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CHAPTER I

INTRODUCTION

In 1977, Chvátal and Hammer [3] introduced threshold graphs and studied these

graphs for their application in integer linear programming problems. They defined

these graphs as follows. A graph G is said to be a threshold graph if we can assign

a real number rv to each vertex v and there is a real number θ such that for any

vertex subset U of G,
∑

v∈U rv ≤ θ if and only if U is independent in G.

As one of the fundamental classes of graphs, properties of threshold graphs have

been extensively studied (see [5, 6, 7, 8, 10, 12, 14] and [18]), and since then many

applications of these graphs have been found in various areas, such as scheduling

theory, resource allocation and parallel processes (see [1, 4, 11, 13, 15] and [16]).

Threshold graphs can be characterized in a number of equivalent ways. For

example, G is a threshold graph if and only if G has no induced subgraph iso-

morphic to 2K2, P4 or C4 (see [3] and [12]). Equivalently, a threshold graph is a

graph that can be obtained from the single-vertex graph by repeatedly adding an

isolated vertex or a universal vertex (see [3] and [12]). Moreover, G is a threshold

graph if and only if we can assign a real number rv to each vertex v and there is

a real number θ such that for any two distinct vertices u and v, uv is an edge if

and only if ru + rv ≥ θ (see [12]). These indicate that threshold graphs are very

rare. Indeed, the number of distinct threshold graphs on n labeled vertices is at

most n! 2n−1, while the number of all distinct graphs with the same vertex set is

2(
n
2). Therefore, most graphs are not threshold graphs.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Recently, Jamison and Sprague [9] first introduced multithreshold graphs as a

generalization of the well-studied threshold graphs as follows. A graph G is a k-

threshold graph with thresholds θ1, θ2, θ3, . . . , θk if we can assign a real number rv,

called a rank, to each vertex v such that for any two distinct vertices u and v, uv

is an edge if and only if the number of thresholds not exceeding ru + rv is odd.

Note that the case of one threshold is the classical case introduced by Chvátal and

Hammer [3].

It is natural to ask for the existence of a positive number k for which a graph

is a k-threshold graph. Jamison and Sprague [9] showed that any graph of order

n is a k-threshold graph for some k ≤
(
n
2

)
. The smallest k for which a graph G is

a k-threshold graph is said to be the threshold number of G, denoted by Θ(G).

A graph is a threshold graph if and only if its complement is a threshold graph

since all ranks and a threshold of the complement of a threshold graph can be

obtained from those of its complement by multiplying the ranks and the threshold

by −1. Thus, Θ(G) = 1 = Θ(Gc) for any nontrivial threshold graph G. However,

it is not obvious how Θ(G) and Θ(Gc) are related for general k-threshold graphs

when k > 1, for example, Θ(K2,2,2,...,2) = 3, while Θ(Kc
2,2,2,...,2) = 2 when the

number of 2’s is at least 3. A relationship between the threshold numbers of a

graph and its complement was found by Jamison and Sprague [9] stating that for

any graph G, either Θ(Gc) = Θ(G) or {Θ(G),Θ(Gc)} = {2k, 2k + 1} for some

k ∈ N. This inspired them to put forward the following conjecture.

Conjecture 1.1 ([9]). For all k ≥ 1, there is a graph G with Θ(G) = 2k and

Θ(Gc) = 2k + 1.

They then observed that, by assigning 3i to be the rank for each vertex of the

ith part of Km1,m2,m3,...,mn and by taking 3i and 2·3i as thresholds for 1 ≤ i ≤ n, the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

rank sum of an edge is preceded by 2i−1 thresholds, and the rank sum of a nonedge

is preceded by 2i thresholds. Thus, the threshold number of Km1,m2,m3,...,mn is at

most 2n. Note that this bound is not necessarily best possible. For example, if

each part has size 2, we can assign i − 1 and 2n − 1 − i to be the ranks of the

two vertices in the ith part for 1 ≤ i ≤ n, and then 1, 2n− 2 and 2n− 1 are three

thresholds of the graph. They put forward the following problem.

Problem 1.2 ([9]). Determine the exact threshold number of the complete multi-

partite graph Km1,m2,m3,...,mn.

Recently, Chen and Hao [2] gave a partial solution of Problem 1.2 which also

confirmed Conjecture 1.1.

Theorem 1.3 ([2]). Let m1,m2,m3, . . . ,mn be positive integers and n ≥ 2. If

mi ≥ n+ 1 for i = 1, 2, 3, . . . , n, then

Θ(Km1,m2,m3,...,mn) = 2n− 2 and Θ(Kc
m1,m2,m3,...,mn

) = 2n− 1.

However, their result is far from the truth when mi are small. For example, the

threshold number of K1,1,1,...,1 is 1 and the threshold number of K2,2,2,...,2 is 3.

Chen and Hao [2] mentioned that it would be interesting to know the value of

Θ(K3,3,3,...,3).

As a tool for answering a question of Jamison asked in the 2019 Spring Sectional

AMS Meeting, Puleo [17] proved that Θ(Kc
3,3,3,...,3) is at least n1/3 where n is the

number of its components, which in turn provides a lower bound for Θ(K3,3,3,...,3).

In this dissertation, we determine the exact threshold numbers of K3,3,3,...,3,

K4,4,4,...,4 and their complements.

The rest of this dissertation is organized as follows. Chapter II provides some

background knowledge and useful results. In Chapter III, we determine the exact
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threshold numbers of K3,3,3,...,3 and their complements. Chapter IV is devoted to

determine the exact threshold numbers of K4,4,4,...,4 and their complements. The

conclusions and open problems are given in Chapter V.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND KNOWLEDGE

Throughout this dissertation, we denote by Kn×m the complete n-partite graph

with m vertices in each part, and by nKm the complement of Kn×m.

2.1 Threshold graphs

A graph G is a threshold graph if we can assign a real number rv to each vertex v

and there is a real number θ such that for any vertex subset U of G,
∑

v∈U rv ≤ θ if

and only if U is independent in G (see [3]). A vertex subset U of G is independent in

G if no two vertices from U are adjacent in G. Figure 2.1 illustrates an example of

a threshold graph along with an appropriate assignment for each vertex satisfying

the inequality when θ = 4.

2

3

4 1

Figure 2.1: A threshold graph along with an appropriate assignment when θ = 4

Threshold graphs can be characterized in a number of equivalent ways. The

basic characterizations of the graphs were given in [3] and [12], some of which are

stated below. We include a proof for completeness.
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Theorem 2.1 ([3] and [12]). For a graph G, the followings are equivalent.

(i) G is a threshold graph.

(ii) G has no induced subgraph isomorphic to 2K2, P4 or C4.

(iii) G can be obtained from the one-vertex graph by repeatedly adding an isolated

vertex or a universal vertex.

(iv) We can assign a real number rv to each vertex v in G and there is a real

number θ such that for any two distinct vertices u and v, uv is an edge if

and only if ru + rv ≥ θ.

Proof. (i) ⇒ (ii): We first show that 2K2, P4 and C4 are not threshold graphs.

Suppose to the contrary that these are threshold graphs. Let w, x, y and z be the

vertices in the graphs as shown in Figure 2.2. Since wz, xy are edges and wy, xz

are nonedges, by (i), there is a real number θ such that rw + rz, rx + ry > θ and

rw+ry, rx+rz ≤ θ respectively. Thus, 2θ < rw+rx+ry+rz ≤ 2θ, a contradiction.

Observe that every induced subgraph H of G is also a threshold graph since the

restriction of the assignment rv and the threshold θ of G also work for H. Hence,

(ii) holds.

w x

yz

(a) 2K2

w x

yz

(b) P4

w x

yz

(c) C4

Figure 2.2: 2K2, P4 and C4

(ii) ⇒ (iii): First, we show that the vertex set V (G) of G can be partitioned

into an independent set and a clique. Let K be a largest clique in G and let
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W = V (G) − V (K). To show that W is independent in G, we suppose to the

contrary that W is dependent in G. Let uv be an edge in the induced subgraph

G[W ]. We claim that there exist distinct vertices x and y in K such that ux and

vy are nonedges in G. Since G[V (K) ∪ {u}] is not a clique by the maximality of

K, there exists x in K such that ux is a nonedge. Suppose not, that is vz is an

edge for all z ∈ K − x. Since G[V (K) ∪ {v}] is not a clique by the maximality of

K, vx is a nonedge. By the assumption, uz is an edge for all z ∈ K − x. Thus,

G [V (K − x) ∪ {u, v}] is a clique larger than K contradicting the maximality of

K. Since uv and xy are edges, G[{u, v, x, y}] is isomorphic to 2K2, P4 or C4, a

contradiction.

Next, we show that a graph that can be partitioned into an independent set

and a clique must contain an isolated vertex or a universal vertex. Let H be a

graph that can be partitioned into an independent set U and a clique C. Clearly,

if U is an empty set, then every vertex in K is universal. Suppose that U is a

nonempty set and H has no isolated vertex. Let u be a vertex in U with the

smallest degree, and let u′ be a neighbor of u in C. Suppose to the contrary that

u′ is not a universal vertex. Thus, there is a vertex v in U such that u′v is a

nonedge. Since u has the smallest degree, there must be a vertex v′ in C such that

vv′ is an edge but uv′ is a nonedge. Thus, G [{u, u′, v, v′}] is isomorphic to P4, a

contradiction.

Observe that after removing an isolated vertex or a universal vertex from G,

the remaining graph can still be partitioned into an independent set and a clique.

By repeatedly removing an isolated vertex or a universal vertex from the remaining

graph, we will obtain a one-vertex graph at the end. Hence, (iii) holds.

(iii) ⇒ (iv): Let vi be the ith vertex for the construction in (iii) for i =

1, 2, 3, . . . , |G|. We say a vertex vi is isolated in the construction if vivj is a nonedge



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

for all j < i, and universal in the construction if vivj is an edge for all j < i. Let

rv1 = 0. For i = 2, 3, 4, . . . , |G|, we assign

rvi =


−max

j<i
|rvj | − 1 if vi is isolated in the construction,

max
j<i

|rvj | if vi is universal in the construction.

Note that rvi + rvj ≥ 0 if and only if vivj is an edge. Hence, (iv) holds with θ = 0.

(iv) ⇒ (i): We will show a stronger statement that for a graph G satisfying

(iv), there exists an assignment v 7→ rv of positive integers to the vertices and there

is a positive real number θ such that for any vertex subset U of G,
∑

v∈U rv ≤ θ

if and only if U is independent in G. We will prove by induction on |G|. Clearly,

the statement holds for G with |G| ≤ 1. Consider G satisfying (iv) with |G| ≥ 2.

Let x, y ∈ G be such that rx = min {rv : v ∈ G} and ry = max {rv : v ∈ G}.

Case 1. xy is a nonedge.

Then, rx + ry < θ. Since ry = max {rv : v ∈ G}, we have rx + rv ≤ rx + ry < θ

for all v ∈ G − x. Thus, xv is a nonedge for all v ∈ G − x by (iv), that is x

is an isolated vertex. Let G′ = G − x. By the induction hypothesis, there is an

assignment v 7→ r′v of positive integers to the vertices and there is a positive real

number θ′ such that for any vertex subset U ′ of G′,
∑

v∈U r′v ≤ θ′ if and only if

U ′ is independent in G′. Now, we assign 1 to x and assign 2r′v to v ∈ G′. Take

θ′′ = 2θ′+1. Let U be a vertex subset of G. If U contains x, then by the induction

hypothesis, 2
∑

v∈U \{x} r
′
v ≤ 2θ′ if and only if U \ {x} is independent in G, and

hence,
∑

v∈U \{x} 2r
′
v + 1 ≤ θ′′ if and only if U is independent in G. If U does not

contain x, then by the induction hypothesis, 2
∑

v∈U r′v ≥ 2(θ′+1) if and only if U

is dependent in G, and hence,
∑

v∈U 2r′v > θ′′ if and only if U is dependent in G.

