Formal Models for Consent Management in Healthcare
Software System Development

Miss Neda Peyrone

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in Computer Engineering
Department of Computer Engineering
FACULTY OF ENGINEERING
Chulalongkorn University
Academic Year 2022
Copyright of Chulalongkorn University

I3 a @ o [[a o J Jd 1 a
L!,‘U‘]J%'lﬁf)\i!‘lf\igﬂu‘t’Jﬁ'Wi5‘Uﬂ']'iﬂﬂﬂ']ﬁﬂ'J']iJle!fJfJiJGIleﬂ15WﬁNu1§$UU%ﬂﬂﬁll?ﬁﬂ@ﬂiﬁﬂiﬂWﬁ

NNFUNIN

.o s T

9
a I o

a I~] ¥ [a a
Inentinusiitludruninuesmsanumurangas Sy lmnssumansquiuge
AUNIFIAINTIUADNNAADS NMAIFIAINTIUADUNUNDS
AUZAAINTTUANAAS JWIAINTAIUMIING1ED

Umsdaw 2565

4
aﬂlﬁﬂﬁﬂlﬂﬂﬂw1ﬂﬂﬂiﬂi}mﬁ13ﬂmﬂEJ

Thesis Title

By
Field of Study
Thesis Advisor

Formal Models for Consent Management in Healthcare

Software System Development
Miss Neda Peyrone
Computer Engineering

Associate Professor DUANGDAO WICHADAKUL,

Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University

in Partial Fulfillment of the Requirement for the Doctor of Philosophy

Dean of the FACULTY OF

ENGINEERING
(Professor SUPOT TEACHAVORASINSKUN, D.Eng.)

DISSERTATION COMMITTEE

Chairman

(Assistant Professor Chanon Dechsupa, Ph.D.)
Thesis Advisor

(Associate Professor DUANGDAO WICHADAKUL,
Ph.D.)

__ Examiner
(Associate Professor CHOTIRAT
RATANAMAHATANA, Ph.D.)

Examiner

(Associate Professor TWITTIE SENIVONGSE, Ph.D.)
Examiner

(Associate Professor WIWAT VATANAWOOD, Ph.D.)

Y a ° a @ o @ [a 1Y g s Y a
w1 lalsw : spuHaeudegiisdmiumstansanuensenlunswannssuuseduasngulnusms
nuguam. (Formal Models for Consent Management in Healthcare Software
System Development) o.f1f5nymdn : sd. as.a2ea11 Imana

a o a

TugauraTomavesnsdundeudiedoya gynasnunawdyanuiimediunssansquadeyadiu

a

A

yana Faui liganudsslunsdnifestoyavesgni eliynaanali (data subjects) fiswnlunsaiugy
doyavesau annmglslideennguineduaseateyadiuyana wie 3aiiers Tassmualigsnimsesadns (data

controllers) szdoailnilosdoyaveudazynna (personal data) aveldnguuisduasesdoyadiuyana

a

1Y 4

' <3 a o o [o J 4 9 Y A
’l’]fﬂ\ivliﬂﬁﬁl ‘ﬁ5ﬂﬂ"iﬂu’JuNWﬂﬂ\iﬂ\iﬂiz’dUﬂﬂJ‘ﬂ11uﬂ15‘1]i‘U‘1_]§\Hm3Wﬁlu153‘1JU“ﬁﬂﬂﬂLL?iﬂlﬂﬁﬂuiﬁﬁﬂﬂﬂﬁﬂﬂ VIAND T

A & A a o P o s < 2) '
!u'fNi]‘]ﬂUJuﬂ’]ifJ']ﬂ1/]5]5@]ﬂ'J’]llLlﬁguqqﬂalﬁmﬂuuuﬂvnﬁﬂluﬂ‘]ﬁWﬂlu‘]“]faw@]!nﬁ uﬂﬂﬂ‘]ﬂuﬂ']iﬂi$ll'lﬁWaﬂlﬂﬂvaﬁﬂluuﬂﬂa

Y
A X o

yad1 A g v ' v v = o Y 1y) !] v
ﬂgliﬂéllullﬂ ﬂG]i’JLiJi’JLﬂ1“U’l’]\ﬂli’JiJ“ﬁﬁﬁuuﬂﬂﬁﬂ$ﬂ’[’]ﬂfl"iﬂ]uJfluEJ’[’]LITﬂfl“lfﬂLlﬂﬂllﬂﬁjﬂﬁﬂﬂﬂm@gaﬁﬂuuﬂﬂﬁ e l¥inas

v
I @

o a =~ o I o w Y Na 9 ' a A s A
IANITANNYUYDY (CM) ummmgﬂummummﬂmmwwmmawauﬂamuuﬂﬂa mmuwuﬁummqﬂismmwa
a g . A o a o & o W o a
LG]NW]M‘H’[’N’JN‘L!Tﬂflﬂﬁlﬁu’l’]l,l,‘uﬂﬂTdi’NL‘Ng‘l]uﬂllagﬂﬁu‘ﬂaQqﬂlﬂuLLWuﬂWWﬂﬁ1?(?(114ﬂJﬂﬁﬁ]ﬂﬂﬁﬂﬂﬂﬁluﬂ@ﬂiuig‘ﬂ‘ﬂ
o A

7 ' v A g o v A s & ° a
FINFUY Lm:m‘iumﬂumauﬂa“lu‘szuumzma ol unuandmsudmnssenanas uanmnuu‘uumamw&gﬂuw

Yo a a £ = It
Lﬁ‘l&'Oulﬂiﬂfni@]53%ﬁi‘)‘ULmﬁ’J‘ﬁ‘]ﬂﬂWQﬂﬂiﬁJIﬂﬂi‘mﬂ‘ﬁ’ﬂﬂ@nu@lﬂ

I SHINITUADURUNDS AVTDFDTITN wvvneeeeeeeeeeeeeneeeeeeereeeeeeeaeeeeeeees

Wnsfam 2565 AUDHD 8. NUTAHINEN veeeeereereeeereeereeeennnnns

6371021321 : MAJOR COMPUTER ENGINEERING

KEYWOR General Data Protection Regulation, GDPR, Privacy by Design,

D: Consent Management, Formal method, Event-B, Smart Contracts
Neda Peyrone : Formal Models for Consent Management in Healthcare
Software System Development. Advisor: Assoc. Prof. DUANGDAO
WICHADAKUL, Ph.D.

In the era of data-driven opportunities, many businesses are missing the
data-privacy challenge, which leads to risks in safeguarding their customers’ data.
To empower individuals (data subjects) to control their data, the General Data
Protection Regulation (GDPR) mandated businesses or organizations (data
controllers) to protect individuals’ data (personal data) within data protection law.
Nevertheless, many businesses still struggle to enhance and develop their software
systems to comply with the GDPR because it is difficult to interpret and apply to
software development practices. Besides, the processing of personal data begins
when the data subject provides explicit consent to the data controller, which makes
consent management (CM) essential for conducting the personal data lifecycle. This
thesis aims to fill this gap by proposing formal models and translating them into
class diagrams for consent management in centralized systems and data sharing in
distributed systems as guidelines for software engineers. Moreover, the proposed
models have been verified and described behavior using the Event-B method.

Field of Study: Computer Engineering Student's Signature
Academic 2022 Advisor's Signature
Year: e

ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor, Assoc. Prof. Dr. Duangdao
Wichadakul. She encouraged me to pursue research interests in data protection and
privacy for health information and helped me develop good research practices.
Whenever I lose confidence or face problems, my advisor is always there to listen and
give me sincere advice.

I am deeply grateful to Assoc. Prof. Dr. Wiwat Vatanawood, Assoc. Prof. Dr.
Chotirat Ratanamahatana, Assoc. Prof. Dr. Twittie Senivongse, and Asst. Prof. Dr.
Chanon Dechsupa for being my thesis committee and giving all valuable comments and
suggestions.

I thankfully acknowledge the support and inspiration from my teachers,
especially Assoc. Prof. Dr. Vara Varavithya for instilling the courage and diligence to
achieve my ambitious goals.

Lastly, I would express a deep sense of gratitude to my family and friends for
their unconditional love and support. This dissertation could not have been completed

without them.

Neda Peyrone

vi

TABLE OF CONTENTS

ABSTRACT (THALIL) .ottt 111
ABSTRACT (ENGLISH) ..c.oviiiiiiiiiiiii e v
ACKNOWLEDGEMENTS ..ot \%
TABLE OF CONTENTSoooiiiiiiii e vi
LIST OF TABLESoiiiiiiiii e Xii
LIST OF FIGURESoiiiiiiiiiiiiii e Xiii
CHAPTER I INTRODUCTION.... ..ottt 1
1.1. Objective of the WOrKcccciiiiiiiiiiiicii i 7
1.2, CONLITDULIONS ...ttt e 7
1.3. Research MethodOlOgyccriiiiieiiiiiiiiciiii e 7
CHAPTER II RELATED WORKccciiiiiiiiiiiiiiiiee s 8
CHAPTER III BACKGROUND ..ottt 34
3.1. Consent Managementc..ccvviieiiiiiiniinniiis e 34
3.2. Event-B......c.cooooc. el e, 39
3.3. Blockchain Technologycccociiiiiiiiiiiiiiiiie e 43
3.4. Smart ContrdGIHULALONGKORN- - UNIVERSITY. v, 44

CHAPTER IV FORMAL MODELS FOR CONSENT MANAGEMENT IN
CENTRALIZED SYSTEMS ...ttt 46
4.1. CM State Machines in Centralized SysStems...........cccooveviiiiiiiiiiiiciiiiiee, 48
4.2. Formal Development in Event-B...........cccccooiiiiiiiiiiee, 52
4.2.1. Restricted Processing State Machine (RPSM)cccccoviiniiiiiiniiinne 52
4.2.2. Withdrawal Approval State Machine (WASM)........ccccovvviiiiiiiiinicnnen, 57
4.2.3. Portable Approval State Machine (PASM).........ccccviiiiiiiiiciiiiiece, 59
4.2.4. Consent Renewal State Machine (CRSM)cccoooeiiiiiniiiiiicnieeee 61
4.3. Model Evaluation in Event-Bcccocoiiiiiiiiiiie 64

4.4. Event-B Model Transformation to Class Diagramccccceevviriveniniiieennnn, 64

vii

CHAPTER VA FORMAL MODEL FOR BLOCKCHAIN-BASED CONSENT

MANAGEMENT IN DATA SHARING.......cooiiiiiiieiieiieee e 67
5.1. CM State Machine for Data Sharing in Distributed Systems.............cccceevvennne 71
5.2. Formal Development in Event-B.........c.cccociiiiiiiiii e 73

5.2.1. Data Sharing State Machine (DSSM)ccccocviiiiiiiiiniiie e 74
5.2.1.1. Invariants in DSSMcccoiiiiiiiiii e 74

5.2.1.2. Events in DSSM ..o 76

5.3. Model Evaluation in Event-Bcccoooiiiiiiiiii e 84
5.4. Event-B Model Transformation to Class Diagramccccvvviiiiiiniiniininenn, 84
5.5. SmartDataTrust Implementation.........ccccveioieiieiiiesie e 87

CHAPTER VI ANALYSIS AND INTERPRETATION OF RESULTSccceeneee. 90

6.1. Test Cases in CM for Centralized Systems.........cccccveviiiiriiniiniciiciinesee, 90

6.1.1. Test Cases in the RPSM Modelcccocoviiiiiiiiiiiceeec 90
6.1.1.1. The RP1 TeSt CaSC......eerviiiiiiiiieiie et 91
6.1.1.2. The RP2 TeSt CaSC......crrviiiuieriiieiieiieeiiee sttt 92
6.1.1.3. The RP3 TeSt CaS@.....uirurenrieiiieiieiieeiee it 93
6.1.1.4. The RP4 TeSt Cas@......cciiuiaiiiiiiiiiieiieeiie it 94
6.1.1.5. Test RPS TeSt CaSE ...ccvvvviiiiiiiiiiiiieiiiie e 95
6.1.2. Test Cases in the WASM Model.........cccoooiiiiiiiniiniiciieeeeee e 96
6.1.2.1. The WAL Test CaSecccueemiieiiiiiiieiiiaiie et 97
6.1.2.2. The WA2 Test CaSEccvvieiieiiiieiiie e 98
6.1.2.3. The WA3 Test CaSE ...ccovieiiiiiiiiiie e 99
6.1.2.4. The WAZ TeSt CaSEeoeiveeiiieiiiiiiiesiee ettt 100
6.1.3. Test Cases in the PASM Modelcccooiiiiiiiiiiiiiiee e 101
6.1.3.1. The PAT TeSt CaS€.....cueeieriiieiiiiiiiesiee e 102
6.1.3.2. The PA2 TeSt CaSC.....cueeiueriiieiiieiiiesiee st 103
6.1.3.3. The PA3 TeSt CaS€...cccueeieriiieiieiieeiiee st 104
0.1.3.4. The PA4 TeSt CaSC...ccueeieeriieriieiieesiee st 105

