or sometimes solitary. The 
inflorescences are corymbose or racemose. The flower has 4 sepals separated at base 
but has no petal. The number of stamens is few to numerous (20-40). The gynophore 
is long, bearing an ovary with one locule and numerous ovules. The stigma is disc-
shaped. The fruits are round and glabrous and the seeds are large, 1-3 in number 

(Chayamarit, 1991). 
2.6 Maerua siamensis (Kurz) Pax 

 Maerua siamensis (Kurz) Pax, which is the only Maerua species found in 
Thailand, is a shrub or small tree, up to 5-10 meters in height. Its twig is glabrous, with 
palmately compound leaves of 3 leaflets (or, rarely, 4-5 leaflets). The leaf shape is 
ovate or oblong (1-3 cm wide and 5-7 cm long) The leaf base is obtuse or hastate, and 
the leaf apex is cuspidate. The flower has no petal but has 4 distinct greenish-white 
sepals. The flowers are in terminal or axillary inflorescence. Some flowers can singly 
bloom from leaf axil. Its roots have been used as herbal drug to treat cystitis,  to 

relieve pain and inflammation (Chayamarit, 1991). 

 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 12 

 
 

 

 
 
 
 
 
 
 

 
 
 
 
 

 

Figure 2. Maerua siamensis (Kurz) Pax 

(Photos by S. Nukulkit., P. Triboun and J. Seesang.) 
 

2.7 Chemical constituents of plants in the families Brassicaceae and Capparaceae 
and their biological activities 
 Many vegetable plants belong to family Brassicaceae. Examples are 
broccoli (Brassica oleracea var. italica), cabbage (B. oleracea var. capitata), cauliflower 
(B. oleracea var. botrytis), kohlrabi (B. oleracea var. gongylodes) and brussels sprouts 
(B. oleracea var. gemmifera). Major constituents in this family are glucosinolates and 
their derivatives, which are beneficial to these plants by protecting them from 
pathogens and insects. During cutting, chopping or chewing the plant, plant enzymes 
(e.g., -thioglucosidase or myrosinase) are released and can cause hydrolysis of the 
glucosinolates. The aglycones of these glucosinolates can be divided into three groups: 

A B 

D 

A) Habit B) Fruits C) Flowers D) Leaves 
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aliphatic, indole and aromatic (Mithen et al., 2010) (Figure 3). In addition to 
isothiocyanate, break-down products from glucosinolate can also be epithionitrile, 
thiocyanate, nitrile and oxazolidine-thione  (Al-Gendy et al., 2010) (Figure 4).  
 Several indole phytoalexins in Brassicaceae displayed interesting biological 
activities (Vig et al., 2009). For example, brassinin (10) has been reported to be 
cytotoxic toward leukemic cancer cell line, to exhibit cancer chemopreventive activity 
(Mehta et al., 1995), to enhance apoptosis and inhibit the metastasis of human 
prostate cancer (PC-3) cells (Kim et al., 2015). 1-Methoxybrassinin (115), firstly isolated 
from chinese cabbage, was reported to be anti-proliferative against human colon 
cancer (Caco-2) cells (Chripkova et al., 2014) and anticancer against T-Jurkat leukemic 
cells (Pilatova et al., 2005).  
 

Tryptanthrin (143), isolated from the leaves of Strobilanthes cusia (family 
Acanthaceae), showed antiviral activity against human coronavirus NL63 (Tsai et al., 
2020). This compound, which was also found in Isatis plants in Brassicaceae, showed 
anti-inflammatory activity through inhibition of cyclooxygenase-2 (Danz et al., 2001), 
and inhibitory effect on prostaglandin and leukotriene synthesis (Danz et al., 2002).  

 

 

Figure  3. Three types of glucosinolate based on their amino acid precursors 
(Mithen et al., 2010) 
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Figure 4. Different products from the hydrolysis of glucosinolates (adapted from 
(Al-Gendy et al., 2010)   
 

Many secondary metabolites isolated and identified from Brassicaceae plants 
are indole alkaloids, as shown in Table 1. For example, several plants in the genus 
Isatis have been used for treatment of influenza, common cold and infection in 
traditional Chinese medicine. Extracts from these plants were reported to demonstrate 
anti-inflammatory activity through inhibition of nitric oxide production (Yang et al., 
2014), and antiviral effect against coxsackievirus B3 and influenza virus type A. Indole 
alkaloids from the roots of Isatis indigodica such as isatigotindolediosides C (73) and E 
(75) (Meng et al., 2017) showed antiviral activity against coxsackievirus B3, whereas (−)-
R-2-(3-cyanomethyl-4-methoxy-1H-indol-7-yl)-2-(1H-indol3-yl) acetonitrile (19), (−)-R-2-
(3-cyanomethyl-4-methoxy-1H-indol-7-yl)-2-(4-methoxy-1H-indol-3-yl) acetonitrile (20) 
and arvelexin (1) were active against influenza virus type A (Chen et al., 2012). 
Isatindigobisindolosides B (79), D (81) and F (83), isatibisindosulfonic acid B (67) and 
isatindosulfonic acid B (97) from the same plant displayed antiviral activity against both 
viruses (Meng et al., 2017).   
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Investigation of the roots of another Isatis species, Isatis tinctoria, revealed the 
presence of ten indole alkaloids, mostly belonging to the isatindigoside and 
isatisindigoticanine subtypes (Zhang et al., 2020). These alkaloids exhibited inhibitory 
effect on nitric oxide production (Zhang et al., 2019) 

Families Capparaceae and Brassicaceae are closely associated according to 
their DNA phylogeny and chemical constituents. Many studies have reported that the 
major secondary metabolites in Capparaceae are flavonoids, phenolic acids, steroids, 
triterpenoids, alkaloids, fatty acids and glucosinolates. Break-down products of 
glucosinolates are similar to those found in Brassicaceae plants, especially indole 
alkaloids, for examples,  (+)-R-2-(4-hydroxy-2-oxo-2,3-dihydrobenzofuran-3-yl) 
acetonitrile (216) and (+)-S-2-(4-hydroxy-2-oxo-2,3-dihydrobenzofuran-3-yl) acetonitrile 
(217), isolated from Capparis spinosa (Capparaceae), are similar to indole-3-acetonitrile 
(54), 1-methoxy-indole-3-acetonitrile (Caulilexin C) (16) and indole-3-acetonitrile-6-O-
-D-glucopyranoside (56), found in Brassicaceae family. 

The chemical constituents in genus Capparis possess various biological 
activities, for example, the triterpenoids simiarenol (210) and lupeol (207) and the 
plant sterol β-sitosterol (200), isolated from C. dongvanensis, showed α-glucosidase 
inhibitory activity (Khang et al., 2021). Ginkgetin (173), a biflavonoid  found in C. 
spinosa, showed inhibitory effect on NF-B activation (H.-F. Zhou et al., 2011). Several 
flavonoids and their glycosides from this genus exhibited antioxidant activity (Yahia et 
al., 2020). A triterpenoid, olean-12-en-3,28-diol 3-pentacosanoate (208), from C. 
ovata showed moderate anti-inflammatory activity (Gazioglu et al., 2020). Additionally, 
cappariloside A (152), firstly purified from C. spinosa, showed antiviral activity by 
inhibiting the replication of H1N1, H3N2, PIV3 and ADV viruses (Li et al., 2018). 

The majority of chemical constituents reported from plants in the genus 
Maerua are phenolic compound, fatty acids, triterpenoids and steroids. A small 
number of alkaloids and flavonoids have also been found. Some of these compounds, 
e.g., capparilosides A (152) and B (153) from the leaves and twigs of M. siamensis, 
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exhibited larvicidal activity against the larvae of Aedes aegypti mosquito (Nobsathian 
et al., 2018).  

The distribution of chemical constituents in the family Brassicaceae and genera 
Capparis and Maerua of family Capparaceae is presented in Tables 1, 2 and 3. 
 

 

Table 1. Distribution of Indole alkaloids family Brassicaceae 
 

Compound Source Plant part Reference 
Arvelexin (1) Isatis indigotica Roots Yang et al. (2014) 

Thlaspi arvense Leaves Pedras et al. 
(2003)  

Benzocamalexin (2) Thellungiella 
halophila 

Aerial parts Pedras et al. 
(2009) Biswasalexin A1 (3) 

Biswasalexin A2 (4) 
Brassicanal A (5) Brassica napus  Tubers Pedras et al. 

(2004) 

Brassicanal B (6) B. campestris 
B. oleracea 
B. rapa  

NI. (Monde et al., 
1991a) Brassicanal C (7) 

Brassicanate A (8) B. napus  
 

Tubers 
 

Pedras et al. 
(2004) 

I. tinctoria Roots Zhang et al. 
(2022) 

Brassilexin (9) B. juncea Leaves Devys et al., 
1998 

Brassinin (10) B. campestris  NI. Takasugi et al. 
(1987) 

Brassitin (11) Raphanus sativus  Roots Monde et al. 
(1995) 

Brussalexin A (12) B. oleracea NI. Pedras et al. 
(2004) 

Camalexin (13) Camelina sativa Leaves Browne et al. 
(1991) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 17 

Compound Source Plant part Reference 

 
Caulilexin A (14) B. oleracea NI. Pedras et al. 

(2006) Caulilexin B (15) 
Caulilexin C (16) 
 
 
 

B. campetris ssp. 
chinensis 
I. indigotica 

NI. 
 
Roots 
 

Kim et al. (2004) 
 
Yang et al. (2014) 

Cephalandole B (17) I. indigotica 
 

Leaves 
 

Yang et al. (2014) 
Yang and Bao 
(2020) 

2-[Cyano(3-indolyl)methylene]-3-
indolone (18) 

I. tinctoria Whole plants Ahmad et al. 
(2008) 

(−)-R-2-(3-Cyanomethyl-4-methoxy-1H-

indol-7-yl)-2-(1H-indol3-yl) acetonitrile 
(19) 

I. indigotica Roots Chen et al. 
(2012) 

(−)-R-2-(3-Cyanomethyl-4-methoxy-1H-

indol-7-yl)-2-(4-methoxy-1H-indol-3-yl) 
acetonitrile (20) 

I. indigotica Roots Chen et al. 
(2012) 

Cyclobrassinin (21) B. campestris  NI. Takasugi et al. 
(1987) 

Cyclobrassinin sulfoxide (22) B. juncea NI. Devys et al. 
(1990) 

Cyclobrassinone (23) B. oleracea var 
gongylodes 

Stems Gross et al. 
(1994) 

Dehydrocyclobrassinin (24) B. napus Roots Pedras et al. 
(2008a) 

9,13-Dihydroxylisopropylidenyl-
isatisine A (25) 

I. tinctoria Roots Hong et al. 
(2019) 

(+)-(S)-2-(3,4-Dihydroxy-2-oxoindolin-3-yl) 
acetonitrile (26) 

I. indigotica Roots Chen et al. 
(2012) 

Dioxibrassinin (27) B. oleracea NI. Monde et al. 
(1991a) 
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Compound Source Plant part Reference 

2,2-Di-(3-indolyl)-3-indolone (28) I. indigotica 
 
I. tinctoria 

Leaves 
 
Roots 

Yang and Bao 
(2020) 
Zhang et al. 
(2022) 

Epiglucoisatisin (29) I. tinctoria Roots 
 

Frechard et al. 
(2001) 

I. tinctoria Whole plants Ahmad et al. 
(2008) 

Epiisatidifoliumoside A (30) I.  indigotica Leaves Guo et al. (2020) 
Epiisatidifoliumoside B (31) 
Epiphaitanthrin A (32) I. indigotica Roots Liu et al. (2016) 

Erucalexin (33) Erucastrum gallicum  Leaves (Pedras et al., 
2006) 

Glucobrassicin (34) B. oleracea NI. Gmelin et al. 
(1960) 

Glucoisatisin (35) I. tinctoria Seeds Antoine et al. 
(2001) 

2-[(4--D-Glucopyranosyloxy)-1H-indol-3-
yl] acetonitrile (36) 

I. tinctoria Roots Zhang et al. 
(2022) 

-D-Glucopyranosyl Indole-3-carboxylic 
acid (37) 

I. tinctoria Roots 
 

Zhang et al. 
(2022) 
 

Homobrassinin (38) B. oleracea NI. (Mehta et al., 
1995) 

3-Hydroxyepiglucoisatisin (39) I. tinctoria Whole plants Ahmad et al. 
(2008) 

I. tinctoria NI. Antoine et al. 
(2001) 

4-Hydroxyglucobrassicin (40) B. oleracea NI. Truscott et al. 
(1983) 

3-Hydroxyglucoisatisin (41) I. tinctoria Seeds Antoine et al. 
(2001) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 19 

Compound Source Plant part Reference 

(E)-2-(4-Hydroxy-2-oxoindolin-3-ylidene) 
acetonitrile (42) 

I. indigotica Roots Chen et al. 
(2012) 

(−)-(R)-2-(4-Hydroxy-2-oxoindolin-3-yl) 

acetamide  (43) 

I. indigotica 
 

Roots 
 

Chen et al. 
(2012) 
 (−)-(R)-2-(4-Hydroxy-2-oxoindolin-3-yl) 

acetonitrile (44) 

(+)-(S)-2-(3-Hydroxy-4-methoxy-2-

oxoindolin-3-yl) acetamide (45) 

(−)-(S)-2-(3-Hydroxy-4-methoxy-2-

oxoindolin-3-yl) acetonitrile (46) 

(+)-(S)-2-[7-[1-(4-Hydroxyphenyl)-ethyl]-

4-methoxy-1H-indol-3-yl]acetonitrile (47) 

I. indigotica 
 

Roots 
 

Chen et al. 
(2012) 
 

(2E)-N-(2-Hydroxyphenyl)-2-(1-hydroxy-3-

oxoindolin-2-ylidene) acetamide (48) 

I. indigotica Leaves Yang and Bao 
(2020) 

(−)-(2R,3R)-3-Hydroxy-2H-pyrrolo[2,3-

b]indolo[5,5a,6-b,a]quinazoline-9(8H),7-

dione (49) 

I. indigotica 
 

Roots 
 

Chen et al. Chen 
et al. (2012) 
 

(+)-(2S,3S)-3-Hydroxy-2H-pyrrolo[2,3-
b]indolo[5,5a,6-b,a]quinazoline-9(8H),7-
dione (50) 
 
Indigotin (51) 
 

I. indigotica 
 

Leaves, Roots 
 

Zou (2007) 

Indirubin (52) Isatidis folium Leaves Lu et al. (2012) 
3-Indoleacetic acid (53) B. oleracea var. 

capitata 
Heads Weller et al. 

(1953) 
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Compound Source Plant part Reference 

Indole-3-acetonitrile (54) B. campestris L. spp. 
rapa. 

NI. 
 

Kim et al. (2004) 

Indole-3-acetonitrile-2-S--D-
glucopyranoside (55) 

I. indigotica Roots Yang et al. (2014) 

Indole-3-acetonitrile-6-O--D-
glucopyranoside (56) 

I. indigotica Roots Li et al. (2003) 

Indole-3-acetonitrile-4-methoxy-2-S--D-
glucopyranoside (57) 

I. indigotica 
 

Roots 
 

Yang et al. (2014) 

1H-Indole-3-carboxylic acid (58) I. tinctoria Roots Zhang et al. 
(2022) 

3-Indoleformic acid (59) I. indigotica 
I. tinctoria 

Roots 
Roots 

Yang et al. (2014) 
Zhang et al. 
(2022) 

2-(1H-Indol-2-yl)-6-methoxy-4(3H)-
quinazolinone (60) 

I. tinctoria Roots Zhang et al. 
(2019) 

(Z)-2-(1H-Indol-3-ylmethyldene)-1,2-
dihydro-3H-indol-3-one (61) 

I. indigotica 
 

Roots 
 

Chen et al. 
(2012) 
 

2-(1H-Indol-2-yl)-4(3H)-quinolinone (62) I. tinctoria Roots Zhang et al. 
(2019) 

Isalexin (63) B. napus var. rapifera Tubers Pedras et al. 
(2004) 

Isatan A (64) I.  indigotica Roots 
 

Oberthur et al. 
(2004) 

I. tinctoria NI. 
 
Whole plants 

Oberthur et al. 
(2004) 
Ahmad et al. 
(2008) 

Isatan B (65) I. tinctoria NI. Oberthur et al. 
(2004) 

Isatibisindosulfonic acid A 3-O--D-
glucopyranoside (66) 

I. indigotica 
 

Roots 
 

Meng et al. 
(2017) 
 Isatibisindosulfonic acid B (67) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 21 

Compound Source Plant part Reference 

 
Isatidifoliumoside A (68) 
 

I. indigotica 
 

Leaves 
 

Guo et al. (2020) 
 

Isatidifoliumoside B (69) 
Isatidifoliumoside D (70) 

Isatigotindoledioside A (71) I. indigotica 
 
 

Roots 
 

Meng et al. 
(2017) 
 

Isatigotindoledioside B (72) 

Isatigotindoledioside C (73) 
Isatigotindoledioside D (74) 
Isatigotindoledioside E (75) 

Isatigotindoledioside F (76) 
Isatin (77) I. indigotica Roots Zhang et al. 

(2019) 
Isatindigobisindoloside A (78) 
Isatindigobisindoloside B (79) 

I. indigotica 
 

Roots 
 

Liu et al. (2015) 

Isatindigobisindoloside C (80) 
Isatindigobisindoloside D (81) 

I. indigotica Roots Liu et al. (2015) 
I. indigotica Roots Zhang et al. 

(2019) 

Isatindigobisindoloside E (82) 
Isatindigobisindoloside F (83) 
Isatindigobisindoloside G (84) 

I. indigotica 
 

Roots Liu et al. (2015) 
 

Isatindigodiphindoside (85) I. indigotica Roots Meng et al. 
(2018) 

Isatindigoside D (86) I. tinctoria 
 

Roots Zhang et al. 
(2019) 

Isatindigoside F (87) I. tinctoria 
 

Roots 
 

Zhang et al. 
(2020) Isatindigoside G (88) 

Isatindigoside H (89) I. indigotica Roots Zhang   et al. 
(2020) Isatindigoside I (90) 

Isatindigoside J (91) 
Isatindigoside K (92) 
Isatindigoside L (93) 
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Compound Source Plant part Reference 

Isatindigoside M (94) I. tinctoria Roots Zhang et al. 
(2022) 
 

Isatindigotindoloside B (95) I. tinctoria 
 
 

Roots 
 
 

Zhang et al. 
(2019) 

Isatindolignanoside A (96) I. indigotica Roots Lingjie et al. 
(2018) 

Isatindosulfonic acid B (97) I. indigotica Roots Meng et al. 
(2017) Isatindosulfonic acid C (98) 

Isatindosulfonic acid D (99) 
Isatindosulfonic acid E (100) 
Isatindosulfonic acid F (101) 
Isatisindigoticanine A (102) I. tinctoria Roots 

 
Zhang et al. 
(2019) 

Isatisindigoticanine F (103) 
Isatisindigoticanine G (104) 

I. tinctoria Roots 
 

Zhang et al. 
(2019) 

Isatisindigoticanine H (105) I. tinctoria Roots Zhang et al. 
(2020) Isatisindigoticanine I (106) 

Isatisindigoticanine J (107) 
Isatisindigoticanine K (108) 
Isatisindigoticanine L (109) 

I. indigotica 
 
 
 

Roots 
 

Zhang et al. 
(2020) 

Isatisindigoticanine M (110) I. tinctoria Roots   Zhang et al. 
(2022) Isatisindigoticanine N (111) 

Isatisine A (112) I. indigotica Leaves Liu et al. (2007) 

1-Methoxybrassenin A (113) B. oleracea var. 
capitata 

NI. Monde et al. 
(1991b) 1-Methoxybrassenin B (114) 

1-Methoxybrassinin (115) B. campestris var. 
pekinensis 

NI. Takasugi et al. 
(1987) 

4-Methoxybrassinin (116) B. oleracea NI. Monde et al. 
(1990) 
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Compound Source Plant part Reference 

1-Methoxybrassitin (117) B. oleracea var. 
botrytis 

NI. Pedras et al. 
(2006) 

6-Methoxycamalexin (118) Capsella bursapastoris Leaves Jimenez et al. 
(1997) 

4-Methoxycyclobrassinon (119)    B. napus Roots Pedras (2008b) 

4-Methoxydehydrocyclobrassinin (120) 
4-Methoxyglucobrassicin (121) B. oleracea NI. Truscott et al. 

(1983) 

4-Methoxy-3-indoleacetic acid (122) I. indigotica Roots Yang et al. (2014)  

N-Methoxy-indole-3-acetonitrile-2-S-β-D-
glucopyranoside (123) 

I. indigotica Roots Yang et al. (2014) 

1-Methoxy-3-indoleformic acid (124) I. tinctoria Roots Zhang et al. 
(2022) 

I. indigotica  Roots Yang et al. (2014) 
Wasabia japonica NI. Somei et al. 

(2001) 
1-Methoxyspirobrassinin (125) B. oleracea Stems Gross et al. 

(1994) 
1-Methoxyspirobrassinol (126) Raphanus sativus var. 

hortensis 
Roots Monde et al. 

(1995) (2R,3R)-1-Methoxyspirobrassinol methyl 
ether (127) 
1-Methylbenzocamalexin (128) B. oleracea NI. 

 
Pedras et al. 
(2010) 
Pedras et al. 
(2010) 

1-Methyl-6-cyanobenzocamalexin (129) 
1-Methyl-6-methoxybenzocamalexin 
(130) 

Methyl-1H-methoxyindole-3-carboxylate 
(131) 

W. japonica 
 

NI. Pedras et al. 
(1998) 

Methyl quindoline-11-carboxylate (132) I. indigotica Leaves Yang and Bao 
(2020) 

Phaitanthrin A (133) I. indigotica Roots Liu et al. (2016) 

Phaitanthrin D (134) I. indigotica Leaves Yang and Bao 
(2020) 
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Compound Source Plant part Reference 

Phaius mishensis NI. Jao et al. (2008) 
Rapalexin A (135) B. napus Leaves Pedras et al. 