Case 2. xy is an edge.

Then, rx + ry ≥ θ. Since rx = min {rv : v ∈ G}, we have θ ≤ rx + ry ≤ rv + ry
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for all v ∈ G − y. Thus, vy is an edge for all v ∈ G − y by (iv). Therefore, y

is a universal vertex. Let G′ = G − y. By the induction hypothesis, there is an

assignment v 7→ r′v of positive integers to the vertices of G′ and there is a positive

real number θ′ such that for any vertex subset U of G′,
∑

v∈U r′v ≤ θ′ if and only

if U is independent in G′. Now, we assign θ′ to y. Let U be a vertex subset of G

containing y. Since r′v > 0 for all v ∈ G′, we have
∑

v∈U r′v =
∑

v∈U \{y} r
′
v+θ′ ≥ θ′.

Thus,
∑

v∈U r′v ≤ θ′ if and only if U is independent in G.

The followings are examples of threshold graphs which are characterized in

different ways.

Example 2.2. All complete graphs, empty graphs and stars are threshold graphs

since they can be obtained from the one-vertex graph by repeatedly adding an

isolated vertex or a universal vertex (see Theorem 2.1 (iii)). Alternatively, it is

easy to see that they have no induced subgraph isomorphic to 2K2, P4 or C4 (see

Theorem 2.1 (ii)).

Example 2.3. We can also see that any complete graph and empty graph are

threshold graphs by assigning a nonnegative real number to each vertex in the

complete graph and assign a negative real number to each vertex in the empty

graph, and we then take θ = 0 (see Theorem 2.1 (iv)).

Example 2.4. We can also see that any star is a threshold graph by assigning

−1 to each leaf and assign 1 to the universal vertex in the star, and we then take

θ = −1 (see Theorem 2.1 (iv)).

2.2 Multithreshold graphs

The equivalent statement (iv) of the definition of threshold graphs in Theorem 2.1

was generalized to define multithreshold graphs by Jamison and Sprague [9] as
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follows. A graph G is a k-threshold graph with thresholds θ1, θ2, θ3, . . . , θk if we

can assign a real number rv, called a rank, to each vertex v such that for any two

distinct vertices u and v, uv is an edge if and only if the number of thresholds not

exceeding ru + rv is odd. Equivalently,

uv ∈ E(G) ⇐⇒ ru + rv ∈ [θ2i−1, θ2i) for some i ∈
{
1, 2, 3, . . . ,

⌈
k

2

⌉}
provided θ1 < θ2 < θ3 < · · · < θk and θk+1 = ∞. We call such an assignment r of

ranks a (θ1, θ2, θ3, . . . , θk)-representation of G. By a rank sum of an edge/nonedge

uv, we mean ru + rv.

The followings are examples of multithreshold graphs.

Example 2.5. The complete bipartite graph Km,n is a 2-threshold graph with

thresholds 0 and 2a by assigning a positive real number a to each vertex of the

first part and −a to each vertex of the second part. Observe that the rank sum of

each edge is 0 and the rank sum of each nonedge is either 2a or −2a.

Example 2.6. A path Pn is a 2-threshold graph with thresholds −a and a where

a ∈ (1, 3) by providing the sequence of ranks −1, 2,−3, 4,−5, . . . . Observe that

the rank sum of each edge is either −1 or 1, while the rank sum of each nonedge

is either at most −3 or at least 3.

Example 2.7. Kn×2 is a 3-threshold graph with thresholds 1, 2n− 2 and 2n− 1

by assigning the ranks i− 1 and 2n− 1− i to vertices of the ith part. Observe that

the rank sum of each edge is either less than or greater than 2n−2, while the rank

sum of each nonedge is 2n− 2.

We can see that Kn×2 has an induced subgraph isomorphic to C4. Therefore,

it is not a 1-threshold graph or a threshold graph by Theorem 2.1 (ii). We will

prove that Kn×2 is not a 2-threshold graph whenever n ≥ 3.
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Proposition 2.8. For n ≥ 3, Kn×2 is not a 2-threshold graph.

Proof. Suppose to the contrary that Kn×2 is a 2-threshold graph with thresholds

θ1 < θ2. Let ai and bi be the ranks of vertices in the ith part. Note that all edge

rank sums are in [θ1, θ2), while nonedge rank sums are in either (−∞, θ1) or [θ2,∞).

Since the number of parts is at least three, there are two nonedge rank sums in the

same interval, say a1+ b1, a2+ b2 < θ1. Thus, a1+ b1+ a2+ b2 < 2θ1. Since a1+ b2

and a2 + b1 are edge rank sums, a1 + b2 + a2 + b1 ≥ 2θ1, a contradiction.

Remark 2.9. For n ≥ 2, nK2 is a 2-threshold graph with thresholds 2n − 2 and

2n− 1 by applying the assignment in Example 2.7 for it. Moreover, nK2 is not a

1-threshold graph since it has an induced subgraph isomorphic to 2K2.

The existence of a positive number k for which a graph is a k-threshold graph

was proved by Jamison and Sprague [9]. We give a proof for completeness.

Theorem 2.10 ([9]). Any graph of order n is a k-threshold graph for some k ≤
(
n
2

)
.

Proof. Let G be a graph on n vertices v1, v2, v3, . . . , vn. We assign the rank 2i to vi

for i ∈ [n], where [n] = {1, 2, 3, . . . , n}. Note that 2q + 2r ̸= 2s + 2t for any subset

{q, r, s, t} ⊂ [n] of size 4, and

21 + 22 < 21 + 23 < 22 + 23 < 21 + 24 < 22 + 24 < 23 + 24 < · · · < 2n−1 + 2n.

We will take the rank sum 2i + 2j as a threshold for some distinct i, j ∈ [n] as

follows. We take 21+22 as a threshold when v1v2 is an edge. For {i, j} ̸= {1, 2}, if

vivj is an edge and the greatest rank sum less than 2i + 2j is a nonedge rank sum,

then we take 2i +2j as a threshold. Similarly, if vivj is a nonedge and the greatest

rank sum less than 2i+2j is an edge rank sum, then we take 2i+2j as a threshold.

These thresholds partition the real line into several intervals alternating between
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an interval of nonedge rank sums and an interval of edge rank sums. Therefore, G

is a k-threshold graph for some k ≤
(
n
2

)
.

Observe that any k-threshold graph is also a (k+1)-threshold graph by adding

a threshold larger than all rank sums. Hence, a k-threshold graph is an ℓ-threshold

graph for any integer ℓ ≥ k.

The threshold number of a graph G is the smallest k for which G is a k-

threshold graph, denoted by Θ(G). Therefore, Θ(G) exists for every graph G by

Theorem 2.10.

The followings are examples of the threshold numbers of some multithreshold

graphs.

Example 2.11. By Example 2.5, Θ(Km,n) ≤ 2. Note that Km,n has an induced

subgraph isomorphic to C4. By Theorem 2.1 (ii), Km,n is not a 1-threshold graph.

Thus, Θ(Km,n) ≥ 2. Hence, Θ(Km,n) = 2.

Example 2.12. By Example 2.6, Θ(Pn) ≤ 2. We can see that Pn has an induced

subgraph isomorphic to P4 whenever n ≥ 4, and hence, Pn is not a 1-threshold

graph by Theorem 2.1 (ii). Thus, Θ(Pn) ≥ 2 for all n ≥ 4. Hence, Θ(Pn) = 2

provided n ≥ 4.

Example 2.13. By Example 2.7, Θ(Kn×2) ≤ 3. For n ≥ 3, Θ(Kn×2) ≥ 3 by

Proposition 2.8. Thus, Θ(Kn×2) = 3 for all n ≥ 3.

Example 2.14. For n ≥ 2, Θ(nK2) = 2 by Remark 2.9.

Jamison and Sprague [9] found a relationship between the threshold numbers

of a graph and its complement. We include a proof for completeness.

Proposition 2.15 ([9]). For any graph G, either

Θ(Gc) = Θ(G) or {Θ(G),Θ(Gc)} = {2k, 2k + 1} for some k ∈ N.
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Proof. Let k and k′ be such that Θ(G) ∈ {2k, 2k + 1} and Θ(Gc) ∈ {2k′, 2k′ + 1}.

Take a
(
θ1, θ2, θ3, . . . , θΘ(G)

)
-representation r of G. We may assume that no rank

sum equals a threshold by perturbing each threshold to the left. We may further

assume that r has 2k + 1 thresholds by adding a sufficiently large threshold θ2k+1

if neccesary. We then obtain a (−θ2k+1,−θ2k,−θ2k−1, . . . ,−θ1)-representation of

Gc from r by reversing the values of the ranks and the thresholds of G. Thus,

Θ(Gc) ≤ 2k + 1, and hence, k′ ≤ k. Similarly, Θ(G) ≤ 2k′ + 1, and therefore,

k ≤ k′. Now, we have k = k′, and hence, Θ(G),Θ(Gc) ∈ {2k, 2k + 1}.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

THRESHOLD NUMBERS OF Kn×3 AND nK3

In this chapter, we determine the values of Θ(Kn×3) and Θ(nK3). To outline the

proofs, we will need five lemmas. Lemmas 3.1 to 3.4 are for the lower bounds

where the key idea is in Lemma 3.2. We apply Lemmas 3.1 and 3.2 to prove

Lemma 3.3, which determines the maximum number of triangles and parts in terms

of the number of colors. Lemma 3.4 helps improve the lower bounds obtained from

Lemma 3.3. On the other hand, Lemma 3.7 is a tool to prove the upper bounds.

Using an idea of Puleo [17], we start by assigning a color to each edge of

nK3 and each nonedge of Kn×3 as follows. In a (θ1, θ2, θ3, . . . , θk)-representation

of nK3 where θ1 < θ2 < θ3 < · · · < θk, we color an edge uv with color i, for

i ∈
{
1, 2, 3, . . . ,

⌈
k
2

⌉}
, if ru + rv ∈ [θ2i−1, θ2i) where θk+1 = ∞. We say that a

triangle has a color ijℓ if the colors appearing on its edges are i, j and ℓ.

Similarly, in a (θ1, θ2, θ3, . . . , θk)-representation of Kn×3 where θ1 < θ2 < θ3 <

· · · < θk, we color a nonedge xy with color i, for i ∈
{
1, 2, 3, . . . ,

⌈
k+1
2

⌉}
, if rx+ry ∈

[θ2i−2, θ2i−1) where θ0 = −∞. We say that a part has a color ijℓ if the colors

appearing on its nonedges are i, j and ℓ.

First, we need a result of Puleo [17] which says that no two triangles in nK3

have the same color. Interchanging edges and nonedges, no two parts in Kn×3 have

the same color. We include a proof for completeness.

Lemma 3.1 ([17]). (i) In a (θ1, θ2, θ3, . . . , θk)-representation of nK3, no two

triangles have the same color.
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(ii) In a (θ1, θ2, θ3, . . . , θk)-representation of Kn×3, no two parts have the same

color.

Proof. (i) Let r be a (θ1, θ2, θ3, . . . , θk)-representation of nK3 where θ1 < θ2 < θ3 <

· · · < θk. Suppose to the contrary that there are two triangles Tx and Ty in nK3

having the same color ijℓ. Thus, if V (Tx) = {x1, x2, x3} and V (Ty) = {y1, y2, y3},

then without loss of generality let their edge rank sums be as follows:

rx1 + rx3 , ry1 + ry3 ∈ [θ2i−1, θ2i) ,

rx1 + rx2 , ry1 + ry2 ∈ [θ2j−1, θ2j) and

rx2 + rx3 , ry2 + ry3 ∈ [θ2ℓ−1, θ2ℓ) .

Note that at least two ranks out of max {rx1 , ry1} ,max {rx2 , ry2} and max {rx3 , ry3}

are from the same triangle. Without loss of generality, let rx1 ≤ ry1 and rx3 ≤ ry3 .

