การหาอุณหภูมิลิควิดัสของแก้วฐานบะซอลต์สำหรับการขึ้นรูปเส้นใย

จุหาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีเซรามิก ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2560 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

DETERMINATION OF LIQUIDUS TEMPERATURE OF BASALT BASED GLASSES FOR FIBER FORMING

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Ceramic Technology Department of Materials Science Faculty of Science Chulalongkorn University Academic Year 2017 Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์	การหาอุณหภูมิลิควิดัสของแก้วฐานบะซอลต์สำหรับการ
	ขึ้นรูปเส้นใย
โดย	นางสาวนภาพร วัยบริสุทธิ์
สาขาวิชา	เทคโนโลยีเซรามิก
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	อาจารย์ ดร.อภิรัฐ ธีรภาพวิเศษพงษ์
อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม	ผู้ช่วยศาสตราจารย์ ดร.ศิริธันว์ เจียมศิริเลิศ

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วนหนึ่ง ของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

		_คณบดีคณะวิทยาศาสตร์
	(ศาสตราจารย์ ดร.พลกฤษณ์ แสงวณิช)	>
คณะกรรม	มการสอบวิทยานิพนธ์	
		ประธานกรรมการ
	(ผู้ช่วยศาสตราจารย์ ดร.กานต์ เสรีวัลย์สถิตย์)	
	/ ([seece399993]) /	อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก
	(อาจารย์ ดร.อภิรัฐ ธีรภาพวิเศษพงษ์)	
		อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม
	(ผู้ช่วยศาสตราจารย์ ดร.ศิริธันว์ เจียมศิริเลิศ)	
	CHULALONGKORN UNIV	_กรรมการ
	(อาจารย์ ดร.ณัฏธพล แรงทน)	
		กรรมการภายนอกมหาวิทยาลัย
	(ดร.อนุชา วรรณก้อน)	

นภาพร วัยบริสุทธิ์ : การหาอุณหภูมิลิควิดัสของแก้วฐานบะซอลต์สำหรับการขึ้นรูปเส้นใย (DETERMINATION OF LIQUIDUS TEMPERATURE OF BASALT BASED GLASSES FOR FIBER FORMING) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: อาจารย์ ดร.อภิรัฐ ธีรภาพวิเศษพงษ์, อ.ที่ ปรึกษาวิทยานิพนธ์ร่วม: ผศ. ดร.ศิริธันว์ เจียมศิริเลิศ, 79 หน้า.

ในงานวิจัยนี้ได้ศึกษาผลขององค์ประกอบเคมีต่ออุณหภูมิลิควิดัสของแก้วฐานบะซอลต์ใน ระบบ SiO₂-CaO-Al₂O₃-MgO-Fe₂O₃-Na₂O-K₂O สำหรับการดึงเป็นเส้นใย ผ่านการสร้างแบบจำลอง ทางคณิตศาสตร์เพื่อทำนายอุณหภูมิลิควิดัสที่สัมพันธ์กับส่วนผสมแก้ว โดยใช้ข้อมูลจากการวัด อุณหภูมิลิควิดัสด้วยเทคนิค DTA และ isothermal ของแก้วฐานบะซอลต์จำนวน 30 สูตร แก้วถูก เตรียมจากวัตถุดิบหลักคือ หินบะซอลต์จากแหล่งหินในอำเภอชัยบาดาล จังหวัดลพบุรี ทำการแปร ส่วนผสมโดยวิธี Extreme Vertices Design ส่วนผสมถูกหลอมที่อุณหภูมิ 1450 องศาเซลเซียส และ ทำให้เย็นตัวอย่างฉับพลันในน้ำ ผลการวัดอุณหภูมิลิควิดัสของแก้วด้วยเทคนิค DTA และ Isothermal พบว่าทั้งสองวิธีได้อุณหภูมิใกล้เคียงกันโดยมีค่าสัมประสิทธิ์การตัดสินใจ เท่ากับ 0.91 โดยอุณหภูมิ ลิควิดัสของแก้วที่อยู่ในช่วงส่วนผสมเส้นใยบะซอลต์มีค่าระหว่าง 1190 – 1360 องศาเซลเซียส การ ผ่านกระบวนการทางความร้อนเพื่อให้แก้วตกผลีกพบว่าแก้วแบ่งได้เป็น 2 กลุ่ม คือกลุ่มที่มีเฟสผลึก หลักเป็นไดออปไซด์ และกลุ่มแอลไบต์ การทำนายอุณหภูมิลิควิดัสด้วยวิธีวิเคราะห์การถดถอยพหฺคูณ จึงแบ่งเป็น 2 สมการ ตามเฟสผลึกหลักดังกล่าว ผลการพิจารณาเปรียบเทียบอุณหภูมิลิควิดัสที่ได้จาก การคำนวณตามแบบจำลองที่สร้างขึ้นกับผลการวัดอุณหภูมิลิควิดัสทั้ง 2 วิธี พบค่าสัมประสิทธิ์การ ตัดสินใจมีค่า ระหว่าง 0.72 - 0.82 ซึ่งบ่งชี้ว่าแบบจำลองนี้สามารถมาไปใช้ในการคำนวณหาอุณหภูมิ ลิควิดัสของแก้วในระบบนี้ในระดับที่ยอมรับได้

Chulalongkorn University

ภาควิชา วัสดุศาสตร์ สาขาวิชา เทคโนโลยีเซรามิก ปีการศึกษา 2560

ลายมือชื่อนิสิต	
ลายมือชื่อ อ.ที่ปรึกษาหลัก	
ลายมือชื่อ อ.ที่ปรึกษาร่วม	<u></u>

5871973423 : MAJOR CERAMIC TECHNOLOGY

KEYWORDS: LIQUIDUS TEMPERATURE / BASALTIC GLASSES / DESIGN EXPERIMENT / MATHEMATICAL MODELING

NAPAPORN VAIBORISUT: DETERMINATION OF LIQUIDUS TEMPERATURE OF BASALT BASED GLASSES FOR FIBER FORMING. ADVISOR: APIRAT THEERAPAPVISETPONG, Ph.D., CO-ADVISOR: ASST. PROF. SIRITHAN JIEMSIRILERS, Ph.D., 79 pp.

In this work, the effect of chemical composition on the liquidus temperature of basaltic glasses within SiO₂-CaO-MgO-Al₂O₃-Fe₂O₃-Na₂O-K₂O system for fiber forming were studied by creating a mathematical modeling to predict the liquidus temperature which is depended on glass compositions. A sample of 30 glass formulas was determined its liquidus temperature by DTA and Isothermal technique. The measured liquidus from both techniques were used to create the mathematical model. Glass samples were prepared from the basalt rocks as a major material from Chai Badan, Lopburi, Thailand. Glass formulas were designed by Extreme Vertices Mixture Design. The glass batch was melted at 1450 °C and guenched in the water. The result found that the measured liquidus temperature by DTA and Isothermal have similar value which the coefficient of determination is 0.91. The liquidus temperatures of basaltic glasses were between 1190 to 1360 °C. The crystallization in glasses by heat treatment process could divide the glass sample into 2 groups. The first group is the glass that has diopside as the major crystalline phase and the second is that has albite as same ways. Therefore, the prediction of liquidus temperature with multiple regression analysis was divided into two models according to the major crystalline phase. The comparison of calculated liquidus temperatures from both prediction model showed that the coefficient of determination was between 0.72 - 0.82. Therefore, these prediction models were acceptable to predict the liquidus temperature of this basaltic glass system.

Department:	Materials Science	Student's Signature
Field of Study:	Ceramic Technology	Advisor's Signature
Academic Year:	2017	Co-Advisor's Signature

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สำเร็จสมบูรณ์ลุล่วงไปด้วยดี ดิฉันขอขอบพระคุณ ความช่วยเหลือ และสนับสนุนจากหลายภาคส่วนดังนี้

อาจารย์ ดร.อภิรัฐ ธีรภาพวิเศษพงษ์ อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก และ ผู้ช่วยศาสตราจารย์ ดร.ศิริธันว์ เจียมศิริเลิศ อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม ที่ให้ความรู้ คำปรึกษาเพื่อแก้ไขปัญหา และความช่วยเหลือในงานวิจัยนี้ รวมถึงมอบโอกาสและประสบการณ์ ที่ดีให้

อาจารย์ภาควิชาวัสดุศาสตร์ทุกท่าน ที่ให้ความรู้ ความเมตตา ตลอดจนเจ้าหน้าที่ บุคลากร และพี่ ๆ ในของภาควิชาวัสดุศาสตร์ ที่ให้ความช่วยเหลือในทุก ๆ ด้าน

คณะกรรมการสอบวิทยานิพนธ์ทุกท่านที่ให้ความรู้ คำแนะนำต่าง ๆ เพื่อปรับปรุงแก้ไข วิทยานิพนธ์นี้ให้มีความสมบรูณ์มากยิ่งขึ้น

ทุน 90 ปี จุฬาลงกรณ์มหาวิทยาลัย ที่ให้การสนับสนุนค่าดำเนินงานวิจัย

หน้า
บทคัดย่อภาษาไทยง
บทคัดย่อภาษาอังกฤษจ
กิตติกรรมประกาศ
สารบัญช
สารบัญตารางฌ
สารบัญรูปญ
บทที่ 1 บทนำ
1.1 ความเป็นมาและความสำคัญของปัญหา1
1.2 วัตถุประสงค์ของการวิจัย
1.3 ประโยชน์ที่คาดว่าจะได้รับ
บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง
2.1 หินบะซอลต์2
2.2 เส้นใยบะซอลต์
2.3 สมบัติทางความร้อน และครามการณ์แม่งกลาวิวงระเวลีย
2.4 คำนวณอุณหภูมิลิควิดัส
บทที่ 3 วิธีดำเนินการวิจัย
3.1 สารเคมีวัตถุดิบและอุปกรณ์ที่ใช้ในการทดลอง15
3.1.1 สารเคมีและวัตถุดิบ15
3.1.2 อุปกรณ์ที่ใช้ในการทดลอง16
3.1.3 เครื่องมือที่ใช้ในการทดลอง16
3.2 ขั้นตอนการวิจัย
3.2.1 การเตรียมแก้วฐานบะซอลต์17

	หน้า
3.2.2 การวิเคราะห์องค์ประกอบทางเคมี (X-Ray Fluorescence, XRF)	19
3.2.3 การวิเคราะห์อุณหภูมิสภาพแก้ว (T _s), อุณหภูมิตกผลึก (T _c) และจุดยุติของอุณหภู: หลอมเหลว (T _{Endpoint})	ນີ 20
3.2.4 การวัดอุณหภูมิลิควิดัส (T _L)	20
3.2.5 การตรวจสอบหาโครงสร้างด้วยเทคนิคการเลี้ยวเบนของรังสีเอกซ์ (X-Ray Diffractometer, XRD)	22
3.2.6 คำนวณหาอุณหภูมิลิควิดัส	23
3.3 แผนผังการทดลอง	24
บทที่ 4 ผลการทดลองและอภิปรายผล	25
4.1 ผลการวิเคราะห์องค์ประกอบทางเคมีของแก้ว	25
4.2 ผลการตรวจสอบองค์ประกอบทางเฟสด้วยเทคนิคการเลี้ยวเบนของรังสีเอกซ์	26
4.3 ผลการวิเคราะห์สมบัติทางความร้อน	34
4.3.1 ผลการวัดT _g , T _c และ T _{Endpoint} ของแก้วด้วยเทคนิค DTA	34
4.3.2 ผลการวัด T _L ของแก้วด้วยเทคนิค DTA	35
4.3.3 ผลการวัด T _L ของแก้วด้วยวิธี Isothermal	36
4.4 คำนวณหา T _L	40
บทที่ 5 สรุปผลการวิจัย และข้อเสนอแนะ	46
5.1 สรุปผลการวิจัย	46
5.2 ข้อเสนอแนะ	47
รายการอ้างอิง	48
ประวัติผู้เขียนวิทยานิพนธ์	79

สารบัญตาราง

	หน้า
ตารางที่ 2.1 องค์ประกอบทางเคมีของหินบะซอลต์ที่สามารถขึ้นรูปเป็นเส้นใยได้	3
ตารางที่ 2.2 สมบัติต่าง ๆ ของเส้นใยแต่ละประเภท	5
ตารางที่ 3.1 องค์ประกอบทางเคมีของแก้วฐานบะซอลต์จากการออกแบบการทดลอง	17
ตารางที่ 4.1 องค์ประกอบทางเคมีของแก้วฐานบะซอลต์จาก XRF	25
ตารางที่ 4.2 องค์ประกอบทางเฟสของแต่ละสูตรแก้ว	26
ตารางที่ 4.3 ค่าอุณหภูมิสภาพแก้ว (T _s) อุณหภูมิตกผลึก (T _c) จุดยุติ (T _{Endpoint}) และ อุณหภูมิ	
ลิควิดัส (T _L) จาก DTA และ Isothermal	38
ตารางที่ 4.4 ค่าสัมประสิทธิ์ขององค์ประกอบ (b _i) ของเทคนิค DTA และ Isothermal	40
ตารางที่ 4.5 ค่า T _L ที่ได้จากคำนวณของสูตรแก้วที่มีเฟสไดออปไซด์เป็นเฟสหลัก	42
ตารางที่ 4.6 ค่า T _L ที่ได้จากคำนวณของสูตรแก้วที่มีเฟสแอลไบต์เป็นเฟสหลัก	44
Y (FIRSTANSSET=FPDDDDDDDDD)	

Chulalongkorn University

สารบัญรูป

	หน้า
รูปที่ 2.1 แบบจำลองการเกิดหินบะซอลต์ และพื้นที่เนินเขาหินบะซอลต์ในจังหวัดลพบุรี	3
รูปที่ 2.2 การออกแบบการทดลองแบบ Extreme Vertices Design	4
รูปที่ 2.3 ผ้าใยแก้ว (fiberglass fabric) และแผ่นฉนวนกันความร้อน	5
รูปที่ 2.4 กระบวนขึ้นรูปเส้นใยบะซอลต์	6
รูปที่ 2.5 กราฟ DSC (เส้นทึบ) และ TG (เส้นประ) ของเส้นใยที่มีเซอร์โคเนียแตกต่างกัน	8
รูปที่ 2.6 กราฟแสดงจุดของ T _s , T _c , T _m และ T _l	9
รูปที่ 2.7 แก้ว SGR ที่ผ่านการให้ความร้อนใน Gradient furnace ในช่วงอุณหภูมิ 872 – 921	
องศาเซลเซียส	10
รูปที่ 2.8 กราฟ DCS แสดงค่าอุณหภูมิ T _s , T _c และ T _m ของเส้นใย	12
รูปที่ 2.9 กราฟแสดงความสัมพันธ์ระหว่างอุณหภูมิลิควิดัสที่ได้จากการคำนวณ และเทคนิค	
gradient temperature furnace ของกลุ่มของเฟสเนฟิลีน และโวลาสโทไนต์	14
รูปที่ 3.1 แก้วฟริตที่เตรียมได้	18
รูปที่ 3.2 อิเล็กตรอนในชั้น K หลุด และอิเล็กตรอนในชั้น M ที่มีพลังงานสูงกว่าลงมาแทนที่	19
รูปที่ 3.3 ผงแก้วที่ผ่านการอัดขึ้นรูปเป็นเม็ด	20
รูปที่ 3.4 เตา Bottom loading	21
รูปที่ 3.5 ชิ้นงานสำหรับการวัดอุณหภูมิลิควิดัสด้วยวิธี Isothermal	22
รูปที่ 3.6 แผนผังการทดลอง	24
รูปที่ 4.1 องค์ประกอบทางเฟสของแก้วฐานบะซอลต์สูตรที่ 1 - 5	28
รูปที่ 4.2 องค์ประกอบทางเฟสของแก้วฐานบะซอลต์สูตรที่ 6 – 10	29
รูปที่ 4.3 องค์ประกอบทางเฟสของแก้วฐานบะซอลต์สูตรที่ 11 – 15	30
รูปที่ 4.4 องค์ประกอบทางเฟสของแก้วฐานบะซอลต์สูตรที่ 16 – 20	31
รูปที่ 4.5 องค์ประกอบทางเฟสของแก้วฐานบะซอลต์สูตรที่ 21 – 25	32

รูปที่ 4.6 องค์ประกอบทางเฟสของแก้วฐานบะซอลต์สูตรที่ 26 – 30	33
รูปที่ 4.7 กราฟ DTA แสดงค่า T _s T _c T _{Endpoint} ของแก้วฐานบะซอลต์สูตรที่ 1 - 5	34
รูปที่ 4.8 กราฟ DTA แสดงค่า T _L ของแก้วฐานบะซอลต์สูตรที่ 1 - 5	35
รูปที่ 4.9 ตัวอย่างแก้วสูตร BG 3 และBG 7	36
รูปที่ 4.10 กราฟเปรียบเทียบ T _L จากเครื่อง DTA และวิธี Isothermal	38
รูปที่ 4.11 กราฟเปรียบเทียบ T _L ที่ได้จากการวัดด้วยเทคนิค DTA และคำนวณของสูตรแก้ว ที่มี	
เฟสไดออปไซด์เป็นเฟสหลัก	43
รูปที่ 4.12 กราฟเปรียบเทียบ T _L ที่ได้จากการวัดด้วยเทคนิค Isothermal และคำนวณของสูตร แก้ว ที่มีเฟสไดออปไซด์เป็นเฟสหลัก	44
ระเพิ่ 4 12 กรรณแขโร่แขน T ซึ่งการการการการการการการการการการการการการก	
รูบที่ 4.15 กราพเบรยบเทยบ 1 ที่เตง เกการวดตรอยเทคนคือ IA และค่าน รณของสูตรแก่ รัทม เฟสแอลไบต์เป็นเฟสหลัก	45
รูปที่ 4.14 กราฟเปรียบเทียบ T _L ที่ได้จากการวัดด้วยเทคนิค Isothermal และคำนวณของสูตร	
แก้ว ที่มีเฟสแอลไบต์เป็นเฟสหลัก	45

ฎ

บทที่ 1

บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

หินบะซอลต์ (Basalt rock) ได้ถูกนำมาพัฒนาใช้ผลิตเป็นเส้นใยสำหรับวัสดุเชิงประกอบ (Composite materials) ในงานต่าง ๆ เพื่อทดแทนแร่ใยหินที่ถูกยกเลิกและห้ามใช้ด้วยเหตุผล อันตรายต่อสุขภาพ เนื่องจากหินบะซอลต์มีโครงสร้างทางเคมีคล้ายกับแก้ว (Glass) ซึ่งองค์ประกอบ หลักทางเคมีประกอบด้วย SiO₂ Al₂O₃ CaO MgO และ Fe₂O₃ เมื่อนำมาขึ้นรูปเป็นเส้นใยจึงมี สมบัติเชิงกลที่ดี ทนต่อสารเคมี และเสถียรที่อุณหภูมิสูง การนำหินบะซอลต์มาขึ้นรูปเป็นเส้นใยนั้น ควรมีการศึกษาหาอุณหภูมิลิควิดัส (Liquidus Temperature) เพื่อใช้ในการเลือกสูตรแก้วบะซอลต์ และวางแผนกระบวนการผลิตให้เหมาะสม อีกทั้งช่วยลดพลังงานในการผลิต

อุณหภูมิลิควิดัส (Liquidus Temperature, T_L) มีความสำคัญต่ออุตสาหกรรมแก้วเป็น อย่างมาก เนื่องจากอุณหภูมิที่ใช้ในการหลอมแก้วต่ำกว่า T_L อาจส่งผลให้ตกผลึก (devitrification) หรือหลอมวัตถุดิบได้ไม่หมด ซึ่งในกระบวนการผลิตเส้นใยนั้น ไม่ควรเกิดการตกผลึกในขณะขึ้นรูป เพราะจะทำให้เกิดตำหนิเป็นสาเหตุทำให้เกิดการแตกหักและสมบัติบางอย่างเปลี่ยนไป ซึ่งการวัด อุณภูมิลิควิดัสสามารถหาได้จากการวัดด้วยเตาเกรเดียนท์ (gradient furnace method) กระบวนการให้ความร้อนที่อุณหภูมิคงที่ (Isothermal process) หรือ เทคนิคการวิเคราะห์หาการ เปลี่ยนแปลงทางความร้อนด้วยเครื่อง Differential Thermal Analysis, DTA

ในงานวิจัยนี้ ได้ศึกษาความสัมพันธ์ระหว่างอุณหภูมิลิควิดัสและองค์ประกอบทางเคมีของ แก้วฐานบะซอลต์สำหรับการขึ้นรูปเป็นเส้นใย โดยวัดอุณหภูมิลิควิดัสจากเครื่อง DTA และ กระบวนการให้ความร้อนที่อุณหภูมิคงที่ และสร้างแบบจำลองทางคณิตศาสตร์เพื่อทำนายอุณหภูมิ ลิควิดัสของแก้วฐานบะซอลต์โดยใช้ข้อมูลจากการวัดทั้งสองวิธี

1.2 วัตถุประสงค์ของการวิจัย

1.2.1 ศึกษาความสัมพันธ์ระหว่างอุณหภูมิลิควิดัสและองค์ประกอบทางเคมีของแก้วฐาน บะซอลต์สำหรับการขึ้นรูปเป็นเส้นใย

1.2.2 สร้างแบบจำลองเพื่อทำนายอุณหภูมิลิควิดัสของแก้วฐานบะซอลต์โดยใช้ข้อมูลจากการ วัดด้วยกระบวนการให้ความร้อนที่อุณหภูมิคงที่ และจากกราฟ DTA

