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ABSTRACT (THAI) 

 สุทธิรักษ์ ตั้งเรืองเกียรต ิ: ความแม่นของการจำแนกรอยโรคตับในภาพอัลตราซาวด์ด้วยการใช้ปัญญาประดิษฐ์. ( 
Accuracy in Classification of Liver Lesion Ultrasound Using Artificial Intelligence) อ.ที่ปรึกษาหลกั : รศ.
ดร.อัญชลี กฤษณจินดา, อ.ที่ปรึกษาร่วม : รศ.ดร.สุพัฒนา เอื้อทวีเกยีรต ิ

  
การตรวจอัลตราซาวด์แบบ  B-mode เป็นมาตรฐานในการตรวจคัดกรองมะเร็งเซลล์ตับ  (hepatocellular 

carcinoma, HCC) เมื่อรอยโรคตับมีลักษณะเด่นชัดแตกต่างกัน ตัวตรวจจับแบบดั้งเดิมก็สามารถนำมาใช้ได้ หากรอยโรคตับมี
ลักษณะที่คล้ายกันกับรอยโรคอื่นในตับ จำเป็นต้องใช้ฐานข้อมูลภาพที่มากขึ้น ซ่ึงบางครั้งอาจมีไม่เพียงพอ ดังนั้นวิธีการแบบ 2 
ขั้นตอนจึงถูกนำมาใช้ โดยในขั้นตอนแรก จะทำการตรวจจับโรคตับโดยไม่ต้องแยกประเภทให้ชัดเจน แล้วทำการจัดประเภทโรคตับ
ที่ตรวจจับได้ในขั้นตอนที่ 2 การศึกษานี้ใช้ Convolutional Neural Network, CNN ในการจำแนกลักษณะของรอยโรคตับ 

วัตถุประสงค์ของวิทยานิพนธ์นี้ เพื่อออกแบบโมเดลด้วยปัญญาประดิษฐ์ และสำรวจความถูกต้องแม่นยำของโมเดล 
โดยพิจารณาจากความมีเอกลักษณ์ของรอยโรคด้วยวิธี CNN ในการออกแบบ 2 ขั้นตอน 

แม้ว่าลักษณะปรากฏของถุงน้ำและหลอดเลือดตับในภาพอัลตราซาวด์ จะเป็นแบบไม่มีคลื่นเสียงสะท้อน มีลักษณะ
เป็นวงกลมสีดำเหมือนกัน แต่ถุงน้ำในตับจะมีลักษณะพิเศษคือมีความเข้มเสียงมากขึ้นใต้ต่อถุงน้ำนั้น การรวมลักษณะพิเศษในการ
ตรวจจับ จะช่วยให้สามารถใช้ตัวตรวจจับแบบดั้งเดิมได้ การศึกษานี้ได้ใช้ Region-based convolutional neural networks, R-
CNN พร้อมกับ Residual Network-50, ResNet-50 เป็นโมเดลในการตรวจจับถุงน้ำในตับจำนวน 615 ภาพ ระบบได้ประเมินผล
โดยใช้วิธีไขว้ทบ 5 ส่วน ผลการศึกษาแสดงว่าการเพิ่มลักษณะพเิศษ จะเพิ่มความแม่นยำในการตรวจจับ ทั้งยังช่วยลดค่าผลบวกลวง
และผลลบลวงได้ 

เนื้องอกหลอดเลือดในตับ (Hemangioma, HEM) และมะเร็งเซลล์ตับ มีลักษณะคล้ายกันในภาพอัลตราซาวด์ ไม่มี
ลักษณะพิเศษแบบเฉพาะเจาะจงที่จะช่วยแยกแยะระหว่างสองรอยโรคนี้ได้ ดังนั้นจึงประยุกต์วิธีแบบสองขั้นตอนโดยขั้นตอนแรก 
จะสอนตัวตรวจจับให้สามารถจับรอยโรคเนื้องอกที่มีลักษณะคล้ายคลึงกับ HEM และ HCC ขั้นตอนที่สอง ใช้ตัวจำแนกเพื่อแยกเป็น 
3 กลุ่ม คือ typical HEM, atypical HEM และ HCC ซ่ึง atypical HEM และ HCC จะมีลักษณะภาพคล้ายกัน ดังนั้น การใช้เพียง
ภาพอัลตราซาวด์แบบ B-mode ไม่สามารถแยกแยะสองรอยโรคได้ จึงต้องเพิ่มการตรวจวินิจฉัยด้วยเครื่องเอกซเรย์คอมพิวเตอร์ 
และ / หรือ เครื่องสร้างภาพด้วยสนามแม่เหล็กไฟฟ้า ซ่ึงไม่จำเป็นต้องแยกแยะสองรอยโรคนี้อย่างแม่นยำในขณะคัดกรอง  เมื่อ
เปรียบเทียบผลการศึกษาการรวมกลุ่มเนื้องอก 2 ชนิดจะเพิ่มความไวในการตรวจจับ HCC จาก 0.64 เป็น 0.68 และจะเพิ่มความไว
ขึ้นอีกถ้าใช้วิธีสองขั้นตอน โดยเพิ่มขึ้นจาก 0.68 เป็น 0.72 อัตราความไวนี้เทียบเคียงได้กับโมเดลที่ถูกฝึกโดยใช้ฐานข้อมูลขนาดใหญ่
กว่าที่มีเขตการยอมรับ (IoU) ว่าโมเดลทำนายถูกต้องเพียง 0.2 ขณะที่วิธีสองขั้นตอนตั้งไว้ที่ 0.5 
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ABSTRACT (ENGLISH) 

# # 6174756830 : MAJOR MEDICAL PHYSICS 
KEYWORD: hepatocellular carcinoma, screening model, two-stage method, detector, classifier 
 Sutthirak Tangruangkiat : Accuracy in Classification of Liver Lesion Ultrasound Using Artificial Intelligence. 

Advisor: Assoc. Prof. ANCHALI KRISANACHINDA, Ph.D. Co-advisor: Assoc. Prof. SUPATANA AUETHAVEKIAT, Ph.D. 
  

B-mode ultrasound imaging is the standard method for hepatocellular carcinoma (HCC) screening. If a lesion 
has a unique appearance, a conventional detector can be applied. However, if the lesion shares its appearance with 
other lesion, a large training dataset is required, which may be unavailable. Therefore, a two-stage method is proposed. 
In the first stage, lesions are detected but not differentiated into any particular class. The detected lesions are then 
classified in the second stage using a conventional convolutional neural network (CNN). 

The aims of the dissertation are to design an artificial intelligent system model and to investigate the most 
accurate deep learning structure for hepatic lesion classification using two-stage model. 

Even though the cysts and hepatic vessels are both anechoic pattern and present black oval in ultrasound 
images, cysts have unique artifacts that present posterior acoustic enhancement. By including the artifacts in the 
detection, conventional detectors can be applied. In the study, Region-based convolutional neural networks, R-CNN, with 
Residual Network-50, ResNet-50, as the backbone was applied for the detection of 615 hepatic cysts. The system was 
evaluated by five-fold cross validation. The result indicated that the addition of artifacts led to better detection in term 
of accuracy, reduction of false positives and false negatives.  

Hemangioma (HEM) and HCC share lots of sonographic appearance. There is no unique artifact to 
differentiate these two lesions. A two-stage method is applied. In the first stage, the detector is trained to identify HEM 
and HCC like lesions. In the second stage, the classifier is applied to differentiate lesions into typical HEM, atypical HEM 
and HCC. Since atypical HEM and HCC display the same sonographic appearance, both lesions cannot be differentiated 
solely by B-mode ultrasound images. They require further CT or MR investigation, so it is unnecessary to accurately 
differentiate these two lesions during screening. The study showed that grouping HCC and atypical HEM into the same 
one led to the increase of HCC recall of the detector from 0.64 to 0.68. The application of the two-stage method in 
place of detector only method improved the recall from 0.68 to 0.72. The recall rate was comparable to the detector 
only method that was trained by a much larger database and used more relax criterion (0.5 and 0.2 intersection over 
union (IoU) for the correct detection in the proposed two-stage and the detector only methods, respectively).  

 Field of Study: Medical Physics Student's Signature ............................... 
Academic Year: 2022 Advisor's Signature .............................. 
 Co-advisor's Signature ......................... 
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CHAPTER 1  
INTRODUCTION 

 

1.1 Background and Rationale 

 Global cancer statistics in 2018 reported that liver cancer is the sixth most 
common cancer and the third most common cause of cancer mortality [1]. 
Approximately 90% of primary liver cancer is hepatocellular carcinoma (HCC) [2]. The 
detection of early-stage HCC leads to more curative treatment, a decrease in 
morbidity and the goal of HCC surveillance. 

Patients with hepatitis B or C have a higher risk of HCC due to the development 
of liver fibrosis in these diseases. They should be enrolled in the HCC screening and 
surveillance program and routinely have their liver screened for lesions by 
ultrasound (US) imaging. If the suspected lesion is detected, they are further 
investigated by computed tomography (CT) or magnetic resonance (MR) imaging. 
Since CT and MR imaging have not been available in primary healthcare systems, the 
longtime waiting caused the rapid progress of the HCC. 

The current standard protocol for liver screening is B-mode ultrasound imaging. 
However, lesions may not have a distinct appearance, which can make it difficult to 
differentiate hepatic lesions. To address this, the proposed approach suggests 
designing the architecture of artificial intelligent systems based on the uniqueness of 
the lesions. For lesions with a distinct appearance, a conventional detector can be 
applied. However, when lesions share an appearance with other lesions, a large 
training dataset is necessary, which may not always be available. To address this 
challenge, a two-stage method is proposed. In the first stage, lesions are detected 
without being classified into a particular group, and in the second stage, a 
conventional convolutional neural network is used to classify the detected lesions. 

A hepatic cyst on an ultrasound image is one of the lesions that has a distinct 
appearance. However, interpreting 2-dimensional ultrasound images can be 
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challenging, particularly in differentiating cystic lesions and hepatic vessels, as both 
present as anechoic patterns [3]. Some authors used deep learning models to detect 
hepatic lesions and found that the models failed to distinguish hepatic vessels from 
hepatic cysts [4, 5]. 

Hepatic Hemangioma (HEM) and HCC are both hepatic tumors that can be 
difficult to differentiate from each other when both present similar features in 
ultrasonography [6, 7]. HEM is a common benign tumor mostly found in clinical 
practice [6, 8, 9]. However, in many patients, the lesion may appear atypical, and 
further CT/MR examination is necessary. Conventional ultrasonography has 
limitations, which lead to the need for more advanced diagnostic tools. 

Artificial intelligence (AI), specifically deep learning, has been successful in 

pattern recognition, including computer-assisted diagnosis (CAD) [10, 11]. In recent 

years, there have been promising results in the application of deep learning 

algorithms to assist radiologists and sonographers in diagnosing hepatic lesions in 

ultrasonography. Therefore, the aim of this research is to develop and evaluate a 

deep learning model to aid in differentiating cysts and hepatic vessels, as well as 

HEM and HCC lesions. 

1.2 Hypothesis 

The implementation of AI in liver ultrasonography can enhance the accuracy of 
liver lesion detection and classification. 

 
1.3 Research Questions 

What is the design of the feature extraction algorithm for the accurate 
detection and classification of liver lesions in ultrasonography? 
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1.4 Research Objectives 

1.4.1 Primary Objective 

To design the feature extraction algorithm using AI for focal liver lesion 
detection and classification in liver ultrasound images. 

1.4.2 Secondary Objective 

To investigate the most accurate deep learning structure for hepatic lesion 
classification when used with the proposed two-stage model. 

1.5 Flow Chart of Thesis 

The thesis titled "Accuracy in Classification of Liver Lesion Ultrasound Using 
Artificial Intelligence" employs a flowchart to enhance the understanding of the 
interrelation between each chapter as shown in Figure 1. The study considers a small 
dataset and different lesion characteristics as key factors. 

The flowchart initially focuses on the unique appearance of the lesion, 
specifically investigating hepatic cysts. In cases where the lesion exhibits a distinctive 
appearance, the "Conventional Detector 'R-CNN'" is employed for precise cyst 
detection and classification. 

Conversely, if the lesion lacks a unique appearance, as seen in hepatic tumors 
such as HCC or HEM, the study utilizes the "Two-Stage Model" for detection and 
classification of these tumor types. The flowchart helps guide the study's progression 
and clarifies the decision-making process based on the characteristics of the lesions. 

The flowchart of the thesis studies is designed to present the overall thesis and 
establish the relationship between each chapter. Here is a breakdown of the 
chapters: 

Chapter 3: This chapter provides a description of the materials used in the two 
studies.  
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Figure 1 Flow Chart of Thesis Chapter 3 - 7. 

Chapter 4: The methods of two studies are in detail. Topic 4.1 covers cyst 
detection, and topic 4.2 examines hepatic tumor detection and classification. 

Chapter 5: This chapter presents the results obtained from the two studies. 
Topic 5.1 refers to the results of cyst detection, while topic 5.2 focuses on hepatic 
tumor detection and classification. 

Chapter 6: The discussion refers to the findings of two studies, topic 6.1 refers 
to cyst detection, while topic 6.2 examines hepatic tumor detection and 
classification. 