Write rxp = min {rx1 , rx3} and ryq = max {ry1 , ry3}. Observe that rxp ≤ ry1 , ry3

and ryq ≥ rx1 , rx3 . Therefore,

θ2i−1 ≤ rx1 + rx3 ≤ rxp + ryq ≤ ry1 + ry3 < θ2i.

By the definition of thresholds, xpyq is an edge of color i, which contradicts the

fact that xpyq is a nonedge in nK3.

(ii) Let r be a (θ1, θ2, θ3, . . . , θk)-representation of Kn×3 where θ1 < θ2 < θ3 <

· · · < θk. Suppose to the contrary that there are two parts Sx and Sy in Kn×3

having the same color ijℓ. Thus, if V (Sx) = {x1, x2, x3} and V (Sy) = {y1, y2, y3},

then without loss of generality let their nonedge rank sums be as follows:

rx1 + rx3 , ry1 + ry3 ∈ [θ2i−2, θ2i−1) ,

rx1 + rx2 , ry1 + ry2 ∈ [θ2j−2, θ2j−1) and

rx2 + rx3 , ry2 + ry3 ∈ [θ2ℓ−2, θ2ℓ−1) .
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Note that at least two ranks out of max {rx1 , ry1} ,max {rx2 , ry2} and max {rx3 , ry3}

are from the same part. Without loss of generality, let rx1 ≤ ry1 and rx3 ≤ ry3 .

Write rxp = min {rx1 , rx3} and ryq = max {ry1 , ry3}. Observe that rxp ≤ ry1 , ry3

and ryq ≥ rx1 , rx3 . Therefore,

θ2i−2 ≤ rx1 + rx3 ≤ rxp + ryq ≤ ry1 + ry3 < θ2i−1.

By the definition of thresholds, xpyq is a nonedge of color i, which contradicts the

fact that xpyq is an edge in Kn×3.

The next lemma is the key idea for obtaining the lower bounds for the threshold

numbers.

Lemma 3.2. (i) In a (θ1, θ2, θ3, . . . , θk)-representation of nK3, and colors i, j, ℓ ∈[⌈
k
2

⌉]
, colors ijj and iℓℓ cannot appear on two triangles simultaneously.

(ii) In a (θ1, θ2, θ3, . . . , θk)-representation of Kn×3, and colors i, j, ℓ ∈
[⌈

k+1
2

⌉]
,

colors ijj and iℓℓ cannot appear on two parts simultaneously.

Proof. We only prove (i) as the proof of (ii) is similar. Let r be a (θ1, θ2, θ3, . . . , θk)-

representation of nK3 where θ1 < θ2 < θ3 < · · · < θk. Suppose to the contrary that

there are two triangles Tx and Ty in nK3 of colors ijj and iℓℓ respectively. Thus,

if V (Tx) = {x1, x2, x3} and V (Ty) = {y1, y2, y3}, then without loss of generality let

their edge rank sums be as follows:

a1 = rx1 + rx3 ∈ [θ2i−1, θ2i) , b1 = rx1 + rx2 ∈ [θ2j−1, θ2j) , b2 = rx2 + rx3 ∈ [θ2j−1, θ2j) ,

a2 = ry1 + ry3 ∈ [θ2i−1, θ2i) , c1 = ry1 + ry2 ∈ [θ2ℓ−1, θ2ℓ) , c2 = ry2 + ry3 ∈ [θ2ℓ−1, θ2ℓ) .

From these rank sums, we can compute the ranks as follows:

rx1 =
a1 + b1 − b2

2
, rx2 =

b1 + b2 − a1
2

, rx3 =
a1 + b2 − b1

2
,

ry1 =
a2 + c1 − c2

2
, ry2 =

c1 + c2 − a2
2

, ry3 =
a2 + c2 − c1

2
.
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Without loss of generality, let a1 ≤ a2, b1 ≤ b2 and c1 ≤ c2. Let D = a2−a1 ≥ 0

and let

A = b1 − b2 + c1 − c2,

B = −b1 + b2 + c1 − c2 and

C = −b1 + b2 − c1 + c2.

Note that A ≤ B ≤ C and A ≤ 0 ≤ C. Since D ≥ 0 ≥ A, either D ∈ [A,B],

D ∈ [B,C] or D ∈ [C,∞). We obtain a contradiction by the following three

claims.

Claim. D /∈ [A,B].

Since x2y3 is a nonedge, we cannot have b1 ≤ rx2+ry3 ≤ b2; otherwise, rx2+ry3 ∈

[θ2j−1, θ2j). Observe that

b1 ≤ rx2 + ry3 ≤ b2 ⇐⇒ b1 ≤
b1 + b2 − a1

2
+

a2 + c2 − c1
2

≤ b2

⇐⇒ 2b1 ≤ b1 + b2 − a1 + a2 + c2 − c1 ≤ 2b2

⇐⇒ b1 − b2 + c1 − c2 ≤ a2 − a1 ≤ −b1 + b2 + c1 − c2

⇐⇒ A ≤ D ≤ B.

Claim. D /∈ [B,C].

Since x3y2 is a nonedge, we cannot have c1 ≤ rx3+ry2 ≤ c2; otherwise, rx3+ry2 ∈

[θ2ℓ−1, θ2ℓ). Note that

c1 ≤ rx3 + ry2 ≤ c2 ⇐⇒ c1 ≤
a1 + b2 − b1

2
+

c1 + c2 − a2
2

≤ c2

⇐⇒ 2c1 ≤ a1 + b2 − b1 + c1 + c2 − a2 ≤ 2c2

⇐⇒ −2c2 ≤ −a1 − b2 + b1 − c1 − c2 + a2 ≤ −2c1

⇐⇒ −b1 + b2 + c1 − c2 ≤ a2 − a1 ≤ −b1 + b2 − c1 + c2

⇐⇒ B ≤ D ≤ C.
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Claim. D /∈ [C,∞).

Since x3y3 is a nonedge, we cannot have a1 ≤ rx3 + ry3 ≤ a2; otherwise, rx3 +

ry3 ∈ [θ2i−1, θ2i). Observe that

a1 ≤ rx3 + ry3 ≤ a2 ⇐⇒ a1 ≤
a1 + b2 − b1

2
+

a2 + c2 − c1
2

≤ a2

⇐⇒ 2a1 ≤ a1 + b2 − b1 + a2 + c2 − c1 ≤ 2a2

⇐⇒ a1 − a2 ≤ −b1 + b2 − c1 + c2 ≤ a2 − a1

⇐⇒ −D ≤ C ≤ D

⇐⇒ C ≤ D,

since −D ≤ 0 ≤ C is trivially true.

We apply Lemmas 3.1 and 3.2 to determine the maximum number of triangles and

parts in terms of the number of colors, which in turn gives lower bounds for the

threshold numbers.

Lemma 3.3. (i) If there are at most m colors of edges in nK3, then n ≤ m+
(
m
3

)
.

In particular, if nK3 is a k-threshold graph, then n ≤
⌈
k
2

⌉
+
(⌈k/2⌉

3

)
.

(ii) If there are at most m colors of nonedges in Kn×3, then n ≤ m +
(
m
3

)
. In

particular, if Kn×3 is a k-threshold graph, then n ≤
⌈
k+1
2

⌉
+
(⌈(k+1)/2⌉

3

)
.

Proof. We will only prove (i) as the proof of (ii) is similar. Suppose that there

are at most m colors of edges in nK3. By Lemma 3.1, no two triangles in nK3

have the same color. Thus, there are at most
(
m
3

)
triangles in nK3 whose edges are

colored with 3 colors. It is sufficient to show that there are at most m triangles

in nK3 whose edges are colored with 1 or 2 colors. Indeed, for each color i ∈ [m],

there is at most one triangle of color of the form ijj where j ∈ [m] by Lemma 3.2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

Thus, n ≤ m +
(
m
3

)
. Note that if nK3 is a k-threshold graph, then there are at

most
⌈
k
2

⌉
colors of edges in nK3, and hence, n ≤

⌈
k
2

⌉
+
(⌈k/2⌉

3

)
.

The lower bounds for the threshold numbers obtained from Lemma 3.3 are not

sharp. We require another observation which states roughly that the first and last

colors appear in at most one triangle or part.

Lemma 3.4. (i) In a (θ1, θ2, θ3, . . . , θ2m−1)-representation of nK3, an edge of

color m appears in at most one triangle.

(ii) In a (θ1, θ2, θ3, . . . , θm)-representation of Kn×3, a nonedge of color 1 appears

in at most one part.

(iii) In a (θ1, θ2, θ3, . . . , θ2m)-representation of Kn×3, a nonedge of color m + 1

appears in at most one part.

Proof. (i) Let r be a (θ1, θ2, θ3, . . . , θ2m−1)-representation of nK3. Suppose to the

contrary that there are two triangles Tx and Ty in nK3 with an edge of color m.

Let V (Tx) = {x1, x2, x3} and V (Ty) = {y1, y2, y3}. Suppose that x1x2 and y1y2

are edges of color m. By the definition of colors of edges, rx1 + rx2 , ry1 + ry2 ∈

[θ2m−1,∞), that is rx1 + rx2 , ry1 + ry2 ≥ θ2m−1. Assume without loss of generality

that rx1 , ry1 ≥
θ2m−1

2
. Thus, rx1 + ry1 ≥ θ2m−1. By the definition of colors of edges,

x1y1 is an edge in nK3, a contradiction.

(ii) Let r be a (θ1, θ2, θ3, . . . , θm)-representation of Kn×3. Suppose to the con-

trary that there are two parts Px and Py in Kn×3 with a nonedge of color 1. Let

V (Px) = {x1, x2, x3} and V (Py) = {y1, y2, y3}. Suppose that x1x2 and y1y2 are

nonedges of color 1. By the definition of colors of nonedges, rx1 + rx2 , ry1 + ry2 ∈

(−∞, θ1), that is rx1 + rx2 , ry1 + ry2 < θ1. Assume without loss of generality that

rx1 , ry1 <
θ1
2

. Thus, rx1 + ry1 < θ1. By the definition of colors of nonedges, x1y1 is
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a nonedge in Kn×3, a contradiction.

(iii) Let r be a (θ1, θ2, θ3, . . . , θ2m)-representation of Kn×3. Suppose to the

contrary that there are two parts Px and Py in Kn×3 with a nonedge of color

m + 1. Let V (Px) = {x1, x2, x3} and V (Py) = {y1, y2, y3}. Suppose that x1x2

and y1y2 are nonedges of color m + 1. By the definition of colors of nonedges,

rx1 + rx2 , ry1 + ry2 ∈ [θ2m,∞), that is rx1 + rx2 , ry1 + ry2 ≥ θ2m. Assume without

loss of generality that rx1 , ry1 ≥ θ2m
2

. Thus, rx1 + ry1 ≥ θ2m. By the definition of

colors of nonedges, x1y1 is a nonedge in Kn×3, a contradiction.

The upper bounds for the threshold numbers will be obtained by rank as-

signments of the following forms. A rank assignment r of nK3 is said to be an

{a1, a2, a3, . . . , am}-assignment if each triangle has edge rank sums of the form

ai, ai, ai or ai, aj, ak for distinct i, j, k ∈ [m], and no two triangles have the same

multiset of edge rank sums.

Remarks 3.5. (i) In an {a1, a2, a3, . . . , am}-assignment of nK3, there are at

most m triangles having edge rank sums of the form ai, ai, ai, and there are

at most
(
m
3

)
triangles having edge rank sums of the form ai, aj, ak for distinct

i, j, k ∈ [m].

(ii) A triangle has edge rank sums ai, aj and ak if and only if its ranks are
ai+aj−ak

2
, ai+ak−aj

2
and aj+ak−ai

2
(see Figure 3.1).

(iii) If n ≤ m +
(
m
3

)
, then an {a1, a2, a3, . . . , am}-assignment of nK3 exists since

we can assign any edge rank sums for each triangle.

