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A graph is a k-threshold graph with thresholds 61, 05,05, . .., 0 if we can assign
a real number r, to each vertex v such that for any two distinct vertices v and v,
uv is an edge if and only if the number of thresholds not exceeding r, + 7, is odd.
The threshold number of a graph is the smallest k for which it is a k-threshold
graph. Multithreshold graphs were introduced by Jamison and Sprague as a gener-
alization of classical threshold graphs. They asked for the exact threshold numbers
of complete multipartite graphs. Recently, Chen and Hao solved the problem for
complete multipartite graphs where each part is not too small, and they asked for
the case when each part has size 3. We determine the exact threshold numbers of
K333, Kya4. 4 and their complements, nK3 and nky. This improves a result

of Puleo.
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CHAPTER I

INTRODUCTION

In 1977, Chvatal and Hammer [3] introduced threshold graphs and studied these
graphs for their application in integer linear programming problems. They defined
these graphs as follows. A graph G is said to be a threshold graph if we can assign
a real number r, to each vertex v and there is a real number 6 such that for any

vertex subset U of G, " _.,r, < 0 if and only if U is independent in G.

vel
As one of the fundamental classes of graphs, properties of threshold graphs have
been extensively studied (see [b, B, [7, 8, 10, [12, [14] and [18]), and since then many
applications of these graphs have been found in various areas, such as scheduling
theory, resource allocation and parallel processes (see [, 4, 11, 13, [15] and [16]).
Threshold graphs can be characterized in a number of equivalent ways. For
example, GG is a threshold graph if and only if G has no induced subgraph iso-
morphic to 2K5, Py or Cy (see [3] and [12]). Equivalently, a threshold graph is a
graph that can be obtained from the single-vertex graph by repeatedly adding an
isolated vertex or a universal vertex (see [3] and [12]). Moreover, G is a threshold
graph if and only if we can assign a real number r, to each vertex v and there is
a real number # such that for any two distinct vertices u and v, uv is an edge if
and only if r, + 7, > 6 (see [12]). These indicate that threshold graphs are very
rare. Indeed, the number of distinct threshold graphs on n labeled vertices is at

most n! 2”1 while the number of all distinct graphs with the same vertex set is

2(3). Therefore, most graphs are not threshold graphs.



Recently, Jamison and Sprague [9] first introduced multithreshold graphs as a
generalization of the well-studied threshold graphs as follows. A graph G is a k-
threshold graph with thresholds 61,605,053, ..., 0y if we can assign a real number r,,
called a rank, to each vertex v such that for any two distinct vertices v and v, uv
is an edge if and only if the number of thresholds not exceeding r, + r, is odd.
Note that the case of one threshold is the classical case introduced by Chvétal and
Hammer [3].

It is natural to ask for the existence of a positive number k for which a graph
is a k-threshold graph. Jamison and Sprague [9] showed that any graph of order
n is a k-threshold graph for some k& < (Z) The smallest k for which a graph G is
a k-threshold graph is said to be the threshold number of G, denoted by ©(G).

A graph is a threshold graph if and only if its complement is a threshold graph
since all ranks and a threshold of the complement of a threshold graph can be
obtained from those of its complement by multiplying the ranks and the threshold
by —1. Thus, O(G) = 1 = O(G°) for any nontrivial threshold graph G. However,
it is not obvious how ©(G) and ©(G°) are related for general k-threshold graphs
when k > 1, for example, ©(Ka95 .2) = 3, while O(K3,, ) = 2 when the
number of 2’s is at least 3. A relationship between the threshold numbers of a
graph and its complement was found by Jamison and Sprague [9] stating that for
any graph G, either ©(G°) = O(G) or {O(G),0(G)} = {2k,2k + 1} for some

k € N. This inspired them to put forward the following conjecture.

Conjecture 1.1 ([9]). For all k > 1, there is a graph G with O(G) = 2k and

O(G°) =2k + 1.

They then observed that, by assigning 3! to be the rank for each vertex of the

-----



rank sum of an edge is preceded by 2i—1 thresholds, and the rank sum of a nonedge
is preceded by 2¢ thresholds. Thus, the threshold number of K, myms,..m, iS at
most 2n. Note that this bound is not necessarily best possible. For example, if
each part has size 2, we can assign ¢+ — 1 and 2n — 1 — ¢ to be the ranks of the
two vertices in the ¢*® part for 1 < i < n, and then 1,2n — 2 and 2n — 1 are three

thresholds of the graph. They put forward the following problem.

Problem 1.2 ([9]). Determine the exact threshold number of the complete multi-

partite graph K, mo.ms....mn -

Recently, Chen and Hao [2] gave a partial solution of Problem @ which also
confirmed Conjecture .

Theorem 1.3 ([2]). Let mq,mg,ms,...,m, be positive integers and n > 2. If

m; >n+1 fori=1,2,3,....,n, then

O (K moms,...mn) =20 —2 and O(K] )=2n—1.

mi,m2,ms3,...,Mn

However, their result is far from the truth when m; are small. For example, the
threshold number of K1, .1 is 1 and the threshold number of Ksg5 o is 3.
Chen and Hao [2] mentioned that it would be interesting to know the value of
O(K333,.3)-

As a tool for answering a question of Jamison asked in the 2019 Spring Sectional
AMS Meeting, Puleo [17] proved that ©(K5,, 3) is at least n'/3 where n is the
number of its components, which in turn provides a lower bound for ©(K333 . 3).

In this dissertation, we determine the exact threshold numbers of Ks333 3,
Ky 44, 4 and their complements.

The rest of this dissertation is organized as follows. Chapter II provides some

background knowledge and useful results. In Chapter III, we determine the exact



threshold numbers of K333 3 and their complements. Chapter IV is devoted to

-----

determine the exact threshold numbers of K444 4 and their complements. The

conclusions and open problems are given in Chapter V.



CHAPTER 11

BACKGROUND KNOWLEDGE

Throughout this dissertation, we denote by K,«,, the complete n-partite graph

with m vertices in each part, and by nk,, the complement of K, .

2.1 Threshold graphs

A graph G is a threshold graph if we can assign a real number r, to each vertex v

and there is a real number 6 such that for any vertex subset U of G, Y _. 7, < 0 if

velU
and only if U is independent in G (see [3]). A vertex subset U of G is independent in
G if no two vertices from U are adjacent in G. Figure Ell illustrates an example of

a threshold graph along with an appropriate assignment for each vertex satisfying

the inequality when 6 = 4.

Figure 2.1: A threshold graph along with an appropriate assignment when 6 = 4

Threshold graphs can be characterized in a number of equivalent ways. The
basic characterizations of the graphs were given in [3] and [12], some of which are

stated below. We include a proof for completeness.



Theorem 2.1 ([3] and [12]). For a graph G, the followings are equivalent.

(i) G is a threshold graph.
(i) G has no induced subgraph isomorphic to 2Ky, Py or Cy.

(iii) G can be obtained from the one-vertex graph by repeatedly adding an isolated

vertex or a universal vertez.

(iv) We can assign a real number r, to each vertex v in G and there is a real
number 6 such that for any two distinct vertices u and v, uv is an edge if

and only if ry +1r, > 0.

Proof. (i) = (ii): We first show that 2K5, P, and Cy are not threshold graphs.
Suppose to the contrary that these are threshold graphs. Let w, x, y and 2z be the
vertices in the graphs as shown in Figure @ Since wz, xry are edges and wy, rz
are nonedges, by (i), there is a real number ¢ such that r,, +r,,r, + 7, > 6 and
Tw+ 7y, T2+ 17, < 0 respectively. Thus, 20 < r, +r, +7r,+1r, < 20, a contradiction.

Observe that every induced subgraph H of G is also a threshold graph since the

restriction of the assignment r, and the threshold 8 of G also work for H. Hence,

(1) holds.
w T w T w T
2z Y z Yy z Y
(a) 2K (b) P4 (c) Cy

Figure 2.2: 2K5, P, and Cy

(i1) = (uii): First, we show that the vertex set V(G) of G' can be partitioned

into an independent set and a clique. Let K be a largest clique in G and let



W = V(G) — V(K). To show that W is independent in G, we suppose to the
contrary that W is dependent in GG. Let uv be an edge in the induced subgraph
G[W]. We claim that there exist distinct vertices z and y in K such that uzx and
vy are nonedges in G. Since G[V(K) U {u}] is not a clique by the maximality of
K, there exists x in K such that uz is a nonedge. Suppose not, that is vz is an
edge for all z € K — z. Since G[V(K) U {v}] is not a clique by the maximality of
K, vx is a nonedge. By the assumption, uz is an edge for all z € K — x. Thus,
G V(K —z)U{u,v}] is a clique larger than K contradicting the maximality of
K. Since uv and xy are edges, G[{u,v,z,y}| is isomorphic to 2K,, Py or Cy, a
contradiction.

Next, we show that a graph that can be partitioned into an independent set
and a clique must contain an isolated vertex or a universal vertex. Let H be a
graph that can be partitioned into an independent set U and a clique C'. Clearly,
if U is an empty set, then every vertex in K is universal. Suppose that U is a
nonempty set and H has no isolated vertex. Let u be a vertex in U with the
smallest degree, and let u’ be a neighbor of u in C'. Suppose to the contrary that
u' is not a universal vertex. Thus, there is a vertex v in U such that v'v is a
nonedge. Since u has the smallest degree, there must be a vertex ¢’ in C' such that
vv' is an edge but wv’ is a nonedge. Thus, G [{u, v/, v,v'}] is isomorphic to Py, a
contradiction.

Observe that after removing an isolated vertex or a universal vertex from G,
the remaining graph can still be partitioned into an independent set and a clique.
By repeatedly removing an isolated vertex or a universal vertex from the remaining
graph, we will obtain a one-vertex graph at the end. Hence, (iii) holds.

(iit) = (iv): Let v; be the i*" vertex for the construction in (i) for i =

1,2,3,...,|G|. We say a vertex v; is isolated in the construction if v;v; is a nonedge



for all j < 7, and universal in the construction if v;v; is an edge for all j < i. Let

Ty, = 0. For i =2,3,4,...,|G|, we assign

—max |r,;| — 1 if v; is isolated in the construction,
j<i

max |7, | if v; is universal in the construction.
j<i

Note that r,, +7,, > 0 if and only if v;v; is an edge. Hence, (iv) holds with ¢ = 0.
(tv) = (i): We will show a stronger statement that for a graph G satisfying
(1v), there exists an assignment v — 7, of positive integers to the vertices and there

is a positive real number 6 such that for any vertex subset U of G, > _.. 7, <60

veU
if and only if U is independent in G. We will prove by induction on |G|. Clearly,
the statement holds for G with |G| < 1. Consider G satisfying (iv) with |G| > 2.
Let z,y € G be such that 7, = min{r, : v € G} and r, = max {r, : v € G}.