6.1.4. Test Cases in the CRSM MoOdEL.......uiiiiiiiiieeeee e 106

0.1.4.1. The CRI1 TeSt CaSEcouvervieiiriiiiiieieeie et 107

0.1.4.2. The CR2 TeSt CaSEecvvvrvieiiriieiiieiesie et 108

0.1.4.3. The CR3 TeSt CaSEcouvvivieiiriieiiieie et 109

0.1.4.4. The CR4A TeSt CaSEccuvvvieiiriieiiieiesie et 111

0.1.4.5. The CRS TeSt CaSEecuvvivieiirieiiiieiesie et 112

6.2. Test Cases in CM for Distributed Systems in Data Sharingccccooeevenenn 113

6.2.1. Test Cases in the DSSM Model.........ccccooiiiiiiiiiiiniec e 113

6.2.1.1. The DST TeSt CaSE ...cuveeiveeriiieiiieiiiesiee e 114

6.2.1.2. The DS2 TeSt CaSE ...cuveeiveerieieiiieiiiesie s 115

6.2.1.3. The DS3 TeSt CaSeuceriiiiiiariieiiieiie e 117

6.2.1.4. The DS4 TeSt CaSEveiireiirieiieiiiesiee st 117

6.2.1.5. The DS5 TeSt CaSEveeveeriiieiieiiiesiee e 118

CHAPTER VII DISCUSSION AND CONCLUSIONcoooiiiiiiiienieeiie e 126

7.1 DASCUSSION ...tttk stttk stttk et e e bt et e et e e et e nae e s nbeenbeeenne e 126

7.2, CONCIUSION ..ttt stttk nb e e e e nne e e e beeenne e 127
APPENDIX A EVENT-B MODELS FOR CONSENT MANAGEMENT IN

CENTRALIZED SYSTEMS ...ttt 128

1. The RPSM MOdEL....ccuiiiiiiiiaiieiiiesiieeiis et 128

1.1. The RPCX CONEXL...cuvriiiiiiiaiiiiaiiiisiii sttt 128

1.1.1. SEin RPCXn: meranmar. Llatinsmmermns. oo 129

1.1.2. Constants in RPCX.......ccoiiiiiiiiiiiiieeece e 129

1.1.3. AXioms in RPCX ..o 129

1.2. The RPSM MaChiNeccccoiiuiiiiiiiiiiiiieiie e 130

1.2.1. Invariants in RPSM ..o 130

1.2.2. Events in RPSM ... 132

1.2.2.1. The INITIALISATION Event.........ccccooeiiienininiiciiene. 132

1.2.2.2. The Login Eventccccocooiiiiiiiiiiiiien e 133

1.2.2.3. The AddPatient Event............cccooiiiiiiiniiieneeee e 133

1.2.2.4. The AddConsent EVent........ccoeuueeioniieeiiieeiiieeeeeeeeeeeinnns 134

1.2.2.5. The Createlnquiry Event..........ccccocvviiiiiiiiniiiic e, 134

1.2.2.6. The CheckAuthorizeConsent Eventc.cccocvernennee. 135

1.2.2.7. The ExecuteQuery Event.........ccccovvviiiiiiiiiniiiniiiee, 135

1.2.2.8. The Logout Eventcccccocviiiiiiiiiiiiiiie e 136

2. The WASM MOEL.......oiiiiiiiiiiiiiieieee et 136
2.1. The WACK CONLEXE .euvviiieieiieiiiesiee st e et e e e neesnee s 137
2.1.1.Sets 1 WACK ..ot 137
2.1.2. Constants in WACXcoiiiiiiiiiieiesie e 137
2.1.3. AX10mMS 1N WACK ...t 138

2.2. The WASM MaChIN@c.vviiiiiiiieniiiii e 138
2.2.1. Invariants 10 WASMcoiiiiiiiiiieiicie e 138
2.2.2. Events 10 WASM ..ot 139
2.2.2.1. The INITIALISATION Event.........ccccoooeiiieniiiniieiieene 140

2.2.2.2. The Login Eventccccoviviiiiiiiniiiiinece 140

2.2.2.3. The CreateWithdrawal Event...........c.cccccooiiniiniiininnnn. 141

2.2.2.4. The ApproveWithdrawal Eventcccooeciiiiinnne 141

2.2.2.5. The RejectWithdrawal event.............cccocovviiiiiiicnnn, 142

2.2.2.6. The Logout @Vent..........cccevieiiiiiiiiniinieneec e 142

3. The PASM MOdElc.ooiiiiiiiii e 143
3.1. The PACX CONLEXE.....uciiiiieiiirireeiessiieesieasiareseesereesreessesesseesaseesseasssssssesses 143
311 Sets i PACK ..o 143
3.1.2. Constants in PACXcccoooiiiiiiiii e 144
3.1.3. AXiomS 1N PACK ..o 144

3.2. The PASM MaCRiNecoooiiiiiiiiiiiieieeec e 144
3.2.1. Invariants in PASM ..o 144
3.2.2. Events i PASM.....oooiiiiiiie e 146
3.2.2.1. The INITIALISATION Event.........ccccooeiiieiienineiinane. 146

3.2.2.2. The Login Eventcccccoiiiiiiiiiiiiciiecs 146

3.2.2.3. The CreatePortable Event........ccccceeeiiiieiiiieeee e 147

3.2.2.4. The ApprovePortable Event..........cccccoovvviiiiiiiiiniiinene, 147
3.2.2.5. The RejectPortable Eventccccoooveviiiiiiiiiniiiciiieee, 148
3.2.2.6. The Logout Eventccccccveviiiiiiiiieniie e 148
4. The CRSM MOEL.....ccuiiiiiiieiiiiieiiesieee et 149
4.1. The CRCX CONLEXL .eeuviiuveiieiisiresieeiesiesiee sttt sae e ssee s snee e 149
4.1.1. Sets in CRCX ..o 149
4.1.2. Constants in CRCXcccoiiiiiiiiiieie e 150
4.1.3. AX1omS in CRCX ..ot 150
4.2. The CRSM MACRINEueeiiiiiiiiiiieiie e 150
4.2.1. Invariants in CRSMcccoiiiiiiiiiiiiiieee e 150
4.2.2. Events In CRSMoiiiiiiiiiiiiieie e 152
4.2.2.1. The INITIALISATION Event.........cccccooveriiiieeniennnnne 152
4.2.2.2. The Login Eventcccooeiiiiiiiiiiicc e 153
4.2.2.3. The CreateConsentRenewRequest Event 153
4.2.2.4. The NotifyPatient Eventcccocceviiiiiiiiiniiiieen, 154
4.2.2.5. The ExtendConsentExpiration Eventcccovennn. 155
4.2.2.6. The DeletePatientData Event............c.coccoooviiiiiniennnne 155
4.2.2.7. The Logout Eventccccooviiiiiiiiiiiicc, 156
APPENDIX B AN EVENT-B MODEL OF CONSENT MANAGEMENT FOR
DISTRIBUTED SYSTEMS IN DATA SHARINGcccoiiiaiiiiiienieeesee e 157
1. The DSSM MOdEL.......oiiiiiiiieiiie e 157
1.1. The DSCX CONEEXL...ccuveiiiiiiiieiiiieiiee st siee sttt sene s 158
L.1.1. Sets in DSCX i 158
1.1.2. AXiomsS in DSCX ..o 158
1.2. The DSSM MACKHINEcccuiiiiiiiiiieiiieiie e 159
1.2.1. Invariants in DSSMc.ccoooiiiiiiiie e 159
1.2.2. Events in DSSMooiiiiiiiie e 162
1.2.2.1. The INITTALISATION Event........ccccoveiiiiiiiiicnieienn 162

1.2.2.2. The AddConsent EVent.........ccoeeeeeeiiiiieiiiieeieeeeeeeeeeeeennns 163

Xi

1.2.2.3. The AddDataSubjectConsent Eventc.cccccvvviunennne 163
1.2.2.4. The CallbackRequester Event..........ccccccvvviiieiiiieniiinnnnne, 164
1.2.2.5. The SubmitRequest Eventccccccevviiiiiiiiniiiniiiieee, 164
1.2.2.6. The CallbackResponder Eventccccevvvieiiiviniinnnnne 165
1.2.2.7. The SubmitResponse Event...........ccccovvviiiiniiiiniiinnnnn, 166
1.2.2.8. The CallbackDataTransfer Event.............cccccovviiennnnnn. 166
1.2.2.9. The TransferData Event...........ccoccvviiiiiiieniiniec e, 167
1.2.2.10. The InsufficientBalance Event...........c.c.cccoooiniiennnnnn. 168
1.2.2.11. The CheckConsentExpiration Event...........c.ccccoeeee. 169
1.2.2.12. The UnauthorizedAccess Event.............cccoovniierinnnn. 169
1.2.2.13. The RevokeConsent Eventccccooeiiieiiininciinnnn. 170
1.2.2.14. The RenewConsent Event.............ccccoovviiiiiinincinnnn. 170
... 171

xii

LIST OF TABLES

Page

Table 1: Consent management-related issues as requirements for centralized systems.

.. 5
Table 2: Consent management-related issues as requirements for data sharing in
AISTIIDULEA SYSTEMS. ...t 6
Table 3: Comparison with related works in the context of data privacy and consent
MANAGEMENT. ..ottt b 33

Table 4: The comparison between classes and object attributes of existing ontologies
1N CONSENE COMECXL. ©vvriuurreiurreeituaaasinresireeasassarransanseeessseeesnseeessseeessseesssseesssseesnsseesnseeesnns 36

Table 5: The competency questions for consent management in which relevant to
GDPR articles, extended from Kurteva et al. [92] (cont’d).cccevviiiiiiiiiiinienn, 37

Table 6: List of proposed state machines and GDPR articles they covered. 47

Table 7: The summary of proof statistics by the Rodin platform for the proposed four
consent management state machines based on Event-B models.c.ccocceenineene 64

Table 8: Data sharing-related issues as requirements for blockchain-based consent
MANAZEIMENT. ...uviiiiiiie e e e s b e e e s s sbe e e s be e e sbe e e sbe e e sbaeesnee e 68

Table 9: The proposed model and GDPR articles it covered (cont’d).cccccvvvenee. 69

Table 10: The summary of proof statistics by the Rodin platform for the proposed
state machine based on the Event-B model. ..o, 84

Table 11: The mapping between competency questions for consent management and
OUT STUAY (CONE A). i 120

xiii

LIST OF FIGURES

Page

Figure 1: Demonstrating the architecture of the Matwin et al.’s model (Figure 1 of

ES2C USSR 9
Figure 2: The P-RBAC model architecture (Figure 3 of Ni at el. [57])....c.ccccvvvvrnenn. 10
Figure 3: The architecture of big data testing areas (Figure 2 of Blake & Saleh [36])
.. 11
Figure 4: The architecture of disclosure-processing (Figure 1 of Abe & Simpson

515) O oS 7o -SSR 12
Figure 5: Conceptual diagram of privacy-awareness clinical workflows (Figure 1 of
Besik & Freytag [63]). .voiiiieeiiiiieriiiie ettt 14
Figure 6: The CMA framework and its APIs interaction comply with GDPR and
MyData approach (Figure 1 of Hyysalo et al. [66]).........cccovirimiininiiiiiiiiieeee, 17
Figure 7: The interaction between a user and a PII manager (Figure 1(d) of
Marillonnet et al. [70]). ...ooeeeeieieieieii e 19
Figure 8: The sequence diagram of user authentication and consent collection on the
P1I manager (Figure 3 of Marillonnet et al. [70]). ...cccoovviiiiiiiiieeees 20
Figure 9: System architecture of personal data management on the blockchain (Figure
1 of Daudeén-Esmel et al. [72])....ccerviererieiierieee e 22
Figure 10: The layered system architecture of SC-DCMS (Figure 3 of Merlec et al.
[74])...ccccvvnene AHTAVEALUNGRUNIN ONIVEROIL Y 25
Figure 11: The ADvVoCATE architecture (Figure 1 of Rantos et al. [83])........cccc...... 27
Figure 12: The CM component’s workflow (Figure 3 of Rantos et al. [83]). 28

Figure 13: The interaction between smart contracts and service providers in MedRec
(Figure 1 of Azaria et al. [86]).cucvurrrrerriireie e 29

Figure 14: The PVR-centric contract structure in CrowdMed-11 (Figure 2 of Hu et al.