In the same fasion, a rank assignment r of Kn×3 is an {a1, a2, a3, . . . , am}-

assignment if each part has nonedge rank sums of the form ai, ai, ai or ai, aj, ak

for distinct i, j, k ∈ [m], and no two parts have the same multiset of nonedge rank
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ai+aj−ak
2

aj+ak−ai
2

ai+ak−aj
2

ai aj

ak

Figure 3.1: A triangle having edge rank sums ai, aj and ak

sums.

Remarks 3.6. (i) In an {a1, a2, a3, . . . , am}-assignment of Kn×3, there are at

most m parts having nonedge rank sums of the form ai, ai, ai, and there are

at most
(
m
3

)
parts having nonedge rank sums of the form ai, aj, ak for distinct

i, j, k ∈ [m].

(ii) A part has nonedge rank sums ai, aj and ak if and only if its ranks are
ai+aj−ak

2
, ai+ak−aj

2
and aj+ak−ai

2
.

(iii) If n ≤ m+
(
m
3

)
, then an {a1, a2, a3, . . . , am}-assignment of Kn×3 exists since

we can assign any nonedge rank sums for each part.

The linear independence of {a1, a2, a3, . . . , am} over Q is a sufficient condition

for the edge and nonedge rank sums in an {a1, a2, a3, . . . , am}-assignment not to

coincide.

Lemma 3.7. Let {a1, a2, a3, . . . , am} ⊂ R be a linearly independent set over Q.

(i) In an {a1, a2, a3, . . . , am}-assignment of nK3, the edge and nonedge rank sums

do not coincide.

(ii) In an {a1, a2, a3, . . . , am}-assignment of Kn×3, the edge and nonedge rank

sums do not coincide.
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Proof. We only prove (i) as the proof of (ii) is similar. Let A = {a1, a2, a3, . . . , am}

⊂ R be a linearly independent set over Q. Let r be an A-assignment of nK3. Then,

each triangle in nK3 has edge rank sums of the form ai, aj, ak where i, j, k ∈ [m]

are all equal or all distinct, and no two triangles in nK3 have the same multiset of

edge rank sums. Note that the rank of each vertex in nK3 is of the form ai+aj−ak
2

.

Suppose to the contrary that there exists a nonedge xy in nK3 such that rx+ry = aℓ

for some ℓ ∈ [m]. Let rx =
ai+aj−ak

2
and ry = ar+as−at

2
where i, j, k ∈ [m] are all

equal or all distinct, r, s, t ∈ [m] are all equal or all distinct, and {i, j, k} ̸= {r, s, t}.

Hence, rx + ry = aℓ becomes

ai + aj − ak + ar + as − at = 2aℓ.

Since {ai, aj, ak} ̸= {ar, as, at}, there exists an element in one set not appearing

in the other set, say ai /∈ {ar, as, at}. Since i, j, k are all equal or all distinct, the

coefficient of ai after simplifying the left hand side of the equation is 1. Since

A is a linearly independent set over Q, the left hand side cannot equal 2aℓ, a

contradiction.

We are now ready to determine the exact threshold numbers of nK3.

Theorem 3.8. Let qm = m+
(
m
3

)
+ 1. For n ≥ 1,

Θ(nK3) =

 2m− 1 if n = qm−1,

2m if qm−1 < n < qm.

Proof. Let m be a positive integer such that qm−1 ≤ n < qm. Suppose to the
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contrary that Θ(nK3) ≤ 2m− 2. By Lemma 3.3 (i),

n ≤
⌈
Θ(nK3)

2

⌉
+

(⌈Θ(nK3)
2

⌉
3

)
≤

⌈
2m− 2

2

⌉
+

(⌈
2m−2

2

⌉
3

)
= m− 1 +

(
m− 1

3

)
= qm−1 − 1,

contradicting the definition of m. Thus, Θ(nK3) ≥ 2m− 1.

To prove that Θ(nK3) ≤ 2m, let A = {a1, a2, a3, . . . , am} ⊂ R+ be a linearly

independent set over Q, for example, let ai =
√
pi where pi is the ith prime num-

ber. Since n ≤ qm − 1 = m +
(
m
3

)
, we can pick an A-assignment for nK3. By

Lemma 3.7 (i), the edge and nonedge rank sums do not coincide. We separate the

edge and nonedge rank sums by putting two thresholds around each edge rank sum.

For i = 1, 2, 3, . . . ,m, let θ2i−1 = ai and θ2i = ai + ε be thresholds of nK3 where

ε is a sufficiently small positive real number, for example, take ε smaller than any

distance between two distinct rank sums of nK3. Thus, the above rank assign-

ment is a (θ1, θ2, θ3, . . . , θ2m)-representation of nK3. Hence, nK3 is a 2m-threshold

graph, that is Θ(nK3) ≤ 2m as desired.

We suppose that n = qm−1. To prove that Θ(nK3) ≤ 2m − 1, let A =

{a1, a2, a3, . . . , am} ⊂ R+ be a linearly independent set over Q such that a1 <

a2 < a3 < · · · < am−1 ≤ am
2

. We then pick an A ∖ {am}-assignment for the

first m − 1 +
(
m−1
3

)
triangles in nK3, and let the last triangle have edge rank

sums am, am, am. Note that this is an A-assignment of nK3. By Lemma 3.7 (i),

the edge and nonedge rank sums do not coincide. We separate the edge and

nonedge rank sums by putting two thresholds around each edge rank sum. For

i = 1, 2, 3, . . . ,m, let θ2i−1 = ai and θ2i = ai + ε be thresholds of nK3 where ε

is a sufficiently small positive real number. Thus, the above rank assignment is
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a (θ1, θ2, θ3, . . . , θ2m)-representation of nK3. In fact, we will show that we do not

need the last threshold θ2m by proving that no rank sum exceeds θ2m−1. It is suffi-

cient to show that the rank of each vertex is at most θ2m−1

2
= am

2
. This is clear for

the last triangle with edge rank sums am, am, am since the rank of each vertex is
am
2

. For the other triangles, the rank of each vertex is of the form ai+aj−ak
2

for some

i, j, k ∈ [m− 1]. Since ai, aj ≤ am
2

and ak > 0, we have ai+aj−ak
2

≤
am
2

+am
2

+0

2
= am

2
.

Thus, all rank sums are at most am = θ2m−1. Then, the above rank assignment is

a (θ1, θ2, θ3, . . . , θ2m−1)-representation of nK3. Hence, nK3 is a (2m− 1)-threshold

graph, that is Θ(nK3) ≤ 2m− 1 as desired.

Suppose that n > qm−1. To prove that Θ(nK3) ≥ 2m, we suppose that

Θ(nK3) ≤ 2m− 1. Let r be a (θ1, θ2, θ3, . . . , θ2m−1)-representation of nK3. Then,

there are at most m colors of edges in nK3. By Lemma 3.3 (i), there are at most

m−1+
(
m−1
3

)
= qm−1−1 triangles without color m. By Lemma 3.4 (i), an edge of

color m appears in at most one triangle. Thus, n ≤ (qm−1 − 1)+1, a contradiction.

Therefore, Θ(nK3) ≥ 2m.

By applying Theorem 3.8 together with Proposition 2.15, we can narrow down

the possible values of Θ(Kn×3) to just two numbers.

Theorem 3.9. Let pm = m+
(
m
3

)
+ 2. For n ≥ 2,

Θ(Kn×3) =

 2m if n = pm−1,

2m+ 1 if pm−1 < n < pm.

Proof. Let m be a positive integer such that pm−1 ≤ n < pm. Observe that

pm = qm + 1. Thus, m is such that qm−1 < n ≤ qm. By Theorem 3.8,

Θ(nK3) =

 2m+ 1 if n = qm,

2m if qm−1 < n < qm.

By Proposition 2.15, Θ(Kn×3) ∈ {2m, 2m+ 1}.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

Suppose that n = pm−1. To prove that Θ(Kn×3) ≤ 2m, we will let A =

{a1, a2, a3, . . . , am+1} ⊂ R be a linearly independent set over Q such that a1 <

a2 < a3 < · · · < am+1, − |ai| ≥ a1
3

and |ai| ≤ am+1

3
for all i ∈ [m]∖{1}. We pick an

A ∖ {a1, am+1}-assignment for the first m − 1 +
(
m−1
3

)
parts in Kn×3, and let the

last two parts have nonedge rank sums a1, a1, a1 and am+1, am+1, am+1. Note that

this is an A-assignment of Kn×3. By Lemma 3.7 (ii), the edge and nonedge rank

sums do not coincide. Let θ1 be smaller than all rank sums. We then separate the

edge and nonedge rank sums by putting two thresholds around each interval of

nonedge rank sums. For i = 1, 2, 3, . . . ,m+1, let θ2i = ai and θ2i+1 = ai+ ε where

ε is a sufficiently small positive real number. Thus, the above rank assignment is a

(θ1, θ2, θ3, . . . , θ2m+3)-representation of Kn×3. In fact, we will show that we do not

need the thresholds θ1, θ2 and θ2m+3 by proving that no rank sum is smaller than

θ2 or larger than θ2m+2. It is sufficient to show that the rank of each vertex is at

least θ2
2
= a1

2
and at most θ2m+2

2
= am+1

2
. This is clear for the last two parts with

nonedge rank sums a1, a1, a1 and am+1, am+1, am+1 since the rank of each vertex

is either a1
2

or am+1

2
. For the other parts, the rank of each vertex is of the form

ai+aj−ak
2

for some i, j, k ∈ [m]∖ {1}. Since a1
3
≤ ai, aj,−ak ≤ am+1

3
, we have

a1
2

=
a1
3
+ a1

3
+ a1

3

2
≤ ai + aj − ak

2
≤

am+1

3
+ am+1

3
+ am+1

3

2
=

am+1

2
.

Thus, all rank sums are at least a1 = θ2 and at most am+1 = θ2m+2. Then, the above

rank assignment is a (θ3, θ4, θ5, . . . , θ2m+2)-representation of Kn×3. Therefore, Kn×3

is a 2m-threshold graph, that is Θ(Kn×3) ≤ 2m as desired.

Suppose that n > pm−1. To prove that Θ(Kn×3) ≥ 2m + 1, we suppose that

Θ(Kn×3) ≤ 2m. Let r be a (θ1, θ2, θ3, . . . , θ2m)-representation of Kn×3. Then, there

are at most m+1 colors of nonedges in Kn×3. By Lemma 3.3 (ii), there are at most

m − 1 +
(
m−1
3

)
= pm−1 − 2 parts without colors 1 and m + 1. By Lemma 3.4 (ii)
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and 3.4 (iii), a nonedge of color 1 appears in at most one part and a nonedge of

color m + 1 also appears in at most one part. Therefore, n ≤ (pm−1 − 2) + 1 + 1,

a contradiction.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

THRESHOLD NUMBERS OF Kn×4 AND nK4

In this chapter, we determine the exact threshold numbers of Kn×4 and nK4. We

will need Lemmas 3.1 and 3.2 as well as five new lemmas. Lemma 4.1 identifies all

sets of edge rank sums that can appear in a K4. Lemmas 4.2 and 4.3 are for the

lower bounds where the key idea is in Lemma 4.2. We apply Lemmas 3.1 and 3.2

to prove Lemma 4.2, which provide the maximum number of K4’s and parts in

terms of the number of colors. Lemma 4.3 improves the lower bounds obtained

from Lemma 4.2. On the other hand, Lemma 4.5 which is a tool to prove the

upper bounds utilizes Lemma 4.4 in its proof.

We start by assigning a color to each edge of nK4 and each nonedge of Kn×4 as

follows. In a (θ1, θ2, θ3, . . . , θk)-representation of nK4 where θ1 < θ2 < θ3 < · · · <

θk, we color an edge uv with color i, for i ∈
{
1, 2, 3, . . . ,

⌈
k
2

⌉}
, if ru+rv ∈ [θ2i−1, θ2i)

where θk+1 = ∞.