Case 1. xy is a nonedge.

Then, r, + 1, < 0. Since r, = max{r, : v € G}, we have r, +r, <r, +1, <0
for all v € G — x. Thus, zv is a nonedge for all v € G — = by (iv), that is x
is an isolated vertex. Let G’ = G — x. By the induction hypothesis, there is an
assignment v — 7, of positive integers to the vertices and there is a positive real
number ¢’ such that for any vertex subset U’ of G', > ., r, < ¢ if and only if
U’ is independent in G’. Now, we assign 1 to x and assign 2r! to v € G'. Take
0" = 20"+ 1. Let U be a vertex subset of G. If U contains x, then by the induction
hypothesis, QZveU\{x} r’ < 20" if and only if U\ {2z} is independent in G, and
hence, 7, cpp\ (4 2r, +1 < 0" if and only if U is independent in G. If U does not
contain x, then by the induction hypothesis, 2 ., r, > 2(¢' +1) if and only if U
is dependent in G, and hence, ) ., 2r;, > 0" if and only if U is dependent in G.

Case 2. xy is an edge.

Then, r, + 1, > 6. Since r, = min{r, : v € G}, we have  <r, +r, <r,+1,



for all v € G — y. Thus, vy is an edge for all v € G — y by (iv). Therefore, y
is a universal vertex. Let G' = G — y. By the induction hypothesis, there is an
assignment v — 1, of positive integers to the vertices of G’ and there is a positive
real number 6’ such that for any vertex subset U of G', >, r, < 6 if and only
if U is independent in G’. Now, we assign 6’ to y. Let U be a vertex subset of G

containing y. Since rj, > 0 forall v € G', we have > 1}, = > iy 7o +0 > 6"

Thus, > _;r <6 if and only if U is independent in G. m

velU "v

The followings are examples of threshold graphs which are characterized in

different ways.

Example 2.2. All complete graphs, empty graphs and stars are threshold graphs
since they can be obtained from the one-vertex graph by repeatedly adding an
isolated vertex or a universal vertex (see Theorem El] (73i)). Alternatively, it is

easy to see that they have no induced subgraph isomorphic to 2K5, Py or Cy (see
Theorem Ell (i1)).

Example 2.3. We can also see that any complete graph and empty graph are
threshold graphs by assigning a nonnegative real number to each vertex in the
complete graph and assign a negative real number to each vertex in the empty

graph, and we then take = 0 (see Theorem @ (iv)).

Example 2.4. We can also see that any star is a threshold graph by assigning
—1 to each leaf and assign 1 to the universal vertex in the star, and we then take

6 = —1 (see Theorem El] (iv)).

2.2 Multithreshold graphs

The equivalent statement (iv) of the definition of threshold graphs in Theorem @

was generalized to define multithreshold graphs by Jamison and Sprague [9] as
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follows. A graph G is a k-threshold graph with thresholds 01,05,0s, ..., 0 if we
can assign a real number 7, called a rank, to each vertex v such that for any two
distinct vertices u and v, uv is an edge if and only if the number of thresholds not

exceeding r, + 7, is odd. Equivalently,

w € E(G) <= 1.+ 1, € [02i_1,04) for somei € {1,2,3, o [g—‘}

provided 6; < 0y < 3 < --- < 0 and 61 = co. We call such an assignment r of
ranks a (61, 0s,0s, ..., 0k)-representation of G. By a rank sum of an edge/nonedge
UV, We mean 1, + 7y.

The followings are examples of multithreshold graphs.

Example 2.5. The complete bipartite graph K, , is a 2-threshold graph with
thresholds 0 and 2a by assigning a positive real number a to each vertex of the
first part and —a to each vertex of the second part. Observe that the rank sum of

each edge is 0 and the rank sum of each nonedge is either 2a or —2a.

Example 2.6. A path P, is a 2-threshold graph with thresholds —a and a where
a € (1,3) by providing the sequence of ranks —1,2, —3,4,—5,.... Observe that
the rank sum of each edge is either —1 or 1, while the rank sum of each nonedge

is either at most —3 or at least 3.

Example 2.7. K, 5 is a 3-threshold graph with thresholds 1, 2n — 2 and 2n — 1
by assigning the ranks i — 1 and 2n — 1 — i to vertices of the i part. Observe that
the rank sum of each edge is either less than or greater than 2n — 2, while the rank

sum of each nonedge is 2n — 2.

We can see that K, .s has an induced subgraph isomorphic to Cy. Therefore,
it is not a 1-threshold graph or a threshold graph by Theorem El] (17). We will

prove that K, .2 is not a 2-threshold graph whenever n > 3.
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Proposition 2.8. Forn > 3, K, 2 is not a 2-threshold graph.

Proof. Suppose to the contrary that K, . is a 2-threshold graph with thresholds
0, < 0. Let a; and b; be the ranks of vertices in the i*" part. Note that all edge
rank sums are in [f;, 05), while nonedge rank sums are in either (—o0, 0;) or [0, 00).
Since the number of parts is at least three, there are two nonedge rank sums in the
same interval, say a; + by, as + by < 01. Thus, a; + by + as + by < 26,. Since a; + by

and as + by are edge rank sums, a; + by + as + by > 26, a contradiction. O

Remark 2.9. For n > 2, nK, is a 2-threshold graph with thresholds 2n — 2 and
2n — 1 by applying the assignment in Example @ for it. Moreover, nK> is not a

1-threshold graph since it has an induced subgraph isomorphic to 2Ks.

The existence of a positive number k£ for which a graph is a k-threshold graph

was proved by Jamison and Sprague [9]. We give a proof for completeness.
Theorem 2.10 ([9]). Any graph of ordern is a k-threshold graph for some k < (g)

Proof. Let G be a graph on n vertices vy, v, v3, ..., v,. We assign the rank 2° to v;
for i € [n], where [n] = {1,2,3,...,n}. Note that 29 + 2" # 2° 4 2" for any subset

{q,r,s,t} C [n] of size 4, and
2+ 22 <2422 <2242 <2 42 242t <P 2t < <2 2

We will take the rank sum 2° 4+ 27 as a threshold for some distinct i,j € [n] as
follows. We take 2! +22 as a threshold when vy vy is an edge. For {i,j} # {1,2}, if
v;v; is an edge and the greatest rank sum less than 2° + 27 is a nonedge rank sum,
then we take 2' + 27 as a threshold. Similarly, if v;v; is a nonedge and the greatest
rank sum less than 2/ +27 is an edge rank sum, then we take 2! +27 as a threshold.

These thresholds partition the real line into several intervals alternating between
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an interval of nonedge rank sums and an interval of edge rank sums. Therefore, G

is a k-threshold graph for some k£ < (;) [

Observe that any k-threshold graph is also a (k+ 1)-threshold graph by adding
a threshold larger than all rank sums. Hence, a k-threshold graph is an ¢-threshold
graph for any integer ¢ > k.

The threshold number of a graph G is the smallest k& for which G is a k-
threshold graph, denoted by ©(G). Therefore, ©(G) exists for every graph G by
Theorem .

The followings are examples of the threshold numbers of some multithreshold

graphs.

Example 2.11. By Example @, O(Km,) < 2. Note that K, , has an induced
subgraph isomorphic to C4. By Theorem @ (1), Ky, is not a 1-threshold graph.

Thus, ©(K,,,) > 2. Hence, O(K,, ) = 2.

Example 2.12. By Example @, O(P,) < 2. We can see that P, has an induced
subgraph isomorphic to P, whenever n > 4, and hence, P, is not a 1-threshold
graph by Theorem @ (#7). Thus, ©(F,) > 2 for all n > 4. Hence, O(F,) = 2

provided n > 4.

Example 2.13. By Example @, O(K,x2) < 3. For n > 3, O(K,x2) > 3 by

Proposition @ Thus, O(K,x2) = 3 for all n > 3.
Example 2.14. For n > 2, ©(nK3) = 2 by Remark @

Jamison and Sprague [9] found a relationship between the threshold numbers

of a graph and its complement. We include a proof for completeness.

Proposition 2.15 ([9]). For any graph G, either

O(G°) = O(G) or {6(G),0(G)} = {2k, 2k + 1} for some k € N.
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Proof. Let k and &’ be such that ©(G) € {2k, 2k + 1} and ©(G) € {2k, 2k" + 1}.
Take a (91, 05,05, ... ,0@(G))—representation r of G. We may assume that no rank
sum equals a threshold by perturbing each threshold to the left. We may further
assume that r has 2k + 1 thresholds by adding a sufficiently large threshold 914
if neccesary. We then obtain a (—0941, —0ok, —O2k_1, ..., —0;)-representation of
G° from r by reversing the values of the ranks and the thresholds of G. Thus,
O(G°) < 2k + 1, and hence, k' < k. Similarly, ©(G) < 2k’ + 1, and therefore,

k < k'. Now, we have k = k', and hence, O(G), O(G°) € {2k, 2k + 1}. O



CHAPTER II1

THRESHOLD NUMBERS OF K, .3 AND nkj;

In this chapter, we determine the values of O(K,3) and ©(nK3). To outline the
proofs, we will need five lemmas. Lemmas @ to @ are for the lower bounds
where the key idea is in Lemma @ We apply Lemmas @ and @ to prove
Lemma , which determines the maximum number of triangles and parts in terms
of the number of colors. Lemma, @ helps improve the lower bounds obtained from
Lemma @ On the other hand, Lemma @ is a tool to prove the upper bounds.

Using an idea of Puleo [17], we start by assigning a color to each edge of
nK3 and each nonedge of K, 3 as follows. In a (01,605,605, ..., 0;)-representation
of nK3 where 6, < 0y < 63 < --- < 6, we color an edge uv with color 1, for
i€ {1,2,3,...,[5]}, if ru + 1y € [62-1,02) where 6,1 = co. We say that a

triangle has a color ij{ if the colors appearing on its edges are i, 7 and /.