Figure 15: The PPVR-centric contract structure in CrowdMed-11 (Figure 3 of Hu et
LI = RSP SUSPRTSSPRN 31

Figure 16: The consent lifecycle within consent-based approaches (Figure 1 of
KUrteva et al. [92]). ..ccveeeeieeieieee e 35

Xiv

Figure 17: The process of refinement in Event-B (Figure 1 of Jarrar & Balouki
O ST S PP PR P PPTO 40

Figure 18: The process of model checking in ProB (Figure 1 of Ligot et al. [111]).
(A) demonstrating the generation of proof obligations in compliance with the abstract
and CONCTEE MOAELS.ciueiiiieiiiiii e 41

Figure 19: The example of generating INV proof obligation from the Login event. .42

Figure 20: The example of generating GRD proof obligation from the AddPatient
EVEIL. 1ottt 42

Figure 21: List of blocks of transactions in a blockchain data structure, modified from
Figure 1 of Chinnasamy et al. [115]. ..ccccoiiiiiiiiiiiiii s 44

Figure 22: Class diagram demonstrating how a software platform for cancer precision
medicine manages roles and permissions to restrict users’ access to screens. (A) an
authentication module associated with users, roles, and screens. (B) new classes added
to RUN-ONCO for supporting dynamic access attributes within role-based consent.
(C) relevant classes needed to be enhanced to support consent management. 49

Figure 23: Restricted Processing State Machine (RPSM) describing the transition
states and events used to restrict the processing of personal data..............cccecvrveennene, 50

Figure 24: Withdrawal Approval State Machine (WASM) describing the transition
states and events used to manage a consent revocation request.cocervriiiieennnn, 50

Figure 25: Portable Approval State Machine (PASM) describing the transition states
and events used to manage a data transferring request.ccoccoveiiiiiiiniicines 51

Figure 26: Consent Renewal State Machine (CRSM) describing the transition states
and events used to manage a data retention requESt.cccoovevviriiiiiniinienieie s 51

Figure 27: A class diagram transformed from the proposed consent-based models in
EVENt-B. oo 65

Figure 28: Data sharing sequence diagram illustrating the request-response
interaction between ServiceA (responder) and Service B (requester).c.ccceeveuenne. 71

Figure 29: Data sharing sequence diagram continued from the previous diagram
(Figure 28), which illustrates the request-response interaction between ServiceA and
SBIVICEB. ..ot nre s 72

Figure 30: Data Sharing State Machine (DSSM) illustrating the transition states and
events used to share personal data between a requester and a responder through
0] (oo N(x 4 - 11 o PRSP 73

Figure 31: Class diagram resulted from mapping the proposed model in Event-B to
code for supporting consent management in the context of data sharing. 85

XV

Figure 32: Class diagram continued from the previous diagram (Figure 31)
demonstrating how to transform the proposed model in Event-B for supporting
requESt-reSPONSE INEIACTIONS.vcveiieeiecie ettt re e sre e e 86

Figure 33: Overview of SmartDataTrust APl framework.ccccoovvvveiiiicinernee, 88

Figure 34: Class diagram demonstrating how a software platform for cancer precision
medicine handles GDPR-compliant blockchain-based consent management in data
sharing. (A) relevant classes needed to be enhanced to support data sharing. (B) new
classes added to RUN-ONCO for supporting managed consent into the blockchain
and handling the requester and responder callbacks made by the blockchain............. 89

Figure 35: The simulation of the RP1 test case. (A) the Login event and its variables
are produced by ProB, which has been executed in the history panel. (B) the choice of
events allows AUTHORIZED USERS3 to perform for the next event execution.92

Figure 36: The latest value of the variable sessions corresponds to event execution in
the RP1 teSt CASE. ..uviiviiiiiiiiiii i 92

Figure 37: The simulation of the RP2 test case. (A) the CreateInquiry event and its
variables are produced by ProB, which has been executed in the history panel. (B) the
choice of events allows AUTHORIZED USERS3 to perform for the next event
S0 L1 10§ T OO P TP P PP PRV PP PPOTRPPRN 93

Figure 38: The latest value of the variable queries corresponds to event execution in
the RP2 t8St CASE. ..eeueiiiiiitii ittt ettt et n e e e nneennne s 93

Figure 39: The simulation of the RP3 test case. (A) the CheckAuthorizeConsent
event and its variables are produced by ProB, which has been executed in the history
panel. (B) the choice of events allows AUTHORIZED USERSI to perform for the
next event executiof®aerze- at-AneEARM DM IERQITY- - e 94

Figure 40: The latest value of the variable authorizedConsent corresponds to event
execution N the RP3 test CASE.....coiuiiiiiiiiiiii i 94

Figure 41: The simulation of the RP4 test case. (A) the ExecuteQuery event and its
variables are produced by ProB, which has been executed in the history panel. 95

Figure 42: The latest value of the variable pf corresponds to event execution in the
RP4 tESt CASE. ...viiiviiiiiiiiiccc i 95

Figure 43: The simulation of the RP5 test case. (A) AUTHORIZED USERSI1 adds
PATIENTSI and his/her given consent. (B) AUTHORIZED USERS?2 creates query
to access the information of PATIENTS1 under CONSENTS2.ccooiiiiiiniiiiiiennens 96

Figure 44: The latest value of the variable pf corresponds to event execution in the
RPS5 1ESE CASE. 1uviiiiiiii i 96

XVi

Figure 45: The simulation of the WA test case. (A) the Login event and its variables
are produced by ProB, which has been executed in the history panel. (B) the choice of
events allows AUTHORIZED USERS3 to perform for the next event execution.98

Figure 46: The latest value of the variable sessions corresponds to event execution in
the WA tESE CASE. ..euvviiirieiii ittt e e nnne s 98

Figure 47: The simulation of the WA2 test case. (A) the CreateWithdrawal event and
its variables are produced by ProB, which has been executed in the history panel. (B)
the choice of events allows AUTHORIZED USERSI to perform for the next event

(S (I3 o) o TP PR PR PRSPPI 99

Figure 48: The latest value of the variable withdrawState corresponds to event
execution 1N the WA2 teSt CASE. ...iiuiiiiiiiiiiiiiii i 99

Figure 49: The simulation of the WA3 test case. (A) the ApproveWithdrawal event
and its variables are produced by ProB, which has been executed in the history panel.

Figure 50: The latest values of withdrawState and markAsDeleted variables
correspond to event execution in the WA3 test Case.......ccocvvvviiiiiiiiiiniinic e 100

Figure 51: The simulation of the WA4 test case. (A) the RejectWithdrawal event and
its variables are produced by ProB, which has been executed in the history panel...101

Figure 52: The latest value of the variable withdrawState corresponds to event
execution 1N the WA teSt CASE. ..ovuiiiiiiiiiiiiiii it 101

Figure 53:The simulation of the PA1 test case. (A) the Login event and its variables
are produced by ProB, which has been executed in the history panel. (B) the choice of
events allows AUTHORIZED USERS3 to perform for the next event execution. ..103

Figure 54: The latest value of the variable sessions corresponds to event execution in
11 0T AN B (T A o7 1 PR 103

Figure 55: The simulation of the PA2 test case. (A) the CreatePortable event and its
variables are produced by ProB, which has been executed in the history panel. (B) the
choice of events allows AUTHORIZED USERSI to perform for the next event
EXECULION. ...ttt et ettt ettt ettt et e he et e bt e e bt e e he e et e e e he e et e e nbe e et e e ebe e e beenmneeneeenneas 104

Figure 56: The latest value of the variable portableState corresponds to event
eXecution N the PA2 tESt CASE. ..uiuiuiiiiiieiiiie it sna s 104

Figure 57: The simulation of the PA3 test case. (A) the ApprovePortable event and its
variables are produced by ProB, which has been executed in the history panel. 105

Figure 58: The latest value of the variable portableState corresponds to event
eXecution N the PA3 teSt CASC. ..uiiiiuiiiiiie i eenne e 105

XVii

Figure 59: The simulation of the PA4 test case. (A) the RejectPortable event and its
variables are produced by ProB, which has been executed in the history panel. 106

Figure 60: The latest value of the variable portable corresponds to event execution in
the PAZ tESE CASE. ..eiveiiiiieiiii ettt 106

Figure 61: The simulation of the CR1 test case. (A) the Login event and its variables
are produced by ProB, which has been executed in the history panel. (B) the choice of
events allows AUTHORIZED USERS3 to perform for the next event execution. .. 108

Figure 62: The latest value of the variable sessions corresponds to event execution in
the CRI1 tESE CASE. ...eiiviiriiiiiiicii e 108

Figure 63: The simulation of the CR2 test case. (A) the CreateConsentRenewRequest
event and its variables are produced by ProB, which has been executed in the history
panel. (B) the choice of events allows AUTHORIZED USERS to perform for the
NEXE EVENE EXECULION. ...vieutiiiieiestiessiiestieasieesiee e e sreeesbeesseessseesseeeneesneeareeaseeasneennneanns 109

Figure 64: The latest values of consentRenewalState and isConsentExpired variables
correspond to event execution in the CR2 test Case........ccocvvvviiiiiiiiiiiniiiic e 109

Figure 65: The simulation of the CR3 test case. (A) the NotifyPatient event with
“Approved” status, which has been executed in the history panel. (B) the choice of
events allows AUTHORIZED USERSI to perform for the next event execution. .. 110

Figure 66: The latest values of consentRenewalState and markAsReceived variables
correspond to event execution in the CR3 test case.........ccccvveviiiiiiiiiiniiic e 110

Figure 67: The simulation of the CR3 test case. (A) the NotifyPatient event with
“Rejected” status, which has been executed in the history panel. (B) the choice of
events allows AUTHORIZED USERSI to perform for the next event execution. .. 111

Figure 68: The latest values of consentRenewalState and markAsReceived variables
correspond to event execution in the CR3 test CaSe........cccuveivriiiiiieiiiiiie e 111

Figure 69: The simulation of the CR4 test case. (A) the ExtendConsentExpiration
event and its variables are produced by ProB, which has been executed in the history
PANECL. ..o 112

Figure 70: The latest value of the variable isConsentExpired corresponds to event
execution N the CR4 tESt CASE. ..iviviiiiiiieiiiie e rae e 112

Figure 71: The simulation of the CRS test case. (A) the DeletePatientData event and
its variables are produced by ProB, which has been executed in the history panel... 113

Figure 72: The latest value of the variable markAsDeleted corresponds to event
execution N the CRS tESt CASE. ..uivviiiiiiiiiiiie et 113

Xviii

Figure 73: The simulation of the DS1 test case. (A) the AddConsent and
AddDataSubject events and their variables are produced by ProB, which has been
executed in the hiStory panel.........ccccociiiiiiiiiiii 114

Figure 74: The latest values of consents, dataFields, and dataSubjectConsents
variables correspond to event execution in the DS1 test case.ccccvcvvevvviiiiieennnnn, 115

Figure 75: The simulation of the DS2 test case. (A) the CallbackRequester and
SubmitRequest events, which have been executed in the history panel. (B) the
CallbackResponder and SubmitResponse events, which have been executed in the
history panel. (C) the CallbackDataTransfer and TransferData events, which have
been executed in the history panel.cccoooviiiiiiiiie e 116

Figure 76: The latest values of all state variables in the DSSM model correspond to
event execution in the DS2 test CaASE.civriiiiiiiniiiii 116

Figure 77: The simulation of the DS3 test case. (A) the RevokeConsent event and its
variables produced by ProB, which have been executed in the history panel. (B) the
list of unsatisfied and satisfied event guards corresponds to current state variables. 117

Figure 78: The simulation of the DS4 test case in the history panel. 118

Figure 79: The latest values of all state variables in the DSSM model correspond to
event execution in the DS4 teSt CASE.uueiiurriiriiiieiiiii e 118

Figure 80: The simulation of the DSS5 test case. (A) the InsufficientBalance event and
its variables produced by ProB, which have been executed in the history panel. 119

Figure 81: RPSM demonstrating how to restrict access to personal data according to
data SUDJECTS” COMSENL.vviviiiiiiie it 128

Figure 82: WASM demonstrating how to conduct the withdrawal approval process.

Figure 83: PASM demonstrating how to conduct the portable approval process. 143
Figure 84: CRSM demonstrating how to conduct the consent renewal process....... 149

Figure 85: DSSM demonstrating blockchain-based consent management in data
SRATIIIZ .. s 157

CHAPTER |
INTRODUCTION

Data privacy concerns have become more critical since the General Data Protec-
tion Regulation (GDPR) went into effect on May 25, 2018. The GDPR is the data pri-
vacy law in the European Union (EU) that empowers people (‘data subjects’) with
various rights to control their personal data [1]. It motivates people to be aware of
how their data is being used. On the other hand, businesses must rethink and redesign
their software systems to embrace data protection. However, the GDPR is written in
natural language, and most data protection articles are described in generic terms.
Therefore, it causes many businesses to struggle with identifying appropriate tech-
nical solutions for their development process to demonstrate GDPR compliance [2-4].
Nevertheless, developers find the GDPR difficult to interpret and adopt into software
systems [5, 6]. Besides, the lack of clear guidelines on how to implement data protec-
tion as a component of software systems leads to risks of confidentiality and privacy
breaches [7, 8]. Moreover, software systems that fail to comply with GDPR require-
ments face heavy penalties and fines, which becomes a significant research challenge

[9].

Most modern software systems (e.g., banking, online shopping, social media) re-
ly on customers’ data. Moreover, they may probably share customers’ data among
third-parties services to improve their products and services. The growth of data cre-
ated and processed by software systems continues increasing, as businesses should be
concerned about customers’ privacy to handle their data with ethical and legal integri-
ty. By designing a data protection mechanism for software systems, developers need
to transform GDPR requirements into software specifications. However, the develop-
ers should incorporate data privacy by design to guarantee that all software systems
embed a data protection mechanism. Privacy by Design (PbD) is an approach to de-
velopers that considers data protection upfront and integrates it as a core functionality
into software systems [10-12]. The benefit of incorporating PbD is to make compli-
ance with GDPR requirements easier [13].