Similarly, in a (θ1, θ2, θ3, . . . , θk)-representation of Kn×4 where θ1 < θ2 < θ3 <

· · · < θk, we color a nonedge xy with color i, for i ∈
{
1, 2, 3, . . . ,

⌈
k+1
2

⌉}
, if rx+ry ∈

[θ2i−2, θ2i−1) where θ0 = −∞.

We denote by K4 (a1, b1, a2, b2, a3, b3) a K4 each of whose vertices is assigned

a rank so that the edge rank sums are a1, b1, a2, b2, a3 and b3 where ai and

bi belong to a perfect matching for each i as shown in Figure 4.1. For conve-

nience, we write K4 (c) for K4 (c, c, c, c, c, c). Observe that K4 (b1, a1, a2, b2, a3, b3),

K4 (a1, b1, b2, a2, a3, b3) and K4 (a1, b1, a2, b2, b3, a3) are isomorphic, while
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K4 (a1, b1, a2, b2, b3, a3) and K4 (a1, b1, a2, b2, a3, b3) are not isomorphic.

a1

a3a2 b2
b3

b1

Figure 4.1: K4 (a1, b1, a2, b2, a3, b3)

In the same fasion, we denote by E4 (a1, b1, a2, b2, a3, b3) an empty graph on

four vertices having nonedge rank sums a1, b1, a2, b2, a3 and b3 where ai and bi

belong to an independent nonedges for each i.

It is easy to determine which edge rank sums a1, b1, a2, b2, a3 and b3 can appear

in a K4.

Proposition 4.1. The following statements are equivalent:

(i) K4 (a1, b1, a2, b2, a3, b3) exists.

(ii) E4 (a1, b1, a2, b2, a3, b3) exists.

(iii) a1 + b1 = a2 + b2 = a3 + b3.

Proof. (i) ⇒ (iii): Suppose that K4 (a1, b1, a2, b2, a3, b3) exists, that is we can

assign a rank to each vertex so that the edge rank sums are a1, b1, a2, b2, a3 and

b3 where ai and bi belong to a perfect matching for each i. Since each perfect

matching spans all vertices of the graph, the summation of all ranks is equal to

ai + bi for each i. Thus, a1 + b1 = a2 + b2 = a3 + b3 as desired.

(iii) ⇒ (i): Let {w, x, y, z} be the vertex set of K4. We will provide an assign-

ment r of ranks so that the graph is K4 (a1, b1, a2, b2, a3, b3) as shown in Figure 4.2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

w x

zy

a1

a3a2 b2
b3

b1

Figure 4.2

To obtain edge rank sums b1, b2, b3 for the triangle xyz, we let

r(x) =
b2 + b3 − b1

2
, r(y) =

b1 + b3 − b2
2

and r(z) =
b1 + b2 − b3

2
.

We immediately obtain r(y) + r(z) = b1, r(x) + r(z) = b2 and r(x) + r(y) = b3.

Now, let r(w) = a1+a2−b3
2

. Thus,

r(w) + r(x) =
a1 + a2 − b3

2
+

b2 + b3 − b1
2

= a1 since a1 + b1 = a2 + b2,

r(w) + r(y) =
a1 + a2 − b3

2
+

b1 + b3 − b2
2

= a2 since a1 + b1 = a2 + b2 and

r(w) + r(z) =
a1 + a2 − b3

2
+

b1 + b2 − b3
2

= a3 since a1 + b1 = a2 + b2 = a3 + b3.

For (ii) ⇔ (iii), the proof is similar.

The following key lemma for the lower bounds for the threshold number, deter-

mines the maximum numbers of K4’s and parts in terms of the number of colors.

The crux of the proof is an observation that each K4 must contain a particular

kind of K3.

Lemma 4.2. (i) If there are at most m colors of edges in nK4, then n ≤ m +(⌊m/2⌋
3

)
+

(⌈m/2⌉
3

)
. In particular, if nK4 is a k-threshold graph, then n ≤⌈

k
2

⌉
+
(⌊(k+1)/4⌋

3

)
+
(⌈k/4⌉

3

)
.

(ii) If there are at most m colors of nonedges in Kn×4, then n ≤ m +
(⌊m/2⌋

3

)
+(⌈m/2⌉

3

)
. In particular, if Kn×4 is a k-threshold graph, then n ≤

⌈
k+1
2

⌉
+(⌊(k+2)/4⌋

3

)
+
(⌈(k+1)/4⌉

3

)
.
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Proof. We will only prove (i) as the proof of (ii) is similar. Let r be a representation

of nK4 such that there are at most m colors of edges. We decompose nK4 into

two subgraphs G1 = n1K4 and G2 = n2K4 with n = n1 + n2 such that G1 consists

of all K4’s containing a triangle whose edges are colored with 1 or 2 colors and G2

consists of all K4’s with four triangles whose edges are colored with 3 colors. First,

we show that n1 ≤ m. Consider a subgraph n1K3 of G1 consisting of triangles

whose edges are colored with 1 or 2 colors. Since n1K3 is an induced subgraph of

nK4, we have r is also a representation of n1K3. Applying Lemma 3.2 with the

representation r of n1K3, for each color i ∈ [m], there is at most one triangle in

n1K3 of color of the form ijj where j ∈ [m]. Thus, n1 ≤ m.

It remains to show that n2 ≤
(⌊m/2⌋

3

)
+
(⌈m/2⌉

3

)
. Let L be the set of triangles in

nK4 of colors ijℓ where i, j, ℓ ∈
{
1, 2, 3, . . . ,

⌊
m
2

⌋}
are all distinct. Let U be the set

of triangles in nK4 of colors ijℓ where i, j, ℓ ∈
{⌊

m
2

⌋
+ 1,

⌊
m
2

⌋
+ 2,

⌊
m
2

⌋
+ 3, . . . ,m

}
are all distinct. Note that |L| ≤

(⌊m/2⌋
3

)
and |U| ≤

(⌈m/2⌉
3

)
.

Claim. Each K4 in G2 contains at least one triangle in L ∪ U .

Proof of Claim. Let {v1, v2, v3, v4} be the vertex set of K4. Suppose without loss

of generality that rv1 ≤ rv2 ≤ rv3 ≤ rv4 . Thus,

rv1 + rv2 ≤ rv1 + rv3 ≤ rv2 + rv3 ≤ rv2 + rv4 ≤ rv3 + rv4 .

If v2v3 have color i, then i is in either

{
1, 2, 3, . . . ,

⌊m
2

⌋}
or

{⌊m
2

⌋
+ 1,

⌊m
2

⌋
+ 2,

⌊m
2

⌋
+ 3, . . . ,m

}
.

Hence, either v1v2v3 is in L or v2v3v4 is in U .

By Claim, there exists a subgraph n2K3 of G2 consisting of triangles in L∪ U .

Since n2K3 is an induced subgraph of nK4, we have r is also a representation of
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n2K3. Applying Lemma 3.1 with the representation r of n2K3, no two triangles in

n2K3 have the same color. Thus,

n2 ≤ |L ∪ U| ≤
(⌊

m
2

⌋
3

)
+

(⌈
m
2

⌉
3

)
.

Observe that if nK4 is a k-threshold graph, then there are at most
⌈
k
2

⌉
colors

of edges in nK4, and hence,

n ≤
⌈
k

2

⌉
+

(⌊ ⌈k/2⌉
2

⌋
3

)
+

(⌈ ⌈k/2⌉
2

⌉
3

)
=

⌈
k

2

⌉
+

(⌊
k+1
4

⌋
3

)
+

(⌈
k
4

⌉
3

)
.

Similarly to the case of K3, the lower bounds for the threshold numbers obtained

from Lemma 4.2 are not sharp. We again need another observation which says

roughly that the first and last colors appear in at most one K4 or part.

Lemma 4.3. (i) In a (θ1, θ2, θ3, . . . , θ2m−1)-representation of nK4, an edge of

color m appears in at most one K4.

(ii) In a (θ1, θ2, θ3, . . . , θm)-representation of Kn×4, a nonedge of color 1 appears

in at most one part.

(iii) In a (θ1, θ2, θ3, . . . , θ2m)-representation of Kn×4, a nonedge of color m + 1

appears in at most one part.

Proof. The proof is similar to that of Lemma 3.4.

The upper bounds for the threshold numbers will be obtained from rank assign-

ments of the following forms. Let A = {a1, a2, a3, . . . , aM}, B = {b1, b2, b3, . . . , bM}

be such that ai + bi = N for some N ∈ R and for all i ∈ [M ]. For n = 2M +2
(
M
3

)
,

the (A,B)-assignment is the rank assignment of nK4 consisting of the following
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K4’s:

K4 (ai) for each i ∈ [M ],

K4 (bi) for each i ∈ [M ],

K4 (ai, bi, aj, bj, ak, bk) for each subset {i, j, k} ⊂ [M ] of size 3 and

K4 (ai, bi, aj, bj, bk, ak) for each subset {i, j, k} ⊂ [M ] of size 3,

where each of them appears exactly once. Note that the numbers of K4’s in each

line are M , M ,
(
M
3

)
and

(
M
3

)
respectively, and they exist by Proposition 4.1.

Let ε > 0. For n = 2M +1+
(
M
3

)
+
(
M+1
3

)
, the (A,B, ε)-assignment is the rank

assignment of nK4 consisting of the following K4’s:

K4 (ai) for each i ∈ [M ],

K4 (bi) for each i ∈ [M ],

K4 (ai, bi, aj, bj, ak, bk) for each subset {i, j, k} ⊂ [M ] of size 3,

K4 (ai, bi, aj, bj, bk, ak) for each subset {i, j, k} ⊂ [M ] of size 3,

K4

(
N

2
+ ε

)
and

K4

(
ai + ε, bi + ε, aj + ε, bj + ε,

N

2
+ ε,

N

2
+ ε

)
for distinct i and j in [M ],

where each of them appears exactly once. Note that the numbers of K4’s in each

line are M , M ,
(
M
3

)
,
(
M
3

)
, 1 and

(
M
2

)
respectively, and they exist by Proposition 4.1.

Occasionally, we say that a K4 is of

• type I if it is a K4 (ai) or K4 (bi) for some i ∈ [M ],

• type II if it is a K4 (ai, bi, aj, bj, ak, bk) or K4 (ai, bi, aj, bj, bk, ak) for some

subset {i, j, k} ⊂ [M ] of size 3,

• type III if it is a K4

(
N
2
+ ε

)
and
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• type IV if it is a K4

(
ai + ε, bi + ε, aj + ε, bj + ε, N

2
+ ε, N

2
+ ε

)
for some dis-

tinct i, j ∈ [M ].

In the same fasion, we can define the (A,B)-assignment and the (A,B, ε)-assignment

of Kn×4 by replacing K4 with E4.

The following lemma will be used repeatedly in the proof of Lemma 4.5.

Lemma 4.4. Let {N, a1, a2, a3, . . . , aM} ⊂ R be a linearly independent set over

Q and bi = N − ai for i = 1, 2, 3, . . . ,M . Let A = {a1, a2, a3, . . . , aM} and

B = {b1, b2, b3, . . . , bM}. If
S∑

i=1

αixi + βN = 0,

where αi ∈ Z, xi ∈ A ∪B for all i ∈ [S] and β ∈ Q, then
∑S

i=1 αi is even.

Proof. Suppose that
∑S

i=1 αixi + βN = 0 where αi ∈ Z, xi ∈ A ∪ B for all i ∈ [S]

and β ∈ Q. Observe that xi is either aji or bji = N − aji where ji ∈ [M ]. Then,

we can write xi = δiaji + βiN where δi ∈ {−1, 1} and βi ∈ {0, 1}. The equation

becomes
S∑

i=1

δiαiaji +
S∑

i=1

βiαiN + βN = 0.

Since {N, a1, a2, a3, . . . , aM} is linearly independent over Q, we have
∑S

i=1 δiαi = 0.

