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Hair cells are specialized receptors that detect mechanical forces in the auditory
and vestibular systems of vertebrates. In vivo hair-cell bundles are typically anchored to an
overlying structure which provides mechanical coupling between neighboring hair cells.
Cooperativity between hair bundles has been previously proposed to have strong effects on
signal detection. While the coupling of hair cells with the same polarity as those in the
auditory organs has been extensively studied, the dynamics of hair cells with opposite
polarity in the vestibular system and the inner ear of lizards remain unexplored. In this
study, we aim to investigate the dynamics of two hair cells arranged with opposite polarity
under a coupling spring using a mathematical model previously proposed to describe hair
bundle motility. We focused on three scenarios: spontaneous dynamics, responses to
sinusoidal force stimulation, and responses to step force stimulation. Through our analyses,
we showed that the coupling force applied to each hair cell by the coupling element served
as an additional force that modulated the individual cell's dynamics. Notably, when coupled
with opposite polarity, the coupling force counteracted the applied constant force, which
affected the hair cell's operating point. Under sinusoidal force stimulation, the coupling
force oscillated at twice the frequency of the driving force. This oscillatory force could
affect the response of the coupled hair bundle at the driving frequency, leading to reduced
responses at high force amplitudes and frequencies below the resonance frequency. This
phenomenon could improve the hair cell's compressive nonlinearity and frequency
selectivity. Furthermore, we observed that the coupling force increased the responses to
positive step forces while decreasing responses to negative forces. Our study contributes to
the understanding of coupled hair-bundle dynamics which could play important roles in the
signal detections by the vestibular systems and inner ear of lizards.

Field of Study:  Physics Student's Signature .........c.cceevveveverevenenn.
Academic Year: 2022 Advisor's Signature .........cccceeeevvereennenn



ACKNOWLEDGEMENTS

I would like to express my deep appreciation to my advisor, Asst.Prof.Dr.
Yuttana Roongthumskul, for his unwavering patience, guidance, and support throughout
the long journey of this thesis. His expertise and mentorship have been invaluable, and I
am grateful for his dedication and encouragement throughout the years in this course.

I would also like to extend my thanks to all the staff from the Department of
Physics for their helpful advice and assistance regarding the various regulations
involved in submitting this thesis. Their support has been instrumental in navigating the
administrative aspects of this research endeavor.

Furthermore, I would like to express my gratitude to everyone in the OAEs
group for their valuable insights and advice in the field of study. Their contributions
have greatly enriched my research and broadened my understanding of the subject
matter.

Finally, I would like to acknowledge and thank my friends at the Department of
Physics for their continuous encouragement and motivation. Their unwavering support

has been a driving force in helping me complete this thesis.

Tanawat Ngampattrapan



TABLE OF CONTENTS

ABSTRACT (THAL) .ottt iii
ABSTRACT (ENGLISH) ...oiiiiiiieiir s iv
ACKNOWLEDGEMENTS ...ttt v
TABLE OF CONTENTS ....oooiiiiiiiii e vi
LIST OF FIGURES ......oiiiiiiiiiiii i viii
Chapter 1 INtroOAUCTION ..vvovvve ittt s s e bbb e e be e e sbeeeannes 1
1.1 Background and motivations ............ccuiiciiniiiiniiniiseces e 1
1.2 ODBJECLIVES ..ttt sie ittt nre s 3
1.3 SCOPE OF thESIS vttt 3
1.4 ReSCArCh PrOCEAUIES .. ..uvviiiviiiiiiiis ittt e e 3
1.5 EXpected DenefitS.......coiiiiiiiiiiiiiiiiiii it 5
1.6 OVErall ... 5
Chapter 2 Background TREOTY .......ccciiiiiiiiiiiiiiiiiciise s 7
2.1 Hair bundle’s structure and mechanical Properties .............ccoccvvvviiiiiiiiciicnene, 7
2.2 Hair cell OrTentation .........ccociiiieiiiiiiiieciie i 10
2.3 Effects of oVerlying StruCtUIES .......c.oieiiieiiiiiiiiiie i 11
2.4 Mathematical model of hair-bundle motility...........cccoovvviiiiiiiiiii, 13
2.5 Predictions from the model..........cccooiiiiiiiiiiii 15
2.6 Phase portrait of a nonlinear 0scillator .............ccocviiiiiiiiiiii e, 17
Chapter 3 MethodOlOZY ........coiviiiiiiiiiiiiii s 19
3.1 Mathematical model of a single hair bundle............ccccoooiiiiiiiiii, 19
3.2 Model of coupled hair bundles ............cccooveiiiiiiiiii 20
3.3 Numerical simulation and frequency analysis.........ccccccocvriieiiiiiiiciinicieenn, 20
3.4 Parameters VAlUC ........ccviviiiiiiiiiiiici e 21

3.5 Calculation of the constant force experienced by coupled hair bundles............ 23



vil

CRAPEr 4 RESUILS ...vviiiiiiiiiie ettt bbbt e e 25
4.1 Spontaneous AYNAMIIC ......uvveiurieiiieiiiieiieie st e e e e sbe e sr e sbeeeaseeeas 25
4.2 Responses to sINUSOIdal fOrCE......uuiiiiiiiiiiiiiiiie it 30
4.3 ReSpOnSEs t0 SEP OTCE....uuiiiiiiiiiiiiiiie ittt 44

Chapter 5 Discussion and CONCIUSION ........coiiviiiiiiiiiiiiiiiie e 55
5.1 DASCUSSION ...ttt ettt ettt et e bt e b e s sn e e be e e nn e e nneesneenneeas 55
5.2 Suggestions and future Worki ..........ccccocviiiiiiiiiiinii 57

REFERENCES ...ttt 59



LIST OF FIGURES

Page

Figure 1.1 Schematic diagram of hair bundles. ..........cccccceiiiiiiiiiii 1
Figure 1.2 Schematic diagram of the cross section of the inner ear of tokay geckos...2
Figure 2.1 Schematic diagram of hair cell. ..........ccccoeiiiiiiiiiii 7

Figure 2.2 The gating of hair bundle when receiving a force in direction of taller villi.

........................................................................................................................................ 8
Figure 2.3 Nonlinearity of hair bundle..........c.occooiviiiiiiiiiii e, 9
Figure 2.4 Orientation and overlying structure of hair cells in various organs. ......... 11
Figure 2.5 Operating points suitable on detecting different kind of force of hair
bundle........c.ocovcvvivenncnnnnsst e Aol St oo s Vi s eeresssrnesseessrnssnsssensseessrnsaneess 13
Figure 2.6 Spontaneous oscillation and state diagram of hair bundle. ....................... 16
Figure 2.7 Responses of hair bundle to external force............ccooeviviiiiiiiniiienn, 17
Figure 2.8 Phase portrait of equation (2.2) at 3 different sets of parameters.............. 18
Figure 3.1 Schematic diagram of coupled 0SCillator..........ccocoveiiviiiiieniniiiicicceen 20
Figure 3.2 Step fOrce t0 tMe......coiiiiiiiiiiiiiisiesisiee s 21
Figure 3.3 Force-displacement relation from the model...............ccoooiiiiin, 23
Figure 4.1 State Diagram for coupled oscillators. .........ccocovviiiiiiiiicii e 26
Figure 4.2 Peak-to-peak amplitude of coupled oscillators with opposite polarity......29
Figure 4.3 Force acting on individual oscillator. ...........cccccoiiiiiiiiiiiii, 30
Figure 4.4 Sensitivity of coupled oscillators with identical polarity.............cccccvenenn 32
Figure 4.5 Sensitivity plot vs driving force frequency for coupled oscillator with
OPPOSILE POLATILY....viiiiiiiiiiiii i 33

Figure 4.6 Sensitivity vs driving force frequency of coupled oscillators with opposite
polarity at the same Operating POINt...........cccvveriierieriiiiiiese e 34

Figure 4.7 Sensitivity of coupled oscillators at frequency of 0.0675 and driving force
AMPItUde OF 0.1, ..o 35

Figure 4.8 Plot of sensitivity versus driving force amplitude for coupled oscillators 37



1X

Figure 4.9 Comparison between the displacements of a coupled oscillator and a

SINEGIE OSCILALOT 1..vviiiiiie et ees 38
Figure 4.10 Coupling fOrce. .......uoiiiiiiiiiiiiiiiiiie st 39
Figure 4.11 Power spectrum of responses from 3 different cases...........cccvevvveeriinnns 39

Figure 4.12 Sensitivity of a single oscillator vs phase of the second harmonic force 41

Figure 4.13 Phase of extracted coupling force.........ccocvvviiiiiiiiiiiiin i 42
Figure 4.14 Ratio between the amplitude of the coupling force and the driving force.

...................................................................................................................................... 43
Figure 4.15 Sensitivity at off-resonance frequencies. ..........cooeviviiiiiiiiinciiees 44

Figure 4.16 Schematic diagram of coupled oscillator with opposite polarity receiving
a positive step force with respect to the first oscillator. .........ccccocvviiiiiiii i, 45

Figure 4.17 Responses to step force of coupled oscillators with identical polarity....46

Figure 4.18 Responses of oscillators with opposite polarity..........cccceoeriieiieiieennns 47
Figure 4.19 Trajectory of the oscillator receiving the step force..........ccoovvvvviininnnns 49
Figure 4.20 Trajectory of the oscillator shown in Figure 4.17 in phase plane............ 50
Figure 4.21 Trajectory and nullcline of each oscillator............ccoocviviiiiiiiiiciiicn, 52
Figure 4.22 Responses of coupled oscillators to step force at higher Kc .................. 53

Figure 4.23 Coupling force and the total force acting on each oscillator for Kc= 1. .54



Chapter 1

Introduction

1.1 Background and motivations

Auditory and vestibular systems of vertebrates are able to detect external forces
with high sensitivity and frequency selectivity. These systems utilize hair cells whose
sub-cellular structures comprise of packed villi arranged in graded height, called the
hair bundle, to perceive the incoming forces (Figure 1.1). This structure gives rise to
an asymmetry in the activation of the hair bundle: a deflection in the direction toward
the taller villi results in the opening of mechanically gated ion channels on the hair
bundle, whereas the deflection toward the shorter villi closes the channels [1]. This
directional activation of a hair bundle is referred to as hair bundle polarity. The gating
of ion-channels generates nerve signals sent to the brain resulting in a perception of

the external forces.

Hair bundle

Hair cell

Figure 1.1 Schematic diagram of hair bundles. Adapted from [1].

L Supporting
cell




Hair cells in vestibular system and auditory system perceive different kinds of
forces. The vestibular system is responsible for the detection of body movement and
orientation while the auditory system is responsible for detecting sounds. There are
several suggestions that the hair cell’s ability to sense distinct types of stimuli is
governed by the in vivo auxiliary structures that imposed different mechanical loads
on hair bundles [2-4]. Theoretical predictions suggest that the stiffness of the
mechanical load and the constant force imposed on hair bundles can tune hair bundles
to different operating points within a state diagram suitable for the detection of a

specific type of forces [2].