(2007) Rapalexin B (136)   

Rutalexin (137)   B. napus var. rapifera Tubers Pedras et al. 
(2004) 

Sinalbin A (138) Sinapis alba Leaves Pedras et al. 
(2000) Sinalbin B (149) 

Sinalexin (140) S. alba NI. Soledade et al. 
(1997) 

(S)-Spirobrassinin (141)  Rhaphanus sativus 
var. hortensis 

NI. Takasugi et al. 
(1987) 

Sulfoglucobrassicin (142) I. tinctoria Whole plants Ahmad et al. 
(2008) 

Tryptanthrin (143) I. indigotica Leaves 
 

Wei et al. (2019) 
 

I. tinctoria Roots Speranza et al. 
(2020) 

Wasalexin A (144) W. japonica NI. Pedras et al. 
(1999) 
 

Wasalexin B (146) 

NI. refers to “not indicated”. 

N

R1

CNR2

R3

 
Arvelexin (1); R1= H, R2= OCH3, R3= H 

            1-Methoxy-indole-3-acetonitrile (Caulilexin C) (16); R1= OCH3, R2= H, R3= H 
2-[(4--D-Glucopyranosyloxy)-1-indol-3-yl] acetonitrile (36); R1= H, R2= O-Glu, R3= H  
Indole-3-acetonitrile (54); R1= H, R2= H, R3= H 
Indole-3-acetonitrile-6-O--D-glucopyranoside (56); R1= H, R2= H, R3= O-Glu  
Isatindigotindoloside B (97); R1= OCH3, R2= H, R3= O-Glu 
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N O

H3CO

N

SCH3

H3CS

N N

O

OCH3

SCH3

H3CS

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

N

R1

N

S

R2

 
 
 
 
 
 

N O

H3CO

N

SCH3

H3CS

N

H3CS

SCH3

N

OCH3O

Benzocamalexin (2); R1= R2= H  
1-Methylbenzocamalexin (128); R1= CH3, R2= H 
1-Methyl-6-cyanobenzocamalexin (129); R1= CH3, R2= CN 
1-Methyl-6-methoxybenzocamalexin (130); R1= CH3, R2= OCH3 

 
 

Biswasalexin A1 (3) 
 

  Biswasalexin A2 (4) 
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N

S

H3C
OH

CHO 
 

 
 

              Brassicanal A (5) 
 
 
 
 
 

 
 

 
 

 
 
 

 
 

 
 
 
 
 

 
 

 
 

 
 
 Brassinin (10); R1= S, R2= SCH3  

Brassitin (11); R1= O, R2 = SCH3  
Caulilexin B (15); R1= O, R2= H 
 

 

 

Brassilexin (9) R= H                       
Sinalexin (140) R= OCH3                       

 

 
 

Brassicanal C (7)  

N
H

CHO

SCH3

Brassicanate A (8); R1= H, R2= SCH3, R3= OCH3           
-D-Glucopyranosyl indole-3-carboxylic acid (37); R1= R2= H, R3= O-Glu  
1H-Indole-3-carboxylic acid (58); R1= R2= H, R3= OH 
3-Indoleformic acid (59); R1= H, R2= SCH3, R3= OH 
Isatindigoside M (97); R1= OCH3, R2= H, R3= O-Glu 
Methyl-1H-methoxyindole-3-carboxylate (131); R1= OCH3, R2= H, R3= OCH3 

1-Methoxy-3-indoleformic acid (124); R1= OCH3, R2= H, R3= OH 
 
 
 

 

 

 

 
 
 

Brassicanal B (6)  

N

S

N

R
N
H

H
N

R2

R1
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HN

HN

CN

OCH3

R

CN  
 

(−)-R-2-(3-Cyanomethyl-4-methoxy-1H-indol-7-yl)-2-(1H-indol3-yl) acetonitrile (19); R= H 

(−)-R-2-(3-Cyanomethyl-4-methoxy-1H-indol-7-yl)-2-(4-methoxy-1H-indol3-yl) acetonitrile (20) 

; R= OCH3 

Brussalexin A (12)
  

Camalexin (13) 

  
 

  

Caulilexin A (14)  Cephalandole B (17)
  

2-[Cyano(3-indolyl)methylene]-3-indolone (18) 
  

N
H

S

HN

O

N
H

CN

N
H

O
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N

S

N

R2

R1  
 
 

 
 
 

N

O

O

O OH

O
O

H
N

 
 

 
 
 

N
H

R2

O

R1

OH

 
 

(+)-(S)-2-(3,4-Dihydroxy-2-oxoindolin-3-yl) acetonitrile (26); R1= OH, R2= CN 

(−)-(R)-2-(4-Hydroxy-2-oxoindolin-3-yl) acetamide (43); R1= H, R2= CONH2 

(−)-(R)-2-(4-Hydroxy-2-oxoindolin-3-yl) acetonitrile (45);  

R1= H, R2= CN 

Dehydrocyclobrassinin (24); R1= H 
4-Methoxydehydrocyclobrassinin (121); R1= OCH3 

Cyclobrassinone (23); R= H 
4-Methoxycyclobrassinone (119); R= OCH3 
 
 
 (23) 
 

Cyclobrassinin (21); R1= H, R2= SCH3 
Cyclobrassinin sulfoxide (22); R1= H, R2= S(O)CH3 
Sinalbin A (138); R1= OCH3, R2= S(O)CH3 
Sinalbin B (139); R1= OCH3, R2= SCH3 

9,13-Dihydroxylisopropylidenyl-isatisine A (25) 
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S

N
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Epiglucoisatisin (29); R= H, S-configuration 
Glucoisatisin (35); R= H, R-configuration 
3-Hydroxyepiglucoisatisin (39); R= OH 
 
 
 
) 

Epiisatidifoliumoside A (30) 

Dioxibrassinin (27) 
2,2-Di-(3-indolyl)-3-indolone (28) 

 
 

Epiisatidifoliumoside B (31) 
 

Epiphaitanthrin A (32) 
 (34) 

N

O

OCH3

OH

OCH3

Glu
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N O S
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R
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N
H

R

O

OH

OCH3

 
(+)-(S)-2-(3-Hydroxy-4-methoxy-2-oxoindolin-3-yl) acetamide (45); R= CONH2 
(+)-(S)-2-(3-Hydroxy-4-methoxy-2-oxoindolin-3-yl) acetonitrile (46); R= CN 
 
 
 
 
 
 
 
(+)-(S)-2-[7-[1-(4-Hydroxyphenyl)-ethyl]-4-methoxy-1H-indol-3-yl] acetonitrile (47) 

Homobrassinin (38) 
 

 

    (E)-2-(4-Hydroxy-2-oxoindolin-3ylidene) acetonitrile (42)  
 
 

Erucalexin (33) 
Glucobrassicin (34); R1= R2= H  
4-Hydroxyglucobrassicin (40); R1= H, R2= OH 
4-Methoxyglucobrassicin (122); R1= H, R2= OCH3              
 
 

N

OCH3

N

S
SCH3

O
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N

S Glu
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N
H
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N

O
 

 
 

N
H

OH

O

R

 
 

 

Indigotin (51) 
 

Indirubin (52) 

Indole-3-acetonitrile (54) 

 (2E)-N-(2-Hydroxyphenyl)-2-(1-hydroxy-3-oxoindolin-2-ylidene) acetamide (48) 
 
 
 
 

N
H

O

NH

O

49 50 

 (−)-(2R,3R)-3-Hydroxy-2H-pyrrolo[2,3-b]indolo[5,5a,6-b,a]quinazoline-9(8H),7′-dione (49) 

 (+)-(2S,3S)-3-Hydroxy-2H-pyrrolo[2,3-b]indolo[5,5a,6-b,a]quinazoline-9(8H),7′-dione (50) 
 
 
 
 

3-Indoleacetic acid (53); R= H  
4-Methoxy-3-indoleacetic acid (122); R= OCH3  
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N

R1

CN

S

Glu

R2

 
 

 

 

 

 

 

 
 

2-(1H-Indol-2-yl)-6-methoxy-4(3H)-quinazolinone (60) 
 
 

   2-(1H-Indol-2-yl)-6-methoxy-4(3H)-quinazolinone (60) 
 
 
 

 
 
 
 
 
 
 
 
 

Indole-3-acetonitrile-2-S--D-glucopyranoside (55); R1= R2= H 
Indole-3-acetonitrile-4-methoxy-2-S--D-glucopyranoside (57); R1= H, R2= OCH3 
N-Methoxy-indole-3-acetonitrile-2-S--D-glucopyranoside (123); R1= OCH3, R2= H 

2-(1H-Indol-2-yl)-4(3H)-quinolinone (62) 
 
 

 
 

(Z)-2-(1H-Indol-3-yl-methylidene)-1,2-dihydro-3H-indol-3-one (61)
  
 

NH
O

NH
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Isalexin (63) 
 

Isatan A (64) 

Isatan B (65) Isatibisindosulfonic acid A 3-O--D-glucopyranoside (66) 
 

Isatibisindosulfonic acid B (67) Isatidifoliumoside A (68) 
 

Isatidifoliumoside B (69) 
 

Isatidifoliumoside D (70) 
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Isatindigobisindoloside A (78) 
 

Isatindigobisindoloside B (79) 
 

Isatigotindoledioside A (71); R= OCH3 

Isatigotindoledioside B (72); R= H 

 
 

Isatigotindoledioside E (75) 
 

Isatigotindoledioside F (76) 
 

Isatigotindoledioside C (73) 
e C (80) 
 

Isatigotindoledioside D (74) 

Isatin (77) 

N

R
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O

Glu Glu
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CNO
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O

Glu

N
H

O

O

NH NH
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Isatindigobisindoloside E (82) 
 

Isatindigobisindoloside F (83) 
 

Isatindigobisindoloside D (81) 
Isatindigoside H (93) 
 

Isatindigobisindoloside C (80) 
Isatindigoside J (91) 
 

 

Isatindigobisindoloside G (84) 
 

Isatindigodiphindoside (85) 
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Isatindigoside L (93) 
 

Isatindolignanoside A (96) 

Isatindigoside K (92) 
 

Isatindigoside I (90) 
 

Isatindigoside D (86) 
 

Isatindigoside F (87) 
Isatindigoside G (88) 
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Isatindosulfonic acid B (97) Isatindosulfonic acid C (98) 
Isatindosulfonic acid E (100) 

Isatisindigoticanine G (104) 
 

Isatisindigoticanine F (103) 

Isatindosulfonic acid D (99); R1= OCH3, R2= CN 
Isatindosulfonic acid D (101); R1= H, R2= COOH 
 

Isatisindigoticanine A (102) 
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Isatisindigoticanine H (105) 
 
 

Isatisindigoticanine J (107) 
 
 

Isatisindigoticanine I (106) 
 
 

Isatisindigoticanine K (108) 
 
 

Isatisindigoticanine M (110) 
 
 

Isatisindigoticanine N (111) 
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N

OCH3

H
N

SCH3

SCH3

R

 
 
 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1-Methoxybrassenin A (113) 
1-Methoxybrassenin B (114) 

Isatisine A (112) 
 

1-Methoxybrassinin (115); R1= OCH3, R2= H, R3= S 
4-Methoxybrassinin (116); R1= H, R2= OCH3, R3= S 
1-Methoxybrassitin (117); R1= OCH3, R2= H, R3= O 

6-Methoxycamalexin (118) 

1-Methoxyspirobrassinol (126) 1-Methoxyspirobrassinin (125) 
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O OH
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(2R,3R)-1-Methoxyspirobrassinol methyl ether (127) 
 
 

 
 
 

 
 
 
 
 

 

 
 
 

 
   

 
 
 
 
 
 
 

Rutalexin (137)   

 

Methyl quindoline-11-carboxylate (132) 

Rapalexin A; R= H (135) 
Rapalexin B; R= OH (136) 
 

Phaitanthrin A (133) Phaitanthrin D (134) 
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N

N

O

O

 
 

     
 

 
 
 
 
 
          
 
 
 
 
 
 
 

 
  
 

 
 

Table 2. Chemical constituents of plants in the genus Capparis 
 

Compounds Source Plant part Reference 
Alkaloids  

14-N-Acetylisocodonocarpine (146) 
15-N-Acetylcapparisine (147) 

Capparis decidua Root barks Forster et al. 
(2016)  

Berberine (148) C. dongvanensis Leaves Khang et al. 
(2021) 

 
Cadabicine (149) 

C. decidua 
 

NI. 
 

Ahmad et al. 
(1986) 

C. spinosa  Root barks Khanfar et al. 
(2003) 

Tryptanthrin (143) 

Wasalexin B (145) 
 

Wasalexin A (144) 

Sulfoglucobrassicin (142) 

N

OCH3

O

N

SCH3
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Compounds Source Plant part Reference 

Capparidisine (150) C. decidua NI. Ahmad et al. 
(1986) 

Capparidisinine (151) C. decidua Root barks Forster et al. 
(2016) 

Cappariloside A (152) C. spinosa Fruits Calis et al. 
(1999) Cappariloside B (153) 

Capparin A (154) C. sinaica 
 

Fruits 
 

Zhou et al. 
(2010) 
 

Capparin B (155) C. himalayensis 
 

NI. Li et al. 
(2008) 

Capparisine (156) C. decidua Root barks Ahmad et al. 
(1986) 

Capparisine A (157) C. spinosa  Fruits Yang et al. 
(2010) Capparisine B (158) 

Capparisine C (159) 

Capparispine (160) C. spinosa Roots Fu et al. 
(2008) 

Codonocarpine (161) C. decidua Root barks Forster et al. 
(2016) 

Flazin (162) C. spinosa Fruits Zhou et al. 
(2010) 

4-Hydroxy-1H-indole-3-carboxaldehyde 
(163) 

C. spinosa Aerial parts Zhou et al. 
(2010) 

2-(5-Hydroxymethyl-2-formylpyrrol-1-yl) 
propionic acid lactone (164) 

C. spinosa Fruits (Yang et al., 
2010) 

3-Hydroxy-3-methyl-4-methoxyoxindole 
(165) 

C. tomentosa Roots Akoto et al. 
(2008) 

N-(3′-Maleimidyl)-5-hydroxymethyl-2-
pyrrole formaldehyde (166) 

C. spinosa Fruits Yang et al., 
2010 

Stachydrine (167) C. tomentosa Roots Akoto et al. 
(2008) 
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Compounds Source Plant part Reference 

Tetrahydroquinoline acid (168) C. spinosa Stems and 
Fruits 

Zhang et al. 
(2014) 

Long-chain hydrocarbons 

Nonadecan-1-ol (169) C. dongvanensis Leaves Khang et al. 
(2021) 

Octadecanoic acid (170) C. spinosa Root barks Khanfar et al. 
(2003) 

Tetracontane (171) C. dongvanensis Leaves Khang et al. 
(2021) 

1-Tetradecanol (172) C. spinosa Root barks Khanfar et al. 
(2003) 

Flavonoids 
Ginkgetin (173) C. spinosa Fruits H. F. Zhou et 

al. (2011) 

Isoginkgetin (174) C. spinosa Fruits H. F. Zhou et 
al. (2011) 

Isorhamnetin-3-O-rutinoside (175) C. spinosa Root barks Khanfar et al. 
(2003) 

Isoquercetin (176) C. sinaica NI. Ibrahim et al. 
(2013) 

Kaempferol (177) C. cartilaginea 
 
 

Leaves 
 
 

Al-Mahweety 
and Alyahawi 
(2020) 

C. spinosa 
 

Buds 
 

Wiese et al. 
(2013) 

C. spinosa Fruits Zhou et al. 
(2010) 

Kaempferol-3-O-rutinoside (178) C. spinosa Fruits H. F. Zhou et 
al. (2011) 

C. spinosa Buds Wiese et al. 
(2013) 
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Compounds Source Plant part Reference 

Oroxylin A (179) C. himalayensis NI. Li et al. 
(2008) 

Quercetin (180) C. sinaica 
C. spinosa 

Fruits 
Buds 

Zhou et al. 
(2010) 
Wiese et al. 
(2013) 

Rutin (181) C. sinaica Fruits Zhou et al. 
(2010) 
 

Sakuranetin (182) C. spinosa Fruits H. F. Zhou et 
al. (2011) 

Thevetiaflavone (183) C. spinosa Fruits Zhou et al. 
(2010) 

Wogonin (184) C. himalayensis NI. Li et al. 
(2008) 

Glucosinolates and isothiocyanates 
Glucobrassicin (34) C. spinosa NI. Ahmed et al. 

(1972) 
Glucocapparin (185) C. spinosa NI. Matthaus and 

Ozcan (2002) 

Glucoiberin (186) C. spinosa NI. Ahmed et al. 
(1972) 

3-Methyl-3-buteneisothiocyanate (187) 
 

C. flexuosa NI. Gramosa et 
al. (1997) 

3-Methyl-2-butenyl--glucoside (189) C. spinosa Root barks Khanfar et al. 
(2003) 

Neoglucobrassicin (190) C. spinosa Buds Wiese et al. 
(2013) 

Phenolic acids 
Caffeic acid (191) C. spinosa Buds Wiese et al. 

(2013) 

4-Coumaric acid (192) C. spinosa Root barks Khanfar et al. 
(2003) 3,4-Dihydroxybenzoic acid (193) 
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Compounds Source Plant part Reference 

Ferulic acid (194) C. spinosa NI. Aliyaziciogl
u et al. 
(2013) 
 

Gallic acid (195) C. spinosa Buds Wiese et al. 
(2013) 

Salicylic acid (196)       C. dongvanensis Leaves Khang et al. 
(2021) 

Vanillic acid (197) C. spinosa Fruits Zhou et al. 
(2010) 

Steroids  

5,6-Epoxycholestan-3-ol (198) 
5,6-Epoxycholestan-3-ol (199) 
 

C. ovata Buds, Fruits, 
Flowers, 
Leaves and 
Stems 

Gazioglu et 
al. (2020) 

-Sitosterol (200) 
 

C. decidua 
 
 

Stems Rathee et al. 
(2012) 
 

C. dongvanensis 
 

Leaves 
 

Khang et al. 
(2021) 

C. cartilaginea. 
 

Leaves 
 

Khang et al. 
(2021) 

C. spinosa  
 
 

Root barks 
 
 

Khanfar et al. 
(2003) 
 

C. ovata Buds, Fruits, 
Flowers, 
Leaves and 
Stems 

Gazioglu et 
al., 2020) 
 

-Sitosterol 3-O--D-glucopyranoside  
(201) 

C. dongvanensis Leaves Khang et al. 
(2021) 
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Compounds Source Plant part Reference 

C. spinosa  Root barks Khanfar et al. 
(2003) 

Stigmasterol (202) C. ovata Buds, Fruits, 
Flowers, 
Leaves and 
Stems 

Gazioglu et al 
(2020) 

Terpenoids 
Capparisol A (203) 
 

C. spinosa  Root barks  Khanfar et al. 
(2003) 

Dihydroxy-lup-20(29)-en-28-oic acid (204) C. cartilaginea Leaves Al-Mahweety 
and Alyahawi 
(2020) 

(+)-(6S,9S)-9-O--D-Glucopyranosyloxy-6-
hydroxy-3oxo--ionol (205) 

(−)-(6S,9S)-9-O--D-Glucopyranosyloxy-

6,13-dihydroxy-3-oxo--ionol (206) 

C. spinosa  Root barks Khanfar et al. 
(2003) 

Lupeol (207) M. siamensis Leaves and 
Twigs 

Nobsathian et 
al. (2018) 

Olean-12-en-3,28-diol 3-
pentacosanoate (208) 

C. ovata Buds, Fruits, 
Flowers, 
Leaves and 
Stems 

Gazioglu et 
al. (2020) 

Oleanolic acid (209) C. ovata Buds, Fruits, 
Flowers, 
Leaves and 
Stems 

Gazioglu et 
al. (2020) 

Simiarenol (210) C. spinosa  
 
 

Root barks 
 
 

Khanfar et al. 
(2003) 
 

Taraxerol (211) C. ovata Buds, Fruits, 
Flowers, 
Leaves and 
Stems 

Gazioglu et 
al. (2020) 
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Compounds Source Plant part Reference 

Ursolic acid (212) C. spinosa  Root barks  Khanfar et al. 
(2003) 

Miscellaneous  
Benzoic acid (213) C. dongvanensis Leaves Calis et al. 