Based on Article 6 GDPR, there are the six legal bases for data processing as
follows: 1) the consent indicates the data subject’s agreement that he/she has given
clearly approval for personal data processing, 2) the contract indicates that the pur-
pose of the data processing is essential to perform a contract with data subjects, and
data controllers need to examine which provisions regarding the legal basis of pro-
cessing personal data, e.g., the contract between customers of payment services, 3) the
legitimate interest indicates that data processing is essential in manners data subjects
commonly expect, and organizations use their personal data to meet its objectives,
e.g., fraud prevention, 4) the vital interest indicates that data processing is essential to

protect individuals’ life, e.g., emergency medical treatment, 5) the legal requirement
indicates that data processing is essential to perform with a legal obligation, e.g., con-
sumer transaction law, and 6) the public interest indicates that data processing is es-
sential to perform public functions undertaken by public authorities, e.g., a public
body’s tasks.

The consent under GDPR ensures data subjects’ freedom to make decisions
about their personal data. Hence without data subjects’ consent, a software system
conducts their personal data unlawfully or unauthorized. From a practical perspective,
scientific communities, private companies, and the Cyber Security Network of Com-
petence Centres for Europe (CyberSec4Europe) are pointing out that the consent and
security services successfully enforce the data protection regulation [14]. Daoudagh et
al. [2] concurred that the consent service enables organizations to manage personal
data lifecycles. In contrast, security services such as authorization modules ensure that
only the authorized user can access a specific resource (i.e., Access Control (AC)),
which brings personal data into protection within a regulatory regime (e.g., data usage
purpose, user consent, data retention period). Therefore, incorporating consent and
security services overcomes the challenge of designing software systems to support
GDPR requirements. Sforzin et al. [15] revealed that there are many research studies
for defining and implementing privacy knowledge and rules, but there is still no ge-
neric solution.

Consent management (CM) is a software component used to manage the entire
personal data lifecycle [16]. With its capability, consent management helps build
software systems that meet the GDPR requirements [17]. The key roles involved in
consent management under the GDPR are as follows: 1) the data controller is the enti-
ty, e.g., person or organization, responsible for defining policies on collecting and
processing data (Articles 4(7) & 24 GDPR), and 2) the data processor is the entity,
e.g., person, organization, responsible for collecting and processing data upon the data
controller’s policies (Articles 4(8) & 28 GDPR). Furthermore, based on the data sub-
ject’s consent (Articles 6(1a) & 7 GDPR), which are composed of four elements: 1)
the data subject shall give his/her consent voluntarily, 2) the purpose of processing
data must be specific and transparent, 3) the data controller must inform the data sub-
ject for the purpose before gathering and processing his/her personal data, and 4) the
data subject gives explicit consent for enabling the processing of his/her personal da-
ta.

Nevertheless, the GDPR expects organizations to implement privacy into tech-
nology solutions at their earliest stages of process development [18], as stated in Arti-
cle 25. At its core, the GDPR mandates only a baseline set of guidelines, not how to
embed data protection into software design [19]. To ensure consent management

mechanism as a primary component in software systems, we thus adopt privacy by
design (PbD). PbD is a concept that emphasizes how to integrate data protection into
technology as default settings, but PbD cannot be accomplished solely by data protec-
tion laws [19]. It is the philosophy proposed by Cavoukian. Besides, PbD outlines the
seven Foundational Principles, which define a set of the following guidelines: 1) it is
crucial to incorporate data protection as part of software design, 2) data protection
must be embedded as core functionality in software systems by default, 3) the system
must adopt a data protection mechanism into its architecture, 4) the system must con-
duct personal data accurately and securely without decreasing the system’s ability, 5)
the system must keep personal data and destroy it for an appropriate retention period,
6) the system must provide privacy notices for fulfilling the purpose, and it should be
clear and transparent to individuals about their personal data, and 7) the system must
respect and protect individuals’ data with regard to a high level of security.

In addition, we have addressed key issues and requirements of consent man-
agement for centralized systems (Table 1) and data sharing in distributed systems
(Table 2) related to GDPR. This study aims to fulfill the requirements derived from
the literature partially. Data controllers can gather consent from different types of
channels, including websites, mobile applications, web forms, and various marketing
platforms, which makes it difficult to process the collecting of informed consent from
the data subject [20]. In this thesis, we focus on constructing formal models divided
into two primary purposes: 1) consent management for centralized systems and 2)
consent management for data sharing in distributed systems. These two types of con-
sent management are essential for businesses collecting, processing, and sharing per-
sonal data. Centralized consent management enables privacy processes centralization
to conduct the lifecycle of individuals’ data concerning data protection regulations. In
contrast, distributed consent management enables secure data sharing by limiting ac-
cessing personal data within given consent and capturing audit logs for every activity.
We thus adopt blockchain technology to conduct data-sharing processes with higher
reliability and security. In doing so, we set out primitive CM operations to fulfill is-
sues and requirements for both centralized and distributed consent management, in-
cluding manipulating data subjects’ consent, restricting access to authorized personal
data based on the data subject’s consent, enabling data subjects to revoke consents,
enabling data subjects to request portable their personal data, and allowing data sub-
jects to renew their consent for continued use of services and products offered by ser-
vice providers.

Formal methods are essential and reliable for achieving data protection. They
use a mathematical approach to model and verify a software system specification to
guarantee its correctness [21, 22].

To guarantee the correctness of the models, we used the Event-B formal method
[23, 24]. The benefit of using Event-B is that it provides an automated tool called Ro-
din Platform, which supports developing and checking various models [25]. The Ro-
din Platform is a model development tool based on Eclipse-IDE that offers useful
plugins such as a proof obligation generator, provers, a model-checker (ProB), etc
[26]

‘T6€ 'gg ‘LT] wiaishs
9JeANJ0S By WOoJJ Blep Jeuosiad aAoOwWSI PINoys Ja[j041uod elep ayl usyl ‘poll
-ad uonuajal 3yl pualxa 0] uondslal Ja1Je Aressadauun si eyep feuosiad ay J|

‘Tzt] wasuoa eu1biio ay1 yum wajqoid ebs) 1o 191|Juod
OU SeM aJay] ‘quasuod Bulubis-al Jo ased ay] U] "S8aurISWwnaII 8yl Jo uosiad
ul 19alqgns eyep ay1 Apnou Aew Jorebnsaaul ue 19algns erep ayl JuUssu0I-al 01

Ttv] (4das 12 819n4v) erep Jeuosiad Jay/s1y ssadoid 0}
Buinuniuod 1oy Jajj043u02 B1ep 3aY) 01 193lqo 01 1ybLI ay) sey 103lgns eyep ayL

‘wisiu ‘Toz] saa1nuas pue sjonpoud ayl Buisn anunuod
-BUJ3W [emaual JUssu0d e apiAo.d [feys waisAs ayl | 01 porad uonualal ayl pusixe 01 19algns eyep e Jayjo Aew Js||011U0d Blep 3yl [emauay
Trv] (4das (9)zT ajonivy) 19alans erep ayy 01 paignsnl aq ued uoisnyal auyy
J1 ATuo 3sonbai s,303[qns e1ep B 9snJoI 0} PIMO[[& OS[. SI IO[[0TU0D BJep oY [,
‘wsiu Tov "e€ 8Tl (4dd9D 0z 312
-eyodaw [enosdde ajqgeriod e spinoud |jeys WaisAs ayl -11y) e1ep Jeuostad J1ayl Jo Adod e aA1823. 01 JybBi 8y sey 19algns e1ep sy a|qellod
‘[6€ ‘g€ ‘/T] waisAs ayy wo.y elep jeuosiad anowal pjNoys
19]]0J1U09 elEP BY) Usy] ‘[emelpylim Jalje Alessadauun si elep Jeuostad ayi 4|
Teel (4dao zv 1endey)
108[gns eyep sy 0] sadusanbasuod [eluswWILIBP Aue INOYIIM UMRIPYIIM JO pasny
-aJ 8 Ued sjonpo.d pue S39IAJISS TRy} a1eaISUOWap ISNW J3]|0JIU0I BIep ay L
wisiue Te€ "8el (4dao (€)L a0
-yoaw Jenoidde [emeipyiim e apinoid [eys WBlsAs ayl | -1Uy) awil Aue e Juasuod Jay/siy melpyiim ol 1ybu sy sey 12algns erep ay [emeIpyIAN
"Juas '[2€ “9€] erep Jeuos.ad Jo Junowe

-u09 uaAIb e uIyIM splaly erep paulapaid 0] Buipiodde
passooo1d pue pejos[[0o 9q [[I4 J1 PUE ‘BJep S [BNpIA
-1pul Ue Jad 1sanbal awn-auo e aulgep [[eys WalsAs ayl

AAISSEW B JO [BA31II34 3U] YIIM Pasealoul Sey Uoeaiq elep e Jo 3Su ayL

‘[Ge] erep jeuosiad Aressadsuun Jo bBuissadoud
puUe UOI193]]02 3] YlIM pasealdul sey suole|olA siybu [enpiAlpul Jo si ayl

[eA31112] BIEp SPI0Ja] PaloLIsay

"JUaSU0d USAIB & uIylim elep

Jeuosltad Buissasoud pue Bunas|o Jo sanijigisuods
-aJ pue s3]0 113y} 0} BUIpI0IR PIAJOAUL SISP|OYSMEIS
ubisse 01 19]]041U02 BIRP B MO]Je ||BYS WaISAS ay L

"[€-2€] slenpiaiput 1oy swopaaiy pue sysi 03 pes)
Aew sasodund paiyioads Ajjeulbiio puoAaq eiep jeuosiad Buissasoid pue Bul
-199]]02 3Y1 Ul PaAJOAUI S3111IUS 8y} Jo Alljigisuodsal pue ajol snonbiquue ay L

]0J1U0J SS|JJY

"elep [euoslad Jo
Buissasoid pue Bu1199]]03 JaYLINg J0) parepuew Alljeuon
-ouny Juawabeuew JUSSUOI 8yl aUIaP |[eys WalsAs ay L

‘[1e-62] passado.d pue pa1oa]|0d
Buiaq e1ep [euos.ad Jay/siy JSAC JUSSUOD puUR [011U0I UeD 193[gns elep ayL

I8z ‘2z "LT] swSu srenpiaip
-ui sajejoIn Ajqissod a]9A2a41] elep [euostad ay) Jo Juswabeuew Jo 4ol ayL

asod.und
211193ds & uo paseq elep Jeuostad Jo
Buissasoid pue U0I1193]109 10} SBINY

JuswaJlinbay

anssj|

aido|

'SWa1SAS pazijel1uad 1o) sjuswalinbal se sanssi palejal-lustuabeurul Jussuo) T a|qel

“eyep Jeuosiad Buisn yim pajeidosse 3sii ayl
dziwiulw 0] eyep paziwAuopnasd asn [[eys WwalsAs ayL

Tts-6v "LvI srenpin
-1pul Buiziubodai 01 peaj Aew Bulreys e1ep Ul UCIRIIIIUSPI 19311P JO YSH 8y L

elep [euosiad

"e1ep pateys AIaAs UO s19|
-]011U09 e1ep 8L Buowe uonoelsul asuodsal-1sanbal e
pJ023l 0] WISIUBYI3W 11pne ue apIaoid |[eys WalsAs ay L

‘Tov ‘s ‘0z] 1uasu02d uaAIb ay) ulyIM elep Jeuosiad
Jay/s1y 01 ss8d2e UO paseq sHpne waogad 01 8|ge aq |eys 198lgns erep ay L

‘[2¥ e "0z] suonoesuen Jo A
-01S1Y 8y} Uo 1uasedsue.) pue sjqeINwWI aq pjnoys abeis uoIssiwsue] Yyoes 1e
pap.J0dai S19[]0.u0d eyep se sjuedionred syl usamiaq eep jeuosiad Bulieys

saIMANe Yoel) sBoj Ipny

"JUaSU0J Jay/sIy Maual ued 19algns erep ayl yoIym Aq

‘[8¥ ‘0z] e1ep Jeuosiad Jay/siy Burleys snunuod

WISIUBYIaW [eMaUaJ JUasuod e apinoid [[eys wialsAs ayl | 01 poriad uoljualal ayl puslxe 03 12algns eyep ayl yse Aew 1s||0J3u02 Blep a8yl |emausy
"JUasSuU0?d
Jay/s1y mepynm ued 103fgns eep ays yaiym Aq wsiu ‘[8¥ ‘0z] swn Aue
-eUJ3W UOI1RI0ABI JUBSUOI e apIAoid [[eys Wa1sAs ay L Je e1ep euostad Bulieys dois 01 JUSSUOD JBY/SIY 3X0A8) urd 198lgns eiep ayL JemelpyIAn

"JUasU02 Ud
-n1B e ulyum spiaty exep pauijapaid 0] Buipiodde pareys
9q [[IM 1 pue ‘ejep s [enprarpur ue 1od uonoeoul
asuodsai-1sanbal awin-auo e aulyap |[eys weisAs ayl

fev ‘2
‘g¢] erep euosiad Jo JunoWe WNWIUIW ay] SaJeys Ajuo Jajjouod elep ayl

Tzv 'Ge] erep jeuosiad A1essadau
-un Jo Burteys syl YiIm paseaiaul Sey UoIe|oIA SIyBi [enpIAIpUI JO YSI 8y L

[eA31112] BIEp SPI0Ja] PaloLIsay

"JUaSU02 U3AIB & uIylIm elep [euosiad areys pue 1sanbal
0] SJ9]j01u09 eep Juedionied sjgeus [eys WaISAS ay L

Tev "0z s1911011U03 BlEp UBaM]
-8 eJep [euosiad Jaysuel) 0} JUBSUOI Jay/s1y apiaoid [eys 193lgns eyep sy L

]0JJU0J SS|JJY

"M40MIBU B UIYlIM elep Bulreys pue Buiplodal Jo Aous
-Jredsuea) pue A1LIN2as pazijesuadap Buljqeus Aljeuon
-ouny JuawabeuewW JUSSU0I aYl aUIaP |[eys WalsAs ay L

‘Tov ‘st ‘v ‘0zl paieys
Buiaq e1ep [euos.ad Jay/siy JSAC JUSSUOD puUR [041U0I UeD 193[gns elep ayL

Tsv-ev “0z] Apuaredsuen pue ‘Kjaan
0943 ‘A]21n23S JUSWIUOIIAUS PaINgLIISIP B Ul Blep [euostad pue Juasuod ule)
-urew pue urelqo 03 si Burieys eyep ul Juswabeuew Juasuod Jo abus|ieys ayL

asodind 2o1j10ads e uo paseq
e1ep |euosiad Jo Bulieys 1oy sajny

JuswaJlinbay

anssj|

aido|

"sWwialsAs painqLisip ul Bulieys eyep 1oy sjuswalinbal se sanssi pajejal-1usualeuewl JUssU0) :Z a|geLl

1.1. Objective of the Work
The objectives of this study are as follows:

1.1.1. To construct formal models used as guidelines for software development
on the aspects of consent management based on centralized systems to ful-
fill GDPR requirements.