Hence,
S∑

i=1

αi =
S∑

i=1

δiαi + 2
∑
δi=−1

αi = 2
∑
δi=−1

αi

is even.

The linear independence of {N, a1, a2, a3, . . . , aM} over Q is a sufficient con-

dition for the edge and nonedge rank sums in the (A,B)-assignment and in the

(A,B, ε)-assignment not to coincide. For the (A,B, ε)-assignment, we prove fur-

ther that there are small intervals without nonedge rank sums that cover all edge

rank sums.
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Lemma 4.5. Let {N, a1, a2, a3, . . . , aM} ⊂ R be a linearly independent set over

Q and bi = N − ai for i = 1, 2, 3, . . . ,M . Let A = {a1, a2, a3, . . . , aM} and

B = {b1, b2, b3, . . . , bM}.

(i) Let n = 2M +2
(
M
3

)
. In the (A,B)-assignment of nK4, the edge and nonedge

rank sums do not coincide.

(ii) Let n = 2M + 1 +
(
M
3

)
+
(
M+1
3

)
. Then, there exists a positive real number ε

such that, in the (A,B, ε)-assignment of nK4, no nonedge rank sum lies in

either [ai, ai + ε], [bi, bi + ε] or
{

N
2
+ ε

}
for all i ∈ [M ]. Moreover, the sets

of the form [ai, ai + ε], [bi, bi + ε] and
{

N
2
+ ε

}
for all i ∈ [M ] are pairwise

disjoint.

(iii) Let n = 2M+2
(
M
3

)
. In the (A,B)-assignment of Kn×4, the edge and nonedge

rank sums do not coincide.

(iv) Let n = 2M + 1 +
(
M
3

)
+

(
M+1
3

)
. Then, there exists a positive real number

ε such that, in the (A,B, ε)-assignment of Kn×4, no edge rank sum lies in

either [ai, ai + ε], [bi, bi + ε] or
{

N
2
+ ε

}
for all i ∈ [M ]. Moreover, the sets

of the form [ai, ai + ε], [bi, bi + ε] and
{

N
2
+ ε

}
for all i ∈ [M ] are pairwise

disjoint.

Proof. For (i) and (ii), it is sufficient to prove (ii) since every K4 in the (A,B)-

assignment appears in the (A,B, ε)-assignment and each edge rank sum in the

(A,B)-assignment is either ai or bi. The proofs of (iii) and (iv) are similar to

those of (i) and (ii).

To prove (ii), let n = 2M + 1 +
(
M
3

)
+
(
M+1
3

)
. We first consider the (A,B, ε)-

assignment of nK4 in the case when ε = 0.

Claim. For the (A,B, 0)-assignment r′ of nK4, no nonedge rank sum lies in A∪B.
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Proof of Claim. Suppose to the contrary that there exists a nonedge xy in nK4

such that r′x + r′y lies in A ∪ B, say r′x + r′y = et ∈ {at, bt} for some t ∈ [M ]. We

divide into cases according to the four possible types of K4 that x and y are in as

shown in Table 4.1.

x

y
I K4 II K4 III K4 IV K4

I K4 Case 1 Case 2 Case 4 Case 5

II K4 Case 3 Case 6 Case 7

III K4 Case 8 Case 9

IV K4 Case 10

Table 4.1: Ten cases according to the four possible types of K4 that x and y are

in.

Observe that the rank of each vertex in a type I K4 is of the form ci
2

where

i ∈ [M ] and ci ∈ {ai, bi}, that in a type II K4 is of the form ci+cj−ck
2

where

i, j, k ∈ [M ] are all distinct and cℓ ∈ {aℓ, bℓ} for ℓ ∈ {i, j, k}, that in a type III K4

is of the form N
4

, and that in a type IV K4 is of the form ci+cj−N/2

2
where i, j ∈ [M ]

are distinct and cℓ ∈ {aℓ, bℓ} for ℓ ∈ {i, j}.

Case 1. x, y ∈ type I K4.

Then, x ∈ K4 (ci) and y ∈ K4 (dj) where i, j ∈ [M ] and ci ∈ {ai, bi}, dj ∈

{aj, bj}. Thus, r′x = ci
2

and r′y =
dj
2

. The equation r′x + r′y = et becomes

ci + dj = 2et.

First, suppose that i ̸= j. One of i or j cannot equal to t, say i ̸= t. By

writing the equation in terms of the basis {N, a1, a2, a3, . . . , aM}, we can see that

the equality cannot occur since ci is the only term in the equation involving ai, a
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contradiction. Now, suppose that i = j. Since x and y are in different K4’s, we

have {ci, dj} = {ai, bi}, and hence, the equation becomes N = 2et, a contradiction.

Case 2. x ∈ type I K4 and y ∈ type II K4.

Then, x ∈ K4 (ci) where i ∈ [M ], ci ∈ {ai, bi}, y is in either K4 (ap, bp, aq, bq, as, bs)

or K4 (ap, bp, aq, bq, bs, as) where p, q, s ∈ [M ] are all distinct. Thus, r′x = ci
2

and

r′y = dp+dq−ds
2

where dℓ ∈ {aℓ, bℓ} for ℓ ∈ {p, q, s}. The equation r′x + r′y = et

becomes

ci + dp + dq − ds = 2et.

Since p, q, s are all distinct, there is an index in {p, q, s} not appearing in {i, t},

say p /∈ {i, t}. Thus, the equality cannot occur since dp is the only term in the

equation involving ap, a contradiction.

Case 3. x, y ∈ type II K4.

Then, x is in either K4 (ai, bi, aj, bj, ak, bk) or K4 (ai, bi, aj, bj, bk, ak) where i, j, k ∈

[M ] are all distinct, and y is in either K4 (ap, bp, aq, bq, as, bs) or K4 (ap, bp, aq, bq, bs, as)

where p, q, s ∈ [M ] are all distinct. Thus, r′x =
ci+cj−ck

2
where cℓ ∈ {aℓ, bℓ} for

ℓ ∈ {i, j, k} and r′y = dp+dq−ds
2

where dℓ ∈ {aℓ, bℓ} for ℓ ∈ {p, q, s}. The equation

r′x + r′y = et becomes

ci + cj − ck + dp + dq − ds = 2et.

Case 3.1. {i, j, k} ̸= {p, q, s}.

Then, there is an index in {i, j, k} not appearing in {p, q, s}, say i /∈ {p, q, s}.

Similarly, there is an index in {p, q, s} not appearing in {i, j, k}, say p /∈ {i, j, k}.

One of i or p cannot equal to t, say i ̸= t. Thus, the equality cannot occur since ci

is the only term in the equation involving ai, a contradiction.

Case 3.2. {i, j, k} = {p, q, s}.

Without loss of generality, let i = p, j = q and k = s. Since x, y are in different
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ci cj ck

ai bj ak

bi bj bk

bi aj ak

ai aj bk

(a) K4 (ai, bi, aj , bj , ak, bk)

di dj dk

ai bj bk

bi bj ak

bi aj bk

ai aj ak

(b) K4 (ai, bi, aj , bj , bk, ak)

Table 4.2: The possible values of ci, cj, ck and di, dj, dk.

K4’s, we can assume without loss of generality that x ∈ K4 (ai, bi, aj, bj, ak, bk) and

y ∈ K4 (ai, bi, aj, bj, bk, ak). By considering the edge rank sum of each triangle in

K4 (ai, bi, aj, bj, ak, bk), each row in Table 4.2a shows the possible values of ci, cj, ck,

and by considering the edge rank sum of each triangle in K4 (ai, bi, aj, bj, bk, ak),

each row in Table 4.2b shows the possible values of di, dj, dk.

By comparing a row in Table 4.2a with a row in Table 4.2b, we observe that

either none or two of ci = di, cj = dj and ck = dk hold. If none holds, then

{ci, di} = {ai, bi} , {cj, dj} = {aj, bj} and {ck, dk} = {ak, bk}. Thus, the above

equation becomes

N +N −N = 2et

which is a contradiction. If two of ci = di, cj = dj and ck = dk hold, then we

assume without loss of generality that {ci, di} = {ai, bi} and cj = dj, ck = dk.

Thus, the original equation becomes

N + 2cj − 2ck = 2et.

Since j ̸= k, one of j or k cannot equal to t, say j ̸= t. Hence, the equality cannot

occur since cj is the only term in the equation involving aj, a contradiction.
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Case 4. x ∈ type I K4 and y ∈ type III K4.

Then, x ∈ K4 (ci) where i ∈ [M ] and ci ∈ {ai, bi}, and y ∈ K4

(
N
2

)
. Thus,

r′x = ci
2

and r′y =
N
4

. The equation r′x + r′y = et becomes

ci − 2et +
N

2
= 0.

By Lemma 4.4, the sum of the coefficients of ci and et must be even, a contradiction.

Case 5. x ∈ type I K4 and y ∈ type IV K4.

Then, x ∈ K4 (ci) where i ∈ [M ] and ci ∈ {ai, bi}, and y ∈ K4

(
ap, bp, aq, bq,

N
2
, N

2

)
where p, q ∈ [M ] are distinct. Thus, r′x = ci

2
and r′y =

dp+dq−N/2

2
where dℓ ∈ {aℓ, bℓ}

for ℓ ∈ {p, s}. The equation r′x + r′y = et becomes

ci + dp + dq − 2et −
N

2
= 0.

By Lemma 4.4, the sum of the coefficients of ci, dp, dq and et must be even, a

contradiction.

Case 6. x ∈ type II K4 and y ∈ type III K4.

Then, x is in either K4 (ai, bi, aj, bj, ak, bk) or K4 (ai, bi, aj, bj, bk, ak) where i, j, k ∈

[M ] are all distinct, and y ∈ K4

(
N
2

)
. Thus, r′x =

ci+cj−ck
2

where cℓ ∈ {aℓ, bℓ} for

ℓ ∈ {i, j, k}, and r′y =
N
4

. The equation r′x + r′y = et becomes

ci + cj − ck +
N

2
− 2et = 0.

By Lemma 4.4, the sum of the coefficients of ci, cj, ck and et must be even, a

contradiction.

Case 7. x ∈ type II K4 and y ∈ type IV K4.

Then, x is in either K4 (ai, bi, aj, bj, ak, bk) or K4 (ai, bi, aj, bj, bk, ak) where i, j, k ∈

[M ] are all distinct, and y ∈ K4

(
ap, bp, aq, bq,

N
2
, N

2

)
where p, q ∈ [M ] are distinct.

Thus, r′x =
ci+cj−ck

2
where cℓ ∈ {aℓ, bℓ} for ℓ ∈ {i, j, k}, and r′y = dp+dq−N/2

2
where
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dℓ ∈ {aℓ, bℓ} for ℓ ∈ {p, q}. The equation r′x + r′y = et becomes

ci + cj − ck + dp + dq − 2et −
N

2
= 0.

By Lemma 4.4, the sum of the coefficients of ci, cj, ck, dp, dq and et must be even,

a contradiction.

Case 8. x, y ∈ type III K4.

This case cannot occur since x and y are in different K4’s, but there is only one

K4

(
N
2

)
.

Case 9. x ∈ type III K4 and y ∈ type IV K4.

Then, x ∈ K4

(
N
2

)
and y ∈ K4

(
ai, bi, aj, bj,

N
2
, N

2

)
where i, j ∈ [M ] are distinct.

Thus, r′x = N
4

and r′y =
ci+cj−N/2

2
where cℓ ∈ {aℓ, bℓ} for ℓ ∈ {i, j}. The equation

r′x + r′y = et becomes

ci + cj = 2et.

We obtain a contradiction similar to Case 1.

Case 10. x, y ∈ type IV K4.

Then, x ∈ K4

(
ai, bi, aj, bj,

N
2
, N

2

)
where i, j ∈ [M ] are distinct, and y is in

K4

(
ap, bp, aq, bq,

N
2
, N

2

)
where p, q ∈ [M ] are distinct. Thus, r′x =

ci+cj−N/2

2
where

cℓ ∈ {aℓ, bℓ} for ℓ ∈ {i, j}, and r′y = dp+dq−N/2

2
where dℓ ∈ {aℓ, bℓ} for ℓ ∈ {p, q}.

