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CHAPTER 1 : INTRODUCTION

1.1 INTRODUCTION

Chlor-Alkali process (CA) is an industrial process used to produce Chlorine
(Cl,), Caustic Soda (NaOH), and other valued byproducts such as Sodium
Hypochlorite (NaOCl) and Hydrochloric acid (HCL). All products from the CA process
are essential raw materials in various industries. Cl, is crucial in disinfection and
petrochemical processes such as PVC and PC polymer. NaOH in commodity products
and pH neutralization. The high demand for CA products from the rapid growth of
the infrastructure industry in Southeast Asia led to the development of scale with a
2021 annual capacity of 78 million metric tons (EMR report) NaOH worldwide, and in
Thailand, will increase to more than 1 million metric tons NaOH in 2025.

Since 1972 [1], they are development of membrane electrolysis cell. The
primary process of CA production is the electrolysis of brine (NaCl) aqueous solution,
which is more environmentally compatible than mercury cells in the past. The
electrolysis process has a high electrical energy consumption, which latest
technology in 2022 claim power consumption at 2,000 kWh per metric ton NaOH
(information from licensor handbook). Thus, electrical power consumption is the
direct operating cost of the CA process and a key factor of production profit.

Currently, CA electrolysis technology has continued to develop year by year
both in catalyst terms and internal cell structure for improving product quality, cell
efficiency, durability, and power consumption. All improvements in the CA
electrolysis cell have a slight change in reaction kinetics and hydrodynamics inside
(some improvement has a significant change in a component inside the cell for
uniform internal brine circulation). The cell objective is to reduce the gap between
the anode and cathode electrode from gas forming inside and causing electrical
resistance. The reducing gap improves electrical conduction through electrolytes

resulting in lower power consumption.



According to industrial plant production, many technologies operate together
that make the conventional method (customarily calculated based on the effect of
mass transfer flux) might be not compatible with all types of operating electrolysis
cells. This thesis is to find the solution for predicting cell efficiency and optimum
correlation by artificial neuron network (ANNs) — a machine learning algorithm -
between controlled parameters, e.¢., capacity current load, feed brine concentration,
feed caustic concentration, cell temperature, and output parameters, e.g., depleted
brine pH, product quality with unknown hidden causation individually [1]. The
proposal is to find the optimum parameters and impact of each operation-controlled
parameter for the electrolysis cell to operate at the lowest operation cost (mainly

electrical power consumption) to lead to the highest production profit.

1.2 OBJECTIVE
This research aims to find the optimum parameters and impact of each

operation-controlled parameter in CA membrane electrolysis process cells by ANNs.

1.3 RESEARCH SCOPE

1.3.1. ANNs algorithm based on scale conjugate gradient method in MATLAB
neural network fitting tool (nftool) will be chosen to develop predictive models.

1.3.2. The six parameters in March 2022 and February 2023 will be collected
and pre-processed for training, validation, and testing dataset. An output parameter is
cell voltage (CV); input parameters are five operating parameters. To predict cell
voltage in any case of operating parameters adjustment.

1.3.3. The optimum number of hidden nodes and hidden layers in ANNs that
provides the highest testing performance - determined by minimum root mean
square error (RMSE) - from varying the number of hidden nodes from 5 to 10 and
hidden layers from 1 to 5 by trial and error will be chosen to train and compare the
impact of each input parameter.

1.3.4 RMSE of the train, validate, and test dataset will determine the impact

of each input parameter.



1.4 RESEARCH METHODOLOGY

< Set thesis topic and scoping research )

L

Liturature review and study MATLAB and machine learning

v
Data collecting (Feb22 — Mar23) |

1. Controlled parameters from DCS data logger (1 min record)

2. OQutput parameters from lab analysis (daily record)

¥

Pre-processing data and data analytics
1. Data smoothling (movemean, filter)
2. Remaove missing data (calibration period)
3. Matching controlled and output parameters time interval

4. Data trending and splitting into 5 group by range

Data training, validating, and testing.
1. ANNs training 70%
2. ANNs testing 30%

Training set Testing set

Select ANNs model training function and train

Select new function and re-train

ANNs model evaluation

Evaluate with RMSE keep

results and re-train

Function with lowest MAPE

Most accuracy ANNs model after met training dataset -—

L

Discuss the results and conclude

A 4

< Proceeding research result to production scale )

Figure 1 Thesis methodology flow chart



CHAPTER 2 : LITERATURE REVIEW

2.1 CHLOR-ALKALI PROCESS

Chlor-Alkali process (CA) is an industrial process used to produce Chlorine
(Clp), Caustic Soda (NaOH), and other valued byproducts such as Sodium
Hypochlorite (NaOCl) and Hydrochloric acid (HCL. All products from the CA process
are essential raw materials in various industries. Cl, is crucial in disinfection and
petrochemical processes such as PVC and PC polymerization. NaOH in commodity
products and pH neutralization. The high demand for CA products in all industries
leads to scale growth with a 2022 annual capacity of 78 million metric tons of NaOH

worldwide [2].

P d t Chlorine is one of the most abundant, naturally occurring chemical elements. It plays a
ro u C S significant role in the manufacture of thousands of products we depend on every day.
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Since 1972 [1], It is the development of membrane electrolysis cell. The
primary process of CA production is the electrolysis of brine (NaCl) aqueous solution,
which is more environmentally compatible than mercury cell in the past. The
electrolysis process has a high electrical energy consumption, and the latest
technology in 2022 claim power consumption at 2,000 kWh per metric ton NaOH [4].
Thus, electrical power consumption is the direct operating cost of the CA process

and a key factor of production profit.

Chlorine gas

Hydrogen gas

i

-]

Anode [ +]
Cathode [

Dechlorination Depleted Brine

Process

Purified Brine Diluted Caustic
Salt Primary Secondary
Vacuum Salt . il T g Y ¢ N
dissolver Purification Purification Brine Heater Mixer
Demin Water

32% Caustic Soda

Figure 3 Chlor-Alkali process overview

CA brine membrane electrolysis process [5] starts with two raw materials -
NaCl salt (use vacuum salt according to low Ca?*, Mg?*, I and Br in salt, which is less
effect on membrane operation) as anode feeding and demineralized water as
cathode feeding. NaCl vacuum salt as solid salt from the supplier must pass four raw
material feeding treatments before feeding to the electrolysis cell.
1. Salt dissolver for dissolving solid salt into demineralized water to be a brine
solution.
2. Primary purification removes suspended solid (SS) from brine by anthracite
bed filter.
3. Secondary brine purification removes undesired ions, e.g., Ca®*, Mg?*, and Al**,

from brine by chelating resin bed towers.



4. Brine heater for heating purified brine at suitable operating cell temperature
by heat balancing with heat generation from electrolysis, raw salt,
demineralized water, and recycled output brine and controlling cell

temperature by temperature-indicated control (TIC).

CHZ-CQ‘O CHz-C\,\""‘ o
R—CHz-I\< gzmz + M — R—CHz—N<"-'4\"1:; +2Na
CHz-C o
8] CHz-Ciy

Figure 4 Chelating resin mechanism on alkali earth ion [6]

After purified brine reacted in the electrolysis cell, some NaCl solution
remained from electrochemical conversion (depleted brine). Usually, input NaCl at a
concentration of 300 ¢/L will remain in the output at 230 ¢/L (reaction consumed 70
g/L of purified brine). This remaining will return to the salt dissolver as recycling of
raw material in the process. The remaining brine output has dissolved free-Chlorines
in the form of Cl,, HClO", ClO" and ClO5 from electrolysis reaction, which affects the
recycling process because free-Chlorine in recycled brine can damage chelating resin
in the secondary purification. Thus, depleted brine must remove dissolved free-
Chlorine before recycling to salt dissolver in dechlorination. The dechlorination
process removes dissolved free-Chlorine with reduced depleted brine pH by HCl to
pH below 2 for transforming all free-Chlorine species in solution into Cl,. Then,
remove the dissolved Cl, in the brine solution with a vacuum hydro cyclone. Cl, gas
in solution separates in cyclone to the gas phase and sent to combine with Cl, gas

product. Liquid phased from cyclone remains only depleted brine to recycle process.



Reaction undergoes in the anode and cathode side separately. First, Fed
purified brine NaCl into the anode side (called anolyte). An aqueous solution of NaCl
separated into Na® and ClU ion in demineralized water. Cl" ion from electricity
become Cl, gas and floats out separate from the liquid. Lonely ion Na* in the anode
side permeates through an ion-exchange membrane to the cathode side and meets

OH from the catholyte reaction resulting in the NaOH product.

e NN e
Purified Brine .—T“ - & \ A, e “_—“J Diluted | “e9e"

NaCl300g/lL == %, v "—— NaOH <« o
- < ’ -~ = Output
) 8 D Ceid C R o N
i AL o o 4 c ¢ ) ° c
Depleted Brine  —— e N e L 320 » Ho
NaCl 230 g/L -ﬁl o /o JRE n A R H=- NaOH ® .

Figure 5 Chlor-Alkali electrolysis cell diagram [7]

Anode side reaction

NaCl —>—— Na*+Cb—— %) e equation 1

2CU —  CL+2e (E136V) equation 2
Cathode side

H,O — H*+OH equation 3

2H* + 2e —  H, (Ec-0.83V) e equation 4

Na* + OH — NaOH equation 5

Total reaction

2NaCl + 2H,O0 — ClbL+Hy,+2NaOH - equation 6



2.2 MEMBRANE THEORY

The ion-exchange membrane's main component is fluoropolymer due to
excellent chemical compatibility with base, acid, and chlorinated conditions [8]. The
membrane consists of 2 main layers. First, the sulfonate layer on the anode side is a
highly conductive and sacrificial fiber for reinforcement and conducts electrical
conduction through the membrane. Second, the carboxylate layer on the cathode
side is highly ion-selective for selecting Na* to permeate ions. The surface of the
membrane is applying an anti-gas stagnation coating.

The critical performance of polymer-based ion-exchange membranes is
membrane duration and ion-selection channel size, which control impurity,
permeated rate, uncontrolled ion selection, and reverse diffusion. The wrong
channel size results in high power consumption from high resistance, permeation,
and product contamination. It occurs from reverse diffusion of product on the
cathode side to the anode or leak of minus ion from the anode to the cathode side.