However, in vivo hair bundles are also mechanically connected via an overlying
membrane, and thus potentially operate in groups. Investigations of the anatomy of
the vertebrate inner ears reveal that in vivo hair bundles of the auditory organs, such
as the mammalian cochlea, are often arranged with identical polarities [5, 6]. On the
other hand, hair bundles in the vestibular organs, such as the semicircular canal, the
saccule, and the fish lateral line, are arranged primarily with opposing polarities. An
exception includes the auditory organs of several lizard species that incorporate hair

bundles with opposite polarities (Figure 1.2) [6].

Sallet

Tectorial curtain .
Hair

Hair cell\ r | _ ‘]me TT[E ‘(‘/l_bundle

Basilar papilla

Basilar membrane

Figure 1.2 Schematic diagram of the cross section of the inner ear of tokay
geckos.Hair bundles are covered by sallet or tectorial curtain. In each group, hair
bundles are coupled together with opposite polarities adapted from [6].

Hair bundles are anchored to an overlying tissue in vivo, a structure which

provides mechanical coupling between neighboring hair bundles. Previous theoretical



investigations suggest that a group of coupled hair bundles, arranged with identical
polarities, can display an enhanced mechanical sensitivity and a lower detection
threshold, consistent with experimental findings in two or three coupled hair bundles
[7-11]. However, it remains unknown whether coupling of hair bundles with opposite
polarities, an organization ubiquitously found in the vertebrate vestibular system and
lizard auditory organs, benefits the detection of mechanical signals. In the mammalian
cochleae, the low detection threshold, i.e., 0 decibel, and high frequency selectivity of
hair cells are facilitated by electromotility. This process is mediated by prestin protein
that causes the hair cell body to contract or elongated upon changes in its membrane
electric potential [6]. Although hair cells within the lizard inner ears do not display
electromotility, their hearing thresholds are comparable to those of mammals. This
raises the question whether the polarities of hair cells in the inner ear of lizards could

serve as an amplification process as the electromotility process in mammals.

This thesis aims to study the effects of opposite polarity on the mechanical
response of coupled hair cells. We performed numerical simulations of the
mathematical model previously proposed to describe the dynamics of single hair
bundles [2] to study the mechanical responses of coupled hair bundles with opposite

polarity to external sinusoidal forces and step forces.

1.2 Objectives
1.1.1 To investigate the spontaneous dynamics of hair bundles coupled with
opposite polarities.
1.1.2 To investigate the effects of hair bundle’s polarity on the responses to

sinusoidal forces and step forces.

1.3 Scope of thesis
Numerical simulations of the model from [2] will be performed. The parameters
will be based on [2]. We only consider the effects of coupling two hair bundles with

identical parameters.

1.4 Research procedures

1.4.1 Literature review



We will review the mathematical models of hair bundle motility, which are
based on the physiology of transduction channels and other mechanisms
within the hair bundle. Additionally, we will explore theoretical models
that describe a hair bundle as a nonlinear oscillator near a Hopf
bifurcation. Subsequently, we will investigate the functions of hair bundles
and analyze their response when poised at different operating points.
Finally, we will examine the effects of mechanical coupling between hair
bundles on their dynamics, including factors such as the signal-to-noise
ratio, quality factor, sensitivity, and frequency selectivity in response to

sinusoidal forces.

1.4.2 Investigation of the dynamics of single hair bundles in response to external

forces and comparison to literature.

We perform the numerical simulation of the mathematical model based on
[2] by implementing the model on MATLAB. We will compare the
spontaneous dynamics of a single hair bundle and its responses to external
forces to literatures.

1.4.3 Develop a model of two coupled hair bundles based on [2].

A mathematical model of two coupled hair bundles will be developed.
Coupling will be mediated by a mechanical spring. The equations of motion

for individual hair bundles are based on (1.1) as follows

mx, = —yx, —kx; +ale;, — f)— (x;— )  + F;, — Kc(xl- - ij) (1.1)

Tf, = bx; — f;
where x represents the displacement of the hair bundle, and an internal
parameter, f, representing the force from a myosin motor complex, m
denotes the mass of the hair bundle, and y denotes a damping coefficient.

The stiffnesses of the system are denoted by k, and a, the latter corresponds

to the gating of ion channels. Each oscillator is under external forces, F. i



and j = 1,2 with i # j. P indicates the polarity of the two bundles, with P=
1 if they have the same polarity and P = -1 if they have opposite polarities.

1.4.4 Investigation of the spontaneous dynamics of coupled hair bundles.

By fixing the stiffness and constant force on each bundle, we will vary the
coupling stiffness and investigate the spontaneous dynamic of the coupled

hair bundles.

1.4.5 Investigation of the responses of coupled hair bundles to external forces.

1) We will include the external force term in equation (1.1), with a
sinusoidal force or a step force. Investigate the responses of coupled hair
bundle at fixed operating point of each hair bundle near the Hopf

bifurcation in quiescence regime.

2) Calculate the sensitivity of coupled hair bundles subjected to sinusoidal
force and analyzed the effects of coupling force to responses of hair
bundles. The responses to step force will be studied by observing the
trajectory of hair bundle in phase plane and analyzed the effects of coupling

force.
1.4.7 Conclusion and writing the thesis.

1.5 Expected benefits
Investigation of the effects of polarity on the dynamics of coupled hair bundles
will provide further insight knowledge on signal detections by the vertebrate

vestibular system, as well as the lizards’ auditory system.

1.6 Overall

The following chapter is a background theory about the structure and properties
of hair cells and orientations in vivo and the mathematical model of hair cells. In
chapter 3, we introduce the mathematical model of coupled hair cells and methods to
analyze the results from simulations. In chapter 4, we present the results of numerical

simulation of coupled hair cells in three cases, no external force, subject to sinusoidal



force, and subject to step force. Finally, chapter 5 will discuss the results then deliver

a summary and suggestions from the thesis.



Chapter 2
Background Theory

2.1 Hair bundle’s structure and mechanical Properties

Hair cells are mechanical force receptors found in the vestibular system and
auditory system of vertebrates. The primary function of hair cells is to transform the
external mechanical force into electrical signals that are subsequently sent to the
brain. The structure of a hair cell can be divided into 2 main parts, the cell body, and
the hair bundle (Figure 2.1). The cell body is embedded in the epithelium of the
sensory organ and connected to the auditory nerves. This part of the cell transforms
the mechanical force into a nerve signal. The hair bundle is a group of villi called
stereocilium packed together with graded height, situated on top of the hair cell’s
body (Figure 2.1). Each villus is connected to its nearest neighbor through a tip link.
The lower end of the tip link is connected to one or two mechanically gated ion-
channels, situated at the top of the shorter villus, and the upper end of the tip link is
connected to the insertional plague which comprises of myosin motors on the side of

the taller villus.

A)

Tip link
Myosin

. motor
Insertional

plague "
Stereocilia

Tip link

Ton channel
TTair cell

—
Afferent
nerye

Effcrent
nerve Pt r s aisesesrsssiasaraasnssssatasasiesataszsnssssarass B

Figure 2.1 Schematic diagram of hair cell. A) shows schematic diagram of a hair
cell, conmsisting of the cell body innervated by nerve fibers and the hair bundle
situated on top of cell body which functions as force detector. B) a close-up image of a

top of stereocilia shows the connection between ion channel, Tip link, and insertional
plaque. Adapted from[1]

Force detection performed by the hair bundle relies on the gating of the ion-

channels on top of the stereocilia. A force that deflects the bundle in the direction



toward the taller villi stretches the tip links owing to the graded height structure of the
hair bundle. This raises the tension of the tip link which pulls the mechanical gating
ion-channel open allowing the cation outside to flow inside the bundle (Figure 2.2).
This increases hair-cell membrane’s electrical potential and evokes neurotransmitter
release at the synapse resulting in a nerve signal transmitted to the brain. For the force
in the opposite direction, the hair bundle movement causes the ion channels to close

and decreases the cation influx.

e
Force

lon influx

N~ N~

Figure 2.2 The gating of hair bundle when receiving a force in direction of taller villi.
Due to the graded-height structure of hair bundle, the deflection causes tension Tip
link and gating spring promote the open of ion-channels.

Hair bundles possess unique mechanical properties that attract the attentions of
many researchers. Hair cells are able to detect weak external forces whose amplitudes
are within the order of thermal noise and discriminate the forcing frequency with high
resolutions. A hair cell operates a broad range of stimulus amplitude as it can detect a
forcing amplitude over six orders of magnitude. These properties rely on the

mechanical properties of the force receptor part of the hair cell, the hair bundle.



The underlying mechanisms of hair bundles’ mechanical properties have been
studied extensively. The ion channels on the stereocilia are mechanically gated [1, 5]
which respond to applied mechanical force. Ion channels can be in an open or a close
state with the probabilities described by a Boltzmann distribution [5] (Figure 2.3A).
The ion channel is connected to a tip link which serves as a mechanical spring, called
a gating spring [5]. Upon an application of a force in the direction toward the taller
rows of the stereocilia, the gating spring extends causing the gate of the ion channel to
swing open. This swing is associated with a decrease in the extension, as well as the
tension, in the gating spring, causing the hair bundle to move further in the direction
of the external force. This phenomenon is referred to as the gating compliance which
effectively reduces the hair bundle’s stiffness and causes the nonlinearity in force-
displacement relation of single hair bundles [12] (Figure 2.3B). Under suitable
chemical conditions, the force from the gating swing is greater and further reduces the
bundle’s stiffness until it eventually becomes negative (Figure 2.3C). This process
gives rise to two equilibrium positions of a hair bundle, associated with an open and a
closed state of the ion channels, instead of one stable position at the origin. For a
displacement further away from the origin, the influence from gating swing is
minimized. The stiffness of hair bundle is thus governed by the sum of the stiffnesses

from the gating springs and the innate elastic elements of the hair bundle.

A) B} O

=

Open probability
Force
Stiffness

Displacement Displacement Displacement
Figure 2.3 Nonlinearity of hair bundle. A) the open probability of ion channels which
display a Boltzmann distribution. B) shows the nonlinearity of the force-displacement
relation of hair bundle around x,. C) the stiffness acquired from B) shows the
reduction of stiffness at the nonlinear regime. When force from gating swing is high
(dash line), it increases the nonlinearity in force-displacement relation, resulting in a
greater drop in stiffness and eventually become negative.