Similarly, in a (6y, 05,05, ..., 0))-representation of K, .3 where ¢ < 0y < 03 <
-+« < 0, we color a nonedge xy with color i, for ¢ € {1, 2,3,..., (%W }, itr,+r, €
[02;_2,09;_1) where 6y = —oo. We say that a part has a color ijl if the colors

appearing on its nonedges are i, j and /.
First, we need a result of Puleo [17] which says that no two triangles in nkKj
have the same color. Interchanging edges and nonedges, no two parts in K, 3 have

the same color. We include a proof for completeness.

Lemma 3.1 ([17)). (i) In a (61,062,065, ...,0k)-representation of nKs, no two

triangles have the same color.
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(i) In a (01,0,,0s,...,0k)-representation of K,x3, no two parts have the same

color.

Proof. (i) Let r be a (01,02, 05, ...,0;)-representation of nK3 where 6 < 05 < 03 <
-+ < 0. Suppose to the contrary that there are two triangles T, and 7T}, in nKjs
having the same color ij¢. Thus, if V(T}) = {x1, 2, x3} and V(1) = {y1,v2, ys},

then without loss of generality let their edge rank sums be as follows:

Twl + T1’37 Ty1 + Tyg S [92i—17 021) )
Tz + Tzo, Tyl -+ Tyo € [92]',1, 62j) and

Tz + Tz, ryz + 7ﬁyg, & [92f717 02@) .

Note that at least two ranks out of max {r,,,r,, } ,max{r,,,r,, } andmax{r,,,r,}
are from the same triangle. Without loss of generality, let r,, <1, and r;, <7,.
Write 7, = min {r,,,r,,} and r, = max{ry,r,}. Observe that r, < r,, r,

and ry, > ry,7r,,. Therefore,
Ori1 < Tay + Ty 7wy 1y, STy 1y < O

By the definition of thresholds, w,y, is an edge of color 4, which contradicts the
fact that z,y, is a nonedge in nKs.

(17) Let r be a (64, 04,0s, ..., 0k)-representation of K, x3 where 0 < 0y < 03 <

- < 0. Suppose to the contrary that there are two parts S, and S, in K, 3

having the same color ¢j¢. Thus, if V(S,) = {x1, 22,23} and V(S,) = {y1,v2, ¥},

then without loss of generality let their nonedge rank sums be as follows:

Tay + Ty Ty T Tys € 62i—2,02i_1) ,
Toy + Taoy Tyy Ty € [‘923'_2, 82]'_1) and

Tzq + Tzs, Tyz + Tyg € [928727 62271) .
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Note that at least two ranks out of max {r,,, 7y, },max{ry,,r,, } andmax{ry,,ry,}
are from the same part. Without loss of generality, let r,, < r,, and 7., < 7.
Write 7, = min {r,,,r,,} and r, = max{ry,r,}. Observe that r, < r,, r,

and ry, > 1y, 7,,. Therefore,
921’—2 S Tzy + Txs S rxp + qu S Tyy + Tys < 927L—1-

By the definition of thresholds, z,y, is a nonedge of color ¢, which contradicts the

fact that z,y, is an edge in K, 3. [

The next lemma is the key idea for obtaining the lower bounds for the threshold

numbers.

Lemma 3.2. (1) Ina(01,605,0s,...,0;)-representation of nKs, and colorsi, j, £ €

H%H, colors 157 and 10l cannot appear on two triangles simultaneously.

(ii) In a (61,09,0s,...,0k)-representation of K, x3, and colors i,j,{ € H%H,

colors 177 and il cannot appear on two parts simultaneously.

Proof. We only prove (7) as the proof of (i7) is similar. Let r be a (0,605,605, ..., 0)-
representation of nK5 where 6, < 0, < 03 < --- < ;. Suppose to the contrary that
there are two triangles T, and T}, in nK3 of colors ¢jj and i¢¢ respectively. Thus,
if V(T,) = {x1, w2, 23} and V(1) = {y1, y2, y3}, then without loss of generality let

their edge rank sums be as follows:

a1 =Tz, +Tay € [02i—1,02:), b1 =1y, + 12y € [02j—1,005), bo =10, + 12y € [02j—1,02) ,

ag =71y, +ry; € [02i-1,02), c1 =1y + 1y, € [O20—1,02), 2 =1y, + 7y € [020—1,02).

From these rank sums, we can compute the ranks as follows:

” :a1+b1—b2 , :b1+b2—a1 , :a1+b2—bl
X1 2 Y xo 2 ) T3 2 9
ag 4+ C1 — ¢ Cc1+co—ao a9 + Co — €1

Ty, = 9 ’ Ty, = 9 ) Tys =
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Without loss of generality, let a1 < as, by < bsand ¢y < ¢y Let D =as—a; > 0
and let
A=by —by+c1 — ey,
B=—-bj+by+c1 —cy and
C=—-b+by—c1+co.
Note that A < B < C and A <0 < C. Since D > 0 > A, either D € [A, B|,

D € [B,C] or D € [C,00). We obtain a contradiction by the following three

claims.
Claim. D ¢ [A, B].

Since z,ys3 is a nonedge, we cannot have by < r,,+7,, < by; otherwise, 75, +7,, €

[‘923'_17 92]‘). Observe that

by + by — -
1t+02—ay as+co C1<b2

by < rpy + 1y by <= b < 5 5 <

< 21 < by +by—ay+as+co—c1 <2by
= by —bytc—ce<ay—a < —=b+by+ci—c
~— A< D<B.
Claim. D ¢ [B,(C].
Since x3y» is a nonedge, we cannot have ¢; < ry,+7r,, < co; otherwise, 1,41y, €
(0201, 020). Note that

ap+by—b 1 +ca—as
€1 STy + 7Ty, S = 1 < 5 5 <

Co
= 200 < a1 +by—by+cr+cp—ar <20
—2c0 < —a; —by+by —ci —cot+ay < —2¢

—bl+b2+01—62§a2—a1S—bl—i‘bz—Cl—i‘Cg

(R

B<D<LC.
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Claim. D ¢ [C, c0).

Since x3ys is a nonedge, we cannot have a; < r,, + ry, < ag; otherwise, r,, +

Tys € [921‘,1, 921) Observe that

a;+by—b  axt+cy—ay
a1 STy + 7y S g < a1 <

< 5 5 < a

< 2a1§a1+bg—b1+a2+cz—01§2a2

— a1 —a < —bi+by—ci+c<as—a
— —-D<C<D
— C <D,
since —D < 0 < (' is trivially true. O

We apply Lemmas @ and @ to determine the maximum number of triangles and
parts in terms of the number of colors, which in turn gives lower bounds for the

threshold numbers.

Lemma 3.3. (i) If there are at most m colors of edges innKs, thenn < m+ (Tg) )

In particular, if nK3 is a k-threshold graph, then n < (%W + ([kéﬂ).

(ii) If there are at most m colors of nonedges in K, s, then n < m + (’g) In

particular, if K,v3 is a k-threshold graph, then n < (%W + (HH;)/Q]).

Proof. We will only prove (i) as the proof of (ii) is similar. Suppose that there
are at most m colors of edges in nK3. By Lemma @, no two triangles in nkj
have the same color. Thus, there are at most (’;) triangles in n K3 whose edges are
colored with 3 colors. It is sufficient to show that there are at most m triangles
in nK3 whose edges are colored with 1 or 2 colors. Indeed, for each color ¢ € [m)],

there is at most one triangle of color of the form ijj where j € [m] by Lemma @
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Thus, n < m + (’;;) Note that if nK3 is a k-threshold graph, then there are at

most [%W colors of edges in nK3, and hence, n < (%W + ({kéﬂ). ]

The lower bounds for the threshold numbers obtained from Lemma @ are not
sharp. We require another observation which states roughly that the first and last

colors appear in at most one triangle or part.

Lemma 3.4. (i) In a (01,0,,0s,...,05, 1)-representation of nKs, an edge of

color m appears in at most one triangle.

(i7) In a (01,02,0s,...,0,)-representation of K, 3, a nonedge of color 1 appears

i at most one part.

(iii) In a (01,60,0s, ..., 09, )-representation of K,x3, a nonedge of color m + 1

appears 1n at most one part.

Proof. (i) Let r be a (01,602,605, ...,0,_1)-representation of nK3. Suppose to the
contrary that there are two triangles 7, and T}, in nK3 with an edge of color m.
Let V(T,) = {z1, 22,23} and V(T})) = {vy1,y2,y3}. Suppose that z;zo and yiy-
are edges of color m. By the definition of colors of edges, 75, + 74,, 7y, + 1y, €
[02m—1,00), that is ry, + 74y, 7y + ryy > O2m—1. Assume without loss of generality

that ry,, 7y, > 92"2“1. Thus, r;, + 1y, > O2p,—1. By the definition of colors of edges,

1y, is an edge in nK3, a contradiction.

(17) Let r be a (64, 04,0s,...,60,,)-representation of K, 3. Suppose to the con-
trary that there are two parts P, and P, in K, 3 with a nonedge of color 1. Let
V(P,) = {1, 22,23} and V(P,) = {v1,%2,y3}. Suppose that x z, and y1y» are
nonedges of color 1. By the definition of colors of nonedges, 7, 4+ 74,, 7y, + 1y, €
(—00,61), that is 74, + 74y, 7y, + 7y, < 01. Assume without loss of generality that

Tars Ty < 9—21. Thus, 7, + 1y, < 6;. By the definition of colors of nonedges, z1y; is
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a nonedge in K, 3, a contradiction.

(1ii) Let r be a (0y,605,05,...,09,)-representation of K,.3. Suppose to the
contrary that there are two parts P, and P, in K, 3 with a nonedge of color
m+ 1. Let V(P,) = {x1,%2,23} and V(P,) = {y1,%2,y3}. Suppose that zz,
and y,y2 are nonedges of color m + 1. By the definition of colors of nonedges,
Tuy + Tayy Ty + Ty € [Bom, 00), that is 7, + 14,, 7y, + 1y, > 02, Assume without
loss of generality that r, 7, > 927"”. Thus, r,, + 1y, > 6a,. By the definition of

colors of nonedges, x1y; is a nonedge in K, 3, a contradiction. [

The upper bounds for the threshold numbers will be obtained by rank as-
signments of the following forms. A rank assignment r of nKj3 is said to be an
{a1,as,as, ..., an}-assignment if each triangle has edge rank sums of the form
a;, a;, a; or a;,aj, a for distinct ¢, 7,k € [m], and no two triangles have the same

multiset of edge rank sums.