1. Current density (CD) - current input for reaction divided by effective
membrane area - is the driving force of ion permeation and leads reaction by
transferring an electron to the reactant.

2. Membrane service life (determined by the day of life, DOL) related to the
accumulation of impurities in raw material, such as solid particles or other ion
species in brine, can plug or penetrate inside the membrane channel leading
to low membrane efficiency.

3. Water content is related to brine and caustic concentration, and the flow rate
of raw material consists of feed brine flow rate (Qg) and feed caustic flow
rate (Qyp) on the membrane surface. Water content led to polymer water
absorption and affected channel size.

4. Cell temperature (T) directly affects the channel size of a membrane
according to polymer properties. The membrane sheet and the membrane's

channel will expand at high temperatures and shrink at low temperatures.



Reaction developed Chlorine to free-Chlorine.
Chlorite generation from leaked OH"

Cl, + OH — HOCU+CLC equation 7
Evolution of free-Chlorine (Hypochlorite and Chlorate)

HCLO — CcoO+H e equation 8

2HCLO + ClO —  ClO5 + 2H" + 2 e equation 9
0O, evolution from decomposed Hypochlorite

2ClO° — O,+2c0 equation 10
O, evolution from oxidation of OH"

OH" — 0O, + 2H,0 + de (E, 0.40 V) - equation 11
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Figure 6 Development of free-Chlorine in various pH [9]
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2.3 CELL VOLTAGE (CV)

Cell voltage is directly related to power consumption (PC) by an equation of
electrical power (P = IV in direct current) which from the rectifier supplies stable
current (I) as the production rate required to produce desired products. The voltage
or cell voltage appears consequently from Ohm’s law (V = IR while R is assumed
constant). Thus, the relation between CV and CD could be a linear correlation, while
resistance (R) is a slope of the function. There are several reasons to control cell
resistance in commercial-scale CA plants, for example.

1. Catalytic reaction rate from different electrode coating.

2. Membrane channel size by cell condition (explained in membrane theory)
and membrane material or technology.

3. Electrolysis cell design of fluid flow or recycling inside the cell.

4. Resistance of cell material.

5. Brine and caustic raw material quality.

CA electrolysis reaction rate is calculated by ‘Faraday’s law of electrolysis’
with the importance number 96,450 coulomb per 1 electron mole. It means that to
produce 1 mole of Cl, as reaction mass balance, NaCl 2 mole will be consumed and
need electricity 96,450x2 = 192,900 coulomb (1 coulomb = 1-ampere sec) or 53.58
ampere in 1 hour.

Current density (CD) means electrical current intake to electrolysis reaction
ratio to 1 m? of membrane effective area. Usually, the membrane cell was limited
membrane effective area by technology provider design which is optimum
hydrodynamic circulation inside electrolysis cell maintenance and manufacturer. In
recent technology, the membrane can operate at the highest current density, up to

8 KA/m?.
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Bipolar ion-exchange membrane process electrolyzer
(BIiTAC)

Our proven filter press bipolar ion-exchange membrane process electrolyzer, BiTAC®, offers specific

advantages, such as fast remembraning of the complete electrolyzer. The BiTAC family is being / s

constantly improved and all generations are compatible, so existing plants can easily be upgraded to //;/\(\\\\W

the latest developments. The latest generation, eBiTAC-v7, pushes energy consumption to a new e \\\\\\\\\\\\\\ "\'ﬂ}‘ )r/r

record low of 1,979 kWh/t NaOH at 6 kA/m2. I //\\ A | .
>

\\\\}‘

=

Benefits

« Fine anode mesh reduces cell voltage

« Smooth anode surface with no dents thanks to unique spot-welding tip

= Superior separation of gas and liquid

« Single piece of cathode mesh to fill gap losses and maximize active surface

« Elastic MWX spring with a large number of contact points to decrease IR drop and make homogeneous distribution of current density possible
« Superior inner circulation to ensure uniform concentration and brine supply

« Optimized current conductivity: 30,000 contact points per element

« Power consumption: 1,979 kWh/t at 6 kA/m?

+ Operating temperature: up to 90 °C

» Product outcome: 32 % NaOH

The figures above are to be understood as ‘expected values’ and may vary depending on operating conditions.

Figure 7 Internal circulation improvement design to improve capacity [4]

One electrolysis cell consists of many membrane cells connected in a series
of electrical circuits to reduce loss from electrical resistance (busbar loss). The
maximum series number is related to DC supply (in commercial use, thyristor rectifier
to convert AC to DC). According to a higher cell number with a higher total voltage,
I/A should match the electricity supplied on the AC side. In conclusion, nowadays,
traditional industrial Chlor-alkali electrolysis cell operation. Bipolar design circuit in
cell series to reduce busbar loss. The maximum CD limit was an efficient design from
a technology provider. Maximum capacity per electrolysis cell (no. of membrane
cells in a circuit) limited by I/A ratio. High production capacity was from the high

number of parallel electrolysis cell operations.
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22 kV AC Feeder

AC to DC 1 reactor consist of many membrane cells connected in series

=

B One membrane cell / \ Backend of electrode attach each other
for current supply

Figure 8 Chlor-Alkali electrolysis cell configuration in commercial plant [5]

ofw

According to Faraday’s law of electrolysis and electrolysis cells configuration,
the production mass balance of Cl, and NaOH was calculated by the following
equation when

1. DC current () Current input to the cell (related to 96,450 Faraday’s number)
2. |IEM no. the number of the membrane in an electrolysis cell.

3. 0.945 basis efficiency of current to each product.

Chlorine production

DC Current [kAs] x 1000 [1?,&]

e coglgrm X 0.5 [:]‘;' a X713~ 1% [EM x 0.945 [std eff] = Chlorine Production [g/s]
———————— equation 12
Caustic soda production
DC Current [kAs] X 1000 [I?K] mol e~ f£1 = Caustic soda Producti
serso I [iore] x40 g, X 4 x 0945 ) < Cautic o rcuction 97

________ equation 13
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2.4 MACHINE LEARNING (ML)

Machine learning is a modern way to find the complex correlation between
input and output data which does not have to be deeply in the numerical model [7].
The principle of almost ML models is to cluster input data to several groups as
output class by trialing the most precise mathematics model.

There are three types of machine learning model approaches based on the
learning method: supervised, unsupervised, and reinforcement learning. Supervised
learning requires labeled input and output data for the training phase. When the
model has identified the relationship between the input and output data, it can use

to classify new and unseen datasets and predict outcomes.

2.5 ARTIFICIAL NEURAL NETWORK (ANNs)

Neural networks were beginning to be the modeling of complex
manufacturing processes [1]. These layers have a certain number of input nodes,
hidden nodes, and output nodes. A simple ANNs workflow in Figure 9 shows a
network with one node in the input layer, two hidden nodes, and one node in the
output layer. ANNs will learn to find a correlation between input and output data
through manipulation in the hidden layer.

As a greater number of inputs, such as parameters in the chemical plant,
make ANNs more complex and results in more complex hidden layer correlation, the
Primary hidden node is not enough to predict precise correlation and need to be
calculated in the more hidden layer to find a secondary, tertiary relative. However,
too much-hidden layer correlation can make ANN's model overfitted, and too small

might not find any correlation in the network.

HIDDEN LAYER

INPUT LAYER OUTPUT LAYER

S~

Figure 9 Schematics of simple ANN [10]
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2.6 MODEL CONFIRMATION METHOD
2.6.1 Data splitting

To evaluation of ANN, trained model data much be split into 2 or 3 groups. In
the case of 2 groups, the first is the training group for performing backpropagation
training and creating the network regression model. Second, is the test group for
testing the accuracy of the generated network model with the unseen dataset. The
problem of the two groups is when the model is optimized by repeat generating
model in the training dataset and accuracy checking in the testing dataset by random
train-test selection. The testing dataset is not totally unseen, then become the
model bias.

For this reason, the general data splitting is usually divided into 3 groups. By
adding a validation dataset to use as model testing in repeating optimization models,

before checked with the testing dataset, which is unseen.

Available Data
|

Training Testing

New Available Data
|

Training Validation Testing

Figure 10 Data splitting; train, validate and test [11]

2.6.2 Train-to-test ratio

Comparing results of varying train-to-test ratios is a way to evaluate the
performance of any dataset distribution. The different train-to-test ratios can give
different model performance results according to randomized training, validating, and
testing dataset. The commonly train-to-test ratio is 70:30, 80:20, 90:10, or even 50:50.
It depends on regression practice or the characteristics of each dataset. Several train-
to-test ratios should be compared to confirm the model performance of the new
dataset in any distributed data and control the confidence interval of the training set

to generate a network.
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2.6.3 Cross validation
Cross-validation or k-fold cross-validation (k-fold cv) is one method to
validate model performance by finding the average error between each iteration of
the dataset (usually 5 or 10 iterations). In each iteration, groups of train and test
datasets will be varied following the number of iterations to compare data training

bias in each dataset and give a model more confidence.

K-fold cross validation
Data
! 1 v
1 2 3 K
-

Figure 11 Schematic of k-fold cross validation [12]

2.6.4 Hold-out validation
Hold-out validation is another method to validate model performance by
holding validation data for testing the model to be unseen data. This method seems
like a blind test of a model to use the generated model to predict output in a
different dataset. It might be a disadvantage in the small dataset, which can occur
overfitting data due to training and validation datasets having different data

distributions.

Hold-out validation
Data I
Training Validation

Figure 12 Schematic of hold-out validation [12]
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2.6.5 Under-fitting, over-fitting, and best-fitting
Typically, regression or model-fitting has three categories: under-fitting, best-
fitting, and over-fitting. The under-fitting model cannot regress the training dataset to
meet accuracy criteria, and the over-fitting regression model works well in the
training dataset. However, in the testing dataset, results become worse from too
much fitting or noise generation. Meanwhile, the best-fitting is the optimum one that

gives the highest accuracy in any dataset.