Another crucial part of the hair bundle’s internal mechanisms lies in the upper

end of each tip link, called the insertional plague. For hair bundles to remain sensitive
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to external force, the hair bundle has a mechanism that tries to adjust the open
probability at an optimal value [5]. The insertional plaque is connected to a cluster of
myosin motors which are attached to actin filaments inside the stereocilia. When ion
channels open due to a positive force, calcium ions flow into the bundle and bind to
myosin motors causing the reduction in the binding probability of the myosin motors
to the actin filaments. The insertional plague consequently slides down along the side
of stereocilia due to the downward force exerted by the gating spring. This action
decreases the tension in the gating spring which promotes the closure of ion channels.
On the other hand, when subjected to a negative force, the ion channels are closed
which reduces the influx of calcium ions. The binding probability of myosin motors to
the active filaments then increases the rate of myosin motors climbing upward along
the acting filaments. This raises the tension in the gating spring and promotes the
opening of ion channels. This movement also plays an important role in the

spontaneous oscillations of hair bundle [13].

2.2 Hair cell orientation

Hair cells in the inner ear are often accompanied by nearby hair cells and
accessory structures which provide coupling force and impose a stiffness load to the
hair cells [5, 6]. In various sensory organs, hair cells are arranged with certain
orientations. For the inner ears of mammals and avians, hair cells in their cochleae are
often arranged with identical polarity, i.e., an external force can activate the ion
channels in all hair bundles. These hair cells are coupled together through an
overlying tectorial membrane (Figure 2.4A). The inner ears of some lizard species,
however, incorporate hair cells that are divided into two groups with different
overlying structures, one is a small membrane, called sallet, each coupling a row of
hair cells, and the others is a tectorial curtain composed of a continuous membrane
that couples all hair cells throughout the cochlea (Figure 2.4B). Hair cells under each
sallet or tectorial membrane are arranged with opposite polarities, suggesting that an
external force can activate only half of the hair bundles in the cochlea, while the ion

channels of the other half will be suppressed.

In the vestibular system, hair cells are often arranged with opposite polarities.

Hair cells in the literal line system of fishes and semicircular canals in mammals are
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arranged in opposite directions and embedded in an overlying gel-like matrix termed
cupula (Figure 2.4C). Hair cells in the utricles and saccules are coupled through an

otolithic membrane [5].

A . :
) —_— Tectorial membrane Hair bundle
‘\“\ o Outer hair cell
a

/ ST Basilar membrane

C) ﬁpula

B)

Sallet

VT

Hair

Hair cell ‘/ bundle

Lo / Hair bundle
| It |

' Hair cell

N

Figure 2.4 Orientation and overlying structure of hair cells in various organs. A) the
cochlea in chicken and rat. B) the basilar papilla in lizard. Adapted from [6]. C) the
hair bundle in semicircular canal. Adapted from [5].

Basilar papilla

Basilar membrane

2.3 Effects of overlying structures

The effects of mechanical coupling between hair bundles have been studied
both theoretically and experimentally [7-11, 14, 15]. Theoretical models of hair
bundle motility suggest several benefits of coupling hair bundles via a mechanical
spring. First, hair bundles gain enhanced sensitivity to external sinusoidal force.
Increasing the numbers of hair bundles in the system further improves the effects.
Second, coupling improves the coherence of spontaneous oscillations of hair bundles.
This is also associated with the enhanced frequency selectivity in response to
sinusoidal forces. Finally, coupling can facilitate synchronization of hair bundles’
spontaneous oscillations and reduced the impact of external noise [14, 15]. When the
natural frequencies of the two coupled hair bundles diverge, spontaneous oscillation
can be suppressed, and the detection thresholds and the signal-to-noise ratio can be

improved [10].
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There are multiple experimental studies on the effects of coupling on hair
bundles in vitro. To study hair bundles in vitro, the overlying membrane is removed,
and the hair cells are bathed in an appropriate solution. To imitate the coupling
between hair bundles, there is an experiment that couple a hair bundle from the
bullfrog sacculus to a mechanical actuator whose movement is governed by a
mathematical model of hair bundle motility [13]. The results indicate that coupling to
a virtual hair bundle can readily improve the coherence of spontaneous oscillations
and the responses to external sinusoidal forces and reduce the noise level. Later
experiments on two hair bundles coupled through an elastic fiber or a glass bead

suggest similar results [11].

The effects of coupling hair bundles with opposite polarities have not been
previously studied. However, it has been proposed based on the hearing threshold of
lizards that this could enhance the sensitivity of the bundles in response to sinusoidal
forces [16]. An additional study also reveals that coupled hair bundles with opposite

polarity potentially display spontaneous oscillations in vivo [17].

The overlying structures do not only provide coupling between hair cells but
also impose a stiffness load and constant forces onto hair bundles. It has been
proposed that these mechanical loadings may adjust the stability of a hair bundle
which has a central role in tuning the bundle to detect different types of forces [2-4].
Theoretical predictions suggest that without an external force, a hair bundle can
appear in 3 states, spontaneously oscillating, quiescent, and bi-stable states. Each state
is divided by a line of bifurcation shown in Figure 2.5. The stiffness and constant
force loaded on a hair bundle can control the behavior of a hair bundle [2, 5]. For the
auditory system, it has been suggested that hair bundles should have higher stiffnesses
and be placed near a supercritical Hopf bifurcation. The hair bundle in this state
displays an enhanced response to sinusoidal forces and frequency tuning. Hair
bundles of the vestibular system should possess lower stiffnesses and operate near a
subcritical Hopf bifurcation. The hair bundle’s response to an external step force can
display a large initial swing that goes beyond a stable displacement before swinging

back to a stable point, suggesting its sensitivity to the onset of a step force.
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sinusoidal force

Spontaneous

Bi-stable Oscillation
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g
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Figure 2.5 Operating points suitable on detecting different kind of force of hair
bundle. For hair bundle near supercritical Hopf bifurcation (right side of state
diagram), hair bundle responses to sinusoidal force with resonance behavior with
higher quality factor near the line of Hopf bifurcation. On the other hand, the hair
bundle near subcritical Hopf bifurcation responses with a twitch-like movement which
suitable for onset detection for step force. Adapted from [5]

2.4 Mathematical model of hair-bundle motility

The dynamics of single hair bundles has been described by two types of
mathematical models. First, the models that account for all the physiological
processes of a hair bundle such as ion-channel gating mechanism and the dynamics of
myosin motor [13]. The other type of models considers individual hair bundles as a

nonlinear oscillator [2, 14, 15, 18].
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The model of coupled hair bundles used in this thesis is based on a previously
proposed model of a hair bundle [2]. The model can be derived from the equation of
motion that governs the dynamics of a hair bundle under a mechanical loading, which
imposes additional stiffness and a constant force on the hair bundle. The dynamics of

the hair bundle are described by two coupled differential equations as follows.

MX=—-T+Tp)X— (Ko +Kp)X +AX —aF) —C(X —aF)*+F  (2.1)
DE, = BX — EF,

where X is displacement of hair bundle, I' is damping coefficient of the mechanical
loading, I}, is damping coefficient of hair bundle, K, is stiffness imposed by the
mechanical loading, Ky, is stiffness of pivot of villi, and F is external force. The
terms A(X — aF,) — C(X — aF,)® approximate the gating force mediated by the
gating spring which incorporates the negative stiffness due to gating of the ion
channels (Figure 2.3). The term X — aF, represents the extension of the gating spring
determined by the bundle’s position, X, and the position of the upper end of the tip
link, which is written as aF,. The variable F, is the force exerted on the tip link by
myosin motors, and « is a compliance corresponding to the reciprocal of the tip link
stiffness. The parameters A has a unit of a stiffness, and C represents the strength of

nonlinearity.

[2] approximates the force from myosin motor by a first-order differential
equation, in which D is a constant that controls the relaxation time of myosin motor, B
is the coupling coefficient between hair bundle displacement and myosin motor, and
E determines the effect of myosin motor’s own relaxation. The parameters in equation

(2.1) are rescaled as follows.

mct/3 r

x=CBX m=— y=1+—

Thb Thp

_ 1/3 A _ Ke+Kgp

f=aCY3F, a= i e (2.2)
C1/3 DC1/3 B

t = T T= h==
Tnp ThpE E

The equations then become.
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mi=—-yx—kx+alx—f)—(x—f)3 (2.3)

if =bx—f
Upon scaling the parameters, the x and f parameters of the model have units of
N/3. Therefore, x in equation (2.3) is not the displacement of the hair bundle.
However, under an assumption that C is a constant, x could be interpreted as a
parameter that represents the bundle displacement. Similarly, for constant ¢ and C,
the f parameter has been interpreted as force. Note that each term in the first equation
of (2.3) has the unit of a force as in the original equation of motion, equation (2.1).

2/3

The t parameter has a unit of N™“/° and has been interpreted as a scaled time.

Several mathematical models of hair-bundle motility proposed by [13] and [19],
including the model used in this work, argue that, for an unloaded hair bundle in the
absence of an additional mass, the inertial force term of equation (2.1) plays less
important roles over the range of low frequencies corresponding to the dynamic range
of a hair bundle as it is approximately in an overdamped limit. This is due to the large
drag force experienced by in vivo hair bundle bathed in an extracellular fluid of the
inner ear [13]. These models thus assume that the inertial force term is negligible, and

the dynamic of hair bundles can be described by two 1% order differential equations.
=—kx+akx—f)—(x—fP+F (2.4)

of=bx—f

2.5 Predictions from the model

Results of equation (2.4) suggest that stiffness loading and a constant force,
denoted by F., imposed on the bundle govern the spontaneous dynamics of hair
bundle and its response to external forces. The system can undergo spontaneous
relaxation oscillation under appropriate ranges of parameters (Figure 2.6A). Raising k
reduces the amplitude and increases the frequency of the oscillation and also makes
the oscillation more sinusoidal. The oscillator becomes bi-stable when the value of k
is sufficiently low. Figure 2.6B shows the state diagram of a hair bundle that
illustrates the behavior of its spontaneous dynamics at each operating point,
determined by k and F,. The lines that separate different states are associated with a

bifurcation. The spontaneous oscillation regime is enveloped by a line of Hopf
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bifurcation which consists of subcritical and super critical Hopf bifurcation. The bi-
stable regime, on the other hand, is enclosed by a line of saddle-node bifurcation. For

the scope in this thesis, we are focusing on the region around Hopf bifurcation.

200 250 300 350 0 0 05 1 15 2 25 3 35
t k

Figure 2.6 Spontaneous oscillation and state diagram of hair bundle. A) spontaneous

oscillation of the hair bundle at F, = 0 and K.= 1.8 (blue), 2.5(red), 3.3(green). B)

shows state diagram of hair bundle. The solid lines are bifurcations line separating

the state of hair bundle into 3 regimes: spontaneous, quiescent, and bi-stable denoted

by red, white, and blue square.