Remarks 3.5. (i) In an {ay,as,as,...,a,}-assighment of nKj, there are at
most m triangles having edge rank sums of the form a;, a;, a;, and there are
at most (7:’,?) triangles having edge rank sums of the form a;, a;, a;, for distinct

i,7,k € [m].

(ii) A triangle has edge rank sums a;, a; and a; if and only if its ranks are

a;taj;—ar  a;tagp—a; ajtag—a; . @
57—, =—=—= and ~——" (see Figure B.1)).

(iii) If n < m + (7;), then an {ay,as, as, ..., a,}-assignment of nKj exists since

we can assign any edge rank sums for each triangle.

In the same fasion, a rank assignment r of K,.3 is an {ay,a9,as,...,am}-
assignment if each part has nonedge rank sums of the form a;, a;,a; or a;,a;,ay

for distinct 4, j, k € [m], and no two parts have the same multiset of nonedge rank
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aita;—ag

aitar—a; ajtag—a;

Figure 3.1: A triangle having edge rank sums a;, a; and ay

sums.

Remarks 3.6. (i) In an {a1,as,as,...,a,}-assignment of K, .3, there are at
most m parts having nonedge rank sums of the form a;, a;, a;, and there are
at most (’g) parts having nonedge rank sums of the form a;, a;, a;, for distinct

i,J,k € [m].

(ii) A part has nonedge rank sums a;, a; and a; if and only if its ranks are

a;jtaj—ar a;jtagp—a; ajtarp—a;
S 5 and ~——

(iii) If n <m+ (Tg), then an {ay,as,as, ..., a,}-assignment of K, .3 exists since

we can assign any nonedge rank sums for each part.

The linear independence of {ay,as,as, ..., an} over Q is a sufficient condition
for the edge and nonedge rank sums in an {ay,as,as, ..., a, }-assignment not to

coincide.
Lemma 3.7. Let {a1,as,as,...,a,} CR be a linearly independent set over Q.

(i) Inan{ai,as, as,...,ay,}-assignment of nKs, the edge and nonedge rank sums

do not coincide.

(ii) In an {a1,as,as,...,an}-assignment of K,xs3, the edge and nonedge rank

sums do not coincide.
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Proof. We only prove (i) as the proof of (i7) is similar. Let A = {ay, as,as,...,an}
C R be a linearly independent set over Q. Let r be an A-assignment of nK3. Then,
each triangle in nkK3 has edge rank sums of the form a;, a;, a;, where i, 7,k € [m]
are all equal or all distinct, and no two triangles in n K3 have the same multiset of
edge rank sums. Note that the rank of each vertex in nKs is of the form “F%=%
Suppose to the contrary that there exists a nonedge xy in nK such that r,+r, = a,

for some ¢ € [m]. Let r, = “F%=%

and r, = 2+9=% where i,j,k € [m] are all
equal or all distinct, 7, s,t € [m] are all equal or all distinct, and {1, j, k} # {r, s, t}.

Hence, r, + r, = a; becomes
ai+aj—ak+aT+as—at:2ag.

Since {a;,a;,ar} # {a,,as,a:}, there exists an element in one set not appearing
in the other set, say a; ¢ {a,,as,a;}. Since i, j, k are all equal or all distinct, the
coefficient of a; after simplifying the left hand side of the equation is 1. Since
A is a linearly independent set over QQ, the left hand side cannot equal 2a,, a

contradiction. O
We are now ready to determine the exact threshold numbers of nKj.
Theorem 3.8. Let ¢, = m+ () +1. Forn > 1,

2m —1 if n = qp_1,
@(an) = '

2m if Qo1 <n < qp.

Proof. Let m be a positive integer such that ¢,,_1 < n < ¢,. Suppose to the
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contrary that O(nkj3) < 2m — 2. By Lemma @ (1),

< [Qlka] , ([25))

3
<[] (57
=m-—1+ (mg— 1)

= 4gm-1 — 17

contradicting the definition of m. Thus, ©(nK3) > 2m — 1.

To prove that O(nK3) < 2m, let A = {ay,as,a3,...,a,} C RT be a linearly
independent set over Q, for example, let a; = \/p; where p; is the ith prime num-
ber. Since n < ¢, — 1 = m + (Tg), we can pick an A-assignment for nkKs3. By
Lemma @ (1), the edge and nonedge rank sums do not coincide. We separate the
edge and nonedge rank sums by putting two thresholds around each edge rank sum.
For i =1,2.3,...,m, let 09,1 = a; and 05; = a; + ¢ be thresholds of nK3 where
¢ is a sufficiently small positive real number, for example, take ¢ smaller than any
distance between two distinct rank sums of nKs. Thus, the above rank assign-
ment is a (6, 09,03, . .., 0a,)-representation of nK3. Hence, nKj is a 2m-threshold
graph, that is ©(nKj3) < 2m as desired.

We suppose that n = ¢,_1. To prove that O(nk3) < 2m — 1, let A =
{a1,a9,a3,...,a,} C RT be a linearly independent set over Q such that a; <

ag < az < -+ < am-1 < % We then pick an A \ {a,, }-assignment for the

first m — 1 + (mg_ 1) triangles in nKj, and let the last triangle have edge rank
SUmS dy,, Ay, Ay,. Note that this is an A-assignment of nK3. By Lemma @ (1),
the edge and nonedge rank sums do not coincide. We separate the edge and
nonedge rank sums by putting two thresholds around each edge rank sum. For

1= 1,2,3,...,m, let 69,_1 = a; and 6y; = a; + € be thresholds of nK3 where ¢

is a sufficiently small positive real number. Thus, the above rank assignment is
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a (61,02,0s,...,0,)-representation of nKj. In fact, we will show that we do not
need the last threshold 6y, by proving that no rank sum exceeds 6,,_1. It is suffi-

cient to show that the rank of each vertex is at most 927*1 g

=, This is clear for

the last triangle with edge rank sums a,,, a,,, a,, since the rank of each vertex is

. For the other triangles, the rank of each vertex is of the form ““%=" for some
(li—i-ll]'—ak < aTm+aTm+0 __ Gm
= 2 2 -

i,j,k € [m —1]. Since a;,a; < % and a; > 0, we have =
Thus, all rank sums are at most a,, = 05,,_1. Then, the above rank assignment is
a (01,02,0s,...,09, 1)-representation of nK3. Hence, nKj is a (2m — 1)-threshold
graph, that is ©(nK3) < 2m — 1 as desired.

Suppose that n > ¢,_1. To prove that ©(nKs3) > 2m, we suppose that
O(nkK3) < 2m — 1. Let r be a (01,605,065, . ..,09,_1)-representation of nK3. Then,
there are at most m colors of edges in nK3. By Lemma @ (1), there are at most
m—1-+ (m;) = ¢m—1 — 1 triangles without color m. By Lemma @ (1), an edge of

color m appears in at most one triangle. Thus, n < (¢,,—1 — 1)+ 1, a contradiction.

Therefore, ©(nks) > 2m. O

By applying Theorem @ together with Proposition , we can narrow down

the possible values of ©(K,,«3) to just two numbers.
Theorem 3.9. Let p,, = m + (g‘) +2. Forn > 2,

2m if n=pm_1,
@<Kn><3) =
2m + 1 if pp_1 <n < pm.
Proof. Let m be a positive integer such that p,,.1 < n < p,. Observe that

Pm = qm + 1. Thus, m is such that ¢,,_ 1 <n < ¢,,. By Theorem @,

2m + 1 if n = q,,,
@(an) =

2m if g1 << @

By Proposition , O(Ky,x3) € {2m,2m + 1}.
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Suppose that n = p,,—1. To prove that O(K,x3) < 2m, we will let A =
{a1,as2,a3,...,ami1} C R be a linearly independent set over Q such that a; <
ag < az < -+ < Gy, — |a;] > G and a;| < 2 for all i € [m] N {1}. We pick an
A N A{ay, ap1 p-assignment for the first m — 1 + (m;l) parts in K, .3, and let the
last two parts have nonedge rank sums ay, a1, a; and @11, Gy, Gma1- Note that
this is an A-assignment of K, 3. By Lemma @ (1), the edge and nonedge rank
sums do not coincide. Let 0, be smaller than all rank sums. We then separate the
edge and nonedge rank sums by putting two thresholds around each interval of
nonedge rank sums. Fori=1,2,3,...,m+1, let 6y; = a; and 05,1 = a; + ¢ where
¢ is a sufficiently small positive real number. Thus, the above rank assignment is a
(01,02,0s, ..., 09, 3)-representation of K, 3. In fact, we will show that we do not
need the thresholds 6,6, and 0s,, 3 by proving that no rank sum is smaller than
Oy or larger than 6,,,.5. It is sufficient to show that the rank of each vertex is at

O2m 12

least 92—2 = 4 and at most 2%+ = 2t This is clear for the last two parts with

nonedge rank sums aq,aq,a; and a1, Gyma1, Gy Since the rank of each vertex

is either 4 or “==. For the other parts, the rank of each vertex is of the form
MTJ*C““ for some i, j, k € [m] \ {1}. Since ¢ < a;,a;, —ap < “%, we have

ai ai ai [ K Am+41 Am4-1 Am+1
ai 3+3+3<az+a3 ak<3+3+3:am+1

2 2 - 2 - 2 2

Thus, all rank sums are at least a; = 65 and at most a,, 11 = 09,,12. Then, the above
rank assignment is a (03, 04, 05, . . ., 02,12 )-representation of K, «3. Therefore, K, 3
is a 2m-threshold graph, that is ©(K,«3) < 2m as desired.