(1999) 
Khang et al. 
(2021) 

Bismethyl-octylphthalate (214) C. ovata Buds, Fruits, 
Flowers, 
Leaves and 
Stems 

Gazioglu et 
al. (2020) 

Guanosine (215) C. spinosa Fruits Zhou et al. 
(2010) 

(+)-R-2-(4-Hydroxy-2-oxo-2,3-
dihydrobenzofuran-3-yl) acetonitrile (216) 
(+)-S-2-(4-Hydroxy-2-oxo-2,3-
dihydrobenzofuran-3-yl) acetonitrile (217) 

C. spinosa Fruits and 
Stems 

Zhang et al. 
(2014) 

Nicotinamide (218) C. spinosa Root barks Khanfar et al. 
(2003) 

Para-hydroxybenzaldehyde (219) C. spinosa Root barks Khanfar et al. 
(2003) 

Phthalic acid (220) 
 

C.decidua Root barks Forster et al. 
(2016)  
 

Tryptophan (221) C. dongvanensis Leaves  Khang et al. 
(2021) 

 NI. refers to “not indicated”. 
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Alkaloids 
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Cadabicine; R1= R2= H (149) 
  Capparidisine; R1= R2= OCH3 (150) 
 

14-N-Acetylcodonocarpine (146); R1= OCH3, R2= OH  
15-N-Acetylcodonocarpine (147); R1= OH, R2= OCH3  
 
 

 
 
 
 

      15-N-acetylcodonocarpine; 
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Capparidisinine; R1= OCH3, R2= OH, R3= OCH3, R4= OCH3 (151) 
Capparisine; R1= OH, R2= H, R3= OCH3, R4= H (156) 
Codonocarpine; R1= OH, R2= OCH3, R3= H, R4= H (161) 
 
 
 

Cappariloside A (152) Cappariloside B (153) 

Capparine B (155); R1= H, R2= OCH3, R3= SCH3  
4-Hydroxy-1H-indole-3-carbaldehyde (163);  
R1= OH, R2= R3= H  
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Capparisine A (157) 
 

Capparisine B (158) 
 

Capparisine C (159) 
 

Capparispine (160) 
 

Flazin (162) 
 

2-(5-Hydroxymethyl-2-formylpyrrol-1-yl) 
propionic acid lactone (164) 
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Long chain hydrocarbons 
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Stachydrine; R= H (167) 
 

Nonadecan-1-ol (169) 
 

N-(3′-Maleimidyl)-5-hydroxymethyl-2-pyrrole  
formaldehyde (166) 
 

3-Hydroxy-3-methyl-4-methoxyoxindole (165)               
 

Tetrahydroquinoline acid (168) 
 

Octadecanoic acid (170) 
 

Tetracontane (171) 
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Flavonoids 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Oroxylin A (179); R1= OCH3, R2= H 
Wogonin (184); R1= H, R2= OCH3 

Sakuranetin (182) 

Isorhamnetin-3-O-rutinoside (175); R1= rutinoside, R2= OCH3 
Isoquercetin (176); R1= Glu, R2= OH  
Kaempferol (177); R1= R2= H 
Kaempferol-3-O-rutinoside (178); R1= rutinoside, R2= H 
Quercetin (180); R1= H, R2= OH 
Rutin (181); R1= rutinoside, R2= OH 
  
 

 

Ginkgetin (173); R1= CH3, R2= H 
Isoginkgetin (174); R1= H, R2= CH3 
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Glucosinolates and isothiocyanates  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Thevetiaflavone (183) 
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R2

R1
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OH
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Phenolic acids 
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Steroids  
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O
 

 

 5,6-Epoxycholestan-3-ol (198) 5, 6-Epoxycholestan-3-ol (199) 

Caffeic acid (191); R = OH 
4-Coumaric acid (192); R= H 
Ferulic acid (194); R= OCH3 

 
 

 

3,4-Dihydroxybenzoic acid (193); R1= R2= OH, R3= H  
Salicylic acid (196); R1= R2= H, R3= OH 
 

Gallic acid (195) 
 

Vanillic acid (197) 
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Terpenoids  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Capparisol A (203) 
(223) 

Dihydroxy-lup-20(29)-en-28-oic acid (204) 

(+)-(6S,9S)-9-O--D-Glucopyranosyloxy-6-hydroxy-3-oxo--ionol (205) 

Stigmasterol (202) 
 

-Sitosterol (200); R= OH 
-Sitosterol 3-O--D-glucopyranoside (201); R= O-Glu 
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(−)-(6S,9S)-9-O--D-Glucopyranosyloxy-6,13-dihydroxy-3-oxo--ionol (206) 

Lupeol (207) 

Oleanolic acid (209) 

Olean-12-en-3,28-diol 3-pentacosanoate (208) 
 

Simiarenol (210) 
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Miscellaneous  
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Taraxerol (211) 
 
 

Benzoic acid (213) 

Ursolic acid (212) 
 

Guanosine (215) 
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(+)-R-2-(4-Hydroxy-2-oxo-2,3-dihydrobenzofuran-3-yl) acetonitrile (216) 

(+)-S-2-(4-Hydroxy-2-oxo-2,3-dihydrobenzofuran-3-yl) acetonitrile (217) 
 
 

Nicotinamide (218) 
 

para-Hydroxybenzaldehyde (219) 

Tryptophan (221) Phthalic acid (220) 
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Table 3. Chemical constituents of plants in the genus Maerua 
Compound Source Plant part Reference 

Alkaloids  

Cappariloside A (152) M. siamensis Leaves and 
Twigs 

Nobsathian 
et al. (2018) Cappariloside B (153) 

cis-Cinnamoyl-4-aminobutylguanidine (222) M. edulis 
 

Leaves 
 

Stevenson 
et al. (2018) 
 

trans-Cinnamoyl-4-aminobutylguanidine 
(223) 

4-Hydroxy-E-cinnamoyl-4-
aminobutylguanidine (224) 
4-Hydroxy-Z-cinnamoyl-4-
aminobutylguanidine (225) 
Stachydrine (167) M. crassifolia 

 
Aerial parts 
 

Bishay et al. 
(1990) 

M. edulis Leaves Stevenson 
et al. (2018) 

Flavonoids 

Chrysoeriol (226) M. siamensis Leaves and 
Twigs 

Nobsathian 
et al. (2018) 

Kaempferol (177) M. crassifolia 
 

Aerial parts 
 

Bishay et al. 
(1990) 
 

Kaempferol-3-O-galactorhamnoside 
(227) 
Quercetin (180) M. crassifolia Aerial parts Ibraheim 

(1995) 

Quercetin-3-O-arabinopyranoside (228) M. crassifolia Aerial parts 
 

Bishay et al. 
(1990) 
 

Quercetin-3-O--D-galactoside (229) 
Rutin (181) 

Lignan 

Lyoniresinol-3-O-glucopyranoside (230) M. crassifolia Aerial parts Bishay et al. 
(1990) 

Steroids 
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Compound Source Plant part Reference 

Lupeol (207) M. siamensis Leaves and 
Twigs 

Nobsathian 
et al. (2018) 

Terpenoids 

Betulin (231) M. oblongifolia 
 

Aerial parts 
 

Abdel-Mogib 
(1999) Betulinaldehyde (232) 

Glochidone (233) M. siamensis Leaves and 
Twigs 

Nobsathian 
et al. (2018) 

Hexahydrofarnesyl acetone (234) M. oblongifolia Aerial parts 
 

Abdel-Mogib 
(1999) 

Ionol glucoside (235) M. crassifolia Aerial parts Ibraheim 
(1995) 

Lup-20(29)-en-3𝛽,30-diol (236) M. oblongifolia 
 

Aerial parts 
 

Abdel-Mogib 
(1999) 

Phytol (237) M. oblongifolia 
 

Aerial parts 
 

Abdel-Mogib 
(1999) 
 

Miscellaneous 
Cinnamic acid (238) M. siamensis Leaves and 

Twigs 
Nobsathian 
et al. (2018) 

3,4-Dihydroxybenzoic acid (193)    

Guaiacyl glycerol (239) M. crassifolia Aerial parts Ramadan et 
al. (1999) 

6-N-Methyl-9--D-glucoside adenine (240) M. crassifolia Aerial parts Ramadan et 
al. (1999) 3,4,5-Trimethoxyphenol-1-O--D-

glucopyranoside (241)    

Vanillin (242) M. siamensis Leaves and 
Twigs 

Nobsathian 
et al. (2018) 
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Alkaloids 
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trans-Cinnamoyl-4-aminobutylguanidine (223); R= H  

4-Hydroxy-E-cinnamoyl-4-aminobutylguanidine (224); R= OH  
  
   

Flavonoids 
 

 
 
 
 
 

 
 

 
 
 
 

Chrysoeriol (226); R1= H, R2= OCH3      

Kaempferol-3-O-galactorhamnoside (227); R1= galactose−rhamnose, R2 = H 
Quercetin-3-O-arabinopyranoside (228); R1= arabinose, R2= OH 
Quercetin-3-O--D-galactoside (229); R1= -D-galactose, R2= OH  
 
 

cis-Cinnamoyl-4-aminobutylguanidine (222); R= H 
4-Hydroxy-Z-cinnamoyl-4-aminobutylguanidine (225); R= OH  
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Lignans 
 
 
 

 
 
 
 
 
 

Lyoniresinol-3-O-glucopyranoside (230) 
 
 

Terpenoids        
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Hexahydrofarnesyl acetone (234) 

Betulin (231); R1= CH2OH, R2= CH3  
Betulinaldehyde (232) R1= CHO, R2= CH3 
Lup-20(29)-en-3,30-diol (236); R1= CH3, R2= CH2OH 
 

Glochidone (233) 
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        Ionolglucoside (235) 
 
 
 
 
 
    
 

Miscellaneous 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3,4,5-Trimethoxyphenol-1-O--D-glucopyranoside (241)           

 Guaiacyl glycerol (239) Cinnamic acid (238)   6-N-Methyl-9--D-glucoside adenine (240) 

Vanillin (242) 

Phytol (237) 
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CHAPTER III  
EXPERIMENTAL 

3.1 Source of plant materials 
The stems of Capparis micracantha were collected from Saraburi province in 

March 2019, while the roots of Maerua siamensis were collected from Sikhio district, 
Nakhon Ratchasima in April 2019. Voucher specimens of these plants have been 
deposited at department of Pharmacognosy and Pharmaceutical Botany, Faculty of 
Pharmaceutical Sciences, Chulalongkorn University, Thailand. 

3.2 General techniques 

 3.2.1 Solvents   
organic solvents used in this study were commercial grade and were distilled before 
used. 

 3.2.2 Analytical normal-phase thin-layer chromatography (TLC) 
Technique  : One dimensional, ascending 

Absorbent : Silica gel 60 F254 (Merck, Darmstadt, Germany)  

Layer thickness : 0.2 mm 

Distance  : 5 cm 

Temperature : Room temperature (30-32 ºC) 

Detection : 1. Ultraviolet light (wavelengths of 254 and 365 nm) 

2. Spraying with Ce2 (SO4)3 reagent and heating at 110-
130 ºC for 5 min 

 3.2.3 Analytical reversed-phase thin-layer chromatography (RP-18) 
Technique  : One dimensional ascending 

Absorbent  : Silica gel 60 RP-18 F254S (Merck) No. 1.05559 

Layer thickness : 0.2 mm 

Distance  : 5 cm 

Temperature : Room temperature (30-32 ºC) 
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Detection : as described in section 3.2.2 

 3.2.4 Column chromatography 

 3.2.4.1 Flash Column Chromatography 

Adsorbent : Silica gel 60, 230−400 mesh (Merck) 

Packing method : Dry packing  

Sample loading : The sample was dissolved in a small amount of organic  

solvent. Then, a small quantity of silica was mixed with 
the sample and dried. After that, the mixture was placed 
on top of the column. 

Detection : Fractions were examined as described in section 3.2.2. 

 3.2.4.2 Medium Performance Liquid Column Chromatography (MPLC) 

Adsorbent : Silica gel 60 (70−230 or 230−400 mesh) and v   

LiChroprep RP-18 (25−40 m) (Merck)    

Packing method : Dry packing  

Sample loading : The sample was dissolved in a small amount of organic  

solvent. Then, a small quantity of silica was mixed with 
the sample and dried. After that, the mixture was placed 
on top of the column. 

Detection : Fractions were examined as described in section 3.2.2. 

 3.2.4.3 Conventional column chromatography 
Adsorbent  : Silica gel 60 (70—230 or 230—400 mesh) (Merck)  

Packing method : Dry packing  

Sample loading : The sample was dissolved in a small amount of organic  

solvent. Then, a small quantity of silica was mixed with 
the sample and dried. After that, the mixture was placed 
on top of the column. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 66 

Detection : Fractions were examined as described in section 3.2.2. 

 3.2.4.4 Gel filtration chromatography 
Adsorbent : Sephadex LH-20 (GE Healthcare, Amersham, UK) 

Packing method : Sephadex gel was allowed to swell in mobile phase for  

24 hours, then poured into the column. 

Sample loading : The sample was dissolved in a small amount of mobile 

phase, then placed on top of the column. 

Detection : Fractions were examined as described in section 3.2.2. 

3.3 Spectroscopy 

3.3.1 Ultraviolet absorption spectra  
 Ultraviolet (UV) spectra were obtained on a Milton Roy Spectronic 3000 Array 
spectrophotometer (Rochester, NY, USA) at Pharmaceutical Research Instrument 
Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University. 

3.3.2 Infrared spectra 
 Fourier Transform Infrared (FT-IR) spectra was recorded on a Thermo scientific 
NicoletTM iS50 FT-IR spectrometer (Thermo Fisher scientific, Waltham, MA, USA) at the 
National Nanotechnology Center (NANOTEC, Thailand) or a Perkin Elmer FT-IR 1760X 
spectrometer (Boston, MA, USA) spectrometer (Scientific and Technological Equipment 
Center, Chulalongkorn University). 

3.3.3 Mass spectrometer  
 High Resolution-Electron Spray Ionization-Mass Spectrometry (HR-ESI-MS) 
spectra were obtained on a Bruker APEX II mass spectrometer (Karlsruche, Germany) 
at Kaohsiung Medical University (Taiwan), or an Agilent 6540 UHD Accurate-Mass Q-TOF 
mass spectrometer (CA, USA) at the Science Lab Center, Faculty of Science, Naresuan 
University. 
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3.3.4 Proton and carbon-13 nuclear magnetic resonance (1H- and 13C-NMR) 
spectroscopy 
 1H-NMR (600 MHz) and 13C-NMR (150 MHz) spectra were recorded on a Varian 
VNMRS-600 spectrometer (Lexington, MA, USA) Kaohsiung Medical University and 1H 
NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded on a Bruker Advance 
NEO 400 MHz NMR spectrometer (Karlsruche, Germany) at the Faculty of 
Pharmaceutical Sciences, Chulalongkorn University. 

3.3.5 Circular dichroism  
Circular dichroism was measured on a JASCO J-815CD/ORD spectropolarimeter 

(Kyoto, Japan) at Pharmaceutical Research Instrument Center, Faculty of 
Pharmaceutical Sciences, Chulalongkorn University. 

3.3.6 Polarimetry 

3.3.6.1 Optical rotation  
Specific rotation values were measured using a JASCO P-2000 polarimeter 

(Kyoto, Japan) at Pharmaceutical Research Instrument Center, Faculty of 
Pharmaceutical Sciences, Chulalongkorn University. 

3.4. Extraction and isolation 

3.4.1 Extraction of Capparis micracantha stems 
  Dried stems of C. micracantha (3.0 kg) were cut into small pieces and 
macerated with methanol (MeOH) 3×8 L, for three days each. The methanol extract 
was evaporated under reduced pressure to obtain crude MeOH extract (350 g, 11.67 
% yield, based on dried weight of stems). The extract was redissolved in MeOH added 
with deionized (DI) water, then partitioned with hexane (6 L), ethyl acetate (EtOAc, 8 
L), and n-butanol (8 L) successively to give hexane extract (13.8 g, 0.46% yield), EtOAc 
extract (11.5 g, 0.38% yield), n-butanol extract (56.5 g, 1.9 % yield) and aqueous extract 
(265.3 g, 8.84 % yield). (Scheme 1.) 
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Scheme 1 Extraction of Capparis micracantha stems. 

3.4.2 Isolation of compounds from the EtOAc extract of Capparis micracantha 
stems (CMSE) 

The EtOAc extract (11.45 g) was divided into 4 portions and each portion was 
separated by MPLC using silica gel as stationary phase. The column was eluted with n-
hexane-acetone (4:1 to 0:1) and washed by CH2Cl2-MeOH (1:1). Each fraction was 
collected about 50 mL of eluate. All fractions were combined according to their TLC 
pattern to give 8 major fractions: CMSE-1 (0.7 g), CMSE-2 (1.2 g), CMSE-3 (1.8 g), CMSE-
4 (1.6 g), CMSE-5 (2.7 g), CMSE-6 (2.4 g), CMSE-7 (1.5 g), and CMSE-8 (2.5g). 

 

 

Capparis micracantha stems (3.0 kg) 

MeOH extract (350 g) 

hexane extract (13.8 g) aqueous extract  

EtOAc extract (11.5 g) aqueous extract  

n-butanol extract (56.5 g) aqueous extract (265.3 g) 

macerated with MeOH (3 x 8L) 

added with DI water and partitioned with hexane 

partitioned with EtOAc 

partitioned with n-butanol  

Scheme 1.  
 

Scheme 1. Extraction of Capparis micracantha stems. 
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3.4.2.1 Isolation of compound 1 (methyl 6-methoxy-3-indolecarbonate) 

Fraction CMSE-4 was combined with CMSE-5 and separated by MPLC using 
silica gel as stationary phase. The mobile phase was n-hexane-acetone (4:1 to 0:1). 
The eluates were combined into 8 fractions (Fr.4-1 to 4-8). Fraction 4-3 (99.8 mg) was 
purified by size exclusion chromatography (Sephadex LH-20), eluted with CH2Cl2-

MeOH (1:1) to give 4 subfractions (fr.4-3-1 − 4-3-4). Subfraction 4-3-4 (10 mg) was 
further repurified by Sephadex LH-20 column (MeOH) to obtain 10 subfractions. 
Compound 1 (1.2 mg) was obtained from subfraction 4-3-4-5 as a yellow amorphous 
solid (Scheme 2). 

3.4.2.2 Isolation of compound 2 (vanillic acid)  

 Fraction 4-5 (147.2 mg) was subjected to silica gel column chromatography 

(Si-CC), eluted with CH2Cl2−acetone (30:1 to 0:1) to gain 8 subfractions (fr.4-5-1 − 4-
5-8). Subfraction 4-5-2 (49 mg) was further separated by Si-CC with n-hexane-EtOAc 

(3:2) as the mobile phase to afford 6 subfractions (fr.4-5-2-1 − 4-5-2-6). Subfraction 4-

5-2-3 was further purified by recrystallization in CH2Cl2− MeOH to obtain compound 
2 (4.1 mg) as a white amorphous solid (Scheme 2). 

3.4.2.3 Isolation of compound 3 [(−)-syringaresinol] 

Fraction 4-6 (537.8 mg) was separated by MPLC using silica gel as stationary 

phase and CH2Cl2−acetone (10:1) as mobile phase to yield 7 subfractions (Fr.4-6-1 − 

4-6-7). Subfraction 4-6-2 (81.3 mg) was subjected to Si-CC using CH2Cl2−MeOH (20:1) 

as the solvent system to obtain 13 subfractions (fr.4-6-2-1 − 4-6-2-13). Subfraction 4-
6-2-4 (38.5 mg) was further separated on a Sephadex LH-20 column (MeOH) to obtain 

6 subfractions (fr.4-6-2-4-1 − 4-6-2-4-6). Subfraction 4-6-2-4-3 yielded compound 3 
(10.0 mg) as a white amorphous solid (Scheme 2). 
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3.4.2.4 Isolation of compound 4 [(+)-ampelopsin A]   

Fraction CMSE 6 (2.4 g) was subjected to Sephadex LH-20 column eluted with 

MeOH to give 8 fractions (fr.6-1 − 6-8). Fraction 6-4 (32.5 mg) was repurified on 

Sephadex LH-20 column (MeOH) to yield 6 subfractions (fr.6-4-1 − 6-4-6). Subfraction 
6-4-4 (32.8 mg) was further separated by MPLC using reverse phase (RP-18) column as 

stationary phase. After eluting with DI water−MeOH (3:2 to 1:1), 8 subfractions (fr.6-4-

4-1 − 6-4-4-8) were afforded. Compound 4 (2.4 mg) was purified from subfraction 6-
4-4-4 (Scheme 3). 

3.4.2.5 Isolation of compound 5 [(−)-pauciflorol E] 

Fraction 6-6 (162.0 mg) was loaded on MPLC [silica gel, CH2Cl2−acetone (4:1 
to 0:1)] to gain 12 subfractions. Subfractions 6-6-7 (7.9 mg) was purified by Si-CC using 

CH2Cl2−MeOH (20:1) to obtain 4 subfractions (fr.6-6-7-1 − 6-6-7-4). Subfractions 6-6-7-
1 (5.1 mg) was further purified by Sephadex LH-20 (MeOH) to give 4 subfractions. 
Compound 5 (3.0 mg) was obtained from subfraction 6-6-7-1-3 as a green amorphous 
solid (Scheme 3). 
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Sephadex LH-20, 
CH2Cl2-MeOH (1:1) 

MPLC, silica gel,  

CH2Cl2−MeOH (20:1) silica gel, n-hexane−EtOAc (3:1) 
 

 

fr.4-5 fr.4-6 fr.4-3 

 silica gel, CH2Cl2−acetone 
(30:1 to 0:1) silica gel, CH2Cl2−acetone (10:1) 

 

 

Sephadex LH-20, MeOH  

fr. 4-5-2-3 
(4.1 mg) 

Compound 2 
 

 

 

fr. 4-5-2-4 
 to 4 

fr.4-6-2-4 

fr.4-6-2-4-1 to 2 fr.4-6-2-4-2 to 6 

silica gel, n-hexane-acetone (4:1 to 0:1) 
 

Sephadex LH-20, (MeOH)  
 fr.4-3-4-6 to 10 

fr.4-5-2-1 to 2 

EtOAc extract 
(11.45 g) 

fr. 4-1 to 4-2 fr.4-7 & 8 

fr.4-6-2-4-3 (10 mg) 
Compound 3 

fr.4-5-3 to 9 fr.4-6-1 fr.4-6-2 

 

fr.4-6-3 to 7 fr.4-3-1 to 3 

fr.6  fr.7 fr.8 fr.1-3 

fr.4-3-4-1 to 4  fr.4-3-4-5 

(1.2 mg) 
Compound 1 

fr.4-5-2 

fr.4-6-2-1  
to 3 

fr.4-6-2-5  
to 13 

fr.4-3-4 

fr.4&5 

fr.4-5-1 

Scheme 2. Isolation of compounds 1 − 3 from the EtOAc extract of C. micracantha   

silica gel, n-hexane-acetone (4:1 to 0:1) 

CH2Cl2−acetone(30:1 to 0:1) 
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fr.6-6-7-1-1  
to 2 

fr.6-6-7-1-4 

Sephadex LH-20, MeOH 
 

 silica gel, CH2Cl2−MeOH (20:1) 

fr.1-3 fr.4&5 fr.6 fr.7 fr.8 

fr.6-7 to 6-8  

fr.6-6-7 fr.6-6-8 to 12 

 silica gel, CH2Cl2−acetone (4:1 to 0:1) 

fr.6-4-4 

fr.6-1 to 6-3 

silica gel, n-hexane-acetone (4:1 to 0:1) 

fr.6-6 

fr.6-4-1 
to 3 

fr.6-4-5 to 6 

Sephadex LH-20, MeOH 
 

RP-18, DI Water-MeOH (3:2 to 1:1) 

fr.6-4 

fr.6-6-7-1 fr.6-6-7-2 to 4 
 

fr.6-6-1 to 6 
 

EtOAc extract 
(11.45 g) 

 fr.6-6-7-1-3 
(3.0 mg) 

Compound 5 

Sephadex LH-20, MeOH 

fr.6-4-4-1 

to 3 
 

 

fr.6-4-4-4 

(2.4 mg) 
Compound 4 

fr.6-4-4-5 
to 8 

Scheme 3. Isolation of compounds 4 − 5 from the EtOAc extract of C. micracantha   
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3.4.3 Extraction of Maerua siamensis roots 
 

 Dried roots of M. siamensis (7.0 kg) were cut into small pieces and extracted 
with EtOAc (3×30 L), for three days each. The extract was evaporated under vacuum 
to yield EtOAc extract (29.3 g, 0.42 % yield). The marc was further macerated with 
MeOH (3× 30 L), for three days each. After evaporation, the MeOH extract (350 g, 5.0 
% yield) was redissolved in MeOH, added with DI water and partitioned with n-butanol 
(8 L) to give n-butanol extract (50.8 g, 0.73 % yield) and aqueous extracts (299.2 g, 4.27 
% yield). (Scheme 4.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EtOAc extract 
29.3 g 

macerated with EtOAc (3 x 30 L) 

marc 

macerated with MeOH (3 x 30 L) 

MeOH extract 

partitioned with n-butanol (8L) 

Maerua siamensis roots (7.0 kg) 

n-butanol extract  
50.8 g 

aqueous extract 
299.2 g 

Scheme 4. Extraction of Maerua siamensis roots 
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3.4.4 Isolation of compounds from EtOAC extract of Maerua siamensis roots  
  The EtOAc extract (29.3 g) was separated by a silica gel MPLC column using n-

hexane-acetone (15:1 to 6:1) as mobile phase. The flow rate was 15 mL/min. Each 
collected fraction was 50 mL. Based on TLC pattern, 9 major fractions were obtained 
as follows: MSRE-1 (5.30 g), MSRE-2 (4.17 g), MSRE-3 (1.10 g), MSRE-4 (0.20 g), MSRE-5 
(0.18 g), MSRE-6 (0.27 g), MSRE-7 (0.25 g), MSRE-8 (2.14 g), and MSRE-9 (1.06 g). 