Underfit Optimal Overfit
™ ® o _..
o] o w o ® [0} LY e
= o © o = .- L N e o . @ .
] e L. o ® a0 o a R A 4
g ® " e® S s ? g A ‘w?
e _9o, e 9 5 » e .
§_ . o> ® ;5; R !.'o . é . ) @
= * S| e 5| %
o] * Ol » Ol ¢
Predictor variable Predictor variable Predictor variable

Figure 13 Visualization of example underfit, optimal (best fit) and overfit [13]

2.6.6 Early stopper
Early stopper [14] is method to find optimum value of prediction error by
early stopping model fitting in test group before runner to terminal epoch as train
group. That is selecting only converge model which gave most fitted value before

model fitting become overfitted by diverge error.

Underfitting Overfitting

Loss

T training

1
early stopping \) Epochs

Figure 14 Example plot of early stopper [14]
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2.7 PERFORMANCE EVALUATION METHOD

There are several ways to measure a predictive model's performance to
evaluate the prediction's accuracy [15]. The most practical ways are measuring fitting
errors by different values between the actual and predicted data.

2.7.1 Mean Absolute Error (MAE)

MAE is the most straightforward error measurement, calculated average
magnitude of all regressed and actual data, the perfect fitted shown MAE at 0.
However, MAE can easily deviate from outliers to make significant one error
dominate overall performance, and the absolute make this evaluation method

cannot indicate between under and overperformance.

#
MAE= ;Z yyl equation 14

While; y is actual data, y; is regressed data at the same input, n is number of data

Figure 15 Mean Absolute Error (MAE) [15]

2.7.2 Mean Absolute Percentage Error (MAPE)
MAPE is the percentage form of MAE. The error calculation is the same as
MAE, only converted to percentage form. MAPE also has a high effect from outliers,
the same as MAE. The percentage is easier to understand and generalized results.
However, MAPE has a limitation at an undefined value when data is at 0 (become

0/0), and the percentage value is less symetric error compared to the original.

100% Y-y, .
MAE= Z - equation 15
y

n

While; y is actual data, y; is regressed data at the same input, n is number of data
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2.7.3 Mean Square Error (MSE)
MSE is like MAE but uses a square to indicate magnitude substitute absolute.
The MSE gives much more error due to the square value, and for this reason, MSE
becomes non-linear (exponential growth of error) and gives a penalty to a value with
a large error more than a small error. Similarly, MSE has an effect from outliers more

than MAE also.
1 2
MAE= =X (yy) e equation 16
n

While; y is actual data, y; is regressed data at the same input, n is number of data

Output

Figure 16 Mean Square Error (MSE) [15]

2.7.4 Root Mean Square Error (RMSE)
RMSE is a square root form of MSE that converts square error to the original
scale. RMSE can measure error as an original unit of output and is easier to

understand.

1 2
MAE= =D, [y) e equation 17
n

While; y is actual data, y; is regressed data at the same input, n is number of data
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2.7.5 Mean Percentage Error (MPE)

MPE is like MAPE but without magnitude indication by absolute. MPE is in
percentage form, which is easier to understand, but also has limitation with
undefined value when the data is at 0. MPE can show positive and negative error
effects because it does not have absolute or square to eliminate under and
overperformance. However, the effect of positive and negative errors can be
deducted from each other when the model faces a uniform dataset. MPE can show

the trend but cannot verify the regression accuracy.

100% Y-, .
MAE= Z =) equation 18
y

n

While; y is actual data, y; is regressed data at the same input, n is number of data

o

MPE tells us if there's
more positive errors
o than negative, or
vice-versa

Figure 17 Mean Percentage Error (MPE) [15]

Output

1

Table 1 Summary of error measurement methods [15]

No. | Method | Eliminate negative Outlier effect Easy to indicate Original scale
1 MAE Yes Low No Yes
2 MAPE Yes Low Yes No
3 MSE Yes Much No No
4 RMSE Yes Much No Yes
5 MPE No Low Yes No
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2.8 LITERATURE REVIEW

In 2006, A.A. Jalali et al. [16] studied the effect of process conditions on the
cell voltage of a Chlor-Alkali membrane cell. Five process parameters were studied:
anolyte pH, cell temperature, electrolyte velocity, brine concentration, and current
density on laboratory-scale Chlor-Alkali membrane cell. The analysis goes with a
statistical method, which is an analysis of variance (ANOVA) to evaluate the
effectiveness of operating parameters. The result found that current density and cell
temperature were the most striking parameters of cell voltage. Current density

contributes 69.94% effect on cell voltage in a sensitivity analysis.
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Figure 18 Plot of cell voltage with different operating parameters
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Figure 19 Sensitivity plot of each parameters impact level to CV,

And contribution percent chart of each operating parameters
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In 2008, T. Mirzazadeh et al. [17] studied the effect of various parameters on
caustic current efficiency (CCE) on zero-gap oxygen-depolarized cathode (ODC) Chlor-
Alkali cell with artificial neural network (ANN) Lavenberg-Marquardt (LM) back
propagation method. This research studies seven operating parameters: anolyte pH,
temperature, brine flow rate, brine concentration, oxygen temperature, and oxygen
flow rate. The study aims to find the optimum of each parameter condition with the
best CCE. Results show that ANN with the LM method has better CCE prediction
accuracy than actual data. The ANN-generated data can assist in trending and finding

correlations to predict CCE.

Fresh Brine & g Bt

]
o0
P-101 DC-101

H-101

Figure 20 Schematic of set-up laboratory-scale Chlor-Alkali ODC membrane cell

urrent efficiency (%)
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Figure 21 Analysis regression of each parameters to CCE
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In 2008, N. Shojai Kaveh et al. [10] studied the development of a
backpropagation (BP) algorithm, an artificial neural network (ANN) model, on various
operating parameters to validate model prediction and study the effect of each
parameter. The experiment undergoes six operating parameters: anolyte pH,
temperature, brine concentration, current density, and run time in set-up lab-scale
Chlor-Alkali electrolysis. The number of hidden nodes and hidden layers was
selected at the optimum point by trial and error, which was 6-7-5-1 (6 input
parameters, seven hidden nodes in the first hidden layer, five hidden nodes in the
second layer, and one output parameter). The result of the performance model in
this study showed an RMSE of 0.036 in the training group and 0.043 in the test group.
Sensitivity was analyzed and plotted into the level graph to find the impact of each
parameter. It found that current density impacts cell voltage most, with 59.26% on

ANN prediction and 58.19% on experimental data.
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Figure 22 Regression plot of ANN result with actual cell voltage
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Figure 23 Sensitivity analysis of each parameters impact level to CV
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In 2009, N. Shojai Kaveh et al. [18] studied to investigate the impact of
operating parameters by the support vector machine (SVM) technique - a machine
learning method -. The study tested with a set-up Chlor-Alkali electrolysis cell in the
laboratory and varied operating conditions to obtain data. The research performs six
operating parameters: anolyte pH, temperature, brine concentration, current density
and run time, and one output as cell voltage. The result shows SVM model can be
used to predict the impact of parameters and not only approximately, but SVM also
can predict cell voltage with RMSE 0.161. From the sensitivity study, current density
gave the highest impact among all operating parameters, with 54.28% on SVM

simulation and 55.42% on experimental data.
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Figure 24 Regression plot of SVM result with actual cell voltage
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Figure 25 (Left) Schematic of set-up laboratory-scale Chlor-Alkali membrane cell

Figure 26 (Right) Sensitivity plot of each parameters impact level to CV
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From the works literature review, several techniques were used for predicting
cell voltage, giving satisfactory results. Chlor-Alkali voltage and current efficiency
prediction are in focus because the process consumes much power in production;
multi-operating parameters come with a highly complex relationship, and ordinary
regression is challenging to show highly accurate prediction. Implementing machine
learning is the new trend of correlation finding in recent years. From research
machine learning, most of the research studies in set-up laboratory-scale Chlor-Alkali
membrane cell, which can control environmental effects and vary operating
parameters for testing. In commercial-scale size plant studies, there is more limit on
testing validation but giving much more data. It is potential to study ANN regression

with operating parameters to cell voltage in a commercial-scale Chlor-Alkali plant.
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CHAPTER 3 : METHODOLOGY

3.1 DATASET AND PREPROCESSING
3.1.1 Data source

The dataset for analysis in this thesis was from the Yokogawa plant
information management system (exaquantum). Parameters in the process were
measured by an instrument transmitter and sent to a distributed computer system
(DCS). DCS receives the signal of the transmitter and transforms the signal into
measurable parameter data for reading, visualizing, and controlling. After the process,
data are in a usable format and sent this information to a server (historian database).
Plant information management systems (PIMS) have become an integral part of the
tools to connect DCS historian databases to users in local networks or web servers
(exaquantum is a trademark of Yokogawa’s PIMS). Exaquantum acquires process

information to users for data analytics, visualization, and decision-making.

'Exaquantum/Explorer
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| |
| |
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Figure 27 Yokogawa plant information management system (exaquantum) [19]
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3.1.2 Dataset

This thesis collected operational raw data in 1 year period from March 2022

to February 2023 in hourly intervals (a total of 8,761 data). There are six features in

the dataset shown in the table’s column.

Input parameters (can be called predictors in the ANN model) consisting of

1.

Current density (CD, V) is electrical current through a square-meter
membrane. It was used for standardized operation capacity (refer to Faraday
equation 12, 13 in terms of current, 1), directly related to the permeating rate
of substance through the membrane.

Operation day (DOL, day) refers to increasing membrane resistance due to
clogging accumulation on the membrane surface and blocking the
permeation of substances.

Feed brine flow rate (Qrs, m?/h) refers to water content on the membrane
surface, leading to membrane channel expansion or shrinking.

Feed caustic flow rate (Qup, m*/h) refers to water containing the same as Qg
but on the cathode side.

Cell temperature (T, °C) is the temperature that occurs during operation. It
can be from heat received from feed brine, feed caustic temperature, or heat
generated from the electrolysis cell due to electrical resistance. Cell

temperature

Output parameters (can be called response in ANN model) is

1.

Cell voltage (V) in unit V shows the voltage across a membrane from the
current applied and the resistance effect of operating parameters. Cell

voltage led to power consumption and approximate membrane efficiency.