The equation r′x + r′y = et becomes

ci + cj + dp + dq −N = 2et.

Since x and y are in different K4’s, we have {i, j} ≠ {p, q}. Thus, there is an index

in one set not appearing in the other set, say i /∈ {p, q} and p /∈ {i, j}. One of i or

p cannot equal to t, say i ̸= t. Therefore, the equality cannot occur since ci is the

only term in the equation involving ai, a contradiction.
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Let ε be a positive real number smaller than any distance between two distinct

rank sums in the (A,B, 0)-assignment of nK4. Note that the set of edge rank sums

in the (A,B, 0)-assignment of nK4 is A∪B ∪
{

N
2

}
. By the definition of ε, the sets

of the form [ai, ai + ε], [bi, bi + ε] and
{

N
2
+ ε

}
for all i ∈ [M ] are pairwise disjoint.

Let r be the (A,B, ε)-assignment of nK4. Then„ for any vertex u ∈ nK4,

ru =

 r′u if u is in a type I or II K4,

r′u +
ε
2

if u is in a type III or IV K4.

Let xy be a nonedge in nK4 and consider ai ∈ A. Observe that

rx + ry ∈
{
r′x + r′y, r

′
x + r′y +

ε

2
, r′x + r′y + ε

}
.

By Claim, r′x + r′y ̸= ai. Since ai is a rank sum in the (A,B, 0)-assignment, the

distance between r′x + r′y and ai exceeds ε by the definition of ε. If r′x + r′y > ai,

then ai + ε < r′x + r′y ≤ rx + ry. If r′x + r′y < ai, then rx + ry ≤ r′x + r′y + ε < ai.

Thus, rx + ry /∈ [ai, ai + ε]. Similarly, rx + ry /∈ [bi, bi + ε].

It remains to show that rx + ry ̸= N
2
+ ε. Note that N

2
is a rank sum in the

(A,B, 0)-assignment. Thus, the distance between r′x+r′y and N
2

is either 0 or more

than ε by the definition of ε. If x or y is in a type I or II K4, then rx + ry ∈{
r′x + r′y, r

′
x + r′y +

ε
2

}
. If rx+ ry =

N
2
+ε, then the distance between r′x+ r′y and N

2

is either ε or ε
2
, a contradiction. Thus, we may suppose that both x and y are in a

a type III or IV K4. Since there is only one K4 of type III, we may suppose further

that x is in a type IV K4. Then, x ∈ K4

(
ai + ε, bi + ε, aj + ε, bj + ε, N

2
+ ε, N

2
+ ε

)
for some distinct i, j ∈ [M ]. Thus, rx =

ci+cj−N/2+ε

2
where cℓ ∈ {aℓ, bℓ} for ℓ ∈

{i, j}.

If y is in a type III K4, then y ∈ K4

(
N
2
+ ε

)
. Thus, ry = N

4
+ ε

2
. Hence,

rx + ry =

(
ci + cj −N/2 + ε

2

)
+

(
N

4
+

ε

2

)
=

ci + cj
2

+ ε.
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Suppose to the contrary that rx + ry =
N
2
+ ε, that is ci + cj = N . Since i ̸= j, we

have ci is the only term in the equation involving ai. Thus, the equality cannot

occur, a contradiction.

If y is in a type IV K4, then y ∈ K4

(
ap + ε, bp + ε, aq + ε, bq + ε, N

2
+ ε, N

2
+ ε

)
for some distinct p, q ∈ [M ]. Thus, ry = dp+dq−N/2+ε

2
where dℓ ∈ {aℓ, bℓ} for

ℓ ∈ {p, q}. Suppose to the contrary that rx + ry =
N
2
+ ε, i.e.,

ci + cj + dp + dq − 2N = 0.

Since x and y are in different K4’s, we have {i, j} ̸= {p, q}. Thus, there exists an

index in one set not appearing in the other set, say i /∈ {p, q}. Recall that i ̸= j.

Hence, the equality cannot occur since ci is the only term in the equation involving

ai, a contradiction.

Now, we are ready to determine the exact threshold numbers of nK4 and Kn×4.

Its proof follows the same line of argument as in the proof of Theorems 3.8 and 3.9,

nevertheless, those of Theorems 4.6 and 4.7 are significantly more complicated.

Theorem 4.6. Let tm = m+
(⌊m/2⌋

3

)
+
(⌈m/2⌉

3

)
+ 1. For n ≥ 1,

Θ(nK4) =

 2m− 1 if n = tm−1,

2m if tm−1 < n < tm.

Proof. Let m be a positive integer such that tm−1 ≤ n < tm. Suppose to the

contrary that Θ(nK4) ≤ 2m− 2. By Lemma 4.2 (i),

n ≤
⌈
Θ(nK4)

2

⌉
+

(⌊Θ(nK4)+1
4

⌋
3

)
+

(⌈Θ(nK4)
4

⌉
3

)
≤

⌈
2m− 2

2

⌉
+

(⌊
2m−2+1

4

⌋
3

)
+

(⌈
2m−2

4

⌉
3

)
= m− 1 +

(⌊
m−1
2

⌋
3

)
+

(⌈
m−1
2

⌉
3

)
= tm−1 − 1,
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contradicting the definition of m. Hence, Θ(nK4) ≥ 2m− 1.

To prove that Θ(nK4) ≤ 2m, let
{
N, a1, a2, a3, . . . , a⌊m/2⌋

}
⊂ R+ be a linearly

independent set over Q such that ai < N for all i ∈
{
1, 2, 3, . . . ,

⌊
m
2

⌋}
and let

bi = N − ai for i ∈
{
1, 2, 3, . . . ,

⌊
m
2

⌋}
. Write A =

{
a1, a2, a3, . . . , a⌊m/2⌋

}
and

B =
{
b1, b2, b3, . . . , b⌊m/2⌋

}
.

Case 1. m is even.

Let n′ = tm − 1 = m + 2
(
m/2
3

)
. It is sufficient to show that Θ(n′K4) ≤ 2m

since Θ(nK4) ≤ Θ(n′K4) as nK4 is an induced subgraph of n′K4. Consider the

(A,B)-assignment of n′K4. By Lemma 4.5 (i), the edge and nonedge rank sums

do not coincide. Note that the set of edge rank sums of n′K4 is A∪B. Let A∪B =

{c1, c2, c3, . . . , cm}. We separate the edge and nonedge rank sums by putting two

thresholds around each edge rank sum. For i = 1, 2, 3, . . . ,m, let θ2i−1 = ci

and θ2i = ci + ε′ be thresholds of n′K4 where ε′ is a sufficiently small positive

real number, for example, take ε′ smaller than any distance between two distinct

rank sums of n′K4. Thus, the above rank assignment is a (θ1, θ2, θ3, . . . , θ2m)-

representation of n′K4, and hence, n′K4 is a 2m-threshold graph, that is Θ(n′K4) ≤

2m.

Case 2. m is odd.

Let n′ = tm−1 = m+
(⌊m/2⌋

3

)
+
(⌈m/2⌉

3

)
. It is sufficient to show that Θ(n′K4) ≤

2m since nK4 is an induced subgraph of n′K4. By Lemma 4.5 (ii), there is a positive

real number ε such that, in the (A,B, ε)-assignment of n′K4, no nonedge rank

sum lies in either [ai, ai + ε], [bi, bi + ε] or
{

N
2
+ ε

}
for all i ∈

{
1, 2, 3, . . . ,

⌊
m
2

⌋}
,

and moreover, the sets of the form [ai, ai + ε], [bi, bi + ε] and
{

N
2
+ ε

}
for all i ∈{

1, 2, 3, . . . ,
⌊
m
2

⌋}
are pairwise disjoint. Let A∪B∪

{
N
2
+ ε

}
= {c1, c2, c3, . . . , cm}.

We separate the edge and nonedge rank sums by putting two thresholds around

each interval of edge rank sums of the form [ci, ci + ε] and
{

N
2
+ ε

}
. For i =
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1, 2, 3, . . . ,m, let θ2i−1 = ci and

θ2i =


ci + ε+ ε′ if ci ∈ A ∪B,

ci + ε′ if ci =
N
2
+ ε

be thresholds of n′K4 where ε′ is a sufficiently small positive real number. Thus, the

above rank assignment is a (θ1, θ2, θ3, . . . , θ2m)-representation of n′K4, and hence,

n′K4 is a 2m-threshold graph, that is Θ(n′K4) ≤ 2m.

Suppose that n = tm−1. To prove that Θ(nK4) ≤ 2m−1, we write M =
⌊
m+1
2

⌋
and let {N, a1, a2, a3, . . . , aM} ⊂ R+ be a linearly independent set over Q such that

ai < N ≤ aM
2

for all i ∈ [M − 1]. Let bi = N − ai for i = 1, 2, 3, . . . ,M − 1. Write

A = {a1, a2, a3, . . . , aM−1} and B = {b1, b2, b3, . . . , bM−1}.

Case 1. m− 1 is even.

We take the (A,B)-assignment for the first m−1+2
(
(m−1)/2

3

)
K4’s in nK4, and

let every edge in the last K4 have edge rank sum aM . Note that these K4’s appear

in the (A ∪ {aM} , B ∪ {bM})-assignment of (tm+1 − 1)K4. By Lemma 4.5 (i), the

edge and nonedge rank sums do not coincide. Observe that the set of edge rank

sums of nK4 is A ∪ B ∪ {aM}. Let A ∪ B ∪ {aM} = {c1, c2, c3, . . . , cm} where

c1 < c2 < c3 < · · · < cm. We separate the edge and nonedge rank sums by putting

two thresholds around each edge rank sum. For i = 1, 2, 3, . . . ,m, let θ2i−1 = ci

and θ2i = ci + ε′ be thresholds of nK4 where ε′ is a sufficiently small positive real

number. Thus, the above rank assignment is a (θ1, θ2, θ3, . . . , θ2m)-representation

of nK4. In fact, we will show that we do not need the last threshold θ2m by proving

that no rank sum exceeds θ2m−1. It is sufficient to show that the rank of each vertex

is at most θ2m−1

2
= cm

2
= aM

2
. This is clear for the last K4 with the set of edge rank

sums {aM}. For the other K4’s, the rank of each vertex is of the form ci+cj−ck
2

for

some i, j, k ∈ [m − 1], which is at most aM
2

since ci, cj ≤ aM
2

and ck > 0. Thus,
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the above rank assignment is a (θ1, θ2, θ3, . . . , θ2m−1)-representation of nK4, and

hence, nK4 is a (2m− 1)-threshold graph, that is Θ(nK4) ≤ 2m− 1.

Case 2. m− 1 is odd.