The responses of the system to external forces depend on the system’s operating
point relative to the bifurcation (Figure 2.7). The response to a sinusoidal force is
quantified as the sensitivity defined as [y| = |X|/ |F | where . denotes the Fourier
component at the driving frequency. The sensitivity of a hair bundle poised near a
Hopf bifurcation shows a peak across the forcing frequencies, with the highest
sensitivity reduced and broadened when the system is displaced further from the
bifurcation line into the quiescent regime (Figure 2.7B). For the response to step
forces, the system near the line of Hopf bifurcation displays a damped oscillation
during the transient response before moving to a steady state. When the system is
poised further away from the bifurcation into the quiescent regime, the damped

oscillation turns into an overdamped behavior (Figure 2.7C).
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Figure 2.7 Responses of hair bundle to external force. A) A hair bundle’s state
diagram showing different operating points: near Hopf bifurcation (green point) and
far from Hopf bifurcation (orange point). B) The response to sinusoidal force shows a
sharp tuning when the system is near the bifurcation (green line). C) Hair bundle's
displacement in response to step force (purple line) shows an underdamped
oscillation when the oscillator is near the bifurcation (green line), and an overdamped
motion when poised far from the bifurcation (orange line).

2.6 Phase portrait of a nonlinear oscillator

In this section, we describe the dynamics of a nonlinear oscillator as a trajectory
on a phase plane consisting of x and f. From equations (2.4), we can find the solution
to each of the differential equations when the time derivatives are set to zero. Each
solution can be plotted in the phase plane as a line, termed nullcline, consisting of
points at which the velocity of the system becomes zero. Figure 2.8A shows the
nullclines obtained from equations (2.4) with k = 2 and F, = 0. The interceptions
between the two nullcline are called fixed points, at which both the displacement, x,
and the internal parameter, f, of the system will be stationary. The fixed point can be
either stable or unstable depending on the surrounding velocity vector field. The
vector fields of the system are determined by the velocity % and f at any point of x
and f from equation (2.2). The fixed point is stable when vector fields around fixed
point are pointing into the fixed point while it became unstable when there are

pointing out of the fixed point.

In our model, the fixed point is unstable when lies in the middle branch of the x-
nullcline, shown in Figure 2.8. The system that originates at any point on the phase
plane follows the velocity vector field and converges to a self-sustained oscillation
and will not terminate at the fixed point. On the other hand, when the fixed point is
situated on the left or right branch of the x-nullcline, it becomes stable and the

system’s trajectory drifts from its original state to the fixed point, resulting in a
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quiescent solution. This can be achieved by introducing a constant force into the first

equation.

On the other hand, when the stiffness parameter k is raised, the slope of the
middle branch of the x-nullcline decreases. At the stiffness value corresponding to a
point of supercritical Hopf bifurcation, the fixed point becomes stable as the

surrounding velocity vector field spirals toward the fixed point.
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Figure 2.8 Phase portrait of equation (2.2) at 3 different sets of parameters. A) When
k=2 F=0, the system shows spontaneous oscillation around an unstable fixed point.
B) When k=3.6 F=0, the fixed point becomes stable, and the system is quiescent. C)
When k=2, F=1, the fixed point is moved toward +x and +f directions. The fixed point
is stable, so the system is quiescent.



Chapter 3
Methodology

In this chapter, we describe the details of the mathematical model of the motility
of a single hair bundle and coupled hair bundles. The details of numerical simulations
and parameter values utilized in the model are discussed. Finally, we present the
calculation of the constant force experienced by each oscillator in the presence of

coupling.

3.1 Mathematical model of a single hair bundle

The model employed in this work follows the work by D. O Maoiléidigh [2].
The dynamics of a single hair bundle are described by two dimensionless dynamical
variables: x representing the displacement of the hair bundle, and an internal
parameter, f, representing the force from a myosin motor complex [13]. Note that, as
described in section 2.4, x could be interpreted as a scaled displacement that has a
unit of N'/3. Moreover, we employed the limit proposed in [13] and [19] that the
bundle moves at a sufficiently low frequency that the inertial force term became

negligible.

yx=—-kx+alx—f)—(x—f)>3+FE+F (3.1a)

tif =bx—f (3.1b)

where y denotes a damping coefficient. The stiffness of the system is governed by k,
corresponding to the total stiffness of all passive components of the bundle, and a
representing the stiffness of the gating spring which can be modulated by the gating of
ion channels. The oscillator is under a constant force, F,, such as those imposed by

the overlying structure, and a driving force from an incoming signal, F.

Equation (3.1b) describes the dynamics of the internal myosin-motor complex
within the hair bundle as an overdamped oscillator. b represents the coupling strength
between the bundle’s displacement and the internal molecular motor, and 7 represents

a relaxation time of the internal motor.
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3.2 Model of coupled hair bundles
Coupled hair bundles were modeled as two nonlinear oscillators, with
subscription 1 and 2 denoting the first and second bundle of the system, respectively

(Figure 3.1).

X1 = —kx; +alx; — f1) — (g — f1)3 + F, + F - K.(x; — Px3) (3.2a)

Tf1 =bx; — f (3.2b)
Yx, = —kx; + alx; — f2) - (x2 = f2)° + F. + PF — K .(x; — Px,) (3.32)
Tf; =bx; — f, (3.3b)

The two oscillators are connected by a mechanical spring of stiffness K., whose
extension is governed by Hooke’s law. P denotes the coupling polarity. When the two
hair bundles have identical polarity, P = 1, the extension of the coupling spring is
determined by the difference in the oscillators’ displacements (Figure 3.1A). On the
other hand, for hair bundles with opposite polarities, whose coordinate systems are
shown in Figure 3.1B, the extension of the coupling spring should be equal to the sum

of the oscillators’ displacements, i.e., P = —1.

MWW

=]

ﬁ%
x4 IXZ X4 X2 |
Figure 3.1 Schematic diagram of coupled oscillator. The Figure shows arrangement
for identical polarity (A) and opposite polarity (B).

3.3 Numerical simulation and frequency analysis

Numerical integration of equations (3.2, 3.3) was performed in MATLAB using
4™ order Runge-Kutta method with a time step of At = 0.005 for t = 0 — 2100. Note
that t is a scaled time and thus does not have a unit of seconds. The oscillators’

displacements during ¢ = 0 — 100 were excluded from further analyses.
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In this thesis, we investigated the responses of the coupled oscillators to

sinusoidal forces and step forces. The sinusoidal force is defined as Fyeripaic =

Asin(2rf,t), where f; is the scaled frequency of driving force and A is driving force
amplitude for t > 0. As t represents a scaled time, the parameter f; also represents a

scaled driving frequency.

The step force is defined as

A, t > 400

Fstep(t) = {0, otherwise (3-4)

where A corresponds to amplitude of force. The sign of A indicates the direction of

the force relative to the first hair bundle (Figure 3.2).

At

350 400 450 500 550 600
t

Figure 3.2 Step force to time. Figure shows the step force define in equation (3.4) in
positive and negative direction with step size of A.

For the case of sinusoidal forces, we determined the amplitude of the hair
bundle’s oscillations by performing a discrete Fourier transform using Fast Fourier
transform (FFT) of the bundle’s displacement. The responses of each hair bundle at

the driving frequency f were determined by linear response function defined as

Ix(f)l = 12D/ [F(fD] (3.5)

3.4 Parameters value
For simplicity, all parameters of the two hair bundles are assumed to be
identical. This is based on in vivo hair bundles whose physical properties vary

gradually along the length of the sensory epithelium. As a result, the characteristics of
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neighboring hair bundles, such as their natural frequencies and stiffnesses, could be
assumed to be identical. The constant parameters used in the simulations of equation

(3.2-3.3) were referenced from [2]. The constant parameters were listed in Table 3.1

Table 3.1 shows the constant parameters.

Parameter Value
y 1
a 35
T 10
b 0.5

The model employed in this work approximated the nonlinear force provided by
the gating spring attached to mechanosensitive ion channels by a 3™ degree
polynomial. Figure 3.3 shows the relationship between an external constant force and
the oscillator’s displacement, x. The oscillator displays a region of negative stiffness
over a range of small x, due to gating compliance described in section 2.1. However,
further away from the origin, the cubic term dominates, and the stiffness of the hair
bundle increases continually. This contrasts with the findings from physiological
measurements performed on hair bundles which reveal that hair bundle’s stiffness
saturates at a constant value when the bundle displacement exceeds ~10-20 nm [13].
The maximal stiffness observed experimentally corresponds to the sum of the passive
stiffness of the bundle and the saturated stiffness of the gating spring. Therefore, our
model is valid only for displacement not too far away from the origin, and we limit
the amplitude of our driving forces to 0.1, a value that results in the response

amplitude comparable to those of the spontaneous oscillations.

The values of coupling strength, K., used in this work were based on the
estimation of in vivo coupling elements between hair bundles and their overlying
structure. Experimental observations revealed that the coupling constant should be
comparable to the total saturated stiffness of the hair bundle [20]. In our work, this
could be approximated by the parameter a and k. Thus, we limited the range of the
coupling strength within the orders of magnitude of a and k, i.e., the value of K,

employed in this work did not exceed 2. In a weakly coupling limit, we investigated
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the oscillators dynamics under a coupling strength of approximately 10% of the

maximal value, i.e., K.~0.1 — 0.2.

4t

Figure 3.3 F orce-displacenient relation from the model..

3.5 Calculation of the constant force experienced by coupled hair bundles

The dynamics of a hair bundle are determined by its stiffness and the applied
constant force (see Results section 4.1). Later in Chapter 4, we will show that
coupling two oscillators with opposite polarities can drastically alter the constant
force experienced by the individual oscillators. The reduced constant force results in
the shift of the operating point of the oscillators closer to the line of Hopf bifurcation.
Therefore, to faithfully compare the dynamics of driven coupled oscillators to those of
a driven single oscillator, both systems must be at the same operating point by
adjusting the constant force applied on the coupled oscillators. In this section, we
present an analytical expression of the effective constant force exerted on a hair

bundle in the presence of a coupling spring.

We solved for a steady state solution of equation (3.2-3.3) with no external
force, thus ¥ = x = f = F = 0. By substituting f; and f, from equation (3.2b) and
(3.3b) into equation (3.2a) and (3.3a), respectively, one obtains.

0=—kx; +a(l-hb)x; — (1 —b)3x,3+F. — K.(x; — Px;) (3.6a)
0=—kx, +a(l—=b)x, — (1 —b)3x,3+ F. — K.(x, — Px) (3.6b)

Over the range of coupling constant, K., investigated in this work, the

displacements of the two hair bundles remain nearly identical, i.e., x, = x; = x. For
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coupling with identical polarities, P = 1, the coupling term is equal to zero and there

1s no alteration in the constant force exerted on the oscillators.

For opposite polarities, the sum of equations (3.6a-b) can be considered as a

single 3™ degree polynomial equation.

0=—1-bx>+(—k+a(l—b)—2K)x+F, (3.7)
Let « = —k + a(1 —b) — 2K, and f =1 — b3. The equation can be solved

2
using Cardano’s formula, if there is cubic equation t3 + pt + q = 0 and A= q: +

3
5—7 > 0. There is one real solution i/—%+ VA + 3\/—% + v/A. This condition holds

true when the system remains non-oscillatory, i.e., the oscillators are in a quiescent

regime. The solution of equation (3.6) gives a stationary position of both oscillators.