Table 2 List of parameters, types, ranges and units
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Type Abbr. Description Range Unit
Output data cv Cell voltage 2.0-3.4 V
Input data | Current 6.0-19.7 KA
Input data 1 CD Current density 1.8-6.0 KA/m?
Input data 2 DOL Operation day 0-365 Day
Input data 3 Qrs Feed brine flow rate 12.0-30.0 m>/h
Input data 4 Qo Feed brine flow rate 31+1 m>/h
Input data 5 T Cell temperature 85-95 °C
Evaluation RMSE Root means square error - \

N DOL
2 1.000
3 1.042
4 1.083
5 1.125
6 1.167
7 1.208
8 1.250
9 1.292
10 1.375
11 1.417
12 1.458
13 1.500
14 1.542
15 1.583
16 1.625
17 1.667
18 1.708
13 1.750
20 1.792
21 1.833
22 1.875
23 1.958
pL 2.000
25 2.042
26 2.083

cD
19.686
19.685
19.683
19.686
19.684
19.683
19.680
19.684
19.688
19.685
19.687
19.690
19.689
19.690
19.692
19.693
19.689
19.689
19.684
19.683
19.684
19.682
19.685
19.686
19.691

\ v FI3312A
6.011 311.829 3.057 28.951
6.011 311.797 3.057 29.264
6.010 311.793 3.057 29.071
6.011 311.795 3.057 28.901
6.010 311.796 3.057 29.470
6.010 311.774 3.057 28.899
6.009 311.778 3.057 29.830
6.010 311.801 3.057 29.386
6.012 311.806 3.057 28.743
6.011 312.384 3.063 29.800
6.011 311.707 3.056 29.270
6.012 311.803 3.057 29.961
6.012 311.876 3.058 29.879
6.012 311.886 3.058 29.725
6.013 311.857 3.057 29.813
6.013 311.848 3.057 29.557
6.012 311.827 3.057 29.290
6.012 311.838 3.057 29.925
6.010 311.851 3.057 29.241
6.010 311.858 3.057 29.681
6.010 311.843 3.057 29.142
6.010 311.835 3.057 29.298
6.011 311.848 3.057 29.059
6.011 311.893 3.058 29.117
6.013 311.898 3.058 29.427

F13312B TI3302A
31.324 88.364
31.376 88.354
31.471 88.328
31.488 88.278
31.255 88.282
31.488 88.299
31.422 88.306
31.237 88.346
31.218 88.393
31.945 88.373
31.809 88.357
31.762 88.421
31.659 88.439
31.858 88.431
31.651 88.396
31.742 88.361
31.712 88.294
31.818 88.271
31.740 88.275
31.765 88.288
31.715 88.255
31.897 88.294
31.589 88.228
31.553 88.225
31.693 88.252

TI3302B
86.681
86.677
86.650
86.537
86.590
86.621
86.553
86.650
86.707
86.709
86.724
86.814
86.897
86.798
86.856
86.770
86.696
86.620
86.513
86.589
86.638
86.612
86.624
86.559
86.585

Figure 28 Six features of 8,760 raw data in Mar 22 - Feb 23 in CSV file
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3.1.3 Data preprocessing
According to data collected from “exaquantum” data historians, which record
hourly raw data include non-operation, calibration, and unsteady-state periods or
raw data that come with signal loss and noise. Pre-processing performs to cut outlier
data, clean data, and transform all parameters to the same time interval. To visualize
a group of data, linear regression between CV and CD will be plotted. Referring to
Ohm’s law, CV and CD direct theoretical correlation will be shown in linear. The

deviate RSQ > 0.9.

Ohm’s law
V=R o =, 820 00 - equation 19
WATR T\ e equation 20
While CV means voltage across 1 electrolysis cell.

CD means current through a unit area of the membrane.

In ANN model training, performance results in test group correlation might be
biased by accidentally similar data in the train, validate, and test groups from
random data selection. Reduce data training bias cross-checking must be performed
to validate the test and train the group to confirm the performance of the ANN
model.

3.1.4 Method to remove outlier data.
1. Cutting non-operation period by data filter method.

a. Removing the dataset with current (I) < 6 KA. In typical operation
practice, the minimum load was set at 6 KA because it is the lowest
current supply for electrolysis reactions that can make on-spec
products.

b. Removing dataset in which cell voltage (CV) < 2 V. Referring to
reaction equation 6, cell voltage less than 2 V is insufficient for a brine

electrolysis reaction.
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2. Cutting unsteady-state period by the data filter method.

a. Removing dataset at 09:00 AM due to the load decreasing period for
on-peak operation. During load decreasing input parameters might be
performed lead or lag to output and effect to correlation fitting.

b. Removing the dataset at 10:00 PM due to the load-increasing period
for off-peak operation. During load decreasing input parameters might
be performed lead or lag to output and effect to correlation fitting.

3. Splitting of data before and after a turnaround. In the long operation period
(before turnaround), cell voltage (CV) increased due to clogging accumulation
on the membrane. After long stopping, for example, turnaround or
commercial shutdown, CV might drop slichtly due to the flushing effect
during drainage or non-operation liquid circulation. Some impurities clogged

on the membrane surface will loosen at this time.

3.1.5 Method to reduce training data bias.
1. Raw data will be equally separated into 5 groups. To validate and
compare the results of each dataset.
a. Group A (GA): 1/3 of data after preprocessing, before turnaround
b. Group B (GB): 1/3 of data after preprocessing, before turnaround
c. Group C(GQ): 1/3 of data after preprocessing, before turnaround
d. Group D (GD): 1/2 of data after preprocessing, after turnaround
e. Group E (GE): 1/2 of data after preprocessing, after turnaround
2. Raw data will be varied train-to-test ratio by
a. Train 70%, validate 15% and test 15% (70:30)
b. Train 80% validate 10% and test 10% (80:20)
c. Train 90% validate 5% and test 5% (90:10)



Table 3 List of datasets
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Abb. | Detail Period Estimate no.
RW Original collected data 01 Mar 22 - 01 Mar 23 8,761 data
PS Pre-processed, cut stop 01 Mar 22 - 01 Mar 23 < 8,761 data
PU Pre-processed, cut unsteady 01 Mar 22 - 01 Mar 23 < 8,761 data
PBT Pre-processed, before T/A 01 Mar 22 - 07 Nov 22 2 of 3 of PU
PAT Pre-processed, after T/A 11 Nov 22 - 01 Mar 23 1 of 3 of PU
GA Reducing bias, Group A (PBT) 01 Mar 22 - 24 Apr 22 1,186

GB Reducing bias, Group B (PBT) 24 Apr 22 - 17 Jun 22 1,186
GC Reducing bias, Group C (PBT) 17 Jun 22 - 10 Aug 22 1,186
GD Reducing bias, Group D (PAT) 11 Nov 22 - 06 Jan 23 1,186

GE Reducing bias, Group E (PAT) 06 Jan 23 - 28 Feb 23 1,186

3.2 DATA ANALYTICS

Based on numerical method. All parameters after preprocessing will

manipulate with

1.

Generate a correlation heatmap to see the relationship between each

parameter, which is valid or invalid to each other when it becomes predictive.

Correlation plot between each input parameter to output. And regress by

linear regression.

Trial second-order correlation plot by fixing the most accurate parameter in

constant value to see the second relationship by heatmap of correlation.

Create regression equation from correlation.




31

3.3 NEURAL NETWORK FITTING
This step will be performed in MATLAB via nftool. When the pre-processed
data is prepared in a CSV file, the data will be imported to the MATLAB workspace,
and the neural network toolbox shall be executed.
3.3.1 Testing effect of number of hidden nodes
After splitting into five groups, the dataset will be trained and tested with
various hidden node numbers to find an optimum number of hidden nodes. ANN will
be trained with 5-10 hidden nodes and validated in 3 cases of train-to-test ratio.
1. Train 70%, validate 15% and test 15% (70:30)
2. Train 80% validate 10% and test 10% (80:20)
3. Train 90% validate 5% and test 5% (90:10)
3.3.2 Testing effect of number of hidden layers
Same as the previous section dataset will be trained and tested with various
hidden layer numbers to find an optimum number of hidden layers. ANN will train
with 1-5 hidden layers and validated in 3 cases of train-to-test ratio.
1. Train 70%, validate 15% and test 15% (70:30)
2. Train 80% validate 10% and test 10% (80:20)
3. Train 90% validate 5% and test 5% (90:10)

Input layer Hidden layer Qutput layer

Figure 29 Schematic of simple ANN with 2 inputs, 3 hidden nodes,
2 hidden layers, and 1 output.
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3.3.3 Comparing parameters impact
Operating parameters will be set as predicters, and train the ANN model with
the Scale Conjugate Gradient algorithm to find regression with CV as a response. The
predictors will pair up with each other in one predictor, two predictors, three
predictors, and four predictors cases. RMSE will determine the impact of each case to
find optimum predictors that give the most accurate CV. Predictors cases in this

study are shown in table 3.

Table 4 Summary pairing of predictors cases

Input
Dataset

no. 1 2 3 4
PU 1 CD - - -
PU 2 CD DOL - -
PU 2 CD Qrs - -
PU 2 CD Qip - -
PU 2 CcD T - -
PU 3 CcD DOL Qrs -
PU 3 CD DOL Quo -
PU 3 CcD DOL T -
PU 3 CD Qrs Qo -
PU 3 CD Qs T -
PU 3 CD Qo T -
PU 4 CcD DOL Qrs Qip
PU 4 CcD DOL Qrs T
PU 4 CcD DOL Qo T
PU 4 CcD Qs Qo T
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3.4 PERFORMANCE EVALUATION

The performance of each model will be calculated based on its error as root
mean square error (RMSE) for eliminate effect of subtraction error and determined in
absolute form. The preliminary result shows mean square error in the range of
0.00001 to 0.001, which RMSE is better for comparing the slight difference in
prediction error with the original scale.

Root Mean Square Error (RMSE)

1
MAE= — Z V)
n

While; y is actual data, y; is regressed data at the same input, n is number of data

3.5 BLIND TEST AND PARAMETERS OPTIMIZATION STUDY

After testing the number of hidden nodes, number of hidden layers, and
impact of parameters, the optimum result with the lowest RMSE will implement to
blind-test with actual data. In this thesis, training and validate datasets were puck at
the dataset before the turnaround, and the test performance of the model was with
actual data in another dataset, which is the dataset after the turnaround, to see the

accuracy of the ANN model.

