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CHAPTER |
INTRODUCTION

1.1 Overview

Shape memory polymers (SMPs) are smart materials that can be applied for
varieties of applications. SMPs have an ability to recover their original shape upon
receiving an external stimulation such as mechanical force, electric current, magnetic
field, light induction, pH, and temperature change [1, 2]. There are many advantages
of SMPs when compared to shape memory metal alloy (SMA), such as high percentage
of strain with over 200%, low cost, low density, ease of processing, simple design, good
manufacturability, and high shape deformability [3]. SMPs can be deformed at the
temperature above the transition temperature (Ti..). They can maintain this

temporary shape when temperatures are below Ty.... SMPs are able to change to its

original shape when they are heated up above Ty again [4].

Figure 1.1 Shape memory properties of cyanate ester-epoxy-poly(tetramethylene-
oxide) co-reacted (CEP)-38 (a) original/permanent shapes, (b) fixed temporary shapes

and (c) recovered shapes [5].

Nowadays, the thermoset-type SMPs (TS-SMPs) have attracted academic and
research attention because they exhibit superior properties when compared to
thermoplastics-type SMPs (TP-SMPs), such as higher chemical resistance, a greater
storage modulus, a higher glass transition temperature, and chemical cross-linking
capabilities [6]. Epoxy resin is one of the most popular thermosets that has been used

in structures and can be applied for extreme applications. Shape memory epoxies



possess excellent shape memory performance. Shape memory epoxies were earned
a special mention among various SMPs such as polyurethane, polynorbonene, cross-
linked polyethylene, styrene rubbers, and acrylate systems as they are unique
thermoset shape memory polymer systems [7]. SMPs fabricated from aromatic epoxy,
aliphatic epoxy, and curing agent (Jeffamine D230) showed high percentage of shape
fixity and nearly 100% shape recovery [8].

Polybenzoxazine (PBA-a) is a new type of thermosetting polymers. The PBA-a
has excellent properties, such as high thermal stability, simple processability, low water
absorption, almost near zero shrinkage and no by-product upon curing, and high glass
transition temperature. Benzoxazine resin (BA-a) can be synthesized by a solventless
method from bisphenol A, paraformaldehyde, and aniline [9]. BA-a can also be used
as a curing agent of epoxy. In addition, copolymers from benzoxazine and epoxy

showed enhanced mechanical properties [10].

In principle, recovery stress is defined as the stress required to maintain the
sample from shape recovery during heating [9]. The recovery stress for shape memory
polymers are lower than those of shape memory alloys because SMPs have rather low
modulus and strength, especially in the rubbery state [7]. This characteristic limits their
use for many advanced applications, for example self-deployable structure and
morphing of aircraft wings. Thus, to obtain higher recovery stress, SMP’s stiffness or
their elastic modulus have to be increased. This could be accomplished by
incorporating more rigid molecular moieties into the SMP structure [11, 12], providing
mesomorphic characteristics to SMPs [13], enhancing cross-linking density of the SMPs,
and including reinforcing fillers, e.g. carbon nanotubes, carbon fibers, and ¢lass fibers

to improve recovery stress [4, 14-17].

S. Rimdusit et al. (2013) developed shape memory copolymers based on
benzoxazine resin (BA-a), aliphatic-aromatic epoxy mixtures, and Jeffamine D230 as the
epoxy curing agent. Enhanced thermo-mechanical performances of the epoxy SMPs

was achieved by an addition of the BA-a resin. The incorporation of the BA-a into epoxy



shape memory copolymers promoted higher cross-linking density, higher storage
modulus in the glassy state. Flexural strength and flexural modulus at room
temperature were also enhanced. Their recovery stress were increased with increasing
BA-a content up to 33% by mole with the reported recovery stress of 38 kPa,
comparing with 20.4 kPa of the unmodified shape memory epoxy [18]. Tanpitaksit et
al. (2014) investigated SMPs from binary mixtures based on benzoxazine-modified
aliphatic epoxy. They showed good thermo-mechanical and outstanding shape
memory properties. The highest value of the recovery stress of these binary

benzoxazine-epoxy mixtures up to 1.59 MPa was reported [11].