Suppose that n > p,,_1. To prove that O(K,.3) > 2m + 1, we suppose that
O(K,x3) < 2m. Let r bea (0, 605,0s, ..., 0,)-representation of K, «3. Then, there
are at most m+1 colors of nonedges in K,,3. By Lemma @ (ii), there are at most

m—1+ (") = pm_1 — 2 parts without colors 1 and m + 1. By Lemma @ (17)
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and @ (7i7), a nonedge of color 1 appears in at most one part and a nonedge of
color m + 1 also appears in at most one part. Therefore, n < (p,—1 —2) +1+1,

a contradiction. ]



CHAPTER IV

THRESHOLD NUMBERS OF K, ., AND nKk,

In this chapter, we determine the exact threshold numbers of K, .4 and nK,. We
will need Lemmas @ and @ as well as five new lemmas. Lemma @ identifies all
sets of edge rank sums that can appear in a K. Lemmas @ and @ are for the
lower bounds where the key idea is in Lemma @ We apply Lemmas @ and @
to prove Lemma @, which provide the maximum number of K,’s and parts in
terms of the number of colors. Lemma @ improves the lower bounds obtained
from Lemma @ On the other hand, Lemma @ which is a tool to prove the
upper bounds utilizes Lemma @ in its proof.

We start by assigning a color to each edge of nK, and each nonedge of K, 4 as
follows. In a (0,605,605, ...,0;)-representation of nKy where 0; < 0y < 63 < --- <

k

05, we color an edge uv with color i, for i € {1, 2 one -, [5-‘ }, if ry+r, € [02i-1,02)

where 01 = 00.

Similarly, in a (61, 6s,0s, ..., 0k)-representation of K, .4 where ) < 0y < 03 <
-+« < B, we color a nonedge xy with color i, for i € {1, 2,3,..., (%w }, ifro+r, €
[021‘_2, Qgi_l) where 00 = —0OQ.

We denote by Ky (a1,by,a9,bs,a3,b3) a Ky each of whose vertices is assigned
a rank so that the edge rank sums are ay, by, as, by, az and by where a; and
b; belong to a perfect matching for each ¢ as shown in Figure @ For conve-
nience, we write Ky (¢) for Ky (¢, ¢, ¢, ¢, c,c). Observe that Ky (by, a1, as, by, as, bs),

K4 (CLl, bl, bQ, as, as, bg) and K4 (CLl, b17 as, bg, bg, CL3) are iSOIl’lOI'phiC7 while
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Ky (ay,by,a9,by,b3,a3) and Ky (aq,by,as, by, az, bs) are not isomorphic.

a1

a3

by

Figure 4.1: K4 (al, bl, as, bg, as, b3)

In the same fasion, we denote by Ej (aq,by,as,bs, a3, b3) an empty graph on
four vertices having nonedge rank sums ay, by, as, bs, ag and b3 where a; and b;
belong to an independent nonedges for each 1.

It is easy to determine which edge rank sums aq, by, as, bs, az and b3 can appear

in a K.

Proposition 4.1. The following statements are equivalent:
(i) Ky(a1,b1,a9,by,a3,b3) exists.
(7i) Ey(a1,by,a9,by,as3,bs) ezists.

(iii) a1 + by = as + by = az + bs.

Proof. (i) = (i7i): Suppose that Ky (ay,by,as,bs, a3, b3) exists, that is we can
assign a rank to each vertex so that the edge rank sums are aq, by, as, by, az and
bs where a; and b; belong to a perfect matching for each ¢. Since each perfect
matching spans all vertices of the graph, the summation of all ranks is equal to
a; + b; for each 7. Thus, a1 + by = as + by = a3 + b3 as desired.

(i7i) = (i): Let {w,z,y, z} be the vertex set of K,. We will provide an assign-

ment r of ranks so that the graph is Ky (a1, by, as, bo, ag, b3) as shown in Figure @
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w ay x

as 4 3 | by

y by z
Figure 4.2

To obtain edge rank sums by, by, b3 for the triangle zyz, we let

_b2+bg—b1 _b1+bg—b2

b by — b
r(z) — r(y) w7777 and r(z) = M

2
We immediately obtain r(y) + r(z) = by, r(z) + r(z) = by and r(z) + r(y) = bs.
Now, let r(w) = @t@2=t  Thys,

a1+a2—b3 b2—|—b3—b1

r(w) 4+ r(x) = 5 + 5 = a; since a; + by = as + ba,

r(w) +r(y) = a1+a22—b3 + b1+b23_b2 = a4 since a; + b; = as + by and

r(w) +1r(z) = a1+22_b3 + bl+bz2_b3 = a3 since a; + by = ag + by = ag + bs.
For (i1) < (iii), the proof is similar. O

The following key lemma for the lower bounds for the threshold number, deter-
mines the maximum numbers of K,’s and parts in terms of the number of colors.

The crux of the proof is an observation that each K, must contain a particular

kind of Kj.

Lemma 4.2. (i) If there are at most m colors of edges in nKy, then n < m +
(ng/zj) + ([mg/ﬂ). In particular, if nK, is a k-threshold graph, then n <

5]+ () 4 (1),

(i) If there are at most m colors of nonedges in K, x4, then n < m + (ngm) +

((mg/z])' In particular, if K,x4 is a k-threshold graph, then n < {k—;lw +

(L(k+32)/4j) + (f(k+31)/4W).
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Proof. We will only prove (i) as the proof of (i7) is similar. Let r be a representation
of nK, such that there are at most m colors of edges. We decompose nk, into
two subgraphs G| = ny K4 and Gy = ny Ky with n = ny + ng such that G consists
of all K,’s containing a triangle whose edges are colored with 1 or 2 colors and G,
consists of all K,’s with four triangles whose edges are colored with 3 colors. First,
we show that n; < m. Consider a subgraph n; K3 of GGy consisting of triangles
whose edges are colored with 1 or 2 colors. Since n; K3 is an induced subgraph of
nKy, we have r is also a representation of n;K3. Applying Lemma with the
representation r of ny K3, for each color ¢ € [m], there is at most one triangle in
n1 K3 of color of the form ijj where j € [m]. Thus, n; < m.

It remains to show that ns < ( ng/ 2J) Ll ( (mg/ 21). Let £ be the set of triangles in
nkKy of colors ij¢ where 7, 7, ¢ € {1, 25 375%. L%J } are all distinct. Let U be the set
of triangles in n Ky of colors ij¢ where i, j, £ € {L%J +1, L%J + 2, L%J +3,... ,m}

are all distinct. Note that |£] < (Lm3/2J) and || < (fmg/ﬂ)'
Claim. Fach K4 in G5 contains at least one triangle in LUU.

Proof of Claim. Let {vy,v9,v3,v4} be the vertex set of K. Suppose without loss

of generality that r,, <r,, <7, <r,. Thus,
Toy F Toy STy F Tug S Tyy F Tog S Ty + Ty S Tog + Ty
If vov3 have color i, then 7 is in either
m m m m
1,2,3,...,{—” H—J 1,L—J 2,{—J 3. }
{ SRR R 2] T "
Hence, either vjv9v3 is in L or vyvsvy is in U. O

By Claim, there exists a subgraph ny K3 of G5 consisting of triangles in £LUU.

Since ny K3 is an induced subgraph of nKy, we have r is also a representation of
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no K3. Applying Lemma @ with the representation r of ny K3, no two triangles in

no K3 have the same color. Thus,

ny < |LUU| < (%J) N (%W)

Observe that if nKy is a k-threshold graph, then there are at most (g] colors

of edges in nKy, and hence,

SERCUNGURCNCONCINE

Similarly to the case of K3, the lower bounds for the threshold numbers obtained
from Lemma @ are not sharp. We again need another observation which says

roughly that the first and last colors appear in at most one K, or part.

Lemma 4.3. (i) In a (61,0s,05,...,05, 1)-representation of nKy, an edge of

color m appears in at most one Ky.

(i) In a (01,02,0s,...,0,)-representation of K, x4, a nonedge of color 1 appears

i at most one part.

(7ii) In a (0y,05,05, ..., 00, )-representation of K, x4, a nonedge of color m + 1

appears in at most one part.
Proof. The proof is similar to that of Lemma @ O]

The upper bounds for the threshold numbers will be obtained from rank assign-
ments of the following forms. Let A = {ay,aq,as,...,ap}, B ={b1,bo, b3, ..., by}
be such that a; +b; = N for some N € R and for all i € [M]. For n = 2M+2(A34),

the (A, B)-assignment is the rank assignment of nK, consisting of the following
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Ky's:

K, (a;) for each i € [M],
K4 (b;) for each i € [M],
Ky (ai, b;,a;,b;,ai,by) for each subset {7, j, k} C [M] of size 3 and

Ky (ai, b;,a;,b;,by, ar) for each subset {7, j, k} C [M] of size 3,

where each of them appears exactly once. Note that the numbers of K,’s in each
line are M, M, (1\34) and (13\4) respectively, and they exist by Proposition @

Let € > 0. Forn =2M +1+ (]\34) + (M;—l)7 the (A, B, )-assignment is the rank

assignment of nK, consisting of the following Kj’s:

K4 (a;) for each i € [M],
K4 (b;) for each i € [M],
Ky (ai, b;,a;,b;,a5,by) for each subset {7, j, k} C [M] of size 3,
Ky (a;,bi,a5,b;, by, a) for each subset {1, j, k} C [M] of size 3,

N
Ky <5 + 5) and

N N
K, (ai +e,b;+¢€,a; +¢€,b; +6,§ +6,5 —|—5> for distinct ¢ and j in [M],

where each of them appears exactly once. Note that the numbers of K,’s in each
line are M, M, (]\34 ), (]3\/[ ), 1 and (]\24 ) respectively, and they exist by Proposition @

Occasionally, we say that a K} is of
o type I if it is a Ky (a;) or K4 (b;) for some i € [M],

o type II if it is a Ky (a;, b;, a4, b5, ak,b;) or Ky (a;,b;,a;,b;, by, ax) for some

subset {i,j,k} C [M] of size 3,

o type I if it is a K, (% + 5) and
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o type IV if it is a Ky (ai—l—s,bi—i-s,ajan,bj—I—s,%+5,%—i—s) for some dis-

tinct 4, j € [M].

In the same fasion, we can define the (A, B)-assignment and the (A, B, €)-assignment
of K, «4 by replacing K, with FEj.