Chapter 7: The conclusions include two studies, topic 7.1 presents the 
conclusions related to cyst detection, and topic 7.2 concludes the hepatic tumor 
detection and classification. 
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This chapter enables a comprehensive understanding of the research, allowing 
readers to navigate through the different aspects of the study with clarity. 

1.6 Ultimate Goal 

The ultimate goal of this thesis is to improve the current practice of HCC 
screening by leveraging artificial intelligence (AI) in ultrasound imaging. By developing 
and evaluating a deep learning model specifically designed for liver ultrasound 
images, in order to enhance the accuracy and efficiency of HCC diagnosis and 
differentiation between hepatic cysts, hepatic vessels, HEM, and HCC lesions. 

With higher performance achieved through the integration of AI in ultrasound, 
the purpose is to transform ultrasound image from being solely a modality for 
detecting abnormal findings in accordance with HCC guidelines to a powerful tool 
capable of effectively ruling out typical HEM cases. This would result in a reduction 
in the number of patients requiring further investigations by CT/MRI, thereby 
streamlining the diagnostic process. Moreover, by improving the efficiency of lesion 
detection and classification, the waiting time for patients with suspicious liver tumors 
can be significantly reduced. 

Ultimately, by enhancing the accuracy and capabilities of ultrasound through 
AI, the goal is to optimize the HCC screening process, enabling timely and accurate 
diagnoses, reducing unnecessary investigations, and improving patient outcomes. 

It is important to note that this thesis represents an initial step towards 
improving the current practice of HCC screening. While the integration of AI in 
ultrasound imaging shows promising potential, further research and development are 
required to fully realize its benefits in clinical settings. This thesis serves as a 
foundation for future advancements in AI-assisted diagnosis and classification of 
hepatic lesions in ultrasound, aiming to contribute to the ongoing efforts in 
enhancing HCC screening programs and ultimately improving patient health care. 
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CHAPTER 2  
THEORY AND RELATED LITERATURE 

2.1 Theory 

2.1.1 Liver Anatomy and Histology 

The liver is the largest solid organ in the human body, located in the upper 
right of the abdominal cavity, beneath the diaphragm. The liver is divided into right 
and left lobes, the left lobe is smaller than the right lobe. There are three blood 
vessels connected to the liver as follows.  

- The hepatic artery (HA) brings oxygenated blood to the liver.  

- The portal vein (PV) or hepatic portal vein brings nutrient-rich blood from 
the digestive system to the liver. 

- The hepatic vein (HV) carries oxygen-poor blood out of the liver. 

The hepatic artery and portal vein subdivide into small capillaries known as 
liver sinusoids, which end in a lobule. A liver sinusoid serves as the location for 
mixing the oxygen-rich blood from the hepatic artery and the nutrient-rich blood 
from the portal vein. 

The hepatic lobule is the functional unit of a liver. Each lobule is made of 
millions of hepatocytes (hepatic cells) radiating from a central vein. The central vein 
joins the hepatic vein to carry blood out of the liver. A distinctive component of a 
lobule is the portal triad, which runs along each of the lobule's corners [12] as shown 
in Figure 2. The Portal triad, misleadingly named, consists of five structures: the 
hepatic artery, the portal vein, hepatic duct, lymphatic vessels and vagus nerve [13]. 
Between the hepatocyte plates are liver sinusoids, which are enlarged capillaries 
through which the blood from the hepatic portal vein and the hepatic artery enters 
via the portal triads, and then drains to the central vein. The main function of the 
liver is to filter the blood coming from the digestive system, before passing it to the 
rest of the body. Moreover, the liver also metabolizes drugs, detoxifies chemicals, 
and produces bile which is passed to the gallbladder. Therefore, the liver is a vital 
organ and supports other organs and is also prone to many diseases.  
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Figure 2 Structural organization of the liver [12]. 

Liver disease can be hereditary or acquired, such as a virus or bacterial 
infection, alcohol abuse, obesity, etc. Chronic liver diseases may result in cirrhosis, 
and some may cause liver cancer. 

2.1.2 Liver Tumors  

The liver is made up of various cell types so several types of tumors can be 
formed. Some are benign and some are cancerous. These tumors, having different 
causes, are treated differently. The most common types of benign liver lesions are as 
follows. 

A. Hepatic Hemangioma — is also called a cavernous hemangioma or 
‘HEM’. The tumor is the most common benign tumor of the liver [8, 9], which 
is made up of abnormal blood vessels. Usually, the tumors do not cause 
symptoms and need no treatment. In some cases, larger HEMs can cause pain 
or discomfort and need to be removed. HEMs may be presented from birth as 
well as developed at any point during a person's life. 
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B. Focal nodular hyperplasia (FNH) — is the second most common 
benign tumor of the liver. It is more common in females (female: male ratio 
8:1) [14]. FNH is a growth of several cell types, hepatocytes, bile ductules 
(small ducts) and Kupffer cells. These tumors do not bleed or become 
cancerous. The tumors can be removed if they are very large, cause symptoms, 
or are located in unfavorable areas. 

C. Hepatic Adenoma — Liver adenomas or hepatic adenomas are 
uncommon benign growth of hepatocytes [15]. Many of these tumors do not 
cause symptoms, but they can rupture and bleed, as well as become 
cancerous. Therefore, this tumor is usually removed when it is found.  

D. Hepatic Cyst — is a cavity in the liver that contains fluid. On 
sonographic appearance, simple cyst present anechoic, well defined and 
posterior acoustic enhancement artifact [16]. Single or multiple liver cysts are 
common, especially with advancing age. While liver cysts are usually benign, a 
cyst may become enlarged or infected, requiring treatment. 

2.1.3 Liver Cancers 

Primary malignancy of the liver is a common cancer in many parts of Eastern 
countries. It affects more men than women and is usually found in people with 
chronic liver disease. There are five main types of primary liver cancer as follows. 

A. Hepatocellular carcinoma (HCC) is the most common type of primary 
liver cancer. HCC develops from hepatocytes, the major liver cell (70-85%) [17]. 
It is usually found in people with chronic liver disease, such as a patient with 
hepatitis B virus (HBV) or C virus (HCV) infection or alcoholic cirrhosis. 

B. Fibrolamellar carcinoma (FLC) or Fibrolamellar hepatocellular 
carcinoma is a rare sub type of HCC. It tends to develop in teens and adults 
under 40 years old. It is not usually linked with cirrhosis or infection with 
hepatitis B or C. 
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C. Cholangiocarcinoma (CCA) is bile duct cancer. One unique liver 
function is to produce bile. Bile is a yellowish-brown fluid produced 
continuously by the liver. The bile travels from liver cells through the 
gallbladder through small tubes scattered in the liver and pass-through small 
intestine. The bile duct always comes along with the hepatic artery and portal 
vein in the liver known as the portal triad. 

There are 2 types of CCA: intrahepatic cholangiocarcinoma (ICC or iCCA) 
and extrahepatic cholangiocarcinoma (ECC or eCCA). ICC and ECC are the type 
of cancer that starts in the duct section inside and outside the liver, 
respectively. Because most CCA is ICC [18]. CCA is usually implied ICC. 

D. Angiosarcoma or hemangiosarcoma is an extremely rare type of 
primary liver cancer and can be found in people aged over 70 years. This 
cancer starts in the blood vessels of the liver and causes the patient to rapidly 
bleed to death when ruptures. 

E. Hepatoblastoma is a very rare type of primary liver cancer that usually 
affects young children. It is mostly diagnosed in infants and children less than 3 
years of age. 

Globally, CCA is much less common than HCC. However, there is a high 
incidence of both HCC and CCA in Thailand. In this thesis, only HCC is focused. 

2.1.4 Imaging Guidelines of HCC 

HCC is one of the global major health problems. Imaging guidelines for HCC 
surveillance are designed and revised by many groups or associations such as  

- European Association for the Study of the Liver (EASL), 

- Korean Liver Cancer Study Group (KLCSG), 

- American Association for the Study of Liver Disease (AASLD), 

- Asia-Pacific Association for the Study of the Liver (APASL). 
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Guidelines are not rigid protocols and depend on local clinical judgment. Figure 
3 shows the 2010 HCC surveillance guideline of AASLD. Ultrasound has been used 
with or without serum alpha-fetoprotein (AFP) test every 6 months as a screening for 
HCC [19]. If the ultrasound reveals any liver nodules, the radiologist will proceed as 
below. 

- If the nodule is smaller than 1 cm in diameter, repeat ultrasound every 3-6 
months. 

- If the nodule is larger than 1 cm in diameter, do a further test with either 4-
phase CT or MRI with contrast. If the lesion appearance shows 
hypervascularity with washout in the portal/venous phase, which is typical 
for HCC, the lesion is HCC. 

2.1.5 Diagnosis of Liver Diseases 

 Patients with a high risk of HCC should be enrolled in the HCC screening and 
surveillance program. Recently, non-invasive imaging approaches have been the first-
line tools for screening. The non-invasive imaging for HCC assessment is as follows: 

A. Ultrasound (US) 

The US is a non-invasive, economical, and non-radiative imaging 
technique. It can be used for the diagnosis of soft tissue, which is not possible 
in normal X-rays. It is suitable for patients of any age and is used as the initial 
screening tool for liver lesions. The US is used for the detection of early-stage 
HCC nodules in HCC surveillance. 
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Figure 3 The HCC surveillance guideline of the American Association for the Study of 

Liver Diseases (AASLD) in 2010 [19]. 

The sound wave from the US probe has an array pattern. The sound can 
pass through media or organ tissue, the 4 interactions between the sound and 
media are reflection, refraction, scattering and attenuation [20]. Reflection is 
the best effect to perform an US image. Conversely, the 3-rest effect decreases 
sound wave and also decreases the image quality. Moreover, the sound waves 
pass through the low attenuating media, the rest of the sound waves are 
stronger than the sound waves at the same level that pass through another 
medium. The posterior acoustic enhancement happens when a sound wave 
passes through a weakly attenuating media such as water or cyst or fluid-filled 
structures. For example, the US wave passing through a hepatic cyst will 
suddenly occur the increased through transmission after the cyst [21]. The 
posterior acoustic enhancement or cyst artefact would help the examiner to 
differentiate fluid-filled structures from hypoechoic masses. Figure 4 shows the 
cyst artefact as the bright area below the cyst. 
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Figure 4 (A) An ultrasound image with a hepatic cyst (B) The arrows present the 

alignment of ultrasound beams and the dashed arrow point to the cyst 
(black oval) and its artefact in the dashed line area align with the 
ultrasound beam. 

B. Computed Tomography (CT) 

CT is widely used in cancer diagnosis. A patient usually lies on his/her 
back in the scanning device and has the X-ray beams passing through his/her 
body to the detectors to produce projection images at different angles. Cross-
sectional images of a body are reconstructed from the projection images. CT 
produces a high-resolution image of soft tissue, muscles, bone, tumors, or 
other irregularities. It is a fast-imaging modality but has high radiation exposure 
which increases the cancer risk.  

4-phase CT is used to identify HCC. The characteristics of HCC are as 
follows: 

- In the non-contrast phase, the lesion appears as hypodense lesions. 

- In the arterial phase (the phase of imaging 10 - 20 seconds after contrast 
bolus injection), the lesion becomes enhanced with contrast media. 

- In the venous phase (the phase of imaging 20 - 35 seconds after the arterial 
phase), the lesion is rapidly washed out and returns to a hypodense state. 
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- In the delay or equilibrium phase (the phase of imaging 5 minutes after 
bolus injection), most contrast media is washed out and most tissue returns 
to its native structures. 

C. Magnetic Resonance Imaging (MRI) 

MRI is non-radiative but expensive and requires a long scanning time. It 
has high sensitivity and specificity for liver cancer detection; however, the liver 
examination requires multiple MRI sequences and may take more than an hour 
to finish.  For example, the hepatobiliary tract is investigated in the delayed 
phase at 10-30 minutes with and without fat saturation suppression, and later 
delayed phase within 1 hour or more in some institutions. During scanning, a 
patient lies inside an enclosed space filled with loud noise from the magnetic 
coil, so he/she may become claustrophobic.   

Dynamic MRI with gadolinium contrast is used to identify HCC. The 
characteristic of HCC is as follows. 

- In the T1-weighted image, the lesion appears as hypo signal intensity lesions.  

- In the T2-weighted image, the lesion has hyper signal intensity and is filled 

with contrast media; however, it is not too bright. 

- In the dynamic phase, the lesion becomes a hyper vascular pattern as 

enhancing lesions filled with contrast media. 

- In the hepatobiliary phase, the uptake of contrast media is no longer visible 

in the hepatobiliary structure. 

2.1.6 Sonographic Appearance of Hepatic Tumor 

There are many types of liver lesions, but a common type of liver tumor is 
hepatic HEM. Common type of liver cancer is HCC. The study focused on HEM and 
HCC as liver tumors. There are various sonographic appearances of liver tumors as 
shown in Figure 5. 
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Figure 5 Echogenic patterns of hepatocellular carcinoma (HCC) and hepatic 

hemangioma (HEM) lesions. The top and the bottom rows show the 
echogenic patterns of HCC and HEM lesions, respectively. (a) hypoechoic, 
(b) hyperechoic, (c) isoechoic, and (d) mixed echoic. 