1.3 ประโยชน์ที่คาดว่าจะได้รับ

ได้แบบจำลองที่สามารถทำนายอุณหภูมิลิควิดัสของแก้วฐานบะซอลต์สำหรับการขึ้นรูป เส้นใย

บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง

2.1 หินบะซอลต์

หินบะซอลต์ (Basalt rock)^[1, 2] เป็นหินอัคนีพุ (extrusive rock) หรือหินภูเขาไฟ (volcanic Rock) เกิดจากการเย็นตัวลงอย่างรวดเร็วของหินหนืดที่ดันตัวออกมาบนผิวโลกเป็นลาวา กลายเป็น หินที่มีลักษณะเนื้อแน่นละเอียด มีรูพรุน สีเทาเข้มถึงดำ ในประเทศไทย พบมากที่จังหวัดศรีสะเกษ ลำปาง กาญจนบุรี จันทบุรี และลพบุรี^[3] องค์ประกอบหลักทางเคมีประกอบด้วย SiO₂ Al₂O₃ CaO MgO Fe₂O₃ Na₂O และ K₂O แร่ที่พบในหินบะซอลต์ ได้แก่ แร่ไพรอกซีน (pyroxene) แร่แพลจิโอเคลส (plagioclase) อาจมีแร่โอลิวีน (olivine) ปนมาด้วย เนื่องจากเกิดขึ้นจากแมกมา ใต้เปลือกโลก^[4] มีอุณหภูมิหลอมเหลวอยู่ในช่วง 1450-1700 องศาเซลเซียส หินบะซอลต์แบ่งออกเป็น 4 กลุ่มคือ หินบะซอลต์โทลิไอตกึ่งแอลคาไลน์ (tholeiitic or sub-alkaline basalt) หินบะซอลต์ แคลก์-แอลคาไลน์ (calc-alkaline basalt) หินบะซอลต์โคมาทิไอต์ (komatiite basalt) และ หินบะซอลต์แอลคาไลน์ (alkaline basalt) โดยหินบะซอลต์ที่พบในประเทศไทยมักเป็นพวก หินบะซอลต์แอลคาไลน์ (alkaline basalt) โดยหินบะซอลต์ที่พบในประเทศไทยมักเป็นพวก และลักษณะการเย็นตัว

หินบะซอลต์ที่นำมาใช้ในงานวิจัยนำมาจากหลุมเจาะในเขตสัมปทานของ บริษัท ไมน์เค็ม จำกัด อ.ชัยบาดาล จ.ลพบุรี ประเทศไทย ซึ่งเป็นหินบะซอลต์ชนิดโทลิไอต์กึ่งแอลคาไลน์ ที่เกิดจาก การปะทุของลาวา ที่พบได้ 2 แบบ คือ ปะทุขึ้นมาจากปล่องภูเขาไฟ และปะทุขึ้นตามรอยแตกยาว ๆ บนผิวโลก โดยลาวาที่ปะทุจากรอยแตกเหล่านี้ทำให้เกิดลักษณะภูมิประเทศแบบที่ราบสูงเช่นเดียวกับ พื้นที่ของจังหวัดลพบุรี^[4] ดังแสดงในรูปที่ 2.1 มีปริมาณของซิลิการ้อยละ 52 - 65 และมีปริมาณของ เหล็กออกไซด์ อะลูมิเนียมออกไซด์สูง องค์ประกอบทางเฟสได้แก่ เฟสไดออปไซด์ (diopside; CaMgSi₂O₆) เฟสแอลไบต์ (albite; NaAlSi₃O₈) และเฟสอะนอร์ไทต์ (anorthite; CaAl₂Si₂O₈) เป็น เฟสหลัก ซึ่งปริมาณซิลิกาที่มีมากนั้นจะส่งผลต่อความหนืดในขณะหลอมหินบะซอลต์และทำให้ยาก ต่อการขึ้นรูปเป็นเส้นใย จึงอาจมีการปรับองค์ประกอบทางเคมีก่อนนำไปใช้งาน

ส่วนใหญ่หินบะซอลต์เป็นที่นิยมนำมาใช้ในการประดับสวน และก่อสร้าง เนื่องจาก มีรูพรุน และมีความแข็งแรงต่อการสึกกร่อน ต่อมาได้มีการนำหินบะซอลต์มาพัฒนาใช้ผลิต เป็นเส้นใยสำหรับวัสดุเชิงประกอบ (composite materials)^[5] ในงานต่าง ๆ เพื่อทดแทน แร่ใยหิน (asbestos)^[6, 7] เนื่องจากเป็นแร่ที่มีอันตรายต่อระบบทางเดินหายใจ จัดกลุ่มเป็นสารก่อ มะเร็งในมนุษย์ อีกทั้งยังมีสมบัติเทียบเท่า คือ มีความแข็งแรง มีความยืดหยุ่นสูง ทนต่อความร้อน ทนต่อแรงดึง และทนต่อการกัดกร่อนของสารเคมี^[8, 9]

รูปที่ 2.1 แบบจำลองการเกิดหินบะซอลต์ และพื้นที่เนินเขาหินบะซอลต์ในจังหวัดลพบุรี^[4]

องค์ประกอบสำคัญทางเคมีของหินบะซอลต์ที่สามารถขึ้นรูปเป็นเส้นใยได้แสดงดังตารางที่ 2.1^[10] ซึ่งปริมาณซิลิกาอยู่ในช่วงร้อยละ 42 - 55 ในขณะที่ปริมาณซิลิกาของหินบะซอลต์ที่พบใน ประเทศไทยมีปริมาณมากกว่าร้อยละ 55 ส่งผลให้ค่าความหนืด หรือการไหลตัวสูง ทำให้การขึ้นรูป เส้นใยทำได้ยาก^[11]

องค์ประกอบทางเคมี	ปริมาณ (ร้อยละน้ำหนัก)
SiO ₂	42.43 - 55.69
CaO	7.43 - 12
Al ₂ O ₃	11 - 17.97
MgO	4.06 - 11
Fe ₂ O ₃	5 - 11.68
Na ₂ O	2.38 - 5
K ₂ O	1.06 - 5
TiO ₂	1.10 - 5

ตารางที่ 2.1 องค์ประกอบทางเคมีของหินบะซอลต์ที่สามารถขึ้นรูปเป็นเส้นใยได้^[4]

ทั้งนี้หินบะซอลต์ในแต่ละพื้นที่มีองค์ประกอบทางเคมีที่แตกต่างกัน ก่อนนำมาใช้งานใน กระบวนการหลอมแก้ว จึงมีการออกแบบการทดลองแบบผสม (Extreme Vertices Design)^[12, 13] ซึ่งเป็นการออกแบบการทดลองในพื้นที่ที่สนใจจากทั้งหมด ดังรูปที่ 2.2 มีการกำหนดค่าขอบล่าง (lower) – ขอบบน (upper) ของแต่ละปัจจัย โดยผลรวมของทั้งหมดเท่ากับ 1 หรือ 100% ในแต่ละ ปัจจัยนั้นไม่จำเป็นต้องมีค่าขอบล่าง – ขอบบน เท่ากับ 0 - 100% โดยเป็น 15 - 45% (0.15 – 0.45) เป็นต้น เนื่องจากความต้องการในการออกแบบการทดลองเพื่อนำมาใช้จริง

รูปที่ 2.2 การออกแบบการทดลองแบบ Extreme Vertices Design^[13]

2.2 เส้นใยบะซอลต์

เส้นใยแก้ว หรือไฟเบอร์กลาส (fiber glass)^[14] เป็นวัสดุที่ได้จากกระบวนการหลอมแก้ว แล้ว ดึงออกมาจากน้ำแก้วกลายเป็นเส้นใย โดยมีลักษณะหลายรูปแบบแตกต่างกัน ขึ้นกับรูปแบบในการ นำไปใช้งาน เช่น นำเส้นใยที่มีขนาดเล็กมาทอเป็นผืนเหมือนผ้า (fiberglass fabric) รูปที่ 2.2 ผ้าที่ได้ จะไม่ดูดซึมน้ำ ไม่หดตัว ป้องกันความร้อนได้ดี ส่วนมากนำมาใช้เป็นทำเป็นผ้าม่านกันสะเก็ดไฟใน อุตสาหกรรม หรือเส้นใยที่ถูกตัดให้เป็นเส้นสั้น ๆ เพื่อใช้เป็นส่วนผสมเสริมความแข็งแรงให้กับวัสดุ กลุ่มพอลิเมอร์ มักนำมาใช้ทำเป็นฉนวนกันความร้อน (รูปที่ 2.2) หรือแผ่นหลังคาโปร่งแสง นอกจากนี้ เส้นใยแก้วยังถูกนำมาใช้ประโยชน์ในด้านอื่น ๆ อีกมากมาย เนื่องจากเส้นใยแก้วมีสมบัติความแข็งแรง ทนแรงดึงได้สูง ไม่เป็นสนิม และทนต่อการกัดกร่อน นอกจากนี้เส้นใยแก้วยังมีสมบัติด้านการเป็น ฉนวนความร้อนที่ดีเหมาะที่จะนำมาใช้เป็นฉนวนในเตา ตู้เย็น หรือวัสดุก่อสร้างอีกด้วย

รูปที่ 2.3 ผ้าใยแก้ว (fiberglass fabric) และแผ่นฉนวนกันความร้อน^[15]

โดยทั่วไปเส้นใยแก้วแบ่งออกเป็น A-glass (alkali) ใช้สำหรับงานที่ต้องทนสารเคมีที่เป็นด่าง, C-glass (chemical) ใช้สำหรับงานที่ต้องการทนสารเคมีที่เป็น กรด และสารกัดกร่อน, E-glass (electrical) ใช้สำหรับงานที่ต้องการรับแรง และเป็นฉนวนป้องกันกระแสไฟฟ้าได้ดี และ S-glass (high Strength) ใช้สำหรับงานที่รับแรงกระแทก จึงถูกนำมาใช้เป็นส่วนผสมในวัสดุเสริมแรงสำหรับ (carbon fiber) ใช้สำหรับงานที่รับแรงกระแทก จึงถูกนำมาใช้เป็นส่วนผสมในวัสดุเสริมแรงสำหรับ ส่วนประกอบเครื่องบิน หรือรถยนต์ แต่มีราคาแพง และเส้นใยบะซอลต์ (basalt fiber)^[10, 16] คล้าย กับเส้นใยคาร์บอน แต่รับแรงกระแทกได้น้อย และมีราคาถูก ในตารางที่ 2.2^[16] แสดงถึงสมบัติต่าง ๆ ของเส้นใยแต่ละประเภท จะเห็นได้ว่าเส้นใยคาร์บอนสามารถรับแรงกระแทกสูง และทนต่อความร้อน สูงกว่าเส้นใยชนิดอื่น ๆ แต่ด้วยเครื่องมืออุปกรณ์สำหรับการขึ้นรูปมีราคาสูง ส่งผลให้เส้นใยคาร์บอน มีราคาสูง จึงมีการนำหินบะซอลต์เข้ามาผลิตเป็นเส้นใยแก้ว เนื่องจากมีสมบัติใกล้เคียงกับเส้นใย คาร์บอน ทนต่อแรงกระแทกได้น้อยกว่าเส้นใยคาร์บอน แต่มากกว่าเส้นใยแก้วชนิดอื่น

จุหาลงกรณ์มหาวิทยาลัย

สมบัติ	เส้นใยบะซอลต์ (Basalt fiber)	เส้นใยคาร์บอน (Carbon fiber)	ใยแก้วชนิด E-glass	ใยแก้วชนิด S-glass
Breaking Strength (MPa)	3000-4000	3500-6000	3100-3800	4020-4650
Modulus of Elasticity (GPa)	79.3-93.1	230-600	72.5-75.5	83-86
Breaking Extension (%)	3.1	1.5-2.0	4.7	5.3
Temperature Withstand (°C)	-260 ถึง 700	-50 ถึง 700	-50 ถึง 380	-50 ถึง 300

ตารางที่ 2.2 สมบัติต่าง •) ของเส้นใยแต่ละประเภท ^[16]	VIVERSIT
---------------------------	--	----------

การขึ้นรูปเส้นใย เริ่มจากบดผสมวัตถุดิบหลักได้แก่ทรายแก้ว หินปูน หินฟันม้า และสารเติม แต่งอื่น ๆ แล้วโหลดลงในไซโล (silo) แล้วเข้าสู่กระบวนการหลอมเหลวภายในเตาหลอมที่อุณหภูมิสูง กลายเป็นน้ำแก้วและเข้าสู่กระบวนการรีดเป็นเส้นใยขนาดยาว เส้นใยจะถูกดึงออกจากหัวรีด และถูก ม้วนรวมกันตามขนาดที่ต้องการ โดยเก็บด้วยความเร็วที่สูงกว่าความเร็วของใยแก้วที่รีดออกมา ซึ่งเป็นการยึดดึงในขณะที่เส้นใยยังอ่อนตัวก่อนเกิดการแข็งตัว เพื่อให้ได้เส้นใยที่มีขนาดเล็กออกมา ดังแสดงในรูปที่ 2.4^[10] เช่นเดียวกันกับการขึ้นรูปเส้นใยแก้วบะซอลต์ ที่ใช้หินบะซอลต์เป็นวัตถุดิบ หลักในการขึ้นรูป

นอกจากนี้อาจมีการเติมสารประกอบออกไซด์หรือคาร์บอเนตลงไปเพื่อปรับโครงสร้างของ แก้ว ยกตัวอย่าง เช่น การเติม Al₂O₃ และ Fe₂O₃ ช่วยเพิ่มความแข็งแรงและความทนทานต่อสารเคมี การเติม Na₂CO₃ K₂CO₃ Ca₂CO₃ และ MgCO₃^[17-22] ทำหน้าที่ลดอุณหภูมิในการหลอมตัวหรือลด ความหนืดของแก้ว ทำให้น้ำแก้วมีความหนืดน้อยลง สามารถขึ้นรูปที่ลักษณะซับซ้อนได้และชะลอ การตกผลึกในแก้ว เพื่อลดอัตราการแตกหัก ในบางครั้งมีการเจือสารบางชนิดเพื่อเพิ่มคุณสมบัติให้ ตรงตามต้องการ ยกตัวอย่างงานวิจัยของ Lipatov, Y.V. และคณะ^[23]ได้ศึกษาการตกผลึกโดยการเจือ เซอร์โคเนีย (zirconia)^[24] 0 - 7 wt% ในเส้นใยบะซอลต์ โดยการเจือเซอร์โคเนียมีผลทำให้อุณหภูมิ เปลี่ยนสภาพแก้ว (Glass transition temperature, T₉) เพิ่มขึ้นและความเสถียรทางความร้อน (thermal stability) อีกทั้งช่วยลดการแยกเฟสที่อุณหภูมิที่แตกต่างกันและเพิ่มความต้านทานในเส้น ใย ในการทดลอง นำหินบะซอลต์บดผสมกับเซอร์โคเนียมซิลิเกต (zirconium silicate, ZrSiO₄) และ นำไปให้ความร้อนที่อัตราการเพิ่มอุณหภูมิ 25 องศาเซลเซียสต่อนาที ถึง 1000 องศาเซลเซียส และ

ู้ที่ 30 องศาเซลเซียสต่อนาที ในช่วง 1000 - 1600 องศาเซลเซียส ทำให้เป็นเนื้อเดียวกัน (homogenized) เป็นเวลา 24 ชั่วโมงในอากาศ จากนั้นทำให้เย็นตัวอย่างฉับพลัน (quenching) ในน้ำและดึงขึ้นรูปเป็นเส้นใย นำเส้นใยที่ได้มาวิเคราะห์ X-ray diffraction (XRD) เพื่อตรวจหาเฟส ของผลึกที่เกิดขึ้น โดยอบ (anneal) ที่ 800 900 1000 และ 1100 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง พบว่าเส้นใยที่ไม่ได้เจือเซอร์โคเนีย (0 wt%) ที่ 800 องศาเซลเซียส เกิดเฟส magnesioferrite (MgFe₂O₄) และเมื่ออุณหภูมิสูงขึ้น magnesioferrite ทำหน้าที่เป็นตัวช่วยก่อให้เกิดผลึก (nucleating agent)^[25, 26] ทำให้เกิดการตกผลึกของเฟสไพรอกซีน (pyroxene) ที่ประกอบด้วย ออ ใจต์ (augite; Ca(Mg,Fe,Al)(Si,Al)₂O₆) และไดออปไซด์ ที่ 900 องศาเซลเซียส เกิดเฟสของฮีมาไทต์ (hematite;**α**-Fe₂O₃) และ แพลจิโอเคลส (plagioclase) ประกอบด้วย แอลไบต์ และอะนอร์ไทต์ ในขณะที่ 800 องศาเซลเซียส เส้นใยที่เจือเซอร์โคเนีย 5 และ 7 wt% เกิดเฟส cubic complex oxide MO_x (M = Mg Zr และ Ti) และเมื่อเพิ่มอุณหภูมิเป็น 900 องศาเซลเซียส เส้นใยที่เจือเซอร์โค เนีย 7 wt% เกิดการตกผลึกที่สมบูรณ์ โดยมีเฟส ไพรอกซีน แพลจิโอเคลส ฮีมาไทต์ และ tetragonal ZrO2 เกิดขึ้น ในขณะที่ 5 wt% ที่ 1000 องศาเซลเซียส เกิดการตกผลึกของ ไพรอกซีน และ tetragonal ZrO₂ อย่างสมบูรณ์ นอกจากนี้ได้วิเคราะห์อุณหภูมิในการตกผลึกด้วย Differential scanning calorimetric (DSC) ด้วยอัตราการเพิ่มอุณหภูมิ 20 องศาเซลเซียสต่อนาที แสดงดังรูปที่ 2.5 พบว่าเส้นใยที่ไม่ได้เจือเซอร์โคเนีย (0 wt%) เกิดอุณหภูมิสภาพแก้ว (glass transition temperature, T_s) ที่ 710 องศาเซลเซียส ของแข็งเริ่มเข้าสู่ความเป็นของเหลว ทำให้เริ่มเกิดการตก ผลึก เมื่ออุณหภูมิเพิ่มสูงขึ้นเกิดการแพร่ของไอออน Ca²⁺, Mg²⁺ และ Fe²⁺ บนผิวของเส้นใย และ เกิดปฏิกิริยาออกซิเดชั่นของ Fe²⁺ ไปเป็น Fe³⁺ ทำให้เกิดการตกผลึกออกมาอยู่ในรูปของ โครงสร้างสปิเนล (spinel)^[27, 28] ที่อุณหภูมิ 877 และ 940 องศาเซลเซียส เกิดการตกผลึกของ magnesioferrite และ ไพรอกซีน ตามลำดับ ที่อุณหภูมิมากกว่า 1000 องศาเซลเซียส เกิดการดูด พลังงานเข้าไปสลายพันธะของเฟสไพรอกซีน และเฟสอสัญฐาน (amorphous phase) ทำให้เกิดการ ตกผลึกของแพลจิโอเคลส ที่อุณหภูมิ 1121 องศาเซลเซียส ในขณะที่เส้นใยที่เจือเซอร์โคเนีย 5 และ 7 wt% มีค่า T, เท่ากับ 737 และ 747 องศาเซลเซียส ตามลำดับ ซึ่งมีค่าสูงกว่าเมื่อเทียบกับกับเส้นใย ที่ได้เจือเซอร์โคเนีย เนื่องจากจุดหลอมเหลวของเซอร์โคเนียมีอุณหภูมิสูง ทำให้การเปลี่ยนสถานะจาก แข็งเป็นของเหลวจะใช้อุณหภูมิสูง ที่ช่วงอุณหภูมิ 900 - 1000 องศาเซลเซียส เกิดการตกผลึกได้อย่าง ้สมบูรณ์ รวมถึงการตกผลึกของเฟสฮีมาไทต์ โดยที่เส้นเส้นใยที่ไม่ได้เจือเซอร์โคเนียไม่ปรากฏเฟส ้ฮีมาไทต์ เนื่องจากการซ้อนทับกันของผลึกและจากผลกระทบของการเกิดการดูดพลังงาน (endothermal effect)

รูปที่ 2.5 กราฟ DSC (เส้นทึบ) และ TG (เส้นประ) ของเส้นใยที่มีเซอร์โคเนียแตกต่างกัน^[23] (T_g – glass transition temperature; T_{p1} , T_{p2} , T_{p3} – exothermal peak temperatures)

2.3 สมบัติทางความร้อน

ในอุตสาหกรรมแก้ว อุณหภูมิที่ใช้ในการหลอมวัตถุดิบนั้นมีความสำคัญอย่างมาก กระบวนการหลอมแก้ว เพื่อป้องกันการตกผลึก (devitrification) หรือหลอมวัตถุดิบได้ไม่หมด ซึ่งใน กระบวนการผลิตเส้นใยนั้น ไม่ควรเกิดการตกผลึกในขณะขึ้นรูป เพราะจะทำให้เกิดตำหนิเป็นสาเหตุ ทำให้เกิดการแตกหักและสมบัติบางอย่างเปลี่ยนไป อุณหภูมิที่สำคัญในกระบวนการหลอมแก้ว ได้แก่ อุณหภูมิสภาพแก้ว (glass transition temperature, T_g)^[29] อุณหภูมิตกผลึก (crystallization temperature, T_c)^[30, 31] อุณหภูมิการหลอมเหลว (melting temperature, T_m) และ อุณหภูมิ ลิควิดัส (liquidus temperature, T_L)^[32, 33] ดังแสดงในรูปที่ 2.6 โดยเริ่มจากการนำแก้วหรือชิ้นงาน ที่เตรียมได้มาวิเคราะห์ด้วยเครื่อง DTA/DSC จะพบว่า เมื่ออุณหภูมิเพิ่มขึ้นแก้วเกิดการดูดพลังงาน ความร้อน ทำให้แก้วเริ่มมีการเปลี่ยนสถานะจากของแข็งเป็นของเหลว เกิดที่อุณหภูมิสภาพแก้ว (T_g) และเมื่ออุณหภูมิสูงขึ้นแก้วเกิดการคายพลังงาน ทำให้แก้วเกิดเป็นผลึกที่อุณหภูมิตกผลึก (T_c) ซึ่งเมื่อ มีการแข่ (soaking) ที่อุณหภูมินี้เป็นเวลานาน สามารถตรวจสอบเฟสของแก้วที่เกิดขึ้นได้ ต่อมาแก้ว เกิดการดูดพลังงานความร้อนที่อุณหภูมิลิควิดัส (T_L) ซึ่งเป็นจุดสิ้นสุด (endpoint) ของ T_m