3 2 3 3 2 3
- |E Fe & F _ |(F @
X = \/zﬁ T (zﬁ) 7 2733 4 \/zﬁ (zﬁ) T 2783 (3-8)

The total force that applied on each oscillator is the sum of that of the constant

force, F,, and the force from coupling. Note that the coupling force is in the direction

opposite to that of the constant force.

Feff = FC — ZKCX (39)



Chapter 4
Results

In this chapter, we present the dynamics of coupled hair bundles in the absence
of an external force and their response to sinusoidal and step driving forces. The
choices of driving forces are inspired by those experienced by hair cells in vivo. Hair
cells in the auditory organs, such as the cochlea, detect sounds that exert sinusoidal
forces on their hair bundles. On the other hand, hair cells in the vestibular organs,
such as the semicircular canals which detect linear accelerations. We represent this

type of stimuli by step forces with an abrupt onset.

Our investigation of the spontaneous behaviors of oscillators is based on several
experiments conducted on hair cells in vitro. Typical experiments involve hair bundles
that are separated from their surrounding structure and bathed in an appropriate
solution. These free-standing hair bundles often exhibit spontaneous relaxation

oscillations. [13].

4.1 Spontaneous dynamic

First, we verified the results of numerical simulations of our mathematical
model by comparing the spontaneous dynamics of a single hair bundle with those that
exist in the literature [2]. We numerically solved equation (3.1) in the absence of a
driving force, F = 0. The spontaneous dynamics of the oscillator were investigated at
different values of constant force, F,, and the total stiffness of the bundle, k. Note that
F. represented the constant force imposed on in vivo hair bundles by their surrounding
structure and was not regarded as a driving force as it was not imposed by the external

stimuli.

We identified the oscillator as spontaneously oscillating when its root-mean-
squared displacement exceeded an arbitrary threshold at 0.01. In agreement with
previous studies, we found that the system can display a self-sustained oscillation
(Figure 4.1A) over a range of appropriate values of F,, and k. The range of parameters
over which the system displayed spontaneous oscillations formed an enclosed area in

the state diagram of k and F., as shown in Figure 4.1B. The oscillation profiles
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resembled those of a relaxation oscillation, characterized by a slow movement

followed by a fast swing.

Upon increasing k at a fixed value of F,, the oscillation amplitude decreased
while the frequency increased, and the oscillation profile became more sinusoidal.
When the stiffness or constant force reached a value corresponding to the boundary of
the enclosed area, the system underwent a Hopf bifurcation, and the oscillation

amplitude vanished. These results were consistent with those presented in [2].
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Figure 4.1 State Diagram for coupled oscillators. A) shows spontaneous oscillations
of a single oscillator. Increasing K. increases the oscillation frequency but decreases
the amplitude of oscillation. B) shows the state diagram of single bundles (solid line)
and coupled oscillators with identical polarity (dashed line). The lines separate the
spontaneous oscillation regime (inside) from the quiescent regime (outside). C)
presents the state diagram of coupled oscillators with opposite polarity. The data from
coupled oscillators were obtained with K, = 0.2.
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Next, we investigated the spontaneous dynamics of coupled oscillators by
introducing the coupling element into the equation (3.2). The coupled oscillators
followed two possible configurations. Firstly, when the oscillators had identical
polarities, the polarity parameter P was set to 1 as the extension of the coupling spring
represented the difference in displacements between the two oscillators. For example,
when both oscillators displayed equal displacements in their positive directions, the
coupling spring remained at its equilibrium length and exerted no force on the
oscillators. Conversely, coupled bundles with opposite polarities had the coordinate
system of the second oscillator reversed compared to that of the first oscillator. Thus,
when both oscillators displaced in their positive directions, the coupling spring was
compressed by a distance equal to the sum of the oscillators' displacements, resulting

in a coupling force towards the negative directions of both oscillators.

The spontaneous motions of two coupled hair bundles with identical polarity
were studied at different values of k and F.. It should be noted that the external
constant force, F., was applied to both oscillators toward the same direction to
simulate the force imposed by the overlying membrane on hair bundles. We found
that coupling of hair bundles with identical polarity with K. = 0.1 did not
significantly change the oscillators’ dynamics. The range of parameters over which
the system displayed spontaneous oscillations remained virtually identical to that of a
single oscillator. An increase in k also led to a gradual decrease in the oscillation

amplitude, consistent with a Hopf bifurcation.

For coupling with opposite polarities, we applied an external constant force, F,,
in the same direction of both oscillators. Due to the reversed coordinate of the second
oscillator, the forces appeared in opposite directions, as shown in Figure 3.1B. This
force configuration was consistent with the electron micrographs of the membrane
overlying in vivo hair bundles which pulled all bundles towards their channel-opening
directions, corresponding to the positive direction of each oscillator in our model. We
found that the range of parameters for spontaneous oscillations expanded in the
direction of F, (Figure 4.1C). The expansion of the state diagram was consistent with
the shift of the line of Hopf bifurcation toward higher magnitudes of F., i.e., the

system required a greater F. to undergo a Hopf bifurcation. The extension was more
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significant when the oscillators were more strongly coupled, with higher values of K.
Notice that if F. = 0, coupling did not affect the spontaneous dynamics of the

oscillators.

We illustrated these effects by fixing K, at 0.1 and k = 2, and plotted the peak-
to-peak amplitude of the spontaneous oscillation at different values of F.. Figure 4.2
shows that, when the system’s F,. was below -0.95, the system remained in a quiescent
state in the absence of external force. Upon a slight increase in F., the oscillation
amplitude increased abruptly as a system underwent a subcritical Hopf bifurcation.
The oscillation amplitude remained constant as the F, magnitude increased. Until the
F. of system was above 0.95, system’s oscillation amplitude experienced a sudden
drop to quiescence as system underwent a subcritical Hopf bifurcation again. When
compared to the oscillation amplitude of a single bundle at the same value of k, the
plot illustrated that coupling the oscillators with opposite polarity shifted the
bifurcation point toward a higher magnitude of F. in both positive and negative
directions while maintaining the same oscillation amplitude in the spontaneous
oscillation regime, with respect to that of a single oscillator. This finding was

consistent with the state diagram in Figure 4.1C.

Next, we sought an explanation underlying the expansion of the spontaneous
oscillation regime in the state diagram by focusing on the set of parameters F, and k
at which the system became quiescent. This simplified our analyses as the oscillators
were under a balance of two constant forces, i.e., the constant force F, and the force

from the coupling spring (Figure 4.3A).
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Figure 4.2 Peak-to-peak amplitude of coupled oscillators with opposite polarity (red)
and a single bundle (blue) at k = 2. An abrupt increase and decrease in peak-to-peak
amplitude correspond to the oscillators crossing a Hopf bifurcation.

The coupling force can be calculated from K.(x; — Px,) which in case of
opposite polarity, P = —1. In the absence of an additional force, the coupling force
always acted in the direction opposing the applied constant force. This resulted in a
reduction of the total constant force experienced by individual oscillators, given by
F.—< K.(x; + x;) >, where (... ); denotes a time average. Consequently, the system
was effectively under a weaker constant force and should appear closer to the line of

Hopf bifurcation.

The reduction of the F, was illustrated in Figure 4.3B. We plotted the total force
experienced by the first oscillator as a function of the applied F.. We found that, at
the same value of F,, the total force acting on coupled oscillators was lower than the
force experienced by a single oscillator. As the value of F, was reduced, the total
constant force decreased linearly with a slope of 1, regardless of the coupling
strength. This suggested that the coupling force, despite its growth with the value of
K,, remained at a constant value across F,. We found that the quiescent regime of
coupled oscillators always terminated at the total constant force of 0.66, a value

corresponding to the bifurcation of a single oscillator. In other words, the state
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diagram, as shown in Figure 4.1C, would remain unaltered from that of a single

oscillator if the total constant force were plotted instead of F,.

A further reduction of F. shifted the system into the spontaneous oscillation
regime where the coupling force varied with time. Our results showed that the
coupling force simply served as an additional constant force that shifted the
bifurcation of coupled oscillators. The shift of the line of Hopf bifurcation could be
attributed to the reduction of the total constant force because the coupling force
counteracted the applied constant force. More importantly, our results implied that the
dynamics of the coupled oscillators can be regarded as two uncoupled oscillators

under the effective constant force, with no alterations in the k of each oscillator.
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Figure 4.3 Force acting on individual oscillator. A) a diagram of coupled bundles
with opposite polarity shows that under no external force the positive constant force
F. push both oscillators toward their respective positive displacement which
contracted the coupling spring generated a coupling force in opposite direction to
constant force for each oscillator. B) A plot of total constant force, F.—<
K.(x1 + x,) >, as a function of F, for a single oscillator and coupled oscillators with
opposite polarity with K. = 0.05, 0.1, 0.13. The quiescence regime of coupled
oscillators was observed at F.>= 0.8, 094, 1.02 for K.=0.05 0.1, 0.13,
respectively. At the bifurcation, the total constant force was always 0.66 for all K,
(dashed line). This value of total constant force was the same as that of a single
oscillator.

4.2 Responses to sinusoidal force

Previous experimental studies have suggested that hair bundles in the auditory
system become more sensitive to sinusoidal forces when operating as nonlinear
oscillators near the verge of instability, such as a system near a supercritical Hopf

bifurcation [5]. Under in vivo conditions, spontaneous oscillations of hair bundles
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have not been observed. From the perspective of our model, this suggests that an
oscillator should be poised in the quiescent regime near the line of a supercritical
Hopf bifurcation. All results from numerical simulations presented in this section
were obtained at the operating point of the system with k of 3.6 and F, of 0.6, unless

otherwise stated.

First, we illustrated the response of coupled oscillators with identical polarities.
The response of the system to a driving sinusoidal force was quantified by a
sensitivity (y), defined as |y(fz)| = |3?(fd)|/|f7(fd)| . At a fixed driving force
amplitude, A, of 0.1, the sensitivity of the coupled system displayed a resonance
behavior with the peak’s center frequency of f; ~ 0.0675, and a quality factor of
30.72. The sensitivity was indistinguishable from that of a single oscillator (Figure

4.4A).

Upon varying the driving force amplitude, at a fixed frequency of 0.0675, near
the resonant frequency in Figure 4.4B, the sensitivity plot exhibited two types of
behavior. First, in the linear regime, a plateau in the sensitivity was observed over a
range of low driving force amplitude. Second, in the nonlinear regime at higher
driving force amplitude, the sensitivity followed a power law, y~A"(—0.22) . The
negative exponent suggested a compressive nonlinearity of the oscillator [21]. As in
Fig 4.4B, the sensitivity of coupled identical hair bundles was unaffected by the K,
and remained indistinguishable from that of a single bundle. These results indicated

that there was no advantage of coupling hair bundles with identical polarity.
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Figure 4.4 Sensitivity of coupled oscillators with identical polarity. A) a plot of
sensitivity of coupled oscillators with identical polarity versus frequency of driving
force, shows a resonance behavior with a peak frequency at 0.0675. The sensitivity is
indistinguishable from a single oscillator. B) a plot of sensitivity vs driving force
amplitude in logarithm scale shows two types of behavior, a linear response for lower
driving force amplitude and nonlinear responses at higher driving force amplitude
which portray the power law of -0.22.