Table 5 Dataset for train, validate ANN model and for test model performance

Abb. Detail Period ANN group

PBT Pre-processed, before T/A | 01 Mar 22 - 07 Nov 22 Train and Validate

PAT Pre-processed, after T/A 11 Nov 22 - 01 Mar 23 Test

Study of parameters optimization, the optimum model will be used to
predict cell voltage (CV) in multiple cases to find results after selecting the operating
parameter in each mode. There is plotting the result of predicted cases compared

with the actual of each parameter's upper and lower limit.
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CHAPTER 4 : RESULTS AND DISCUSSION

4.1 DATASET AND PREPROCESSING
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Figure 30 Raw data of CD and CV plot with time

Raw data of CD and CV appear in fluctuating trend according to practical daily
production plans designed to operate high capacity (high CD) in off-peak periods to
minimize power consumption in on-peak periods for operation cost optimization.
These raw data will be preprocessed by removing outliers from stopping, removing
unsteady state period, selected data range to avoid turnaround, respectively. To
compare the readiness of the theoretical dataset base will be applied by referring to

the linear correlation between CD and CV of Ohm’s law as equation 15.



4.1.1 Result of removing outlier data
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Figure 31 Linear regression of CD and CV in various dataset

A) Linear regression of CD and CV by raw data

B) Linear regression of CD and CV after remove outlier

C) Linear regression of CD and CV after removing unsteady state period

Correlation plot between CD and CV, graph show in linear form as Ohm’s law.

Figure 31 A raw data plot without preprocessing appears to scatter the outlier, which

makes the linear regression trend deviate from result RSQ 0.4035 Figure 31 B After

cutting the outlier by removing stopping period data result in RSQ 0.8829, which is

much better and can be assumed to be linear. Conversely, this dataset will analyze

with other parameters, e.g., DOL, Qgs, Qpp, and T, which may be found in lead or lag

data changing during a heating-up or load-changing step. In eliminating the problem,

data between 08.00 and 22.00 of all day will remove from all unsteady state data in

the load-changing period between on-peak and off-peak. After cutting unsteady state

data, the result shows RSQ 0.8848, which is like the previous step, but stabilizes

other parameters; this step must perform.
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4.1.2 Result of reducing training data bias

Table 6 Summary of dataset, period and number of data

Abb. | Detail Period Amount data |RSQ

RW Original collected data 01 Mar 22 - 01 Mar 23 8,761 0.4035
PS Pre-processed, cut stop 01 Mar 22 - 01 Mar 23 8,599 0.8829
PU Pre-processed, cut unsteady 01 Mar 22 - 01 Mar 23 7,881 0.8848
PBT Pre-processed, before T/A 01 Mar 22 - 07 Nov 22 5,508 0.9612
PAT Pre-processed, after T/A 11 Nov 22 - 01 Mar 23 2,373 0.9787
GA Reducing bias, Group A (PBT) 01 Mar 22 - 24 Apr 22 1,186 0.9983
GB Reducing bias, Group B (PBT) 24 Apr 22 - 17 Jun 22 1,186 0.9955
GC Reducing bias, Group C (PBT) 17 Jun 22 - 10 Aug 22 1,186 0.9955
GD Reducing bias, Group D (PAT) 11 Nov 22 - 06 Jan 23 1,186 0.9728
GE Reducing bias, Group E (PAT) 06 Jan 23 - 28 Feb 23 1,186 0.9955

Data after preprocess by remove outlier and unsteady state period following
assumption of after long-term stop such as turnaround or cell maintenance, CV refer
to Figure 23 C scatter of data seem split to 2 linear trends. To avoid dataset across
this period data were split into 5 groups which GA, GB and GC were collected before
turnaround and GD and GE were collected after turnaround.

Datasets GA, GB, GC, GD, and GE will be used to train models to compare
each algorithm's performance, varying the number of hidden nodes and varying
number of hidden layers. It also tests in various train-to-test ratios at 70:30, 80:20,
and 90:10. The use of small datasets and many groups proposes to reduce data bias.

Datasets PBT and PAT will be used to train models to compare the impact of
each parameter because of more data amount and cover more operation cases. PBT
will be used in the train and validate model, and PAT will be used in the test-to-test

model performance without bias.
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4.2 DATA ANALYTICS

4.2.1 Correlation between each parameter to output

1 2 3 4 5 6

Figure 32 Heat map correlation between each parameter

Table 7 Definition of number and parameters in heat map Figure 24

No. Type Abbr. Description Range Unit
1 Output data cv Cell voltage 2.0-3.4 V
2 Input data 1 DOL Operation day 0-365 Day
3 Input data 2 @b) Current density 1.8-6.0 KA/m?
il Input data 3 Qrs Feed brine flow rate 12.0-30.0 | m’h
5 Input data 4 Qo Feed brine flow rate 31+1 m3/h
6 Input data 5 T Cell temperature 85-95 °C
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Result of correlation heat map shown
1. Correlation from 5 inputs to output

a. The highest correlation is CD. It directly correlates to CV fitted in linear
regression following Ohm’s law in equation 15. Current density
determines production capacity following Faraday’s law in equations 12,
13. Furthermore, other operating controlled parameters will be adjusted
to support CD in production.

b. Qgs, In production philosophy, the brine feed flow rate is adjusted to
control the concentration on the membrane and feed NaCl as raw
material in production. The significant correlations occur by manipulation.

c. T, the temperature controls membrane channel sizing to achieve
optimum voltage and impurities content. Both Qr and T are not direct
parameters t control CV, but they are dependent variables that highly
accurate regression from the effect of CD or production capacity.

2. Internal correlation between 5 inputs
There are three correlations between input parameters: CD-Qgg, CD-T,
and T-Qgs. All 3 cases show an invalid relationship which is the effect of
dependent variables (Qrg and T) on the primary variable (CD), as explained in

the previous section.

CV vs CD (dataset PU) CV vs QFB (dataset PU) CV vs T (dataset PU)
Qg 30664
e | i ! Shpghe
" - P
pet ' f“ : 2= -
24 528
A ; o R > "oy
2 200 20
o 10 15 20 25 30 35 40 & 0 & 00 50 100 150 250 300 s 0. 82 850
A Current Density, CD [KA/m?2) B Feed Brine Flow Rate, QFB [m3/h] C Cell Temperature, T [o€

Figure 33 Linear regression plot of CD, Qrg and Qyp (significant parameters) to CV
A) Linear regression plot of CD to CV gives RSQ 0.9753
B) Linear regression plot of Qg to CV gives RSQ 0.9584
C) Linear regression plot of T to CV gives RSQ 0.8801
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QFB vs CD (dataset PU) T vs CD (dataset PU)
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Figure 34 Linear regression plot of CD, Qg and Qyp to CD (between inputs)
A) Linear regression plot of Qg to CD gives RSQ 0.9892
B) Linear regression plot of Qg to CV gives RSQ 0.8801

Linear regression plot of dependent variables, Qrz and T, to a primary
variable, CV, shows the high accuracy of a linear equation to data. That shows Qgg, T,

and CV are not independent. Both are controlled parameters to support each CD

operation.

4.2.2 Correlation between each parameter to output, eliminate CD

Figure 35 Heat map correlation between each parameter at constant CD (6 KA/m?)



Table 8 Definition of number and parameters in heat map Figure 27
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No. Type Abbr. Description Range Unit
1 Output data cv Cell voltage 2.0-3.4 v
2 Input data 1 DOL Operation day 0-365 Day
3 Input data 3 Ors Feed brine flow rate 12.0-30.0 m>/h
4 Input data 4 Qo Feed brine flow rate 31+1 m>/h
5 Input data 5 T Cell temperature 85-95 °C

Second-order correlation plot at constant CD 6 KA/m? Found DOL has a

relationship with CV in linear. Linear regression of the correlation gave RSQ 0.8829.

While Qrs and T, which correlated highly to CD and CV, do not have a significant

relationship to CV. That means a high correlation to CV in heatmap mainly occurs by

CD's effect.

CV vs DOL (dataset PU at CD 6 KA/m2)
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Figure 36 Linear regression plot of DOL, Qgs, Qnp and T to CV at constant CD

A) DOL and CV gives RSQ 0.8829
C) Qup and CV gives RSQ 0.1087

B) Q5 and CV gives RSQ 0.0022
D) T and CV gives RSQ 0.1308
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4.3 NEURAL NETWORK FITTING
4.3.1 Result of performance in comparing ANN algorithm

Table 9 Result of performance in comparing ANN algorithm

Performance (RMSE, V) on test group
Scale Conjugate Gradient Levenberg Marquardt Bayesian Regularization
Dataset algorithm (SCG) algorithm (LM) algorithm (BR)
Train Validate Test Train Validate Test Train Test
GA 0.0092 0.0111 0.0192 0.0022 0.0021 0.0028 0.0010 0.0010
GB 0.0065 0.0067 0.0052 0.0013 0.0013 0.0017 0.0014 0.0014
GC 0.0059 0.0061 0.0072 0.0014 0.0016 0.0017 0.0013 0.0016
GD 0.0067 0.0077 0.0074 0.0028 0.0029 0.0056 0.0023 0.0039
GE 0.0023 0.0022 0.0022 0.0016 0.0014 0.0016 0.0014 0.0017
Average 0.0082 V 0.0027 V 0.0019 V

The performance result in various ANN algorithms gave acceptable RMSE
(accept at RMSE < 0.01 V due to the original data source being used to calculate at
two decimal numbers). BR gave the best performance result with the lowest RMSE;
the second was LM. Usually, BR deals with small datasets and is very good at
handling noise which might not be suitable for implementation with actual
commercial plants. LM is usually the fastest learning algorithm, but it takes more
memory in the calculation. SCG uses less memory than other algorithms. For the
dataset in this research, memory efficiency seems more practical to implement, and
all gave acceptable results also. SCG will be used as an algorithm to train ANN in the

next section.
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4.3.2 Finding optimum number of hidden node
Table 10 Result of varying number of hidden node with train-to-test ratio 70:30

Performance (RMSE, V) on test group
Dataset
5 nodes 6 nodes 7 nodes 8 nodes 9 nodes 10 nodes
GA 0.0071 0.0113 0.0039 0.0056 0.0043 0.0091
GB 0.0108 0.0062 0.0037 0.0041 0.0058 0.0065
GC 0.0031 0.0081 0.0056 0.0060 0.0064 0.0051
GD 0.0058 0.0051 0.0054 0.0177 0.0064 0.0097
GE 0.0036 0.0060 0.0025 0.0030 0.0028 0.0058
Average 0.0061 0.0037 0.0042 0.0073 0.0051 0.0062
Accuracy rank 4 1 2 6 3 5