 

3.4.4.1 Isolation of compound 6 [(+)-maeruanitrile A] and compound 7 
(maeruanitrile B) 

Fraction MRSE-8 (2.14 g) was subjected to MPLC [silica gel, CH 2C l 2−acetone 

(120:1 to 20:1)] to give 12 fractions (fr.8-1 − 8-12). Fraction 8-2 (66.6 mg) was separated 

using MPLC [silica gel, n-hexane−C H 2 C l 2−acetone (8:1:1 to 4:1:1)] to gain 12 

subfractions (fr.8-2-1 − 8-2-12). Subfraction 8-2-4 (28.60 mg) was purified in two steps 

using n-hexane−CH2Cl2−acetone system [8:1:1 to 4:1:1 and 4:1:1 to 2:1:1] to yield 14 

subfractions (fr.8-2-4B-1−8-2-4B-14). Subfraction 8-2-4B-14 was subjected to Si-CC 

eluted with n-hexane−CH 2C l 2−acetone (2:1:1) to afford compound 6 (2.4 mg) as a 
reddish-brown amorphous solid from subfraction 8-2-4B-14-4, and compound 7 (1.4 
mg) as a reddish-brown amorphous solid from subfraction 8-2-4B-14-8 (Scheme 5). 

 

3.4.4.2 Isolation of compound 8 (maeroxime A) 
  Fraction MRSE-6 (274.50 mg) was loaded on MPLC [silica gel, n-hexane-acetone 

(3:1)], to yield 10 fractions (fr.6-1 − 6-10). Fraction 6-5 (38.2 mg) was further separated 
by MPLC using C-18 reversed phase silica gel as stationary phase and DI 

water−acetonitrile (1:2) as mobile phase to gain 13 subfractions (Fr.6-5-1 − 6-5-13). 
Subfraction 6-5-2 (8 mg) was purified by preparative reversed phase TLC using DI water-
acetonitrile (1:4) as mobile phase to afford compound 8 (2.4 mg) as a reddish-brown 
amorphous solid from fraction 6-5-2-2 (Scheme 6). 
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3.4.4.3 Isolation of compound 9 (maeroxime B) 

Fraction MRSE-8 (2.14 g) was subjected to MPLC [silica gel, CH2Cl2−acetone 

(120:1 to 20:1)] to give 12 fractions (fr.8-1 − 8-12). Fraction 8-6 (31.90 mg) was 

undergone three-step purification by Si-CC using with n-hexane−acetone (10:1 to 6:1) 

and n-hexane−acetone (6:1), and n-hexane−acetone (3:1) to obtain compound 9 
(fraction 8-6-13-3A, 1.0 mg) as an orange-brown amorphous solid (Scheme 7). 

 

3.4.4.4 Isolation of compound 10 (maeroxime C) 
Fraction 8-9 (158 mg) was subjected to three-step purification by MPLC [Si-CC, 

n-hexane−CH 2C l 2−acetone (8:1:1, 8:1:1 and 6:1:1)] to obtain subfraction 8-9B-11-7. 
Subfraction 8-9B-11-7 was further separated by a Sephadex LH-20 column (MeOH) to 

give 8 subfractions (fr.8-9B-11-7-1 − 8-9B-11-7-8). Compound 10 (3.5 mg) was obtained 
from subfraction 8-9B-11-7-4 as a yellow amorphous solid (Scheme 8). 
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silica gel, CH2Cl2−acetone (120:1 to 20:1) 

silica gel, n-hexane−CH2Cl2−acetone (8:1:1 to 4:1:1) 

fr.8-2  fr.8-7 to fr.12 

fr.8-2-4B-1 to 13 fr.8-2-4B-14  fr.8-2-4B-15 to 16 

fr.8-2-4B-14-1 to 3 fr.8-2-4B-14-4 
(2.4 mg) 

compound 6 

fr.8-2-4B-14-8 
(1.4 mg) 

Compound 7 

fr.8-2-4B-14-9 to 10 

fr.8-3 to 6 

EtOAc extract (29.3 g) 

fr.1-5 fr.6 fr.7 fr.8  fr.9 

fr.8-1 

fr.8-2-1 to 3 fr.8-2-4  fr.8-2-5 to 12 

fr.8-2-4A fr.8-2-4B fr.8-2-4C 

silica gel, n-hexane−CH2Cl2−acetone (4:1:1 to 2:1:1) 
 

silica gel, n-hexane−CH2Cl2−acetone (2:1:1) 
 

silica gel, n-hexane−CH2Cl2−acetone (8:1:1 to 4:1:1) 

silica gel, hexane−acetone (15:1 to 6:1) 

Scheme 5. Isolation of compound 6 − 7 from the EtOAc extract of M. siamensis  
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silica gel, hexane−acetone (15:1 to 6:1) 

fr.6-1 to 4 fr.6-5  fr.6-6 to 10 

fr.6-5-1  fr.6-5-2  

EtOAc extract (29.3 g) 

fr.6-5-2-2  
(2.4 mg) 

Compound 8 

fr.6-5-3 to 13 

fr.1-5 fr.6 fr.7 fr.8 fr.9 

silica gel, n-hexane−EtoAc (3:1) 

Preparative TLC (RP-18), DI water: acetonitrile (1:4) 

 RP-18, DI water-acetonitrile (1:2) 

Scheme 6. Isolation of compound 8 from the EtOAc extract of M. siamensis 
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fr.8-6-1 to 11 fr.8-6-12 fr.8-6-13 

fr.8-6-13-1 to 2 

silica gel, n-hexane−acetone (6:1) 
 

fr.8-6-13-3 

fr.1-5  fr.6 fr.7 fr.8  fr.9 

fr.8-6  fr.8-7 to 8  fr.8-9 fr.8-10 to 12 fr.8-1 to 
5 

fr.8-6-13-4 

EtOAc extract (29.3 g) 

fr.8-6-13-3A 
(1.0 mg) 

Compound 9 

fr. 8-6-13-3B  
to I  

 

silica gel, hexane−acetone (15:1 to 6:1) 

silica gel, CH2Cl2−acetone (120:1 to 20:1) 

silica gel, n-hexane−acetone (3:1) 
 

silica gel, n-hexane−acetone (10:1 to 6:1) 

fr.8-6-14 to 16 

Scheme 7. Isolation of compound 9 from the EtOAc extract of M. siamensis  
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fr.8-9B-1 to 10 fr.8-9B-11  
 

fr.8-9B-12 to 13 

fr.8-9B-11-7-1  
to 3 

fr.8-9B-11-7-5 to 8 

silica gel, n-hexane−CH2Cl2−acetone (6:1:1) 

silica gel, n-hexane−CH2Cl2−acetone (8:1:1) 

fr.8-9B-11-7-4  
(3.5 mg) 

Compound10 

EtOAc extract (29.3 g) 

fr.1-5  fr.6 fr.7 

 fr.8-1 to 8 

fr.8  fr.9 

 fr.8-9 

fr.8-9A fr.8-9B 

fr.8-10 to 12 

fr.8-9C 

fr.8-9B-11-1 to 6 fr.8-9B-11-7 fr.8-9B-11-8 

silica gel, CH2Cl2−acetone (120:1 to 20:1) 

Sephadex LH-20 (MeOH) 

silica gel, n-hexane−CH2Cl2−acetone (8:1:1) 

Scheme 8. Isolation of compound 10 from the EtOAc extract of M. siamensis  
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3.4.5 Isolation of compounds from n-butanol extract of M. siamensis roots 
The n-butanol extract (50.8 g) was divided into 4 portions and loaded on 

Sephadex LH-20 (MeOH). All fractions were combined to yield 5 major fractions−MSRB-
A (26.5 g), MSRB-B (20.8 g), MSRB-C (5.7 g), MSRB-D (5.7g) and MSRB-E (5.2 g). 

3.4.5.1 Isolation of compounds 11 (maeruabisindole A) 
Fraction MSRB-C (5.7 g) was done with a separation on MPLC [silica gel, CH2Cl2-

acetone (10:1 to 1:1)] to gain 16 subfractions (fr.C-1 − C-16). Subfraction MSRB-C-7 was 
further purified using MPLC [silica gel, CH2Cl2-acetone (10:1)] to obtain 10 subfractions 

(fr.C-7-1 − C-7-10). Subfraction C-7-5 (283.5 mg) was separated into two steps by 
Sephadex LH-20 (MeOH) to yield compound 11 (subfraction MSRB-C-7-5-9-4, 1.1 mg) 
as a pale green amorphous solid (Scheme 9). 

3.4.5.2 Isolation of compounds 12 (maeruabisindole B) 

 Fraction MSRB-C-15 (3.58 g) was separated by MPLC [Si-CC, CH2Cl2−acetone 

(6:1)] to yield 11 subfractions (fr.C-15-1 − C-15-11). Fraction C-15-4 (8.6 mg) was further 

purified by Sephadex LH-20 (MeOH) to obtain 4 subfractions (fr.C-15-4-1 − C-15-4-4). 
Compound 12 (1.1 mg) was yielded as a pale green amorphous solid from subfraction 
MSRB-C-15-4-1 (Scheme 10). 

3.4.5.3 Isolation of compounds 13 (maeruabisindole C) 
Fraction MSRB-E (2.31g) was separated by MPLC column [silica gel, 

CH2Cl2−acetone (10:1 to 1:1) to obtain 12 subfractions (fr.E-1 − E-12). Compound 13 
(3.5 mg) was obtained as a dark green amorphous solid from subfraction MSRB-E-4 
(Scheme 11). 
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MSRB-A MSRB-B MSRB-C MSRB-D MSRB-E 

fr.C-1 to 6 fr.C-7 fr.C-8 to 14 fr.C-16 

fr.C-7-1 to 4 fr.C-7-5 fr.C-7-6 

fr.C-7-5-1 to 5 fr.C-7-5-6 to 8 fr.C-7-5-9 

fr.C-7-5-9-1 to 3 

n-butanol extract (50.8 g) 

fr.C-7-5-9-4 
(2.8 mg) 

Compound 11 

fr.C-7-5-9-5 

fr.C-7-5-10 to 12 

Sephadex LH-20 (MeOH) 

silica gel, CH2Cl2−acetone (10:1 to 1:1) 

Sephadex LH-20 (MeOH) 

Sephadex LH-20 (MeOH) 

fr.C-15 

fr.C-7-7 fr.C-7-8 to 10 

silica gel, CH2Cl2−acetone (10:1) 

Scheme 9. Isolation of compound 11 from the butanol extract of M. siamensis 
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fr.C-15-1 to 2 fr.C-15-3 

fr.C-15-4-2 

to 4 

silica gel, CH2Cl2−acetone (10:1 to 1:1) 

 silica gel, CH2Cl2−acetone (6:1) 

Sephadex LH-20 (MeOH)  

Sephadex LH-20 (MeOH) 

fr.C-15-4-1 

(1.1 mg) 
Compound 12 

n-butanol extract (50.8 g) 

MSRB-A MSRB-B MSRB-C MSRB-D MSRB-E 

fr.C-1 to 6 fr.C-7 

fr.C-15-4 fr.C-15-5 to 11 

fr.C-8 to 14 fr.C-15 fr.C-16 

Scheme 10. Isolation of compounds 12 from the butanol extract of M. siamensis 
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fr.E-1 to 3 fr.E-5 to 12 

MSRB-A MSRB-B MSRB-C MSRB-D MSRB-E 

n-butanol extract (50.8 g) 

fr.E-4 

(3.5 mg) 
Compound 13 

Sephadex LH-20 (MeOH) 

silica gel, CH2Cl2−acetone (10:1) 

Scheme 11. Isolation of compound 13 from the butanol extract of M. siamensis 
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3.5 Physical and spectral data of isolated compounds 

3.5.1 Compound 1 (methyl 6-methoxy-3-indolecarbonate) 
Compound 1 was obtained as a yellow amorphous solid, soluble in acetone 

(1.2 mg, 0.00004% based on dried weight of stems). 

HR-ESI-MS : [M+H]+ at m/z 206.0817 (calculated for C11H12NO3, 206.0818); Figure 5 

FT-IR : max (ATR) cm-1: 3307, 2947, 2836, 1678, 1532, 1442, 1277, 1153; 
Figure 6 

1H-NMR :  ppm, 400 MHz, acetone-d6; see Table 4; Figure 7-8 

13C-NMR :  ppm, 100 MHz, acetone-d6; see Table 4; Figure 9 
 

3.5.2 Compound 2 (vanillic acid) 
Compound 2 was obtained as a white amorphous solid, soluble in acetone 

(4.1 mg, 0.00014% based on dried weight of stems). 

HR-ESI-MS : [M+H]+ at m/z 169.0504 (calculated for C8H8O4, 169.0501); Figure 15 

FT-IR : max (ATR) cm-1: 3484, 2923, 1674, 1595, 1522, 1433, 1217, 1237, 1202, 
1111, 763, 503; Figure 16 

1H-NMR :  ppm, 400 MHz, acetone-d6; see Table 5; Figure 17 

13C-NMR :  ppm, 100 MHz, acetone-d6; see Table 5; Figure 18 
 

3.5.3 Compound 3 [(−)-syringaresinol] 
Compound 3 was obtained as a white amorphous solid, soluble in acetone 

(10 mg, 0.00033% based on dried weight of stems). 

HR-ESI-MS : [M+Na]+ at m/z 441.1540 (calculated for C22H26NO8Na, 441.1520); 
Figure 23 

[α]25
D  : −31.0° (c 0.01, MeOH) 

FT-IR : max (ATR) cm-1: 3397, 2939, 2835, 1610, 1515, 1459, 1424, 1332, 1212, 
1108; Figure 24 
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1H-NMR :  ppm, 400 MHz, acetone-d6; see Table 6; Figure 25-26 

13C-NMR :  ppm, 100 MHz, acetone-d6; see Table 6; Figure 27 
 

3.5.4 Compound 4 [(+)-ampelopsin A)] 
Compound 4 was obtained as a red amorphous solid, soluble in MeOH and 

acetone (2.4 mg, 0.00008% based on dried weight of stems). 

HR-ESI-MS : [M+H]+ at m/z 471.1455 (calculated for C28H22NO7, 471.1444); Figure 33 

[α]25
D  : +98° (c 0.10, MeOH) 

FT-IR : max (ATR) cm-1: 3314, 1597, 1513, 1451, 1339, 1234, 1173, 1151, 1135, 
1007, 834; Figure 34 

1H-NMR :  ppm, 400 MHz, acetone-d6; see Table 7; Figure 35-36 

13C-NMR :  ppm, 100 MHz, acetone-d6; see Table 7; Figure 37-38 
 

3.5.5 Compound 5 [(−)-pauciflorol E)] 
Compound 5 was obtained as a green amorphous solid, soluble in acetone 

(3.0 mg, 0.0001% based on dried weight of stems). 

HR-ESI-MS : [M+H]+ ion at m/z 469.1320 (calculated for C28H20NO7, 469.1287); 
Figure 45 

[α]25
D  : −166° (c 0.10, MeOH) 

FT-IR : max (ATR) cm-1: 3339, 2924, 2852, 1656, 1596, 1531, 1447, 1374, 1333, 
1261, 1175, 1158, 1110, 1010, 835; Figure 46 

1H-NMR :  ppm, 400 MHz, acetone-d6; see Table 8; Figure 47-49 

13C-NMR :  ppm, 100 MHz, acetone-d6; see Table 8; Figure 50-51 
 

3.5.6 Compound 6 [(+)-maeruanitrile A] 
Compound 6 was obtained as a reddish-brown amorphous solid, soluble in 

acetone (2.4 mg, 0.00003% based on dried weight of roots). 
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HR-ESI-MS : [M+Na]+ at m/z 241.0585 (calculated for C11H10N2O3Na, 241.0584); 
Figure 58 

[α]25
D  : +3.0° (c 0.001, MeOH) 

UV  : max (MeOH) nm (log ): 218 (5.49), 268 (4.66), 322 (4.04); Figure 57  

CD : (c 0.000045, MeOH) nm (mdeg): 240 (+8.20), 265.5 (−9.64), 283.0 (0.07); 
Figure 60 

FT-IR : max (ATR) cm-1: 3291, 2256, 1789, 1629, 1462, 1342, 1722; Figure 59 

1H-NMR :  ppm, 600 MHz, acetone-d6; see Table 9; Figure 61 

13C-NMR :  ppm, 150 MHz, acetone-d6; see Table 9; Figure 62 
 

3.5.7 Compound 7 (maeruanitrile B) 
Compound 7 was obtained as a reddish-brown amorphous solid, soluble in 

acetone (1.4 mg, 0.00002% based on dried weight of roots). 

HR-ESI-MS : [M+Na]+ at m/z 271.0511 (calculated for C12H12N2O2SNa, 271.0517); 
Figure 69 

UV  : max (MeOH) nm (log ): 228 (4.85), 300 (4.39), 342 (3.77); Figure 68  

FT-IR : max (ATR) cm-1: 3163, 2924, 2850, 2360, 2249, 1626, 1451, 1298, 1208, 
1160, 1022; Figure 70 

1H-NMR :  ppm, 600 MHz, CD3OD; see Table 10; Figure 71 

13C-NMR :  ppm, 150 MHz, CD3OD; see Table 10; Figure 72 
 

3.5.8 Compound 8 (maeroxime A) 
Compound 8 was obtained as a reddish-brown amorphous solid, soluble in 

acetone (2.4 mg, 0.00003% based on dried weight of roots). 

HR-ESI-MS : [M+H]+ at m/z 265.0999 (calculated for C13H16N2O2S, 265.1010); 
Figure 81 
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UV : max (MeOH) nm (log ): 212 (5.12), 217 (5.26), 225 (4.80), 269 (4.15); 
Figure 80  

FT-IR : max (ATR) cm-1: 3369, 2923, 2852, 1714, 1627, 1501, 1457, 1337, 1198, 
1093; Figure 82 

1H-NMR :  ppm, 400 MHz, DMSO-d6; see Table 11; Figure 83-84 

13C-NMR :  ppm, 100 MHz, DMSO-d6; see Table 11; Figure 85 
 

3.5.9 Compound 9 (maeroxime B) 
Compound 9 was obtained as an orange-brown amorphous solid, soluble in 

acetone (1.0 mg, 0.00001% based on dried weight of roots). 

HR-ESI-MS : [M+H]+ at m/z 279.0780 (calculated for C13H14N2O3S, 279.0803); Figure 
96 

UV  : max (MeOH) nm (log ): 212 (4.69), 280 (3.25), 314 (4.18); Figure 94 

FT-IR : max (ATR) cm-1: 3283, 2924, 2851, 1718, 1617, 1521, 1421, 1241, 1197, 
1074, 1032; Figure 95 

1H-NMR :  ppm, 400 MHz, DMSO-d6; see Table 12; Figure 97 

13C-NMR :  ppm, 100 MHz, DMSO-d6; see Table 12; Figure 98 
 

3.5.10 Compound 10 (maeroxime C)  
Compound 10 was obtained as a yellow amorphous solid, soluble in acetone 

(3.5 mg, 0.00005% based on dried weight of roots). 

HR-ESI-MS : [M+H]+ at m/z 279.0782 (calculated for C13H14N2O3S, 279.0803); Figure 
106 

UV  : max (MeOH) nm (log ): 208 (4.80), 272 (4.47), 316 (4.15); Figure 105  

FT-IR : max (ATR) cm-1: 3306, 2956, 2924, 2854, 1729, 1618, 1461, 1378, 1283, 
1074, 1037; Figure 107 

1H-NMR :  ppm, 400 MHz, DMSO-d6; see Table 13; Figure 108 
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13C-NMR :  ppm, 100 MHz, DMSO-d6; see Table 13; Figure 109 
 

3.5.11 Compound 11 (maeruabisindole A) 
Compound 11 was obtained as a pale green amorphous solid, soluble in 

MeOH (1.1 mg, 0.00002% based on dried weight of roots). 

HR-ESI-MS : [M+H]+ at m/z 390.1298 (calculated for C22H20N3O2S, 390.1271); 
Figure 116 

UV : max (MeOH) nm (log ): 210 (3.72), 270 (4.03), 315 (3.95), 355 (3.49), 
365 (3.44); Figure 115 

FT-IR : max (ATR) cm-1: 3384, 2919, 2850, 1625, 1559, 1508, 1458, 1420, 1325, 
1286, 1246, 1228, 1196, 1162, 1089, 1029; Figure 117 

1H-NMR :  ppm, 400 MHz, DMSO-d6; see Table 14; Figure 118-119 

13C-NMR :  ppm, 100 MHz, DMSO-d6; see Table 14; Figure 120-121 
 

3.5.12 Compound 12 (maeruabisindole B)  
Compound 12 was obtained as a pale green amorphous solid, soluble in 

MeOH (1.1 mg, 0.00002% based on dried weight of roots). 