Next, we investigated the response of coupled bundles with opposite polarities
by changing the polarity parameter P in equation (3.2) to —1, with F, = 0.6 and k =
3.6. At a fixed driving force amplitude at 0.1, the power spectrum of the first
oscillator’s displacement displayed a resonance behavior. However, the magnitude of
the response was greatly enhanced compared to that of a single bundle. The resonant
frequency remained relatively unchanged. The amplification became more

pronounced with an increase in the K. (Figure 4.5).
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Figure 4.5 Sensitivity plot vs driving force frequency for coupled oscillator with
opposite polarity for driving force amplitude of 0.1. The graph for every K, shows a
resonance behavior, with the peak frequency for K.=0.1 and 2 slightly increased from
an uncoupled oscillator. Increasing K. also increases the overall sensitivity of coupled
oscillators. The improved sensitivity could correspond to the shift in the line of Hopf
bifurcation.

We hypothesized that the drastic enhancement in response due to coupling could
be attributed to the shift of the line of Hopf bifurcation. As shown in the previous
section, coupling reduced the effective constant force applied to the bundles, thereby
shifting the operating point of the system closer to the line of Hopf bifurcation. This,

in turn, enhanced the phase-locked amplitude of the response.

To reveal the roles of coupling, a faithful comparison between the responses of
coupled, and uncoupled oscillators should be performed when the two systems were
at the same operating point with respect to the bifurcation. To maintain the distance of
the coupled system’s operating point from the bifurcation, we increased the F, applied
to the oscillators in the presence of coupling. The magnitude of the F. was calculated

from equation (3.7). For example, to compare the response of a single oscillator with
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k =3.6 and F. = 0.6 to a system of coupled oscillators with K. = 2, the coupled

oscillators should be under a constant force of F, = 1.883.
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Figure 4.6 Sensitivity vs driving force frequency of coupled oscillators with opposite
polarity at the same operating point at k = 3.6, F. = 0.6. The driving force amplitude
is fixed at 0.1. With K.= 2, the sensitivity of coupled oscillators is lower than that of a
single oscillator. This reduction is more pronounced at and below the resonance
frequency. However, with K.= 0.1, the sensitivity slightly increases around the
resonance frequency.

After adjusting the constant force applied on the coupled oscillators with K,
equal to 0.1, the system’s sensitivity across driving frequencies, with the driving force
amplitude fixed at 0.1, was only marginally enhanced from that of a single oscillator,
as shown in Figure 4.6. The amplification was more noticeable at a driving frequency
slightly higher than the resonant frequency of the single oscillator. However, when the
coupling constant K. was set to 2, the overall sensitivity was significantly attenuated,
particularly at frequencies f slightly below the resonance. This led to a shift of the

response of the coupled oscillators towards a higher resonant frequency.
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We found that the sensitivity of coupled oscillators with opposite polarities
could be either enhanced or attenuated compared to that of a single oscillator,
depending on the K.. We fixed the driving frequency at a value near the resonance,
0.0675, and the forcing amplitude at 0.1, and varied the coupling constant K.. Figure
4.7 illustrates that a range of sufficiently low values of K. < 0.4 weakly enhanced the
sensitivity. However, stronger coupling resulted in a monotonic decrease in

sensitivity.

3.08
3.075
3.07
3.065
3.06
>=3.055
3.05
3.045
3.04

3.035

3.03 L : .
0 0.5 1 1.5 2

C
Figure 4.7 Sensitivity of coupled oscillators at frequency of 0.0675 and driving force
amplitude of 0.1. For K. below about 0.4, the sensitivity shows a small resonance
behavior with a peak at K. about 0.14. The sensitivity continues to decrease for K. >

0.4.

The effects of coupling were also strongly dependent on the driving force
amplitude. We illustrated this by plotting the sensitivities at K, = 0.1 and K. =2 as a
function of forcing amplitude at a fixed driving frequency f,; at 0.0675 (Figure 4.8A).
The ratios between the sensitivities of coupled oscillators with opposite polarities to
that of a single bundle in Figure 4.8B indicates that, for sufficiently strong driving
force, A > 0.01, a high K, resulted in an attenuation of sensitivity, while weak

coupling slightly amplified the response. Interestingly, the trend reversed for forcing
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amplitudes A below 0.01, where strong coupling slightly amplified the sensitivity, and

weak K. had no effect on the response.

To comprehend the impact of coupling on the sensitivity of two oscillators with
opposite polarities, we analyzed the forces acting on each oscillator individually.
Based on our previous finding, a coupled system can be perceived as two distinct
oscillators influenced by the external force and the force arising from coupling.
Consequently, each oscillator encountered three forces: the driving sinusoidal force,
F., and the coupling force, represented by the coupling term in equation (3.2),

K (x1 + x3).

We illustrated that the dynamics of coupled oscillators with opposite polarities
could be effectively described by a single oscillator influenced by the extracted
coupling force and constant force. To compare the sensitivity of coupled oscillators
with that of a single oscillator, we examined the response of coupled oscillators with
opposite polarity under a constant force of 0.6 and a sinusoidal force of frequency
0.0675. In contrast, the single oscillator experienced no constant force and was driven
by forces extracted from the coupled oscillators, including the driving force, the
constant force, and the coupling force (Figure 4.9). Plotting the sensitivity across
driving amplitudes revealed no distinction between the response of coupled oscillators
and that of a single bundle subjected to the extracted forces. This allowed us to
compare the response of two single oscillators, with one driven by a combination of

the constant force and the coupling force.
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Figure 4.8 Plot of sensitivity versus driving force amplitude for coupled oscillators
with opposite polarity at frequency of 0.0675. The sensitivity of coupled oscillators
with K. = 2 shows a reduction in nonlinear rvegime while K. = 0.1 shows a marginal
increase. B) shows a ratio between coupled oscillator and a single oscillator in A).
Coupled oscillator with K. = 2 had higher degree of reduction than K. = 0.1 at
higher force amplitude. However, as the force amplitude decreases, the degree of
changes is reduced. For force amplitude below 0.01, the sensitivity of coupled
oscillators with K. = 2 shows a slightly amplification that do more than K. = 0.1.

Next, we calculated the coupling force when coupled oscillators were under the
driving force. Unlike the coupling force in coupled oscillators in quiescent state, the
coupling force now oscillated around a non-zero offset of 1.275. This oscillation arose
from the difference between two oscillators and was not purely sinusoidal owing to
asymmetry of displacement of two oscillators. The oscillating coupling force provided
the oscillator with additional periodic force, in addition to a constant force. To
determine the frequency component of the coupling force that governed the sensitivity
of the coupled oscillators, we performed a frequency analysis on the time trace of the
coupling force using Fourier transform. The power spectrum revealed two
predominant peaks: one at a frequency corresponding to the second harmonic of the
driving force, and the other at zero frequency corresponding to a constant offset

(Figure 4.10).

We postulated that the sinusoidal component of the coupling force was
responsible for the alteration of sensitivity upon coupling. We investigated the
dynamics of a single oscillator driven by a sinusoidal force at a frequency twice that
of the driving frequency, in addition to the primary driving sinusoidal force. The

amplitude of this 2" harmonic force was set to match the oscillation amplitude of the
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coupling force. Therefore, the total force exerted on a single oscillator was given by
Fio; = 0.1sin(2m-0.0675-t) + 0.02sin(2m - 0.135-t), where the second term

represented the sinusoidal component of the coupling force.
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Figure 4.9 Comparison between the displacements of a coupled oscillator and a
single oscillator driven by the forces experienced by an oscillator in coupled
oscillators. B-C) shows sensitivity plot to driving force amplitude at frequency equal
to 0.0675 and ratio between 2 cases which show an indistinguishable difference.

Figure 4.11 illustrated the power spectra of the response of three systems:
coupled oscillators with opposite polarities, a single oscillator driven by one
sinusoidal force, and a single oscillator driven by two sinusoidal forces, Fiy:. A
striking difference was observed at the second harmonic of the driving frequency,
which was significantly suppressed for coupled oscillators with respect to those of the
single oscillator. We hypothesized that the coupling force experienced by coupled

oscillators
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Figure 4.10 Coupling force. A) the coupling force as a function of time oscillates
around an offset of 1.275. The oscillation amplitude varies between cycles due to an
asymmetry in the motion of the two oscillators. B) the power spectrum of the coupling
force shown in A) (red) compared to that of driven force (blue). The spectrum shows
two frequency components, one at zero frequency and the other one at 0.135, which is
equal to twice the frequency of the driving force. The peak at zero frequency
corresponds to the offset of coupling force. The coupling force is extracted from
coupled oscillators with K. = 2,k = 3.6,F. = 0.6 driven by force amplitude of 0.1.
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Figure 4.11 Power spectrum of responses from 3 different cases. A) consists of
coupled oscillators with opposite polarity, a single oscillator under a driving
sinusoidal force at frequency 0.0675, and a single oscillator under two driving forces
at frequencies 0.0675 and 0.135. B) The peak at the driven frequency shows a slight
reduction for opposite polarity and a single oscillator with additional 2" harmonic
force. C) The peak at a frequency equal to twice the driven frequency shows
differences between opposite polarity which is suppressed while a single oscillator
with additional 2™ harmonic force was enhanced compared to single oscillator.
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could appear at a phase that led to a partial cancellation with the second harmonic

response of the individual oscillators.

To illustrate the significance of the phase of the second harmonic force, we
introduced a phase, ¢, to the second term of the total force imposed on a single

oscillator:

Fpe = 0.1sin(2m-0.0675 - ¢t) + Bsin(2r - 0.135 - t + @) (4.1)

Here, B was the amplitude of the second harmonic force. We extracted the phase-
locked amplitude and calculated the sensitivity at the driving frequency as shown in
Figure 4.12. The results in Figure 4.12 indicated that the phase of the second
harmonic force could either amplify or attenuate the sensitivity at the driving
frequency f,. The phase of the second harmonic force that amplified the response was
between 1.1 rads and 4.3 rads, and this range remained unaffected by the amplitude of

the second harmonic force.

Next, we verified that the phase of the coupling force of the coupled system
could account for the alteration of the sensitivity. To relate the results from Figure
4.12 to the phase of coupling force, we needed to determine the phase of the
sinusoidal component of the coupling force, i.e., the phase value in equation (4.1). We
note that the phase, ¢, in equation (4.1) represented the difference in the phases of the

driving and coupling forces at time ¢ = 0.