1.1.2. To construct formal models used as guidelines for software development
on the aspects of consent management based on data sharing in distributed
systems to fulfill GDPR requirements.

1.2. Contributions

e This study reduces the ambiguity of software design in consent management
functionality according to the GDPR, which can lead to broader and more con-
sistent adoption of the standards outlined in the law.

e This study provides class diagrams as clear guidance on how to incorporate
consent management functionality into healthcare systems.

e This study provides a Python REST API accessible to smart contracts for ena-
bling consent management in data sharing, called SmartDataTrust.

1.3. Research Methodology

e Conduct a literature review.

e [dentify recent literature trends related to formal consent management models
according to GDPR compliance.

e Study related works in formal models for consent management, GDPR require-
ments, and use cases cover the lifecycle of consent management.

e Set up the Rodin Platform for the Event-B method and practice how to construct
a model to verify its correctness.

¢ Define state machines and identify GDPR articles that they covered.
¢ Develop complete formal models for the research question.

e Verify formal models’ correctness using the Rodin Platform with no invariant
violations and deadlocks found.

¢ Transform formal models into class diagrams.
¢ Publish two journal articles relating to the work.

e Prepare and engage in a thesis defense.

CHAPTER Il
RELATED WORK

Data privacy is becoming increasingly important to consumer data protection as
technology gathers so much data. One significant privacy issue is that developers lack
an understanding of GDPR and PbD concepts, which leads to software systems not
being designed and developed from the perspective of data protection requirements
[5, 6]. There are numerous studies on the challenge of implementing data protection
into software systems from the perspective of laws [4, 9, 18, 19], computer science 3,
16, 17], and software engineering [2, 5-8]. Schupp [52] pointed out that formal meth-
ods play a significant role in supporting PbD, but half of the academic papers pro-
posed formal methods without demonstrating the implementation of their approach.
As for the other half, they demonstrated a few examples that could guide developers
to implement privacy-preserving systems. Hence, there remains a lack of clear soft-
ware development guidelines for implementing data protection.

Several relevant publications on using formal methods in data privacy did not
consider GDPR and consent management as part of their models. To begin with,
Matwin et al. [53] proposed an approach that empowers individuals to take control of
their privacy in data-mining programs. This privacy-preserving data mining approach
used the Coq theorem prover [54] to prove the properties of data-mining programs,
e.g., Weka [55]. The Coq is an interactive formal proof to assist in developing mathe-
matical theories and formalizing the system’s correctness. The authors first translated
programs into logic expressions of theorem provers to specify the privacy properties.
Then, they constructed a model and defined a set of permissions for limiting access to
a program’s properties according to the owner permissions. Figure 1 shows the archi-
tecture of their proposed model. It begins with the user C assigning permissions P.(D,
A) to an algorithm A4 for determining whether actions can take with his/her data D.
When the developer modifies 4 with its source code S and builds it into a binary exe-
cutable B, the trusted organization Veri checks whether R(P,, S) is a proof of a theo-
rem T(P., S). B is the executable of S with respect to the user’s permissions by the or-
ganization responsible for processing the user’s data. The limitation of the approach is
that it cannot express data properties syntactically in formal logic. However, this pro-
posed model can be used as a starting point for verifying privacy policies in data-
mining programs.

Stouppa & Studer [56] revealed that the main challenge of data privacy is to
share a portion of data while protecting personal data. The authors proposed a theoret-
ical framework to protect personal data exposed to public views by restricting the
privileges of all users in relational databases and ontology-based information systems.
They defined the query answering problems in first-order ontologies under the logical

entailment and explained how to apply their model in a telecommunication company.
To begin with, the company offers end-users to find phone numbers through search
engines, but some customers want to keep their phone numbers private. Therefore, the
model should define a set of queries Owns(cust;, Tel), where Owns indicates the rela-
tionship between a customer cust; and his/her phone number 7el. Then, when a user
executes a query to retrieve a customer’s phone number, no result is returned by the
query for every possible interpretation, indicating that the customer’s phone number
has been protected. However, the proposed framework does not cover the case of
boolean queries because it does not apply to ontology.

P (D, A) ‘ > Check | | Check
‘ ' Source | . Binary ‘
,,,,,,,, e E

C K Veri
[I I J
S T(P..S) R(P.S) , B
TR o T ST ERTe >

Dev Org

Figure 1: Demonstrating the architecture of the Matwin et al.’s model (Figure 1 of

[53]).

According to Ni at el. [57] data privacy has become increasingly important for
consumers, organizations, researchers, and legislators. The study aimed to address the
problem of using traditional access control over data privacy. The authors proposed
Privacy-aware Role Based Access Control (P-RBAC) to enable the authoring and
conducting of privacy-aware access control policies. The P-RBAC extended from
RBAC to provide fully supporting complex privacy-related policies. The RBAC is a
security approach restricting system access to all users with their roles to perform on
specific resources but does not endorse privacy protection requirements. As for P-
RBAC, the privacy policies were mapped as permission assignments (PAs) which be-
longed to roles (Figure 2). However, the relationships between PAs and roles are
many-to-many and may cause conflicts among PAs within user roles in various condi-
tions. The authors then provided an algorithm to solve the conflict of PA by improving
the rules of Enterprise Privacy Authorization Language (EPAL) [58].

In the data-driven age, big data has become one of the major areas of data man-
agement to deal with massive data sets for supporting analysts and decision-makers.
The organizations involved in processing vast amounts of data are concerned with

10

privacy issues, and data breaches may affect their businesses. Blake & Saleh [36]
suggested that formal methods significantly impact privacy-preserving in big data and
its applications. The authors argued that the challenge of protecting sensitive data in
big data is that misconduct with pieces of data causes to violate users’ privacy. Data
integration is the essential process in big data for combining heterogeneous data from
multiple sources into a data warehouse using the Extraction, Transformation, and
Loading (i.e., ETL) process. In the data integration staging area (Figure 3), the au-
thors suggested adding test procedures based on formal methods to validate the con-
formance of data protection in four specific areas: 1) Pre-Hadoop process validation,
which determines what data is sensitive and how long to keep data in the data prepro-
cessing step, 2) Map-Reduce process validation, which lowers the risk of a data
breach by retrieving massive data and limits sharing only the minimum amount of da-
ta among processes where is necessary, 3) ETL process validation, which verifies pri-
vacy-related policies and unlinks personally identifiable information before loading
into a data warechouse and, 4) Report testing process, which verifies the visibility
permission of sensitive data in report forms based on particular purposes.

P-RBAC Permissions |

Purposes

A
Purpose Binding
B AN

Users <«UA» Roles <« PA-»! Objects < —» Conditions

g
Yy

Actions «—» Obligations

. RBAC Permissions

Figure 2: The P-RBAC model architecture (Figure 3 of Ni at el. [57]).

In another study, Abe & Simpson [59] pointed out that the concept of privacy
has captured more attention in people’s lives but needs to be more specific. The au-
thors argued that formal methods play a significant role in certifying a variety of data
privacy contexts. They proposed a formal model to protect against unauthorized ac-
cess for sharing data among processes in distributed systems based on the United
Kingdom’s Data Protection Act (DPA) 1998 [60]. They first defined the disclosure
processing based on a single system that works internally related to a data controller.

11

Big Data Testing Focus Areas
Reporting using Bl Tools
- '
= 2
Bar graph v
Enterprise Data H
. Warehouse K
- ~ uw
4 2
Big Data Analytics , ReportsTesting g
A -~ <
Processed Data 3) ETL Process g
| validation 5
-
Q. Pig HIVE F 4
8 ETL Process 2
Map Reduce =
= HBase (NoSQL DB) (Job Execution) ~=— (2) Map-Reduce 3
- 1 process validation -
Al e HDFS (Hadoop Distributed File System) &
T
—_— =
1 Pre-Hadoop - i 3
process validation Dot Load using Sqoop E
. Slreémmg X Transactional
Wb Loge ‘ Data ‘ Social Data Data (RDBMS) 4

Figure 3: The architecture of big data testing areas (Figure 2 of Blake & Saleh [36])

The model was composed of five processes (Figure 4):

. Parameterisation (PAR) defines the parameters as a guideline in each aspect
of individuals’ data processing designated by the data controller, e.g., extract
parameter (extparam), render parameter (renparam), test parameter (tes-
param), and disseminate parameter (disparam).

. Extraction (EXT) extracts personal data according to the variable extparam,
e.g., the data source’s location, the characteristics of data extraction, the
workload applied during the extraction, and the method used for extraction.
After the processing task, the result produces the extraction of personal data
and holds in the variable extdata.

. Rendering (REN) controls the visibility permission in personal data based on
the variables extdata and renparam (e.g., the methods used for rendering and
intensity visible and the characteristics of visible data). After processing, the
result produces the personal data visible and held in the variable rendata.

. Testing (TES) evaluates the data quality according to the data controller’s pol-
icies and uses the extdata, rendata, and tesparam variables as inputs. The fes-
param is used to control the testing process for determining the risk of violat-
ing individuals’ privacy. After the processing task, the result produces the
testing results that perform on the extdata or rendata variables.

. Dissemination (DIS) performs the data transmission based on the extdata,
rendata, and disparam variables. The disparam is used to determine the data
transfer location and mode of transfer. After the processing task, the result in-
dicates that personal data has been transferred.

12

() A [render])
o—> PAR == EXT }9 —> REN

[not render] J/

A\ [ltest]

/ H‘ TES \

[not test] \L

e DI <« <

_ -

N
<

Figure 4: The architecture of disclosure-processing (Figure 1 of Abe & Simpson

[59)).

The authors added security constraints into the model, which were composed of
three major parts:

1. Determining permissions to prevent inappropriate disclosure, which combines
the relationship between actions, resources, and process identifiers (PID).

2. Restricting system access to authorized users based on Role-Based Access
Control (RBAC).

3. Determining a designated source of personal data to be processed.

In doing so, the authors formalized the model using Z notation and verified its
model with ProZ. The Z notation is a modeling-oriented method used to describe the
behavior of systems in mathematical terms [61], while ProZ is a model checker to
generate test cases, and check reachability, deadlock-free and invariant violations
[62]. Therefore, the model result indicated that the data controller’s obligations were
satisfied by system specifications.

Consent is one of the primary lawful bases for processing personal information
under the GDPR. Many studies have shown that consent is essential to allow individ-
uals to track their personal data being used and revoke consent at any time they desire.
Besides, there are numerous publications about consent management on centralized
and distributed systems, but most of the studies do not apply formal methods. On the
other hand, several studies incorporated consent management into software systems
using formal methods to ensure correct behavior. For example, Besik & Freytag [63]
focused on healthcare privacy and utilized Business Process Model and Notation
(BPMN) to model clinical workflows. This study aimed to employ privacy-preserving
mechanisms in existing non-privacy-aware workflows for a newborn screening sce-
nario. In the model, privacy awareness was defined as privacy rules of workflows

13

based on privacy concepts, e.g., GDPR principles, privacy policies, and privacy pref-
erences.

Figure 5 demonstrates the overview of their proposed solution, which divided
into three parts:

1. Creating ontology based on privacy concepts that represents knowledge-based
systems. The BPMN is used to connect activities, events, and gateways of
clinical workflows related to the privacy ontology. In this study, there are
three sources of privacy concepts:

1.1. The GDPR principles, which cover some articles, e.g., purpose limitation
(Article 5(1b)), data minimization (Article 5(1c)), consent validation
(Article 6(1a)), and data retention (Article 5(1¢)).