In clinical practice, patients who have a risk of being HCC and have been found 
with a liver tumor larger than 1 centimeter in diameter are sent for a CT or MRI scan 
to determine whether the tumor is cancerous or not (Additional information can be 
found in topic 2.1.5). If the found tumor presents typical characteristics of a 
hemangioma, such as small size, uniform hyper-echogenicity, and well-defined 
margins, follow-up ultrasound in the next 3-6 months is recommended. On the other 
hand, if the found tumor presents other characteristics such as atypical hemangioma, 
suspicious tumor, or resembles HCC, patients are recommended for further 
investigation. 

Ultrasound is primarily used as a tool to detect liver tumors and refer patients 
to other diagnostic tools accordingly. 

2.1.7 Machine Intelligence 

In the last ten years, visual information for the healthcare system has 
exponentially increased. However, the number of radiologists does not keep up with 
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the increase in diagnostic images. Computer-assisted diagnosis (CAD) has been 
introduced to help radiologists rapidly diagnose irregularity. Three common terms in 
machine intelligence are artificial intelligence, machine learning and deep learning.  

A. Artificial Intelligence (AI)  

AI is the development of computer systems to imitate human 
intelligence. It has been applied in many tasks in many disciplines, such as 
visual perception, investment, language translation and decision-making. AI is 
the superset of machine learning (ML) and deep learning (DL) as depicted in 
Figure 6. 

B. Machine Learning (ML) 

ML is the subset of AI. It is an approach to achieving AI. The aim is to 
have a computer learn to do a task without hard coding how to do it. How 
well the task is performed is measured by a mathematical function, called the 
objective function. The parameters inside the program are automatically 
adjusted so that the system achieves the highest performance according to the 
given data (training data). Examples of ML are Support Vector Machine (SVM), 
Artificial Neural Network (ANN), Deep Learning (DL), etc.  

C. Deep Learning (DL) 

DL is one of the methods for ML. It differs from the conventional ANN in 
that it contains a higher number of hidden layers (Figure 7). The more complex 
architecture allows DL to perform more complicated tasks than conventional 
ANN. DL has been successfully implemented for melanoma classification [22, 
23]. 
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Figure 6 AI encompasses the development of intelligent machines, ML enables 
computers to learn and make predictions from data, and DL leverages 
deep neural networks for complex pattern recognition tasks. 

 

 

 

 

Figure 7 ML works as a simple neural network (A) only a few hidden layers (B) DL 
works as multiple hidden layers. 
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2.1.8 Convolutional Neural Network (CNN) 

A convolutional neural network is an algorithm that consists of multiple layers. 
However, it is different from the conventional ANN in that its data are organized into 
3-D tensor-like structures. It consists of four major layer types as follows.    

- Input layer accepts the image as a 3-D structure where the depth (the third 
dimension) is the color channel. It is used to pass the information, so there is no 
function applied to the input. 

- Convolution layer is used to extract image features. The layer of the size of 
𝑛 × 𝑛 × 𝑚 can be considered as 𝑚 different 𝑛 × 𝑛 filters, where the filter 
parameters (kernels) are learned from the training pattern instead of fixed value as in 
conventional filters. Each 𝑛 × 𝑛 filter is applied to its input from left to right and top 
to bottom. The filter can be applied to every pixel as well as skip with a certain 
stride value. 𝑚 filters produce 𝑚 outputs and are structured as the tensor with the 
depth of 𝑚.  

- Pooling layer is applied to subsample its input. Its major role is to reduce the 
overfitting problem as well as the number of the required parameters. It is usually 
placed after the convolutional layer. The subsample is performed on each depth 
separately, so the output of the pooling layer has the same depth as the input, but 
smaller width and height. 

- Fully connected or dense layer is usually the final layer of CNN, where all 
features all connected to form the representation of the required pattern. The 
function of this layer depends on the application. For example, ‘Softmax’ for the 
classifier (one type per input), sigmoid for multiple classifiers (multiple types per 
input). 

CNN has been shown to be a powerful image classifier. Popular CNN includes 
Alexnet, GoogLeNet, VGGNet, ResNet.  
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2.1.9 ResNet 

 ResNet or residual network made its debut in the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) and was able to win the ILSVRC2015 competition. 
After that ResNet became the neural network of the 21st century. Its top-5 error was 
3.57%, which was less than the average human error of 5. ResNet has become a 
pretrain model that is widely accepted and used today.  

ResNet, a kind of artificial neural network (ANN) based on biologically inspired 
computational networks, is a computational model consisting of many layers, input 
layer, several processing layers and deliver outputs. ResNet contains nonlinearities 
activation function called the rectified linear unit or ReLU.  

ResNet-50 is a variant of ResNet models which has 48 convolution layers along 
with 1 max pool and 1 average pool layer as shown in Table 1 [24].  

ResNet-50, originally trained on ImageNet with standardized 224 x 224 pixels 
images, requires resizing of images during training and testing for several reasons. 
First, resizing ensures input size consistency as ResNet-50 has a fixed input size. By 
resizing all images to the same resolution, the network maintains uniformity during 
both training and testing stages. Second, since ResNet-50 is often utilized as a pre-
trained model with weights learned from ImageNet, resizing the images to the same 
size used during pre-training allows for effective utilization of these pre-trained 
weights. Lastly, resizing images to a smaller resolution, such as 224 x 224 pixels, 
enhances computational efficiency by reducing the computational requirements 
during training and testing. Smaller images necessitate fewer computations, resulting 
in faster processing and efficient utilization of memory. It is worth noting that while 
ResNet-50 typically requires a 224 x 224 input size, other network architectures or 
custom implementations may have different input size requirements based on their 
design and the training dataset used. 
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Table 1 Architectures for ResNet-50 (Adapted from [24]). 

 
 

2.1.10 Object Detection Techniques 

In the learning process of the model for lesion localization in liver ultrasound 
images, object detection plays a significant role. Object detection is a computer 
technology that involves image processing, enabling computers to detect objects 
and classify them into different classes. This process encompasses two distinct tasks: 
classification and localization. Each object class possesses unique features that aid in 
accurate classification. Convolutional Neural Networks (CNN) are commonly 
employed in classification tasks due to their exceptional feature extraction 
capabilities [25, 26].  

For localization, the selection of essential features from the "ground truth" 
becomes a critical step. Ground truth refers to the precise and accurate annotation 
of objects in the image database. It involves drawing bounding boxes around the 
objects of interest, assigning them class labels, and capturing relevant information 
such as their boundaries and pixel intensities. Objects within the same class exhibit 
similar boundaries and pixel intensities, which aids in their classification. The models 
learn to extract the ground truth from the labeled data provided by researchers. In 
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this particular study, the ground truth includes three labels for hepatic lesions: 
hepatic cyst, hepatic HEM, and HCC. 

 The models not only learn the features of the objects but also grasp the 
concept of object localization. Once the models have learned the ground truth 
bounding boxes, establishing an object detection network becomes crucial for 
successful lesion localization. This network utilizes the learned ground truth to 
accurately identify and classify objects of interest in liver ultrasound images. By 
leveraging the ground truth annotations, the model can effectively detect and 
localize hepatic lesions, enabling accurate diagnosis and analysis in medical 
applications. 

A. Two-Stage Object-Detection Network. 

 The two-stage detector consists of the detector and the classification 
stage. R-CNN family models are among the widely adopted networks. It can be 
described as follows. 

o Detector stage is used to extract the region of interests (ROI). In the 
original R-CNN [27], selective search is applied to find 2000 ROIs. In the 
fast R-CNN [28], CNN without fully connected layer is applied to extract 
the feature. Selective search is applied to find ROIs from the feature 
map. In the faster R-CNN [29], the selective search is replaced by the 
tiny network called region proposal network. 

o Classification stage, the output of the detector stage is warped to a 
fixed size. The output consists of both the class and the bounding box 
for the object.  For the R-CNN family, the CNN in the classification stage 
is a shallow network.  

B. Single-Stage Object-Detection Network. 

Two-Stage Object-Detection network has the disadvantage of time-
consuming from sliding window to find an object. To solve the problem, a 
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single-stage object-detection network was used. A single neural network trained 
end-to-end learning, takes directly input images and predicts bounding boxes 
and labels for each bounding box straightly. The technique offers faster but 
lower predictive accuracy. Firstly, the models work by splitting the input image 
into a grid of 𝑆 × 𝑆 cells, such as 7 × 7 cells, where each cell predicts a 
bounding box. The width and height of the bounding box are related to the 
information of ground truth entered. Each grid cell may predict 2 bounding 
boxes. If the bounding box map to a class, it is labeled as the class. In an input 
image, the object detections in each grid cell are predicted simultaneously, 
thus saving time. The YOLO (you only look once) family used these techniques. 

C. Region Proposal Network and Bounding Box Regression. 

Multi-Stage Object-Detection network works by creating a small window 
at the top left corner of the ultrasound images and moving the window by 
sliding the window 1 or 2 pixels to the right. The models were trained with a 
binary classifier, which determines whether the presented object was "positive" 
or "negative". Then, they generate a region proposal as a bounding box and 
perform classification and regression on the bounding box. The models would 
produce a list of object categories present in the ultrasound image. If a 
bounding box aligned with the position and scale of each object category, the 
models presented object ‘positive’. The sliding window is a method used to 
object detection tasks in the early stages, and it is time-consuming but more 
accurate. The region-based convolutional neural networks (R-CNN family) used 
these techniques. 

D. Intersection over Union (IoU) 

IoU is a metric used to define positive or negative in object detection 
using IoU threshold for making decisions. IoU can be computed from the area 
of intersection between predicted bounding box and ground truth bounding 
box over area of union as shown in Figure 8. In the system if model was trained 
with low IoU threshold, a lot of noise were allowed to be detected [30].  
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Figure 8 The image shows IoU calculation. 

 

Setting the appropriate threshold allows the model to capture objects 
effectively. Generally, the default IoU threshold is greater than or equal to 0.5, so it 
is counted as the object detected. 
 

E. Mean Average Precision (mAP) 

Mean Average Precision (mAP) is a metric that is commonly used to 
evaluate object detection models such as R-CNN, YOLO, etc. The mean of 
average precision values is calculated over recall values from 0 to 1. It is shown 
as a graph as shown in Figure 9. Then, mAP is calculated area under the curve 
as shown as Equation (1) 

 
𝑚𝐴𝑃 =   

1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1    (1) 

 
Where i represents the number of test data from 1 to N number 
  AP represents average precision that testing at number i  

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 20 

 
Figure 9 (a) represents a precision – recall curve (b) shows mAP could be calculated 

by summarization area A to area D. 
mAP = A +B +C + D 
  = (0.25 x 1) + (0.20 x 0.85) + (0.25 x 0.70) + (0.1 x 0.65) 
  = 0.25 + 0.17 + 0.175 + 0.065 
  =  0.66 

F. The confidence score 

The confidence score represents the algorithm's level of certainty or 

confidence that the predicted bounding box contains an object of a particular 

class. It reflects the model's belief that the detected object truly exists in the 

specified location. 

Typically, the confidence score is represented as a value between 0 and 

1, where 1 indicates high confidence or certainty, while 0 indicates low 

confidence. During the inference process, YOLOv4 predicts multiple bounding 

boxes with associated confidence scores for various objects present in the 

image. 

The confidence scores can be used to filter out detections based on a 

threshold value. For example, if the confidence score for a detected object is 

below a certain threshold (e.g., 0.5), it might be considered as a false positive 

and disregarded in subsequent processing steps. 
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Overall, the confidence scores in YOLOv4 provide a measure of the model's 

confidence in its predictions and assist in decision-making regarding the presence and 

accuracy of detected objects. 

2.1.11 Object Detectors 

Object detection is an advanced form of image classification by pointing out in 
the form of bounding boxes. It refers to the detection and localization of objects in 
the image. The models that have the ability of object detection known as object 
detectors and the well-known object detectors involved in this study are R-CNN and 
YOLO. 

A. R-CNN 

The region-based convolutional neural networks or R-CNN that stand for 
‘regions with CNN features’ developed by Ross Girshick, et al. [28]. R-CNN is a 
two-stage object detector that can work with deep convolutional network to 
localize and classify object proposals. Multi-stage object-detection has 
presented more accuracy in object detection but more time-consuming than 
one-stage [31-33]. 

B. YOLO 

YOLO is a one stage object detector or can be called an end-to-end 

neural network. YOLO makes predictions of bounding boxes and compute 

probabilities all at once using IoU and threshold. YOLO has become a famous 

object detector among the computer vision community due to its speed along 

with good accuracy. Then, YOLO has been released several versions and YOLO 

3 versions (v.4, v.5 and v.6) had released in continuing each year in 2016 - 2018.  

Muhammed Enes Atik et al studied on the DOTA aerial photograph 

dataset consisting of 9 classes object. YOLOv2 has also been used and 

published the most in 2018 [34].  Moreover, YOLOv2 gave results in 5 out of 9 
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classes better than YOLOv3 [35]. Additional, YOLOv2 gave highest mAP among 

not only Fast R-CNN, Faster R-CNN, SSD300, SSD500, and YOLO [36].  

YOLOv4 had been used as object detector on Microsoft Common Objects 

in Context (MS COCO) dataset. Among several methods: Learning Rich Features 

(LRF), Receptive Field Block (RFB), Single shot multibox detector (SSD), YOLO3 

even Focal Loss for Dense Object Detection (RetinaNet) and etc., YOLOv4 gave 

highest mAP [37]. YOLO version 4 was used in this study. 