รูปที่ 2.6 กราฟแสดงจุดของ Tg, Tc, Tm และ TL $^{\rm [34]}$

ในงานวิจัยของ Bellini, F.E. และคณะ $^{[34]}$ ได้ศึกษาอุณหภูมิลิควิดัส (T $_{
m L}$) ของแก้ว SGR ที่ เตรียมโดย Saint-Gobain Recherché หนึ่งในคณะวิจัย ซึ่งทราบอุณหภูมิลิควิดัสที่แน่ชัด คือ 920 องศาเซลเซียส โดยใช้เทคนิค DSC ในการกำหนดอุณหภูมิลิควิดัส^[35, 36] และตรวจสอบความแม่นยำ ของอุณหภูมิลิควิดัสที่ได้จากเครื่อง DSC ด้วยวิธี gradient furnace^[37] และวิเคราะห์ด้วยกล้อง จุลทรรศน์ เริ่มจากการนำแก้วระบบ SGR วิเคราะห์หา T_c T_{onset} และ T_{endpoint} ของ T_m ด้วยเครื่อง DSC ด้วยอัตราการเพิ่มอุณหภูมิ 0 องศาเซลเซียสต่อนาที พบว่า T_c T_{onset} และ T_{endpoint} เท่ากับ 860 903 และ 921 องศาเซลเซียส ตามลำดับ และจุดเบี่ยงเบนแรก (first deviation) ก่อนเข้าสู่ T_{onset} ้ เท่ากับ 872 องศาเซลเซียส จากนั้นนำแก้ว SGR มา heat treat ที่ T_c เป็นเวลา 24 ชั่วโมง เพื่อให้ เกิดผลึก และวิเคราะห์หาอุณหภูมิลิควิดัส ด้วยเครื่อง DSC ด้วยอัตราการเพิ่มอุณหภูมิ 0 ้องศาเซลเซียสต่อนาที พบว่าอุณหภูมิลิควิดัส มีค่าเท่ากับ 930 องศาเซลเซียส จากนั้นตรวจสอบความ แม่นยำของเครื่อง DSC ด้วยวิธี gradient furnace เริ่มจากนำแก้ว SGR ที่ผ่านการบดละเอียด ใส่ลง ไปในถ้วยอะลูมินาแล้ววางลงใน gradient furnace พร้อมกับเทอร์โมคัปเปิล (thermocouples) ให้ ้ความร้อนในช่วง 872 - 921 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ด้วยอัตราการเพิ่มอุณหภูมิ 10 ้องศาเซลเซียสต่อนาที เมื่อครบเวลาทำการปิดเตาทันทีและทิ้งให้เย็นตัวในเตา จากนั้นนำแก้ว SGR มาตรวจสอบด้วยกล้องจุลทรรศน์ ผลที่ได้พบว่า ที่อุณหภูมิตั้งแต่ 872 - 897 องศาเซลเซียส ในเนื้อ แก้วยังคงมีผลึกเกิดขึ้นอยู่ เมื่ออุณหภูมิสูงขึ้นที่ 905 - 918 องศาเซลเซียส แก้วเริ่มเกิดการหลอมเหลว ้และที่อุณหภูมิ 921 องศาเซลเซียส ผงแก้วเกิดการหลอมมากขึ้น จนกลายเป็นน้ำแก้วได้อย่างสมบูรณ์ ดังแสดงในรูปที่ 2.7 โดยสีเหลืองและสีฟ้า คือผลึกในเนื้อแก้ว, จุดสีดำ คือฟองอากาศที่เกิดขึ้นในช่วง ซินเตอร์ (Sintering), สีม่วง คือน้ำแก้วที่หลอมอย่างสมบูรณ์ และที่อุณหภูมิ 921 องศาเซลเซียส รูป (h) แสดงถึงน้ำแก้ว และเนื้อถ้วยอะลูมินา จึงประมาณค่าอุณหภูมิลิควิดัสที่ได้จากวิธี gradient furnace ได้เท่ากับ 921 องศาเซลเซียส ซึ่งใกล้เคียงกับอุณหภูมิลิควิดัสที่ได้จากเทคนิค DSC และ อุณหภูมิลิควิดัสที่จริงของแก้ว SGR

รูปที่ 2.7 แก้ว SGR ที่ผ่านการให้ความร้อนใน Gradient furnace ในช่วงอุณหภูมิ 872 – 921 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง^[34]

รูปที่ 2.7 (ต่อ) แก้ว SGR ที่ผ่านการให้ความร้อนใน Gradient furnace ในช่วงอุณหภูมิ 872 – 921 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง ^[34]

Veit, U. และคณะ⁽³⁸⁾ ได้ศึกษาอุณหภูมิลิควิดัส (T_L) ของแก้วระบบ CaO–SiO₂–MgO–Al₂O₃ (CMAS) จำนวน 18 องค์ประกอบ ซึ่งใช้วิธี gradient furnace และเทคนิค DTA ในการกำหนด อุณหภูมิลิควิดัส โดยวิธี gradient furnace เป็นการหาอุณหภูมิลิควิดัสโดยนำแก้วแต่ละสูตรที่ผ่าน การบด ใส่ลงไปใน platinum boat แล้ววางลงใน orton tubular furnace พร้อมกับเทอร์โมคัปเปิล ให้ความร้อน 1500 องศาเซลเซียส เป็นเวลา 1 ชั่วโมง แล้วดูการวิเคราะห์ด้วยเทคนิค DTA โดยให้ ความร้อนระหว่าง 1000 - 1300 องศาเซลเซียส ที่อัตราการเพิ่มอุณหภูมิ 2 องศาเซลเซียสต่อนาที จากผลการทดลองพบว่า อุณหภูมิลิควิดัสของวิธี gradient furnace อยู่ในช่วง 1202 - 1252 องศาเซลเซียส มีค่าความคลาดเคลื่อน \pm 7 องศาเซลเซียส และจุดยุติ (endpoint) ที่ได้จากการ วิเคราะห์ด้วย tangent method ของเทคนิค DTA อยู่ในช่วง 1218 -1237 องศาเซลเซียส มีค่าความ คลาดเคลื่อน \pm 3 องศาเซลเซียส เมื่อเปรียบเทียบค่าอุณหภูมิที่ได้จากทั้งสองเทคนิค พบว่า มีค่าแตกต่างกันน้อยกว่า \pm 10 องศาเซลเซียส ดังนั้นเทคนิค DTA จึงถูกนำมาใช้ในการพิจารณา อุณหภูมิลิควิดัส เนื่องจากเหมาะสำหรับกลุ่มตัวอย่างขนาดเล็กและสามารถควบคุมอุณหภูมิได้

นอกจากนี้ในงานวิจัยของ Tian, T.L. และคณะ^[39] ได้ศึกษาพฤติกรรมการเกิดผลึกของเส้นใย ขนสัตว์ โดยวิเคราะห์หาอุณหภูมิสภาพแก้ว (T_e) และอุณหภูมิตกผลึก (T_e) ด้วยเทคนิค DTA พบว่า ค่าอุณหภูมิ T_s, T_c และ T_m ที่ได้เท่ากับ 712.5, 898.3 และ 1203.8 องศาเซลเซียส ตามลำดับ ดัง แสดงในรูปที่ 2.8 โดยผลึกจะเกิดในช่วง 854 – 919 องศาเซลเซียส

รูปที่ 2.8 กราฟ DCS แสดงค่าอุณหภูมิ T_s, T_c และ T_m ของเส้นใย $^{[39]}$

2.4 คำนวณอุณหภูมิลิควิดัส

การคำนวณหาอุณหภูมิลิควิดัสจากองค์ประกอบทางเคมีของสูตรแก้ว และค่าสัมประสิทธิ์ของ องค์ประกอบตามสมการ multiple regression model (สมการ 2.1)^[40, 41] เป็นวิธีการอย่างหนึ่งที่ใช้ ในการวางแผนออกแบบกระบวนการหลอมแก้ว จากนั้นนำมาพล็อตกราฟเปรียบเทียบกับอุณหภูมิ ลิควิดัสที่ได้จากการวัดจริงในแต่ละวิธีการ แล้วพิจารณาค่าสัมประสิทธิ์การตัดสินใจ (coefficient of determination, R²) โดยค่า R² ที่ยอมรับได้นั้นควรมีค่าเข้าใกล้ 1^[42] เป็นการพิจารณาว่าแบบจำลอง ทางคณิตศาสตร์นี้ให้ผลการคำนวณอุณหภูมิลิควิดัสที่น่าเชื่อถือได้ นอกจากอุตสากรรมแก้วแล้วยัง อุตสาหกรรมโลหะก็นำวิธีการคำนวณหาอุณหภูมิลิควิดัสไปใช้ในการหาการวางแผนงานเช่นเดียวกัน สมการ multiple regression model

$$T_L = \sum_{i=1}^n b_i g_i$$

สมการ 2.1

โดย b_i คือ ค่าสัมประสิทธิ์ขององค์ประกอบ i

- g, คือ เศษส่วนโมล (mass fraction) ขององค์ประกอบ i
- n คือ จำนวนองค์ประกอบในโมเดล
- T_L คือ อุณหภูมิลิควิดัส

ในงานวิจัยของ Rao, Q. และคณะ^[42] ได้ศึกษาอุณหภูมิลิควิดัสของแก้วที่ได้จากการหลอม High-Level Waste, HLW ที่มีเซอร์โคเนียมเป็นองค์ประกอบ โดยเปรียบเทียบอุณหภูมิลิควิดัสของ แก้วจากวิธีการ composition variation study (CVS) และ transuranic (TRU) ที่ได้จากการวัดด้วย เทคนิคต่าง ๆ และการคำนวณจาก first-order multiple regression model (สมการ 2.1) ซึ่งแก้ว CVS ประกอบด้วย Al₂O₃ B₂O₃ CaO Fe₂O₃ Li₂O MgO Na₂O SiO₂ ZrO₂ และอื่น ๆ (Bi₂O₃, CeO₂ และP₂O₅) จำนวน 19 องค์ประกอบ อุณหภูมิลิควิดัสของแก้ว CVS วัดด้วยเทคนิค gradient temperature furnace (GTF) สำหรับอุณหภูมิลิควิดัสไม่เกิน 1100 องศาเซลเซียส และวัดด้วย เทคนิค uniform temperature furnace (UTF) สำหรับอุณหภูมิลิควิดัสตั้งแต่ 1100 องศาเซลเซียส ขึ้นไป และแก้ว TRU ประกอบด้วย $Al_2O_3 B_2O_3 Bi_2O_3 CeO_2 Li_2O Na_2O P_2O_5 SiO_2 และ ZrO_2$ จำนวน 31 องค์ประกอบ อุณหภูมิลิควิดัสของแก้วระบบ TRU วัดด้วยเทคนิค UTF พบว่าอุณหภูมิ ลิควิดัสแก้ว CVS อยู่ในช่วง 862 - 1187 องศาเซลเซียส และแก้วระบบ TRU อยู่ในช่วง 930 - 1350 ้องศาเซลเซียส และนำแก้วทั้ง 2 วิธีมาวิเคราะห์ XRD เพื่อหาเฟสของผลึกที่เกิดขึ้น พบว่าแก้วทั้ง 2 วิธีเกิดเฟส ZrSiO4 (zircon) และ ZrO2 (baddeleyite) เมื่อทำการเปรียบเทียบอุณหภูมิลิควิดัสที่ ได้จากการวัดและจากการคำนวณ พบว่าแก้ว CVS ที่เฟส zircon อุณหภูมิต่างกัน 31 องศาเซลเซียส และที่เฟส zirconium (zircon + baddeleyite) ไม่สามารถเปรียบเทียบได้เนื่องจากมีการกระจาย ตัวของอุณหภูมิสูง ในขณะที่แก้ว TRU ที่เฟส zircon อุณหภูมิต่างกัน 17 องศาเซลเซียส และที่เฟส เซอร์โคเนียม อุณหภูมิต่างกัน 37 องศาเซลเซียส เนื่องจากการเปลี่ยนแปลงของอุณหภูมิลิควิดัสเมื่อ เกิดการเปลี่ยนเฟสจาก zircon ที่อุณหภูมิต่ำไปยังเฟสแบดเดเลย์ไอต์ อุณหภูมิสูงไม่มีความสัมพันธ์ แบบเชิงเส้น ดังนั้นองค์ประกอบทางเคมี และเฟสที่เกิดขึ้นจึงมีผลต่อการคำนวณอุณหภูมิลิควิดัสจาก แบบจำลอง

นอกจากนี้ยังมีงานวิจัยของ Hanni, J.B. และคณะ^[43] ได้ศึกษาการวัดอุณหภูมิลิควิดัสของ กากของเสียนิวเคลียร์ (nuclear waste) ของแก้วระบบหลักคือ Al₂O₃ B₂O₃ Na₂O CaO และ SiO₂ จำนวน 50 องค์ประกอบ โดยอุณหภูมิลิควิดัสได้จากการวัดด้วยเทคนิค gradient temperature furnace ที่อุณหภูมิสูงสุด 1600 องศาเซลเซียส และจากการคำนวณตามสมการ 2.1 ในการคำนวณ นั้นจะแบ่งการคำนวณออกเป็น 2 กลุ่มใหญ่ตามเฟสหลักที่เกิดขึ้น ได้แก่ กลุ่มของเฟสเนฟิลีน (nepheline) จำนวณ 17 องค์ประกอบ และกลุ่มของเฟสโวลาสโทไนต์ (wollastonite) จำนวณ 19 องค์ประกอบ ซึ่งแก้วในบางองค์ประกอบนั้นไม่สามารถตรวจวัดค่าอุณหภูมิลิควิดัสและเฟสได้ เนื่องจากหลอมไม่หมดที่อุณหภูมิสูง หรือเกิดการตกผลึกช้า จากนั้นนำเศษส่วนขององค์ประกอบแต่ กลุ่มเฟส (b_i) มาคำนวณเพื่อหาค่าสัมประสิทธิ์ขององค์ประกอบ (g_i) เพื่อนำมาใช้ในการคำนวณหา อุณหภูมิลิควิดัส และนำค่าอุณหภูมิลิควิดัสที่ได้จากการคำนวณ และเทคนิค gradient temperature furnace มาพล็อตกราฟ ดังรูปที่ 2.9 พบว่าค่า R² ของกลุ่มของเฟสเนฟิลีน และโวลาสโทไนต์ มีค่า เท่ากับ 0.924 และ 0.981 ตามลำดับ ดังนั้นสามารถนำค่าสัมประสิทธิ์ขององค์ประกอบ (g_i) ของทั้ง สองกลุ่มเฟสมาใช้ในการคำนวณหาอุณหภูมิลิควิดัสในระบบแก้วชนิดนี้ได้

รูปที่ 2.9 กราฟแสดงความสัมพันธ์ระหว่างอุณหภูมิลิควิดัสที่ได้จากการคำนวณ และเทคนิค gradient temperature furnace ของกลุ่มของเฟสเนฟิลีน และโวลาสโทไนต์^[43]

บทที่ 3

วิธีดำเนินการวิจัย

ในบทนี้จะกล่าวถึงรายละเอียดของสารเคมี อุปกรณ์ และวิธีการที่ใช้ในการเตรียมแก้วฐาน บะซอลต์ในระบบของ SiO₂-CaO-Al₂O₃-MgO-Fe₂O₃-Na₂O-K₂O สำหรับการหาอุณหภูมิลิควิดัส รวมถึงวิธีการวิเคราะห์เชิงความร้อน ตรวจสอบองค์ประกอบทางเคมี โครงสร้างทางจุลภาค ซึ่งมี รายละเอียดดังนี้

3.1 สารเคมีวัตถุดิบและอุปกรณ์ที่ใช้ในการทดลอง

3.1.1 สารเคมีและวัตถุดิบ

- หินบะซอลต์ จากหลุมเจาะในเขตสัมปทานของ บริษัท ไมน์เค็ม จำกัด อ.ชัยบาดาล จ.ลพบุรี ประเทศไทย
- แคลเซียมคาร์บอเนต (CaCO₃) ความบริสุทธิ์ 99% ผลิตโดยบริษัท Ajax Finechem ประเทศออสเตรเลีย
- อะลูมิเนียมออกไซด์ (Al₂O₃) ความบริสุทธิ์ 95% ผลิตโดยบริษัท Ajax Finechem ประเทศออสเตรเลีย
- แมกนีเซียมคาร์บอเนต (MgCO₃) ความบริสุทธิ์ 40-45% MgO ผลิตโดยบริษัท
 HiMedia Laboratories ประเทศอินเดีย
- ไอรอนออกไซด์ (Fe₂O₃) ความบริสุทธ์ 95% ผลิตโดยบริษัท Fluka ประเทศ สวิตเซอร์แลนด์
- โซเดียมคาร์บอเนต (Na₂CO₃) ความบริสุทธิ์ 99% ผลิตโดยบริษัท Ajax Finechem ประเทศออสเตรเลีย
- โพแทสเซียมคาร์บอเนต (K₂CO₃) ความบริสุทธิ์ 99% ผลิตโดยบริษัท Ajax
 Finechem ประเทศออสเตรเลีย
- โพลีไวนิลแอลกอฮอล์ (PVA) ผลิตโดยบริษัท Fluka ประเทศสวิตเซอร์แลนด์
- เอธานอล (Ethanol) ความบริสุทธิ์ 99.99% ผลิตโดยบริษัท Merck ประเทศ เยอรมัน
- กรดไฮโดรฟลูออริก (HF)

3.1.2 อุปกรณ์ที่ใช้ในการทดลอง

- ช้อนตักสารเคมี (Spatula)
- บีกเกอร์ขนาด 100 และ 500 มิลลิลิตร
- เบ้าอะลูมินาสำหรับหลอมแก้ว (alumina crucible)
- ที่คีบครูซิเบิล (crucible tong)
- ถังน้ำสแตนเลส
- ขันน้ำสแตนเลส
- โกร่งบดสาร (mortar and pestle)
- ตะแกรงร่อน (sieve) ขนาด 100 Mesh
- ถ้วยแพลทินัม (platinum pan)
- แผ่นแพลทินัม (platinum plate)
- ที่คีบชิ้นงาน (forceps)
- กระดาษชั่งสาร
- แม่พิมพ์โลหะสำหรับอัดขึ้นรูป ขนาดเส้นผ่านศูนย์กลาง 13 มิลลิเมตร
- ถาดอะลูมินาเซรามิก (alumina boat)
- 3.1.3 เครื่องมือที่ใช้ในการทดลอง
 - เตาหลอมแก้ว
 - เตา bottom loading อนั้นหาวิทยาลัย
 - เครื่องอัดระบบไฮดรอลิก (hydraulic press)
 - เครื่องบด vibratory disc mill
 - เครื่องชั่งดิจิตอลความละเอียด 0.01 กรัม
 - เครื่องชั่งดิจิตอลความละเอียด 0.0001 กรัม
 - ตู้อบสารอุณหภูมิ 100 องศาเซลเซียส
 - กล้องจุลทรรศน์ (optical microscope)
 - เครื่องวิเคราะห์การเลี้ยวเบนของรังสีเอกซ์ (X-Ray Diffractometer, XRD)
 - เครื่องวิเคราะห์องค์ประกอบทางเคมี (X-Ray Fluorescence, XRF)
 - เครื่องมือวิเคราะห์ความแตกต่างทางความร้อน (Simultaneous Thermal Analysis, STA)