1.2. Privacy policies, in the context of software design, a statement that speci-
fies the data to be processed, for what purpose, who is responsible for
processing data, and how long data can be obtained.

1.3. Privacy preferences, which allows patients to grant who can or cannot
access their data based on given consent. Besides, patients can determine
their consent duration.

2. Formalizing privacy rules based on privacy policies and privacy preferences.
2.1. Formalizing privacy rules, which states as follows:

2.3.1. Privacy policies of consent PC, which contains consent rules de-
fined as 2-tuple (purpose, requiresConsent). The purpose indicates
the objective of data processing, while requiresConsent is a mem-
ber of the boolean (i.e., true, false) indicating whether the pro-
cessing of personal data requires consent.

2.3.2. Privacy policies of retention PR, which contains rules of retention
upon specific purpose defined as 4-tuple (user, purpose, data, re-
tention). The purpose is defined the same as consent privacy poli-
cies, while the other three variables represent as follows: 1) the
user indicates end-users which can be either individuals or organi-
zations, 2) the data indicates a set of data objects, and 3) the reten-
tion indicates the duration of data to be stored.

2.3.3. Privacy policies of data minimization PD, which contains data
minimization rules defined as 4-tuple (user, purpose, data, condi-

14

tion). The first three variables are defined as retention privacy pol-
icies, while the condition indicates additional constraints regard-
ing the data-usage objective.

2.2. Formalizing privacy preferences rules

Privacy preferences R, which contains data subjects’ preferences
defined as 8-tuple (dataSubject, user, purpose, data, condition, duration,
status, entryDate). The variables user, purpose, data, and condition are
defined the same as data minimization privacy policies; while the other
four variables define as follows: 1) the dataSubject indicates a set of in-
dividuals whose personal data is being used, 2) the duration indicates the
period of the data subjects’ preference, 3) the status indicates whether
the data subject allows the user to access his/her personal data, and 4) the
entryDate indicates the creation date of the privacy preference.

3. Verifying compliance with GDPR principles and integrating privacy aware-
ness into existing clinical workflows.

Privacy Privacy Privacy
Principle Policy Preference

(2) Formalize
Privacy Rules

Clinical Workflow

D
bl
O-{__}»0
Lo =

(1) Integrate
Concepts &
Build Ontology

PaCW
Ontology

e

Formal
Privacy
Rules

(3) Check Privacy
Compliance
& Transform in PaCW

Privacy-Aware Clinical Workflow

§

/] Burpose,

O-&—{ 10
ﬁ’i % / g

| purpose,
. |data

Figure 5: Conceptual diagram of privacy-awareness clinical workflows (Figure 1 of
Besik & Freytag [63]).

The authors first formalized data-aware workflows in process modeling nota-
tions of BPMN. The data-aware workflow is a directed graph with vertices (compo-

15

nents) C and edges (sequence flows) F. The C represents a set of components and
contains disjoint sets of tasks 7, events E, data objects D, and gateways G, while the F
is a subset of C x C, representing the connection between source and destination
components. Besides, each task 7 is linked to a data object D, and every access is re-
quired to verify the given purpose p, representing an ordered pair (D, p). Finally, the
authors created algorithms written by formal annotations to fulfill privacy concepts.

In the study conducted by Tokas & Owe [64], they proposed a formal frame-
work for consent management that enables data subjects to modify their privacy pref-
erences through a distributed system. In addition, the framework partially covered
some of the GDPR articles, which comprise data protection principles (Article 5
GDPR), lawful bases for processing (Article 6 GDPR), data protection embedded into
design (Article 25 GDPR), and data subjects’ right to request access to their personal
data (Article 15 GDPR). The authors defined the relationship between a data subject
and a specific purpose as a 2-tuple (subject, purpose), called data tagging. Data tag-
ging was defined to restrict personal data based on purpose in methods associated
with privacy-preserving. The privacy policy is a statement written in natural language.
However, it is difficult for machines to understand. So, it needs to be transformed into
program entities or machine-readable code with the policy and consent specification
defined as the relationship between principals P, purposes R, and access rights A4 as 3-
tuple (P, R, A). First, the P represents a principal that denotes personal data that can be
accessible, and its object or interface corresponds to a principal. An interface is a con-
tract among classes with the inheritance hierarchy to be publicly exposed. Second, the
R represents the purpose of conducting personal data. Third, The 4 represents an ac-
cess right that denotes permission to perform a specific operation (e.g., read, write,
modify, full control) on the object.

For example, consider the personal health data with a tag {(Lilly, treatm)}, and
consented policies in the object Lilly are (pos(Doctor, treatm, full control),
neg(Sompong, treatm, read)). However, in the positive policy, this setting indicates a
Doctor has complete control of Lilly’s health data within the freatm purpose. On the
other hand, in the negative policy, Sompong is a Doctor and cannot read Lilly’s health
data.

Therefore, the policy and consent specification is a set of rules that aim to pro-
tect individuals by limiting the use of their personal data, written in Backus-Naur
(BNF) notation [65]. The framework provided classes and interfaces to obtain indi-
viduals’ privacy settings. The developers are required to implement the interfaces and
classes to incorporate consent management into the system. In addition, the frame-
work ensured that each access request to personal data corresponds to the current con-
sent policies.

16

For other aspects of research consent management, Hyysalo et al. [66] proposed
Consent Management Architecture (CMA) which provides authorization context of
different data sources for securing access to health services following the strategy and
principles of MyData [67, 68]. The CMA was designed to fill the gap in the following
requirements: 1) data subjects own the right to control their personal data, 2) data
should be easily accessible and usable, 3) there should be a means to transform busi-
ness entities exposed to a useful resource as new services that are identified via URIs,
4) the infrastructure shall provide personal data sharing and guarantee that personal
data can be shared safely between public and private organizations comply with the
GDPR, and 5) data subjects can switch service providers.

Figure 6 describes the CMA framework and its APIs, which is divided into
three major parts:

1. Operator(s) are responsible for managing accounts composed of Authoriza-
tion and Protection APIs. The Operator(s) here provides interfaces for ac-
count verification across different data sources, service providers, and indi-
viduals. The Authorization API provides an interface for Data sink API to
generate/refresh the proof key of the authorization based on active consent,
while the Protection API provides an interface for Data source API to validate
consent.

2. Sink(s) provides the Data sink API as an interface for end-users to manage
consent and access their personal data. For any request, the Data sink API
shall be executed, after verifying the proof key of the authorization via Au-
thorization API.

3. Source(s) are responsible for managing consent and personal data composed
of Data and Data source APIs. The Data source API provides an interface for
other data sources to manage consent, while the Data API enables an inter-
face for Data sink API to retrieve personal data from the source with the re-
source identifier.

Therefore, the authors implemented minimum operations for proof of concept of
CMA. The framework was developed using Flask in Python to build REST API and a
web application. As for data management, they used the SQLAlchemy toolkit for
managing connectivity and mapping table columns to object properties in an SQLite
[69] database.

17

Figure 6: The CMA framework and its APIs interaction comply with GDPR and
MyData approach (Figure 1 of Hyysalo et al. [66]).

Similarly, Marillonnet et al. [70] proposed human-centric architecture for sup-
porting consent management by accessing e-government services of the Territorial
Collectivities and Public Administration (TCPA). These TCPA are local and national
government officials that provide e-government services for their citizens. Citizens
shall submit some regulated document requests, €.g., renewing official documents,
requesting allowance documents, and registering for local services. The benefit of e-
government services is to provide citizens the ability to ease access to digital public
services. In doing so, citizens shall give Personally Identifiable Information (PII) to
TCPA with the required data for personal data processing. The authors argued that ex-
isting solutions did not address issues related to PII in the context of TCPA. Such is-
sues are that the user’s consent must be strictly considered regardless of PII’s original
location. In addition, the solutions must address the heterogeneous system cooperation
with various sources, and the verification of remote sources needs to be determined if
sources are reliable in providing users’ PII. This study aimed to design consent man-
agement incorporating the PII data lifecycle to fulfill TCPA requirements.

The authors defined the system model with four major parts:

1. Actors in the use case are defined along with their roles in an involved envi-
ronment, which is divided into four actors:

1.1. The citizen with a user account can submit regulated document requests
to TCPA online services. In addition, the user can keep track of his/her
request through the platform.

1.2. The PII manager is responsible for enforcement of the user’s consent and
verifying the trusted sources.

1.3.

18

The TCPA User-Relationship Management (URM) is a service provider
to help create trust among users and PII managers.

1.4. TCPA or third-party service providers maintain the data sources.

2. Environment Hypotheses indicate the use of experiments for enforcing data
protection regulations based on production environments. The authors sepa-
rated into two different hypotheses:

2.1.

There should be rules and policies for accessing PII operators, which
many PII managers host. Besides, the users would be asked voluntarily
to select the operator of their PII manager.

2.2. The TCPA should arrange PII managers’ authority using a public-key in-

frastructure (PKI).

3. Functional Requirements describe the product features that systems shall of-

fer. In this study, they defined a list of non-exhaustive functional require-
ments related to PII management as follows:

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

Usage definition allows the data subject to specify the purposes designat-
ing the PII collection.

Consent management allows the PII manager to monitor access to PII
only if users provide their consent.

Usage monitoring allows the data subject to designate his/her own met-
rics for PII consumption on any TCPA service. This monitoring provides
a view of users’ PII usage on any TCPA service.

Delegation capabilities provide the PII manager to decide whether to
grant access to the PII based on the user’s consent, even if the user does
not connect to the platform.

PII location abstraction allows the PII manager to assure the manage-
ment of PII regardless of the actual source of the PII.

Protocol standardization enables the PII manager inquiries with a generic
interface leaning on standard protocols of PII management.

Access uniformization facilitates data access from multiple PII data
sources in the same manner.

19

3.8. Authorization protocol interoperability provides identity management
protocols based on access mechanisms and authorization schemes by en-
abling multiple remote sources.

4. Technical Hypotheses indicate the use of experiments for technical support in
platform development, which considers four types of sources:

4.1. Plain OAuth 2.0 provides a user to authorize TCPA services to load the
PII from remote sources.

4.2. SAML 2.0 identity providers enable a mechanism for passing user au-

thentication and authorization across multiple secure domains along with
Single Sign On (SSO).

4.3. HTTP basic authentication is used to restrict access to REST sources by
an identified user.

4.4. Kerberos protocol is a network authentication protocol that verifies the
identity of resource servers using a basis of tickets.

Figure 7 and Figure 8 demonstrate the design of a multi-service-based architec-
ture for consent management. To begin with, a user has access to a user-centric PII
management zone (Figure 7) to manage his/her PII, authorized sources, and their
consent for any URM platform. The user first gets a ticket granted from the PII man-
ager (Figure 8). When the user’s identity and consent are specified, the PII manager
issues the access token by the ticket, which scopes on the requested resource. The au-
thors implemented a prototype design of the PII manager in a URM platform with
minimum operations for proof of concept using the Django web framework in Python.

PII manager

PII managent
user interface

% User manages their PII, the
authorized sources, and their

O consent receipts
User-centric @

management zone User

Figure 7: The interaction between a user and a P1l manager (Figure 1(d) of
Marillonnet et al. [70]).

20

Data accountability is crucial for data sharing in distributed systems.
Nevertheless, data access and sharing come with the risk of privacy breaches.
According to the IBM Security Report [71], the global average cost of data breaches
has risen to a new high of $4.35 million, a climb of 13% over the past two years. The
increased data breaches cause people to question existing personal data collection
techniques. In addition, each audit record can potentially point to the causes of data
breaches. The difference between distributed systems and blockchain is that
distributed systems require trusted machines that administrators control, while
blockchain technology enables a distributed ledger that records and shares immutable
transactions between untrusted parties in a verifiable way and is permanently visible
to all parties.

User URM platform PII manager

Request involving PII retrievial

Unauthorized BII access request on PII retrifeval endpoint

UMA permission ticket

Triggers juser redirection on PII manager

Authentication ahd consent obtention on rgsources for scopes linked to permission ticket

Consent granted and access token obtained
R e T :

OAuth 2.0 acccess token with adeqpiate scopes
._______________>

=

equest is being processe

-

Figure 8: The sequence diagram of user authentication and consent collection on the
P11 manager (Figure 3 of Marillonnet et al. [70]).

Numerous studies are based on blockchain-enabled smart contracts to fulfill the
privacy gap and mitigate trust concerns in consent management. Daudén-Esmel et al.
[72] argued that the text of legislation regulations does not demonstrate how
transparently the data subjects have signed this consent. Besides, most data subjects
are unaware of their rights, nor do regulations provide guidelines to respond when
their privacy has been violated. The authors proposed a lightweight blockchain-based
GDPR-compliant personal data management system to fill this gap. This study
focused on a human-centric approach, which allows data subjects to determine data

21

usage permissions based on their consent leveraged using smart contracts in
blockchain. Smart contracts are programs live on the blockchain, which execute once
specific objective criteria are met [73]. Therefore, the authors presented a conceptual
design and system architecture for personal data management under GDPR
requirements. Hence, this proposed architecture enables open-access permanent
evidence that records the agreement between data subjects and service providers
relevant to personal data usage.