Table 11 Result of varying number of hidden node with train-to-test ratio 80:20

Performance (RMSE, V) on test group
Dataset
5 nodes 6 nodes 7 nodes 8 nodes 9 nodes 10 nodes
GA 0.0050 0.0054 0.0070 0.0051 0.0368 0.0062
GB 0.0170 0.0086 0.0036 0.0029 0.0085 0.0114
GC 0.0139 0.0157 0.0087 0.0073 0.0135 0.0090
GD 0.0070 0.0054 0.0057 0.0069 0.0069 0.0075
GE 0.0049 0.0059 0.0076 0.0055 0.0033 0.0046
Average 0.0096 0.0066 0.0065 0.0055 0.0122 0.0077
Accuracy rank 5 3 2 1 6 4
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Table 12 Result of varying number of hidden node with train-to-test ratio 90:10

Performance (RMSE, V) on test group

Dataset
5 nodes 6 nodes 7 nodes 8 nodes 9 nodes 10 nodes
GA 0.0063 0.0117 0.0081 0.0096 0.0044 0.0063
GB 0.0066 0.0089 0.0042 0.0171 0.0086 0.0042
GC 0.0061 0.0030 0.0099 0.0100 0.0153 0.0074
GD 0.0083 0.0095 0.0144 0.0157 0.0167 0.0055
GE 0.0036 0.0054 0.0048 0.0082 0.0028 0.0034
Average 0.0062 0.0077 0.0083 0.0121 0.0076 0.0054
Accuracy rank 2 4 5 6 3 1

The results of varying hidden nodes 5 — 10 show

1. Al node numbers gave acceptable results (accept at RMSE < 0.01 V due to

the original data source was used to calculate at two decimal numbers)

except seven nodes in 90:10 train-to-test-ratio gave RMSE higher than 0.121 V,

which was from dataset GC and GE, it might be close to turning around

period. It might appear less accurate from a small test ratio.

2. No significantly different between each number on nodes RMSE result. In the

test-to-test ratio 70:30, 80:20, and 90:10, six hidden nodes, eight hidden

nodes, and ten nodes gave the lowest RMSE in each case.

3. This thesis used six hidden nodes in further study to follow rule-of-thumb

inputs+1 (n+1) hidden nodes, and this thesis will perform with a 70:30 train-

to-test ratio to handle the amount of data.




4.3.3 Finding optimum number of hidden layer

Table 13 Result of varying number of hidden layer with train-to-test ratio 70:30

aq

Performance (RMSE, V) on test group

Dataset
1 layer 2 layers 3 layers 4 layers 5 layers
GA 0.0154 0.0081 0.0043 0.0050 0.0075
GB 0.0063 0.0106 0.0106 0.0199 0.0107
GC 0.0071 0.0070 0.0183 0.0171 0.0071
GD 0.0078 0.0058 0.0136 0.0089 0.0147
GE 0.0035 0.0043 0.0050 0.0062 0.0033
Average 0.0062 0.0072 0.0104 0.0114 0.0087
Accuracy rank 1 2 4 5 3

Table 14 Result of varying number of hidden layer with train-to-test ratio 80:20

Performance (RMSE, V) on test group

Dataset
1 layer 2 layers 3 layers 4 layers 5 layers
GA 0.0095 0.0070 0.0076 0.0100 0.0090
GB 0.0062 0.0168 0.0089 0.0154 0.0061
GC 0.0037 0.0051 0.0054 0.0210 0.0196
GD 0.0073 0.0067 0.0068 0.0118 0.0090
GE 0.0042 0.0089 0.0072 0.0038 0.0087
Average 0.0062 0.0089 0.0072 0.0124 0.0105
Accuracy rank 1 3 2 5 q
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Table 15 Result of varying number of hidden layer with train-to-test ratio 90:10

Performance (RMSE, V) on test group

Dataset
1 layer 2 layers 3 layers 4 layers 5 layers
GA 0.0073 0.0087 0.0082 0.0209 0.0121
GB 0.0053 0.0194 0.0200 0.0169 0.0189
GC 0.0076 0.0111 0.0050 0.0108 0.0217
GD 0.0113 0.0065 0.0060 0.0105 0.0310
GE 0.0070 0.0077 0.0049 0.0085 0.0063
Average 0.0077 0.0107 0.0088 0.0135 0.0180
Accuracy rank 1 3 2 4 5

The results of varying hidden layers 1 — 5 show

1. At 1-2, the hidden layer gave an acceptable result (accept at RMSE < 0.01 V

due to the original data source used to calculate at two decimal numbers). At

higher hidden layers, RMSE was also getting higher. 4-5 hidden layers have

RMSE > 0.01 V; almost all cases that occurred from correlation in ANN overfit

led to test results worsening RMSE.

2. This thesis used one layer in the further study because it cave the lowest

RMSE in all cases, all in an acceptable range.




4.3.4 Result of comparing parameters impact

Table 16 Result of performance in comparing parameter impact

a6

Input Performance (RMSE, V) on test group Performance
Dataset
no. 1 2 3 q Train Validate Test Ranking

PU 1 cD - - - 0.0170 0.0175 0.0167 12
PU 2 cb | poL - - 0.0059 0.0052 0.0065 4
PU 2 cD Qrs - - 0.0174 0.0186 0.0171 13
PU 2 CD Qo - - 0.0162 0.0175 0.0184 14
PU 2 cD T - - 0.0141 0.0156 0.0148 9
PU 3 CD | DOL | Qe - 0.0062 0.0063 0.0066 5
PU 3 CD | DOL | Qo - 0.0068 0.0066 0.0070 ‘6
PU 3 CD | DoL T - 0.0047 0.0044 0.0043 1
PU 3 cD Qs | Qo - 0.0142 0.0138 0.0143 8
PU 3 cD Qrs T - 0.0159 0.0161 0.0159 11
PU 3 CD Qo T - 0.0156 0.0145 0.0149 10
PU 4 CD | DOL | Qs | Quo 0.0055 0.0057 0.0057 3
PU 4 CD | DOL | Qm T 0.0073 0.0078 0.0081 7
PU 4 CD | DOL | Qup T 0.0055 0.0051 0.0052 2
PU 4 cD Qs | Qo T 0.0227 0.0211 0.0221 15

The performance in comparing parameters impact showed a case of 3

predictors with CD, DOL, and T giving the highest accuracy in CV prediction.
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Comparing direct correlation of CD as predictor and CV as response.

Linear regression
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Figure 37 Correlation plot between CD and CV fitting

A) Fitting by scale conjugate gradient result in RMSE = 0.0167
B) Fitting by linear regression result in RMSE = 0.0197

The regression plot of CD and CV complies with the theory. Found a wide
cluster of data in step intervals, which were from the operating point of current
density. The actual operation is performed in daily capacity swing following product
demand. There is a practical capacity adjustment.

The result of the correlation plot of 1 predictor between CD and CV by Scale

Conjugate Gradient gave a lower RMSE, which is the result of non-linear fitting

performing.
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Comparing of selected 2 predictors to CV response

All: R=0.99018
All: R=0.9989
3.1 O Data ©
Fit b
™ 305 [--ooeee Y=T =
. :
© 0,
+ o %
® 2,95 © S
1 o° "
© ©
= 29 2]
- ] P~
U 285 v
= -
3 28 5
3 5
O 275 (<]
(el
27 .
27 2.8 2.9 3 3.1 2.7 238 29 3 3
A Target B Target
All: R=0.99104 All: R=0.99333
3.1 O  Data

Fit
rrrrrrr Y=T

OQutput ~= 0.98*Target + 0.049

27 2.8 29 3] 3.1
C Target

Figure 38 Regression plot of 2 input predictors
A) Regression plot 2 predictors CD, DOL by scale conjugate gradient
B) Regression plot 2 predictors CD, Qg by scale conjugate gradient
C) Regression plot 2 predictors CD, Qp by scale conjugate gradient
D) Regression plot 2 predictors CD, T by scale conjugate gradient

The plot of 2 predictors. The case of CD and DOL gave the lowest RMSE,
which can conclude that the main deviation factor in each cluster deviation in Figure
38 A'is DOL (operating time) which directly relates to clogging accumulation on the
membrane. On the contrary, the feed flow rate of both Qg and Qyp gave worse
RMSE. Slight fluctuation of these parameters is not directly impacted cluster
deviation in a steady state period. It might appear impaction in transient state data,

which eliminate from the dataset in pre-processing.
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Comparing of selected 4 predictors to CV response.
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Figsure 39 Regression plot of 3 input predictors
A) Regression plot CD, DOL, Qgg by scale conjugate gradient
B) Regression plot CD, DOL, Qup by scale conjugate gradient
C) Regression plot CD, DOL, T by scale conjugate gradient
D) Regression plot CD, Qg Qpp by scale conjugate gradient
E) Regression plot CD, Qgs, T by scale conjugate gradient
F) Regression plot CD, Qup, T by scale conjugate gradient

The plot of 3 predictors. The CD, DOL, and T cases in Figure 31 C gave the
lowest RMSE. Referring to the plot of 2 predictors, DOL and T were in the set that
gave the lowest RMSE. That from in some period that T was adjusted, for example,
steam utility management or optimizing cell voltage after long operation by
increasing temperature. Only DOL cannot regress the model in that period to fit the
response (T can see in disturbance). To conclude, temperature helps to deduct the
plot of predictors CD and DOL to the standard line leading to the model becoming

more fitted.



Comparing of selected 4 predictors to CV response.
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Figsure 40 Regression plot of 4 input predictors
A) Regression plot CD, DOL, Qg Qup by scale conjugate gradient,
B) Regression plot CD, DOL, Qg, T by scale conjugate gradient,
C) Regression plot CD, DOL, Qup, T by scale conjugate gradient,
D) Regression plot CD, Qgs, Qup, T by scale conjugate gradient

The plot of 2 predictors. Not found significantly better correlation than the
three predictors. In Figures 40 A and Figure 40 C, cases of CD, DOL, Qgg, Qyp and CD,
DOL, Qup, T as predictors gave RMSE the lowest, but higsher than three predictors
cases of CD, DOL, T. In the case of Figure 40 C result becomes worse after adding Qp
as the fourth parameter from no relationship and making the model overfit with
noise. In the case of Figure 40 A, the lowest RMSE without T in a predictive model is

the lowest. It might be from Qg and regress deviation as T as plot in section 4.2.
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4.3.5 Summary of accuracy in each case.