3.2 ขั้นตอนการวิจัย

3.2.1 การเตรียมแก้วฐานบะซอลต์

ในงานวิจัยนี้ได้ทำการเตรียมส่วนประกอบของแก้วฐานบะซอลต์ในระบบของ SiO₂-CaO-Al₂O₃-MgO-Fe₂O₃-Na₂O-K₂O จากหินบะซอลต์ที่ผ่านการบดลดขนาดด้วยเครื่องบด vibratory disc mill ร่อนผ่านตะแกรงขนาด 100 เมซ และสารประกอบออกไซด์และคาร์บอเนต ได้แก่ CaCO₃ Al₂O₃ MgCO₃ Fe₂O₃ Na₂CO₃ และ K₂CO₃ ตามปริมาณที่แสดงในตารางที่ 3.1 ที่ได้จากการออกแบบการ ทดลองด้วยโปรแกรม Minitab[®]17.1.0 โดยใช้วิธีการออกแบบส่วนผสม แบบ Extreme Vertices Design และสุ่มผลการออกแบบมาจำนวณ 30 ตัวอย่าง (ภาคผนวก ข) จากนั้นนำสารประกอบ ออกไซด์แต่ละสูตรที่ผสมแล้วใส่ในเบ้าอะลูมินา ในเตาหลอมแก้ว ที่อุณหภูมิ 1450 องศาเซลเซียส ด้วยอัตราการเพิ่มอุณหภูมิ 10 องศาเซลเซียสต่อนาที ทิ้งไว้ที่อุณหภูมินี้เป็นเวลา 2 ชั่วโมง จากนั้นทำ ให้เย็นตัวอย่างฉับพลันในน้ำ ดังแสดงในรูปที่ 3.1 นำไปอบแห้งที่อุณหภูมิ 100 องศาเซลเซียส และ บดให้ละเอียด ร่อนผ่านตะแกรงขนาด 100 เมซ

a @5			ปริมาถ	น (ร้อยละนั้	้ำหนัก)		
์สู่หาว -	SiO ₂	CaO	Al ₂ O ₃	MgO	Fe ₂ O ₃	Na ₂ O	K ₂ O
BG 1	51.12	13.33	18.33	8.33	6.83	1.03	1.03
BG 2	57.00	15.00	20.00	3.00	5.00	0.00	0.00
BG 3	45.00	5.00	20.00	10.00	12.00	4.00	4.00
BG 4	57.00	1 5.00 VI	13.00	10.00	ัย 7.00	4.00	4.00
BG 5	48.00	16.00	13.00	3.00	S 12.00	4.00	4.00
BG 6	45.00	16.00	20.00	10.00	5.00	0.00	4.00
BG 7	57.00	5.00	20.00	3.00	12.00	0.00	3.00
BG 8	52.00	16.00	13.00	10.00	5.00	4.00	0.00
BG 9	57.00	8.00	20.00	10.00	5.00	0.00	0.00
BG 10	57.00	14.00	13.00	3.00	5.00	4.00	4.00
BG 11	45.00	16.00	20.00	3.00	12.00	0.00	4.00
BG 12	48.00	16.00	20.00	3.00	5.00	4.00	4.00
BG 13	53.00	5.00	20.00	10.00	12.00	0.00	0.00
BG 14	57.00	7.00	20.00	3.00	5.00	4.00	4.00
BG 15	57.00	7.00	13.00	3.00	12.00	4.00	4.00

ตารางที่ 3.1 องค์ประกอบทางเคมีของแก้วฐานบะซอลต์จากการออกแบบการทดลอง

สตร	ปริมาณ (ร้อยละน้ำหนัก)						
ឡូសរ ១ -	SiO ₂	CaO	Al_2O_3	MgO	Fe_2O_3	Na ₂ O	K ₂ O
BG 16	45.00	16.00	13.00	10.00	8.00	4.00	4.00
BG 17	57.00	11.00	13.00	10.00	5.00	0.00	4.00
BG 18	57.00	16.00	13.00	9.00	5.00	0.00	0.00
BG 19	52.00	5.00	20.00	3.00	12.00	4.00	4.00
BG 20	57.00	11.50	13.00	6.50	12.00	0.00	0.00
BG 21	50.50	10.50	20.00	3.00	12.00	4.00	0.00
BG 22	47.00	16.00	15.00	10.00	12.00	0.00	0.00
BG 23	48.50	8.50	13.00	10.00	12.00	4.00	4.00
BG 24	48.50	8.50	20.00	10.00	5.00	4.00	4.00
BG 25	52.50	16.00	16.50	3.00	12.00	0.00	0.00
BG 26	45.00	12.50	20.00	10.00	8.50	4.00	0.00
BG 27	57.00	5.00	14.50	10.00	12.00	0.00	1.50
BG 28	52.50	11.50	13.00	3.00	12.00	4.00	4.00
BG 29	52.50	11.50	20.00	3.00	5.00	4.00	4.00
BG 30	57.00	16.00	13.00	3.00	9.00	0.00	2.00

ตารางที่ 3.1 (ต่อ) องค์ประกอบทางเคมีของแก้วฐานบะซอลต์จากการออกแบบการทดลอง

รูปที่ 3.1 แก้วฟริตที่เตรียมได้

3.2.2 การวิเคราะห์องค์ประกอบทางเคมี (X-Ray Fluorescence, XRF)

ในงานวิจัยนี้ได้มีการวิเคราะห์หาองค์ประกอบทางเคมีของแก้วฐานบะซอลต์ในแต่ละสูตร ด้วยเทคนิคการเรืองแสงของรังสีเอกซ์ โดยอาศัยหลักการที่เมื่อยิงรังสีเอกซ์ที่มีพลังงานสูงเข้าไปใน ตัวอย่าง ซึ่งอิเล็กตรอนในวงโคจรของอะตอมแบ่งเป็นชั้น (shells) โดยชั้นในสุด ได้แก่ ชั้น K มีระดับ พลังงาน (energy level) ต่ำสุด ถัดออกมา ได้แก่ ชั้น L, M, ... ซึ่งจะมีระดับพลังงานสูงขึ้นตามลำดับ เมื่อรังสีเอกซ์ชนกับอิเล็กตรอนในวงโคจรทำให้อิเล็กตรอนในชั้นระดับพลังงานต่ำสุดหลุดออกไปส่งผล ให้ตำแหน่งนั้นว่าง อิเล็กตรอนในวงโคจรทำให้อิเล็กตรอนในชั้นระดับพลังงานต่ำสุดหลุดออกไปส่งผล ให้ตำแหน่งนั้นว่าง อิเล็กตรอนในชั้นที่มีพลังงานสูงกว่าจะเข้ามาแทนที่ ดังรูปที่ 3.2 เกิดการคาย พลังงานส่วนเกินออกมาในรูปโฟตอน (photon) เรียกกระบวนการนี้ว่า การเรืองรังสีเอกซ์ (fluorescence) ซึ่งโฟตอนที่ปล่อยออกมาของแต่ละธาตุนั้นจะมีค่าพลังงานเฉพาะตัว (characteristic X-ray) จึงทำให้สามารถบอกถึงองค์ประกอบทางเคมีของธาตุแต่ละชนิดที่มีอยู่ใน ตัวอย่างได้ ทั้งนี้ปริมาณโฟตอนที่ปล่อยออกมาขึ้นอยู่กับปริมาณของธาตุนั้น ๆ ในสารตัวอย่างด้วย เช่นกัน

รูปที่ 3.2 อิเล็กตรอนในชั้น K หลุด และอิเล็กตรอนในชั้น M ที่มีพลังงานสูงกว่าลงมาแทนที่

ขั้นตอนการเตรียมชิ้นงานนั้น เริ่มจากการนำผงแก้วแต่ละสูตรอัดลงในเป้าอะลูมิเนียม จากนั้นนำไปวางที่บริเวณช่องสำหรับสำหรับให้รังสีเอกซ์ในเครื่อง XRF ยี่ห้อ Rigaku รุ่น ZSX Primus III+ เครื่องจะทำการรายงานผลในลักษณะของค่าความเข้มของรังสีเอกซ์ที่ได้รับจากอะตอม ของธาตุแล้วคำนวณออกมาเป็นร้อยละของปริมาณออกไซด์

3.2.3 การวิเคราะห์อุณหภูมิสภาพแก้ว (T_s), อุณหภูมิตกผลึก (T_c) และจุดยุติของ อุณหภูมิหลอมเหลว (T_{Endpoint})

ในงานวิจัยได้มีการวิเคราะห์การเปลี่ยนแปลงทางความร้อนด้วยเครื่อง Simultaneous Thermal Analysis, STA ยี่ห้อ Linseis รุ่น PT1600 โดยใช้หลักการการเปรียบเทียบความแตกต่าง ระหว่างอุณหภูมิของสารตัวอย่าง และสารอ้างอิง ที่อยู่ในสภาพแวดล้อมเดียวกัน ในขณะที่มีการ เปลี่ยนแปลงอุณหภูมิ ตัวอย่างและสารอ้างอิง ที่อยู่ในสภาพแวดล้อมเดียวกัน และได้รับความร้อน เท่ากัน ซึ่งเมื่อเพิ่มอุณหภูมิของสารด้วยอัตราความร้อนที่แน่นอน แล้วตรวจสอบความแตกต่าง อุณหภูมิที่เพิ่มขึ้นหรือลดลงของสารตัวอย่างเทียบกับสารอ้างอิง ถ้าอุณหภูมิของสารตัวอย่างต่ำกว่า สารอ้างอิงแสดงว่า เกิดการเปลี่ยนแปลงแบบดูดความร้อน (endothermic) แต่ถ้าอุณหภูมิของสาร ตัวอย่างสูงกว่าสารอ้างอิงแสดงว่าเกิดการเปลี่ยนแปลงแบบคายความร้อน (exothermic) ซึ่งเป็นผล ของการเปลี่ยนเฟสหรือ การเกิดปฏิกิริยาทางเคมีในสารตัวอย่างโดยที่สารอ้างอิงจะไม่มี ปฏิกิริยาใด ๆ เกิดขึ้น สำหรับการวิเคราะห์นั้น นำผงแก้วบรรจุลงในถ้วยแพลทินัม แล้ววางลงในช่อง ใส่ตัวอย่างในตำแหน่งเตาในเครื่อง STA โดยใช้ถ้วยแพลทินัมเปล่าเป็นสารอ้างอิง ให้ความร้อนในช่วง อุณหภูมิห้องถึง 1400 องศาเซลเซียส ด้วยอัตราการเพิ่มอุณหภูมิ 10 องศาเซลเซียสต่อนาที ผลที่ได้ จะแสดงอยู่ในรูปของกราฟ

3.2.4 การวัดอุณหภูมิลิควิดัส (T_L)

การวัดอุณหภูมิลิควิดัสในงานวิจัยนี้แบ่งออกเป็น 2 วิธี คือ วัดด้วยเทคนิค Differential Thermal Analysis, DTA และวิธีวิเคราะห์ทางความร้อนที่อุณหภูมิคงที่ (Isothermal) ในเตา bottom loading ชิ้นงานที่ใช้ในการวัดอุณหภูมิลิควิดัส เตรียมโดยการนำผงแก้วที่บดแล้วใส่ลงใน แม่พิมพ์ทรงกระบอกขนาดเส้นผ่านศูนย์กลาง 13 มิลลิเมตร แล้วอัดขึ้นรูปให้มีลักษณะทรงกระบอก หนา 2 มิลลิเมตร ดังแสดงในรูปที่ 3.3 ด้วยเครื่องอัดแบบทิศทางเดียว (uniaxial hydraulic press) จากนั้นนำไปวิเคราะห์ด้วยเครื่อง DTA และวิธีทางความร้อนที่อุณหภูมิคงที่ จากนั้นนำค่าอุณหภูมิ ลิควิดัสที่ได้จากการวัดจริงในแต่ละวิธีการมาพล็อตกราฟเปรียบเทียบ

รูปที่ 3.3 ผงแก้วที่ผ่านการอัดขึ้นรูปเป็นเม็ด

การวัดอุณหภูมิลิควิดัสด้วยเทคนิค DTA

สำหรับการวัดอุณหภูมิลิควิตัสด้วย DTA แบ่งออกเป็น 2 ขั้นตอน คือ ขั้นแรกนำผงแก้วที่ผ่าน อัดขึ้นรูปเป็นเม็ดวางลงบนถาดอะลูมินา จากนั้นทำการอบแก้ว (heat treatment) ในเตา bottom loading ดังแสดงในรูปที่ 3.4 ที่ T_c ของแก้วฐานบะซอลต์แต่ละสูตรที่ได้จากการวิเคราะห์ขั้นต้น เป็นเวลา 24 ชั่วโมง ด้วยอัตราการเพิ่มอุณหภูมิ 5 องศาเซลเซียสต่อนาที เพื่อเปลี่ยนสถานะจากแก้ว เป็นกลาสเซรามิก ขั้นตอนถัดไป คือการนำกลาสเซรามิกที่ได้บดให้ละเอียด และร่อนผ่านตะแกรง ขนาด 100 เมช จากนั้นทำการวิเคราะห์ โดยบรรจุผงกลาสเซรามิกลงในถ้วยแพลทินัม แล้วนำไปวาง ในตำแหน่งสำหรับวางตัวอย่างของเครื่อง DTA โดยใช้ถ้วยแพลทินัมเปล่าเป็นสารอ้างอิง ให้ความร้อน ในช่วงอุณหภูมิห้องถึง 1400 องศาเซลเซียส ด้วยอัตราการเพิ่มอุณหภูมิ 10 องศาเซลเซียสต่อนาที และ รายงานผลออกมาในรูปกราฟ โดยวิเคราะห์จุดอุณหภูมิลิควิดัสด้วยวิธี tangent method ณ จุด ยุติของปฏิกิริยาการดูดความร้อน (T_{Endpoint}) เมื่อผลึกหลอมหมด

รูปที่ 3.4 เตา Bottom loading

วัดด้วยกรรมวิธีทางความร้อนที่อุณหภูมิคงที่ (Isothermal process)

สำหรับการวัดอุณหภูมิลิควิดัสด้วยวิธี Isothermal เริ่มจากการนำเม็ดผงแก้วที่ได้จากการอัด ขึ้นรูปมาตัดแบ่งให้มีขนาดเล็กลง วางลงบนแผ่นแพลทินัมในถาดอะลูมินา ดังแสดงในรูปที่ 3.5 จากนั้นให้ความร้อนที่ T_{Endpoint} ดังรูปที่ 2.6 ที่ได้จากการวิเคราะห์ขั้นต้น เป็นเวลา 24 ชั่วโมง ด้วย อัตราการเพิ่มอุณหภูมิ 5 องศาเซลเซียสต่อนาที ในเตา bottom loading จากนั้นทำให้เย็นตัวอย่าง ฉับพลันในอากาศ แล้วนำไปตรวจสอบด้วยกล้องจุลทรรศน์ (optical Microscope) เพื่อดูการ เปลี่ยนแปลงของกลาสเซรามิก พร้อมทั้งจดบันทึกอุณหภูมิที่กลาสเซรามิกหลอมเป็นน้ำแก้วได้อย่าง สมบูรณ์ ปราศจากผลึก

รูปที่ 3.5 ชิ้นงานสำหรับการวัดอุณหภูมิลิควิดัสด้วยวิธี Isothermal

3.2.5 การตรวจสอบหาโครงสร้างด้วยเทคนิคการเลี้ยวเบนของรังสีเอกซ์ (X-Ray Diffractometer, XRD)

เทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ เป็นเทคนิคหนึ่งที่ใช้ในการการศึกษาวิเคราะห์โครงสร้าง ผลึกโดยที่ไม่ทำลายตัวอย่าง โดยอาศัยหลักการการตกกระทบของรังสีเอ็กซ์ลงบนพื้นผิวของวัตถุแล้ว เกิดการกระเจิงแสงและการเลี้ยวเบน โดยมุมการเลี้ยวเบนจะแตกต่างกันขึ้นอยู่กับโครงสร้างผลึกและ ระนาบ (hkl) ของรังสีเอ็กซ์ของรังสีที่กระทบภายในวัตถุ ซึ่งรูปแบบการเลี้ยวเบนของรังสีเอ็กซ์แต่ละ ชนิดจะมีความจำเพาะเจาะจง ดังนั้นเมื่อนำเครื่องมือตรวจวัด (detector) มารองรับรังสีเอ็กซ์แต่ละ ชนิดจะมีความจำเพาะเจาะจง ดังนั้นเมื่อนำเครื่องมือตรวจวัด (detector) มารองรับรังสีเอ็กซ์ที่ กระเจิงออกมาจากวัตถุในตำแหน่งต่าง ๆ ก็สามารถทำการตรวจสอบได้ว่าวัตถุนั้นเป็นสารประเภทใด โดยพิจารณาจากความสัมพันธ์ค่ามุมของแบรกก์ (Bragg's angle) และความเข้มของรังสีเอ็กซ์ของ รูปแบบการเลี้ยวเบนที่ปรากฏ ซึ่งสารแต่ละชนิดจะมีรูปแบบการเลี้ยวเบนที่มีลักษณะเฉพาะที่แตกต่าง กันจึงสามารถนำรูปแบบการเลี้ยวเบนของรังสีเอ็กซ์ที่ตรวจสอบได้เปรียบเทียบกับข้อมูลชนิดต่าง ๆ ที่ มีฐานข้อมูลมาตรฐาน (Joint Committee on Powder Diffraction Standard, JCPDS file) เพื่อ ้ชิ้นงานที่ผ่านการ heat treatment ที่อุณหภูมิตกผลึกวางบน holder จากนั้นวางที่บริเวณช่อง สำหรับวิเคราะห์ในเครื่อง XRD ยี่ห้อ Bruker รุ่น D8 Advanced ใช้เป้าทองแดงที่ให้รังสีเอกซ์ค่า ความยาวคลื่นประมาณ 1.54 Å scanning speed 0.02 องศาต่อนาที จากค่ามุม 20 ที่ 10 - 80 องศา

3.2.6 คำนวณหาอุณหภูมิลิควิดัส

ในงานวิจัยนี้ได้นำสมการ multiple regression model (สมการ 2.1) มาใช้ในการคำนวณ อุณหภูมิลิควิดัส (T_I) ซึ่งเป็นการวิเคราะห์การถดถอยพหุคูณ (multiple Linear Regression)^[44, 45] คือ การศึกษาความสัมพันธ์ระหว่าง ตัวแปรตาม (dependent variable) และตัวแปรอิสระ (independent variable) ที่มีมากกว่าหนึ่งค่า ซึ่งมีความสัมพันธ์แบบเส้นตรง เขียนให้อยู่ในรูปของ สมการได้ดังนี้

$$T_{L} = \sum_{i=1}^{n} b_i g_i = b_0 + b_1 g_1 + b_2 g_2 + ... + b_n g_n$$
 สมการ 3.1

- คือ ค่าสัมประสิทธิ์ขององค์ประกอบ i โดย bi
 - คือ เศษส่วนโมล (mass fraction) ขององค์ประกอบ i gi
 - คือ จำนวนองค์ประกอบในโมเดล n
 - คือ อุณหภูมิลิควิดัส T

โดยใช้ค่าอุณหภูมิลิควิดัส ที่ได้จากการทดลองแทนค่าในตัวแปร T_L ซึ่งค่าที่คำนวณได้คือ ค่า ้สัมประสิทธิ์ขององค์ประกอบ i (b_i) เขียนให้อยู่ในรูปของสมการ Matrix ได้ดังนี้

จากนั้นนำค่าอุณหภูมิลิควิดัสที่ได้จากการวัดจริงในแต่ละวิธีการมาพล็อตกราฟเปรียบเทียบ กับผลการคำนวณหาอุณหภูมิลิควิดัสจากแบบจำลองที่ได้ แล้วพิจารณาค่าสัมประสิทธิ์การตัดสินใจ (Coefficient of Determination. R²) ที่ยอมรับได้นั้นควรมีค่าเข้าใกล้ 1

3.3 แผนผังการทดลอง

รูปที่ 3.6 แผนผังการทดลอง

บทที่ 4 ผลการทดลองและอภิปรายผล

บทนี้จะนำเสนอเกี่ยวกับผลการทดลองของการหาอุณหภูมิลิควิดัสของแก้วฐานบะซอลต์ สำหรับการขึ้นรูปเส้นใย พร้อมผลการตรวจสอบการวิเคราะห์องค์ประกอบทางเคมี สมบัติทางความ ร้อน องค์ประกอบทางเฟส และคำนวณอุณหภูมิลิควิดัส ดังต่อไปนี้

4.1 ผลการวิเคราะห์องค์ประกอบทางเคมีของแก้ว

ในการเตรียมแก้วของระบบ SiO₂-CaO-Al₂O₃-MgO-Fe₂O₃-Na₂O-K₂O จากหินบะซอลต์ และสารประกอบออกไซด์และคาร์บอเนต ได้แก่ CaCO₃ Al₂O₃ MgCO₃ Fe₂O₃ Na₂CO₃ และ K₂CO₃ นำไปให้ความร้อนและทำให้เย็นตัวอย่างฉับพลันในน้ำในลักษณะแก้วฟริต บดละเอียดร่อนผ่าน ตะแกรงขนาด 100 เมช เพื่อทำการวิเคราะห์หาองค์ประกอบทางเคมีด้วยเครื่องวิเคราะห์หาปริมาณ ธาตุองค์ประกอบ (XRF) ได้ผลการทดลองดังนี้

องค์ประกอบทางเคมี	ปริมาณ (ร้อยละน้ำหนัก)
SiO ₂	40.5 - 52.8
CaO	5.49 - 17.70
Al ₂ O ₃	13.50 - 20.30
MgO	1.83 - 10.50
Fe ₂ O ₃	5.43 - 10.90
Na ₂ O	3.36 - 5.41
K ₂ O	2.17 - 4.44
TiO ₂	0.67 - 0.95

ตารางที่ 4.1 องค์ประกอบทางเคมีของแก้วฐานบะซอลต์จาก XRF

จากตารางที่ 4.1 จะเห็นได้ว่าปริมาณของแต่ละธาตุในของสูตรแก้วนั้นอยู่ในช่วงที่สามารถขึ้น รูปเป็นเส้นใยแก้วได้ตามตารางที่ 2.1 โดยปริมาณของซิลิกาที่ได้นั้นอยู่ในช่วงร้อยละ 40.5 - 52.8 เป็นค่าที่สามารถนำมาขึ้นรูปเป็นเส้นใยได้ เนื่องจากถ้าปริมาณของซิลิกามากเกินจะส่งผลต่อความ หนืดของหินบะซอลต์หลอมเหลวและส่งผลถึงความยากต่อการขึ้นรูปเป็นเส้นใย
4.2 ผลการตรวจสอบองค์ประกอบทางเฟสด้วยเทคนิคการเลี้ยวเบนของรังสีเอกซ์