Three requirements drive the proposed architecture:

1. GDPR requirements cover some articles, e.g., data controllers and data
processors need data subjects’ consent to begin processing personal data
(Articles 6 and 12), systems need to identify who is responsible for
processing the personal data (Article 13), data controllers must be able to
prove that they obtain data subjects’ valid consent (Article 7), data subjects
shall be able to adjust which personal data can be collected (Article 18), data
subjects shall be able to revoke their consent at any time (Articles 21 and 22),
and data subjects shall be able to request for deleting their personal data
(Article 17).

2. Functional requirements consist of three elements: 1) the architecture shall
decrease the number of interactions between the system and its actors (i.e.,
lightweight interactions), 2) the architecture shall support consent
management on distributed systems, and 3) the consent agreement has been
activated and cannot be deleted except for modification.

3. Security and Privacy Requirements consist of six elements: 1) no actors can
process any personal data without permission from data subjects, 2) actors
have to prove themselves who they are, 3) active consent agreements cannot
be unaltered, 4) no actors can disclaim their action on the system, 5) the
system must enable audit logs of all events and provide unmodifiable logs to
demonstrate its transparency, and 6) the system shall not obtain personal data
and neither provide any information leading to identifying data subjects.

Figure 9 shows the system architecture overview. First, a data subject
subscribes to a data controller to use its services. The data controller then creates a
new consent smart contract indicating whose personal data can be collected and how
long to keep it. As for access to the service, the data subject has to grant his/her
permission to the data controller to collect personal data via the consent smart
contract. The data controller then has permission to obtain this personal data in off-
chain data storage. After receiving the request from a data processor, the data
controller creates a new purpose smart contract. If the data subject accepts the

22

agreement of processing purpose via the created smart contract, then the data
processor has permission to process personal data. Finally, the supervisory authority
shall be able to look into the audit logs to check whether the data controller and data
processor have violated data protection regulations.

....... = ata\/dat Supervisory
! : Authority
i Data Processors
Data Subject Data Controller processing bus O

subscribe request X

CBG 1 : |
request ! audit
3)Grant Consent ' data : QD

. data \
Grant <7> New Collecting access\10 A4
Consent (7 |)
Consent ' 9

: —
New Processing S
<6 Consent

Data Recipient

check validity
v

wa
N E_B__ __________ 1 Blockchain
L Platform
Consent Smart Purpose Smart
Contract Contract

Figure 9: System architecture of personal data management on the blockchain (Figure
1 of Daudén-Esmel et al. [72]).

Therefore, the authors implemented a prototype of the proposed architecture by
using smart contracts and deploying them on the local blockchain.

Similarly, Merlec et al. [74] worked on a human-centric approach to design
dynamic consent management to enable data subjects to control their personal data
usage purposes through smart contracts on a blockchain. Besides, the authors pointed
out that centralized systems lack trusted data provenance, transparency, and
accountability. The main contribution of this study is the proposed smart-contract-
based dynamic consent management system (SC-DCMS) that adheres to the legal use
of personal data under GDPR requirements. The proposed architecture covered some
articles, e.g., the definition of personal data (Article 4(1) GDPR) indicates a piece of
information that could lead to identifying a living person, the operations performed on
personal data must rely on the basic principles for processing personal data (Article 5
GDPR). Moreover, consent is a legal basis that empowers data subjects to control
their personal data (Articles 4(11) and 7 GDPR).

23

Figure 10 shows the system architecture overview, which is divided into three
layers:

1. Personal data layer enables decentralized applications (Dapps) to provide a
user interface for end-users to manage personal data and easily interact with
smart contracts. Dapps are applications that have their own smart contracts
operating on peer-to-peer blockchain networks [75].

2. Dynamic consent management layer is a smart contract-based middleware for
managing dynamic consent, including four main components:

2.1. User profile management manages user identities, profiles, and roles. As
such, it separates modularity purposes into two sub-components: 1) the
identity and profile manager is responsible for managing the identity and
profile of participant users, and 2) the profile role manager is responsible
for managing user roles in request, approval, and revocation processes.

2.2. Consent agreement management manages data subjects’ consent all over
the personal data life cycle, which divides into four sub-components: 1)
the consent requester handles the request for the collecting and pro-
cessing of personal data, 2) the consent agreement allows data subjects
to manage their consent agreement on each requested personal dataset, 3)
the consent tracker enables traceable consent transaction logs on the
blockchain, and 4) the consent updater provides data subjects to modify
their consent agreement preferences (i.e., consent withdrawal) upon the
processing purpose.

2.3. Smart contract code generator is used to generate smart contracts upon
predefined contract templates (i.e., through JSON policy format for the
XACML), which comprise four sub-components:

2.3.1. The data/transaction format examines data provision and common
transactional structures.

2.3.2. The source code generator translates consent agreement policies
into smart contracts source code, which indicates one consent
agreement per one smart contract.

2.3.3. The code verifier and validator are used to validate the correctness
of generated smart contracts without errors and security exploits.

2.3.4. The compliance checker is used to verify generated smart con-
tracts against privacy policies and GDPR compliance before
deploying them on the blockchain.

24

2.4. Security and privacy management are divided into four components:

2.4.1. The security manager enables protection mechanisms for protect-
ing the system’s resources, e.g., authentication, authorization, and
accountability.

2.4.2. The access control manager restricts access to personal data within
privacy and access control policies specified in smart contracts.

2.4.3. The privacy manager facilitates data subjects to manage their pri-
vacy preferences.

2.4.4. The audit manager handles the logging of all events regarding who
requested access to personal data, when personal data was pro-
cessed, and by whom.

3. Distributed ledger technology and a secure storage layer provide a Quorum
blockchain and off-chain data storage using InterPlanetary File System
(IPFS) protocol. The Quorum [76] is a permissioned blockchain implemented
from the Ethereum [77] codebase, while the IPFS protocol is a peer-to-peer
file sharing in decentralized storage [78]. In addition, this layer provides
blockchain oracle service (BOS) to expose a secure channel to exchange data
between the outside world and blockchain [79].

According to its design, a data subject or a third-party organization first creates a
dataset profile which obtains a hashed index. The hashed index directs personal data
to off-chain data storage. Second, peer data controllers receive the request for dataset
profile publication. Finally, peer data controllers approve the request and publish the
data profile into the blockchain.

25

‘ Personal Data Layer .
&— &g
Data Subject Q @’

Dynamic Consent ManagementLayer
User Profile Management

Bo

Security and Privacy

f Identity & Profile Manager Management
Data Controller 2 Contract Templates = 2
oo = act Temple Security
= Profile Role Manager & Consent Policy \
I t Access Control

< Privacy
Data Processor Consent Agreement Management =

Consent Requester Consent Tracker Audit Manager
& Q)
Consent Agreement Consent Updater s
Regulator &
(supervisory authority) s
3
Smart Contract Code Generator Q

Data/Transaction Format Code Verifier & Validator ACL, Security &

. = 7 > = Privacy Rules
Source Code Generator Compliance Checker =

Distributed Ledger Technology and Secure Storage Layer
Quorum Blockchain = Secure Data Storage (SDS)

Private Transaction Manager '
Qg‘o:;lem I'x. Manager F,n(lm'(’g ~\I/: |PFS
Figure 10: The layered system architecture of SC-DCMS (Figure 3 of Merlec et al.
[74]).

Therefore, the authors implemented a prototype of the proposed architecture by
using smart contracts and deploying them on the local blockchain, smart contracts
written in Solidity language [80], and the local blockchain using the Cakeshop
sandbox. As a performance evaluation, the authors examined the impact of workload
transactions between IBFT [81] and RAFT [82] consensus protocols. The evaluation
results indicate that the proposed system gained high transaction throughputs and
minimal latencies for utilizing storage network bandwidth and moderate resources.

The growth of the Internet of Things (IoT) affects individuals’ lives, and some
devices gather personal data, including behavioral, fingerprint, or biometric data, e.g.,
gait characteristics and voice. According to Rantos et al. [83], applying GDPR to the
IoT is a real challenge. Therefore, the authors proposed the ADvoCATE using a
human-centric approach to enable data subjects to manage privacy preferences in the
IoT ecosystem upon GDPR requirements.

Their proposed architecture, demonstrated in a cloud service platform (Figure
11), comprises three components:

1. Consent management (CM) component provides data subjects to manage
their consent and privacy preferences, including creation, modification, and
revocation. ADVOCATE used an ontology to model data protection
requirements for ease of data controllers fulfilling GDPR compliance.

26

2. Consent notary (CN) component offers data integrity and data versioning of
data subjects’ consent by adopting digital signatures and blockchain
technology. This component is responsible for mediating the CM component
and blockchain infrastructure. It guarantees consent agreements are complete,
accurate, and up-to-date with protection against unauthorized changes. The
ADvVOCATE focused on the Ethereum blockchain for smart contracts
implementation. Figure 12 shows the CN component’s workflow. First, the
CN component received a new entry consent agreement from the CM
component. This consent agreement could be for adding a new one, editing
an existing one within policies among the parties, or revocation. Next, the
data controller and processor are independently requested to sign the data
subject’s consent. These digital signatures or hashes are obtained in the
blockchain and used when detecting unauthorized modifications. The smart
contract (SC) interacts with both the data controller and data processor for
initiating, updating, or withdrawing a specific consent agreement regarding a
particular IoT device. Moreover, this SC is responsible for managing changes
to a consent agreement from consent initiation to final withdrawal, while the
various consent versions are represented as data contracts. To check consent
integrity, this logic of the SC restricts only the latest version of the consent
agreement. Finally, the CN component returns the latest signed consent with
its signatures and the SC’s address to the CM component.

3. Intelligence component enables conflict detection and suggestion of data
subjects’ policies incorporated with ontology, which consists of two
mechanisms:

3.1. Intelligent policies analysis mechanism (IPAM) offers conflict detection
on data subjects’ privacy statements using Fuzzy Cognitive Maps
(FCM). The FCM is a learning method used to represent knowledge of
systems and causal inference [84].

3.2. Intelligent recommendation mechanism (IReMe) offers suggestions
based on personalized policies to safeguard the privacy of data subjects
in real-time using Cognitive Filtering (CF). The CF is rule-based
collaborative filtering with the contents of the items and the data
subject’s consent to avoid any privacy violations [85].

27

——————— e ——

K
o il k.|
\ E-Health "\
Policy & ’ \
Consents Data Storage®

\.& Processing

ADvOCATE core b
platform

loT Data Flow

\
[
|
1
1
[
[
[
[
[
1
[

services }
[
1
[
[
1
I
I
|
|
1
[
J
)

- = = = Consent Request and Retrieval \ p,

FigUre 11: The ADvoCATE architecture (Figure 1 of Rantos et al. [83]).

By its design, a data subject first registers his/her IoT device via the ADvoCATE
platform. Then, the data controller places a request on the data subject. Afterward, the
data controller and data subject independently send the request to intelligence policies
analysis, except for the data controller sending the signed request. The result of the
privacy policies analysis is represented as a consent agreement. This consent
agreement will be informed to the data subject. If the data subject accepts the
condition, then both the data subject and data controller independently sign consent
using the SC to obtain his/her consent agreement in the blockchain. Thus, for each
access to data collected in an IoT device, the data controller and data processor must
verify the data subject’s consent validity.

The authors implemented the device registration, consent management
component, and smart contract using Node.js, MongoDB database, and Solidity.

The challenge of data sharing receives heightened attention in academic
research and business sectors.

Specifically, research in blockchain-based medical data sharing and many
studies have been published. For instance, Azaria et al. [86] proposed MedRec as a
decentralized electronic medical record (EMR), allowing service providers to share
data with others through smart contracts on the Ethereum blockchain. The authors
mentioned that the challenge of healthcare interoperability is managing fragments of
health records. Data sharing brings much to medical research, such as discovering
new treatments, specifying public health issues, and enabling personalized medicine.
To bring trust and encourage patients to cooperate by disclosing their medical records,
the authors thus designed MedRec to achieve these issues. The use of blockchain

28

provides a secure way for sharing and auditing data in a distributed manner. Based on
MedRec, smart contracts are programmed to manage access privilege control of
patients” EMRs. Figure 13 shows MedRec smart contracts and interactions between
service providers.

consent initialisation, -
update or withdrawal

Consent on data

— e — — —————————

Blockchain Infrastructure

Data Contract
processing
details

|

|

|

|

|

|

|

& |
!
‘ |
\ Signing I

by Data :
Controller |
|

|

|

|

|

|

|

|

|

|

|

|

|

A
B . .

Data Contract

Smart Contract

“7 Data Contract

f e e i S i i s e s i s s

Figure 12: The CM component’s workflow (Figure 3 of Rantos et al. [83]).

e SUbJeCt/ and Subject
9 ;
R

Signatures
of consent

Data Controller

Hashing

The system first creates Ethereum addresses and maps to participants’
identification via Registrar Contract (RC) to exchange the data between participants
(i.e., patients and service providers). Then, the system executes Patient-Provider
Relationship Contract (PPR) to establish a peer-to-peer data exchange between
patients and service providers. Besides, the PPR determines the pointer of data that
specifies where a patient’s EMRs are collected and manages the restriction of service
providers who wish to access data. The latter is the Summary Contract (SC) employed
to track the engagement of participants in data exchange. Therefore, the authors
implemented a prototype of the proposed system to prove its functionality.