2.1.12 Statistical Analysis and Model Evaluation  

Model evaluation is a critical process in the development of machine learning 
models. In this study, the performance of our models on two tasks: lesion detection 
and lesion classification, were assessed. In the following paragraphs, we will present 
the parameters that were evaluated in this thesis. 

A. Statistical Parameters 

A confusion metric was used to calculate sensitivity (true positive rate, 
TPR), specificity (true negative rate, TNR), and accuracy. A receiver operating 
characteristic (ROC) curves were plotted, which is a graph of sensitivity (Y-axis) 
versus 1-specificity (false positive rate, FPR, X-axis). The area under the ROC 
curve (AUC) was used to compare the performance of different systems. 

The following metrics were computed for each task: %Sensitivity or 
Recall, %Specificity, %Accuracy, F1-score, Positive predictive value (PPV) or 
Precision, Negative predictive value (NPV), ROC, and AUC. These scores were 
computed as the mean of N-fold cross-validation on the training set, and the 
data was presented as mean and standard deviation. 

The %sensitivity, %specificity, %accuracy, F1-score, Positive predictive 
value (PPV) and negative predictive value (NPV) are defined according to 
Equation (2) – (7). 
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%𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100, 

 
(2) 

%𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100, 

 
(3) 

%𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100,  (4)  

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 

(5) 
 

(6) 
 

(7) 
 

Here, TP, TN, FP, and FN represent the number of true positives, true 
negatives, false positives, and false negatives, respectively. Sensitivity (also 
known as recall) refers to the model's ability to correctly identify true positive 
cases. Positive predictive value (also known as precision) measures the 
proportion of true positive cases out of all predicted positive cases. 
 
B. N-fold Cross Validation 

To ensure robust evaluation, we employed N-fold cross-validation. 
Specifically, the dataset was partitioned into N subsets, and the model was 
trained and evaluated N times, with each subset serving as the test set once. 
The mean values of the aforementioned metrics were computed from the 
results of these iterations, providing an overall performance estimation. 

C. Variation Range 

The evaluation of model performance goes beyond traditional metrics, 
such as accuracy, precision, recall, F1-score, NPV, and mAP recall rate. To gain a 
comprehensive understanding of the model's performance, we incorporated 
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the analysis of the variation range in addition to calculating mean values using 
a 10-fold cross-validation approach. 

The mean values of the performance metrics were computed by 
averaging the results obtained from the 10 iterations of the cross-validation 
process. Furthermore, we examined the variation range in percentage, which 
captures the differences between the mean value and the minimum or 
maximum values obtained from those 10 iterations. This analysis enables us to 
explore more deeply the model's consistency and robustness. 

Interpreting the variation range provides valuable insights into the 
model's performance. A large variation range from the mean percentage 
suggests that the model's performance varies significantly across different 
iterations. This lack of consistency implies that the model may not be reliable 
and could exhibit unpredictable behavior in real-world scenarios. 

Conversely, a small variation range from the mean percentage indicates 
that the model consistently performs close to the mean value across different 
iterations. This stability in performance indicates that the model can be trusted 
to make accurate predictions consistently, enhancing its practical utility. 

By considering both the mean values and the variation range, we can 
obtain a more comprehensive evaluation of the model's performance. This 
approach provides researchers with a deeper understanding of the model's 
behavior, highlighting its strengths and weaknesses and guiding future 
improvements. 
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2.2 Review of related literature 

Various AI techniques have been applied for the segmentation, detection, and 
classification of medical images. Table 2 summarizes some of those works. 

Though DL had shown great potential in image classification, AlexNet, ZFNet, 
GoogLeNet and ResNet, DL won the ‘Imagenet Large Scale Visual Recognition 
Challenge (ILSVRC) in 2012, 2013, 2014 and 2015 respectively. The adoption of DL in 
medical image processing faces difficulty in the lack of training data. Zhang et al. [38] 
showed only 10 images per class which were augmented into 500 patches by moving 
windows and lead to 2000 training examples for 4 classifications. The available 
images may also be biased toward some classes.  

In recent years, there has been a significant amount of research focused on 
applying artificial intelligence (AI) to liver ultrasound images. In 2017, Tarek Hassan et 
al [39] employed a stacked sparse auto-encoder architecture to segment and classify 
liver images into four classes: cyst, Hem, HCC, and normal. Their study demonstrated 
promising results. Similarly, in 2019, Schmauch et al [4] utilized a multi-step 
approach involving binary class models to classify liver lesions into six classes: 
normal liver, cyst, HEM, HCC, liver metastasis, and FNH. Their studies also achieved 
excellent outcomes. However, it is worth noting that both studies utilized relatively 
small datasets, with fewer than 50 images in each class of liver lesion, as indicated in 
Table 3. 
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Table 2 Summary of works using AI in medical imaging analysis. 

Authors AI Technique Application 
Jamieson et. 

al. [11] 
Adaptive 

Deconvolutional 
Networks (ADN) 

Breast tumor classification in the US 
AUC = 0.83 (95% CI) 

Wu et. al. 
[40] 

Convolutional 
Neural Network 

(CNN) 

Classification of fetal abdominal standard plane. 
Accuracy > 91%, Sensitivity > 94%,  

Specificity > 81% 

Azizi et al. 
[41] 

Deep Belief 
Network (DBN) 

Detection and grading of prostate cancer  
AUC > 0.70, Accuracy = 70%, 

Sensitivity = 70%, Specificity = 71% 

Zhang et al 
[38] 

Convolutional 
Neural Network 

(CNN) 

Fatty liver classification (normal, low-grade, 
moderate grade and severe fatty livers) 

Accuracy = 90%, Sensitivity = 81%,  
Specificity = 92% 

Hassan et al. 
[39] 

Stacked Sparse 
Auto-encoder 

(SSAE) and 
Softmax classifier 

Classification of Focal Hepatic lesion (FLL) 
Accuracy > 93%, Sensitivity > 95%,  

Specificity > 92% 

Schmauch et 
al. [4] 

 

ResNet and 
DenseNet 

Detection and classification of FLL to 
malignant and benign lesions as well as 
differentiation between six types of liver 

lesions, AUC > 0.89 

Shen et al. 
[42] 

Convolutional 
Neural Network 

(CNN) 

Detection breast cancer in full-field digital 
mammography (FFDM) images 

AUC = 0.98, Sensitivity = 86%, Specificity = 
96% 

Monsi et al. 
[43] 

ResNet 
Classification of 14 thoracic diseases in 112,120 

chest X-rays images 
Accuracy > 90%, 
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Table 3 The distribution of available lesions in Hassan et al. [39] and Schmauch 
et.al. [4]. 

Classifications 
Number of US images 

Hassan et al. [39] Schmauch et al. [4] 
Homogeneous liver 16 258 
Hepatic cyst 44 30 
Hepatic hemangioma 18 17 
HCC 32 6 
Liver metastasis - 48 
Focal nodular hyperplasia - 8 

Total 110 367 
 

In 2021, Tiyarattanachai et al [5] reported that they used ResNet-50 followed 
by RetinaNet to learn the same amount of normal liver and hepatic lesion images 
totally 40,397 images with 2414 HCC images. Hepatic lesions consisting of cyst, HEM, 
focal fatty sparing (FFS), focal fatty infiltration (FFI), and HCC were collected from 3 
hospitals in Thailand. Their model could detect and diagnose the hepatic lesion with 
high performance. They also reported the model had sensitivity for HCC of 73.6%.  

RetinaNet, an object detector, is a one-stage object detector, has focal loss 
layer that could solve the class imbalance problem and correct misclassified 
example. It has Feature Pyramid Network (FPN) structures as shown in Figure 10, 
which can only be gave more accuracy than two-stage detector but also spent less 
computation time as one detector [44, 45]. Moreover, the RetinaNet has also 
achieved the highest AP winner among Faster R-CNN, YOLO, SSD and DSSD as well 
[45]. 
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Figure 10  (a) ResNet, a convolutional neural network and (b) feature pyramid net 

(FPN) is a key component of RetinaNet and plays an important role in the 
model's ability to detect objects at different scales and resolutions. [45]. 

 

2.3 Using YOLOv4 for Classifying HCC and HEM in Ultrasound Images with 
Limited Dataset 

This section of the thesis sheds light on the limitations encountered when 
utilizing AI models, specifically YOLOv4, for the classification of HCC and HEM in 
ultrasound images. While models like ResNet-50 demonstrated their ability to classify 
a vast number of objects into numerous classes on natural images, the same level of 
performance cannot be expected in ultrasound images due to inherent differences. 

ResNet-50's remarkable performance on natural images is attributed to its 
exposure to a massive dataset containing 14,000,000 objects across 1000 diverse 
classes. Each object in this dataset exhibits various characteristics such as shape, size, 
color, movement, pose, and other details. The extensive training on this large dataset 
equips ResNet-50 with the potential to accurately classify objects. However, when 
transitioning to ultrasound images of HCC and HEM, the available dataset poses a 
significant challenge. 

The ultrasound image dataset used in our study comprises 543 instances of 
HCC and 1665 instances of HEM, further divided into 704 instances of atypical HEM 
and 961 instances of typical HEM. While this dataset provides valuable samples for 
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analysis, it falls short in terms of quantity for training an AI model effectively. To 
achieve optimal results with models like YOLOv5, which is recommended by 
'Ultralytics' for superior training outcomes, it is suggested to have more than 1500 
images per class [46]. Unfortunately, in our study, the available dataset only contains 
a few hundred images per subclass. 

The limited size of the dataset poses a challenge for AI models to capture and 
differentiate the unique characteristics of HCC and HEM beyond human capability. 
The scarcity of training samples restricts the ability of YOLOv4 to accurately classify 
and distinguish between these two types of hepatic tumors. Therefore, it is crucial to 
acknowledge the limitations imposed by the dataset size and consider alternative 
approaches or strategies to enhance the performance of AI models in this specific 
context. 

The thesis highlights the limitations associated with utilizing YOLOv4 for 
classifying HCC and HEM in ultrasound images with a limited dataset. The insufficient 
number of training samples prevents AI models from effectively capturing the 
distinctive features and characteristics necessary for accurate classification beyond 
human capability. These limitations call for further exploration and potential 
improvements in dataset collection or alternative AI techniques for better 
performance in ultrasound image analysis. 

2.4 Application of Modified Object Detectors on ResNet-50 Architectures for 
Liver Lesion Detection and Classification in Ultrasound Images 

In this section, we described the models applied in the study for liver lesion 
detection and classification in ultrasound images. Two different architectures were 
utilized: a modified R-CNN on ResNet-50 for cyst detection and a modified YOLOv4 
and ResNet-50 for HCC and HEM detection and classification. 
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 A. R-CNN on ResNet-50 

For cyst detection, the model architecture combined the R-CNN 
framework with the ResNet-50 backbone. This modified architecture included 
specific changes to certain layers to enhance the performance of cyst 
detection as shown in Figure 11. These changes involved modifications to the 
network's structure, highlighting how they contributed to improving the 
accuracy and effectiveness of cyst detection in ultrasound images. 

R-CNN is a two-stage object detection architecture consisting of two 
stages: 1) region proposals with feature extraction, 2) object classification with 
bounding box regression as shows in Figure 12. Here's a simplified explanation 
of each stage: 

o Region Proposals with feature extraction: 

The first stage involved generating regions in an image that could 
potentially belong to an object (hepatic cyst for this study). This was 
done using a method called selective search. It worked by segmenting 
the image into smaller regions based on color, texture, size, and shape, 
and then combining similar regions to form objects. The result was a set 
of region proposals, usually represented by rectangular bounding boxes, 
for each image. After that, a feature vector of length 4096 was extracted 
from each region proposal using ResNet-50, a CNN. ResNet-50 was first 
trained on a large dataset for image classification to learn basic image 
features. Then it was fine-tuned using a smaller dataset specific to the 
detection task, where the last classification layer was replaced with a 
new layer to identify object classes. The region proposals were 
transformed into fixed-sized inputs and fed into the ResNet-50 to extract 
features. 
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Figure 11 Architecture R-CNN on ResNet-50 for cyst detection. The architecture 

consists of region proposals with feature extraction and object 
classification with bounding box regression. 

 

o Object Classification using SVM with bounding box regression: 
After obtaining the features from the ResNet-50, an individual linear 

Support Vector Machine (SVM) classifier was trained for the hepatic cyst 
class. The SVM classifier determined whether a cyst class was present or 
absent in each region proposal. The training labels were defined based 
on the overlap (IoU) between the region proposals and the ground-truth 
bounding boxes. Region proposals with low IoU were considered 
negatives, while those with high IoU were positives. To improve the 
accuracy of object localization, a bounding box regression step was 
performed. This step learned corrections to the predicted bounding box 
locations and sizes. For each positive region proposal, a more accurate 
bounding box was generated based on the SVM predictions. 
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The output of the R-CNN architecture was a set of positive object 
proposals for each class, along with their corresponding bounding boxes. These 
object proposals were obtained by combining the region proposals, extracting 
features, classifying objects using SVMs, and refining the bounding boxes 
through regression. 

B. Two-stage Model 

The model architecture used in this study for the detection and 
classification of HCC and HEM involves a two-stage model as shown in Figure 
12. The first stage is a hepatic tumor detection model, and the second stage is 
a classification model. The goal is to differentiate between HCC and HEM, two 
lesions with various characteristics but shared sonographic appearances. This 
differentiation is important because there is a dataset available for both types 
of lesions. 