We choose ε such that the (A ∪ {aM} , B ∪ {bM} , ε)-assignment of (tm+1 − 1)K4

satisfies the properties in Lemma 4.5 (ii). We then take the (A,B, ε)-assignment

for the first m − 1 +
(⌊(m−1)/2⌋

3

)
+

(⌈(m−1)/2⌉
3

)
K4’s in nK4, and let every edge

in the last K4 have edge rank sum aM . Note that these K4’s appear in the

(A ∪ {aM} , B ∪ {bM} , ε)-assignment of (tm+1 − 1)K4. By the choice of ε, no

nonedge rank sum lies in either [ai, ai + ε], [bi, bi + ε] or
{

N
2
+ ε

}
for all i ∈ [M−1],

and moreover, the sets of the form [ai, ai + ε], [bi, bi + ε] and
{

N
2
+ ε

}
for all

i ∈ [M − 1] are pairwise disjoint. Let A ∪ B ∪
{
aM , N

2
+ ε

}
= {c1, c2, c3, . . . , cm}

where c1 < c2 < c3 < · · · < cm. We claim that cm = aM . Indeed, it is clear that

aM > ai, bi for all i ∈ [M − 1]. Since N
2
+ ε lies between the intervals [a1, a1 + ε]

and [b1, b1 + ε] by the choice of ε, we have N
2
+ε < max {a1, b1} < aM . We separate

the edge and nonedge rank sums by putting two thresholds around each interval

of edge rank sums. For i = 1, 2, 3, . . . ,m, let θ2i−1 = ci and

θ2i =


ci + ε+ ε′ if ci ∈ A ∪B ∪ {aM} ,

ci + ε′ if ci =
N
2
+ ε

be thresholds of nK4 where ε′ is a sufficiently small positive real number. Thus,

the above rank assignment is a (θ1, θ2, θ3, . . . , θ2m)-representation of nK4. In fact,

we will show that we do not need the last threshold θ2m by proving that no rank

sum is greater than or equal to θ2m = aM + ε + ε′. It is sufficient to show that

the rank of each vertex is at most aM+ε
2

. This is clear for the last K4 with the

set of edge rank sums {aM}. For the other K4’s, the rank of each vertex is of the

form di+dj−dk
2

, N
4
+ ε

2
or di+dj−N/2+ε

2
where i, j, k ∈ [M − 1] and dℓ ∈ {aℓ, bℓ} for
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ℓ ∈ {i, j, k}, which is at most aM+ε
2

since 0 < di, dj, dk,
N
2
≤ aM

2
. Thus, the above

rank assignment is a (θ1, θ2, θ3, . . . , θ2m−1)-representation of nK4, and hence, nK4

is a (2m− 1)-threshold graph, that is Θ(nK4) ≤ 2m− 1.

Suppose that n > tm−1. To prove that Θ(nK4) ≥ 2m, we suppose that

Θ(nK4) ≤ 2m− 1. Let r be a (θ1, θ2, θ3, . . . , θ2m−1)-representation of nK4. Then,

there are at most m colors of edges in nK4. By Lemma 4.2 (i), there are at

most tm−1 − 1 K4’s without color m. By Lemma 4.3 (i), an edge of color m ap-

pears in at most one K4. Thus, n ≤ (tm−1 − 1) + 1, a contradiction. Therefore,

Θ(nK4) ≥ 2m.

Theorem 4.7. Let sm = m+
(⌊m/2⌋

3

)
+
(⌈m/2⌉

3

)
+ 2. For n ≥ 2,

Θ(Kn×4) =

 2m if n = sm−1,

2m+ 1 if sm−1 < n < sm.

Proof. Let m be a positive integer such that sm−1 ≤ n < sm. By Theorem 4.6,

Θ(nK4) ∈ {2m, 2m+ 1}, and hence, Θ(Kn×4) ∈ {2m, 2m+ 1} by Proposition 2.15.

Suppose that n = sm−1. To prove that Θ(Kn×4) ≤ 2m, we write M =
⌊
m+1
2

⌋
and let {N, a1, a2, a3, . . . , aM} ⊂ R be a linearly independent set over Q such that
aM
3

≤ −N < −ai < 0 for all i ∈ [M − 1]. Let bi = N − ai for i = 1, 2, 3, . . . ,M .

Then, aM
3

≤ ai, bi,−N,N ≤ bM
3

for all i ∈ [M−1]. Write A = {a1, a2, a3, . . . , aM−1}

and B = {b1, b2, b3, . . . , bM−1}.

Case 1. m− 1 is even.

We take the (A,B)-assignment for the first m − 1 + 2
(
(m−1)/2

3

)
parts in Kn×4,

and let the last two parts have the sets of nonedge rank sums {aM} and {bM}. Note

that these parts appear in the (A ∪ {aM} , B ∪ {bM})-assignment of K(sm+1−2)×4.

By Lemma 4.5 (iii), the edge and nonedge rank sums do not coincide. Observe that

the set of nonedge rank sums of Kn×4 is A∪B∪{aM , bM}. Let A∪B∪{aM , bM} =
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{c1, c2, c3, . . . , cm+1} where c1 < c2 < c3 < · · · < cm+1. Let θ1 be smaller than all

rank sums. We then separate the edge and nonedge rank sums by putting two

thresholds around each nonedge rank sum. For i = 1, 2, 3, . . . ,m + 1, let θ2i = ci

and θ2i+1 = ci + ε′ where ε′ is a sufficiently small positive real number. Thus, the

above rank assignment is a (θ1, θ2, θ3, . . . , θ2m+3)-representation of Kn×4. In fact,

we will show that we do not need the thresholds θ1, θ2 and θ2m+3 by proving that

no rank sum is smaller than θ2 or larger than θ2m+2. It is sufficient to show that

the rank of each vertex is at least θ2
2
= c1

2
= aM

2
and at most θ2m+2

2
= cm+1

2
= bM

2
.

This is clear for the last two parts with the sets of nonedge rank sums {aM} and

{bM}. For the other parts, the rank of each vertex is of the form ci+cj−ck
2

for some

i, j, k ∈ [m]∖{1}, which is at least aM
2

and at most bM
2

since aM
3

≤ ci, cj,−ck ≤ bM
3

.

Thus, the above rank assignment is a (θ3, θ4, θ5, . . . , θ2m+2)-representation of Kn×4,

and hence, Kn×4 is a 2m-threshold graph, that is Θ(Kn×4) ≤ 2m.

Case 2. m− 1 is odd.

We choose ε such that the (A ∪ {aM} , B ∪ {bM} , ε)-assignment of K(sm+1−2)×4

satisfies the properties in Lemma 4.5 (iv). We then take the (A,B, ε)-assignment

for the first m−1+
(⌊(m−1)/2⌋

3

)
+
(⌈(m−1)/2⌉

3

)
parts in Kn×4, and let the last two parts

have the sets of nonedge rank sums {aM} and {bM}. Note that these parts appear

in the (A ∪ {aM} , B ∪ {bM} , ε)-assignment of K(sm+1−2)×4. By the choice of ε, no

edge rank sum lies in either [ai, ai + ε], [bi, bi + ε] or
{

N
2
+ ε

}
for all i ∈ [M−1], and

moreover, the sets of the form [ai, ai + ε], [bi, bi + ε] and
{

N
2
+ ε

}
for all i ∈ [M−1]

are pairwise disjoint. Let A ∪ B ∪
{
aM , bM , N

2
+ ε

}
= {c1, c2, c3, . . . , cm+1} where

c1 < c2 < c3 < · · · < cm+1. We claim that c1 = aM and cm+1 = bM . Indeed, it is

clear that aM < ai, bi < bM for all i ∈ [M−1]. Since N
2
+ε lies between the intervals

[a1, a1 + ε] and [b1, b1 + ε] by the choice of ε, we have aM < min {a1, b1} < N
2
+ε <

max {a1, b1} < bM . Let θ1 be smaller than all rank sums. We then separate the
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edge and nonedge rank sums by putting two thresholds around each interval of

nonedge rank sums. For i = 1, 2, 3, . . . ,m+ 1, let θ2i = ci and

θ2i+1 =


ci + ε+ ε′ if ci ∈ A ∪B ∪ {aM , bM} ,

ci + ε′ if ci =
N
2
+ ε

be thresholds of Kn×4 where ε′ is a sufficiently small positive real number. Thus,

the above rank assignment is a (θ1, θ2, θ3, . . . , θ2m+3)-representation of Kn×4. In

fact, we will show that we do not need the thresholds θ1, θ2 and θ2m+3 by proving

that no rank sum is smaller than θ2, or larger than or equal to θ2m+3. It is

sufficient to show that the rank of each vertex is at least θ2
2

= c1
2

= aM
2

and

at most θ2m+3−ε′

2
= cm+1+ε

2
= bM+ε

2
. This is clear for the last two parts with the

sets of nonedge rank sums {aM} and {bM}. For the other parts, the rank of each

vertex is of the form di+dj−dk
2

, N
4
+ ε

2
or di+dj−N/2+ε

2
where i, j, k ∈ [M − 1] are

all distinct and dℓ ∈ {aℓ, bℓ} for ℓ ∈ {i, j, k}, which is at least aM
2

and at most
bM+ε

2
since aM

3
≤ di, dj,−dk,−N,N ≤ bM

3
. Thus, the above rank assignment is a

(θ3, θ4, θ5, . . . , θ2m+2)-representation of Kn×4, and hence, Kn×4 is a 2m-threshold

graph, that is Θ(Kn×4) ≤ 2m.

Suppose that n > sm−1. To prove that Θ(Kn×4) ≥ 2m + 1, we suppose that

Θ(Kn×4) ≤ 2m. Let r be a (θ1, θ2, θ3, . . . , θ2m)-representation of Kn×4. Then, there

are at most m + 1 colors of nonedges in Kn×4. By Lemma 4.2 (ii), there are at

most sm−1 − 2 parts without colors 1 and m+ 1. By Lemma 4.3 (ii) and 4.3 (iii),

a nonedge of color 1 appears in at most one part and a nonedge of color m+1 also

appears in at most one part. Therefore, n ≤ (sm−1−2)+1+1, a contradiction.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS AND OPEN PROBLEMS

In this dissertation, we determine the exact threshold numbers of Kn×3, Kn×4 and

their complements, nK3 and nK4. Theorems 3.8 and 3.9 in Chapter III indicate

the threshold numbers of Kn×3 and nK3, while Theorems 4.6 and 4.7 in Chapter IV

indicate the threshold numbers of Kn×4 and nK4. These results can be summarized

in the following theorems.

Theorem 5.1. Let qm = m+
(
m
3

)
+ 1.

(i) For n ≥ 2,

Θ(Kn×3) =


2m if n = qm−1 + 1,

2m+ 1 if qm−1 + 1 < n < qm,

2m+ 1 if n = qm and m ≥ 3.

(ii) For n ≥ 1,

Θ(nK3) =


2m if n = qm−1 + 1 and m ≥ 3,

2m if qm−1 + 1 < n < qm,

2m+ 1 if n = qm.

Theorem 5.2. Let tm = m+
(⌊m/2⌋

3

)
+
(⌈m/2⌉

3

)
+ 1.

(i) For n ≥ 2,

Θ(Kn×4) =


2m if n = tm−1 + 1,

2m+ 1 if tm−1 + 1 < n < tm,

2m+ 1 if n = tm and m ≥ 5.
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(ii) For n ≥ 1,

Θ(nK4) =


2m if n = tm−1 + 1 and m ≥ 5,

2m if tm−1 + 1 < n < tm,

2m+ 1 if n = tm.

We recall Conjecture 1.1 as shown.

Conjecture 5.3 ([9]). For all k ≥ 1, there is a graph G with Θ(G) = 2k and

Θ(Gc) = 2k + 1.

This conjecture was confirmed by Chen and Hao [2] (see Theorem 1.3). Note that

Theorem 5.1 gives more examples satisfying the conjecture except for k = 3, while

Theorem 5.2 gives more examples satisfying the conjecture except for k ∈ {5, 6}.

In addition, Theorem 5.1 also improves the result of Puleo [17] providing an upper

bound for Θ(Kn×3).

Chen and Hao [2] gave the value of Θ(Km1,m2,m3,...,mn) for mi > n ≥ 2, while

our main results give the values of Θ(Kn×3) and Θ(Kn×4). Therefore, Problem 1.2

remains unsolved for other complete multipartite graphs. The followings could be

the next goals.

Problem 5.4. Determine the exact threshold numbers of n3K3 ∪ n4K4 and their

complements.

Problem 5.5. Determine the exact threshold numbers of n1K1∪n2K2∪n3K3 and

their complements.

Problem 5.6. Determine the exact threshold numbers of n1K1∪n2K2∪n3K3∪n4K4

and their complements.

Problem 5.7. Determine the exact threshold numbers of Kn×m for m ≥ 5 and

their complements.
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The method we used can be generalized to give some bounds for Θ(Kn×m), but

new ideas seem to be required in order to find the exact value.
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