In general, The most common method for increasing elastic modulus and
recovery stress in SMPs is to reinforce in the polymer matrix but shape memory
composite (SMPC) is reinforced with particles or short fibers cannot be used as
structural materials, as the improvement in their mechanical properties is quite limited
and their strength and stiffness remain low [19, 20]. In contrast, continuous fiber-
reinforced SMPs offered significant improvements in both strength and stiffness,
providing excellent mechanical properties. As both functional and structural materials,
these SMPs were promising for many advanced applications [20]. When used as
actuator materials, they required no moving parts. Fiber-reinforced SMPs were also
demonstrated in deployable structures including antennas, trusses, and solar arrays
[20]. Fejos et al. (2012) studied shape memory characteristics of a woven glass fabric
reinforced epoxy composite. Recovery stress (RS) of the composites reinforced with
woven glass fibers increased to 42.33 MPa, which was higher than that of the
composites without glass fibers (i.e. 0.44 MPa) [16]. Furthermore, Bin Hong et al. (2015)
studied woven carbon fiber reinforced shape memory polymer composites. The
recovery stress of the composites increased with reinforcing woven carbon fibers [21].

Consequently, the purposes of this research is to study effects of woven carbon
fibers and woven glass fibers on recovery stress of SMPs based on benzoxazine (BA-
a)/epoxy alloys in order to broaden their applications. It was expected that the
outstanding mechanical properties of reinforcing fibers might contribute to the

substantial enhancement of the recovery stress of the obtained SMPs. Some essential



properties of the SMPs, such as glass transition temperature, flexural modulus, flexural

strength, shape recovery performances, and recovery stress were also investigated.

1.2 Objectives

1. To develop woven carbon fiber and glass fiber reinforced benzoxazine-epoxy SMPs
for recovery stress enhancement.

2. To evaluate effects of woven carbon fibers and glass fibers on shape memory
properties, thermal properties, and mechanical properties of shape memory

polymers based on binary system of aliphatic epoxy and benzoxazine resin.

1.3 Scope of the study

1. Synthesis of BA-a typed benzoxazine resin by solventless synthesis technology.
2. Preparation of shape memory polymers based on benzoxazine resin (B)-cured
aliphatic epoxy (E) at molar ratios (B:E) of 50:50.
3. Determination of the appropriate matrix contents of woven carbon fibers (CF) and
glass fibers (GF) in benzoxazine-epoxy shape memory polymers (SMPs).
4. Determination the optimum number of layers of woven carbon fiber and glass
fiber to behave shape memory properties.
5. Study effects of substitution of woven carbon fiber (CF) and glass fiber (GF) for
shape memory polymers behavior.
6. Property evaluation of woven carbon fiber and glass fiber reinforced benzoxazine-
epoxy SMPs as follows.
6.1 Physical properties
- Density of composites by Density kit
6.2 Thermal properties
- Curing behaviors by Differential scanning calorimeter (DSC)
6.3 Mechanical properties
- Dynamic mechanical properties (Dynamic mechanical analyzer)
- Flexural properties (Universal testing machine)

6.4 Shape memory properties



- Shape fixity ratio

- Shape recovery ratio
- Recovery time

- Recovery stress

1.4 Procedure of the study

1. Reviewing related literatures.
2. Preparation of chemicals and equipment to be used in this research.
3. Synthesis of benzoxazine resins (BA-a) by solventless technique.
4. Preparation of benzoxazine-epoxy shape memory polymers.
5. Preparation of woven carbon fiber (CF) and glass fiber (GF) reinforced benzoxazine
(BA-a)-epoxy binary systems.
6. Determine properties of the composites as follow:
6.1 Physical properties: Interfacial bonding of composites.
6.2 Thermal properties: glass transition temperature and curing temperature
of composites
6.3 Mechanical properties: flexural strength and flexural modulus
6.4 Shape memory properties: shape fixity ratio, shape recovery ratio, recovery
time and recovery stress.
7. Analysis of the experimental results.

8. Preparation of the final report.



CHAPTER Il
THEORY

2.1 Shape memory polymers

Shape memory materials (SMMs) represent a technologically important class of
stimuli-responsive materials for which the response lies in the shape change is
characterized by the ability to recover a permanent shape from an initial level of pre-
deformation when exposed to the appropriate external stimulus. Certain polymers,

metal alloys, ceramics, and gels can be classified as SMMs [21].
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Figure 2.1 Physical and chemical stimulations [14].