In the first stage, the model combines YOLOv4 and ResNet-50. YOLOv4 is 
a highly efficient and real-time object detection algorithm that aims to detect 
all tumors (including HCC and HEM) in ultrasound images. ResNet-50 serves as 
the backbone network for this detection stage. To optimize the performance of 
the YOLOv4 and ResNet-50 architecture for the detection task, specific 
modifications are made to certain layers. 

YOLOv4 is an object detection method that utilizes deep convolutional 
neural networks and includes the Darknet backbone network. It has undergone 
enhancements compared to YOLOv3, such as the inclusion of a focal-loss 
function for improved sample balancing and detection accuracy and speed. 

In this study, the original Darknet backbone network of the YOLOv4 
model is replaced with ResNet-50. ResNet-50 is a residual convolutional neural 
network architecture known for its accuracy and computational efficiency. The 
modified model's structure is illustrated in Figure 13, allowing for high accuracy 
while reducing the number of parameters and computational requirements. 
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In the second stage, the ResNet-50 model is used as a classifier for the 
classification task. The transfer learning technique is applied, where the 
pretrained ResNet-50 model is utilized. The tumors detected in the first stage 
are passed to this classifier, which then categorizes them into three classes: 
typical HEM, atypical HEM, and HCC. 

To adapt the pretrained ResNet-50 model for the classification task, the 
last three layers of the original model are removed. These layers consist of a 
fully connected layer, a softmax activation layer, and a classification layer. In 
their place, three new layers are added to the model. The first layer is a fully 
connected layer, followed by a softmax activation layer. Finally, an output 
layer with a size of 3 is added to accommodate the three classes of data 
(typical HEM, atypical HEM, and HCC) as shown in Figure 14. 

By modifying the ResNet-50 model in this way, it becomes tailored to the 
specific classification task at hand, enabling it to accurately classify the 
detected tumors into the appropriate categories. 

Different models were utilized for liver lesion detection and classification 
in ultrasound images. Specifically, the modified R-CNN on ResNet-50 
architecture was employed for cyst detection, while the modified YOLOv4-
ResNet-50 architecture was used for hepatic tumor detection, and ResNet-50 
was utilized for HCC and HEM classification. Detailed descriptions of the 
architectural modifications in each model would be provided to emphasize 
how they enhanced the accuracy and performance of liver lesion analysis in 
ultrasound images. 
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Figure 12 Two-stage model for hepatic tumor detection and classification. 
 

 

Figure 13 Architecture YOLOv4 and ResNet-50 as backbone for hepatic detection 
and classification in the first stage. 

 

 

 

Figure 14 Architecture Resnet-50 classifier for classify hepatic tumor into typical 
hemangioma (T_HEM), atypical hemangioma (A_HEM), and hepatocellular 
carcinoma (HCC) in the second stage. 
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2.5 Normalization Techniques for Liver Ultrasound Images 

Normalization is a crucial step in deep learning for medical imaging, specifically 
in the field of normalization of medical images. It involves scaling the intensity values 
of the image data to a common range or distribution. This process is essential 
because it eliminates variations in pixel intensity that can occur due to differences in 
acquisition protocols, imaging devices, or patient-specific factors. 

Normalization has several benefits in medical imaging. Firstly, it enhances 
model convergence by reducing the impact of varying pixel intensities. Secondly, it 
helps reduce bias in the image data, allowing for more accurate analysis. Thirdly, 
normalization improves the generalization capability of deep learning models, 
enabling them to perform well on new and unseen data. Lastly, it mitigates the risk 
of overfitting, which can occur when a model becomes too specialized for the 
training data. Different approaches can be used for normalization in medical imaging, 
such as z-score normalization, min-max scaling, or histogram matching. The choice of 
method depends on the characteristics of the data and the specific requirements of 
the deep learning task. 

For CT images, min-max scaling is an effective normalization technique. In this 
method, the image intensities are mapped to a predefined range, typically between 
0 and 1. By doing this, the highest CT number, which represents bone, is set to 1, 
while other intensities are scaled accordingly. However, min-max scaling may not be 
suitable for normalizing liver ultrasound images because it is challenging to 
determine the organ that should have the highest intensity value. 

In liver ultrasound images, the top part of the image always represents the 
abdominal wall as shown in Figure 15, including the skin and subcutaneous fat. The 
liver itself appears as a medium gray scale. The diaphragm is visible as a white line, 
but the surface of calcium or some artifacts can also create bright areas. Moreover, 
the level of the brightest area in each image varies due to different contrast and 
brightness settings used by ultrasound users. To address these challenges, the 
intensity normalization method was employed in this study. 
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Figure 15 Top row: Liver ultrasound images - (a) Homogeneous liver, (b) Hepatic cyst, 
(c) Hepatocellular carcinoma (HCC), and (d) Hepatic hemangioma (HEM). 
Bottom row: Abdominal wall indicated by yellow box. 

2.6 Intensity Normalization 

During the normalization process of liver ultrasound images, it is important to 

exclude the non-ultrasound areas, such as the background or setting, from the 

analysis. Thus, the normalization is focused on the top 20% region of the image, 

which corresponds to the abdominal wall (Figure 15 bottom row: abdominal wall 

indicated by yellow box), excluding the black areas. 

The adapted intensity normalization has been shown in '3.1.2 Observation 

Method.' Within this top 20% region, a consistent intensity pattern ranging from 30 to 

110 units out of a total of 256 (8-bit depth) is observed. The median intensity value 

within this region, representing the characteristic intensity level of the abdominal 

tissues, is set to 70 [4]. By establishing this median as the reference point, the entire 

image is then normalized accordingly, ensuring that the intensity values of the 

abdominal tissues align with the desired normalization scheme. 
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CHAPTER 3  
MATERIALS  

 
3.1 Computer System 

(1) A personal computer with an Intel® Core™ i7-8700 CPU, 16 GB RAM, 
NVIDIA GeForce GTX 1060 6GB Display Card, and MS Windows 10 OS., was 
used for Cyst Detection. 

(2) A personal computer with CPU: Intel Xeon W-2275 @ 3.30GHz, Memory: 
128 GB, Graphics Card: NVIDIA Quadro RTX 5000 16GB, and Operating 
System: CentOS Linux 7, was used for the hepatic tumor detection and 
classification. 

 
3.2 MATLAB Software 

MATLAB (MATrix LABoratory) is a programming language developed by 
MathWorks (The Mathworks, Inc., Natick, Massachusetts, USA). MATLAB was built 
based on engineering, science, and economics. Many toolboxes were created for 
MATLAB and are available for multi-tasking. For this study, we used the ‘Image 
Processing Toolbox’ to analyze, process, visualize and access ultrasound imaging 
data. 

In a crucial process for ground truth labeling, the ‘Image Labeler’ app provides 
an easy way to create rectangles as a region of interest (ROI) labels in each image. 
These labels contain two components:  

- The region of object: For this study, the object was considered a 
hepatic lesion. 

- The label name: For this study, we labeled the name "Cyst", “Hem” 
for hemangioma and “HCC” for hepatocellular carcinoma. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 38 

3.3 RadiAnt DICOM Viewer Software 

In this study, ultrasound images were obtained from hospitals for further 
analysis using MATLAB. The DICOM files were first converted to JPEG format to 
prepare them for analysis. To perform this conversion, we utilized a specialized 
medical image viewer called 'RadiAnt DICOM Viewer' developed by Medixant in 
Poznan, Poland. This software allowed us to export the DICOM files as images. 

It is important to note that ultrasound imaging systems typically encode RAW 
DICOM files using 12 bits without compression. However, when exporting ultrasound 
images, they are usually converted to 8-bit screenshots and saved in JPEG format. 
These exported images include patient information displayed in the upper part of 
each image, as well as embedded parameters such as dynamic range, ultrasound 
frequency, and gray level. When importing the ultrasound images into the PACS 
(Picture Archiving and Communication System), the users have the option to select 
different levels of image quality, ranging from 60% to 100% for JPEG files. It is worth 
mentioning that when exporting the images, the software ensures that the image 
quality is maintained at 100% without any loss. 

One important consideration is that the exported images may not display the 
complete image without patient information, as the information is typically included 
in the screenshots. 

To summarize, this study involved collecting ultrasound images from hospitals, 
converting them from DICOM to JPEG format using the 'RadiAnt DICOM Viewer' 
software, and exporting them without compromising image quality or including any 
sensitive patient information. 
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3.4 Dataset 

The dataset used for the liver ultrasonography study is presented in this 
section. The dataset met the inclusion criteria and consisted of liver ultrasound 
images categorized into four different classes: Homogeneous Liver, Hepatic cyst, HEM, 
and HCC. The selection of liver ultrasound images was performed based on specific 
criteria, taking into account the radiology reports of the patients. 

To identify cases of HCC or HEM lesions, the radiology reports were reviewed, 
indicating that these cases had been confirmed through further imaging techniques 
such as CT or MRI, which followed the HCC screening program. Only ultrasound 
images corresponding to patients with confirmed HCC or HEM lesions were included 
in the dataset for analysis. 

Regarding hepatic cysts, specific criteria were applied to select ultrasound 
images of these lesions. The criteria included the presence of an echo-free or 
anechoic area within the liver, a well-defined margin around the lesion, and posterior 
acoustic enhancement. Images meeting these criteria were included in the dataset 
for the hepatic cyst class. 

Some of the images in the dataset were captured in a dual pattern, where the 
ultrasound monitor displayed two windows. To ensure consistency, each image from 
each side (left or right) in the dual pattern was separated and treated as a single 
image. Depending on whether the images met the inclusion criteria, one dual pattern 
could be one or two images. 

After the images were collected and the selection criteria were applied, they 
were categorized into the following four classes based on their nature: 

a. Homogeneous Liver - 2500 images 
b. Hepatic cyst - 615 images 
c. HEM - 1665 images 
d. HCC - 543 images 
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CHAPTER 4  
METHODS 

4.1 Cyst Detection 

4.1.1 Data Preparation 

The data preparation played a crucial role in ensuring the accuracy and reliability of 
the deep learning models. The dataset used in this study consisted of ultrasound 
images of the liver, which were collected from various sources and annotated by an 
experienced sonographer. To address the low image quality and significant noise in 
ultrasound images, various preprocessing techniques were applied to the dataset, 
including image normalization, denoising, and resizing.  

The imaging dataset comprised ultrasound images obtained from different 
sonographic equipment and facilities, resulting in variations in pixel size and image 
dimensions. As part of the data preprocessing, image size normalization was 
performed to convert the randomly sized images into a standard size. It was 
observed that ResNet-50, the chosen deep learning architecture, required a minimum 
input size of 224 x 224 pixels for effective performance. Therefore, all images were 
resized to a consistent dimension of 224 x 224 pixels, ensuring compatibility with the 
ResNet-50 architecture. 

Furthermore, in order to focus solely on the liver region, which is relevant to 
the classification task, all images underwent a cropping process to retain only the 
liver region of interest. This cropping resulted in a standardized image size of 224 x 
224 pixels, as depicted in Figure 16. By applying these preprocessing steps, the 
dataset was appropriately prepared for subsequent training and evaluation of the 
deep learning models. 
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Figure 16 The liver image was cropped to be a square. 

4.1.2 Observation Method 

A hepatic cyst is a type of lesion in the liver that appears as a black or 
anechoic oval area as same as cross-section of a blood vessel on an ultrasonography. 
During this study, it was found that the model had difficulty distinguishing cysts and 
hepatic vessels because both appear black on the ultrasound images [3-5]. However, 
radiologists and sonographers can differentiate the two structures by looking at the 
real time scanning of the shape - a hepatic cyst has an oval or round shape while a 
hepatic vessel has a tubular shape. Additionally, a cyst has posterior acoustic 
enhancement, which is a brighter region below the fluid-filled structure with 
increased echoes. In this part of the study, prior knowledge of posterior acoustic 
enhancement was used to train the model. The aim of the study was to determine 
whether including the posterior acoustic enhancement below the hepatic cyst could 
improve the model's detection accuracy. 

Six hundred fifteen conventional B-mode liver US images were collected, all 
containing at least one cyst, and taken by various US machines, resulting in varying 
image quality. Image preparation was performed for training and detection 
experiments. Cysts in the training images were labelled by a sonographer with more 
than 10 years of experience. To improve the detection of hepatic cysts in ultrasound 
images, some following techniques have been implemented. 
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• Intensity Normalization 

The 224 * 224-pixel image was normalized according to the median of 
abdominal tissues (shown inside the red rectangle in Figure 17). The range of the 
intensity median is from 30 to 110. The median is normalized to the average value of 
70 [4] according to Equation (8). 

𝑥𝑖𝑗  ←  𝑥𝑖𝑗  ×
70

𝑚
  ,   (8) 

where 𝑥𝑖𝑗  and 𝑚 are the intensity at (𝑖, 𝑗) and the intensity median of 
abdominal tissue, respectively. 

• Cyst Ground Truth Labelling 

Two training sets were constructed with different regions of interest (ROI). In the 
first set, the ROI consisted only of the area of a cyst (the solid window in Figure 18A). 
In the second set, the ROI consisted of both a cyst and its distinct feature, the 
acoustic enhancement below the cyst (the dashed window in Figure 18B). The first 
and the second sets were named “Cyst Ground Truth” and “Cyst with Acoustic 
Enhancement Ground Truth,” respectively. 