เมื่อนำผงแก้วที่ผ่านการอัดเม็ดมาผ่านกระบวนการทางความร้อน ณ อุณหภูมิใกล้กับ T_c ของ แต่ละสูตรที่ได้จากการวิเคราะห์สมบัติทางความร้อนด้วยเทคนิค DTA เป็นเวลา 24 ชั่วโมง ด้วยอัตรา การเพิ่มอุณหภูมิ 5 องศาเซลเซียสต่อนาที แล้วนำมาวิเคราะห์ด้วยเครื่อง XRD และเปรียบเทียบกับ สารมาตรฐานในแฟ้มข้อมูล JCPDS ซึ่งได้ผลการทดลองดังตารางที่ 4.2 และรูปที่ 4.1 ถึง รูปที่ 4.6 พบว่าสูตรแก้วฐานบะซอลต์โดยส่วนใหญ่มีเฟสหลักคือ เฟสไดออปไซด์ และเฟสแอลไบต์ ทั้งนี้ หินบะซอลต์ที่ใช้ในงานวิจัยนี้เป็นหินชนิดโทลิไอต์กึ่งแอลคาไลน์ ซึ่งประกอบด้วยสารแอลคาไลน์ ออกไซด์เป็นส่วนใหญ่ ทำให้มีเฟสลูไซต์ (leucite; KAlSi₂O₆) และเฟสเนฟิลีนเกิดขึ้น โดยเฟสลูไซต์จะ พบในสูตรแก้วที่มีปริมาณของโพแทสเซียมออกไซด์มาก เช่น สูตรแก้ว BG 2, BG 3 และBG 5 และ เฟสเนฟิลีนพบในสูตรแก้วที่มีปริมาณของโซเดียมออกไซด์มาก เช่น สูตรแก้ว BG 6, BG 8 และBG 10 และพบเฟสอีมาไทต์ ที่สูตรแก้ว BG 7 และ BG 19 มีผลมาจากปริมาณของ Fe₂O₃ มีปริมาณที่สูงเมื่อ เทียบกับสูตรแก้วอื่น ๆ รวมถึงความสัมพันธ์กับ T_c ที่เกิดที่อุณหภูมิสูง เมื่อให้ความร้อนเป็นเวลานาน จึงส่งผลให้เกิดการตกผลึกของเฟสนี้ได้

สูตร	А	D	AL CONTRACT	н	Ν	S	С
BG 1	\checkmark		-		9 -	-	-
BG 2	\checkmark		~		-	-	\checkmark
BG 3	\checkmark	จุหาล	งกรณม	หาวิทยา	ลัย	-	-
BG 4	\checkmark	GHULALI	ONGKOR	N UNIVER	RSITY	-	-
BG 5	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark
BG 6	-	\checkmark	-	-	\checkmark	-	-
BG 7	\checkmark	-	-	\checkmark	-	-	-
BG 8	-	\checkmark	\checkmark	-	\checkmark	-	-
BG 9	\checkmark	\checkmark	-	-	-	-	-
BG 10	\checkmark	\checkmark	-	-	\checkmark	-	-
BG 11	\checkmark	\checkmark	-	-	-	-	-

ตารางที่ 4.2 องค์ประกอบทางเฟสของแต่ละสูตรแก้ว

สูตร	А	D	L	Н	Ν	S	С
BG 12	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	-
BG 13	\checkmark	\checkmark	\checkmark	-	-	-	-
BG 14	\checkmark	\checkmark	\checkmark	-	-	-	-
BG 15	\checkmark	\checkmark	\checkmark	-	-	-	-
BG 16	-	\checkmark	. <u>e (</u> 1)	12.4.	\checkmark	\checkmark	-
BG 17	\checkmark	\checkmark		12	-	-	
BG 18	-	\checkmark	7	R	\checkmark	-	-
BG 19	\checkmark	\checkmark		\checkmark	<u> </u>	-	
BG 20	\checkmark	\checkmark		- 4	<u> </u>	-	-
BG 21	\checkmark	\checkmark			-	-	-
BG 22	-	\checkmark	Alecce Di The Constant		\checkmark	-	-
BG 23	\checkmark			- 10.00	3 -	-	-
BG 24	\checkmark				-	-	-
BG 25	\checkmark	จุหาล	งกรณม	หาวทยา 	ລຍ <u>-</u>	\checkmark	-
BG 26	\checkmark	V	JNGKUK -		KSI I Y -	-	-
BG 27	\checkmark	\checkmark	\checkmark	-	-	-	-
BG 28	\checkmark	\checkmark	-	-	-	-	-
BG 29	\checkmark	\checkmark	\checkmark	-	-	-	-
BG 30	\checkmark	\checkmark	-	-	-	-	-

ตารางที่ 4.2 (ต่อ) องค์ประกอบทางเฟสของแต่ละสูตรแก้ว

หมายเหตุ : A ; Albite (NaAlSi₃O₈) , D ; Diopside (Ca(Mg_{0.5}Al_{0.5})(Al_{0.5}Si_{1.5}O₆)),

L ; Leucite (KAlSi₂O₆), H ; Hematite (Fe₂O₃), N ; Nepheline (Na_{7.11}Al_{7.2}Si_{8.8}O₃₂),

S ; Sodium Calcium Aluminum Silicate (NaCaAlSi $_2O_7$) และ C ; Cristobalite (SiO $_2$)

รูปที่ 4.1 องค์ประกอบทางเฟสของแก้วฐานบะซอลต์สูตรที่ 1 - 5

- A ; Albite (NaAlSi₃O₈)
 - D ; Diopside (Ca(Mg_{0.5}Al_{0.5})(Al_{0.5}Si_{1.5}O_6))
 - L ; Leucite (KAlSi₂O₆)
 - H ; Hematite (Fe₂O₃)
 - N ; Nepheline (Na_{7.11}Al_{7.2}Si_{8.8}O₃₂)
 - S ; Sodium Calcium Aluminum Silicate (NaCaAlSi₂O₇)
 - C ; Cristobalite (SiO₂)

รูปที่ 4.2 องค์ประกอบทางเฟสของแก้วฐานบะซอลต์สูตรที่ 6 – 10

A ; Albite (NaAlSi₃O₈)

D ; Diopside (Ca(Mg_{0.5}Al_{0.5})(Al_{0.5}Si_{1.5}O_6))

L ; Leucite (KAlSi₂O₆)

H ; Hematite (Fe₂O₃)

- N ; Nepheline (Na_{7.11}Al_{7.2}Si_{8.8}O₃₂)
- S ; Sodium Calcium Aluminum Silicate (NaCaAlSi $_2O_7$)
- C ; Cristobalite (SiO₂)

- A ; Albite (NaAlSi₃O₈)
 - D ; Diopside (Ca(Mg_{0.5}Al_{0.5})(Al_{0.5}Si_{1.5}O₆))
 - L ; Leucite (KAlSi₂O₆)
 - H ; Hematite (Fe₂O₃)
 - N ; Nepheline (Na_{7.11}Al_{7.2}Si_{8.8}O₃₂)
 - S ; Sodium Calcium Aluminum Silicate (NaCaAlSi₂O₇)
 - C ; Cristobalite (SiO₂)

- H ; Hematite (Fe₂O₃)
- N ; Nepheline (Na_{7.11}Al_{7.2}Si_{8.8}O₃₂)
- S ; Sodium Calcium Aluminum Silicate (NaCaAlSi₂O₇)
- C ; Cristobalite (SiO₂)

C ; Cristobalite (SiO₂)

- H ; Hematite (Fe₂O₃)
- N ; Nepheline (Na_{7.11}Al_{7.2}Si_{8.8}O₃₂)
- S ; Sodium Calcium Aluminum Silicate (NaCaAlSi₂O₇)
- C ; Cristobalite (SiO₂)

4.3 ผลการวิเคราะห์สมบัติทางความร้อน

จากการนำแก้วฟริตมาบดละเอียดร่อนผ่านตะแกรงขนาด 100 เมช และนำมาวิเคราะห์หา อุณหภูมิสภาพแก้ว (T_s) อุณหภูมิตกผลึก (T_c) จุดยุติ (T_{Endpoint}) และอุณหภูมิลิควิดัส (T_L) โดยใช้ เทคนิค DTA ให้ความร้อนในช่วงอุณหภูมิห้องถึง 1400 องศาเซลเซียส ด้วยอัตราการเพิ่มอุณหภูมิ 10 องศาเซลเซียสต่อนาที และวิเคราะห์ผลด้วย tangent method ได้ผลการทดลองดังต่อไปนี้

4.3.1 ผลการวัดT $_{\rm g}$, T $_{\rm c}$ และ T $_{\rm Endpoint}$ ของแก้วด้วยเทคนิค DTA

ผลการทดลองสมบัติทางความร้อนของแก้วฐานบะซอลต์ด้วยเทคนิค DTA พบว่า T_g, T_c และ T_{Endpoint} อยู่ในช่วง 611.55 - 779.05, 840.95 - 1106.05 และ 1193.45 - 1395.95 องศาเซลเซียส ตามลำดับ แสดงค่าดังตารางที่ 4.3 และรูปที่ 4.7 แสดง T_g, T_c และ T_{Endpoint} ของ ตัวอย่างสูตรแก้ว BG 1 - BG 5 ที่ได้จากเทคนิค DTA โดยค่า T_c ของแต่ละสูตรแก้วที่ได้จากการ ทดลองนั้นจะนำมาเป็นอุณหภูมิที่ใช้ในการทำให้แก้วตกผลึกโดยกระบวนการทางความร้อนที่ T_c ตรวจสอบองค์ประกอบเฟส และทดสอบหา T_L ด้วยเทคนิค DTA และ T_{Endpoint} ที่ได้นั้นเป็นจุดสิ้นสุด ของปฏิกิริยาการดูดความร้อน (endothermic reaction) ของผลึกที่หลอมเหลว

รูปที่ 4.7 กราฟ DTA แสดงค่า T_e T_c T_{Endpoint} ของแก้วฐานบะซอลต์สูตรที่ 1 - 5

4.3.2 ผลการวัด T_L ของแก้วด้วยเทคนิค DTA

เมื่อนำผงแก้วที่ผ่านการอัดขึ้นรูปเป็นเม็ดผ่านกระบวนการทางความร้อนในเตา bottom loading ที่ T_c ของแก้วฐานบะซอลต์แต่ละสูตรที่ได้จากการวิเคราะห์ขั้นต้น เป็นเวลา 24 ชั่วโมง ด้วย อัตราการเพิ่มอุณหภูมิ 5 องศาเซลเซียสต่อนาที จากนั้นทำการวิเคราะห์ด้วยเทคนิค DTA ให้ความ ร้อนในช่วงอุณหภูมิห้องถึง 1400 องศาเซลเซียส ด้วยอัตราการเพิ่มอุณหภูมิ 10 องศาเซลเซียสต่อ นาที จะได้ค่า T_L อยู่ในช่วง 1198.45 - 1361.55 องศาเซลเซียส ดังตารางที่ 4.3 และแสดงตัวอย่าง การวัดอุณหภูมิลิควิดัสด้วยวิธี tangent ของสูตรแก้ว BG 1 – BG 5 ดังรูปที่ 4.8

รูปที่ 4.8 กราฟ DTA แสดงค่า T_L ของแก้วฐานบะซอลต์สูตรที่ 1 - 5

4.3.3 ผลการวัด T_L ของแก้วด้วยวิธี Isothermal

จากการนำเม็ดผงแก้วที่ได้จากการอัดขึ้นรูปมาตัดแบ่งให้มีขนาดเล็กลง วางลงบนแผ่น แพลทินัม ให้ความร้อนที่ T_{Endpoint} ที่ได้จากการวิเคราะห์ขั้นต้นของแต่ละสูตร เป็นเวลา 24 ชั่วโมง ด้วยอัตราการเพิ่มอุณหภูมิ 5 องศาเซลเซียสต่อนาที ในเตา bottom loading จากนั้นทำให้เย็น ตัวอย่างฉับพลันในอากาศ แล้วนำไปตรวจสอบด้วยกล้องจุลทรรศน์ เพื่อดูการหลอมเป็นน้ำแก้วอย่าง สมบูรณ์ที่อุณหภูมินั้น ๆ ค่า T_L ที่ได้จากการทดลองอยู่ในช่วง 1190 - 1350 องศาเซลเซียส แสดงค่า ดังตารางที่ 4.3 และ ในรูปที่ 4.9 แสดงตัวอย่างแก้วสูตร BG 3 และ BG 7 ที่มีค่า T_{Endpoint} จากเทคนิค DTA เท่ากับ 1346.65 และ 1281.25 องศาเซลเซียส ตามลำดับ เมื่อนำไปคงอุณหภูมิที่ 1345 องศาเซลเซียส สำหรับแก้วสูตร BG 3 และ 1280 องศาเซลเซียส สำหรับแก้วสูตร BG 7 เป็นเวลา 24 ชั่วโมงและตรวจสอบผลึกที่เกิดขึ้นด้วยกล้องจุลทรรศน์ พบว่า แก้วสูตร BG 3 และ BG 7 ยังคงมีผลึก เหลืออยู่ เนื่องจากหลอมไม่หมดของผลึกที่อุณหภูมิสูง หรือเกิดการตกผลึกในขณะที่ทำให้เย็นตัวอย่าง ฉับพลันในอากาศ จึงเพิ่มการคงอุณหภูมิจากเดิมอีกครั้งละ 5 องศาเซลเซียส พบว่าแก้วสูตร BG 3 หลอมได้อย่างสมบูรณ์ ที่ 1350 องศาเซลเซียส และแก้วสูตร BG 7 ที่ 1300 องศาเซลเซียส ดังนั้น T_L ของแก้ว BG 3 เท่ากับ 1347.5 องศาเซลเซียส และแก้ว BG 7 เท่ากับ 1297.5 องศาเซลเซียส ซึ่งเป็น อุณหภูมิกิ่งกลางระหว่างอุณหภูมิสุดท้ายที่พบผลึกเหลืออยู่และอุณหภูมิที่ไม่พบผลึก (หลอมเป็นแก้ว หมด)

รูปที่ 4.9 ตัวอย่างแก้วสูตร BG 3 และBG 7

รูปที่ 4.9 (ต่อ) ตัวอย่างแก้วสูตร BG 3 และBG 7

เมื่อพล็อตกราฟเปรียบเทียบ T_L ที่ได้จากทั้ง 2 วิธี ดังรูปที่ 4.10 เพื่อพิจารณาค่าสัมประสิทธิ์ การตัดสินใจ (coefficient of determination, R²) พบว่าค่า R² เท่ากับ 0.91 ซึ่งเป็นค่าที่ยอมรับได้ ดังนั้นวิธีการตรวจสอบ T_L ด้วยเทคนิค DTA และ Isothermal สามารถทำได้ทั้ง 2 วิธี ซึ่งวิธี Isothermal นั้นเป็นวิธีที่นำตัวอย่างแก้วไปให้ความร้อนเพื่อหาจุดที่แก้วหลอมเป็นของเหลวอย่าง สมบูรณ์ จึงมีความน่าเชื่อถือ และแม่นยำ แต่ใช้เวลานาน สำหรับเทคนิค DTA นั้น เป็นเทคนิคที่ สะดวก รวดเร็วกว่า เนื่องจากสามารถวิเคราะห์ตัวอย่างด้วยการให้ความร้อนเพียงครั้งเดียว นอกจากนี้ มีปริมาณออกไซด์ในแต่ละสูตรแก้วมีผลทำให้ค่า T_L ที่ได้แตกต่างกัน ยกตัวอย่าง เช่น การ เติม Al₂O₃ และ Fe₂O₃ มาก ทำให้ T_c ที่ได้มีค่าสูง จึงส่งผลให้ T_{Endpoint} และ T_L ที่ได้มีค่าสูงตามหรือ การเติมฟลักซ์ (flux) เพื่อช่วยลดอุณหภูมิการหลอม

รูปที่ 4.10 กราฟเปรียบเทียบ T_L จากเครื่อง DTA และวิธี Isothermal

ตารางที่ 4.3 ค่าอุณหภูมิสภาพแก้ว (T_s) อุณหภูมิตกผลึก (T_c) จุดยุติ (T_{Endpoint}) และ อุณหภูมิลิควิดัส (T_L) จาก DTA และ Isothermal

đ	Τ _g	Τ _c	T _{Endpoint}	Т _∟ (°С)	T _L (°C)
ត្ <u>យ</u> សា រ	(°C)	(°C)	(°C)	DTA	Isothermal
BG 1	707.95	922.45	1241.35	ສຢ _{1241.65}	1240.0
BG 2	718.25	931.75	1193.45	RSI 1200.65	1190.0
BG 3	747.55	861.05	1346.65	1354.65	1347.5
BG 4	712.15	940.25	1317.85	1307.75	1300.0
BG 5	722.35	905.15	1194.35	1201.65	1190.0
BG 6	660.75	859.65	1226.95	1226.15	1225.0
BG 7	779.05	1106.05	1281.25	1357.65	1297.5
BG 8	655.85	915.95	1257.35	1257.05	1250.0
BG 9	682.45	943.35	1338.55	1320.25	1302.5

	Τ _g	T _c	T _{Endpoint}	Т _L (°С)	T _L (°C)
<u> ព</u> ីស ១	(°C)	(°C)	(°C)	DTA	Isothermal
BG 10	724.45	941.85	1229.65	1228.95	1225.0
BG 11	713.05	939.05	1203.15	1201.95	1200.0
BG 12	705.05	944.15	1197.15	1199.75	1200.0
BG 13	611.55	840.95	1339.35	1328.85	1332.5
BG 14	629.25	876.55	1377.85	1305.65	1332.5
BG 15	633.05	876.55	1395.95	1318.95	1332.5
BG 16	661.05	898.05	1241.05	1252.45	1247.5
BG 17	665.15	855.25	1228.55	1229.85	1230.0
BG 18	657.35	854.35	1228.85	1240.65	1230.0
BG 19	726.75	1004.85	1387.05	1350.35	1352.5
BG 20	643.35	877.15	1224.35	1224.35	1227.5
BG 21	675.05	871.35	1326.65	1300.45	1347.5
BG 22	678.15	907.05	1250.95	1250.75	1250.0
BG 23	679.55 🧃	887.55	1237.85	ลัย1250.05	1247.5
BG 24	686.75	960.95	1231.35	IS 1253.35	1247.5
BG 25	696.35	950.55	1320.65	1316.65	1320.0
BG 26	685.65	876.35	1242.05	1244.05	1240.0
BG 27	697.75	852.05	1234.15	1323.15	1317.5
BG 28	685.65	960.75	1236.55	1263.35	1247.5
BG 29	737.25	956.25	1378.05	1361.55	1352.5
BG 30	694.05	952.35	1194.75	1198.45	1197.5

ตารางที่ 4.3 (ต่อ) ค่าอุณหภูมิสภาพแก้ว (T_s) อุณหภูมิตกผลึก (T_c) จุดยุติ (T_{Endpoint}) และ อุณหภูมิ ลิควิดัส (T_L) จาก DTA และ Isothermal

4.4 คำนวณหา T_∟

จากผลการทดลองการวัด T_L ด้วยเทคนิค DTA และ Isothermal นั้น นำมาคำนวณหาค่า สัมประสิทธิ์ขององค์ประกอบ (b_i) ด้วยการวิเคราะห์การถดถอยพหุคูณ เพื่อสร้างสมการคำนวณ T_L โดยแบ่งการคำนวณออกเป็น 2 กลุ่มใหญ่ตามเฟสหลักที่เกิดขึ้น ได้แก่ กลุ่มของเฟสไดออปไซด์ และ เฟสแอลไบต์ของแก้วฐานบะซอลต์ ได้ค่าดังตารางที่ 4.4

<u> </u>	เฟสไดออปไซเ	ກ໌ (<u>D</u> iopside)	เฟสแอลไบต์ (<u>A</u> lbite)				
Di	เทคนิค DTA	Isothermal	เทคนิค DTA	Isothermal			
b0	966.00	9002.16	-8138.52	7546.52			
$b_{1_{SiO_2}}$	941.39	-3975.86	3295.99	-5251.08			
b _{2 CaO}	-226.79	-8295.55	8364.77	-7012.64			
b _{3 Al2} O3	708.15	-7226.23	12859.62	-3923.62			
b _{4 MgO}	451.44	451.44 -6534.49 10514.38		-3200.87			
$b_{5} = Fe_2O_3$	2001.84	-10615.03	16622.08	-8201.45			
b _{6 Na2} o	-2599.31	-11656.26	14882.53	-3415.49			
b _{7 К2} о	-3059.69	-14518.08	11231.47	-8948.50			
b _{8 TiO2}	-46439.29	-49603.95	115325.93	41916.43			
R ²	0.79	0.72	0.82	0.73			

ตารางที่ 4.4 ค่าสัมประสิทธิ์ขององค์ประกอบ (b_i) ของเทคนิค DTA และ Isothermal

จากตารางที่ 4.4 เขียนสมการได้ดังนี้ สมการคำนวณ T_L สำหรับเทคนิค DTA

$$T_{L}(Cal:DTA)_{A} = -8138.52 + 3295.99 (g_{1})_{SiO_{2}} + 8364.77 (g_{2})_{CaO} + 12859.62 (g_{3})_{Al_{2}O_{3}} + 10514.38 (g_{4})_{MgO} + 16622.08 (g_{5})_{Fe_{2}O_{3}} + 14882.53 (g_{6})_{Na_{2}O} + 11231.47 (g_{7})_{K_{2}O} + 115325.93 (g_{8})_{TiO_{2}}$$
 awants 4.2