HR-ESI-MS : [M+H]+ at m/z 406.1224 (calculated for C22H20N3O3S, 406.1220); Figure 
130 

UV : max (MeOH) nm (log ): 210 (4.47), 230 (4.15), 310 (3.93), 340 (3.31), 
355 (3.31); Figure 129 

FT-IR : max (ATR) cm-1: 3396, 2921, 2851, 1602, 1465, 1377, 1258, 1172, 1117, 
1025; Figure 131 

1H-NMR :  ppm, 400 MHz, CD3OD; see Table 15; Figure 132-133 

13C-NMR :  ppm, 100 MHz, CD3OD; see Table 15; Figure 134 
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3.5.13 Compound 13 (maeruabisindole C)  
Compound 13 was obtained as a dark green amorphous solid, soluble in 

acetone (3.5 mg, 0.00005% based on dried weight of roots). 

HR-ESI-MS : [M-H]− at m/z 326.0968 (calculated for C20H12N3O2, 326.0935); Figure 
141 

UV : max (MeOH) nm (log ): 210 (4.07), 285 (2.93), 355 (2.21), 365 (2.36); 
Figure 142 

FT-IR : max (ATR) cm-1: 3359, 3192, 2921, 2851, 2212, 1658, 1632, 1468, 1412, 
1279, 1135, 702, 632; Figure 143 

1H-NMR :  ppm, 400 MHz, acetone-d6; see Table 16; Figure 144-145 

13C-NMR :  ppm, 100 MHz, acetone-d6; see Table 16; Figure 146-147 
 

3.6 Evaluation of inhibitory activity on nitric oxide (NO) production and 
cytotoxicity  

RAW 264.7 macrophage cells (ATCC, TIB-71) were cultivated in DMEM 
(Dulbecco’s Modified Eagle Medium, Gibco, Thermo Fisher Scientific, Waltham, MA, 
USA) including 10% fetal bovine serum (FBS), and penicillin (100 U/mL) and 
streptomycin (100 µg/mL) in a humidified atmosphere (37°C, 5%CO2). Indomethacin 
was used as positive control.  

Briefly, cells were placed in 96-well plate (5 × 104 cells/well) and pre-treated 
with various concentrations of compounds for 24 h. Then, the cells were added with 
100 ng/mL LPS and further incubated for 24 h. After that, the supernatants were 
collected for NO production assay and the cytotoxicity was determined by MTT assay. 

Cells were pre-treated with various concentrations of samples for 24 h. Cells 
were induced with 100 ng/mL LPS for 24 h. The culture supernatant was collected for 
NO production analysis using Griess reagent kit (Invitrogen, Thermo Fisher Scientific, 
Waltham, MA, USA), and cells were further examined for their viability.  

Ninety µL of supernatant was mixed with 10 µL of Griess reagent and incubated 
for 30 min at room temperature, then the NO concentration was measured at 540 nm 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 90 

using the microplate reader (Synergy H1, BioTeK, Santa Clara, CA, USA) and calculated 
using NaNO2 standard curve (Kim et al., 2020). Percentage of NO production was 
calculated from equation 1. 
 
 

% NO production = 
A

B
  100   equation 1 

 
 
 
A = concentration of nitric oxide in cells induced by LPS with sample pre-

treatment  
B = concentration of nitric oxide in cells induced by LPS without sample pre-

treatment  
The NO inhibitory activity was indicated as half maximal inhibitory 

concentration (IC50) calculated by GraphPad Prism 9. 
For MTT assay, MTT solution (1 mg/mL) was added to each well and incubated 

for 4 h at 37°C. After removal of the MTT solution, cells were added with DMSO to 
dissolve formazan product. The absorbance was measured at 570 nm using a 
microplate reader (Eaknai et al., 2022).  

 

3.7 Statistical analysis 
The results were expressed as mean ± standard error of the mean (SEM) from 

three independent experiments. The mean differences of IC50 values of samples vs 
that of indomethacin (positive control) were analyzed by one-way analysis of variance 
(ANOVA) (GraphPad Prism 9). Statistical significance was defined as p < 0.05. 
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CHAPTER IV  
RESULTS AND DISCUSSION 

 

In this study, eight compounds were isolated from the EtOAc extract of the 
stems of Capparis micracantha and five compounds were obtained from the n-
butanol extract of the roots of Maerua siamensis. They were purified by 
chromatographic techniques and their chemical structures were identified or 
elucidated by spectroscopic techniques including IR, UV, MS and NMR spectroscopy. 
The extracts and all isolated compounds were tested for their inhibitory effect on nitric 
oxide production.  
 

4.1 Identification of compounds isolated from Capparis micracantha stems 

    4.1.1 identification of compound 1 (methyl 6-methoxy-3-indolecarbonate)  
Compound 1 was obtained as a yellow amorphous solid. Its pseudo-molecular 

[M+H]+ ion was observed in the high resolution ESI mass spectrum at m/z 206.0818 
(calculated for C11H12NO3, 206.0817) (Figure 5), suggesting a molecular formula of 
C11H11NO3, with seven degrees of unsaturation. The IR spectrum showed NH absorption 
peak at 3307 cm-1 and conjugated ester carbonyl peak at 1679 cm-1 (Figure 6). 
  The 1H NMR spectrum of compound 1 (400 MHz, acetone-d6) (Figure 7-8 and 

Table 4) displayed the signals of one carboxymethyl group at H 3.82 (3H, s, 8-COOCH3) 

and one methoxy group at H 3.81  (3H, s, 6-OCH3), an ABX system of a 1,2,4 

trisubstituted aromatic ring at H 6.86 (1H, dd, J = 8.7, 2.4 Hz, H-5), 7.03 (1H, d, J = 2.4 

Hz, H-7) and 7.92 (1H, d, J = 8.7 Hz, H-4), an olefinic methine proton at H 7.90 (1H, s, 

H-2)  and a broad NH proton at H 10.76 (1H, br s, NH-1). These data were indicative 
of an indole nucleus with two substituents. 

Its 13C NMR data (100 MHz, acetone-d6) (Figure 9 and Table 4) and 1H-13C HSQC 
spectrum (Figure 10) showed resonances of eleven carbon atoms including a methoxy 

carbon 55.8 (6-OCH3), a carboxymethyl group at C 50.9 (8-COCH3) and 168.4 (C-8), 

three aromatic methine carbons at C 95.9 (C-7), 112.4 (C-5) and 122.5 (C-4), an olefinic 
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methane carbon at C 131.5 (C-2), and four quaternary carbons at C 108.6 (C-3), 121.2 
(C-3a), 138.5 (C-7a) and 157.9 (C-6)..  

The 1H-1H COSY spectrum (Figure 13) exhibited cross peak between the signals 

of H-4 at H 7.92 and H-5 at H 6.86, confirming their ortho-coupling. The assignment 
of H-4 signal was confirmed by its long-range 1H-13C HMBC correlation (Figure 11-12 
and Table 4) to that of C-3.  The methoxy substitution at C-6 was confirmed by 1H-1H 
NOESY cross peaks (Figure 14) between both H-5 and H-7 signals with that of 6-OCH3, 
as well as HMBC cross peak of this methoxy protons with the signal of C-6. Additionally, 

the olefinic H-2 signal at H 7.90 showed HMBC cross peaks with the signals of C-3a 
and C-7a, establishing a substituent at position 3 of the indole nucleus. Then 
spectroscopic data indicated an indole moiety with a methoxy substitution at C-6 and 
an ester carbonyl substitution at C-3. These NMR data helped identify compound 1 as 
methyl 6-methoxy-3-indolecarbonate, which has previously been found in the roots 
and rhizomes of Clematis manshurica (family Ranunculaceae), which are used as an 
anti-inflammatory, analgesic and antitumor herb in traditional Chinese medicine (Shi 
et al., 2006). 
 
 

N
H

OCH3

O

H3CO

2

33a

4

5

6

7

7a

8

 
 

Methyl 6-methoxy-3-indolecarbonate 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 93 

Table 4. 1H- and 13C-NMR data of compound 1 (400 MHz, in acetone-d6) and methyl 
6-methoxy-3-indolecarbonate (300 MHz, in CDCl3) 

*Shi et al. (2006). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. HR-ESI mass spectrum of compound 1 

 
 

 
Position 

Compound 1 Methyl 6-methoxy-3-
indolecarbonate* 

 
HMBC 

correlation with H (mult., J in Hz) C H (mult., J in Hz) C 
NH-1 10.76 (br) - - - - 

2 7.90 (s) 131.5 7.82 (s) 129.9 C-3, C-3a, C-7a 

3 - 108.6 - 108.8 - 

3a  121.2 - 119.9 - 

4 7.92 (d, 8.7) 122.5 8.06 (d, 9.0) 122.1 C-3, C-3a, C-6 

5 6.86 (dd, 8.7, 2.4) 112.4 6.95 (dd, 9.0, 2.4) 111.8 C-3a, C-6, C-7 

6  157.9 - 157.1 - 

7 7.03 (d, 2.4) 95.9 6.89 (d, 2.4) 94.9 C-3a, C-5, C-6 

7a - 138.5 - 136.9 - 

8 - 168.4 - 165.7 - 

6-OCH3 3.81 (s) 55.8 3.91  (s) 55.6 C-6 

8-COOCH3 3.82 (s) 50.9 3.86  (s) 51.1 C-8 
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Figure 6. IR spectrum of compound 1 
 

 

 

Figure 7. 1H-NMR spectrum of compound 1 (400 MHz, acetone-d6) 
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Figure 8. 1H-NMR spectrum of compound 1 (expansion between H 6.5-8.5 ppm) 

Figure 9.  13C-NMR spectrum of compound 1 (100 MHz, acetone-d6) 
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Figure 10. 1H-13C HSQC spectrum of compound 1 

Figure 11. 1H-13C HMBC spectrum of compound 1 
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Figure 12. 1H-13C HMBC spectrum of compound 1 

(expansion between H 6.3-8.6 ppm, C 70-160 ppm) 

Figure 13. 1H-1H COSY spectrum of compound 1 
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Figure 14. 1H-1H NOESY spectrum of compound 1 
 

    4.1.2 Identification of compound 2 (vanillic acid)  
Compound 2 was obtained as a white amorphous solid soluble in acetone. Its 

HR-ESI mass spectrum (Figure 15) revealed a pseudo-molecular [M+H]+ ion peak at 
m/z 169.0504, in accordance with the molecular formula C8H8O4 (calculated for C8H9O4, 
169.0501). The IR spectrum (Figure 16) displayed absorption peaks of hydroxyl group 
at 3483 cm-1 and conjugated carboxyl group at 1674 cm-1.   

In the 1H NMR spectrum (400 MHz, acetone-d6) (Figure 17 and Table 5), an 

ABX system of three aromatic protons were observed at H 6.91 (1H, d, J = 8.2 Hz, H-
5), 7.56 (1H, d, J = 2.0 Hz, H-2) and 7.59 (1H, dd, J = 8.2, 2.0 Hz, H-6). A three-proton 

resonance of one methoxy group was also located at H 3.90 (3H, s, 3-OCH3). 
 Its 13C NMR spectrum (100 MHz, acetone-d6) (Figure 18 and Table 5) exhibited 

eight carbon signals including those of three methines at C 113.5 (C-2), 115.6 (C-5) and 

124.9 (C-6), three quaternary carbons at C 123.0 (C-1), 148.1 (C-3) and 152.1 (C-4), a 

carboxylic acid carbonyl at C 167.6 (C-7) and a methoxy carbon at C 56.4 (3-OCH3). 
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These spectroscopic data of compound 2 was indicative of its chemical 
structure as a 1,3,4-trisubstituted benzene ring, One substituent is a carboxylic acid 
group which could be located at position 1, based on the long-range 1H-13C HMBC 
cross peaks from the proton signals of both H-2 and H-6 to that of C-7 (Figure 20). A 
methoxy substituent at position 3 was confirmed by 1H-1H NOESY correlation (Figure 
22) observed between the proton signals of H-2 and 3-OCH3. Therefore, the third 
substituent group, which is a hydroxy group, could be placed at position 4 of the 
benzene ring. These data helped identify compound 2 as vanillic acid. This aromatic 
compound has been isolated from several plants; for example, from the roots of 
Lepidium meyenii (family Brassicaceae) (Bai et al., 2015), the aerial parts of Alyssum 
alyssoides (family Brassicaceae) (Tsiftsoglou et al., 2019) and the aerial parts of 
Matthiola incana (family Brassicaceae). Recently, vanillic acid has been reported to 
exhibit anti-inflammatory activity in osteoarthritis through inhibition of inflammatory 
cytokines such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) in human 
chondrocytes (Ziadlou et al., 2020). 
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Table 5. 1H- and 13C-NMR data of compound 2 (400 MHz, in acetone-d6) and vanillic 
acid (500 MHz, in CD3OD)  

 
Position 

Compound 2  vanillic acid*   HMBC  
correlation with 

H (mult., J in Hz) C H (mult., J in Hz) C  

1 - 123.0 - 123.8 - 

2 7.56 (d, 2.0) 113.5 7.57 (d, 2.0) 115.3 C-1, C-3, C-4, C-6, 
 C-7  

3 - 148.1 - 147.6 - 

4 - 152.1 - 151.6 - 

5 6.91 (d, 8.2) 115.6 7.12 (d, 8.2) 112.2 C-1, C-3, C-4 

6 7.59 (dd, 8.2, 2.0) 124.9 7.63-7.65 (dd, 8.2, 2.0) 125.2 C-2, C-7 

7 - 167.6  169.0 - 

3-OCH3 3.90 (s) 56.4 3.91 (s) 55.4 C-3 

*Chang et al. (2009). 

 
 

Figure 15. HR-ESI mass spectrum of compound 2 
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Figure 16. IR spectrum of compound 2 

 
Figure 17. 1H-NMR spectrum of compound 2 (400 MHz, acetone-d6) 
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Figure 18. 13C-NMR spectrum of compound 2 (100 MHz, acetone d6) 

Figure 19. 1H-13C HSQC spectrum of compound 2 
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Figure 20. 1H-13C HMBC spectrum of compound 2 

Figure 21. 1H-1H COSY spectrum of compound 2 
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Figure 22. 1H-1H NOESY spectrum of compound 2 
 

    4.1.3 Identification of compound 3 [(−)-syringaresinol] 
Compound 3 was obtained as a white amorphous solid, which gave a 

quenching spot under short-wave UV light (254 nm) and appeared as a black spot after 
spraying with Ce2(SO4)3 and heated. Its molecular formula was deduced as C22H26O8, 
based on a pseudo-molecular [M+Na]+ ion peak observed at m/z 441.1540 in the HR-
ESI mass spectrum (calculated for C22H26NO8Na, 441.1520) (Figure 23). The IR spectrum 
of compound 3 (Figure 24) showed hydroxyl absorption peak at 3397 cm-1. In the 13C-
NMR (100 MHz, CDCl3) (Figure 27) and 1H-13C HSQC spectra (Figure 28),  only eight 
carbon signals were observed, suggesting its symmetrical structure. The signals were 

those of four methoxy carbons which resonated at  C  56.4 (3/3-OCH3 and 5/5-

OCH3), two methine carbons at C  54.3 (C-1 and C-5), two oxymethines at C  86.1 (C-

2 and C-6), two oxymethylenes at C 71.8 (C-4 and C-8), four aromatic methine carbons 

at C 102.8 (C-2/2 and C-6/6) and eight aromatic quaternary carbons at C 132.1 
(C-1/1), 134.3 (C-4/4) and 147.1 (C-3/3 and C-5/5).  
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 Its 1H NMR spectrum (400 MHz, CDCl3) (Figure 25-26 and Table 6) displayed 

resonances of methine protons at H 3.09 (2H, m, H-1, H-5), oxymethylene protons at 

H 3.91 (2H, s, Hb-4/8), H 4.23 (2H, ddd, J= 9.2, 6.8, 2.2 Hz, Ha-4/8), oxymethine protons 

at H 4.73 (2H, d, J= 4.4 Hz H-2, H-6), meta-coupled aromatic protons at H 6.59 (4H, 

d, J= 2.8 Hz, H-2/2 and H-6/6), methoxy groups at H 3.91 (6H, s, 3/3-OCH3) and 

3.91 (6H, s, 5/5-OCH3) and hydroxy protons at H  5.51 (2H, s, 4/4-OH). 
In 1H-13C HMBC spectrum (Figure 29-30), correlations between H 4.74 (H-2 and 

H-6) with C-4/8 (C 71.8), C-2/2 and C-6/6 (C 102.8) indicated the connection of 
two phenylpropanoid subunits. In addition, 1H-1H NOESY cross peaks (Figure 32) of H-
2/2/6/6 with 3/3/5/5-OCH3 helped establish the substitution of methoxy 
groups at positions 3, 3, 5 and 5, hence hydroxy groups at positions 4 and 4. 
Moreover, the 1H-1H COSY cross peaks (Figure 31) indicated the connection of H-2/6, 
H-1/5 and H-4/8. 

These spectroscopic data suggested the chemical structure of compound 3 as 
a tetrahydrofuran lignan, compared to the previously reported (Chen et al.,1998).  

Therefore, compound 3 was identified as (−)-syringaresinol, which was firstly 
isolated from the stems of Annona cherimola (family Annonaceae).  Later, it has been 
found in the orchid plants such as Dendrobium secundum and Dendrobium 
heterocarpum (Sritularak et al., 2011; Warinhomhoun et al., 2021). (−)-syringaresinol 
showed inhibitory activity on nitric oxide production and LPS-induced NF-κB activation 
in a BV2 microglia cells (Zhang et al., 2022). 
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Table 6. 1H- and 13C-NMR data of compound 3 (400 MHz, in CDCl3) and (−)-
syringaresinol (400 MHz, in CDCl3) 

 
 

Position 

Compound 3 (−)-syringaresinol*  
HMBC 

 correlation with 
H  

(mult., J in Hz) 
C H  

(mult., J in Hz) 
C 

1/5 3.09 (m) 54.3 3.11 (m) 54.3 C-1/1, C-2/6 

2/6 4.73 (d, 4.4) 86.1 4.74 (d, 4.3) 86.1 C-1/5 

4/8 4.23 (ddd, 9.2, 6.8, 2.2) 
3.91 (s) 

71.8 4.29 (d, 9.6, 8.8) 
3.91 (d, 9.6, 3.6) 

71.8 C-1/5, C-2/6 

1/1 - 132.1 - 132.1 - 

2/2 6.59 (d, 2.8) 102.8 6.59 (s) 102.8 C-2/6, C-1/1, C-3/3, 

C-4/4, C-6/6 

3/3 - 147.1 - 147.2 - 

4/4 - 134.3 - 134.4 - 

5/5 - 147.2 - 147.2 - 

6/6 6.59 (d, 2.8) 102.8 6.59 (s) 102.8 C-2/6, C-1/1, C-2/2,  

C-4/4,  C-5/5 

4/4-OH 5.51 (s) - - - C-4/4,  C-3/3,          

C-5/5 

3/3-OCH3 3.91 (s) 56.4 3.91 (s) 56.4 C-3/3 

5/5-OCH3 3.91 (s) 56.4 3.91 (s) 56.4 C-5/5 

*Chen, et al. (1998). 

(−)-Syringaresinol 
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Figure 23. HR-ESI mass spectrum of compound 3 

 

 
 

Figure 24. IR spectrum of compound 3 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 108 

 

Figure 25. 1H-NMR spectrum of compound 3 (400 MHz, CDCl3) 

 
 

Figure 26. 1H-NMR spectrum of compound 3 (expansion between H 4.2-6.9 ppm) 
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Figure 27. 13C-NMR spectrum of compound 3 (100 MHz, CDCl3) 
 

 
Figure 28. 1H-13C HSQC spectrum of compound 3 
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Figure 29. 1H-13C HMBC spectrum of compound 3 

 

Figure 30. 1H-13C HMBC spectrum of compound 3 

(expansion between H 1.0-3.3 ppm, C 55-145 ppm) 
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Figure 31. 1H-1H COSY spectrum of compound 3 

 

Figure 32. 1H-1H NOESY spectrum of compound 3 
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    4.1.4 Identification of compound 4 [(+)-ampelopsin A] 
Compound 4 was obtained as a red amorphous solid. Its molecular formula 

was determined as C28H22O7 (eighteen degrees of unsaturation) based on an observed 
pseudo-molecular [M+H]+ ion peak at m/z 471.1455 (calculated for C28H23O7, 471.1444) 
in the HR-ESI mass spectrum (Figure 33). The IR spectrum of this compound showed 
hydroxyl absorption peak at 3397 cm-1 (Figure 34).  