Table 17 Summary of accuracy in each case

Input Performance (RMSE, V) on test group Performance
Dataset .
no. 1 2 3 q Train Validate Test Ranking

PU 3 CD DOL T - 0.0047 0.0044 0.0043 1

PU q CD DOL Qnp T 0.0055 0.0051 0.0052 2

PU 4 CD | DOL | Qs | Quo 0.0055 0.0057 0.0057 3

PU 2 CD DOL - - 0.0059 0.0052 0.0065 q

PU 3 CD DOL Qrs - 0.0062 0.0063 0.0066 5

DOL has the highest impact on cell voltage. The wide range of data of
clusters in each step of operation capacity is mainly caused by membrane efficiency
down by operation time or clogging by impurities. However, DOL cannot control;
only feed purities can monitor to keep stable DOL (quality control was not measured
and mentioned in this thesis).

T was the first runner-up for highest impact. It can synergy with DOL in model
regression. In some cases of deviation from the regular operation, for example, adjust
T for optimum cell voltage or steam management. DOL cannot regress the model to
a standard line because T was disturbing operation data.

In the case of 4 predictors, the feed flow rate of both Qg and Qyp, which
mainly deviate by fluctuation, results in noise, not the adjustment of the main
parameters. That gave worse RMSE, especially Qgs. However, this research analyzes
the steady-state dataset in which the feed flow rate was unaffected. If the dataset

includes load changing period, it might be more impact.



4.4 RESULT OF BLIND TEST AND PARAMETERS OPTIMIZATION

4.4.1 Blind test with data before turnaround

After performing hold-on validation, the first step is to check the model
accuracy at the same condition (before turnaround) by selecting data in March 2022

to June 2022 to train and validate the ANN model and selecting data in August 2022

to test for unseen testing-dataset in model evaluation. The results show that

1. By linear regression (equation created from CD and DOL) show RMSE in the
train group at 0.0276 V and test group at 0.0206 V
2. By ANN prediction (model created from CD, DOL, and T) show RMSE in the
train group at 0.0019 V and test group at 0.0181 V
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1 Regressed group : Mar to Jun-22
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Figure 41 Linear regression fitting of test data in August 2022
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Figure 42 ANN model fitting of test data in August 2022
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4.4.2 Blind test with data after turnaround

The Second step is to evaluate the model with different conditions by
training the model before turnaround and testing with data before the turnaround
period. They selected data from March 2022 to June 2022 to train and validate the
ANN model (same as 4.4.1) and selected data in January 2023 to test. Cell voltage
shows they have significantly different conditions from the flushing effect during the
turnaround. To compare with the same ANN model, It has to reduce CV by 3% to
represent the flushing effect. The results show that

1. By linear regression (equation created from CD and DOL) show RMSE in the

training group at 0.0276 V and test group at 0.0137 V

2. By ANN prediction (model created from CD, DOL, and T) show RMSE in the

training group at 0.0019 V and test group at 0.0126 V

, Regressed group : Mar to Jun-22 . Fitted group : Jan-23
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Figure 43 Linear regression fitting of test data in January 2023

Additional Test: R=0.99368
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Figure 44 ANN model fitting of test data in January 2022
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4.4.2 Parameters optimization study

Fitted by ANN model
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Figure 45 ANN model fitting in predictive CV (grey)

comparing with actual data (blue)

The predictive model of ANN can handle noise from slightly fluctuating
operating parameters, and the non-linear function seems more fitted. Some peaks
could not be regressed at low production load after regressing CV to the standard
line at CD 6 KA/m?. Since we regressed CD to a high load, cell temperature was not

regressed (T was a dependent variable that can affect as input parameter).

Regression by ANN to measure cell volt at current density 6 KA/m2
32

315

w

05

Cell volta'ge [cv, v]
i
bl

A N R R

) Iy
2.7
0 200 400 600 800 1000
Operating day [DOL, day] ~ —— Actual data ——Regress CD to 6 KA/m2

Figure 46 ANN model fitting in predictive CV after at CD 6 KA/m? (orange)

comparing with actual data (blue)
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Simulate cell volt at current density 6 KA/m2 and cell temperature 820C
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Figure 47 ANN model fitting in predictive CV at CD 6 KA/m? and 82°C (blue)

Comparing with predictive CV at CD 6 KA/m? actual T (orange)
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Fisure 48 ANN model fitting in predictive CV at CD 6 KA/m? and 84°C (blue)
Comparing with predictive CV at CD 6 KA/m? actual T (orange)
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Fisure 49 ANN model fitting in predictive CV at CD 6 KA/m? and 86°C (blue)
Comparing with predictive CV at CD 6 KA/m? actual T (orange)

After regressing the temperature to see only the effect of DOL and finding CV
growth due to operating time, it was found that temperatures below and over 82°C
gave CV more deviation than CV at actual temperature. That means at 82°C and
below, cell condition at various temperatures, as actual, is more stable in the wind
range than at 82°C. However, cell temperature at 84°C gave the most stable CV in all
ranges. Predicted values after regressing to 84°C deviate from the growth line by less
than 0.02 V. At cell temperature, 84°C represented all CD at the same condition

compared with other parameters.
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CHAPTER 5 : CONCLUSION

Finding an optimum number of hidden nodes and layers with scale conjugate
gradient algorithm found that 6-8 accuracy is not significantly different between
hidden nodes. All gave acceptable RMSE; one hidden layer gave the most accuracy.

In comparing each parameter impact to cell voltage (CV) found that the case
that gave minimum RMSE was three predictors consisting of current density (CD),
operation date (DOL), and cell temperature (T) at 0.0043 in the test group. Exclude
CD, which is theoretically directly related to CV; DOL has the highest impact on the
cell voltage. The clusters in step of production capacity is caused by membrane
efficiency down by operation time. The second impact parameter is T. T is directly
related to ion-exchange efficiency by channel size to be extended or shrunk. Dataset
some has appeared different T at the same capacity. It was to control plant stability.

Meanwhile, In the case of CD and DOL as predictors, RMSE was 0.0065. On the
other hand, feed brine flow rate (Qg) and feed caustic flow rate (Qup) do not have a
synergy to reduce RMSE after implementing additional parameters. In the case of
implying Qg or Qyp as the third or fourth predictor behind DOL and T, RMSE results
become worse from non-related noise. It can assume that Qg and Qyp control in
range during steady-state operation. However, a dataset for training ANN removed
the unsteady state period, which the impact of Qgs and Qpp might be more apparent.

The study can conclude that CD, DOL, and T as ANN 3 predictors have
sufficient accuracy to predict CV and, after the predict CV in blind test (hold-out
validation), found that in different operating condition models still give enough
accuracy in prediction.

The study of optimum conditions by normalized CV. The result shown at
84°C of the test and train condition dataset gave the most stable CV that can
represent all operation CD (production capacity) with an error less than 0.02 V. This
thesis can apply to stabilize power consumption by predicting CV after extending
membrane service life by controlling T in optimum value or predicting corrected CV
value to comparing another uncontrol condition for measuring the performance of

electrolysis cells.
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Neural Net Fitting product description
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Solve fitting problem using two-layer feed-forward networks - MATLAB

Neural Net Fitting

Solve fitting problem using two-layer feed-forward networks

Description

The Neural Net Fitting app lets you create, visualize, and train a two-layer
feed-forward network to solve data fitting problems.

Using this app, you can:

« Import data from file, the MATLAB® workspace, or use one of the
example data sets.

» Split data into training, validation, and test sets.
» Define and train a neural network.

« Evaluate network performance using mean squared error and
regression analysis.

« Analyze results using visualization plots, such as regression fit or
histogram of errors.

* Generate MATLAB scripts to reproduce results and customize the
training process.

« Generate functions suitable for deployment with MATLAB Compiler™
and MATLAB Coder™ tools, and export to Simulink® for use with
Simulink Coder.

2/7/2566 BE 11:04

ﬂ Note

To interactively build, visualize, and train deep learning neural
networks, use the Deep Network Designer app. For more
information, see Get Started with Deep Network Designer.

Open the Neural Net Fitting App

* MATLAB command prompt: Enter nftooL.

Examples

Fit Data with a Shallow Neural Network

Algorithms

https:f/www.mathworks.comfhelp/deeplearning/ref/neuralnetfitting-app.html|

* MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the app icon.

The Neural Net Fitting app provides built-in training algorithms that you can use to train your neural network.

Page 10of 2
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Solve fitting problem using two-layer feed-forward networks - MATLAB 2/7/2566 BE 11:04

Training Algorithm

Levenberg-Marquardt

Bayesian
regularization

Scaled conjugate
gradient
backpropagation

See Also

Apps

Description

Update weight and bias values according to Levenberg-Marquardt optimization. Levenberg-
Marquardt training is often the fastest training algorithm, although it does require more memory
than other technigues.

To implement this algorithm, the Neural Net Fitting app uses the trainlm function.

Bayesian regularization updates the weight and bias values according to Levenberg-Marquardt
optimization. It then minimizes a combination of squared errors and weights, and determines
the correct combination so as to produce a network that generalizes well. This algorithm
typically takes longer but is good at generalizing to noisy or small data sets.

To implement this algorithm, the Neural Net Fitting app uses the trainbr function.

Scaled conjugate gradient backpropagation updates weight and bias values according to the
scaled conjugate gradient method. For large problems, scaled conjugate gradient is
recommended as it uses gradient calculations which are more memory efficient than the
Jacobian calculations used by Levenberg-Marquardt or Bayesian regularization.

To implement this algorithm, the Neural Net Fitting app uses the trainscg function.