สมการคำนวณ T_L สำหรับเทคนิค Isothermal

$$T_{L}(Cal:Iso)_{D} = 9002.16 - 3975.86 (g_{1})_{SIO_{2}} - 8294.55 (g_{2})_{CaO}$$

$$- 7226.23 (g_{3})_{Al_{2}O_{3}} - 6534.49 (g_{4})_{MgO} - 10615.03 (g_{5})_{Fe_{2}O_{3}}$$

$$- 11656.26 (g_{6})_{Na_{2}O} - 14518.08 (g_{7})_{K_{2}O} - 49603.95 (g_{8})_{TIO_{2}}$$

$$T_{L}(Cal:Iso)_{A} = 7546.52 - 5251.08 (g_{1})_{SIO_{2}} - 7012.64 (g_{2})_{CaO}$$

$$- 3923.62 (g_{3})_{Al_{2}O_{3}} - 3200.87 (g_{4})_{MgO} - 8201.45 (g_{5})_{Fe_{2}O_{3}}$$

$$- 3415.49 (g_{6})_{Na_{2}O} - 8948.50 (g_{7})_{K_{2}O} - 41916.43 (g_{8})_{TIO_{2}}$$

$$aunns 4.4$$

เมื่อแทนค่าเศษส่วนโมล (g) ของแต่ละองค์ประกอบของสูตรแก้วที่มีเฟสไดออปไซด์ และ เฟสแอลไบต์ ที่เป็นเฟสหลัก (จากความเข้มพีค XRD) ลงไปในสมการ เพื่อคำนวณหา T_L แสดงค่า T_L ของเฟสไดออปไซด์ดังตารางที่ 4.5 และเฟสแอลไบต์ดังตารางที่ 4.6 และนำค่า T_L ที่จากคำนวณมา พล้อตกราฟเปรียบเทียบกับ T_L ที่ได้จากการวัดด้วยเทคนิค DTA และ Isothermal เพื่อพิจารณาจาก ค่า R² พบว่า สูตรแก้วที่มีเฟสไดออปไซด์เป็นเฟสหลัก เทคนิค DTA มีค่าเท่ากับ 0.79 และ เทคนิค Isothermal มีค่าเท่ากับ 0.72 ดังรูปที่ 4.11 และรูปที่ 4.12 ตามลำดับ โดยค่า R² ที่ได้ของแต่ละ วิธีการวัด T_L มีความเข้าใกล้ 1 จึงสามารถนำสมการ 4.1 และสมการ 4.3 มาใช้การคำนวณหา T_L ของสูตรแก้วที่มีเฟสไดออปไซด์เป็นเฟสหลักและองค์ประกอบทางเคมีใกล้เคียงกันได้ สำหรับสูตรแก้ว ที่มีเฟสแอลไบต์เป็นเฟสหลักนั้น มีค่า R² ของเทคนิค DTA มีค่าเท่ากับ 0.81 และ เทคนิค Isothermal มีค่าเท่ากับ 0.73 ดังรูปที่ 4.13 และรูปที่ 4.14 ตามลำดับ ซึ่งมีค่าเข้าใกล้ 1 ดังนั้น สมการ 4.2 และ สมการ 4.4 สามารถนำมาคำนวณหา T_L ได้เช่นกัน และเมื่อเปรียบเทียบระหว่าง วิธีการวัด T_L ด้วยเทคนิค DTA และ Isothermal ทั้ง 2 เฟส จากอ่า R² ที่ได้นั้น เทคนิค DTA มีค่า มากกว่า จึงสรุปได้ว่าแบบจำลองที่ใช้ข้อมูลอุณหภูมิลิควิดัสที่ได้จากวิธีการวัดด้วยเทคนิค DTA สามารถให้ผลการคำนวณที่ใกล้เคียงกับการทดลองมากกว่า แบบจำลองที่ได้จากการวัดด้วยวิธี Isothermal และค่า T_L ที่วัดได้ไกล้เคียงกับค่าที่ได้จากการคำนวณ สำหรับเทคนิค Isothermal ค่า R² ที่ได้นั้นอยู่ในค่าที่สามารถนำสมการมาใช้ในการคำนวณได้เช่นกัน ซึ่งในการทดลองอาจมี ข้อผิดพลาดในการควบคุมอุณหภูมิ และอาจเกิดการตกผลึกในขณะที่ทำให้เย็นตัวอย่างฉับพลันใน อากาศทำให้อุณหภูมิลิควิดัสที่วัดได้มีค่าสูงว่าที่ควรเป็น

นอกจากนี้ค่า b_i ของแต่ละสารประกอบออกไซด์จากตารางที่ 4.4 นั้นมีผลต่อ T_L ที่คำนวณ ได้ ซึ่งค่า b_i ที่เป็นบวก จะให้ T_L ที่ได้มีค่าสูง และค่า b_i ที่ติดลบ ทำให้ค่า T_L ที่ได้ลดลง ซึ่งสอดคล้อง กับองค์ประกอบออกไซด์ที่อยู่ในแต่ละสูตรแก้ว ยกตัวอย่างสูตรแก้วที่มีเฟสไดออปไซด์เป็นเฟสหลัก หากต้องการลด T_L สำหรับเทคนิค DTA นั้นควรมีการเพิ่มปริมาณ Na₂O K₂O และ TiO₂ ลงไปใน แต่ละสูตรแก้ว เนื่องจากค่า b_{6Na2O} b_{7K2O} และb_{8πO2} มีค่าติดลบมาก หรือลดปริมาณ Fe₂O₃ ซึ่งมีค่า b_{5Fe2O3} เป็นบวก จะทำให้ T_L ที่ได้ลดลงเช่นกัน ดังนั้นหากต้องการปรับเพิ่ม-ลด T_L ในกระบวนการ หลอมแก้วเพื่อลดพลังงาน และค่าใช้จ่ายนั้น สามารถพิจารณาค่าบวก-ลบของ b_i ขององค์ประกอบ ออกไซด์ เพื่อนำมาปรับปริมาณสารประกอบออกไซด์ที่เติมลงในสูตรแก้ว นอกจากนี้การเติม สารประกอบแอลคาไลน์ ซึ่งเป็นตัวทำลายโครงข่ายซิลิกา (network modifier) จะทำให้เกิดการ สลายพันธะของออกซิเจนที่เชื่อมต่อระหว่างซิลิกาเตตระฮีดรอน (non-bridging oxygen) ใน โครงข่ายของแก้ว ส่งผลให้ความหนืด และอุณหภูมิการหลอมแก้วลดลงเช่นเดียวกัน

สูตร	T _L (°C) Cal-DTA _D	T _L (°C) Cal-Iso _D
BG 1	1251.03	1246.02
BG 3 จุหาลง	กรณ์ 1336.37 เยาลัย	1324.82
BG 5 HULALO	NGKO 1215.89 VERSITY	1211.98
BG 6	1234.51	1221.48
BG 8	1233.93	1226.90
BG 9	1306.27	1296.31
BG 10	1254.83	1266.08
BG 13	1344.30	1346.22
BG 14	1307.79	1329.49
BG 15	1307.68	1320.17
BG 16	1223.49	1208.84
BG 17	1265.30	1263.42

ตารางที่ 4.5 ค่า T_L ที่ได้จากคำนวณของสูตรแก้วที่มีเฟสไดออปไซด์เป็นเฟสหลัก

สูตร	T _L (°C) Cal-DTA _D	T _L (°C) Cal-Iso _D
BG 18	1241.48	1240.65
BG 20	1238.41	1247.42
BG 21	1256.61	1279.23
BG 22	1250.84	1244.42
BG 23	1261.34	1253.96
BG 24	1268.45	1275.73
BG 26	1230.79	1234.31
BG 27	1323.59	1325.06

ตารางที่ 4.5 (ต่อ) ค่า T_L ที่ได้จากคำนวณของสูตรแก้วที่มีเฟสไดออปไซด์เป็นเฟสหลัก

รูปที่ 4.11 กราฟเปรียบเทียบ T_L ที่ได้จากการวัดด้วยเทคนิค DTA และคำนวณของสูตรแก้ว ที่มีเฟสไดออปไซด์เป็นเฟสหลัก

รูปที่ 4.12 กราฟเปรียบเทียบ T_L ที่ได้จากการวัดด้วยเทคนิค Isothermal และคำนวณของสูตรแก้ว ที่มีเฟสไดออปไซด์เป็นเฟสหลัก

V (frace & marily

สูตร	T _L (°C) Cal-DTA	T _L (°C) Cal-Iso	
BG 2 ବ୍ଲ	กลงกรณ์ 1221.71ทยาลัย	1212.48	
BG 4	LALONGKO 1309.25 VERSITY	1301.61	
BG 7	1354.27	1293.89	
BG 11	1173.86	1170.01	
BG 12	1228.62	1230.82	
BG 19	1354.88	1357.33	
BG 25	1269.55	1269.72	
BG 28	1312.30	1299.76	
BG 29	1323.45	1311.82	
BG 30	1210.22	1210.06	

ตารางที่ 4.6 ค่า T_L ที่ได้จากคำนวณของสูตรแก้วที่มีเฟสแอลไบต์เป็นเฟสหลัก

รูปที่ 4.13 กราฟเปรียบเทียบ T_L ที่ได้จากการวัดด้วยเทคนิค DTA และคำนวณของสูตรแก้ว ที่มีเฟสแอลไบต์เป็นเฟสหลัก

รูปที่ 4.14 กราฟเปรียบเทียบ T_L ที่ได้จากการวัดด้วยเทคนิค Isothermal และคำนวณของสูตรแก้ว ที่มีเฟสแอลไบต์เป็นเฟสหลัก

บทที่ 5 สรุปผลการวิจัย และข้อเสนอแนะ

5.1 สรุปผลการวิจัย

จากการหาอุณหภูมิลิควิดัสของแก้วฐานบะซอลต์สำหรับการขึ้นรูปเส้นใยในระบบของ SiO₂-CaO-Al₂O₃-MgO-Fe₂O₃-Na₂O-K₂O จากหินบะซอลต์ สรุปผลได้ดังนี้

- องค์ประกอบทางเคมีของแก้วฐานบะซอลต์ที่เตรียมได้นั้น อยู่ในช่วงสามารถนำมาขึ้น รูปเป็นเส้นใยแก้วได้
- ผลการศึกษาองค์ประกอบทางเฟสของแก้วฐานบะซอลต์ พบเฟสหลักคือ เฟสไดออปไซด์ (diopside; Ca(Mg_{0.5}Al_{0.5})(Al_{0.5}Si_{1.5}O₆)) และเฟสรองคือ เฟสแอลไบต์ (albite; NaAlSi₃O₈) และพบเฟสลูไซต์ (leucite; KAlSi₂O₆) และเฟสเนฟิลีน (nepheline; Na_{7.11}Al_{7.2}Si_{8.8}O₃₂) เกิดขึ้น เนื่องจากชนิดของหินบะซอลต์ที่ใช้เป็นหิน ชนิดโทลิไอต์กึ่งแอลคาไลน์ และองค์ประกอบทางเคมีของแก้วฐานบะซอลต์ที่เตรียมได้
- ผลการวัด T_g, T_c และ T_{Endpoint} ของแก้วฐานบะซอลต์อยู่ในช่วง 611.55 779.05, 840.95 -1106.05 และ 1193.45 - 1395.95 องศาเซลเซียส
- ผลการวัด T_L ของแก้วฐานบะซอลต์อยู่ในช่วง 1198.45 1361.55 องศาเซลเซียส สำหรับเทคนิค DTA และ 1190 - 1350 องศาเซลเซียส สำหรับเทคนิค Isothermal เมื่อนำมาพล๊อตกราฟเพื่อพิจารณาค่า R² ได้เท่ากับ 0.91 ซึ่งเป็นค่าที่ยอมรับได้ ดังนั้น วิธีการตรวจสอบอุณหภูมิลิควิดัสด้วยเครื่อง DTA และ วิธี Isothermal สามารถทำได้ ทั้ง 2 วิธี
 - 5. การสร้างสมการคำนวณอุณหภูมิลิควิดัส แบ่งออกเป็น 2 กลุ่มใหญ่ตามเฟสหลักที่ เกิดขึ้นของแก้วฐานบะซอลต์คือเฟสไดออปไซด์ และเฟสแอลไบต์ มาใช้ในการ คำนวณหาค่าสัมประสิทธิ์ขององค์ประกอบ (b_i) และเมื่อนำค่าอุณหภูมิลิควิดัสที่ได้จาก คำนวณมาพล๊อตกราฟเปรียบเทียบกับอุณหภูมิลิควิดัสที่ได้จากการวัดด้วยเทคนิค DTA และ Isothermal ดังพิจารณาจากค่า R² พบว่า สูตรแก้วที่มีเฟสไดออปไซด์เป็นเฟส หลัก มีค่า R² ของเทคนิค DTA มีค่าเท่ากับ 0.79 และ เทคนิค Isothermal มีค่าเท่ากับ 0.72 และสูตรแก้วที่มีเฟสแอลไบต์เป็นเฟสหลักนั้น มีค่า R² ของเทคนิค DTA มีค่า เท่ากับ 0.82 และ เทคนิค Isothermal มีค่าเท่ากับ 0.73 ซึ่งค่า R² ที่ได้นั้นมีค่าเข้า ใกล้ 1 ซึ่งถือว่าสามารถนำมาใช้ในการคำนวณหาอุณหภูมิลิควิดัสในองค์ประกอบแก้วที่ ใกล้เคียงกันและมีองค์ประกอบทางเฟสเดียวกันได้

5.2 ข้อเสนอแนะ

การวัดอุณหภูมิลิควิดัสด้วยเทคนิค DTA และ Isothermal นั้นควรทำการทดลองอย่างน้อย 3 ครั้ง เพื่อดูความแปรปรวนของอุณหภูมิที่วัดได้ เพื่อที่จะได้ค่าที่แม่นยำไปสร้างสมการในการคำนวณ อุณหภูมิลิควิดัสได้ รวมถึงการ heat treated ที่อุณหภูมิ T_c ของแก้วทุกสูตรเหมือนกัน โดยเริ่มจาก อุณหภูมิ T_c ต่ำสุดที่วัดได้ ไปจนถึงสูงสุด เพื่อดูความแตกต่างของเฟสที่จะเกิดขึ้น

รายการอ้างอิง

- Deák, T. and Czigány, T. 2009. Chemical Composition and Mechanical Properties of Basalt and Glass Fibers: A Comparison. <u>Textile Research Journal</u> 79: 645-651.
- Manylov, M.S., Gutnikov, S.I., Pokholok, K.V., Lazoryak, B.I., and Lipatov, Y.V.
 2013. Crystallization mechanism of basalt glass fibers in air. <u>Mendeleev</u> <u>Communications</u> 23: 361-363.
- ต่อศักดิ์ ประสมทรัพย์. (2548). ศิลาวรรณนาและโครงสร้างของหินบะซอลต์ในประเทศไทย.
 พิมพ์ครั้งที่ 1 กรุงเทพมหานคร: กองวิเคราะห์และตรวจสอบทรัพยากรธรณีกรมทรัพยากร ธรณี กรมทรัพยากรธรณี.
- กรมทรัพยากรธรณี. 2551. <u>แหล่งเรียนรู้ทางธรณีวิทยาจังหวัดลพบุรี[</u>ออนไลน์]. แหล่งที่มา: <u>http://www.dmr.go.th/download/article/article_20110209135235.pdf</u> [10 กุมภาพันธ์ 2560]
- Reben, M. and Li, H. 2011. Thermal Stability and Crystallization Kinetics of MgO-Al₂O₃-B₂O₃-SiO₂ Glasses. <u>International Journal of Applied Glass Science</u> 2: 96-107.
- กรมสวัสดิการและคุ้มครองแรงงาน. (2548). สถานการณ์การใช้แร่ใยหิน สภาวะสุขภาพ และสภาพแวดล้อมในการทำงาน ในสถานประกอบกิจการที่มีการใช้แร่ใยหิน. พิมพ์ครั้งที่ 1. กรุงเทพมหานคร บริษัท เรียงสาม กราฟฟิค ดีไซน์ จำกัด.
- 7. Dorigato, A. and Pegoretti, A. 2012. Fatigue resistance of basalt fibersreinforced laminates. Journal of Composite Materials 46: 1773-1785.
- 8. Smedskjaer, M.M., Solvang, M., and Yue, Y. 2010. Crystallisation behaviour and high-temperature stability of stone wool fibres. <u>Journal of the European</u> <u>Ceramic Society</u> 30: 1287-1295.
- 9. Greco, A., Maffezzoli, A., Casciaro, G., and Caretto, F. 2014. Mechanical properties of basalt fibers and their adhesion to polypropylene matrices. <u>Composites Part B: Engineering</u> 67: 233-238.
- 10. Fiore, V., Scalici, T., Di Bella, G., and Valenza, A. 2015. A review on basalt fibre and its composites. <u>Composites Part B: Engineering</u> 74: 74-94.

- นิคม จึงอยู่สุข. (2541). ใยหินสังเคราะห์ (Rock Wool) จากหินบะซอลต์. บุรีรัมย์ : กรม
 ทรัพยากร กองธรณีวิทยา:
- 12. Kaewploy, S. The Optimization of Developed Formula for Chicken Ball Mixed with domestic Vegetables by Design of Experiment Method. in <u>Rethink : Social</u> <u>Development for Sustainability in ASEAN Community, 11-13 June 2014</u>, 2014
- F. Gunst, R. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. (ed.), 284-286. 2012.
- C. Hao, L. and D. Yu, W. 2009. Evaluation of thermal protective performance of basalt fiber nonwoven fabrics. <u>Journal of Thermal Analysis and Calorimetry</u> 100: 551-555.
- Technobasalt. <u>Basalt Fiber[Online]</u>. Avaliable from: <u>http://technobasalt.com/</u>
 [22 May 2017]
- Singha, K. 2012. A short review on basalt fiber. <u>International Journal of Textile</u> <u>Science</u> 1: 19-28.
- Zheng, R., Wang, S.R., Nie, H.W., and Wen, T.L. 2004. SiO₂-CaO-B₂O₃-Al₂O3 ceramic glaze as sealant for planar ITSOFC. <u>Journal of Power Sources</u> 128: 165-172.
- Bandyopadhyay, A.K. and Isard, J.O. 1977. Electrical conductivity of barium borate glasses containing mixed transition metal oxides. <u>Journal of Physics D:</u> <u>Applied Physics</u> 10: L99.
- 19. Melling, P.J., Vempati, C.S., Allnatt, A.R., and Jacobs, P.W.M. (1981). Tracer Diffusion In And Electrical Conductivity Of A Natural Volcanic Glass: Rhyolite.
- 20. Vogel, W., Kreidl, N.J., and Lense, E. (1985). Chemistry of glass. Columbus, Ohio :: American Ceramic Society.
- 21. Alexander, F., Arun, K.V., David, A.E., Thomas, P.S., and Dolun, O. Improved Composition-Property Relations in Silicate Glasses, Part I: Viscosity. (ed.), <u>Melt</u> <u>Chemistry, Relaxation, and Solidification Kinetics of Glasses</u>, 2012.
- 22. Touloukian, Y.S. (2018). Thermophysical properties of high temperature solid materials
- 23. Lipatov, Y.V., et al. 2014. Crystallization of zirconia doped basalt fibers. <u>Thermochimica Acta</u> 575: 238-243.

- Wang, W., Weng, D., and Wu, X.-d. 2011. Preparation and thermal stability of zirconia-doped mullite fibers via sol-gel method. <u>Progress in Natural Science:</u> <u>Materials International</u> 21: 117-121.
- 25. Karamanov, A., Ergul, S., Akyildiz, M., and Pelino, M. 2008. Sinter-crystallization of a glass obtained from basaltic tuffs. <u>Journal of Non-Crystalline Solids</u> 354: 290-295.
- 26. Karamanov, A. and Pelino, M. 2001. Crystallization phenomena in iron-rich glasses. Journal of Non-Crystalline Solids 281: 139-151.
- 27. Cook, G.B., Cooper, R.F., and Wu, T. 1990. Chemical diffusion and crystalline nucleation during oxidation of ferrous iron-bearing magnesium aluminosilicate glass. Journal of Non-Crystalline Solids 120: 207-222.
- 28. Cooper, R.F., Fanselow, J.B., and Poker, D.B. 1996. The mechanism of oxidation of a basaltic glass: Chemical diffusion of network-modifying cations. <u>Geochimica et Cosmochimica Acta</u> 60: 3253-3265.
- 29. Gutnikov, S.I., Pavlov, Y.V., and Zhukovskaya, E.S. 2018. Influence of vibration on basalt fiber crystallization at high temperature. <u>Journal of Non-Crystalline</u> <u>Solids</u>
- 30. Lyubimov, D.V., Lyubimova, T.P., Meradji, S., and Roux, B. 1997. Vibrational control of crystal growth from liquid phase. Journal of Crystal Growth 180: 648-659.
- 31. Avetissov, I.C., et al. 2011. Simulation and crystal growth of CdTe by axial vibration control technique in Bridgman configuration. <u>Journal of Crystal Growth</u> 318: 528-532.
- Wallenberger, F.T. and Smrček, A. 2010. The Liquidus Temperature; Its Critical Role in Glass Manufacturing. <u>International Journal of Applied Glass Science</u> 1: 151-163.
- 33. Mohd Fadzil, S., Hrma, P., Schweiger, M.J., and Riley, B.J. 2015. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste. Journal of Nuclear Materials 465: 657-663.