• Training Phase  

ResNet-50 was adopted as the feature extractor, and the last three layers (fully 
connected, Softmax and the classification layers) were cut out. In R-CNN, selective 
search was applied to find regions in an image to be used for training. A binary 
support vector machine (SVM) and a regression model for constructing the bounding 
box of a detected object were also trained. All networks were implemented in 
MATLAB 2019a program on the computer with an Intel® Core™ i7-8700 CPU, 16 GB 
RAM, NVIDIA GeForce GTX 1060 6GB Display Card, and MS Windows 10 OS. Stochastic 
gradient descent method was used for the training. The mini-batch size was set to 
32, and the training rate was fixed at 0.0001. All networks were trained for 10 epochs, 
where their training converged. Since we wanted to clearly see the effect of the 
inclusion of the distinct feature, the negative overlapped range was not fine-tuned. 
The range was fixed between 0 and 0.3. 
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Figure 17  The normalization of the image according to the intensity median inside 
the abdominal tissues (shown in the red windows of the left figure). The 
right image is normalized left image to the intensity median of 70. 

 
 

 

 

 
Figure 18  The samples from two training sets. (A) Displays a sample from the Cyst 

Ground Truth set, which contains an ROI with only one cyst. (B) A sample 
from the Cyst with Acoustic Enhancement Ground Truth set, which 
includes an ROI with both a cyst and a bright artifact located below the 
cyst. 
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• Cyst Detection Evaluation 

Five-fold cross-validation was used to evaluate the classification accuracy. 615 
images were randomly separated into 5 sets, each containing 123 images. Four sets 
were combined to form the training set, and the remaining set was used for testing. 
Each set was used as the testing set once, so the study was repeated 5 times. It 
should be noted that some images contain more than one cyst, and all cysts were 
used for training, so the number of training data was different in each experiment. No 
attempt to make the number of training data equal in all experiments because cysts 
from the same image have similar image characteristics. To equalize the number of 
training data, result in the bias from having cysts in the same image for both training 
and testing data. 

To evaluate the accuracy, the percentage of false negatives, false positives, and 
true positives have been used. A positive was defined as the detection of a cyst, and 
the meanings of three parameters were as follows: false negative is the failure to 
detect a cyst in an image, false positive is the detection of other tissues as a cyst, 
and true positive is the correct detection of a cyst. In this study, the area of a cyst is 
considered for the highest confidence in an image and the confidence was larger 
than 0.5. 

Pearson's chi squared (χ2) statistical hypothesis was used to check whether the 
parameters were statistically different. 

4.1.3 Selection of Detector Models  

In this study, R-CNN, YOLOv2, and YOLOv4 were implemented as the detector. 
The training of R-CNN took much longer than YOLO family but provided higher 
detection accuracy than YOLO family. The best detection was achieved from R-CNN 
with ResNet-50 as the backbone.  
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4.2 Hepatic Tumor Detection and Classification 

4.2.1 Data Preparation and Marker Analysis in HEM and HCC 

The dataset in this study consists of 1665 HEM and 543 HCC images. The 
boundary region of HEM and HCC was drawn by a more than 10-year experienced 
sonographer. In this study, HEM is classified into typical and atypical HEMs. The 
sonographic appearance of a typical HEM is well-defined, homogeneous, and 
hyperechoic, whereas the one of atypical HEM is similar to HCC. The number of 
typical HEM, atypical HEM and HCC in our dataset were 961, 704 and 543 images, 
respectively. Compared to previous studies [4, 39], our dataset is larger, however, it is 
still too small to consider HEM and HCC as separate classes in the detector. For 
example, the recommended size per class is 1500 for YOLOv5 [46]. 

In the topic 4.1.1 data preparation, which involved resizing all ultrasound 
images to 224 x 224 pixels, was explained. In contrast to using median normalization, 
the 'Color Jitter' technique was applied, where the brightness, contrast, hue, and 
saturation of the images were adjusted by varying them between 10% to 20%. It was 
found that these augmentations were reasonable because liver ultrasound images 
can have varying image properties depending on the user, and these adjustments 
helped to make the dataset more robust. 

The reason why the markers were not removed from the ultrasound images in 
our studies is because the images were obtained from patient records, and some 
markers were present. However, not all of the HEMs and HCCs were marked, and not 
all of the markers were for HEMs and HCCs, as shown in Figure 19. Although the 
presence of a marker could potentially aid the detector, it was believed that its 
impact should not be significant due to the mixed presentation of markers. 
Therefore, not to remove the markers from the ultrasound images in this study had 
been decided. 
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Figure 19 Examples of the lack of markers and the marker for lesions/tissues other 

than HEM and HCC. HEMs and HCCs were shown inside the dashed circle. 
(a) HEM without marker, (b) HCC without marker, (c) marker for measuring 
hepatic cyst in the HEM image and (d) marker for measuring the vessel 
near the HCC. 

 
4.2.2 Two-Stage Method for Hepatic Tumor Detection and Classification 

The proposed two-stage method is depicted in Figure 20. The detector in the 
first stage was trained to detect HEM and HCC like lesions. Both HEM and HCC images 
were grouped into one class in the training data, so the size of the training dataset 
was larger than previous studies where HEM and HCC were separately considered [4, 
39]. In addition, the shared sonographic appearance of HEM and HCC can be 
exploited for better detection. 

The detected lesion from the first stage was resized to 224 x 224 pixels and fed 

into the classifier in the second stage. The classifier was trained to classify the lesion 

into 3 classes: typical HEM, atypical HEM and HCC. Though atypical HEM and HCC 

were considered as two separate classes in the classifier, both would go under 

further investigation. Thus, in practice, it was not necessary to accurately differentiate 

HCC from atypical HEM. Atypical HEM mistook as HCC would be ruled out, whereas 

HCC mistook as atypical HEM would be treated. For screening, a high recall rate is 

required. Since the classification was separated from the detection, the recall rate 

can be achieved (at the cost of precision) by adjusting the threshold of a classifier to 

become biased for HCC class. However, in this study the classifier was not adjusted. 
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Figure 20 The proposed two-stage method and dataset. 
 

4.2.3 Training Phase for Detector and Classifier 

A. Training Phase for Detector 

The original Darknet-53 backbone of YOLOv4 was replaced with ResNet-
50. To develop four different models, each catering to a specific number of 
classes (Method 1 for 1 class, Method 2 for 2 classes, Method 3 for 2 classes, 
and Method 4 for 1 class), ResNet-50 was used as the feature extractor. 
However, to tailor the models to their respective requirements, the last three 
layers (fully connected, Softmax, and classification layers) of ResNet-50 were 
removed and replaced with customized layers suited for each method's 
specific class configuration. This adaptation allows each model to optimize its 
final layers for the intended number of classes, resulting in more accurate and 
specialized predictions.  

All networks were implemented in MATLAB 2022 program on the 
computer with an Intel Xeon W-2275 @ 3.30GHz, Memory: 128 GB, Graphics 
Card: NVIDIA Quadro RTX 5000 16GB, and Operating System: CentOS Linux 7, 
was used for the hepatic tumor detection. Stochastic gradient descent method 
was used for the training. The mini-batch size was set to 32, and the training 
rate was fixed at 0.00075. All networks were trained for 30 epochs, where their 
training converged. To assess performance and reduce bias then 10-fold cross 
validation was used. 
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B. Training Phase for Classifier  

ResNet-50 was adopted as the feature extractor, and the last three layers 
(fully connected, Softmax and the classification layers) were cut out. 
Classification layer was changed from 1000 to 3 classes: typical HEM, atypical 
HEM, and HCC. 10-fold cross validation was used. All networks were 
implemented in MATLAB 2022 program on the computer with an Intel Xeon W-
2275 @ 3.30GHz, Memory: 128 GB, Graphics Card: NVIDIA Quadro RTX 5000 
16GB, and Operating System: CentOS Linux 7, was used for the lesion 
classification. Stochastic gradient descent method was used for the training. 
The mini-batch size was set to 64, and the training rate was fixed at 0.00075. All 
networks were trained for 6 – 8 epochs, where their training converged.  

4.2.4 Selection of Detector and Classifier Models  

In this study, the detector and the classifier were selected from the standard 
models in the Deep Learning Toolbox of MATLAB R2022a. Region-based CNN (R-CNN) 
family, Single Shot Detector (SSD) and You-Only-Look-Once (YOLO) family were 
implemented as the detector. The training of R-CNN family took much longer than 
YOLO family but provided the same detection accuracy as YOLO family. SSD failed to 
accurately detect the HEM and HCC like lesions. The best detection was achieved 
from the YOLO family detector with ResNet-50 as the backbone. The detection 
accuracies of YOLOv2 and YOLOv4 were approximately the same, but YOLOv4 
produced a more precise location (Figure 21). YOLOv4 was adopted as the detector 
for all models. For the classifier, GoogLeNet, VGG-16, ResNet-18 and ResNet-50 were 
implemented. The classification accuracy of GoogLeNet, VGG-16 and ResNet-18 were 
much lower than ResNet-50 so ResNet-50 was adopted as the classifier. All CNN 
networks were pre-trained using ImageNet database. 
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Figure 21 Comparison of detection results using YOLOv2 and YOLOv4. The top and 
the bottom rows display the detection by YOLOv2 and YOLOv4, 
respectively. YOLOv4 produced higher prediction scores (the number in 
the yellow box). 

 
4.2.5 Observation Methods 

Four YOLOv4 models were trained. The first one was trained to detect HCC 

lesion. The second one was the conventional two-class detector and trained to 

detect HEM and HCC lesions. The third one was trained to detect typical HEM and 

suspicious lesions. It was the detector-only method that provided the same output 

as the proposed two-stage method. The fourth model was the first stage of our 

method and trained to detect HEM and HCC like lesions. 

Transfer learning was used to train ResNet-50 classifier. Image augmentation 

was performed by ±5-degree rotation, vertical and horizontal flipping. Only the 

images in the training set were used to train the ResNet-50 classifier. Additionally, all 

lesions were resized to 224 x 224 pixels. And only the correct detections from tumor 

detector were used to test the classifier. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 50 

Ten-fold cross-validation was used in all experiments. 90% of the data was 

allocated for training and validation, and the remaining data was reserved for testing. 

The experiments were repeated ten times with different testing data. The models' 

performance was evaluated based on their ability to detect suspicious hepatic 

tumors. 

The performance of the proposed two-stage method depended on the 

accuracy of both the detector and the classifier, so the study was divided into three 

parts. In the first part, the detector's performance was investigated, with a focus on 

the detector's error. In the second part, the classification accuracy of the ResNet-50 

model was investigated. In the last part, the overall accuracy of the proposed two-

stage method was evaluated against the detector-only method. 
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CHAPTER 5  
RESULTS 

5.1 Cyst Detection 

The results of the classifier using only Cyst area and Cyst with Acoustic 
Enhancement Ground Truth sets are shown in Table 4. True positive can be 
considered as the classification accuracy. The addition of the artifact features helps 
increase the accuracy from 84.39% to 90.73%, and reduce the errors from both the 
false negative, 11.20% to 7.64%, and the false positive, 4.39% to 1.63%. The study 
indicated that the Cyst with Acoustic Enhancement was statistically better than the 
one without enhancement (p-value = 0.001). 

 

Table 4 Results of the different ground truth labelling for detections. 

Ground truth set 
Number of images (percentage) 

False Negative False Positive True Positive* 

Cyst 
69 27 519 

(11.20%) (4.39%) (84.39%) 
Cyst with Acoustic 

Enhancement 
47 10 558 

(7.64%) (1.63%) (90.73%) 
*True positive was considered as the classification accuracy  
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5.2 Hepatic Tumor Detection and Classification  

5.2.1 Performance Analysis of Detectors 

This section presents the performance analysis of detectors using YOLOv4 with 
a ResNet-50 backbone trained under four different settings: a single-task model for 
detecting HCC, a two-class model for detecting HCC and HEM, a two-class model for 
detecting typical HEM and suspicious tumors, and a single-task model for detecting 
HEM and HCC-like lesions. The final model, Model 4, serves as the first stage in the 
proposed method. While it was not mandatory to use only clinically confirmed HCC 
and HEM cases for this model, both were classified into the same group. However, to 
ensure a fair comparison, only the confirmed cases were included. The detection 
results, including accuracy, precision, recall, F1-score, NPV, and mAP, are presented in 
Table 5, where the target lesion was considered as positive. The values in the 
parenthesis were the range of the matrices. Bold indicated the best result for the 
given evaluation matrix. 

Among the performance metrics, particular attention is given to the mean 
recall values, which are highlighted. The recall range, obtained from 10-fold cross-
validation, is indicated in parentheses. The variation range of the recall rate from the 
four models can be observed in Table 6, enabling evaluation as a percentage by 
calculating the difference between the Mean and the Minimum percent, as well as 
the difference between the Maximum and the Mean percent. These performance 
matrices contribute to the comprehensive evaluation of the detectors and their 
potential clinical applications in HCC screening. 
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Table 5 Detection results of four YOLOv4 models.  