The following lemma will be used repeatedly in the proof of Lemma @

Lemma 4.4. Let {N,ay,a9,as,...,ap ) C R be a linearly independent set over
Q and b = N —a; fori = 1,2,3,...,M. Let A = {ay,a9,as,...,ay} and
B={bibbs, b} I

Zaixi 4+ BN =0,

i=1
where a; € Z, x; € AU B for alli € [S] and f € Q, then Zis:1 a; 1s even.
Proof. Suppose that Zle a;x; + BN =0 where a; € Z, x; € AU B for all i € [9]
and § € Q. Observe that x; is either a;, or b;, = N — a;, where j; € [M]. Then,

we can write x; = d0;a;, + ;N where ¢; € {—1,1} and ; € {0,1}. The equation

becomes
S S
i=1 i=1
Since {N, ay, as, as, . .., ap} is linearly independent over Q, we have Zle dia; = 0.
Hence,
S S
YOS SITRED S ypt
i=1 i=1 i=—1 i=—1
is even. [
The linear independence of {N,ay,as,as,...,ay} over Q is a sufficient con-

dition for the edge and nonedge rank sums in the (A, B)-assignment and in the
(A, B, e)-assignment not to coincide. For the (A, B,¢)-assignment, we prove fur-
ther that there are small intervals without nonedge rank sums that cover all edge

rank sums.
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Lemma 4.5. Let {N,ay,a9,as,...,ay} C R be a linearly independent set over
Q and b = N —a; fori = 1,2,3,...,M. Let A = {ay,a9,as,...,ay} and

B - {bl,bg,b3, .. ,bM}

(i) Letn = 2M—i—2(]\34). In the (A, B)-assignment of nKy, the edge and nonedge

rank sums do not coincide.

(ii) Let n =2M + 1+ (J‘gf) + (Mgrl). Then, there exists a positive real number
such that, in the (A, B,¢e)-assignment of nKy, no nonedge rank sum lies in
either a;,a; + €|, [b;,b; + €] or {% + 5} for all i € [M]. Moreover, the sets
of the form [a;, a; + €], [bi,bi + €] and {Z +e} for all i € [M] are pairwise

disjoint.

(7ii) Letn = 2M+2(]\34). In the (A, B)-assignment of K, x4, the edge and nonedge

rank sums do not coincide.

(iv) Let n = 2M + 1+ (%) + (MF'). Then, there exists a positive real number
e such that, in the (A, B, e)-assignment of K,x4, no edge rank sum lies in
either [a;,a; + €], [bi, b; + €] or {§ + ¢} for all i € [M]. Moreover, the sets
of the form [a;, a; + €], [bi,b; + €] and {5 + e} for all i € [M] are pairwise

disjoint.

Proof. For (i) and (i), it is sufficient to prove (ii) since every K, in the (A, B)-
assignment appears in the (A, B,¢)-assignment and each edge rank sum in the
(A, B)-assignment is either a; or b;. The proofs of (i7i) and (iv) are similar to
those of (i) and (7).

To prove (i), let n = 2M + 1+ (%) + (™). We first consider the (4, B, ¢)-

assignment of nK, in the case when € = 0.

Claim. For the (A, B,0)-assignment r’ of nKy, no nonedge rank sum lies in AUB.
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Proof of Claim. Suppose to the contrary that there exists a nonedge zy in nkjy
such that 7/, +r} lies in AU B, say 7}, + 1, = ¢; € {as,b;} for some ¢ € [M]. We
divide into cases according to the four possible types of K4 that z and y are in as

shown in Table [1!

I K4 MKy, | IIl K4 | IV K4
T

I K, Case 1 | Case 2 | Case 4 | Case b

II K, Case 3 | Case 6 | Case 7
I K4 Case 8 | Case 9
IV K, Case 10

Table 4.1: Ten cases according to the four possible types of K, that x and y are
in.

Observe that the rank of each vertex in a type I Ky is of the form ¢ where

i € [M] and ¢; € {a;,b;}, that in a type IT Ky is of the form “T%=% where

i,7,k € [M] are all distinct and ¢, € {as, b} for ¢ € {i, 7, k}, that in a type III K,

—N/2

is of the form %, and that in a type IV K} is of the form cite=N/2

5 where i, j € [M]

are distinct and ¢, € {ay, by} for £ € {7, j}.
Case 1. x,y € type I K.
Then, z € K4(¢;) and y € K, (d;) where 4,j € [M] and ¢; € {a;,b;}, d; €
d

e I ro__dj . / r
{aj,b;}. Thus, r;, = § and r, = 5. The equation r, + r, = e; becomes

c; + dj = 2€t'
First, suppose that ¢ # j. One of ¢ or j cannot equal to ¢, say ¢ # t. By

writing the equation in terms of the basis {N,aj,as,as, ..., ay}, we can see that

the equality cannot occur since ¢; is the only term in the equation involving a;, a
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contradiction. Now, suppose that ¢ = j. Since z and y are in different K,’s, we
have {¢;,d;} = {a;,b;}, and hence, the equation becomes N = 2¢,, a contradiction.
Case 2. x € type I K4 and y € type II Kjy.

Then, x € K4 (c;) wherei € [M], ¢; € {a;,b;}, yisin either Ky (a,, by, ay, by, as, bs)

or Ky (ay, by, aq,bq,bs,as) where p,q,s € [M] are all distinct. Thus, , = ¢ and

T, = W where d; € {ar, be} for £ € {p,q,s}. The equation r}, + 1, = e
becomes

¢+ dyp + dy — dy = 2e,.

Since p, q, s are all distinct, there is an index in {p, ¢, s} not appearing in {i,t},
say p ¢ {i,t}. Thus, the equality cannot occur since d, is the only term in the
equation involving a,, a contradiction.
Case 3. z,y € type 1l K.

Then, z is in either K4 (a;, b;, a;j, b;, ay, b) or Ky (a;, b;, a;,bj, by, ai) where i, j, k €

[M] are all distinct, and y is in either Ky (ay, by, ag, by, as, bs) or Ky (a,, by, ag, by, bs, as)

citcj—cg

L where ¢, € {ay, b} for

where p,q,s € [M] are all distinet. Thus, 7, =
¢ € {i,j,k} and r), = M;_ds where dy € {ay, by} for ¢ € {p,q,s}. The equation

7, + 7, = €; becomes
CZ'—FCj—Ck—i‘dp—f‘dq—ds:Qet.

Case 3.1. {i,j,k} # {p,q,s}.

Then, there is an index in {7, j, k} not appearing in {p, q, s}, say i ¢ {p,q,s}.
Similarly, there is an index in {p, ¢, s} not appearing in {7, j, k}, say p ¢ {1, j, k}.
One of 7 or p cannot equal to t, say ¢ # t. Thus, the equality cannot occur since ¢;
is the only term in the equation involving a;, a contradiction.

Case 3.2. {i,j,k} = {p,q, s}.

Without loss of generality, let i« = p, j = ¢ and k = s. Since x, y are in different
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co| ¢ | ek d; | dj | dy
a; | bj | a a; | by | by
b; | bj | b by | bj | ax
b | aj | ag bi | aj | by
a; | a;j | by a; | a; | a
(a) Ky (ai,bi,aj4,bj5,ak, by) (b) K4 (aj, bi,aj,bj, by, ar)

Table 4.2: The possible values of ¢;, ¢;, ¢, and d;, d;, dy.

Ky’s, we can assume without loss of generality that © € Ky (a;, b, a;,b;, ax, b;) and
y € Ky (a;,bi,aj,b;,by, a;). By considering the edge rank sum of each triangle in
Ky (@i, bi,aj,b;, ax, by), each row in Table shows the possible values of ¢;, ¢;, ci,
and by considering the edge rank sum of each triangle in Ky (a;,b;, a;,b;, by, ai),
each row in Table shows the possible values of d;, d;, di.

By comparing a row in Table with a row in Table , we observe that
either none or two of ¢; = d;, ¢; = d; and ¢, = di hold. If none holds, then
{ci,di} = {ai,bi}, {c;,d;} = {a;,b;} and {cx,dr} = {ax,br}. Thus, the above
equation becomes

N+ N —N =2¢

which is a contradiction. If two of ¢; = d;,¢; = d; and ¢, = dj, hold, then we
assume without loss of generality that {¢;,d;} = {a;,0;} and ¢; = d;, ¢ = dy.

Thus, the original equation becomes
N + 2¢; — 2¢p, = 2e.

Since j # k, one of 7 or k cannot equal to t, say j # t. Hence, the equality cannot

occur since ¢; is the only term in the equation involving a;, a contradiction.
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Case 4. x € type I K4 and y € type III K.
Then, x € K4(¢;) where ¢ € [M] and ¢; € {a;,b;}, and y € Ky (%) Thus,

-

r, =9 and r; = &. The equation 1/, + 1, = €; becomes

N
Ci—26t+§:0.

By Lemma Q, the sum of the coefficients of ¢; and e; must be even, a contradiction.
Case 5. x € type | K, and y € type IV Kj.

Then, x € K, (¢;) wherei € [M]and ¢; € {a;,b;},andy € K, (ap, by, aq, by %, %)

where p, q € [M] are distinct. Thus, 7, = 5 and ) = w where dy € {ay, b}

for £ € {p, s}. The equation r, 4+, = e; becomes

N
cz-—i-dp—i-dq—Qet—E:O.

By Lemma @, the sum of the coefficients of ¢;, d,, d, and e, must be even, a
contradiction.
Case 6. x € type Il K4 and y € type 11l Kj.

Then, x is in either Ky (a;, b;, a;, bj, ag, by) or Ky (a;, b;, a;, bj, by, ai) where i, j, k €
[M] are all distinct, and y € Ky (§). Thus, 7, = “F9=% where ¢, € {as, b} for

¢ e {i,j k}, and v/, = &. The equation r’ + r/ = e; becomes
y 4 N U
N
Ci—i-Cj—Ck—FE—Qet:O.

By Lemma Q, the sum of the coefficients of ¢;, ¢j, ¢ and e; must be even, a
contradiction.
Case 7. x € type Il K4 and y € type IV K.

Then, x is in either Ky (a;, b;, a;, bj, ag, by) or Ky (a;, b;, a;, bj, by, ai) where i, j, k €
[M] are all distinct, and y € K (ap, by, ag, by, %, %) where p, g € [M] are distinct.

Thus, r}, = “X9=% where ¢, € {az, by} for € € {i,j, k}, and r/, = MQ_N” where
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dy € {ag,be} for £ € {p,q}. The equation r, + r, = e; becomes
N
ci+cj—ck+dp+dq—26t—5 =0.

By Lemma @, the sum of the coefficients of ¢;, ¢;, cx, dp, d; and e, must be even,
a contradiction.
Case 8. z,y € type 11l K.

This case cannot occur since x and y are in different K4’s, but there is only one

Ki (%)
Case 9. x € type III K, and y € type IV Kj.