All SMMs, shape memory alloys (SMAs) and shape memory polymers (SMPs)
are the most widely studied shape memory materials. More specifically, the

conventional definition of shape memory polymers (SMPs) are polymeric materials



that have an ability to recover their original shape when receiving an external physical
or chemical stimulus, such as temperature change, electricity, light induction,
mechanical force, magnetic field, or even pH variation [1, 2]. Accordingly, the
associated behavior of SMP is called shape memory effect (SME) [2]. The external

physical or chemical response as shown in Figure 2.1.

The SMPs draw attention from many researchers due to their excellent
properties, ease in fabrication, and low density. When compared with shape memory
alloys, the SMPs possess greater benefits, such as higher process ability, higher elastic
deformation with over 200% of the strain, lower cost, and it is easier to adjust the
transition temperature to suit applications [7]. Figure 2.2 illustrate some comparison of
mechanical properties among some typical materials, where SMPs perform a large

strain but a relatively low stress.
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Figure 2.2 Comparison of mechanical properties among some typical materials [3].



2.1.1 Class of shape memory polymers

There are four classes of SMPs based on the criteria of their transition
networks and their types of polymeric components [19].

2.1.1.1 Class I: Chemically cross-linked glassy thermosets.

In this system, the macromolecules are covalently linked and the
resulting three-dimensional network exhibits a T, below or above which the thermoset
becomes reversibly glassy or rubbery, respectively. T, governs the shape memory
behavior in this case and the temporary shape is commonly formed at T, and fixed by
cooling below T,. The permanent shape is set by the covalent bonds of the three-
dimensional network during processing. For this class of materials, usually excellent
shape fixity and recovery are observed due to the high modulus below T, and
excellent rubber elasticity above T,. Indeed, the most common examples for this class
of materials are epoxy-based SMPs that have been reported in the literature to show
fixing and recovery of 95-100% when explicitly quantified. Typically, such thermoset

epoxy systems are commercially available with proprietary formulation [19].

2.1.1.2 Class Il: Chemically cross-linked semi-crystalline rubbers.

Here, the permanent shape is again set by the chemical cross-links formed
during processing. However, a temporary shape is formed and fixed when the sample
is deformed above the T,, of the crystalline regions and subsequently cooled below
their crystallization temperatures. For this class of materials, there exists a wider range
of shape fixity and recovery attainable that depends on the composition of the
network compared to class | SMPs. Examples of such SMPs include cross-linked
ethylene-vinyl acetate rubbers with 30-95% recovery, depending on their composition.
Cross-linked polyethylene systems commonly used as heat shrink materials with fixing
and recovery of up to 96 and 949%, respectively, and cross-linked poly-cyclooctene

with almost complete (2100%) shape fixity and recovery were reported [19].



Therefore, class Il SMPs can be tailored to optimize performance and reach
shape fixity and recovery values up to 95%. However, the modulus in the fixed state
is relatively low, in the order of 10® Pa, one order of magnitude lower than that for
class | SMPs, because the temporary shape is fixed through crystallization. Moreover,
because the polymers show large thermal hysteresis between melting and
crystallization transition temperatures, it is expected that class Il SMPs would have to
be cooled to lower temperatures relative to T, compared to class | SMPs to allow full

crystallization for good shape fixity, potentially extending the SM cycle time [19].

2.1.1.3 Class lll: Physically cross-linked amorphous thermoplastics.

For physically cross-linked amorphous thermoplastics, the SM
behavior is attributed to the T, of the soft segment regions and, therefore, a deformed
shape obtained at T = T, is maintained by cooling below the glass transition
temperature. In contrast, the permanent shape of the network is provided by physical
cross-linking of the hard segments through molecular interactions such as van der
Waals force, dipole-dipole interactions, or hydrogen bonding. Physically cross-linked
amorphous PUs represents the majority of this class of SMPs. Again, they are generally
synthesized following commmon synthetic routes such as reacting diisocyanates and
polyols with a diol or a triol as a cross-linker. Their shape fixity and recovery abilities
have been reported to vary from 80 to 90% and 75 to 100%, respectively. Researchers
reported how the length and/or molecular weight distribution of soft segment and the
hard segment content affect SM performance, especially with respect to recovery rate
and to a lesser extent shape fixity and recovery speed. For example, an MDI-PTMG-
based PU showed increased shape retention and a higher rate of recovery if a bimodal
molecular weight distribution of soft segment and a copolymer block-type
arrangement were used. Again, this emphasizes the need for optimizing
material/structure/properties of SMPs in order to increase SM performance. With
regards to cycle life, Ohki et al. reported on the SM behavior of a glass fiber reinforced
PU, which underwent 60 consecutive mechanical cycles without failure and only a