 Model 1 
1 class  

Model 2 
2 classes 

Model 3 
2 classes 

Model 4 
1 class 

Dataset 543 HCC 
 

1) 1665 HEM  
2) 543 HCC 

1) 961 typical HEM 
2) 1247 suspicion 

2208 HEM and 
HCC like lesions 

Accuracy 0.52  
(0.39-0.61) 

0.85  
(0.73-0.89) 

0.72  
(0.70–0.77) 

0.86  
(0.82-0.88) 

Precision 0.54  
(0.43-0.61) 

0.74  
(0.50-0.88) 

0.88  
(0.84-0.93) 

0.88  
(0.82-0.91) 

Recall 
HCC 
0.67  

(0.54-0.86) 

HCC 
0.64  

(0.53-0.97) 

Suspicion 
0.70  

(0.63-0.75) 

HEM and HCC 
 0.84  

(0.79-0.89) 

F1-score 0.71  
(0.64-0.87) 

0.68  
(0.51-0.93) 

0.78  
(0.75-0.82) 

0.86  
(0.83-0.89) 

NPV* 0.60  
(0.48-0.70) 

0.87  
(0.82-0.92) 

0.72  
(0.65-0.76) 

0.86  
(0.81-0.88) 

mAP** 0.50  
(0.32-0.68) 

0.49  
(0.37-0.61) 

0.60  
(0.51-0.65) 

0.76  
(0.73-0.84) 

* NPV = negative predictive value 

**mAP = mean average precision 

Table 6 Recall Rate and Variation Range of Four YOLOv4 Models.  

 Model 1 
1 class  

Model 2 
2 classes 

Model 3 
2 classes 

Model 4 
1 class 

Recall 
HCC 
0.67  

(19 – 28%) 

HCC 
0.64  

(17 – 52%) 

Suspicion 
0.70  

(7 – 10%) 

HEM and HCC 
0.84  
(6%) 
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The first two models were conventional methods in which YOLOv4 was applied 
to detect HCC and HEM as separate classes. The values in parentheses indicate the 
variation range compared to the mean value. The results revealed that Model 1, 
trained specifically to detect HCC, achieved a higher recall rate compared to Model 
2, which utilized a two-class model. However, Model 2 exhibited a large variation 
range, indicating inconsistent performance. The variation range of Model 1 was 19-
28%, while the variation range of Model 2 was 17-52%. The implementation of 
Model 2 to separate HCC and HEM failed to effectively differentiate the two classes. 
On the other hand, the third model followed the actual clinical protocol, resulting in 
better detection of suspicious lesions (atypical HEM and HCC) compared to HCC-only 
detection. When considering the recall rate of the 4 models, Model 4 achieved the 
highest recall rate with lowest variation range. This indicates that the two-stage 
approach not only outperformed the detector-only method but also exhibited more 
repeatability results. 

Ultrasound lesions do not present with the same characteristic throughout their 
area. Parts of typical or atypical HEM may have the characteristics of the other type. 
To address this issue, all HEM and HCC were grouped into a single class for detection 
in the fourth model. By doing so, the detector was able to identify the distinct 
characteristics of both HEM and HCC. Consequently, all evaluation matrices besides 
negative predictive value improved. Notably, the detector was capable of detecting 
HCC lesions that the first three models failed to detect, which is demonstrated in 
Figure 22. 

It was possible that the better detection of Model 4 was due to the better HEM 
detection, not HCC detection, so the detection results were categorized into three 
classes: HCC, HEM and others. Table 7 shows the distribution of each category. Note 
that some images contain more than one HEM / HCC and YOLOv4 failed to detect all 
lesions in those images. Some lesions were detected more than once as shown in 
the last row of Table 7 and Figure 23. Overall, the HEM and HCC like lesion detector 
performed better than the other three models. The recall rate for HCC and HEM 
were 0.78 and 0.86, respectively. 
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Figure 22  Training YOLOv4 to detect HEM and HCC like lesions as one class resulted 

in an improved HCC detection, as depicted in the bottom row of the 
figures. The top row displays the results of the same region when the 
models were trained to detect HCC or HEM as separate classes, which 
failed to detect the lesions. 

 

 
Table 7 The detection results of Model 4 as grouped by lesion type. 

Detector model 4 
YOLOv4 

The number of detected lesions (actual value) 

HCC HEM Others Total* 
Images 472 (543) 

86.92% 
1455 (1665) 

87.39% 
68 (0) 1927 (2208) 

87.73% 
Lesions 480 (615) 

78.05% 
1479 (1721) 

85.94% 
68 (0) 1954 (2336) 

83.64% 
Lesion + 

Redundancy 
489 (624) 
78.37% 

1494 (1734) 
86.16% 

68 (0) 1983 (2358) 
84.10% 

* Total is the sum of the HCC and HEM only. Other lesions were not considered. 
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Figure 23 Examples of multiple detection of the same lesion by YOLOv4. 
 

5.2.2 Performance Analysis of Classifier 

ResNet-50 was applied to classify HEM and HCC like lesions into three classes: 
typical HEM, atypical HEM and HCC. The model's performance was evaluated using 
10-fold cross-validation, revealing area under the Receiver Operating Characteristic 
(ROC) curve values ranging from 89% to 94%. In Figure 24, the average area under 
the ROC curve of 92% is presented. Table 7 provides detailed information regarding 
the HCC and HEM images. From the 472 HCC images detected by the first-stage 
detector, a total of 480 lesions were identified. In the case of the 1455 HEM images, 
there were a total of 1479 lesions, with 570 classified as atypical HEMs (if we consider 
redundancy, the count increases from 570 to 574) and 909 classified as typical HEMs 
(if we consider redundancy, the count increases from 909 to 920). Table 8 showcases 
the confusion matrix of the classification, including redundancy in the count of 
accurate detections. Note that some HCC were detected multiple times, thus, the 
number of HCC lesions was 489. 

Atypical HEM and HCC share many sonographic appearances; thus, CT or MR 
examination is required for correct diagnosis. Recently, contrast-enhance ultrasound 
(CEUS) can also be used and be applied immediately after normal B-mode 
ultrasound scanning. However, CEUS is not widely adopted in Thailand. Having only 
ultrasound images, it is impossible to differentiate between atypical HEM and HCC.  
The further treatment plans for atypical HEM and HCC are the same, i.e., scheduled 
for CT or MRI examination. Therefore, the misdetection of HCC as atypical HEM did 
not pose health risk. Table 8 was modified to Table 9 where the HCC incorrectly 
detected as atypical HEM is accepted as the correct classification.  
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Figure 24 Average area under the ROC Curve as 92% for HEM and HCC-like Lesions. 
 

Table 8 Results of YOLOv4 Detector and ResNet-50 Classifier on 3 x 3 confusion 
matrix. 

Pr
ed

ict
ed

 C
las

s 

Actual Class 
Class HCC Atypical HEM Typical HEM Total 
HCC 337 59 98 494 

Atypical HEM 111 486 135 732 
Typical HEM 41 29 687 757 

Total 489 574 920 1983 
 
Table 9 Results of modified 3 x 3 confusion matrix as 2 x 2 confusion matrix. 

Pr
ed

ict
ed

 C
las

s Actual Class 
Class HCC HEM Total 
HCC 448 157 605 
HEM 41 1337 1378 
Total 489 1494 1983 
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According to Table 9, the 2 x 2 confusion matrix provides valuable insights into 
the classification performance when considering HCC as positive and HEM as 
negative. Among the 489 total HCC lesions, 448 (92%) were correctly classified as 
HCC, representing the true positive rate. The overall accuracy was 0.90, and the 
negative predictive value (HEM classified as negative) was 0.97. However, when 
considering HCC as positive, the precision dropped to 0.74 due to the challenges in 
differentiating HCC from atypical HEM using ultrasound imaging alone. Similarly, out 
of the 1496 total HEM lesions, 1337 (89%) were accurately classified as HEM, 
indicating the true negative rate. 

However, there were 157 cases where HCC lesions were misclassified as HEM, 
resulting in a false positive rate of 11%. If these atypical HEM lesions were included 
as part of HCC instead of HEM, the precision would increase to 0.82, demonstrating 
the impact of incorporating atypical HEM into the HCC category. 

Specifically, 41 HCC lesions were identified as HEM, with 22 of them displaying 
small hyper-echoic features that resembled typical Hemangioma. This resemblance 
may be due to capturing ultrasound images when HCC lesions appeared as 
regenerative or dysplastic nodules, similar in appearance to typical HEM. These 
misclassifications highlight the challenges in differentiating between atypical HEM and 
HCC based solely on ultrasound images. 

To achieve accurate diagnoses, CT or MR examinations are typically required 
since atypical HEM and HCC share similar sonographic appearances. Although 
contrast-enhanced ultrasound (CEUS) is an alternative, it is not widely adopted in 
Thailand. Therefore, relying solely on ultrasound images makes it impossible to 
differentiate between atypical HEM and HCC. Consequently, patients with suspected 
HCC or atypical HEM would undergo further examinations, such as CT or MRI scans, 
for accurate diagnosis and treatment planning. Misclassifying HCC as atypical HEM 
does not pose a significant health risk. 
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5.2.3 Performance Analysis of Two-Stage Model 

In this study, the proposed two-stage method was compared with the detector 
only method (YOLOv4 Model 3). Both atypical HEM and HCC have the same 
appearance and require further CT or MR examination, so it is unnecessary to 
differentiate between atypical HEM and HCC. The result of Model 3 in topic 5.2.1 was 
compared with the proposed two-stage method. HCC and HEM were considered as 
positive and negative samples, respectively. The incorrect detection of Model 4 was 
not classified but would be considered as getting negative (HEM) classification. The 
accuracy and the recall rate were calculated based on the number of actual HCC 
(not the number of detected area). If an HCC lesion was detected more than once, 
only one instance classified as HCC was enough for further examination and would 
be considered as correct. The results are presented in Table 10.  

From Table 10, the best results, highlighted in bold, were chosen based on 
evaluation matrices and came from the final results of Model 4, surpassing the 
results of Model 3. Overall, the two-stage method (Model 4) performed better than 
Model 3, except for precision where both methods were equal. However, when 
focusing solely on detecting HCC, Model 3 had a recall rate of 0.70 for identifying 
suspicious tumors (atypical HEM + HCC), which dropped to 0.68 for HCC recall rate. 
On the other hand, Model 4 had a recall rate of 0.84 for identifying hepatic tumors 
(HCC + HEM) in the first stage, which then dropped to 0.78 for HCC recall rate, and 
achieved a correct classification rate of 0.92 for HCC in the second stage. Then the 
two-stage model had an HCC recall rate of 0.72. 
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Table 10 The results of HCC detection using both single-stage detector and two-
stage methods.  

 Model 3 Model 4 Two-stage method 
  Detector Classifier Overall 

Accuracy 0.72 0.86 0.90 0.77 
Precision 0.88 0.88   

Recall 
Suspicion 

0.70  
HCC+HEM 

0.84 
 

0.90 
HCC+HEM 

0.76 

 
HCC 
0.68 

HCC 
0.78 

HCC 
0.92 

HCC 
0.72 

F1-score 0.78 0.86   
Negative predictive value 0.72 0.86   
Mean average precision 0.60 0.76   

 

Furthermore, Nishida et al [47] conducted a comprehensive study on liver 
classification using multiple AI models. They analyzed a dataset of 94,427 B-mode 
ultrasound images of liver tumors and focused on classifying four types: cyst, 
hemangioma, metastasis, and HCC. 

Their findings showed a notable HCC sensitivity ranging from 0.65 to 0.68. It is 
important to note that their study utilized a larger dataset, while our two-stage 
model with 2208 liver tumor images achieved a slightly higher HCC sensitivity of 0.72. 
These results highlight the potential for further advancements in liver tumor 
classification through AI models. 
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CHAPTER 6  
DISCUSSION  

6.1 Cyst Detection 

During our study, the data was not augmented for training the deep learning 
model to detect cysts. Nevertheless, our dataset was comparatively large and 
diverse, with 615 images and a wide range of equipment settings. In fact, when 
compared to other published articles [4, 39], our dataset stood out in terms of its 
size and variability, although demographic factors were not considered in this 
comparison. Through our analysis, four primary causes of errors in the cyst detection 
process were identified as follows. 

(1) The cysts and vessels were similar. In the ultrasound image, main vessels, 
hepatic veins and portal veins appear as black area, which was the same as a 
cyst. Though both classifiers mistakenly detected some vessels as cysts 
(Figures 25A and 26A), the classifier having the information of acoustic 
enhancement, incorrectly detected only the vessels that closely resembled 
the cyst (round with acoustic enhancement). Note that this error was also 
reported by Schmauch [4]. 

(2) Acoustic enhancement is not the unique property of a cyst. Organs such as 
hepatic capsule, diaphragm and esophagus, etc. were also presented with 
enhanced edge (bright line). In some cases, the classifier mistakenly detected 
the bright line as the border of a cyst as shown in Figures 25B and 26B. 

(3) Cysts were not detected in an image with low contrast. As shown in Figure 
25C and 26C, a cyst and its posterior acoustic enhancement were not distinct 
in the low contrast images. Furthermore, the cyst and vessels are more 
similar in appearance, so the classifier may also incorrectly detect vessels as a 
cyst. This error can be reduced if better preprocessing has been used, instead 
of globally normalizing image intensity based on the non-black pixels at the 
top 20% area. The top 20% area was fixed and may not reflect the real 
intensity distribution in the image.  
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Figure 25 Examples of errors from the classifier trained with Cyst Ground Truth set. 