Then, z € K4 (%) and y € Ky (ai, b, a;,b;, %, %) where i, j € [M] are distinct.

Ci+6j — 2

Thus, ), = & and r|, = g N2 here ¢ € {ag,be} for ¢ € {i,j}. The equation

4

/ /o
T, + 1, = € becomes
Ci+¢j = 2e;.

We obtain a contradiction similar to Case 1.
Case 10. x,y € type IV K.

Then, x € K, (ai,bi,aj,bj,%,%) where 4,j € [M] are distinct, and y is in

C¢+ijN/2

5 where

Ky (ap,bp,aq,bq, %, %) where p,q € [M] are distinct. Thus, 7/, =

dp+dg—N/2
2

cg € {ag, be} for £ € {i,j}, and ), = where dy € {ay, b} for £ € {p,q}.

The equation 75, + r, = e; becomes
¢ +cj+d,+d; — N = 2e;.

Since x and y are in different K,’s, we have {i,j} # {p, q}. Thus, there is an index
in one set not appearing in the other set, say i ¢ {p, ¢} and p ¢ {i,j}. One of i or
p cannot equal to t, say i # t. Therefore, the equality cannot occur since ¢; is the

only term in the equation involving a;, a contradiction. O
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Let ¢ be a positive real number smaller than any distance between two distinct
rank sums in the (A, B, 0)-assignment of nK,. Note that the set of edge rank sums
in the (A, B, 0)-assignment of nk, is AUBU {%} By the definition of ¢, the sets
of the form [a;, a; + €], [bi, b; + €] and {§ + ¢} for all i € [M] are pairwise disjoint.

Let r be the (A, B, ¢)-assignment of nKy. Then,, for any vertex u € nky,

r, if wis in a type I or II Ky,
Ty =

T, + 5 if uisin a type Il or IV Kj.
Let zy be a nonedge in nK, and consider a; € A. Observe that

&
2

T o TR

rx+ry€{r;—|—ry, h ,r;+r;+€}.

By Claim, 7/, + 7, # a;. Since g; is a rank sum in the (A, B,0)-assignment, the
distance between 1), + r, and a; exceeds & by the definition of e. If v + 1, > a;,
then a; +e <r, +r, <rp+r, W0, +r, <a;thenr, +r, <1y +r, +e <a;
Thus, ry + 1y, ¢ (i, a; + €]. Similarly, r, +r, & [b;, b; +€].

It remains to show that r, + 7, # % + ¢. Note that % is a rank sum in the
(A, B,0)-assignment. Thus, the distance between 7} + 1, and % is either 0 or more
than € by the definition of . If « or y is in a type I or II Ky, then r, 4+ 1, €
{rl, + 7, vl +r,+5}. Ury+r, = 3 +e, then the distance between 1}, +r/, and &
is either € or £, a contradiction. Thus, we may suppose that both z and y are in a
a type IIT or IV Kj. Since there is only one K, of type I1I, we may suppose further
that z is in a type IV Ky. Then, z € K4 (ai—i—s,b,-—ke,aj +¢,b; +8,%—|—6,%+6)
for some distinct 4,5 € [M]. Thus, r, = w where ¢, € {ay, b} for €
{z,5}.

If y is in a type III K4, then y € K4 (% + 5). Thus, r, = % + 5. Hence,

Ci—FCj—N/Q—F&“ N e Ci‘i‘Cj
Ty + 1Ty = |\ —+35)|=—7FF"+¢

2 4 2 2
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Suppose to the contrary that r, +r, = % +¢, that is ¢; +¢; = N. Since i # j, we
have ¢; is the only term in the equation involving a;. Thus, the equality cannot
occur, a contradiction.

If y is in a type IV Ky, then y € K4 (ap+€,bp—|—5,aq—|—5,bq+g,%+5,%+5)

dp+dg—N/2+e

5 where dy € {ay, by} for

for some distinct p,q¢ € [M]. Thus, r, =

¢ € {p,q}. Suppose to the contrary that r, +r, = % +¢,ie,
Ci+Cj+dp+dq—2N:0.

Since x and y are in different Ky4’s, we have {i,j} # {p, ¢}. Thus, there exists an
index in one set not appearing in the other set, say i ¢ {p,q}. Recall that i # j.
Hence, the equality cannot occur since ¢; is the only term in the equation involving

a;, a contradiction. O

Now, we are ready to determine the exact threshold numbers of n K4 and K, 4.
Its proof follows the same line of argument as in the proof of Theorems @ and @,

nevertheless, those of Theorems @ and @ are significantly more complicated.
Theorem 4.6. Let t,, = m + (Lm?)/2J) ¥ ([m3/2]) +1. Forn>1,

2m —1 ifn:tm,l,
@(TLK4) =
2m if timo1 <n <ty
Proof. Let m be a positive integer such that ¢,,_1 < n < t,,. Suppose to the

contrary that ©(nky) < 2m — 2. By Lemma @ (1),

e[ () (P
§[2m2—2w+ ng J)+ (’”g })
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contradicting the definition of m. Hence, O(nK4) > 2m — 1.

To prove that O(nK,) < 2m, let {N, ay, s, as, . .. ,atm/gJ} C R* be a linearly
independent set over Q such that a; < N for all i € {1, 2,3,..., [%J} and let
b = N —a; for i € {1,2,3,...7 L%J} Write A = {CLl,CLQ,CL:J,,...,CLLm/gJ} and
B ={bi,bs,bs, ..., |2 }-

Case 1. m is even.

Let ' =t, — 1 =m+ 2(m3/2). It is sufficient to show that O(n'K,) < 2m
since O(nkK,) < ©(n'K,) as nKy is an induced subgraph of n’'K,. Consider the
(A, B)-assignment of n'Ky. By Lemma @ (), the edge and nonedge rank sums
do not coincide. Note that the set of edge rank sums of n' Ky is AUB. Let AUB =
{c1,¢9,¢3,...,cn}. We separate the edge and nonedge rank sums by putting two
thresholds around each edge rank sum. For ¢ = 1,2,3,...,m, let 05,1 = ¢
and 6y; = ¢; + ¢’ be thresholds of n’K; where ¢’ is a sufficiently small positive
real number, for example, take £’ smaller than any distance between two distinct
rank sums of n'K,. Thus, the above rank assignment is a (0, 6,0s,...,02,)-
representation of n' K4, and hence, n' K, is a 2m-threshold graph, that is ©(n'Ky) <
2m.

Case 2. m is odd.

Let n' =t,—1=m+ (Lm?)/QJ) + ((m3/2])' It is sufficient to show that O(n'Ky) <
2m since nk, is an induced subgraph of n’ ;. By Lemma @ (17), there is a positive
real number e such that, in the (A, B,¢)-assignment of n'Ky, no nonedge rank
sum lies in either [a;, a; + €|, [b;, b; + €] or {% —1—5} for all 7 € {1,2,3, e L%J },
and moreover, the sets of the form [a;, a; + €], [b;, b; +¢] and {5 + e} for all i €
{1, 2,3,..., L%J } are pairwise disjoint. Let AUBU {% + 5} ={c1,c9,¢3,...,Cn}
We separate the edge and nonedge rank sums by putting two thresholds around

cach interval of edge rank sums of the form [¢;,¢; +¢] and {§ +¢}. For i =
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1,2,3,...,m, let O5,_1 = ¢; and

Ci+€+€/ if CiEAUB,
02 =

¢ +¢€ if =% +e¢
be thresholds of n’ K4 where £’ is a sufficiently small positive real number. Thus, the
above rank assignment is a (61,602,603, ..., 0o, )-representation of n' Ky, and hence,
n'K, is a 2m-threshold graph, that is ©(n'K,) < 2m.

Suppose that n = ¢,,_1. To prove that ©(nk,) < 2m—1, we write M = LmTHJ
and let {N,ay,as,as,...,ay} C RT be a linearly independent set over Q such that
a; < N <% forallie [M—1]. Let b =N —a;fori=1,2,3,...,M — 1. Write
A ={ay,a9,as,...,ap1} and B = {by,b9,bs,...,bar—1}.

Case 1. m — 1 is even.

We take the (A, B)-assignment for the first m —1+ 2(("“31)/2) K,'sin nKy, and
let every edge in the last K, have edge rank sum a,;. Note that these K,’s appear
in the (AU {an}, B U {by})-assignment of (¢,,+1 — 1) K;. By Lemma @ (i), the
edge and nonedge rank sums do not coincide. Observe that the set of edge rank
sums of nK, is AU B U {ay}. Let AUBU {ayn} = {c1,¢2,¢3,...,¢n} where
1 < cy<cg<--- <y Weseparate the edge and nonedge rank sums by putting
two thresholds around each edge rank sum. For ¢ = 1,2,3,...,m, let 69,1 = ¢;
and 6y; = ¢; + &’ be thresholds of nK, where &' is a sufficiently small positive real
number. Thus, the above rank assignment is a (6, 6s,03, . .., 6a,,)-representation
of nK,. In fact, we will show that we do not need the last threshold 6, by proving
that no rank sum exceeds 6,,,,_1. It is sufficient to show that the rank of each vertex

om—1 _ c

is at most 5= = “* = L. This is clear for the last K, with the set of edge rank

sums {ay/}. For the other Ky’s, the rank of each vertex is of the form “=%=" for

some 7,7,k € [m — 1], which is at most “* since ¢;,¢; < %L and ¢, > 0. Thus,
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the above rank assignment is a (6, 60s,0s, ..., 605,_1)-representation of nk,, and
hence, nKy is a (2m — 1)-threshold graph, that is ©(nK,) < 2m — 1.
Case 2. m — 1 is odd.