slight accumulation of residual strain as the cycle number increased, albeit only five
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consecutive thermo-mechanical cycles were tested. In addition, Lin and Chen tested
their polyether-based PU SMP through 200 consecutive SM cycles. They observed an
improvement in shape fixity and shape recovery for subsequent cycles with increasing
cycle number although with a slight decrease in these properties relative to the initial,
starting strain of the first cycle. In conclusion, class Il SMPs generally exhibit slightly
lower SM performances compared to class | and Il SMPs, specifically shape recovery
and fixity. This is mainly explained by a loss in physical cross-link integrity caused by
mechanical deformation. However, class IlI-SMPs exhibit a relatively high modulus

below T,, comparable to that of class | SMPs, in the order of 10° Pa [19]

2.1.1.4 Class IV: Physically cross-linked semi-crystalline block copolymers.

Very similar in their structure to class Ill SMPs described earlier, the
physically cross-linked semi-crystalline block copolymers exhibit SM behavior about
the soft segment T,,, whereas retention of their permanent shape is achieved by
physical cross-linking between hard segments through molecular interactions in
crystalline regions. Again, for this class of SMPs, the most commonly reported systems
are PU-based with common chemistries involving for instance the use of
polycaprolactonediol (PCL) as a soft segment, methylene diisocyanate (MDI) as a hard
segment, and butandiol (BD) as the cross-linker. Commercially available PU
formulations have also been used. For this class of SMPs, shape fixity and recovery
have been stated to range anywhere from 65 to 96% and 56 to 100%, depending on
the composition (soft segments length and/or molecular weight distribution and hard
segment content). For instance, hard segment contents varying from 10 to 33% have
been reported as optimum values for increased SM behavior in the PU systems
described by Li et al. and Park et al., respectively. In addition, Li et al. also stated that
their PCL/MDI/BD-based PU exhibited a lower limit of soft segment molecular weight
of 2000 to 3000 ¢/mol [19]
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2.1.2 Shape memory effects (SME)

Characteristics of the shape memory effects (SMEs) of the SMPs in a thermo-
mechanical cycle could be presented as Fig. 2.3 [8]. It could be seen that the shape
of the heat triggered SMPs can be deformed at the temperature above the transition
temperature (Ty,ns), Which is either at the glass transition temperature (T,) or the
melting temperature (T,,,) of the polymeric component [9]. The shape could be held
during cooling for a temporary shape. Subsequently, the shape of the materials is able

to autonomously change to its original shape when the SMP is heated.
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Figure 2.3 Schematic diagram of shape memory effects [8].

The two prerequires for the shape memory effect (SME) are a stable polymer
network and a reversible switching transition of the polymer (see Fig. 2.4). The stable
network of SMPs determines the original shape, which can be formed by molecule
entanglement, crystalline phase, chemical cross-linking, or interpenetrated network.
The reversible switching transition of SMPs determines the reversible molecule

crosslinking, crystallization/melting transition and ¢lass transition [22].
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Figure 2.4 A stable network and a reversible switching transition [22].

2.1.3 Parameters for characterization of SMPs [23].

To characterize the shape memory properties of polymers, a set of
parameters is needed. First, the parameters should be able to reflect the nature of
polymers. Second, to distinguish them from other properties of materials, shape
memory properties are shown through a series of thermo-mechanical cyclic processes.
Therefore, the parameters should be able to define the whole shape memory
processes as well. At last, the design of the parameters should consider the potential

applications. The parameters are introduced as follow [23].

2.1.3.1 Shape fixity (R¢)

When a shape memory polymer is heated to a temperature above the
transition temperature for triggering shape memory behaviors (T,), it can develop large
deformations which can be mostly fixed by cooling to a temperature below T,. This
parameter was proposed to describe the extent of a temporary shape being fixed in
one cycle of shape memorization. Shape fixity is