Neural Net Time Series | Neural Net Clustering | Neural Net Pattern Recognition

Functions

fitnet | feedforwardnet|trainlm|trainscg|trainbr

https:ffwww.mathworks.comfhelp/deeplearning/ref/neuralnetfitting-app.html| Page 2 of 2

Figure 50 Neural Net Fitting description [20]
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Figure 51 Neural Net Fitting application

Acting window of Neural Net Fitting “nftool”

[|  Training data: 70%
sl < =
Validation data: 1515 Layersize:| 105
Import k
~  Testdata: 1512 ~
DATA SPLIT BUILD TRAIN PLOTS T
Network  Training

Two-layer feedforward network with sigmoid hidden neurons and finear autput neurons, suitable for regression tasks.

Ingut

Y Hgen

EXPORT

NEURAL NETWORRFITING —

Model Summary

Train & neural netwerk ta map predictors to continuous responses.
Data

Predictors:  GApredictor - [1186x6 double]

Responses: GAresponsa - [1186x1 double]

GApredictor: double array of 1185 cbservations with 6 features.
Ghresponse: double aray of 1186 observations with 1 features.

Figure 52 Neural Net Fitting network windown



60

Result window of Neural Net Fitting “nftool”

Training data: 70 % = =
Validation data: 1512 Layersize:|  10[2 di = & il v
Import = 2 Training Performance  Error  Regression Fit | Test Generate  Export
Test data: 155 - State Histogram Code ~ Model =
DATA SPLT BUILD TRAMN pLOTS EXPORT
Network  Training Model Summary
i Train a newral network ta map predictors to Gontinuous responses.
Training Results

Data
Predictors:  GApredictor - [1186x8 double]
Responses: GAresponsa - [1186x1 double]

Training finished: Met validation criterion &

ey Pomgees GApredictor: double array of 1186 observations with 6 features.
; ; GAresponse: double array of 1186 observations with 1 features.

Unit Initial Value Stopped Value. Target Value Ao

Epoch 1] 83 1000 Data division: Random

Elapsed Time . 00-00:01 . Training algorithm:  Levenberg-Marquardt
Performance: Mean squared emor

Performance 0.0363 8.88e-07 o

Gradient 0.0826 7.480-06 16-07 e
Training start time:  02-Jul-2023 10:59:56

Mu 0.001 1009 16+10 i 30

Validation Checks 1] 6 -] Observations MSE R
Training | 830 9.1702e-07 0.9999 |
Validation 178 1.4246e-06 09999.
Test 178 136720.05 09381

Figure 53 Neural Net Fitting result window



Dataset for ANN train and test (CSV file)

GITHUB repository clone link:
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https://github.com/MACHINE11051/Thesis-ANN-Chlor-Alkali-Kittapas-Sukantowong.git

Abb. | Detail Period Estimate no.
RW Original collected data 01 Mar 22 - 01 Mar 23 8,761 data
PS Pre-processed, cut stop 01 Mar 22 - 01 Mar 23 < 8,761 data
PU Pre-processed, cut unsteady 01 Mar 22 - 01 Mar 23 < 8,761 data
PBT Pre-processed, before T/A 01 Mar 22 - 07 Nov 22 2 of 3 of PU
PAT Pre-processed, after T/A 11 Nov 22 - 01 Mar 23 1 of 3 of PU
GA Reducing bias, Group A (PBT) 01 Mar 22 - 24 Apr 22 1,186

GB Reducing bias, Group B (PBT) 24 Apr 22 - 17 Jun 22 1,186
GC Reducing bias, Group C (PBT) 17 Jun 22 - 10 Aug 22 1,186
GD Reducing bias, Group D (PAT) 11 Nov 22 - 06 Jan 23 1,186

GE Reducing bias, Group E (PAT) 06 Jan 23 - 28 Feb 23 1,186

Remark: AA in GITHUB refers to dataset PBT to train, validate and test ANN model.
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Generated script for Neural Net Fitting with scale conjugate gradient algorithm
Dataset : GA

Hidden node : 10

Hidden layer : 1

Spitting : Train 70% Validate 15% Test 15%

% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app

% This script assumes these variables are defined:

% GApredictor - input data.

% GAresponse - target data.

x = GApredictor’

t = GAresponse'

% Choose a Training Function

% For a list of all training functions type: help nntrain

% 'trainlm' is usually fastest.

% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainscg’; % Scale Conjugate Gradient backpropagation.
% Create a Fitting Network

hiddenLayerSize = 10;

net = fitnet(hiddenLayerSize,trainFcn);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;

net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

% Train the Network

[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance = perform(net,t,y)



% View the Network
view(net)

% Plots

% Uncomment these lines to enable various plots.

%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)

%figure, plotfit(net,x,t)
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Generated script for Neural Net fitting with scale lavenberg marquardt
Dataset : GA

Hidden node : 10

Hidden layer : 1

Spitting : Train 70% Validate 15% Test 15%

% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app

% This script assumes these variables are defined:

% GApredictor - input data.

% GAresponse - target data.

x = GApredictor';

t = GAresponse';

% Choose a Training Function

% For a list of all training functions type: help nntrain

% 'trainlm' is usually fastest.

% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainlm’; % Levenberg-Marquardt backpropagation.

% Create a Fitting Network

hiddenLayerSize = 10;

net = fitnet(hiddenLayerSize,trainFcn);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;

net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

% Train the Network

[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance = perform(net,t,y)
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% View the Network
view(net)

% Plots

% Uncomment these lines to enable various plots.

%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)

%figure, plotfit(net,x,t)
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Generated script for Neural Net fitting with scale Bayesian regularization
Dataset : GA

Hidden node : 10

Hidden layer : 1

Spitting : Train 70% Validate 15% Test 15%

% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app

% This script assumes these variables are defined:

% GApredictor - input data.

% GAresponse - target data.

x = GApredictor';

t = GAresponse';

% Choose a Training Function

% For a list of all training functions type: help nntrain

% 'trainlm' is usually fastest.

% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainbr’; % Bayesian Regualrization backpropagation.
% Create a Fitting Network

hiddenLayerSize = 10;

net = fitnet(hiddenLayerSize,trainFcn);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;

net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

% Train the Network

[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance = perform(net,t,y)
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% View the Network
view(net)

% Plots

% Uncomment these lines to enable various plots.

%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)

%figure, plotfit(net,x,t)

67



Script for testing optimum number of hidden node
Dataset : GA
Hidden node :5-10
Hidden layer : 1
Spitting : Train 70% Validate 15% Test 15%
: Train 80% Validate 10% Test 10%
: Train 90% Validate 5% Test 5%
for X = 5:10 %run for loop 1 -5
node_layer = [X] %hidden node under for loop 1 -5

% train-to-test ratio 90:10
x = GCpredictor’ %input data
t = GCresponse’ %traget data

trainFcn = 'trainscg’; % Scaled conjugate gradient backpropagation.
% Create a Fitting Network

hiddenLayerSize = node_layer;

net = fitnet(hiddenlLayerSize,trainFcn);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 90/100;
net.divideParam.valRatio = 5/100;

net.divideParam.testRatio = 5/100;

% Train the Network

[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance MSE_90 10 = perform(net,t,y);
performance RMSE 90 10 = sqrt(performance_ MSE 90 10);
% train-to-test ratio 80:20

trainFcn = 'trainscg’; % Scaled conjugate gradient backpropagation.
% Create a Fitting Network

hiddenLayerSize = node_layer;
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net = fitnet(hiddenlLayerSize,trainFcn);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 80/100;
net.divideParam.valRatio = 10/100;
net.divideParam.testRatio = 10/100;

% Train the Network

[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance MSE 80 20 = perform(net,t,y);
% train-to-test ratio 70:30

trainFcn = 'trainscg’; % Scaled conjugate gradient backpropagation.
% Create a Fitting Network

hiddenLayerSize = node_layer;

net = fitnet(hiddenlLayerSize,trainFcn);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;

net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

% Train the Network

[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance MSE_70 30 = perform(net,t,y);
performance RMSE 70 30 = sqrt(performance MSE_70 30);
%summary table

result GA = [performance RMSE 70 30 performance RMSE 80 20
performance RMSE 90 10]

end



Script for testing optimum number of hidden layer
Dataset : GA
Hidden node :6
Hidden layer :1-5
Spitting : Train 70% Validate 15% Test 15%
: Train 80% Validate 10% Test 10%
: Train 90% Validate 5% Test 5%

for X = 1.5 %run for loop hidden layer 1 -5
switch X
case 1 node layer = [6] %71 hidden layer
case 2 node layer = [6 6] %2 hidden layers
case 3 node layer = [6 6 6] %3 hidden layers

case 4 node layer = [6 6 6 6] %4 hidden layers
case 5 node layer =[66 6 6 6] %5 hidden layers

end
% train-to-test ratio 90:10
x = GEpredictor’; %input data
t = GEresponse’; %traget data

trainFcn = 'trainscg’; % Scaled conjugate gradient backpropagation.
% Create a Fitting Network

hiddenLayerSize = node_layer;

net = fitnet(hiddenLayerSize,trainFcn);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 90/100;
net.divideParam.valRatio = 5/100;
net.divideParam.testRatio = 5/100;

% Train the Network

[net,tr] = train(net,xt);

% Test the Network

y = net(x);

e = gsubtract(t,y);
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performance MSE 90 10 = perform(net,t,y);
performance RMSE 90 10 = sqrt(performance MSE 90 10);
% train-to-test ratio 80:20

trainFcn = 'trainscg’; % Scaled conjugate gradient backpropagation.

% Create a Fitting Network

hiddenLayerSize = node_layer;

net = fitnet(hiddenlLayerSize,trainFcn);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 80/100;
net.divideParam.valRatio = 10/100;
net.divideParam.testRatio = 10/100;

% Train the Network

[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance_ MSE 80 20 = perform(net,t,y);
performance_ RMSE_80 20 = sqrt(performance MSE 80 20);
% train-to-test ratio 70:30

trainFcn = 'trainscg’; % Scaled conjugate gradient backpropagation.

% Create a Fitting Network

hiddenLayerSize = node_layer;

net = fitnet(hiddenLayerSize,trainFcn);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train the Network

[net,tr] = train(net,x,t);

% Test the Network

y = net(x);
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e = gsubtract(t,y);

performance MSE 70 30 = perform(net,t,y);
performance RMSE 70 30 = sqrt(performance_ MSE 70 30);
%summary table

result GA = [performance RMSE 70 30 performance RMSE 80 20
performance RMSE 90 10]

end
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