Firstly, we extracted both the driving force and the coupling force from an
arbitrary time window, starting from t = t to t = 7 + At. Next, we performed the
Fourier transform of both forces and calculated the angles from the arguments of the
complex Fourier component, tan~'(Im(F)/Re(F)), at the driving frequency for
driving force and at twice the driving frequency for coupling force. The obtained
phase difference was, however, determined at time ¢ = 7. To retrieve the phase
difference at t = 0, we rotated the angle of the two forces by subtracting the phase of
the driving force by 2m - 0.0675 - 7, and subtracting the phase of the driving force by
2m - 0.135 - 7. The resulting phase difference was consistent with the definition in

equation (4.1).
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Figure 4.12 Sensitivity of a single oscillator vs phase of the second harmonic force
for amplitude of the second harmonic force of 0.01, 0.03, and 0.05. With the presence
of the second harmonic force, the sensitivity is amplified for phases between 1.1 and
4.3 and attenuated otherwise. Increasing the amplitude of the second harmonic force
enhances the amplification and attenuation effects of the second harmonic force.

We found that the phase of the coupling force depended strongly on K, while
the driving force amplitude A had little effects. An increase in K, from 0 to 2 led to a
positive shift in the phase value from approximately 3.5 to 4.5 rads. On the other
hand, increasing A only led to a slight enhancement in the phase of the coupling force.
When compared to the range of phase values that led to an amplification of the
sensitivity, as shown in Figure 4.13, we found that the phase values extracted from a
coupled system at K, = 2 was within the attenuation regime across driving amplitude.
In contrast, the phase values obtained from the coupling constant at K. = 0.1 was
always within the amplification regime. Our results suggested that a strong coupling
always attenuated the sensitivity while a weak coupling amplified the response across
the entire range of A. This was consistent with the sensitivity ratio within the

nonlinear regime shown in Figure 4.8. However, our findings could not explain the
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sensitivity observed in the linear regime of Figure 4.8, in which a strong coupling

slightly enhanced the response, whereas a weak coupling had no effects.
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Figure 4.13 Phase of extracted coupling force. A) the phase of extracted coupling
force vs driving force amplitude for K. = 2, 0.1. The phase in both K. is slightly
reduced at lower driven force amplitude. In all range of driving force amplitude, the
phase of coupling force with K. = 2 is always fall in attenuation regime while for
K. = 0.1 the phase of coupling force is always in amplification regime. B) the plot
between the phase of coupling force and K. shows a significant decreased in phase
with K. which consistent across all considered range of driven force amplitude.

However, there was another parameter of the second harmonic force that might
affect the sensitivity of coupled oscillator, the oscillation amplitude of the second
harmonic force. As shown Figure 4.12, The oscillation amplitude of the second
harmonic force affected the degree of amplification and attenuation from the phase of
the second harmonic force. To determine the oscillation amplitude of coupling force,
we measured the amplitude of coupling force at the frequency twice of that of driving
force. Figure 4.14 shows the ratio between the amplitude of driving force and the
amplitude of the second harmonic force from coupling force. The results showed that
the amplitude of the second harmonic force decreased significantly with lower driving
force amplitudes A and K. For example, the ratio reduced from 0.19 at A equal to 0.1
to ratio of 0.03 at A equal to 0.01. This trend also held true for different values of K.
This result explained the varying degree of amplification and attenuation observed in
nonlinear regime for K, values of 0.1 and 2, as well as the diminishing effects at
lower driving force amplitudes. Additionally, these results indicated that in the linear
regime, there was minimal influence from the second harmonic force, which could not

explain the slight amplification observed for K. = 2 in the linear regime.
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Figure 4.14 Ratio between the amplitude of the coupling force and the driving force.
The ratio is lower with K. and the driving force amplitude, indicating that the
influence of the coupling force is minimized when there is a weak external force and
weak coupling.

We also conducted a brief study on sensitivity at off-resonance frequencies. We
choose the frequency of driving force f; at 0.05 and 0.08 to represent the sensitive at
lower and higher frequency than the resonance frequency, respectively. At both
frequencies, the sensitivity to driving force amplitude exhibited both linear and
nonlinear regimes, similar to that observed at the resonance frequency (Figure 4.15).
However, at lower frequency, both K. = 0.1 and K. = 2 resulted in an attenuation of
sensitivity in the coupled oscillator, whereas at the higher frequency, the coupled

oscillator had minimal impact on the sensitivity.
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Figure 4.15 Sensitivity at off-resonance frequencies. For the driving frequency of
0.05 (A), the sensitivity of the coupled oscillator is reduced, even at K.=0.1,
compared to a single oscillator. On the other hand, for the driving frequency of 0.08
(B), the sensitivity of the coupled oscillator is unaffected.

4.3 Responses to step force

In this section, we investigated the dynamics of coupled hair bundles under a
step force. The profile of this type of driving force represented a brief acceleration
typically experienced by hair cells in the vestibular system. Previous theoretical
studies of the nonlinear dynamics of hair bundles suggested that the vestibular hair
bundles were suited for the detection of step force if poised near a subcritical
bifurcation [5]. From the framework of our numerical model, this corresponded to an
area near the upper or lower boundary of the enclosed area in the state diagram, as
shown in Figure 4.1. Here, we choose the operating point of the oscillators to be in a
quiescent regime near a subcritical Hopf bifurcation at k = 2, and F. = 1.2, unless

stated otherwise.

A step force was applied to both oscillators towards the same direction.
Therefore, for coupled oscillators with opposite polarities, a step force in the positive
direction induced a positive displacement of the first oscillator and a negative
displacement of the second oscillator. Note that the orientation of this driving step
force was different from a constant force, F_, used to determine the system’s operating
point. The F. evoked displacements of both oscillators towards the same direction, as

illustrated in Figure 4.16.
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Figure 4.16 Schematic diagram of coupled oscillator with opposite polarity receiving
a positive step force with respect to the first oscillator. The second oscillator, with its
coordinate reversed, experiences a negative force.

Similar to the response to sinusoidal driving forces, the dynamics of coupled
oscillators with identical polarity under a step force were indistinguishable from those
of a single bundle as shown in Figure 4.17. The force in the positive direction caused
an abrupt positive displacement, followed by a gradual drift in the negative direction
toward an equilibrium point. The magnitude of this drift became less noticeable as the
step size increased. On the other hand, a step force in the negative direction elicited a
larger displacement, with respect to the motion evoked by a positive step force of the
same magnitude. When the size of the step force exceeded a threshold value,
approximately 0.3 in this case, the oscillators exhibited a large movement towards the
negative direction and then abruptly swung back to a steady-state position, resulting
in a ‘twitch-like’ movement. A larger step size could evoke a spontaneous oscillation,
suggesting that the step force shifted the operating point of the system across the

subcritical Hopf bifurcation.

The motion of coupled oscillators with opposite polarities elicited by step forces
of different magnitudes was displayed in Figure 4.18. Note that the direction of a step

force was determined based on the coordinate system of the first oscillator. For
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example, a positive step force led to a positive displacement of the first oscillator and

a negative displacement of the second oscillator.
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Figure 4.17 Responses to step force of coupled oscillators with identical polarity
overlaid by responses from a single oscillator with the same external force. For a
positive step force, the coupled oscillators response with an initial transient in
positive direction slightly above steady displacement before slowly moving toward
steady state. On the other hand, oscillators response to small negative force with
larger initial transient compared to positive force. When the step size was large
enough the oscillators display an abrupt large movement toward negative direction
and swing back toward steady-state position. With a much larger step size in negative
direction, the oscillators undergo a subcritical bifurcation and display a spontaneous
oscillation.

The two oscillators displayed similar displacement profiles, but with different
magnitudes. When a step force was applied towards the negative direction, the first
oscillator displayed a significantly larger displacement compared to the second
oscillator. A step size of 0.1 could induce a large twitch-like movement of the first
oscillators, similar to what was observed in the case of a single oscillator or a coupled
system with identical polarity. Meanwhile, the motion of the second oscillator
underwent a more complex motion, with an additional step displacement superposed

on the initial transient step.As the step size exceeded 0.3, the system displayed
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spontaneous oscillation. While the oscillation profile of the first oscillator resembled a
relaxation oscillation with a large amplitude, the second oscillator displayed a
smaller-amplitude periodic motion at the same frequency. Note that this contrasted
with the responses of a single oscillator and a coupled system with identical polarity
which did not display a crossing of the bifurcation for step sizes below approximately
0.6. However, the amplitudes of the twitch-like response and the spontaneous
oscillation in the first oscillator were smaller than those of a single oscillator. The
reduction in the displacement of the first oscillator could be attributed to the coupling

force that pulled it toward its positive direction.
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Figure 4.18 Responses of oscillators with opposite polarity. It should be noted that
the displacement of the second oscillator is reversed to illustrate its displacement
related to the first oscillator.

Next, we illustrated the motion of an individual oscillator as a phase portrait to
understand its dynamics under a step force. A phase portrait represents the motion of
an oscillator as a trajectory in the phase plane, which in our case consists of the
displacement x and the internal parameter f. In general, a trajectory follows a vector
field of velocity constructed from equation (3.1). The direction of the trajectory at any

point in the phase plane is parallel to the velocity at that point.

To further visualize the dynamics of the oscillator, we calculated nullclines of
equation (3.1a) and (3.1b) by solving the equations with the time derivatives, x and f ,
set to 0. Therefore, an x-nullcline was composed of points at which the position, x, of

the system became stationary. The intersection of the x-nullcline and the f-nullcline
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was a fixed point, at which the oscillator was at rest. A fixed point was stable when
the surrounding velocity vector field pointed toward the fixed point. In our case,
stable fixed points appeared when the nullcline intersections were found on the two
outer branches of the x-nullcline, resulting in a quiescent oscillator. On the other
hand, an unstable fixed point was found in the middle branch of the x-nullcline, and
the oscillator instead underwent a spontaneous oscillation resulting in a limit-cycle

trajectory around the middle branch.

We first illustrated the trajectory of a single oscillator driven by a step force.
Prior to the step force, the system was at rest at a stable fixed point, A, in Figure 4.19.
An application of a negative step force of magnitude 0.3 suddenly changed the F, and
shifted the x-nullcline such that the new stable fixed point was now at point B. The
oscillator then drifted from point A towards point B with the velocity determined by
the velocity vector field. For small step sizes, this resulted in a small excursion in the
phase plane, which corresponded to a slight dip observed in the time trace of the

oscillator’s displacement.
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Figure 4.19 Trajectory of the oscillator receiving the step force of -0.3 from initial
point A to final point B when the step force is applied. An oscillator moves toward
point B with a velocity determined by vector field of point B. Note that the vector field
only indicates the direction of velocity of system not the amplitude.