- 34. Bellini, F.E., L., L.M., and D., Z.E. 2010. DSC Method for Determining the Liquidus Temperature of Glass-Forming Systems. <u>Journal of the American</u> <u>Ceramic Society</u> 93: 3757-3763.
- 35. Young, P.H., Dollimore, D., and Schall, C.A. 2000. Thermal Analysis of Solid-Solid Interactions in Binary Mixtures of Alkylcyclohexanes Using DSC. <u>Journal</u> <u>of Thermal Analysis and Calorimetry</u> 62: 163-171.
- 36. Verdonck, E., Schaap, K., and Thomas, L.C. 1999. A discussion of the principles and applications of Modulated Temperature DSC (MTDSC). <u>International</u> <u>Journal of Pharmaceutics</u> 192: 3-20.
- Charsley, E.L., Laye, P.G., Palakollu, V., Rooney, J.J., and Joseph, B. 2006. DSC studies on organic melting point temperature standards. <u>Thermochimica Acta</u> 446: 29-32.
- 38. Veit, U., Houet, Y., Laurent, D., and Rüssel, C. 2015. Liquidus temperatures of calcium magnesium alumosilicate glass-forming compositions determined via gradient furnace and from the melting peak by differential thermal analysis. <u>Thermochimica Acta</u> 618: 1-5.
- Tian, T.L., Zhang, Y.Z., Yang, A.M., and Zhang, Z.Q. 2017. Crystallization Behavior and Damage Mechanism of Mineral Wool Fibers When Heated. <u>Transactions of the Indian Institute of Metals</u> 70: 1601-1606.
- 40. Karlsson, K.H., Backman, R., and Hupa, L. Models for liquidus temperatures. in <u>Proceedings of the Sixth European Glass Society Conference</u>, 2002
- 41. French, W.J. and Cameron, E.P. 1981. Calculation of the temperature of crystallization of silicates from basaltic melts. <u>Mineralogical Magazine</u> 44: 19-26.
- 42. Rao, Q., Piepel, G.F., Hrma, P., and Crum, J.V. 1997. Liquidus temperatures of HLW glasses with zirconium-containing primary crystalline phases. <u>Journal of</u> <u>Non-Crystalline Solids</u> 220: 17-29.
- 43. Hanni, J.B., et al. 2005. Liquidus temperature measurements for modeling oxide glass systems relevant to nuclear waste vitrification. <u>Journal of Materials</u> <u>Research</u> 20: 3346-3357.

- 44. ฉลอง สีแก้วสิ่ว. <u>ขั้นตอนการวิเคราะห์ Multiple Linear Regression</u>[ออนไลน์]. แหล่งที่มา: <u>https://sites.google.com/site/mystatistics01/regression-correlation-</u> <u>analysis/multiple-linear-regression-step</u>
- 45. Gryc, K., et al. (2014). Determination of solidus and liquidus temperatures for S34MnV steel grade by thermal analysis and calculations.

ภาคผนวก ก

ตารางที่ ก-1 แสดงค่า 2**0**, Intensity และ hkl ของ แอลไบต์ ซึ่งเป็นข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 01-089-6426

Pattern: 01-089-6426			Radiation =	Radiation = 1.540600				Quality : Calculated				
Na(AISi ₃ O ₆) Sodium Aluminum Silicate Albite (heat-treated)				i 142 142 49 43 2 2 723 128 291 344 330 155 155 99 40 119 548 999	h 0-1-1-1-1-1-1-1-2-1-2-1-2-1-2-0-1-2-1-2-	k 011-11-2200-1133-300-1-2104	/ 101111111001021220	2th 52 840 52 840 53 048 53 048 53 249 53 224 53 249 53 224 53 249 53 249 54 251 54 453 54 453 54 453 54 453 55 266 55 729	40 40 46 46 27 27 14 8 7 11 28 28 15 12 12 25 3	h	k -1 -4 6 4 -4 1 1 -6 5 4 2 4 -7 5 4 3	1 4 2 2 2 2 3 1 4 4 1 3 1 4 2 2 3 2 3
Lattice : Anorthic (tricl	linic)	Mol. weight = 262.22	*28.002 28.143	999 413	0 -2	0	20	55.944 *55.944 56.152	4	2 -3	6 -3	1
S.G. : C-1 (0)		Volume [CD] = 331.37	28.249 30.025 30.392	372 165 115	2	-3	0 1 2	*56.152 56.312	67	-4	-4 7	3
a = 8.14000 b = 12.79100 c = 7.13200	<i>alpha</i> = 93.94 <i>beta</i> = 116.54 <i>gamma</i> = 88.4	D x = 2.628	30.511 *30.511 31.346 31.634 31.935 32.144 *32.144 33.328	209 209 115 37 6 8 8	0 0 1 -1 -2 0 0 2	-4 -2 -3 -3 2 4 2 0	1 2 1 2 1 2 1 2 1	*56.312 56.790 57.232 57.232 57.380 57.753 57.753 57.833	7 1 1 1 17 17 24	-2 -5 -5 -3 -4 0 3 -3	-6 -1 -1 0 8 1 5	3 2 2 2 4 0 2 3
a/b = 0.63638c/b = 0.55758	Z = 4	<i>Vicor</i> = 0.64	33.687 33.917 34.001 35.232 35.448 35.767 35.852 36.110 36.510 *36.5510	5 64 39 142 33 17 23 12 107 107	19797972974	-1314112	1211221221	*57.833 58.027 58.191 58.409 *58.409 58.579 58.727 *58.727 *58.727 58.844 *58.844	24 20 18 13 19 31 31 31	0 3 -4 -4 4 4 5 0 0 5 5	0 -5 4 -2 4 0 -1 -8 -2 1	4 1 0 4 0 1 1 1 4 1 3
ICSD collection code: 087657 ICSD space group comment: ICSD SG: C1- IT is: 2 SG short fo 1 Temperature factor: ITF Sample source or locality: Specimen from Stintino, Sardinia, Italy. Data collection flag: Ambient.		: C1- IT is: 2 SG short form: C-	37,088 37,283 37,388 37,388 37,533 37,553 37,552 38,87,14 38,714 38,714 38,714 39,030 39,647 40,283 40,472 44,103 40,472 44,103 44,127 44,288 42,270 42,289 42,2470 42,259 42,2470 42,259 42,2470 42,259 44,257 44,57 44,57 44,57 44,57 44,57 44,57 44,57 44,57 45,249 44,57 45,5777 45,5777 45,5777 45,5777 45,5777 45,57777 45,577777 45,577777777777777777777777777777777777	$\begin{array}{c} 399\\ 325\\ 226\\ 400\\ 41\\ 34\\ 2\\ 2\\ 7\\ 7\\ 5\\ 5\\ 7\\ 5\\ 5\\ 7\\ 5\\ 5\\ 7\\ 5\\ 5\\ 7\\ 5\\ 5\\ 7\\ 5\\ 5\\ 7\\ 7\\ 5\\ 7\\ 5\\ 7\\ 5\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 5\\ 7\\ 5\\ 7\\ 5\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$	ŢŢŢŶŶŶŶŶŶŢŢŶŶŢŶŶŢŶŶŢŶŎŶ	5 5 5 4 4 1 1 0 1 5 3 1 3 3 3 4 5 4 2 3 5 3 6 0 5 3 3 4 2 4 0 5 0 0 3 6 2 1	10000003311312221232220313013122123131	59 123 59 123 59 338 59 388 59 488 50 286 60 286 60 489 60 489 60 678 60 678 61 023 61 1023 61 1023 61 123 61 1245 61 524 62 2770 62 2773 62 473 62 2773 62 473 63 247 76 3525 63 3247 76 3525 63 749 53 748 63 855 63 3855 64 294 64 330 64 430 64 435 64 485	/ 9 9288 144 142 122 122 122 9 9 9 7 7 7 111 111 112 8 8 22 9 9 9 7 7 7 7 111 112 8 8 22 9 9 9 7 7 7 7 111 112 122 122 9 9 9 9 7 7 7 7 7 111 112 122 122 9 9 9 9 7 7 7 7 7 111 112 122 122 122 122 122 1		305123276822774382333565354688786735617	4 3 1 3 4 2 3 1 3 1 4 1 2 2 4 4 2 1 3 3 2 1 2 4 1 4 4 1 2 0 0 0 3 3 1 1 0 2
Meneghinello, E., Alber (1999) Calculated from ICSD u Radiation : CuKa1	rti, A., Cruciani, G	, Am. Mineral., volume 84, page 1144 + <i>Filter :</i> Not specified	46 305 *46 305 *46 305 *47 087 *47 786 *47 786 *47 786 *48 345 *49 283 *49 283 *50 283	8 8 5 11 22 61 47 36 370 70 70 8 35 36 36 314 114 52 52	3 7 2 4 2 4 4 2 3 3 4 1 2 3 2 2 0 4 4 1	1 3 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	13322122133201033033	64,810 65,107 65,408 65,408 65,540 66,5551 66,659 66,699 *66,699	222 133 466 466 299 111 200 100 100	-4 4 -3 2 -5 4 -2 1 4 -4	6 -6 -7 6 1 -4 -6 1 4 4	2 3 3 2 4 1 4 4 1 4
Lambda: 1.54060 SS/FOM: F30=108(0.	0071,39)	<i>d-sp :</i> Calculated spacings	51.047 51.325 51.590 51.702 *51.702 52.145 52.252 52.401	7 119 16 10 15 15 23 26	3-2 -1 -3 4 1 4 -2	30775252-2	1 4 0 2 0 2 0 4					

ตารางที่ ก-2 แสดงค่า 2**0**, Intensity และ hkl ของ ไดออปไซด์ aluminum ซึ่งเป็นข้อมูลมาตรฐาน จาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 01-080-0409

Pattern : 01-080-0409			Radiation =	1.540	600			Quality : Calculated				
Ca(Mg _{0.5} Al _{0.5})(Al _{0.5}	Si _{1.5} O ₆)		2th	i	h	k	1	2th	i	h	k	,
Calcium Magnesium Alt Diopside aluminian, syn	uminum Silicate		13.888 19.132 20.233 *20.233 24.432 26.863 27.986 30.108 30.649 31.082 32.074	1 15 43 43 34 53 215 999 287 392 287 392	1 2 -1 0 1 0 2 -2 3 -3 1	1 0 1 2 1 2 2 2 1 1 3 3	0 0 1 0 1 0 1 0 1 0	68.865 70.285 71.294 71.491 *71.491 71.833 71.920 72.062 72.868 *72.868 *72.868 73.121 73.266	11 13 58 39 39 42 51 31 4 40 24	-707-23567-653	1 4 1 0 1 3 2 1 4 5 1	1 3 2 4 3 3 1 0 1 1 4
Lattice : Monoclinic		<i>Mol. weight</i> = 217.34	*35.395	665 397	-1 -1	0	2	74.600 74.939	15 74	-1 -4 0	0	4 4 4
S.G. : C2/c (15)		Volume [CD] = 429.17	36.037 38.090	441 18	2	2	1	*74.939 75.161	74 41	0 -2	6 2	2
a = 9.65500		Dx = 3.364	38.824	6 181	4	0	0	*75.161	41	6	4	0
h = 8.77100	hota = 106.22	DA = 0.004	40.736	97	1	1	2	76.281	14	-7	3	1
<i>b</i> = 8.77100	Deta = 106.22		41.108 *41.108	116 116	0	2	2	76.435 *76.435	21 21	4 -4	4 6	2
c = 5.27800			42.532 42.860	110 163	3 -3	3 3	0 1	76.684 76.971	11 3	1 -5	7 5	0 2
a/b = 1.10079	Z = 4	<i>l/lcor</i> = 1.15	43.314	95 13	-4 4	2	1	77.256 78.237	67 8	3 -4	5	2
c/b = 0.60176			45.010	300	-4	0	2	78.567	20	-1	7	1
			45.291	88	2	0	2	78.811	11	3	3	3
			45.737 46.310	6 94	-1	4	2	79.045 79.136	10 10	-7	3	2
ICSD collection code:	068201		47.159 48.415	5 3	-2 -5	4	1 1	79.363 79.919	6 1	7	3 1	0 4
Temperature factor: A Test from ICSD: At least	.⊺⊢ ist one TF implau	sible.	49.582 49.802	14 9	3 -4	3 2	1 2	80.212 80.390	22 14	1 -3	7	1 4
Sample preparation: P Bond distance: Mean	Prepared from a g T-O: 1.659.	el at 1723-1373 K (slowly cooling).	50.074 50.254	27	2	2	2	*80.390	14	-1	3	4
Analysis: Contains 50%	% Ca-tschermakit	е.	50.451	36	-3	3	2	80.952	3	-8	0	2
Data concerton hag. /			51.426	2	2	4	1	*81.234	5	-4	6	2
			52.068 53.091	5 109	4	2 5	1 0	81.479 *81.479	3	6 2	0 6	2
			53.440 53.785	27 6	-5 3	1	2	81.816 82.404	7	1	5 2	3 3
			55.148	77	-3	1	3	83.035	12	-8	2	1
			*55.364	76	0	4	2	83.321	20	8	0	0
			56.504	147 140	-2 -5	3	3	*83.321 84.129	20 35	-3 -6	0	1 4
			*57.295 57.842	140 56	1	5 4	1 0	84.592 *84.592	17 17	-6 2	4	3 4
			58.503	5	5	1	1	85.005	9	6	2	2
			58.938	25	5	3	0	86.275	9	-7	3	3
			59.164	30	6	0	0	86.623	9	-5 -5	5 3	3
			60.654 60.828	63 90	3 -6	5 0	0 2	*86.623 86.871	9 6	-2 8	6 2	3 0
			*60.828	90 77	-3 4	5 0	1	87.731 *87.731	1	-6 7	2	4
Benna, P., Tribaudino, I page 189 (1988)	M., Bruno, E., Mii	neralogy and Petrology, volume 38,	61.336	52 141	-6	2	1	88.229	19 19	3	7	1
Calculated from ICSD u	ising POWD-12+	÷	61.910	87	-4	2	3	88.349	9	õ	6	3
			62.592	17	-4	4	2	*88.925	3	-4 1	4	4
			63.382 63.598	5 36	-3 0	3 6	3 0	89.204 89.320	2 3	0 5	4	4
			*63.598	36 21	-1	5	2	*89.320	3	0	8	0
			64.203	4	-5	1	3					
			64.804 65.186	19 16	-6 4	4 2 2	2					
Radiation : CuKa1		Filter : Not specified	66.471 *66.471	168 168	5 0	3 6	1 1					
Lambda : 1.54060		d-sp : Calculated spacings	67.050 *67.050	112 112	-3 2	5 6	2 0					
SS/FOM : F30=253(0.0	0032,37)		67.201	83	1	5	2					
			68.195	2	-2	6	1					
			68.483	11	-2	4	3					

ตารางที่ ก-3 แสดงค่า 2**0**, Intensity และ hkl ของ Leucite ซึ่งเป็นข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 01-085-1419

	Pattern : 01-085-1419				1.5406	600			Quality : Calculated				
	K(AISi ₂ O ₆) Potassium Aluminum S Leucite Iow	ilicate		9.379 13.518 16.182 16.478 18.821	<i>i</i> 71 23 141 434 67	h 1 2 1 1 2	k 0 0 1 2 0	/ 1 0 2 1 2	2th 56.875 57.086 57.535 57.817 *57.817	<i>i</i> 10 11 3 18 18	h 4 8 6 3 2	k 4 1 4 5 2	6 1 4 8
				19.162 20.756 21.373 23.245 24.852 25.180 25.375	12 16 2 79 81 115	2 1 3 2 1 3 3 3	2 0 2 2 1 2	0 3 1 2 3 2 1	58.059 58.177 58.770 *58.770 59.255 59.783 59.911	37 20 23 23 13 7 4	8 3 6 3 5 8 6	2 6 0 1 0 2 6	0 5 6 8 7 2 0
	Lattice : Body-centere	d tetragonal	<i>Mol. weight</i> = 218.25	26.242 27.229 27.984	684 999 8	0 4 1	0 0 1	4 0 4	60.315 60.538 *60.538	22 25 25	7 7 6	3 4 2	4 3 6
	S.G.: 141/a (88)		Volume [CD] = 2325.71	28.395 28.858	27 43	3	0	3	61.085 61.515	8 17	5 4	2	7
	a = 13.09000		Dx = 2.493	29.631	30	2	0	4	62.502	35	7	5	2
			Dm = 2.460	30.297	270	4	2	0	63.307	8	4	2	4
	c = 13.57300			31.571 31.835	345 227	3 3	2 3	3 2	63.517 63.666	10 13	4	8 2	0 9
\sim		Z = 16	<i>V</i>/cor = 1.57	32.698	2	2	2	4	64.123	3	3	8	3
\cup				33.692	1	1	ō	5	64.653	5	1	6	7
				34.139 34.484	85 21	3	1 4	4 3	64.787 65.051	10 12	8	2	4 6
				34.874	2	3	4	1	65.942 66.118	7 16	1	5	8 1
				37.424	9	5	1	2	66.397	13	5	4	7
	ICSD collection code:	064804	4.000	37.560	232	4	0	4	67.158	5	1	8	4 5
	Remarks from ICSD/C	SD: REM MA	/i 300. /lean T-O: 1.642, 1.649, 1.658, becomes	38.888 39.047	53 36	4	4	0 5	*67.158 67.392	5 5	2 5	3	9 4
	cubic above 938 Remarks from ICSD/C	SD: REM MA	n intermedeate form in I41/acd exists	39.442	20	3	3	4	67.602 67.842	11	9	0	3
	between 918-938		PDE 38-1423	40.675	3	2	4	4	68.118	17	6	3	7
	Test from ICSD: No R	value given.	DI 30-1423.	41.183 41.503	23	4	4	5	*68.506	49 49	3	4	6 8
	Test from ICSD: At lea Test from ICSD: Calc.	density unusual t	g. out tolerable.	42.235 42.375	54 112	2	0	6 2	68.870 69.309	5 20	4	1	9 3
	Data collection flag: A	mbient.		42.498	65	6	1	1	69.457	12	3	9	2
				43.845	20 19	1	4	5	70.002	33	8	4	4
				44.204 44.798	11 17	1 5	5 4	4	*70.002 70.220	33 17	1	1	10 8
				45.666	18 15	1	3	6	70.526	2	8	3	5 10
				46.704	17	1	6	3	70.997	17	5	8	3
				47.008 47.357	19 10	3	6 0	1 7	*70.997	17	8	0	6
\sim				47.522 48.255	36 5	4	4	4 5					
\bigcirc				48.907	28	4	5	3					
				49.479	19	1	2	7					
				49.639 49.952	12 34	6 3	0 3	4 6					
	Dove, M.T., Cool, T., Pa	almer, D.C., Putn	is, A., Salje, E.K.H., Winkler, B., Am.	50.219 50.349	23 18	4 5	6 2	0 5					
	Mineral., volume 78, pa Calculated from ICSD u	ige 486 (1993) ising POWD-12+	+ (1997)	50.923 *50.923	39 39	3	6	3					
				51.102	43	7	1	2					
				51.208	5	3	0	7					
				51.691 52.114	9 1	2 4	6 6	4					
				52.939 53.536	17 57	7	0	3					
				54.003	23	1	5	6					
	Radiation : Oukat		Filter : Not specified	54.003 54.359 54.903	23 2 43	1 7	6 2	5 3					
	Lembde : 1 54000		d an i Coloulated analises	55.073 55.174	120 63	3 5	7 6	2					
	Lampda : 1.54060		u-sp : Calculated spacings	55.485	23 11	1	4	7					
	SS/FOM : F30=1000(0	0.0000,30)		56.169	21	8	0	0					
				56.589	30	47	1	4					
						1	1						

ตารางที่ ก-4 แสดงค่า 2**0**, Intensity และ hkl ของ Hematite ซึ่งเป็นข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 00-002-0915

	Pattern : 00-002-0915			Radiation =	1.5405	98			Quality : Deleted
	Fe ₂ O ₃ Iron Oxide Hematite, syn		Mol. weight = 159.69	2th 24,099 33,280 35,744 40,991 42,824 43,693 49,498 54,233 57,955 62,728 64,179 69,583 72,032 72,675	<i>i</i> 80 100 90 60 10 10 80 90 60 80 30 60 40	<i>h</i> 0 1 1 1 2 0 1 0 2 3 2 1 1	<i>k</i> 1 0 1 1 0 2 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	/ 24032 46840 80810 9	
0	S.G.: R-3c (167) a = 5.02800 c = 13.72800 Z =	= 2	Volume [CD] = 300.56 Dx = 1.765 Dm = 5.260	75.374 78.306 79.079 80.678 83.219 85.017 88.898 94.381 95.577 102.170 106.719 108.356 110.063 115.662	60 40 50 60 50 50 20 40 50 50 40 50	2 3 2 3 0 1 2 2 1 2 3 4 2 1	1 0 2 1 2 3 2 1 1 3 2 1 3 3	7 6 3 2 10 4 6 10 12 2 4 0 5 10	
0	Deleted and rejected by: Dr Melting point: 1350 Color: Red to steel gray Optical data: A=2.78, B=3.0 Unit cell: Rhombohedral cel Data collection flag: Ambie	belete: similar to 1-10 01, Sign=- II: a=5.419, α=55.28. ant.	53, (Rinn, August 17, 1953).						
	Harrington., Am. J. Sci., volu	ume 13, page 472 (15	927)						
	Radiation : MoKa1 Lambda : 0.70900 SS/FOM : F27= 9(0.0680,4	Filter : d-sp : 46)	Not specified Not given						