Actual cysts were indicated by arrows. The solid box was the cyst 
detected by the classifier. The classifier detected a branch of right hepatic 
vein as a cyst in (A) and a part of subcapsular as a cyst in (B). The 
classifier failed to detect a cyst in an image with low contrast in (C) and a 
cyst with incomplete border in (D). 

 
 
  

 
Figure 26 Examples of errors from the classifier trained with Cyst with Acoustic 

Enhancement Ground Truth set. Actual cysts are indicated by arrows. The 
windows are the cysts detected by the classifier. The classifier detected a 
branch of hepatic vein as a cyst in (A) and a part of diaphragm as a cyst 
in (B). The classifier failed to detect a cyst in an image with low contrast 
in (C) and a cyst with incomplete border in (D). 

 

(4) The border of the cyst was missing or blended with the background (hepatic 
parenchyma) as shown in Figures 25D and 26D. 
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 6.2 Hepatic Tumor Detection and Classification 

6.2.1 Analysis and Interpretation of Results in The First Stage Model or The 
Tumor Detector 

In this study, there were four models to detect and classify hepatic tumors in 
ultrasound images (Table 5). The first model was trained on only HCC images, while 
the second model was trained on both HCC and HEM images. These models 
achieved a sensitivity of 0.67 and 0.64, respectively. The third model was trained on 
typical HEM and suspicious tumor images (which consisted of both HCC and atypical 
HEM images) and achieved a sensitivity of 0.70 for detecting suspicious tumors. The 
fourth model was trained on hepatic tumor images, which included both HCC and 
HEM images, and achieved a sensitivity of 0.84 for detecting tumors. 

Our findings suggest that Models 3 and 4 would be more useful for accurately 
detecting HCCs, as they achieved higher sensitivities than Models 1 and 2. However, if 
we focus only on Models 1 and 2, our results are consistent with other studies on 
the detection of malignant tumors in breast ultrasound images, such as Cao et al. 
[48] and Tanaka et al [49]. These studies also reported relatively low detection rates 
for cancerous tumors in ultrasound images. It is worth noting that a recent study by 
Tiyarattanachai et al [5] reported a high recall rate of 0.74 for HCC detection using 
Retina Net. However, this was achieved by lowering the IoU threshold to 0.2, which 
may result in more false positives.  

If focusing on Model 4 that gives highest sensitivity, there were two kinds of 
error in the detection. The first kind of error is the failure to detect HEM and HCC like 
lesions. This kind of error affects the recall of the proposed two-stage method. The 
second kind of error was the misdetection of other areas / lesions as HEM and HCC 
like lesion. This error affects the precision.  Note that the second kind of error was 
less than 5% (the data in Table 7, the number 68 from 2208 images) of the total test 
data and could be easily dismissed by radiologists during the follow-up. 
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According to Table 7, among 135 undetected HCC, 87% did not have the 
sonographic appearance of HCC. Most of them were faintly visible, isoechoic tumor 
or had incomplete border or obscured by low image quality. This false negative 
problem was also reported by [5]. Nevertheless, the missing lesions were detected in 
further CT or MR scanning.  

In the clinical protocol, if a new lesion appears where nothing was shown in 
the previous scan, regardless of its appearance, a CT or MR scan is requested 
because the patient is considered to be at high risk for HCC. Without access to 
previous records, it can be impossible to detect these HCC. Additionally, once one 
HCC is detected, the entire liver is scanned using a CT or MR system. Therefore, 
detecting every HCC in an image has the same outcome as detecting at least one. 
Based on this, it is possible to conclude that YOLOv4 could detect 86.92% of HCC 
patients. However, it cannot be guaranteed that at least one HCC will be detected, 
so all undetected HCCs were considered false negatives in this study. It can be 
concluded that the HEM and HCC-like lesion detector had a recall rate of 0.78 for 
HCC detection. 

6.2.2 Analysis and Interpretation of Results in The Second Stage Model or The 
Tumor Classifier 

According to Table 8, out of the 41 HCC incorrectly detected as typical HEM, 22 
lesions closely resembled typical HEM. These 22 lesions were well defined and 
hyperechoic (Figure 27). Some of these lesions were detected in CT or MR 
examinations, because they were either presented (1) in a liver with multiple HCCs or 
(2) new lesions that appeared in the area without any lesions during the previous 
ultrasound screenings. Furthermore, some misclassification occurred, because the 
detector did not extract enough area of the HCC lesion as shown in the leftmost 
image of Figure 23. 
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Figure 27 Small oval-shaped hyperechoic lesions resembling HCC were misclassified 

as typical HEM by the Classifier. 

The classifier was trained by the ground truth lesions. The classification result 
would be better if classifier was also trained with the detection result. However, we 
would like to evaluate the performance independent of the detector, so the ground 
truth was used.   

6.2.3 Analysis and Interpretation of Results of the Two-Stage Model  

The experiment demonstrated the better performance of the two-stage 
method compared to the detector-only method. The implementation of the two-
stage method led to the improvement of HCC recall from 0.68 to 0.72. Both the 
detector and the classifier were implemented by the out-of-the-box models which 
were not designed for medical imaging and were not among the latest models. 
However, the achieved recall rate of 0.72 was only slightly lower than the 0.74 
reported by Tiyarattanachai et al [5]. The dataset in our work is smaller so the 
number of the training image was much lower (615 HCC vs 2414 HCC). Furthermore, 
Tiyarattanachai et al [5] reported the high recall rate by lowering the accepted IoU to 
0.2, which was considered incorrect detection in our work. There were other works 
that demonstrated high accuracy [4, 39]. However, the database was too small to 
make a solid conclusion.   

 In the two-stage method, the detector and the classifier are trained separately. 
YOLO detector has been continuously improved. YOLOv4 is no longer a state-of-the-
art detector. YOLOv8 is recently available at https://ultralytics.com/yolov8. The quick 
improvement of the proposed method is to replace YOLOv4 with YOLOv8.   

https://ultralytics.com/yolov8
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ResNet-50 provided good classification, but it was not optimal. The best result 
would be achieved if the network was pretrained with medical images. In our study, 
the network was pretrained by ImageNet database, which contains natural images. It 
is impossible to train the entire ResNet-50 by a small database, so we currently 
develop the shallow network for lesion classification in liver ultrasound images. 

6.3 Overall Discussion 

The goal of this study was to develop an efficient deep learning model for the 
detection and classification of hepatic lesions on ultrasound images. Several deep 
learning architectures and transfer learning algorithms were used to train models for 
detecting cyst, HEM, and HCC lesions. The results showed that training separate 
models for each lesion can lead to higher efficiency than training a single model for 
all lesions. 

In particular, the first model was trained using R-CNN with ResNet-50 
architecture for cyst detection, achieving higher efficiency than using YOLOv2 or 
YOLOv4. The second model used a two-step approach for tumor detection and 
classification, with ResNet-50 and YOLOv4 architectures for tumor detection and a 
ResNet-50 architecture for classification. The 3 x 3 confusion matrix was modified into 
a 2 x 2 confusion matrix to optimize the model's performance, resulting in high HCC 
recall rates. 

The findings of this study highlight the importance of training separate models 
for each lesion when detecting and classifying hepatic lesions on ultrasound images. 
This approach allows for a more specific and targeted approach to each lesion type, 
resulting in higher efficiency and accuracy. Additionally, the use of deep learning 
architectures and transfer learning algorithms can improve the performance of these 
models, leading to more effective diagnosis and treatment of hepatic lesions. 

The study also has potential clinical implications. The developed models can 
be used in clinical practice to assist radiologists and clinicians in the detection and 
classification of hepatic lesions, improving diagnostic accuracy and patient outcomes. 
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Moreover, the study demonstrates the potential of deep learning in medical imaging, 
opening avenues for further research and development in this field. 

The study presents a two-step approach using deep learning models for the 
detection and classification of hepatic lesions on ultrasound images. The findings 
suggest that training separate models for each lesion can lead to higher efficiency 
and accuracy in detecting and classifying hepatic lesions. The developed models 
have potential clinical implications and demonstrate the potential of deep learning 
in medical imaging. 

The ultimate goal of this thesis is to enhance the current practice of HCC 
screening by leveraging artificial intelligence (AI) in ultrasound imaging. Through the 
development and evaluation of a dedicated deep learning model designed 
specifically for liver ultrasound images, the objective is to enhance the accuracy and 
efficiency of HCC diagnosis and differentiate between hepatic cysts, hepatic vessels, 
HEM, and HCC lesions. By achieving this goal, the aim is to improve the overall HCC 
screening process and contribute to more effective patient health care. 
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CHAPTER 7  
CONCLUSIONS 

 
7.1 Implications of Cyst Detection Study  

 In this study, the effect of the inclusion of the distinct feature around the 
object of interest to the training data had been investigated. The studies indicated 
that the inclusion of cyst artifact led to a classifier with higher accuracy. The distinct 
feature may not be unique to one particular tissue / organ. The classifier may still 
incorrectly classify other tissues/organs as the object of interest. Therefore, in 
addition to the area around the object, the image properties of the object should 
also be investigated and included in the training data. 

In addition to the distinct features, the accuracy also depends on the classifier. 
Currently, the original R-CNN is used. The feature was extracted by ResNet-50 which 
was pre-trained by non-medical images and fine-tuned for cyst detection. However, 
medical and non-medical images are greatly different. In this sense, the R-CNN in this 
study was not the best classifier. The accuracy can also be improved if networks 
dedicatedly trained or designed for medical images such as Nifty-Net were used. 
 
7.2 Implications in Detecting and Classifying Hepatic Tumor 

The proposed method for HCC detection from ultrasound images is a two-stage 
approach. In the first stage, a detector was trained to capture both HEM and HCC like 
lesions. In the second stage, the classifier was trained to distinguish among HCC, 
atypical HEM and typical HEM. Since the future plans for atypical HEM and HCC are 
the same, it is not necessary to strictly limit the classification of HCC to only HCC. 
The experiment showed that the two-stage method outperformed the detector-only 
method in HCC detection. 
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7.3 Overall Conclusions 

The primary objective of this study was to design a feature extraction algorithm 
for lesion detection and classification in liver ultrasound images, in combination with 
AI. Through the development and testing of various algorithms, it has shown 
promising results for lesion detection and classification in liver ultrasound images. 
Our proposed two-stage model was able to effectively detect and classify HEM and 
HCC like lesions with high sensitivity and specificity. The use of training cyst with its 
artifact proved to be a better approach for feature extraction compared to the use of 
area only cyst in the previous study. The results of this study demonstrate the 
potential of AI and feature extraction algorithms for improving the accuracy and 
efficiency of lesion detection and classification in liver ultrasound images, which 
could have significant implications for clinical practice in the future. 

The secondary objective was to investigate the most accurate deep learning 
structure for hepatic lesion classification when used with proposed the two-stage 
model. Based on the experimental results, it was found that the combination 
between detector and classifier using convolutional neural network (CNN) 
architecture, provided the most accurate and robust classification of hepatic lesions 
in ultrasound images. 

Overall, this study has demonstrated the effectiveness of combining feature 
extraction algorithms with deep learning techniques for accurate hepatic lesion 
detection and classification in ultrasound images. These findings may have significant 
implications for the development of more advanced diagnostic tools for liver disease 
and could ultimately help to improve patient outcomes and treatment options. 

7.4 Suggestions for Future Research 

From the ultimate goal of improving HCC screening and the results obtained in 
the second study, the two-stage model demonstrated the potential to significantly 
reduce the number of patients who require further investigation for hepatic tumors. 
In this study, the total number of tumors was effectively reduced from 1983 lesions 
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to 605 lesions (as shown in Table 8), focusing on those with a higher risk of 
malignancy. 

Building upon these findings, there are several avenues for future research that 
could further enhance the field of deep learning for hepatic lesion detection and 
classification. Firstly, exploring more advanced deep learning architectures, such as 
CNNs or recurrent neural networks (RNNs), could improve the accuracy and 
robustness of the models. These architectures have shown great potential in various 
computer vision tasks and may offer improved performance in detecting and 
diagnosing hepatic lesions. 

Furthermore, the development of more comprehensive datasets encompassing 
a wider range of hepatic lesions and imaging modalities would be valuable. Such 
datasets would provide a rich source of information to refine and optimize deep 
learning algorithms, allowing for more accurate and reliable detection and diagnosis 
of liver disease. 

Additionally, integrating additional types of data, such as patient history, 
laboratory test results, and clinical symptoms, into the deep learning model could 
further improve diagnostic accuracy and enable more personalized treatment 
recommendations. By incorporating a holistic approach to data integration, the 
model could provide more comprehensive and tailored insights for individual 
patients. 

Finally, exploring the use of explainable AI (XAI) techniques is another 
important area for future investigation. As AI-assisted detection and classification of 
liver lesions in ultrasound, it could support radiologist's efficiency in clinical 
situations. XAI methods aim to provide transparency and interpretability to deep 
learning models, allowing clinicians and radiologists to better understand how 
predictions are made. This could help build trust in the model's outputs and 
facilitate decision-making processes, further supporting and enhancing the efficiency 
of radiologists. 
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Overall, future research should focus on refining deep learning models, 
expanding datasets, integrating diverse data sources, and leveraging XAI techniques. 
These advancements would contribute to the continuous improvement of HCC 
screening programs, ultimately leading to enhanced patient care and outcomes. 
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