For negative step forces with a larger magnitude, the system was displaced
across the separatrix, and the velocity field guided the system toward the left branch
of the x-nullcline. The trajectory then tracked the x-nullcline back to the fixed point
resulting in a large excursion which corresponded to the twitch-like motion of the
oscillator. Upon a further increase in the step size to -0.6, the oscillator crossed the
bifurcation, and the new fixed point was in the middle branch of the x-nullcline,
becoming unstable. The oscillator then displayed a spontaneous oscillation following
the velocity vector field. On the other hand, positive step forces always led to a small
excursion of the system’s trajectory as the system never crossed the separatrix (Figure

4.20).We applied this perspective to describe the motion of coupled oscillators with
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opposite polarities. In contrast to a single oscillator, the x;- and x,-nullclines of the
coupled system were also influenced by the coupling force. Figure 4.21A shows the
total force, F, — K.(x; + x3), applied on each oscillator and coupling force. We found
that the total force deviated from the applied step force as the coupling force exhibited

a pronounced dip at the beginning of the step force.
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Figure 4.20 Trajectory of the oscillator shown in Figure 4.17 in phase plane. Before
the force is applied, the oscillator is in steady state at position A. After the step force
is applied, the oscillator drifts according to a velocity from vector field at new fixed
point. For a step size of -0.6, the fixed point is in a middle branch of x-nullcline which
is unstable. The oscillator then displays a spontaneous oscillation at point B.

Before a step force was applied, both oscillators remained at their initial fixed
points. The two oscillators were subject to a total constant force of 1, with the
coupling force magnitude of 0.33. Immediately after the beginning of a positive step
force, the first oscillator’s total constant force was changed to 1.31 and the x;-

nullcline shifted towards the positive x; direction, Line A in Figure 4.21B. The
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oscillator drifted in the positive x; direction toward the new x;-nullcline. As it
approached the x;-nullcline, however, the reduced coupling force raised the total
constant force exerted on the first oscillator to 1.51. The x;-nullcline was then shifted
towards a more positive constant force to Line B in Figure 4.21B. The trajectory then
followed the x;-nullcline, corresponding to the complex motion exhibited by the first

oscillator as shown in Figure 4.18A.

The second oscillator’s total constant force was lowered to 0.70 upon the onset
of the step force, leading to a shift of the x,-nullcline in the negative x, direction
(Line A in Figure 4.21C. As a result, the oscillator drifted to the new fixed points,
exhibiting a higher velocity compared to the first oscillator and showing the onset of a
twitch-like motion. The difference in velocities of the two oscillators caused their
displacements to diverge and the coupling force decreased. This subsequently raised
the total constant force exerted on the second oscillators to 0.91 shifting the x,-
nullcline to Line B. This made the amplitude of the twitch-like response lower than

that of a single oscillator at the same F..
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Figure 4.21 Trajectory and nullcline of each oscillator. A) shows coupling force and
total forces acting on each oscillator over time. B-C) shows the trajectory of the first
and the second oscillator and their x-nullcline at steady-state position and during the
dip of coupling force, illustrating the shift of x-nullcline in relation to the dip of
coupling force.

After the twitch-like response of the second oscillator, the force on both
oscillators becomes stable near the value before a sudden transient of coupling force.
Subsequently, both oscillators then moved according to vector field of this stable
point.Finally, we illustrated the effects of coupling strength on the response to step
forces. Since coupling can shift the operating point of the coupled oscillators with
opposite polarities with respect to the line of Hopf bifurcation, we maintained the
operating points at the same distance from the bifurcation as that of a single oscillator
operating at k = 2 and F, = 1 across all values of K. This was achieved by adjusting

the value of F, applied to coupled oscillators using equation (3.7).
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Figure 4.22 shows the responses of both oscillators when subjected to positive
step forces of magnitude 0.1 and 0.3 for which the system was expected to remain in
the local vicinity of the fixed points, and to cross the separatrix, respectively. The K,
were varied at 0, 0.1, and 1. We found that a stronger coupling increased the
amplitude of the transient response of the first oscillator while reduced the response
amplitude of the second oscillator. At a step size of 0.3, a higher K, also shortened the

twitch-like response.
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Figure 4.22 Responses of coupled oscillators to step force at higher K, for step size
of 0.1 (A, B) and 0.3 (C, D) respected to the first oscillator. In both step size,
increasing K. increases the amplitude of transient response for oscillator that
received the force in positive direction while the amplitude is decreased in oscillator
that received force in negative direction.

To understand the shortened transient response and the alterations in the
response amplitude, we plotted the total constant forces exerted on the two oscillators
and the coupling force, shown in Figure 4.23. We found that, for K. = 1, the dip in the
coupling force magnitude was sufficiently large that the total constant force exerted
on the second oscillator could momentarily exceed its constant force in the absence of
the driving force. Thus, it briefly experienced a positive step force, reducing its

response in the negative direction. Moreover, we postulated that the positive shift of
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x,-nullcline during the reduced coupling force could make the second oscillator reach

the left branch of the nullcline faster, resulting in the earlier recovery of the twitch-

like response.
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Figure 4.23 Coupling force and the total force acting on each oscillator for K.= 1.
The dip in the coupling force is higher compared to K.=0.1, resulting in an increased
total force on each oscillator. For the second oscillator, the increased force exceeds
the value prior to the step force being applied. This indicates that the oscillator will
reach the left branch of the x-nullcline faster, thereby reducing the swing distance and
the time of the twitch-like response.



Chapter 5

Discussion and Conclusion

5.1 Discussion

Hair cells in certain sensory organs, such as the inner ear in lizards, the lateral
line in fish, and the vestibular system in mammals, are coupled together with opposite
polarity. In this study, we investigated the effects of coupled hair bundles with
opposite polarity using a mathematical model of simple hair bundle motility that
coupling through a mechanical spring. We investigated the dynamics of coupled
oscillators in three scenarios: spontaneous dynamics, responses to sinusoidal forces,

and responses to step forces.

By introducing the coupling spring into the system of two hair bundles with
opposite polarity, the coupling spring imposed an additional force to individual hair
bundle, influencing its dynamics. We showed that a single oscillator driven by the
same forces experienced by each oscillator in coupled oscillators having the same
responses to coupled oscillators. This suggested that a coupled system can be

considered as a separated individual system driven by an additional coupling force.

The spontaneous dynamics of a single hair bundle are affected by the stiffness
and constant force imposed on the hair bundle. We found that the state diagram of
coupled bundles with opposite polarity resemble that in a single bundle with an
expansion of state diagram in constant force direction. The force from the coupling
spring, applied to the hair bundle in the opposite direction of the constant force,
reduces the overall constant force acting on the hair bundle. This indicated that the
coupling spring serves as another element that helped adjust the operating point of

hair bundle.

The responses to sinusoidal force of coupled bundles with opposite polarity
displayed a resonance behavior and a reduction of sensitivity following the power law
at higher force amplitude similar to those of a single bundle but with a different
degree of responses. By analyzing the coupling force while the coupled bundles were

oscillating, we found that asymmetry of the oscillation of each bundles causing an
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oscillation in coupling force at a frequency twice of that of a driving force. With high
enough coupling strength, the second harmonic force attenuated the responses at the
fundamental frequency. This effect was enhanced at higher driving force amplitude.
This implied that the sensitivity of coupled hair bundle at nonlinear regime became
more compressively nonlinear. This attenuation became more intense when the
driving frequency was below the resonance frequency. For coupled bundles with weak
coupling strength, the responses at resonance were slightly enhanced which may

implied the benefit of coupling hair bundles when coupled with weak coupling.

We investigated the responses to step force of a single hair bundle by analyzing
the phase portrait and studied the effects of coupled bundles with opposite polarity.
For a single bundle, we found that the step force changed the hair bundle’s constant
force, causing the hair bundle to drift toward a new steady-state position through a
velocity field determined by the vector field at new steady-state position. The hair
bundle response to positive step force with initial transient with a small amplitude
before moving toward steady-state position. For the responses to negative step, the
hair bundle responded with higher amplitude than a positive force. When the step size
crossed the separatrix, the hair bundle displays a twitch-like response with a larger
amplitude than positive force. If the step size further increased, the hair bundle
crossed the bifurcation and oscillate spontaneously. This implied that the
characteristic properties of the responses, the responses amplitude, how fast the
swing, was determined by the operating point of hair bundles. It also implied that the
hair bundle that detecting the onset of step force prefer to have a lower stiffness which
gave a larger swing at transient response. When coupling hair bundles with opposite
polarity, the coupled bundles gain symmetry to direction of step force. In addition, we
found that during initial transient response the coupling spring was extended which
pull the hair bundle that received positive force forward while decrease the swing
displacement for hair bundle that received negative force, which these effects were
enhanced with coupling strength. This implied that the force from coupling force

increased the transient responses to positive step force of hair bundle.

The arrangement of hair bundles with opposite polarity can be found in

vestibular system such as literal line in fish and semicircular canals or saccule and
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utricle in mammals [5]. These organs detect changes in forces or force accelerations.
This arrangement is also found in auditory systems such as the inner ear in lizard

which detects sound [6].

Our results suggested the advantages of coupling hair bundles with opposite
polarities in signal detection. For the advantages in detecting sine waves, the second
harmonic component may enhance the sensitivity of coupled hair bundle that coupling
with a weak coupling. The reduction in sensitivity in frequency lower than
fundamental frequency suggests that the coupled hair bundle may improve the
frequency selectivity of hair bundles. Furthermore, the more compressive nonlinearity
could increase the range of force amplitude hair bundles can detect and protect hair
bundles from damage by reduction the responses to high-amplitude stimuli. By
coupling hair bundle with opposite polarity also yield advantages in detecting step
force. The symmetry of the coupled hair bundle helps the hair bundles to detect step
the step force in both directions. The force from coupling force increased the transient
responses to positive force, which promotes the opening of ion-channels, may

enhance an onset detection of coupled bundled.

However, our model suggested that coupling hair bundles with identical polarity
did not alter the dynamics of the bundles and gained no advantages over a single hair
bundle in signals detections. This contrasts with the results from previous literature
which suggested the benefit of coupled hair bundles [7, 8]. Our model also did not
consider the effects of noise which affects the dynamics of hair bundle [19].

Additionally, we only studied a couple between two identical hair bundle.

In this work, we showed that the coupled hair bundle can be analyzed as a
single hair bundle driven additionally by a coupling force which affected the dynamic
and responses of the hair bundle. The results also suggested the benefits of coupled

hair bundles with opposite polarity to the signal detection of hair bundle.

5.2 Suggestions and future work
The hair bundle in some organs are coupled with multiple hair bundle. [7, 8]

suggest that the more hair bundle coupled together can further enhance the sensitivity
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of hair bundles. We could extend the system to a higher number of hair bundles in the
system. We could perform more extensive bifurcation analysis on the coupled hair
bundles with opposite polarity. In this thesis, we only observed the displacement of
the hair bundle. We could use the mathematical model of hair bundle motility from

[13] to identify the open probability of the ion channel.
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