ตารางที่ ก-5 แสดงค่า 2**0**, Intensity และ hkl ของ Nepheline ซึ่งเป็นข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 01-079-0991

	Pattern : 01-079-0991			Radiation =	Radiation = 1.540600				Quality : Calculated				
	Na7.11(Al7.2Si8.8O32))		2th	i	h	k	ı	2th	i	h	k	,
	Sodium Aluminum Silicate Nepheline, syn			10.249 14.764 17.800 20.582 20.760 21.288 23.203 23.679 27.339 27.884 29.396 29.396	176 7 206 401 116 741 999 11 803 26 161	1 1 2 1 0 2 1 1 2	0 0 1 0 1 0 0 2 1 1	0 1 0 1 2 1 2 0 2 1	71.210 71.443 71.708 71.973 72.734 73.723 74.084 74.313 75.162 75.781 75.977 76.992	4 18 11 77 2 4 12 85 34 85 34 85	2 4 1 5 6 2 1 3 3 6 3 1	0 6 2 1 4 2 2 4 1 0	65021465326
	Lattice : Hexagonal		<i>Mol. weight</i> = 1116.86	31.086 32.930	997 427 9	2 3 3	0 0	2 0 1	76.203 76.560 77.046	15 11 4	1 2	4 5 5	5 4 3
	S.G. : P63 (173)		Volume [CD] = 716.30	33.847 34.908	16 257	1	0 2	3 2	77.402 78.401	38 23	3 5	5 3	0 1
	a = 9.95800		Dx = 2.589	36.049 37.002	139 23	2 1	2 1	0 3	78.787 79.718	23 28	2 3	2 1	6 6
0	с = 8.34100 Z = 1 И/со.		<i>l/lcor</i> = 0.80	37.574 37.574 37.574 37.986 38.496 39.149 41.867 42.244 42.711 43.358 *43.358 43.587	100 83 10 530 303 32 3 93 128 128 128	3 2 3 2 1 4 2 2 4 0 1	1 2 0 0 3 0 2 1 0 0 3	0 1 2 3 1 0 2 3 1 4 2	79.942 80.197 80.453 80.773 81.221 *81.221 81.379 81.794 82.144 82.494 82.716 82.716	68 36 5 16 82 13 7 4 13	5646673344	0 2 4 1 2 0 0 3 4 0 2	5 0 2 3 1 4 2 5 4 6 5 7
0	ICSD collection code: 065958 Temperature factor: ATF Remarks from ICSD/CSD: REM TWI. Data collection flag: Ambient.			45,342 45,828 47,175 47,452 48,451 49,080 50,279 51,054 52,020 53,052 53,367 53,760 54,266 *54,266 *54,266 *54,266 *54,266 *54,266 *54,266 *57,578 57,802 58,285 58,852 59,354 59,355 59,354 59,355 59,354 59,355 59,555 59,555 59,555 59,555 59,555 59,555 59,5555 59,5555 59,55555555	47,175 110 47,432 35 48,325 24 48,451 39 49,080 1 49,620 29 50,279 13 51,054 59 52,020 24 53,760 41 54,266 66 55,308 16 57,578 28 57,578 28 59,243 126 59,344 204 59,646 62 59,938 15 60,772 27 60,989 36 61,851 6 62,492 14 63,413 81	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 3 0 1 2 0 4 3 1 3 2 4 0 2 3 1 4 0 0 3 1 2 5 4 3 5 0 2 1 2 4 5 6	83,986 84,144 84,241 84,810 85,379 85,474 86,296 86,991 87,653 88,474 88,725 89,041 89,451	8 14 11 2 36 24 34 3 2 9 6 2	5621457115125	22074102647764	4 2 7 0 3 5 3 7 4 0 2 3 1	
	Radiation : CuKa1 Filter : Not specified Lambda : 1.54060 d-sp : Calculated spacing SS/FOM : F30=638(0.0015,31) SS/FOM : F30=638(0.0015,31)		Filter : Not specified d-sp : Calculated spacings	63.413 64.080 64.535 64.814 65.449 65.440 65.889 66.441 66.887 67.298 67.537 67.809 68.286 68.523 69.064 69.401 70.241 70.843	81 37 4 8 9 123 5 4 123 5 4 123 5 4 123 5 4 123 5 4 126 69 5 126 14 20 1	5536336440251165415	0 1 0 0 2 3 0 2 3 0 2 2 0 3 0 1 3 1 0	3250431316506523264					

ตารางที่ ก-6 แสดงค่า 2**0**, Intensity และ hkl ของ Sodium Calcium Aluminum Silicate ซึ่ง เป็นข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 01-076-0479

	Pattern : 01-076-0479				1.5406	00		Quality : Alternate				
	NaCaAlSi ₂ O ₇ Sodium Calcium Aluminum Silicate			2th 16.404 17.562 21.066 23.279 24.121 26.073 29.310 31.611 33.157 35.554 37.205	<i>i</i> 54 204 155 104 192 999 47 30 154	h 1 0 1 2 1 2 2 0 3 1	k 1 00 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	87.091 *87.091 *87.091 87.850	i 36 36 2	h 5 3 6	k 1 1 3	1 3 4 1
0	Lattice : Tetragonal S.G. : P-421m (113) a = 7.63600 c = 5.04600 Z = 2		Mol. weight = 258.22 Volume [CD] = 294.22 Dx = 2.915 I/lcor = 2.12	37.761 39.388 39.626 41.421 42.657 42.932 44.618 46.464 47.596 49.156 49.402 50.680 51.115 52.407 52.598 53.633	100 41 97 17 1 4 70 22 71 33 25 80 4 207 133 58	213322344234344	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	ICSD collection code: 034063 Temperature factor: ITF Data collection flag: Ambient.				$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3 3 2 1 3 3 2 1 1 3 3 2 1 1 3 0 2 2 1 1 3 0 2 3 1 1 1 1 1 3 0 2 3 3 1 0 0 2 1 1 1 3 0 2 3 3 1 0 0 3 4 2 2 0 1 2 2 2 0 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 1 1 3 0 2 2 2 3 3 4 1 0 0 1 1 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td></td> <td></td> <td></td> <td></td> <td></td>					
	Radiation : CuKa1 Lambda : 1.54060 SS/FOM : F30=1000(0	*77.632 78.442 79.286 80.010 80.471 80.660 81.227 81.993 83.016 83.109 84.752 85.173 85.381 85.5922 85.922 86.530	9 12 1 6 6 1 8 1 4 9 3 15 20 20 7	16642542655266436	1 1 2 2 3 4 4 4 2 3 0 3 0 3 0 1 1 2 4 4 4 1 2 3 4 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							

ตารางที่ ก-7 แสดงค่า 2**0**, Intensity และ hkl ของ Cristobalite ซึ่งเป็นข้อมูลมาตรฐานจาก 2003 JCPDS-International Centre for Diffraction Data (PCPDFWIN) หมายเลข JCPDS 01-089-3607

	Pattern : 01-089-3607	<i>Radiation</i> = 1.540600					Quality : Alternate		
	SiO ₂			2th	i	h	k	ı	
				17.727 *17.727	999 999	1 1	0 1	1 0	
	Silicon Oxide			21.755 25.172	173 260	1	1	1	
	Cristobalite (high)			*28.201 30.957	164 69	2	1	0	
				*30.957 35.898	69 25	1	1	2	
				*35.898 38.157	25 72	2 2	0 2	2 1	
	Latting , Totragonal		Mol weight = 60.09	*38.157 40.308	72 64	2	1	2	
	SG · P41212 (92)		Volume [CD] = 353.39	40.308	116	3	1	3 1 3	
	a = 7.07000		Dx = 1.129	44.349	16	2	2	2	
	u = 7.07000		DX = 1.125	*46.262	148	2	0	3	
	c = 7.07000			*48.117	40	3	1	2	
		Z = 4	1/1cor = 3.35	*51.674	12	4	0	0	
			1/1007 = 0.00	*53.388	81	2	2	3	
				*55.065	66 59	3	3	0	
				*56.708	59 21	3 4	3	1	
	ICSD collection code:	044269		*58.321 59.906	21 40	4	2	0	
	Hypothetical structure Remarks from ICSD/C	Structure calcu SD: REM M 0	lated theoretically. .188 eV/molelcule above quartz-	*59.906 61.466	40 9	4	2	1	
	structure. Remarks from ICSD/C	SD: REM MI	leasured cell: 4.9570, 6.8903.	*61.466 64.520	9 14	3 4	3 2	2 2	
	Test from ICSD: No R Test from ICSD: At lea	value given. st one TF missin	g.	*64.520 66.017	14 11	2 4	2 0	4 3	
	Data collection flag: A	mbient.		*66.017 67.498	11 52	3 4	0	4 1	
				*67.498 68.963	52 4	1	03	5	
				*68.963	4 22	5	1	1	
				73.277	18	4	2	5	
				76.098	2	4	0	4	
				77.495	15	4	4	1	
				78.885	16 16	3	3	4	
				80.268	4	5	3	1	
				81.646 *81.646	6	4	4	2	
	Keeker N.B. Chelikeur		Paul Bi Candona Matter volume 46	83.018 *83.018	2 2	6 1	0	1 6	
	page 1 (1992) Calculated from ICSD u	ising POWD-12+	+	84.386 *84.386	24 24	6 1	1	1 6	
				87.114 *87.114	3	6	2	2	
				*88.476	17	6	2	2	
				*89.837	6	5	4	1	
				_					
	Radiation : CuKa1		Filter : Not specified						
	Lambda : 1.54060		d-sp : Calculated spacings						
	SS/FOM : F30=1000(0	.0000,31)							

ภาคผนวก ข

การคำนวณน้ำหนักขององค์ประกอบแก้วฐานบะซอลต์ ด้วยโปรแกรม Minitab® 17.1.0

Extreme Vertices Design

Components:	7	Design points:	543
Process variables:	0	Design degree:	2

Mixture total: 1.00000

Number of Boundaries for Each Dimension

Point Type	1	2	3	4	5	6	0	a
Dimension	0	1	2	3	4	5	6	9
Number	104	332	414	255	83	14	1	

Number of Design Points for Each Type

Point Type	1	2	13	4	5	6	172	0	-1
Distinct	104	332	0	0	0	0	0	E‡S	104
Replicates	1	1	0	0	0	0	0	1	1
Total number	104	332	0	0	0	0	0	1	104

Bounds of Mixture Components

	Amo	unt	Prop	portion	Pseudocomponent			
Comp	Lower	Upper	Lower	Upper	Lower	Upper		
Si	0.450000	0.570000	0.450000	0.570000	0.000000	0.413793		
Ca	0.050000	0.160000	0.050000	0.160000	0.000000	0.379310		
Al	0.130000	0.200000	0.130000	0.200000	0.000000	0.241379		
Mg	0.030000	0.100000	0.030000	0.100000	0.000000	0.241379		
----	----------	----------	----------	----------	----------	----------		
Fe	0.050000	0.120000	0.050000	0.120000	0.000000	0.241379		
Na	0.000000	0.040000	0.000000	0.040000	0.000000	0.137931		
К	0.000000	0.040000	0.000000	0.040000	0.000000	0.137931		

Optimal Design: Si, Ca, Al, Mg, Fe, Na, K

Mixture design selected using distance-based optimality

(parameters calculated for component proportions)

Number of candidate design points: 541 Number of design points in optimal design: 30 Number of components: 7

Row number of selected design points: 27, 35, 46, 64, 2, 7, 55, 325, 395, 57, 433, 15, 5, 12,99, 349, 427, 19, 70, 378, 158, 40, 42, 495, 244, 53,61, 298, 373, 278

Smallest distance between optimal points: 0.063246

Largest distance between optimal points: 0.200998

Chulalongkorn University

Design Table

Run	Si	Ca	Al	Mg	Fe	Na	K
2	0.45	0.16	0.20	0.10	0.05	0.00	0.04
5	0.45	0.16	0.20	0.03	0.12	0.00	0.04
7	0.57	0.05	0.20	0.03	0.12	0.00	0.03
12	0.48	0.16	0.20	0.03	0.05	0.04	0.04
15	0.57	0.14	0.13	0.03	0.05	0.04	0.04
19	0.57	0.07	0.20	0.03	0.05	0.04	0.04

Run	Si	Ca	Al	Mg	Fe	Na	К
27	0.57	0.15	0.20	0.03	0.05	0.00	0.00
35	0.45	0.05	0.20	0.10	0.12	0.04	0.04
40	0.45	0.16	0.13	0.10	0.08	0.04	0.04
42	0.57	0.11	0.13	0.10	0.05	0.00	0.04
46	0.57	0.05	0.13	0.10	0.07	0.04	0.04
53	0.57	0.16	0.13	0.09	0.05	0.00	0.00
55	0.52	0.16	0.13	0.10	0.05	0.04	0.00
57	0.57	0.08	0.20	0.10	0.05	0.00	0.00
61	0.52	0.05	0.20	0.03	0.12	0.04	0.04
64	0.48	0.16	0.13	0.03	0.12	0.04	0.04
70	0.57	0.07	0.13	0.03	0.12	0.04	0.04
99	0.53	0.05	0.20	0.10	0.12	0.00	0.00
158	0.45	0.13	0.20	0.10	0.09	0.04	0.00
244	0.57	0.05	0.15	0.10	0.12	0.00	0.02
278	0.57	0.16	0.13	0.03	0.09	0.00	0.02
298	0.53	0.12	0.13	0.03	0.12	0.04	0.04
325	0.57	0.12	0.13	0.07	0.12	0.00	0.00
349	0.49	0.09	0.13	0.10	0.12	0.04	0.04
373	0.53	0.12	0.20	0.03	0.05	0.04	0.04
378	0.53	0.16	G 0.17	0.03	0.12	0.00	0.00
395	0.51	0.11	0.20	0.03	0.12	0.04	0.00
427	0.49	0.09	0.20	0.10	0.05	0.04	0.04
433	0.47	0.16	0.15	0.10	0.12	0.00	0.00
495	0.51	0.13	0.18	0.08	0.07	0.01	0.01

ภาคผนวก ค

ตารางที่ ค-1 ผลองค์ประกอบทางเคมีของแก้วฐานบะซอลต์

สตร	องค์ประกอบทางเคมี (ร้อยละน้ำหนัก)								
ឡូម រ	SiO ₂	CaO	Al_2O_3	MgO	Fe_2O_3	Na ₂ O	K ₂ O	TiO ₂	
BG 1	47.2	14	18	7.51	5.43	3.89	2.79	0.858	
BG 2	47.6	14.3	18.5	2.18	7.72	4.64	3.97	0.811	
BG 3	44.7	5.68	19.7	9.5	10.7	4.31	4.44	0.748	
BG 4	51.8	6.15	17.8	8.34	6.58	3.99	4.1	0.851	
BG 5	45.3	17.5	15.1	2.4	10.5	3.95	4.2	0.825	
BG 6	40.5	17.5	19.2	8.41	5.85	3.64	4.01	0.688	
BG 7	52.4	6.27	20	2.21	10.1	4.57	3.15	0.933	
BG 8	44.9	17	14.9	7.55	7.19	3.6	3.69	0.793	
BG 9	48.9	7.99	18.3	7.07	8.21	4.24	4.18	0.824	
BG 10	41.1	17.3	20.3	2.13	10.5	3.49	4.27	0.722	
BG 11	49	14.2	17.8	1.87	8.48	3.36	4.06	0.883	
BG 12	44.6	17.7	19.8	1.88	7.04	3.52	4.33	0.783	
BG 13	48.6	5.66	18.8	7.2	10.4	3.97	4.19	0.825	
BG 14	52.8	7.34	19.6	1.94	8.98	3.61	4.35	0.934	
BG 15	52.4	7.45	18.7	1.83	10.5	3.56	4.3	0.948	
BG 16	42.1	17.3	13.5	10.5	6.67	4.66	4.08	0.674	
BG 17	46.6	10.2	16.5	9.03	7.48	5.2	3.66	0.784	
BG 18	44.7	14.4	16	7.65	7.39	4.88	3.72	0.748	
BG 19	50	5.49	20.1	2.9	10.5	5.21	4.4	0.84	
BG 20	46.6	11	16.7	5.66	9.39	5.27	4.02	0.823	

สตร	องค์ประกอบทางเคมี (ร้อยละน้ำหนัก)						นัก)				
	SiO ₂	CaO	Al ₂ O ₃	MgO	Fe_2O_2	Na ₂ O	K ₂ O	TiO ₂			
BG 21	46	11	19.9	2.85	10.2	4.91	3.85	0.827			
BG 22	40.6	16.2	14.9	9.85	9.45	4.57	3.3	0.695			
BG 23	45.4	9.28	14.3	10.4	10.4	4.73	4.19	0.811			
BG 24	44.9	9.1	18.9	10.1	6.79	4.64	4.22	0.763			
BG 25	44.7	16.3	16.2	2.59	10.1	4.97	3.87	0.806			
BG 26	41.4	13.3	19.3	9.78	7.09	4.5	3.44	0.761			
BG 27	49.5	5.96	16.2	9.3	9.52	5.41	2.7	0.849			
BG 28	47.2	12.6	16.3	2.54	10.9	4.63	4.31	0.901			
BG 29	47.7	12.1	19.8	2.5	7.64	4.48	4.31	0.866			
BG 30	48.6	15.8	17.7	2.3	7	5.02	2.17	0.854			

ตารางที่ ค-1(ต่อ) ผลองค์ประกอบทางเคมีของแก้วฐานบะซอลต์

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาคผนวก ง

องค์ประกอบทางเคมี (ร้อยละน้ำหนัก)	หินบะซอลต์
SiO ₂	60.060
CaO	5.847
Al ₂ O ₃	16.535
MgO	3.231
Fe ₂ O ₃	8.080
Na ₂ O	2.641
K ₂ O	2.214
TiO ₂	0.949
MnO	0.170
V ₂ O ₅	0.020
Cr ₂ O ₃	0.033
SrO	0.083
BaO	0.071
ZnO	0.011
	0.007
ZrO ₂	0.050

ตารางที่ ง-1 ผลองค์ประกอบทางเคมีของแก้วฐานบะซอลต์

หมายเหตุ ; หินบะซอลต์ จากหลุมเจาะในเขตสัมปทานของ บริษัท ไมน์เค็ม จำกัด อ.ชัยบาดาล

จ.ลพบุรี ประเทศไทย

ภาคผนวก จ

รูปที่ ง-1 กราฟ DTA แสดงค่า T_s T_c T_{Endpoint} ของแก้วฐานบะซอลต์สูตรที่ 1 - 5

รูปที่ ง-2 กราฟ DTA แสดงค่า T_s T_c T_{Endpoint} ของแก้วฐานบะซอลต์สูตรที่ 6 - 10

รูปที่ ง-3 กราฟ DTA แสดงค่า T_s T_c T_{Endpoint} ของแก้วฐานบะซอลต์สูตรที่ 11 - 15

รูปที่ ง-4 กราฟ DTA แสดงค่า T_s T_c T_{Endpoint} ของแก้วฐานบะซอลต์สูตรที่ 16 - 20

รูปที่ ง-5 กราฟ DTA แสดงค่า T_s T_c T_{Endpoint} ของแก้วฐานบะซอลต์สูตรที่ 21 - 25

รูปที่ ง-5 กราฟ DTA แสดงค่า T_s T_c T_{Endpoint} ของแก้วฐานบะซอลต์สูตรที่ 26 - 30

73

รูปที่ จ-2 กราฟ DTA แสดงค่า T_L ของแก้วฐานบะซอลต์สูตรที่ 6 - 10

รูปที่ จ-3 กราฟ DTA แสดงค่า T_L ของแก้วฐานบะซอลต์สูตรที่ 11 - 15

รูปที่ จ-4 กราฟ DTA แสดงค่า T_L ของแก้วฐานบะซอลต์สูตรที่ 16 - 20

รูปที่ จ-5 กราฟ DTA แสดงค่า T_L ของแก้วฐานบะซอลต์สูตรที่ 21 - 25

รูปที่ จ-6 กราฟ DTA แสดงค่า T_L ของแก้วฐานบะซอลต์สูตรที่ 25 - 30

ประวัติผู้เขียนวิทยานิพนธ์

นางสาวนภาพร วัยบริสุทธิ์ สำเร็จการศึกษาระดับปริญญาตรี หลักสูตรวิทยศาสตร บัณฑิต สาขาเคมีอุตสาหกรรม คณะวิทยาศาสตร์ประยุกต์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้า พระนครเหนือ ในปี พ.ศ.2558 และเข้าศึกษาต่อในระดับปริญญาโท หลักสูตรวิทยาศาสตร มหาบัณฑิต สาขาวิชาเทคโนโลยีเซรามิก ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย สำเร็จการศึกษา ในปี พ.ศ. 2561

การนำเสนอผลงานทางวิชาการ

Napaporn Vaiborisut, Chanittha Chunwises, Dararat Boonbundit, Sirithan Jiemsirilersa, and Apirat Theerapapvisetpong. Effect of the addition of ZrSiO4 on Alkali-resistance and Liquidus temperature of Basaltic Glass. International Conference on Traditional and Advanced Ceramics 2017 (ICTA2017). Bangkok International Trade & Exhibition Center (BITEC), Bangkok, Thailand (August 31 -September 1, 2017). (Poster presentation)

การตีพิมพ์ผลงานทางวิชาการ

Vaiborisut, N., Chunwises, C., Boonbundit, D., Jiemsirilers, S., and Theerapapvisetpong, A. 2018. Effect of the Addition of ZrSiO4 on Alkali-Resistance and Liquidus Temperature of Basaltic Glass. Key Engineering Materials 766: 145-150.