The 1H NMR spectrum (400 MHz, CD3OD) of compound 4 (Figure 35-36 and 
Table 7) displayed the resonances of two pairs of ortho-coupled protons of two para-

disubstituted benzene rings at H 6.83 (2H, d, J = 8.4 Hz, H-2a/6a) and 6.59 (2H, J = 8.4 

Hz, H-3a/5a), and H 6.70 (2H, d, J = 8.4 Hz, H-3b/5b) and 7.02 (2H, d, J = 8.4 Hz, H-

2b/6b), two pairs of meta-coupled protons at H 6.12 (1H, d, J = 2.4 Hz, H-12a) and 

6.53 (1H, d, J = 2.4 Hz, H-14a), and H 6.11 (1H, d, J = 2.4 Hz, H-14b) and 6.32 ppm (1H, 
d, J = 2.4 Hz, H-12b). These data implied the presence of four aromatic rings. Two pairs 

of vicinal aliphatic methine protons were also observed at H 5.38 ppm (2H, s, H-7a/8a) 

and H 4.03 (1H, d, J = 11.6 Hz, H-8b) and 5.70 (1H, d, J = 11.6 Hz, H-7b). The number 
of carbon atoms in the molecular formula and the number of aromatic rings were 
deduced from 1H NMR data corresponding to the basic structure of a stilbenoid dimer. 
           Twenty-four carbon resonances (100 MHz, CD3OD) were appeared in 13C NMR 
spectrum (Figure 37-38 and Table 7). These carbon signals could be differentiated, 
with the aid of 1H-13C HSQC spectrum (Figure 39), into those of twelve quaternary 

carbons including six oxygen-substituted ones at C 71.9 (C-8a), 119.2 (C-10b), 129.0 
(C-10a), 133.3 (C-1b), 139.9 (C-9a), 143.6 (C-9b), 156.4 (C-4a), 157.7 (C-11b), 159.3 (C-4b), 

159.5 (C-13a/13b) and 160.6 (C-11a), eight aromatic methine carbons at C 97.7 (C-12a), 
101.8 (C-12b), 105.6 (C-14b), 111.0 (C-14a), 115.8 (C-3a/5a and C-3b/5b) and 129.2 (C-

2a/6a and C-2b/6b) and four aliphatic methine carbons at C 44.2 (C-7a), 50.0 (C-8b), 
71.9 (C-8a) and 89.4 (C-7b).   
            Two aromatic rings of one stilbenoid subunit was connected via the methine 
carbons 7a and 8a, as confirmed by long-range 1H-13C HMBC cross peaks (Figure 40-42 

and Table 7) of H-7a (H 5.38) with C-2a/6a (C 129.2) and C-9a (C 139.9) and of H-
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8a (H 5.38) with C-10a (C 120.0) and C-14a (C 111.0). HMBC correlations were also 
observed between H-7a signal with carbon signals of another stilbenoid subunit at C-

9b (C 143.6), C-10b (C 119.2) and C-11b (C 157.7). The second stilbenoid subunit 

displayed HMBC cross peaks between H-7b (H 5.70) and C-2b/6b (C 129.2) and C-9b 

(C 143.6), as well as between H-8b (H 4.03 ppm) and C-9a and C-10a. These data 
suggested that the compound comprised two resveratrol subunits which were 
connected via a seven-membered ring and a furan ring, with a hydroxyl substituent at 
position 8a. The configuration of H-7a, H-8a, H-7b and H-8b was assigned based on 
comparison of the optical rotation of this compound (+228.0° (c 0.1, MeOH)) with 
previous study (+98.0° (c 0.1, MeOH)) (Oshima et al., 1990). Therefore, compound 4 
was identified as (+)-ampelopsin A, which has been previously isolated from the roots 
of Ampelopsis brevipedunculata var. hancei (Oshima et al., 1990) and Vitis vinifera 
(family Vitaceae). It was reported to possess neuroprotective ability by increasing the 
function of the central or peripheral nervous system (Hong et al., 2021). The 
compound also demonstrated anti-inflammatory effect against lipopolysaccharide 
(LPS)-induced arthritis (Wang et al., 2011). 
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 (+)-Ampelopsin A 
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Table 7. 1H- and 13C-NMR data of compound 4 (400 MHz, in CD3OD) and (+)-
ampelopsin A (500 MHz, in acetone-d6)                          

* Oshima, et al. (1990). 

 
Position 

Compound 4  (+)-ampelopsin A*   
HMBC 

correlation with 
H  

(mult., J in Hz) 
C H  

(mult., J in Hz) 
C 

1a - 131.0 - 130.6 - 

2a 6.83 (d, 8.4) 129.2 6.90 (d, 8.3) 128.6 C-4a, C-6a, C-7a  

3a 6.59 (d, 8.4) 115.8 6.65 (d, 8.3) 115.4 C-1a, C-4a, C-5a 

4a  - 156.4 - 158.2 - 

5a 6.59 (d, 8.4) 115.8 6.65 (d, 8.3) 115.4 C-1a, C-3a, C-4a 

6a 6.83 (d, 8.4) 129.2 6.90 (d, 8.3) 128.6 C-2a, C-4a, C-7a  

7a 5.38 (d, 4.8) 44.2 5.45 (d, 5.0) 43.7 C-1a, C-2a, C-6a, C-9a, C-9b 

8a 5.38 (d, 4.8) 71.9 5.42 (d, 5.0) 71.2 C-1a, C-10b, C-14a  

9a - 139.9 - 139.8 - 

10a - 120.0 - 118.1 - 

11a  - 160.6 - 159.9 - 

12a 6.12 (d, 2.4) 97.7 6.16 (d, 2.3) 97.2 C-10a, C-14a 

13a  - 159.5 - 158.6 - 

14a 6.53 (d, 2.4) 111.0 6.62 (d, 2.3) 110.4 C-8a, C-10a, C-12a 

1b - 133.3 - 132.3 - 

2b 7.02 (d ,8.4) 129.2 7.12 (d, 8.3) 129.8 C-6b 

3b 6.70 (d, 8.4) 116.4 6.78 (d, 8.3) 115.9 C-1b, C-4b C-5b,  

4b  - 159.3 - 157.0 - 

5b 6.70 (d, 8.4) 116.4 6.78 (d, 8.3) 115.9 C-1b, C-3b, C-4b 

6b 7.02 (d ,8.4) 129.2 7.12 (d, 8.3) 129.8 C-2b 

7b 5.70 (d, 11.6) 89.4 5.77 (d, 11.7) 88.3 C-2, C-6, C-9b 

8b 4.03 (d, 11.6) 50.0 4.17 (d, 11.7) 49.4 C-1b, C-9a, C-10a 

9b - 143.6 - 142.8 - 

10b - 119.2 - 118.2 - 

11b  - 157.7 - 155.8  

12b 6.32 (d, 2.4) 101.8 6.43 (d, 2.3) 101.6 C-11b, C13b 

13b  - 159.5 - 159.5 - 

14b 6.11 (d, 2.4) 105.6 6.24 (d, 2.3) 105.4 C-8b, C-10b, C-12b 
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Figure 33. HR-ESI mass spectrum of compound 4 
 
 

 
Figure 34. IR spectrum of compound 4 
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Figure 35. 1H-NMR spectrum of compound 4 (400 MHz, CD3OD) 

Figure 36. 1H-NMR spectrum of compound 4 (expansion between H 5.2-7.2 ppm) 
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Figure 37. 13C-NMR spectrum of compound 4 (100 MHz, CD3OD) 

Figure 38. 13C-NMR spectrum of compound 4 (expansion between C 0-165 ppm) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 119 

Figure 39. 1H-13C HSQC spectrum of compound 4 

Figure 40. 1H-13C HMBC spectrum of compound 4 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 120 

Figure 41. 1H-13C HMBC spectrum of compound 4 

(expansion between H 4.0-7.1 ppm, C 128-162 ppm) 

Figure 42. 1H-13C HMBC spectrum of compound 4 

(expansion between H 3.9-7.2 ppm, C 103-163 ppm) 
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Figure 43. 1H-1H COSY spectrum of compound 4 
 

 

 
Figure 44. 1H-1H NOESY spectrum of compound 4 
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    4.1.5 Identification of compound 5 [(−)-pauciflorol E] 
Compound 5 was obtained as a yellow amorphous solid. Its molecular formula 

was established as C28H20O7 (nineteen degrees of unsaturation) based on the pseudo-
molecular [M+H]+ ion peak in the high-resolution ESI mass spectrum (Figure 45) at m/z 
469.1320 (calculated for C28H21O7, 469.1287). The IR spectrum (Figure 46) showed 
absorption bands of hydroxyl (3339 cm-1) and conjugated keto carbonyl (1656 cm-1) 
functionalities. These data suggested the similarity between this compound and 
compound 4, except the presence of a keto carbonyl group instead of a hydroxyl 
group. 

The 1H NMR spectrum (400 MHz, acetone d6) (Figure 47-49 and Table 8) 

exhibited signals of two para-disubstituted benzene rings at H 6.77 (2H, dd, J = 8.6, 

1.2 Hz, H-2a/6a) and 6.70 (2H, J = 8.6 Hz, H-3a/5a), and at H 6.83 (2H, d, J = 8.6 Hz, H-

3b/5b) and 7.18 (2H, d, J = 8.6 Hz, H-2b/6b), two pairs of meta-coupled protons at H 

6.45 (1H, d, J = 2.4 Hz, H-12a) and 7.12 (1H, d, J = 2.4 Hz, H-14a), and at H 6.39 (1H, 
br s, H-14b) and 6.49 (1H, d, J = 2.0 Hz, H-12b). These data were similar to those of 

compound 4. The rest were signals of an aliphatic methine proton at H 6.05 (1H, br 

s, H-7a) and a set of mutually coupled aliphatic methine protons at H 5.94 (1H, d, J 
= 10.8 Hz, H-7b) and 4.52 (1H, d, J = 10.8 Hz, H-8b). 

Twenty-four carbon resonances representing 28 carbon atoms were observed 
in the 13C NMR spectrum (100 MHz, acetone-d6) (Figure 50-51 and Table 8). Most of 
these signals were similar to those of compound 4 except for the presence of a keto 

carbonyl resonance at C 195.6 (C-8a) instead of a methine carbon as compound 4. 
The position of this C-8a carbonyl carbon could be confirmed with 1H-13C HMBC cross 

peaks (Figure 53-54) of the methine H-7a signal (H 6.05) and the aromatic H-14a 

proton (H 7.12) with the signal of keto carbonyl at C 195.6. In addition, HMBC 

spectrum also showed correlations of H-7a with C-10b (C 114.3), C-2a/6a (C 128.4), 

C-9a (C 134.1) and C-9b (C 142.5), confirming their connectivity as same as the 
compound 4. Furthermore, significant long-range HMBC cross peaks were observed 

between H-8b signal (H 4.53) with C-14b (C 105.8), C-10b, C-10a (C 124.4), C-1b (C 
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130.5) and C-9a (C 134.1), as well as from H-7b signal (at H 5.94) to C-2b/6b (C 
129.9) and C-9b. 1H-1H NOESY experiment (Figure 56) confirmed a relative configuration 
between H-7b and H-8b as trans, from the observed cross peaks between H-7b and 
H-14b signals, and between H-8b and H-2b/6b signals. Therefore, compound 5 was 
identified as a resveratrol dimer pauciflorol E, previously found as a constituent of the 
stem bark of Vatica pauciflora (family Dipterocarpaceae). The optical rotation of this 
compound was -166.0° (c 0.1, MeOH)) compared with previous study (-228.0° (c 0.1, 
MeOH)) (Ito et al., 2004). Resveratrol and its oligomers have been reported to display 
several bioactivities e.g., cytotoxic, antibacterial, and anti-HIV effects (Ito et al., 2004). 
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Table 8. 1H- and 13C-NMR data of compound 5 (400 MHz, in acetone-d6) and (−)-
pauciflorol E (300 MHz, in acetone-d6) 

 
Position 

Compound 5  (−)-pauciflorol E * HMBC  
correlation with H  

(mult., J in Hz) 
C H  

(mult., J in Hz) 
C 

1a - 128.7 - 128.2 - 
2a 6.77 (dd, 8.6, 1.2) 128.4 6.77 (dd, 8.5, 1.1) 128.0 C-4a, C-6a, C-7a 

3a 6.70 (d, 8.6) 116.3 6.70 (d, 8.5) 115.8 C-1a, C-5a  
4a  - 156.5  156.8 - 
5a 6.70 (d, 8.6) 116.3 6.70 (d, 8.5) 115.8 C-1a, C-3a 

6a 6.77 (dd, 8.6, 1.2) 128.4 6.77 (dd, 8.5, 1.1) 128.0 C-2a, C-4a, C-7a 
7a 6.05 (br s) 55.2 6.06 (br s) 54.8 C-2a, C-6a, C-8a, 

C-9a, C-9b, C-10b 
8a - 195.6 - 195.3 - 
9a - 134.1 - 133.7 - 
10a - 124.4 - 123.9 - 
11a  - 160.9 - 160.4 - 

12a 6.45 (d, 2.4) 102.6 6.45 (d, 2.4) 102.2 C-10a 
13a  - 158.5 - 158.5 - 

14a 7.12 (d, 2.4) 106.9 7.12 (d, 2.4) 106.5 C-10a, C-12a 
1b - 130.5 - 130.5 - 
2b 7.18 (d, 8.6) 129.9 7.19 (d, 8.5) 129.5 C-4b, C-6b, C-7b 
3b 6.83 (d, 8.6) 116.2 6.83 (d, 8.5) 115.9 C-1b, C-5b 

4b  - 158.4 - 158.2 - 
5b 6.83 (d, 8.6) 116.2 6.83 (d, 8.5) 115.9 C-1b, C-3b 
6b 7.18 (d, 8.6) 129.9 7.19 (d, 8.5) 129.5 C-2b, C-4b, C-7b 

7b 5.94 (d, 10.8) 88.9 5.94 (d, 10.8) 88.4 C-2b, C-6b, C-8b, C-9b 
8b 4.52 (d, 10.8) 51.2 4.52 (d, 10.8) 50.8 C-9a, C-10a, C-1b, C-

7b, C-9b, C-10b, C-14b 
9b - 142.5 - 142.0 - 
10b - 114.3 - 113.9 - 
11b - 158.9 - 159.0 - 
12b 6.49 (d, 2.0) 102.1 6.49 (d, 2.4) 101.7 C-10b, C-14b 
13b  - 157.8 - 158.0     - 
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Position 

Compound 5  (−)-pauciflorol E * HMBC  
correlation with H  

(mult., J in Hz) 
C H  

(mult., J in Hz) 
C 

14b 6.39 (br s) 105.8 6.39 (br s) 105.3 C-8b, C-10b, C-12b 
4a-OH - - 8.42 (br s) - - 

4b-OH - - 8.71 (br s) - - 
11-OH - - 8.94 (br s) - - 
13a-OH - - 8.84 (br s) - - 

13b-OH - - 8.57 (br s) - - 
* Ito, et al. (2004). 
 
 

 

Figure 45. HR-ESI mass spectrum of compound 5 
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Figure 46. IR spectrum of compound 5 

  
 

Figure 47. 1H-NMR spectrum of compound 5 (400 MHz, acetone-d6) 
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Figure 48. 1H-NMR spectrum of compound 5 (expansion between H 4.4-7.5 ppm) 
 

 
 

    Figure 49. 1H-NMR spectrum of compound 5 (expansion between H 4.4-7.4 ppm) 
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Figure 50. 13C-NMR spectrum of compound 5 (100 MHz, acetone-d6) 

 

Figure 51. 13C-NMR spectrum of compound 5 (expansion between C 40-160 ppm) 
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Figure 52. 1H-13C HSQC spectrum of compound 5 

 

Figure 53. 1H-13C HMBC spectrum of compound 5 

(expansion between H 4.2-8.0 ppm, C 50-200 ppm) 
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Figure 54. 1H-13C HMBC spectrum of compound 5 

(expansion between H 4.5-7.6 ppm, C 90-150 ppm) 
 

 

Figure 55. 1H-1H COSY spectrum of compound 5 
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Figure 56. 1H-1H NOESY spectrum of compound 5 

(expansion between H 3.5-8.0 ppm)  
 

 

4.2 Structure elucidation of compounds isolated from Maerua siamensis roots 

    4.2.1 Structure elucidation of compound 6 [(+)-(maeruanitrile A] 

 Compound 6 was obtained as a reddish-brown amorphous solid with a [α]25
D 

value of +3.0° (c 0.001, MeOH). Its high-resolution ESI mass spectrum (Figure 58) 
displayed a sodium-adduct pseudo-molecular [M+Na]+ ion peak at m/z 241.0585 
(calculated for C11H10N2O3Na, 241.0584), corresponding to a molecular formula of 
C11H10N2O3 with eight degrees of unsaturation. The IR spectrum of this compound 
(Figure 59) exhibited an absorption band of nitrile group at 2256 cm-1, hydroxyl and 

amide N-H bands at 3291 cm-1, aromatic ring at 1630 and 1463 cm-1, and -lactam 

carbonyl at 1722 cm-1. UV absorption peaks (Figure 57) were observed at max 218, 
268 and 322 nm. These data are characteristic of oxindole moiety (Kinashi et al., 1976). 
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  The 1H-NMR spectrum of compound 6 (Table 9 and Figure 61) showed 

resonances of an ABX system of a benzene ring at H 7.48 (1H, d, J = 8.4 Hz, H-4), 6.63 

(1H, dd, J = 8.4, 2.4 Hz, H-5) and 6.53 (1H, d, J = 2.4 Hz, H-7), methylene protons at H 
3.09 (1H, d, J = 16.8 Hz, H-8a) and 2.89 (1H, d, J = 16.8 Hz, H-8b), a methoxy group at 

H 3.81 (3H, s, 6-OCH3) and a hydroxyl group at H 5.44 ppm (1H, s).  
  Its 13C-NMR spectrum (Table 9 and Figure 62) showed eleven carbon 

resonances including those of an amide carbonyl carbon at c 178.2 (C-2), a methoxy 

carbon at c 56.5 (6-OCH3), a methylene carbon at c 28.0 (C-8), a nitrile carbon at c 

117.7 (C-9), three aromatic methine carbons at c 98.8 (C-7), 108.4 (C-4) and 126.9 (C-

4), an aliphatic quaternary carbon at c 73.8 (C-3) and three aromatic quaternary 

carbons at c 122.8 (C-3a), 144.7 (C-7a) and 163.4 (C-6). 
  The positions of aromatic protons on the benzene ring of this oxindole 

molecule were confirmed by two-dimensional NMR experiments. Long-range 1H-13C 

HMBC correlations (Figure 64-65) between H-4 signal (H 7.48) and the aliphatic 

quaternary carbon at c 73.8 (C-3) and the downfield aromatic methine carbon at c 
163.4 ppm (C-6), whereas H-7 signal showed three-bond HMBC cross peaks with those 

of C-3a (c 122.8) and C-5 (c 108.4). The assignment of a methoxy group at position 
6 of the indole ring was supported by an observed HMBC cross peak between 6-OCH3 
signal and C-6, as well as 1H-1H NOESY correlations between this methoxy protons and 
both H-5 and H-7 signals (Figure 67).  An acetonitrile group could be located at C-3, 

based on HMBC cross peaks of its methylene protons (H-8) with C-2 (c 178.2), C-3 and 
C-3a. A hydroxyl group could also be located at C-3 based on its downfield shift and 

HMBC correlations from 3-OH signal (at H 5.44 ppm) to C-3 and C-3a. The configuration 
at position 3 was confirmed by comparison of its ECD spectra (Figure. 60) with that of 
a known compound, (+)-(S)-2-(3-hydroxy-4-methoxy-2-oxindolin-3-yl) acetonitrile, from 
Isatis indigotica (Chen et al., 2012). Therefore, the chemical structure of compound 6 
was established as (+)-(S)-2-(3-hydroxy-6-methoxy-2-oxindolin-3-yl) acetonitrile, and 
was named (+)-maeruanitrile A. 
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(+)-maeruanitrile A. 

 
Table 9. 1H-, 13C-NMR and HMBC data of compound 6 (400 MHz, acetone-d6) 

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 
Position 

Compound 6 

H (mult., J in Hz) C HMBC correlation with 

NH-1 9.52, br s - - 
2 - 178.2 - 
3 - 73.8 - 
3a - 122.8 - 
4 7.48 (d, 8.4) 126.9 C-3, C-6 

5 6.63 (dd, 8.4, 2.4) 108.4 C-3a, C-6, C-7 
6 - 163.4 - 

7 6.53 (d, 2.4) 98.8 C-3a, C-5, C-6, C-7a 
7a - 144.7 - 
8a 
8b 

3.09 (d, 16.8) 
2.89 (d, 16.8) 

28.0 C-2, C-3, C-3a, C-9 

9-CN - 117.8 - 
3-OH 5.44, (s)  C-3, C-3a 

6-OCH3 3.81, (s) 56.5 C-6 
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Figure 57. UV spectrum of compound 6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 58. HR-ESI mass spectrum of compound 6 
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Figure 59. IR spectrum of compound 6 
 

 

 

Figure 60. The CD spectrum in MeOH of compound 1 (upper left) 
and The ECD spectrum of compound 1; calculated for R configuration (lower left),  

calculated for S configuration (lower right) and overlayed ECD spectrum (upper right). 
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Figure 61. 1H-NMR spectrum of compound 6 (600 MHz, acetone-d6) 

 
Figure 62. 13C-NMR spectrum of compound 6 (150 MHz, acetone-d6) 
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Figure 63. 13C-NMR, DEPT135 and DEPT90 spectrum of compound 6 

 
Figure 64. 1H-13C HSQC spectrum of compound 6 
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Figure 65. 1H-13C HMBC spectrum of compound 6 

 

Figure 66. 1H-1H COSY spectrum of compound 6 
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Figure 67. 1H-1H NOESY spectrum of compound 6 

    4.2.2 Structure elucidation of compound 7 (maeruanitrile B) 
Compound 7 was obtained as a reddish-brown amorphous solid. Its molecular 

formula was deduced as C12H12N2O2S (nine degrees of unsaturation), based on the 
sodium-adduct pseudo-molecular [M+Na]+ ion at m/z 271.0511 (calculated for 
C12H12N2O2SNa, 271.0512) in the HR-ESI mass spectrum (Figure 69). Its IR spectrum 
(Figure 70) showed strong absorption peaks of sulfoxide at 1022 cm-1, nitrile group at 
2250 cm-1 hydroxyl and amine groups at 3163 cm-1 and aromatic ring at 1626 and 1451 

cm-1. The UV spectrum (Figure 68) exhibited absorption maxima at max 228, 300 and 
342 nm. 