We choose € such that the (AU {an}, BU {ba},e)-assignment of (t,,,+1 — 1) K4
satisfies the properties in Lemma @ (7). We then take the (A, B, ¢)-assignment
for the first m — 1 + (L(m—gl)/%) + (((m—gl)/ﬂ) Ky’s in nKy, and let every edge
in the last K4 have edge rank sum a,;. Note that these K,’s appear in the
(AU{an},BU{by},e)-assignment of (¢,,.1 — 1) Ky. By the choice of €, no
nonedge rank sum lies in either [a;, a; + €], [b;, b; + €] or {§ + ¢} forall i € [M —1],
and moreover, the sets of the form [a;,a; +¢€], [b;,b; +¢] and {§ + ¢} for all
i € [M — 1] are pairwise disjoint. Let AU B U {aM, % + 5} = {c1,¢0,¢3, ... Cm}
where ¢; < s < ¢c3 < -+ < ¢,. We claim that ¢,, = ays. Indeed, it is clear that
an > a;,b; for all i € [M — 1]. Since & + ¢ lies between the intervals [a1, a; + €]
and [by, by + €] by the choice of €, we have %%—5 < max{ay, b1} < ap. We separate
the edge and nonedge rank sums by putting two thresholds around each interval

of edge rank sums. For i =1,2,3,...,m, let ;1 = ¢; and

¢ite+e if e AUBU{ayn},
O =

gt+e  ifeg=%+e¢
be thresholds of nK, where &’ is a sufficiently small positive real number. Thus,
the above rank assignment is a (61,05, 603, ..., 0s,)-representation of nk,. In fact,
we will show that we do not need the last threshold 6, by proving that no rank
sum is greater than or equal to 6y, = ay + ¢ + &’. It is sufficient to show that
the rank of each vertex is at most %*5 This is clear for the last K, with the

set of edge rank sums {a/}. For the other Ky’s, the rank of each vertex is of the

form ‘Héﬂ, T+ <or w where 4,7,k € [M — 1] and d; € {ay, by} for
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¢ € {i,j,k}, which is at most aMTJFE since 0 < d;,d;, dy, % < #t. Thus, the above
rank assignment is a (01,60, 0s, ..., 09, _1)-representation of nKy, and hence, nk,
is a (2m — 1)-threshold graph, that is ©O(nKy) < 2m — 1.

Suppose that n > t,,_1. To prove that ©(nky) > 2m, we suppose that
O(nkKy) <2m — 1. Let r be a (01,605,065, ..., 09, 1)-representation of nKy4. Then,
there are at most m colors of edges in nK,. By Lemma @ (), there are at
most t,,—1 — 1 K4’s without color m. By Lemma @ (), an edge of color m ap-
pears in at most one Ky. Thus, n < (f,,_1 — 1) + 1, a contradiction. Therefore,

O(nk,) > 2m. O
Theorem 4.7. Let s, = m + (Lm3/2j) + (]—mg/2'|) +2. Forn > 2,

2m if n=Sn_1,
@(Knx4) 7

2m+ 1 if spo1 < n < Sy

Proof. Let m be a positive integer such that s,, 1 < n < s,,. By Theorem @,
O(nK,) € {2m,2m + 1}, and hence, ©(K,,«4) € {2m, 2m + 1} by Proposition .
Suppose that n = s,,_1. To prove that O(K, «4) < 2m, we write M = \_mT“J
and let {N,ay,a9,as,...,ap} C R be a linearly independent set over QQ such that
< —N < —a; <0foralli € [M—1]. Let b = N —a; fori =1,2,3,..., M.
Then, 4 < a;,b;, —N, N < %M foralli € [M—1]. Write A = {ay,a9,as,...,apy_1}
and B = {by,ba, b3, ..., bp—1}.
Case 1. m — 1 is even.

We take the (A, B)-assignment for the first m — 1 4+ 2((7”;1)/2) parts in K, .4,
and let the last two parts have the sets of nonedge rank sums {ay;} and {by;}. Note
that these parts appear in the (AU {an}, B U {bys})-assignment of K, _2)xa.
By Lemma @ (#ii), the edge and nonedge rank sums do not coincide. Observe that

the set of nonedge rank sums of K4 is AUBU{an, by }. Let AUBU{ap, by} =
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{c1,¢9,¢3,...,Cma1} Where ¢; < cg < 3 < -+ < ¢py1. Let 01 be smaller than all
rank sums. We then separate the edge and nonedge rank sums by putting two
thresholds around each nonedge rank sum. For ¢ = 1,2,3,... , m+ 1, let 05, = ¢;
and 0y;.1 = ¢; + ¢’ where €’ is a sufficiently small positive real number. Thus, the
above rank assignment is a (01,605,605, ..., 09, 3)-representation of K, 4. In fact,
we will show that we do not need the thresholds 6y, 6, and 65,3 by proving that

no rank sum is smaller than 6, or larger than 6s,,,5. It is sufficient to show that

62m+2 _ Cm41 __ b]v[

the rank of each vertex is at least %2 = %1 = % and at most =% = = = 2L,

This is clear for the last two parts with the sets of nonedge rank sums {a,,} and

2

{barr}. For the other parts, the rank of each vertex is of the form
i,J,k € [m]~ {1}, which is at least “}* and at most bTM since %L < ¢, ¢, —¢p, < l’%
Thus, the above rank assignment is a (03, 04, 05, . . . , O9,, 1o )-representation of K4,
and hence, K, is a 2m-threshold graph, that is O(K,x4) < 2m.

Case 2. m — 1 is odd.

We choose € such that the (AU {ap}, B U {ba},€)-assignment of K, ., —2)xa
satisfies the properties in Lemma @ (iv). We then take the (A, B, ¢)-assignment
for the first m—1+ (L(m_gl)m) = ([(m—31)/2]) parts in K, «4, and let the last two parts
have the sets of nonedge rank sums {ay;} and {by/}. Note that these parts appear
in the (AU {an}, B U{by},e)-assignment of K, _2xa. By the choice of €, no
edge rank sum lies in either [a;, a; + €], [b;, b; + €] or {§ + ¢} forall i € [M —1], and
moreover, the sets of the form [a;, a; + €], [b;, b; + €] and {§ + ¢} for all i € [M —1]
are pairwise disjoint. Let AU B U {aM, bar, % + 5} = {c1,¢2,¢3, ..., Cmy1} Where
€1 < cy <c3< - <Cpy1. We claim that ¢; = ay and ¢,,,01 = by, Indeed, it is
clear that ay; < a;,b; < by for all i € [M —1]. Since %—1—5 lies between the intervals

la1, a1 + €] and [by, by + €] by the choice of £, we have ay; < min{ay, b} < %—i—& <

max {ay, b1} < by. Let 0; be smaller than all rank sums. We then separate the
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edge and nonedge rank sums by putting two thresholds around each interval of
nonedge rank sums. For 1 =1,2,3,...,m+ 1, let 65; = ¢; and
ci+e+e if e AUBU{an,bu},

92i+1 =
Ci—f-E/ lfCZ:%—f—Z‘f

be thresholds of K, .4 where &' is a sufficiently small positive real number. Thus,
the above rank assignment is a (01,605,605, ..., 09, 3)-representation of K. In
fact, we will show that we do not need the thresholds 6,6, and 05,3 by proving

that no rank sum is smaller than 65, or larger than or equal to 05,.3. It is

sufficient to show that the rank of each vertex is at least %2 = 9 = “TM and
at most 92””53_5/ = C’”+21+5 = bM;E. This is clear for the last two parts with the

sets of nonedge rank sums {ay} and {bys}. For the other parts, the rank of each

di+d;—d di+d;—N/2+ .
%’“,% + 5 or ]T/E where 4,5,k € [M — 1] are

vertex is of the form
all distinct and d; € {ay, b} for £ € {i,j,k}, which is at least % and at most
% since 4t < d;, dj, —dp, —N, N < b?M Thus, the above rank assignment is a
(03,04,05, ..., 09, 0)-representation of K4, and hence, K,.4 is a 2m-threshold
graph, that is ©(K,x4) < 2m.

Suppose that n > s,,_1. To prove that ©(K,x4) > 2m + 1, we suppose that
O(Kyxa) <2m. Let r bea (0y,605,05,...,09,)-representation of K, 4. Then, there
are at most m + 1 colors of nonedges in K, 4. By Lemma @ (1), there are at
most s,,_1 — 2 parts without colors 1 and m + 1. By Lemma @ (71) and (7i1),

a nonedge of color 1 appears in at most one part and a nonedge of color m + 1 also

appears in at most one part. Therefore, n < (s,,_1—2)+1+1, a contradiction. [



CHAPTER V

CONCLUSIONS AND OPEN PROBLEMS

In this dissertation, we determine the exact threshold numbers of K, 3, K, x4 and
their complements, nK3 and nK,. Theorems @ and @ in Chapter III indicate
the threshold numbers of K,,+3 and nK3, while Theorems @ and @ in Chapter IV
indicate the threshold numbers of K,,4 and nk,. These results can be summarized

in the following theorems.
Theorem 5.1. Let g, =m + () + 1.
(i) Forn > 2,
2m if n=qn_1+1,
O(Knx3) =9 2m+1 if gmo14+1<n < gm,
2m+1 if n=q,, and m > 3.
(ii) Forn > 1,
2m if n=¢qm-1+1 and m > 3,
O(nKs) =1 2m if g1+ 1<n<qn,
2m+1 if n = qp,.
Theorem 5.2. Let t,, = m + (ng/QJ) + (|'m3/2‘\) + 1.
(i) Forn > 2,
2m ifn=tn,_1+1,
O(Knxa) = 2m+1 if ty1 +1 < n < tp,

2m+1 if n =1t, and m > 5.
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(ii) Forn > 1,
2m ifn="tu—1+1and m > 5,
O(nky) = 2m if tme1 +1<n <ty

2m+1 if n=1t,,.
We recall Conjecture @ as shown.

Conjecture 5.3 ([9]). For all k > 1, there is a graph G with ©(G) = 2k and

O(G) = 2k + 1.

This conjecture was confirmed by Chen and Hao [2] (see Theorem B) Note that
Theorem EI gives more examples satisfying the conjecture except for k = 3, while
Theorem @ gives more examples satisfying the conjecture except for k € {5,6}.
In addition, Theorem @ also improves the result of Puleo [17] providing an upper
bound for O(K,x3).

_____ m,,) for m; > n > 2, while
our main results give the values of ©(K,,«3) and O(K,,«4). Therefore, Problem

remains unsolved for other complete multipartite graphs. The followings could be

the next goals.

Problem 5.4. Determine the exact threshold numbers of nsKs U nyK4 and their

complements.

Problem 5.5. Determine the exact threshold numbers of n1 Ky UnsKsUnsKs and

their complements.

Problem 5.6. Determine the exact threshold numbers of nqa K1Uno KoUnz K3Uny Ky

and their complements.

Problem 5.7. Determine the exact threshold numbers of K,xm for m > 5 and

their complements.
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The method we used can be generalized to give some bounds for ©(K,,.,), but

new ideas seem to be required in order to find the exact value.
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