Its 1H-NMR data (Table 10 and Figure 71) showed ABX coupling protons of a 

benzene ring at H 7.63 (1H, d, J = 9.0 Hz, H-4), 6.98 (1H, d, J = 2.4 Hz, H-7) and 6.87 

(1H, dd, J = 9.0, 2.4 Hz, H-5), methylene protons of an acetonitrile group at H 4.18 

(1H, d, J = 18.0 Hz, H-8a) and 4.13 (1H, d, J = 16.0 Hz, H-8b), a methoxy singlet at H 

3.86 (3H, 6-OCH3) and a methylsulfinyl singlet at H 2.16 (3H, 2-SOCH3).  
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Twelve signals were observed in the 13C-NMR spectrum of this compound (Table 
10 and Figure 72). These were signals of six quaternary carbons of the indole nucleus 

at C 160.6 (C-6), 140.3 (C-7a), 132.5 (C-2), 121.4 (C-3a), 110.8 (C-3) and 118.9 (C-9), 

three aromatic methines at C 121.4 (C-4), 113.4 (C-5) and 95.3 (C-7), one methylene 

carbon of an acetonitrile group at C 13.0 (C-8), a methoxy carbon at C 55.9 (6-OCH3) 

and a methylsulfoxide carbon at C 40.4 (2-SOCH3). 
The substitution pattern on aromatic ring of this indole derivative is similar to 

that of compound 6, as confirmed by long-range 1H-13C HMBC correlations (Figure 76-

77) between H-4 signal (H 7.63) with C-3 (C 110.8), C-6 (C 160.6) and C-7a (C 140.3), 

as well as from H-7 signal (at H 6.98) to those of C-3a (C 121.4) and C-5 (C 113.4). 
In addition, correlations between both H-5 and H-7 signals to that of 6-methoxy 
protons could also be observed in its 1H-1H NOESY spectrum (Figure 79). An acetonitrile 
group could be located at position 3 based on HMBC cross peaks of its methylene 

protons (H 4.18 and 4.13) with C-2 (C 132.5), C-3 (C 110.8) and C-3a signals (C 
121.4). Finally, a methylsulfoxide group could be attached at C-2, which was confirmed 

by a HMBC cross peak of its methyl signal (at H 2.16) to this carbon signal. 
These spectroscopic data indicated that compound 7 was similar to indole-3-

acetonitrile, isolated from fruits of Capparis spinosa (Calis et al. (1999), except the 
presence of an additional methoxy group at C-6 of this new compound. A glycoside 
with similar indole nucleus, indole-3-acetonitrile-2-S-β-glucopyranoside, has been 
isolated from the roots of Isatis indigotica (Yang et al., 2014) of family Brassicaceae, 
which is closely related taxonomically to family Capparaceae. Thus, the chemical 
structure of compound 7 was established as 2-(6-methoxy-2-(methylsulfinyl)-1H-indol-
3-yl) acetonitrile, and it was trivially named as maeruanitrile B. 
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Maeruanitrile B 
 
Table  10. 1H-, 13C NMR and HBMC data of compound 7 (400 MHz, CD3OD) 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 
 

Position H, (mult., J in Hz) C HMBC correlation with 

NH-1 -  - 
2 - 132.5 - 
3 - 110.8 - 
3a - 121.4 - 
4 7.63 (d, 9.0) 121.4 C-3, C-6, C-7a 
5 6.87 (dd, 9.0, 2.4) 113.4 C-4, C-3a, C-7 
6 - 160.6 - 
7 6.98 (d, 2.4) 95.3 C-3a, C-5, C-7a 
7a - 140.3 - 
8a 
8b 

4.18 (d, 18.0) 
4.13 (d, 18.0) 

13.0 C-2, C-3, C-3a 

9-CN - 118.9 - 
2-SOCH3 2.16 (s) 40.4 C-2 
6-OCH3 3.86 (s) 55.9 C-6 

N
HH3CO

C N

3
3a

4

5

6

7

7a

8 9

S

CH3

O

2



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 142 

Figure 68. UV spectrum of compound 7 
         

Figure 69. HR-ESI mass spectrum of compound 7 
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Figure 70. IR spectrum of compound 7 

 

Figure 71. 1H-NMR spectrum of compound 7 (400 MHz, CD3OD) 
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Figure 72. 13C-NMR spectrum of compound 7 (100 MHz, CD3OD) 

 

Figure 73. 13C-NMR spectrum of compound 7 (expansion between C 111-141 ppm) 
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Figure 74. 13C-NMR, DEPT 135 and DEPT 90 (150 MHz, CD3OD) spectra                     
of compound 7 

 

Figure 75. 1H-13C HSQC spectrum of compound 7 
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Figure 76. 1H-13C HMBC spectrum of compound 7 
 

 

Figure 77. 1H-13C HMBC spectrum of compound 7                                                            

(expansion between H 3.4-7.5 ppm, C 111-141 ppm) 
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Figure 78. 1H-1H COSY spectrum of compound 7 

 
 

Figure 79. 1H-1H NOESY spectrum of compound 7 
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    4.2.3 Structure elucidation of compound 8 (maeroxime A)  
 Compound 8 was obtained as a reddish-brown amorphous solid. The 
molecular formula was determined as C13H16N2O2S based on a pseudo-molecular 
[M+H]+ ion peak observed in its HR-ESI mass spectrum (Figure 81) at m/z 265.0999 
(calculated for C13H17N2O2S, 265.1005). This molecular formula suggested a molecule 
with seven degrees of unsaturation. Its IR spectrum (Figure 82) showed absorption 
bands due to hydroxyl and amine (3370 cm-1), O-methyloxime and aromatic ring (1628, 

1579 and 1457 cm-1). UV absorption maxima of compound 8 were detected at max 
212, 217, 225 and 269 nm (Figure 80).  

Its 1H-NMR data (Table 11 and Figure 83-84) showed an ABX aromatic proton 

signals, similar to previously discussed indole derivatives at H 7.33 (1H, d, J = 8.8 Hz, 
H-4), 6.84 (1H, d, J = 2.4 Hz, H-7) and 6.64 (1H, dd, J = 8.8, 2.4 Hz, H-5), and also one 

methoxy proton signal at H 3.74 (3H, s, 6-OCH3). In addition, the 1H NMR spectrum 

showed resonances of one olefinic methine at H 7.03 (1H, d, J = 2.0 Hz, H-2), one 

aliphatic methylene at H 3.80 (2H, s, H-8), another methoxy signal at H 3.86 (3H, s, 

N-OCH3), one methylthio signal at H 2.17 (3H, s, SCH3) and one NH broad singlet at H 
10.72. 

In the 13C-NMR spectrum of compound 8 (Table 11 and Figure 85), thirteen 
carbon signals were observed. They were those of four aromatic and olefinic methines 

at C 123.1 (C-2), 118.9 (C-4), 108.8 (C-5) and 94.5 (C-7), five quaternary carbons at C 

107.8 (C-3), 121.5 (C-3a), 155.6 (C-6), 136.8 (C-7a) and 157.8 (C-9), one aliphatic 

methylene at C 25.9 (C-8), two methoxy carbons at C 61.5 (6-OCH3) and 55.2 (N-

OCH3), and one methylthio carbon at C 12.5. 
These NMR data suggested compound 8 could be a 3,6-disubstituted 1H-indole 

derivative, based on a 1H-1H COSY cross peak (Figure 90) between signals of NH-1 

proton (H 10.72) and H-2 (H 7.03), as well as 1H-1H NOESY correlations (Figure 91-92) 

between 6-OCH3 signal with both H-5 (H 6.64) and H-7 (H 6.84). The indole nucleus 
is equal to six degrees of unsaturation, hence there should be one double bond in the 
side chain. A methylene carbon could be connected to position 3, based on 1H-13C 
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HMBC cross peaks from proton signal at H 3.80 to C-2 (C 123.1), C-3 (C 107.8) and 

C-3a (C 121.5). The methylene group in the side chain also connected to a quaternary 

C-9, as evidenced by HMBC correlation from H2-8 signal to C-9 (C 157.8). The 
methylthio group could also be located at this olefinic carbon of an imine bond, based 

on three-bond HMBC correlation observed from its proton signal (H 2.17) to C-9. 
Finally, the N-OCH3 group was placed at the other end of this side chain, completing 
a methyl-N-methoxyethanimidothioate-2-yl substitution at C-3 of the indole nucleus. 
The NOESY cross peaks were observed between H-8 signal to both H-2 and H-4. The 
cis orientation between the N-OCH3 and SCH3 groups was suggested by the most stable 
conformer due to the lowest relative energy (0.00 kcal/mol) based on a DFT 
calculation at a B3LYP/6-31g (d,p) level (Figure 93). Thus, the structure of compound 
8 was elucidated as methyl (Z)-N-methoxy-2-(6-methoxy-1H-indol-3-yl) 
ethanimidothioate and trivially named as maeroxime A. 
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Table 11. 1H-, 13C-NMR and HMBC data of compound 8 (400 MHz, DMSO-d6) 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Position H (mult., J in Hz) C HMBC correlation with 

NH-1 10.72 (br s) - C-2, C-3, C-3a, C-7a 
2 7.03 (d, 2.0) 123.1 C-3, C-3a, C-7a, C-8 

3 - 107.8 - 
3a - 121.5 - 
4 7.33 (d, 8.8) 118.9 C-3, C-3a, C-6, C-7a 
5 6.64 (dd, 8.8, 2.4) 108.8 C-3a, C-6, C-7 
6 - 155.6 - 

7 6.84 (d, 2.4) 94.5 C-3a, C-5, C-6, C-7a 
7a - 136.8 - 

8 3.80 (s) 25.9 C-2, C-3, C-3a, C-9 

9 - 157.8 - 
6-OCH3 3.74 (s) 55.2 C-6 
SCH3 2.17 (s) 12.5 C-9 

N-OCH3 3.85 (s) 61.5 - 
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Figure 80. UV spectrum of compound 8 
 

 
 

Figure 81.  HR-ESI mass spectrum of compound 8 
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Figure 82.  IR spectrum of compound 8 

 

 
Figure 83. 1H-NMR spectrum of compound 8 (400 MHz, DMSO-d6) 
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Figure  84. 1H-NMR spectrum of compound 8 (expansion between H 6.4-7.5 ppm) 

Figure 85. 13C-NMR spectrum of compound 8 (400 MHz, DMSO-d6) 
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Figure 86. 13C-NMR, DEPT 135 and DEPT 90 spectrum of compound 8 

Figure 87. 1H-13C HSQC spectrum of compound 8 
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Figure 88. 1H-13C HMBC spectrum of compound 8 

Figure  89. 1H-13C HMBC spectrum of compound 8 

(expansion between H 1.8-4.4 ppm, C 90-180 ppm) 
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Figure 90. 1H-1H COSY spectrum of compound 8 

 
Figure 91. 1H-1H NOESY spectrum of compound 8 
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Figure 92. 1H-1H NOESY spectrum of compound 8 

(expansion between H 3.5-10.5 ppm) 

 
 

Figure 93. Possible conformations of compound 8, based on the DFT calculation at 
B3LYP/6-31g (d, p) level  
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    4.2.4 Structure elucidation of compound 9 (maeroxime B) 
  Compound 9 was obtained as a orange-brown amorphous solid. Its molecular 
formula was established as C13H14N2O3S, according to the [M+H] + ion at m/z 279.0782 
(Calculated for C13H15N2O3S, 279.0803) (Figure 96), revealing more than 14 mass units 
compared to that of compound 7. Its IR absorption peaks IR (Figure 95) were similar 
to those of compounds 8 except a carbonyl peak at 1617 cm-1. UV absorption were 

detected at max 212, 280 and 314 nm (Figure 94).  

The 1H-NMR data (Table 12, Figure 97) showed ABX coupled protons at H 
7.92 (1H, d, J=8.4 Hz, H-4), 7.00 (1H, s, H-7) and 6.89 (1H, d, J=8.4 Hz, H-5), one methine 

proton at H 7.97 (1H, s, H-2), two methoxy groups at H 3.79 (3H, s, 6-OCH3) and 3.73 

(3H, s, N-OCH3), one methylthio signal at H 2.43 (3H, s, SCH3) and one NH proton at 

H 12.10 (1H, br s, NH-1). 
In 13C-NMR spectrum (Figure 98), thirteen signals represented four methines 

[C 136.7 (C-2), 121.4 (C-4), 112.3 (C-5) and 95.8 (C-7)], six quaternary carbons [C 113.6 
(C-3), 118.5 (C-3a), 156.9 (C-6), 138.0 (C-7a), 182.5 (C-8), 155.9 (C-9)] and three methyl 

carbons [C 55.3 (6-OCH3), 61.9 (N-OCH3) and 12.7 (SCH3)]. Together with 1H-1H NOESY 
cross peaks of NH-1 with H-2 and H-7, the 1H- and 13C-NMR data indicated the structure 
of compound 9 could be 3,6-disubstituted 1H-indole ring as similar with compound 8, 

except the presence of carbonyl carbon at C 182.5 (C-8). In addition, 1H-13C HMBC 
cross peaks of H-2 to C-3 and C-8, and of SCH3 to C-9 supported the substitution of 2-
oxoethanimidothioate at C-3. 
 The computational studies suggested that N-methoxy was connected with imine 
bond as cis direction regarding to SCH3 due to its lowest energy conformation of 
compound 9 (Figure 104). Thus, the compound 9 was established as methyl (Z)-N-
methoxy-2-(6-methoxy-1H-indol-3-yl)-2-oxoethanimidothioate and was named as 
maeroxime B. 
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Maeroxime B 

 
Table 12. 1H-, 13C-NMR and HMBC data of compound 9 (400 MHz, DMSO-d6) 

 
 
 
 

 
Position 

 Compound 9 
 H (mult., J 

in Hz) 
C HMBC correlation 

with 

NH-1  12.10, (br s)  - 

2  7.97, (s) 136.7 C-3, C-3a, C-7a, C-8 
3  - 113.6 - 

3a  - 118.5 - 
4  7.92 (d, 8.4) 121.4 C-3, C-6, C-7a 
5  6.89 (d, 8.4) 112.3 C-3a, C-6, C-7 
6  - 156.9 - 
7  7.00, (s) 95.8 C-3a, C-5, C-6, C-7a 

7a  - 138.0 - 
8  - 182.5 - 

9  - 155.9 - 
6-OCH3  3.79, (s) 55.3 C-6 
SCH3  2.43, (s) 12.7 C-9 

N-OCH3  3.73, (s) 61.9 - 
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Figure 94. UV spectrum of compound 9 

Figure  95. IR spectrum of compound 9 
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Figure 96. HR-ESI mass spectrum of compound 9 

 

Figure  97. 1H-NMR spectrum of compound 9 (100 MHz, DMSO-d6) 
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Figure 98. 13C-NMR spectrum of compound 9 (100 MHz, DMSO-d6) 

 
 

Figure 99. 1H-13C HSQC spectrum of compound 9 
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Figure 100. 1H-13C HMBC spectrum of compound 9 

(expansion between H 2.0-8.4 ppm, C 100-180 ppm) 

 

Figure 101. 1H-13C HMBC spectrum of compound 9 
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Figure 102. 1H-1H COSY spectrum of compound 9 
 

 

Figure 103. 1H-1H NOESY spectrum of compound 9 
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Figure 104. Possible conformations of compound 9, based on the DFT calculation at 
B3LYP/6-31g (d, p) level  
 

    4.2.5 Structure elucidation of compound 10 (maeroxime C) 
Compound 10 was obtained as a yellow amorphous solid. Its molecular 

formula was deduced as C13H14N2O3S (eight degrees of unsaturation), based on a 
pseudo-molecular [M+H]+ ion peak observed at m/z 279.0780 (calculated for 
C13H15N2O3S, 279.0803) in the HR-ESI mass spectrum (Figure 106). Therefore, this 
compound was a structural isomer of compound 9. Its major IR absorption bands 
(Figure 107) were observed at 3307 and 1729 cm-1 and UV absorption maxima (Figure 

105) were detected at max 208, 272 and 316 nm. These data are characteristic of 
oxindole moiety, similar to compound 6.  

The 1H-NMR data of compound 10 (Table 13 and Figure 108) showed ABX 

proton system at H 7.87 (1H, d, J = 8.4 Hz, H-4), 6.41 (1H, d, J = 2.4 Hz, H-7) and 6.52 

(1H, dd, J = 8.4, 2.4 Hz, H-5), one olefinic methine proton at H 6.80 (1H, s, H-8), two 

methoxy protons at H 3.78 (3H, s, 6-OCH3) and 4.00 (3H, s, N-OCH3), one methylthio 

signal at H 2.35 (3H, s, SCH3) and one NH broad singlet at H 10.63. 
Its 13C-NMR spectrum (Table 13 and Figure 109) displayed thirteen carbon 

resonances representing an amide carbonyl at C 168.6 (C-2), four aromatic and olefinic 
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methines at C 126.5 (C-4), 106.8 (C-5), 96.6 (C-7) and 119.9 (C-8), five quaternary 

carbons at C 131.1 (C-3), 113.3 (C-3a), 162.2 (C-6), 145.6 (C-7a) and 150.8 (C-9), two 

methoxy carbons at C 55.5 (6-OCH3) and 62.5 (N-OCH3), and one methylthio carbon 

at C 12.6 (SCH3).  
Its oxindole characteristic indicated that position 2 of this 3,6-disubstituted 1H-

oxindole nucleus should be the amide carbonyl function, hence a double bond was 
placed to between positions 3 and 8. This was confirmed by 1H-13C HMBC correlations 
(Figure 111) observed from H-8 to C-2, C-3, C-3a and C-9. Other substituents were 
located the same positions as compound 9. The trans, trans geometric isomer was 
introduced by the 1H-1H NOESY cross peaks of H-4 and N-OCH3, and of H-8 and SCH3, 
together with the lowest energy data from computational analysis (Figure 113 and 
114). Therefore, the chemical structure of compound 10 was determined as (E)-N-
methoxy-2-((E)-6-methoxy-2-oxindolin-3-ylidene) ethanimidothiolate and trivially 
named maeroxime C.   
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Table 13. 1H-, 13C-NMR and HMBC data of compound 10 (400 MHz, DMSO-d6) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
Figure 105. UV spectrum of compound 10 

 

Position H (mult., J in Hz) C HMBC correlation with 

NH-1 10.63 (br s) - C-2, C-3, C-3a, C-7a 
2 - 168.6 - 

3 - 131.1 - 
3a - 113.3 - 

4 7.87 (d, 8.4) 126.5 C-3, C-5, C-6, C-7a 
5 6.52 (dd, 8.4, 2.4) 106.8 C-3a, C-6, C-7 
6 - 162.2 - 
7 6.41 (d, 2.4) 96.6 C-3a, C-5, C-6, C-7a 
7a - 145.6 - 

8 6.80 (s) 119.9 C-2, C-3, C-3a, C-9 
9 - 150.8 - 

6-OCH3 3.78 (s) 55.5 C-6 
SCH3 2.35 (s) 12.6 C-9 

N-OCH3 4.00 (s) 62.5 - 
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Figure 106.  HR-ESI mass spectrum of compound 10 
 

Figure 107. IR spectrum of compound 10 
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Figure 108. 1H-NMR spectrum of compound 10 (400 MHz, DMSO-d6) 
 

Figure 109. 13C-NMR spectrum of compound 10 (100 MHz, DMSO-d6) 
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Figure 110. 1H-13C HSQC spectrum of compound 10 

 

Figure 111. 1H-13C HMBC spectrum of compound 10 
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Figure 112. 1H-1H COSY spectrum of compound 10 

Figure 113. 1H-1H NOESY spectrum of compound 10 
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Figure 114. Possible conformations of compound 10, based on the DFT calculation 
at B3LYP/6-31g (d, p) level 
 

 

    4.2.6 Structure elucidation of compound 11 (maeruabisindole A) 
 Compound 11 was isolated as a pale green amorphous solid, showing UV 

absorption maxima at max 210, 270, 315, 355 and 365 nm (Figure 115). The HR-ESI 
mass spectrum (Figure 116) exhibited a pseudo-molecular [M+H]+ ion peak at m/z 
390.1298, corresponding to a molecular formula of C22H19N3O2S (calculated for 
C22H20N3O2S, 390.1271), indicating fifteen degrees of unsaturation. Its IR spectrum 
(Figure 117) showed absorption bands of amine and imine at 3384 and 1625 cm-1, 
respectively.  
 The 1H-NMR (400 MHz, DMSO-d6) data of compound 11 (Table 14 and Figure 

118-119) displayed resonances of two set of disubstituted-1H-indole moieties at H 

10.71 (1H, br s, NH-1), 8.05 (1H, d, J = 8.4 Hz, H-4), 7.79 (1H, br s, H-3), 6.99 (1H, d, J 

= 2.4 Hz, H-7) and 6.78 (1H, dd, J = 8.4, 2.0 Hz, H-5) and at H 11.52 (1H, br s, NH-1), 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 173 

7.51 (1H, d, J = 2.0 Hz, H-2), 7.12 (1H, overlapped, H-7), 7.10 (1H, overlapped, H-6) 

and 6.56 (1H, dd, J = 6.0, 2.4 Hz, H-5). Two methoxy signals were observed at H 3.81 
(3H, s, 6-OCH3) and 3.52 (3H, s, 4-OCH3), while a methylthio signal could be seen at 

H 2.59 (3H, s, 2-SCH3). Two indole nuclei, representing sixteen carbon atoms and 
twelve degrees of unsaturation, indicated that compound 11 was a bisindole alkaloid. 
Disregarding two methoxy and one methylthio groups, the last part of this molecule 
should involve one nitrogen atom and three carbon atoms in an imine formation with 
three degrees of unsaturation.  
 Its 13C-NMR (400 MHz, DMSO-d6) data (Table 14 and Figure 120-121 ) exhibited 

22 signals representing two methoxy groups at C 55.2 (6-OCH3) and 54.9 (4-OCH3), 

one methylthio group at C 14.0 (2-SCH3), methine and quaternary carbons of two 

indole moieties at C 160.0 (C, C-6), 153.9 (C, C-4), 142.9 (C, C-7a), 137.9 (C, C-7a), 
129.3 (C, C-2), 125.0 (CH, C-2), 122.6 (CH, C-4), 122.5 (CH, C-6), 116.4 (C, C-3a), 
114.1 (C, C-3a), 113.0 (C, C-3), 108.7 (CH, C-5), 108.5 (CH, C-3), 105.0 (CH, C-7), 100.4 
(CH, C-5) and 94.8 (CH, C-7), and three sp2 carbons of a 2,3,4-trisubstituted azete 

moiety (Csaszar et al., 2015) at C 144.8 (C-2), 139.5 (C-4) and 133.4 (C-3).  
A methoxy group could be located at position 6 of an indole moiety. This was 

confirmed by 1H-13C HMBC correlations (Figure 123-126 ) observed from its proton 
signal (6-OCH3) to C-6,  from NH-1 to C-2, C-3a and C-7a and from H-4 to C-6 and 
C-7a, together with 1H-1H NOESY cross peaks (Figure 128) between proton signals of 
NH-1 and H-7; of H-3 and H-4 and of 6-OCH3 with H-5 and H-7. Another methoxy 
group was assigned at position 4 of the second indole moiety based on HMBC 
correlations observed from the signal of 4-OCH3 to C-4; from NH-1 to C-3a and 
C-7a and from H-6 to C-4 and C-7a, together with NOESY cross peaks between 
NH-1 and H-7 and between 4-OCH3 and H-5. 

Both indole nuclei were connected through an azete ring. The 6-methoxy 
indole moiety could be could be connected via C-2 to this four-membered ring at 
position 3, based on a HMBC cross peaks from NH-1 and H-3 to C-3, whereas the 4-
methoxy indole moiety was connected via C-3 to position 4 of the azete ring, as 
supported by a 1H-1H COSY cross peak (Figure 127) between NH-1 and H-2, and a 
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HMBC cross peak from H-2 to C-4 signal. Finally, the methylthio group was located at 

position 2 of the azete ring based on a HMBC correlation from its proton signal (H 
2.59) to C-2. Therefore, the structure of compound 11 was elucidated as 4-methoxy-
3-(3-(6-methoxy-1H-indol-2-yl)-4-(methylthio)azet-2-yl)-1H-indole and was trivially 
named maeruabisindole A. Bisindole alkaloids bearing an azete ring have previously 
been found in the roots of Isatis tinctoria (family Brassicaceae). Two of these indole 
derivatives, namely isatindigosides G and F, exhibited nitric oxide inhibitory effect 
(Zhang et al., 2020).  
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Table 14. 1H-, 13C-NMR and HBMC data of compound 11 (400 MHz, in DMSO-d6) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Position H (mult., J in Hz) C HMBC correlation with 

2 - 144.8  
3 - 133.4 - 

4 - 139.5 - 

NH-1 10.71 (br s) - C-2, C-3a, C-7a, C-3 

2 - 129.3 - 

3 7.79 (br s) 108.5 C-3, C-3a 

3a - 114.1 - 

4 8.05 (d, 8.4) 122.6 C-6, C-7a 

5 6.78 (dd, 8.4, 2.0) 108.7 C-3a, C-7 

6 - 160.0 - 

7 6.99 (d, 2.4) 94.8 C-3a, C-5, C-6, C-7a 

7a  142.9 - 

NH-1 11.52 (br s) - C-2, C-3, C-3a, C-7a 

2 7.51 (d, 2.0) 125.0 C-3 

3 - 113.0 - 

3a - 116.4 - 

4 - 153.9 - 

5 6.56 (dd, 6.0, 2.4) 100.4 C-3a, C-4, C-7 

6 7.10, overlapped 122.5 C-4, C-7a 

7 7.12, overlapped 105.0 C-3a, C-5 

7a - 137.9 - 

2-SCH3 2.59 (s) 14.0 C-2 

6-OCH3 3.81 (s) 55.2 - 

4- OCH3 3.52 (s) 54.9 - 
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Figure 115. UV spectrum of compound 11 
 

 

 

 
 

Figure 116. HR-ESI mass spectrum of compound 11 
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Figure 117.  IR spectrum of compound 11 

Figure 118. 1H-NMR spectrum of compound 11 (400 MHz, DMSO-d6) 
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Figure 119. 1H-NMR spectrum of compound 11 (expansion between H 6.3-8.3 ppm) 
 

 
Figure 120. 13C-NMR spectrum of compound 11 (100 MHz, DMSO-d6) 
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Figure 121. 13C-NMR spectrum of compound 11 (100 MHz, DMSO-d6)  

(expansion between C 90-170 ppm) 

 

Figure 122. 1H-13C HSQC spectrum of compound 11 
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Figure 123. 1H-13C HMBC spectrum of compound 11 

(expansion between H 0.5-12.0 ppm, C 20-180 ppm) 

 
Figure 124. 1H-13C HMBC spectrum of compound 11 

(expansion between H 2.0-12.0 ppm, C 85-160 ppm)  
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Figure 125. 1H-13C HMBC spectrum of compound 11 

(expansion between H 10.4-12.0 ppm, C 104-158 ppm) 

Figure 126. 1H-13C HMBC spectrum of compound 11 

(expansion between H 6.4-8.4 ppm, C 90-164 ppm) 
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Figure 127. 1H-1H COSY spectrum of compound 11 

 

Figure 128. 1H-1H NOESY spectrum of compound 11 
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4.2.7 Structure elucidation of compound 12 (maeruabisindole B) 
 Compound 12 was obtained as a pale green amorphous solid, showing UV 

absorption maxima at max 210, 230, 310, 340 and 355 nm (Figure 129). The IR 
spectrum (Figure 131) showed absorption bands of amine at 3396 cm-1, imine and 
aromatic ring at 1602 and 1465 cm-1 and sulfoxide group 1025 cm-1. Its molecular 
formula of C22H19N3O3S was deduced from a pseudo-molecular [M+H]+ ion peak at m/z 
406.1224 (calculated for C22H20N3O3S, 406.1220) in the HR-ESI mass spectrum (Figure 
130). 

Its 1H and 13C-NMR data are mostly similar to those of compound 11. The 1H-
NMR spectrum of compound 12 (400 MHz, CD3OD) (Table 15 and Figure 132-133 ) 

showed peaks of the 2,6- disubstituted-1H-indole moiety at H 8.12 (1H, d, J = 8.4 Hz, 
H-4), 8.43 (1H, s, H-3), 7.05 (1H, d, J = 2.0 Hz, H-7), 6.93 (1H, dd, J = 8.4, 2.0 Hz, H-5) 

and 3.89 (3H, s, 6-OCH3) and the 3,4- disubstituted-1H-indole moiety at H 7.54 (1H, 
s, H-2), 7.14 (1H, d, J = 6.8 Hz, H-7), 7.16 (1H, dd, J = 7.6, 6.8 Hz, H-6), 6.60 (1H, d, 
J = 6.8 Hz, H-5) and 3.55 (3H, s, 4-OCH3). A methylthio signal, as seen in compound 

11, was replaced by a methylsulfoxide singlet at H 2.98 (3H, s, 2-SOCH3). The H-3 
signal appeared at more downfield chemical shift due to the anisotropic effect of S=O 
bond of the methylsulfoxide group on the nearby azete ring to this proton on the 
indole nucleus.  
 The 13C-NMR data of this compound (400 MHz, CD3OD) (Table 15 and Figure 

134) showed 22 carbon peaks representing two methoxy carbons at C 56.1 (6-OCH3) 

and 55.7 (4-OCH3), one methylsulfoxide carbon at C 42.1 (2-SOCH3), methine carbons 

at C 126.1 (C-2), 124.4 (C-6),123.7 (C-4), 111.8 (C-5), 109.3 (C-3), 106.3 (C-7), 101.7 

(C-5) and 95.8 (C-7) and quaternary carbons at C 163.0 (C-6), 155.6 (C-4), 144.9 (C-
7a), 140.0 (C-7a), 130.8 (C-2), 118.2 (C-3a), 116.3 (C-3a) and 113.2  (C-3). Three 

sp2 carbons of the 2,3,4-trisubstituted azete ring resonated at C 151.7 (C-2), 142.7 (C-
4) and 137.8 (C-3). 
 These spectroscopic data indicated that the difference of this compound to 
compound 11 was the presence of a methylsulfoxide group, instead of a methylthio 
group, at position 2 of the azete ring. This was confirmed by 1H-13C HMBC correlation 
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between the methylsulfoxide proton signal (H 2.98) to C-2 of the azete ring. Linkage 
of the 2,6- disubstituted indole unit to the azete ring was confirmed by HMBC cross 
peaks from H-3 to C-3 and C-3a. Therefore, the structure of compound 12 was 
established as 4-methoxy-3-(3-(6-methoxy-1H-indol-2-yl)-4-(methysulfinyl)azet-2-yl)-
1H-indole and named maeruabisindole B. 
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Table 15. 1H-, 13C NMR and HBMC data of compound 12 (400 MHz, in CD3OD) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Position H (mult., J in Hz) C HMBC correlation with 

2 - 151.7  
3 - 137.8 - 
4 - 142.7 - 

2 - 130.8 - 

3 8.43 (s) 109.3 C-3, C-3a 

3a - 116.3 - 

4 8.12 (d, 8.4) 123.7 C-2, C-6, C-7a 

5 6.93 (dd, 8.4, 2.0) 111.8 C-3a, C-7 

6 - 163.0 - 

7 7.05 (d, 2.0) 95.8 C-3a, C-5, C-6 

7a - 144.9 - 

2 7.54 (s) 126.1  C-3, C-3a, C-7a 

3 - 113.2 - 

3a - 118.2 - 

4 - 155.6 - 

5 6.60 (d, 6.8) 101.7 C-3a, C-4, C-7 

6 7.16 (dd, 7.6, 6.8) 124.4 C-5 

7 7.14 (d, 6.8) 106.3 C-4, C-5, C-7a 

7a - 140.0 - 

2-SOCH3 2.98 (s) 42.1 C-2 

6-OCH3 3.89 (s) 56.1 - 

4-OCH3 3.55 (s) 55.7 - 
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Figure 129. UV spectrum of compound 12 
 

 
Figure 130. HR-ESI mass of compound 12 
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Figure 131.  IR spectrum of compound 12 

 

 

 
Figure 132. 1H-NMR spectrum of compound 12 (400 MHz, CD3OD) 
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Figure 133.  1H-NMR spectrum of compound 12 (expansion between H 6.3-8.7 ppm) 

 

Figure 134. 13C-NMR spectrum of compound 12 (100 MHz, CD3OD) 
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Figure 135.  1H-13C HSQC spectrum of compound 12 

 

Figure 136. 1H-13C HSQC spectrum of compound 12 

 (expansion between H 6.0-9.1 ppm, C 90-130 ppm) 
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Figure 137. 1H-13C HMBC spectrum of compound 12 

(expansion between H 6.3-8.6 ppm, C 90-170 ppm) 
 

 

Figure 138. 1H-13C HMBC spectrum of compound 12 

(expansion between H 2.1-4.4 ppm, C 140-170 ppm) 
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Figure 139. 1H-1H COSY spectrum of compound 12 

(expansion between H 6.0-9.0 ppm) 

 

Figure 140. 1H-1H NOESY spectrum of compound 12 

(expansion between H 2.0-9.0 ppm) 
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    4.2.8 Structure elucidation of compound 13 (maeruabisindole C)  
 Compound 13 was isolated as a dark green amorphous solid, having a 

molecular formula of C20H13N3O2 based on its pseudo molecular [M-H]− ion peak in 
the HR-ESI mass spectrum (Figure 141) at m/z 326.0968 (calculated for C20H12N3O2, 
326.0935), requiring sixteen degrees of unsaturation. Its IR spectrum (Figure 143) 
showed absorption bands due to hydroxyl and amine groups (3359 cm-1), nitrile (2212 
cm-1) and aromatic ring (1632 and 1468 cm-1). Its UV absorption maxima were measured 

at max 210, 285, 355 and 365 nm (Figure 142). 
 The 1H NMR spectra of compound 13 (Table 16 and Figure 144-145) showed 

signals of one 1,2,3-trisubstituted benzene ring at H 6.80 (1H, d, J = 8.0 Hz, H-2), 7.40 
(1H, t, J = 8.0 Hz, H-3) and 7.24 (1H, d, J = 8.0 Hz, H-4), one 1,2,4-trisubstituted benzene 

ring at H 8.33 (1H, d, J = 8.8 Hz, H-7), 6.86 (1H, dd, J = 8.8, 2.4 Hz, H-8) and 7.02 (1H, 

d, J = 2.4 Hz, H-10), an aromatic proton at H 8.53 (1H, s, H-12), two NH protons at H 

10.86 (1H, br s, NH-5) and 10.39 (1H, br s, NH-11), a methoxy group at H 4.12 (3H, s, 1-

OCH3) and a hydroxyl group at H 8.70 (1H, br s, 9-OH). 
 Its 13C NMR spectra (Table 16 and Figure 146-147) showed signals of eleven 

quaternary carbons at C 113.0 (C-12b), 115.4 (C-6b), , 82.5 (C-6), 122.0 (C-12a), 123.0 
(C-6a), 138.0 (C-5a), 135.8 (C-11a), 143.4 (C-4a), 144.6 (C-10a), 157.1 (C-1) and 158.8 (C-

9), seven methine carbons at C 97.5 (C-10), 101.5 (C-2), 105.1 (C-4), 110.0 (C-8), 110.2 

(C-12), 122.6 (C-7) and 128.2 (C-3), a methoxy carbon at C 56.0 (1-OCH3), and a nitrile 

carbon at C 118.3 (6-CN). 
 These spectroscopic data indicated that the structure of compound 13 
comprised of two indole rings connected into the core structure of indolo[3,2-
b]carbazole (Wahlström et al., 2007). The 1H-13C HMBC cross peaks from NH-5 to C-5a, 
C-6, C-12a and C-12b, from NH-11 signal to C-6a, C-6b, and C-10a and from H-12 to C-
5a, C-6a, C-12a and C-12b confirmed this skeleton.  A methoxy group could be located 

at C-1 based on a HMBC correlation observed from its proton signal (H 4.12) to C-1 
and a 1H-1H NOESY cross peak between its signal and that of H-2. The hydroxyl 

substitution at C-9 was proven by the HMBC correlations of its proton signal (H 8.70) 
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to C-8, C-9 and C-10, as well as its 1H-1H NOESY correlations with both H-8 and H-10. 
In addition, a NOESY cross peak was also observed between H-12 and NH-11. Finally, 
the nitrile group could be placed at position 6 of the indolo[3,2-b]carbazole nucleus. 
The downfield chemical shifts of H-7 and NH-5 signals might be due to the anisotropic 
effect of this nitrile group. Thus, the chemical structure of compound 13 was 
elucidated as 9-hydroxy-1-methoxy-5,11-dihydroindolo[3,2-b]carbazole-6-carbonitrile. 
It was given the name maeruabisindole C. 
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Table 16.  1H-, 13C NMR and HBMC data of compound 13 (400 MHz, in acetone-d6) 
 

Position 
Compound 13 

H, (mult., J in Hz) C HMBC correlation with 

1  157.1  
2 6.80 (d, 8.0) 101.5 C-1, C-1a, C-4 
3 7.40 (t, 8.0) 128.2 C-1, C-1a, C-2, C-4a 
4 7.24 (d, 8.0) 105.1 C-1, C-1a, C-2 

4a  143.4 - 
NH-5 10.86, br s  C-1a, C-5a, C-12a 

5a  138.0 - 
6  82.5 - 
6a  123.0 - 

6b  115.4  
7 8.33 (d, 8.8) 122.6 C-6a, C-9, C-10, C-10a  

8 6.86 (dd, 8.8, 2.4) 110.0 C-7a, C-9, C-10 
9  158.8 - 

10 7.02 (d, 2.4) 97.5 C-7a, C-8, C-9 
10a  144.6 - 

NH-11 10.39, br s  C-6a, C-7a, C-10a 

11a  135.8 - 
12 8.53, s 110.2 C-1a, C-5a, C-6a 

12a  122.0 - 
12b  113.0  

1-OCH3 4.12, s 56.0 C-1 
6-CN  118.3 - 

9-OH 8.70, br s  - 
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Figure 141. HR-ESI mass spectrum of compound 13 

 

 

 

 

 
 

Figure 142. UV spectrum of compound 13 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 196 

 
 

Figure 143.  IR spectrum of compound 13 
 

Figure 144.  1H-NMR spectrum of compound 13 (400 MHz, acetone-d6) 
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Figure 145.  1H-NMR spectrum of compound 13 

(expansion between H 6.7-9.0 ppm) 

 
Figure 146.  13C-NMR spectrum of compound 13 (100 MHz, acetone-d6) 
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Figure 147. 13C-NMR spectrum of compound 13 

(expansion between C 95-165 ppm) 

 

Figure 148. 1H-13C HSQC spectrum of compound 13 
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Figure 149. 1H-13C HMBC spectrum of compound 13 

 

 
Figure 150. 1H-13C HMBC spectrum of compound 13 

(expansion between H 6.7-9.0 ppm, C 80-165 ppm) 
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Figure 151. 1H-13C HMBC spectrum of compound 13 

(expansion between H 10.2- 11.0 ppm, C 110-150 ppm) 

 
Figure 152. 1H-1H COSY spectrum of compound 13 
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Figure 153. 1H-1H NOESY spectrum of compound 13 

(expansion between H 6.0- 11.5 ppm) 

 
Figure 154. 1H-1H NOESY spectrum of compound 13 
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4.3 Inhibition of nitric oxide production in LPS-induced macrophages RAW 264.7 
by isolated compounds 

All compounds from C. micracantha stems and M. siamensis roots were tested 

for inhibition of nitric oxide production in LPS-induced macrophage RAW 264.7 cells. 

Among 5 compounds isolated from C. micracantha, (−)-pauciflorol E exhibited strong 

inhibitory activity with an IC50 of 123.40 ± 4.51 M, whereas methyl 6-methoxy-3 -

indolecarbonate inhibited NO production with an IC50 of 198.00 ± 5.57 M (Table 17). 

Interestingly, the stilbene dimer [(−)-pauciflorol E], having a keto carbonyl at position 

8a, possessed NO inhibition activity, whereas the 8a-hydroxy substituted stilbene dimer 

((+)-ampelopsin A) was inactive. The NO inhibitory activity of (−)-pauciflorol E, methyl 

6-methoxy-3-indolecarbonate, and (−)-syringaresinol was first revealed in this study.  

Table 17. Inhibitory concentrations of isolated compounds from C. micracantha 
stems on nitric oxide (NO) production and cell viability in LPS-induced RAW 264.7 
cells  

Compound IC50 of NO inhibition (M)a Cytotoxicity (M)b 

methyl 6-methoxy-3-
indolecarbonate 
(compound 1) 

 

198.00 ± 5.57** >200 

vanillic acid (compound 2) no activity at 50 no toxicity at 50  

(−)-syringaresinol 

(compound 3) 
284.80 ± 7.16** >200 

(+)-ampelopsin A 
(compound 4) 

no activity at 50 no toxicity at 50  

(−)-pauciflorol E) 

(compound 5) 
123.40 ± 4.51** >200 

Indomethacin 166.30 ± 6.24 >200 
** p<0.001 versus indomethacin (positive control) 

a The IC50 of NO inhibition was expressed as Mean  SEM (standard error of the mean) from three independent 
experiments. 

b The maximum concentration of test compounds was 200 M. 
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As for M. siamensis, maeruabisindole B showed the strongest NO inhibition (IC50 

31.1 ± 1.0 M) among the isolates from M. siamensis roots, followed by 
maeruabisindole B (IC50 56.7 ± 2.2 M), maeroxide C (IC50 92.2 ± 5.1 M), (+ ) -
maeruanitrile A (IC50 186.4 ± 13.0 M) and maeruanitrile B (IC50 186.8 ± 13.3 M), 
compared to indomethacin (IC50 150.0 ± 16.0 M, a positive control) (Table 18). Most 
notably bisindole alkaloids exhitbited anti-inflammatory activity; for example, 
isatindigosides F and G from Isatis tinctoria roots (Brassicaceae) showed NO inhibitory 
activity at IC50 of 70.3 ± 6.9, and 67.3 ± 5.5 M, respectively (Dongdong Zhang et al., 
2020). In addition, indole-3-acetonitrile compounds isolated from Isatis indigotica roots 
such as indole-3-acetonitrile, arvelexin, 1-methoxy-indole-3-acetonitrile also 
demonstrated the NO inhibitory activity (Yang et al., 2014). 
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Table 18. Inhibition concentrations of isolated compounds from M. siamensis roots 
on nitric oxide (NO) production and cell viability in LPS-induced RAW 264.7 cells  
 

Compound IC50 of NO inhibition (M)a Cytotoxicity (M)c 

(+)-maeruanitrile A 
(compound 6) 

186.4 ± 13.0 >200 

maeruanitrile B 
(compound 7) 

186.8 ± 13.3 >200 

maeroxime A 
(compound 8) 

n.d. b toxicity at 100 

maeroxime B 
(compound 9) 

>200 (231.2 ± 11.6 ***) >200 

maeroxime C 
(compound 10) 

92.2 ± 5.1** >200 

maeruabisindole A 
(compound 11) 

n.d. b toxicity at 100 

maeruabisindole B 
(compound 12) 

31.1 ± 1.04**** toxicity at 100 

maeruabisindole C 
(compound 13) 

56.7 ± 2.2**** >200 

indomethacin 150.0 ± 16.0 >200 
**p <0.005 ***p <0.001 and ****p<0.0001 versus indomethacin (positive control) 

a The IC50 of NO inhibition was expressed as Mean  SEM from three independent experiments. 
b n.d. refers to ‘not determined’. The compound could not be determined for IC50 value due to its cytotoxicity 
c The maximum concentration of test compounds was 200 M. Cytotoxic was indicated by the concentration 
given that cell viability was lower than 80 %. The tested concentration that exhibited cell viability below 
80% was noted as “toxicity at that concentration”. 
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CHAPTER V 
CONCLUSION 

 
Phytochemical investigation of Capparis micracantha stems and Maerua 

siamensis roots led to the isolation of five known compounds [methyl 6-methoxy-3 -
indolecarbonate, vanillic acid, (−)-syringaresinol, (+)-ampelopsin A, and (−)-pauciflorol 
E] from C. micracantha and eight new compounds named ( + ) - maeruanitrile A, 

maeruanitrile B, maeroximes A − C, and maeruabisindoles A − C from M. siamensis. 
For nitric oxide inhibition assay in LPS-induced macrophages RAW 264.7, (−)-pauciflorol 
E, methyl 6- methoxy-3 - indolecarbonate, (−)-syringaresinol from C. micracantha 
exhibited the activity at IC50 of 123.40 ± 4.51, 198.00 ± 5.57 and 284.80 ± 7.16 µM, 
respectively. In addition, maeruabisindole B, maeruabisindole C, maeroxime C, 
maeruanitrile A, and maeruanitrile B displayed nitric oxide inhibition at IC50 of 31.1 ± 
1.04, 56.7± 2.2, 92.2 ± 5.1, 186.4 ± 13.0, 186.8 ± 13.3, respectively, while an IC50 of 
indomethacin (a drug for anti-inflammation) is in the range of 150.0 – 166.3 µM.  

These finding reveals the anti-inflammatory compounds in C. micracantha 
stems and M. siamensis roots which are herbal drugs used for treatment of 
inflammation according to Thai traditional medicines and supports the use of this 
herbal drugs. Moreover, the promising nitric oxide inhibitory compounds 
(maeruabisindoles B and C) could be developed for the potent anti-inflammatory 
agents in the future. 

Furthermore, this study expands knowledge in chemotaxonomy regarding 
plants in Capparaceae; for example, stilbene oligomers and lignans in Capparis species 
and glucosinolate-derived indole alkaloids and bisindole alkaloids in Maerua plants. 
Lastly, indole alkaloids which is similarly found in plants in the family Brassicaceae, it 
could be used as chemotaxonomic marker between Capparaceae and Brassicaceae, 
which are closely related family. 
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