(-,oh:'][Eth :::][5 ||
(“ane" | ethadar || sc |

J

Summary Contract

s)

[John Eth address J
[PPR address][Status]

10~
Discovery 0 D’Scove,y

1D Discovery

29

-
SC
Patient A

SC

Provider B

SC
Provider C

J

\
Ownership \

J

[PPR address][Status]

.

J

I

Patient A - Provider B

PPR
Patient A - Provider C

|

Patient Provider Relationship

- N | Cueresreference e Querisreference 21OCHERaIn
(__owner J[Accessinfo | Network
(___EMR queries & hashes) ——————) Ee——e———] o

(Permissions) % %

(Mining Bounties) — e

. = DB: Provider B DB: Provider C

Figure 13: The interaction between smart contracts and service providers in MedRec
(Figure 1 of Azaria et al. [86]).

Similarly, Hu et al. [87] stated that the lack of managing fragmented data causes
the problem of patient information retrieval from various service providers. Therefore,
the authors introduced CrowdMed-II as a framework for managing and sharing data in
healthcare by utilizing the Ethereum blockchain. CrowdMed [88] improved this
proposed framework to support large-scale adoption.

CrowdMed-II allows patients to maintain ownership over their health data by
providing and revoking consented permission. In addition, blockchain in this
framework enables transparency, auditability, and incentives, which motivates patients
to incorporate into research by sharing their valuable data to improve health
outcomes.

The authors separated the proposed framework into three layers:

1. The data storage layer is responsible for managing existing providers’
healthcare databases.

2. The central management layer is responsible for conducting a user’s identity
by mapping the original identity (ID) into a digital signature represented as a
virtual ID. This virtual ID is used in blockchain transactions and helps mini-
mize the risk of exposing the patient’s real identity. The central management
layer is composed of two components:

2.1. The central query manager handles the query execution on the user’s lo-
cal database and the data storage layer.

30

2.2. The blockchain obtains patients’ permissions and logs every activity that
they perform on health data.

3. The user layer comprises four participant roles: patients, data creators, data
viewers, and data reviewers.

The proposed framework was designed with two smart contract structures:

1. Patient-Viewer Relationship (PVR)-Centric contract (Figure 14) has a
structure similar to the PPR in MedRec [86]. The difference between the PPR
and the PVR structures is the number of smart contracts at which to be
executed for gathering a patient’s health records. For example, the PPR must
execute multiple smart contracts to retrieve a patient’s health records among
service providers. As a result, it causes high gas consumption and low
efficiency. On the other hand, the PVR structure has to execute only a PVR to
retrieve all health records for one patient.

2. Provider-Patient-Viewer Relationship (PPVR)-Centric contract structure
(Figure 15) improves from the PPR and PVR structures. Moreover, the
proposed framework designed two more smart contracts:

2.1. The Provider Contract (PC) is used by a medical service provider and
obtains health records for all patients which providers give.

2.2. The ReViewer Contract (RVC) has a function similar to PC; the
responsible role is data reviewer, who acts as a provider to review
remarks on the health data of each provider to improve its quality.
However, there are no databases for data reviews because all remarks
have been stored in the health data-sharing system.

3. In addition, the proposed framework enables assigning a role to a group of
users (i.e., group-based access) instead of assigning a role to a user, which
eases management access rights. As a performance evaluation, the authors
determined two experiments. First, they evaluated gas consumption in every
transaction after executing transactions sequentially on six smart contracts
into a personal Ethereum network. The six smart contracts of this experiment
are as follows: 1) the PPR-centric, 2) the PPR-centric with group-based
access, 3) the PVR-centric, 4) the PVR-centric with group-based access, 5)
the PPVR-centric, and 4) the PPVR-centric with group-based access. The
first experiment results indicated that the PVR-centric contract structures
with group-based access consumed the lowest gas. As for the second

31

experiment, the authors then executed the PVR-centric with group-based
access in the same sequence as the first experiment by measuring throughput
and latency, while the second experiment results indicate that the registration
transactions caused latency significantly higher than average.

ID Discovery

Registrar Contract

........... c'“‘. data

——————e Roview
----- View
Own

ID Discovery ID Discovery

s - -

>~ ’

Own View

Patient Viewer Relationship \ View

\.

\\
Patient

- - /
Patient (owner) | | Viewer | \" —ak
(ot) (ot
Permission strings Patient A-Viewer D A-Viewer E

Figure 14: The PVR-centric contract structure in CrowdMed-11 (Figure 2 of Hu et al.

[871).

Registrar Contract Provider Contract

J

s
"

Provider Patient Relationship

N
J

-
_

Reviewer Contract

N
J

[_PVRAD) ['Bob"Ethereumaddress |
[_PVRAE) [RPREA) | [Status]
— [__RPREB)] [Status]
o)
Patient Viewer Relationship Reviewer Patient Relationship

J

Permission strings

[[Patient(owner) | | Viewer]]

(A
LY

Figure 15: The PPVR-centric contract structure in CrowdMed-11 (Figure 3 of Hu et

al. [87]).

Table 3 demonstrates the difference between related works within data privacy

and consent management contexts. The first six studies used formal methods for
modeling the system’s behavior according to desired privacy policies [53, 56, 57, 59,

32

63, 64]. They formalized a portion of the process, which makes it unclear how to
implement an entire process. Besides, two of the first six studies used model checking
to verify model correcstness.

On the other hand, the rest of the studies focused on conceptual and architectural
frameworks rather than logical ones, which makes it difficult to build software
systems based on these frameworks; more than half of the studies considered GDPR
as part of software design [63, 64, 66, 70, 72, 74, 83], but it is still unclear which
GDPR articles they covered. Furthermore, studies have separated into two groups:
centralized and distributed systems; most of the studies proposed frameworks based
on distributed systems (e.g., microservices, blockchain).

The distributed system is a group of software components that are located on
different networked computers [89], while the centralized system is one unified
system that maintains the entire operation [89, 90]. Both systems are managed by a
central authority, except for blockchain. The studies that employed blockchain
technology [70, 72, 74, 83, 86, 87] have integrated off-chain data storage for
collecting personal data instead of on-chain, so they can delete personal data where
necessary. As for a security service, most studies determined access control based on
the notion of purpose or consent, which help identify the security access of an
individual data within the purpose or given consent; less than half of the studies
integrated consent service as part of software design, which comprises only two
functionalities, such as manipulation and withdrawal consents [63, 64, 70, 72, 74, 83].
Indeed, the audit trail is essential for data protection to defend against data breaches,
and several studies included audit logs as part of their proposed frameworks [70, 72,
74, 83, 86, 87]. Finally, no studies specify the records restriction of data retrieval for
minimizing data breaches.

[eA314181 ©)ep SP102ad PalolIlsey

sallIAoR Yoed) sbo| pny

[emauay

Aupigenod

[EMEIPYUAN

== ===+

- |=

- |=

- |=

- |=

- ==

- |=

- |=

uone|ndiuey

9JIAISS JU3sSU0D

1UasU09 J0
9s50d.ind JO UOIIOU 8} UO Paseq |0JIU0I SS3IIY

90IAJ8S A111N23S

paIngLisia

- |=

pazijenua)

wia)sAs 1abue |

Vvdd

d4ddo

uoire|nbai uondaload eleq

M

M

M

$s300.d puz-01-pugy

\(

7

7

7

7

7

\(

poy1aW [ew.io

Apnis a1nQ

[L8]

[98]

(€8]

[vL]

[zLl

loL]

[99]

[¥9]

[£9]

l6s]

]

[9s]

[es]

€€

“JusWwabeuewWw 1UasU0d pue AdeALid Blep JO 1X81U09D ay) Ul SYIOM pale|al YM uostiedwo) € ajqel

34

CHAPTER Il
BACKGROUND

The relevant theories of this thesis include consent management (CM), Event-B,
blockchain technology, and smart contract.

3.1. Consent Management

According to the literature, consent management represents a software compo-
nent that provides a mechanism for managing consent and controlling personal data
lifecycle based on a given consent under data protection regulations. However, stand-
ardizing consent management is a complex challenge. Consent is the legal basis for
personal data processing activities and is used in most cases [91]. The GDPR man-
dates that data controllers must be able to prove the validity of data subjects’ consent
and could face a fine of up to 20 million euros or 4% of annual revenue (Article 83
GDPR) if they fail to comply. In the survey research conducted by Kurteva et al. [92],
they presented solutions based on ontologies to improve an understanding of consent
management implementation. The use of ontology provides the knowledge ground
upon which the consent and personal data lifecycle relate to GDPR requirements. The
present study introduced a model of the consent lifecycle (Figure 16), which derives
from the approaches related to consent.

The consent lifecycle describes the process of conducting consent in CM, which
comprises four key steps:

3.1.1. Manipulation of consent, e.g., consent has been changed, confirmed, and
reaffirmed.

3.1.2. Checking consent validity, if the data subject’s consent is invalid (i.e.,
consent is revoked, expired, invalidated, or refused), then the CM system
sends a consent request to inform the data subject. Otherwise, the data
controller or data processor is allowed to process personal data.

3.1.3. Comprehension of informed consent represents the data subject must have
adequate information to understand the consent agreement of what he/she
agrees.

3.1.4. Decision-making on informed consent indicates that the data subject has
the right to accept or refuse the consent agreement to process his/her per-
sonal data.

35

To help better understand the context of consent, the authors summarized the
classes and attributes essential for modeling consent from existing ontologies [17, 93-
95]. We thus analyzed and recategorized these classes and object attributes according
to Table 1 and Table 2, used as a guideline for our study, presented in Table 4. Fur-
thermore, based on the list of competency questions for consent management (Table
5) defined by the authors, used as the comparison of baseline between existing studies
[17, 93, 95-99], we added additional questions to Table 5. These questions are repre-
sented in our work, including question numbers 7, 8, 14, 16, 20 and 21.

7 N
Understand and
interpret information
for impact, benefits,
risks, and consequences

Provide information Comprehension
for (informed) consent

\ J

Request < Decision

consent is refuseq

V)

wincrawn [_consent
management
consent is to be expired g -
modified invalidated valid check validity
confirmed revoked
reaffirmed

consent is given

Figure 16: The consent lifecycle within consent-based approaches (Figure 1 of
Kurteva et al. [92]).

wyiob|wysey:6ojds
‘yseHJasn:bojds
‘yseHiualuo9:6ojds

pJodaya|grINWW|

plodaysqeinwiwi:bolds

‘Aianoe:6olds Boj 1pne
‘108lgnserep:Hojds Ainnoy
‘swir L Aupiren:|ds
‘asodindsey:|ds
‘Buissadoidsey:|ds
‘eleqsey:|ds Anuzbo
puibbo
UOINPUOD 10) UBAID
» ,col_Hochmzm jon
elep 10) UaAIB
o1 UBNIB -U0D SS90y
awin~ Aupifea uolissiwlad
391AJ3s A11unJas
Jemauay
Aligenod
3wl] [emelpylAASeY Aq uanlb Auedbunuasuo)
‘POYIS N [eMBIPYIANSEY JUasU0D aonasbolds | uoIEIOASHIUBSUOD snjeissey Juasu0D ‘7o uanIb ‘Juasuo) [EMEIPUIM
JU3SU0DI04SNIeISSI sne1s
Agpaw.oyiad:Hojds Aoy Aoy
JERMEMEIS
‘Agpaw.ioypiad:oids $S300.1d as0dindio4uonowsi Buissadsoid Aianoe uonebijgoiuasuod
ere@aouelsul:bolds JuaAJele | 1uasuoDlIo4eledleucsiadsl | elegjeuosiad JSTETER) el
sesodind 1UasuU0DI1048sodIndsl asodind
109lgnseleq 109lgnseleq juasuosey 109lgnsele@ Juasuod sanIb Auegbunuasuo) uonendiue|
Andx3sey
‘snpeissey
‘BuISS890.1410} Jew.o) sey exep JRWI041Uasu0)
‘awi] Adx3sey ‘asodindJoy ‘10§ uanIb | ‘uonebijgolussuod)
‘Adx3sey ‘eleuosladioy ‘Aq~uanib ‘Redbunuasuo)
‘90110NIUSsUODSRY JUasU0D UOIIBSSWIUaSU0D ‘193[gnse1e@I04IUasU0DSI JUasU0D ‘7" uanIb ‘Juasu0)
9JIAJ3S JUasSU0)
nNgLNyVv _ SSe|D NquNyv SSe|D |INquUNY SSe|D |INquUNY _ SSe|o
[s6l [v6 [e6] [21]

9¢

*JX9JU0 JUISUOD UL SOIF0[0JU0 FUIISIXA JO saINqLIIE 109[q0 pue SIsse[o usamioq uosuedwos Y[, i d[qeL

CETEp

S¢ APV J1104u03 e [euostad Buissadsoud oy Buinas 1 neyap e se uoinoaaloid erep paquis 0} MoH 0c
B suolreh .
L€ pue 82 ‘vT (L)¥ ssomy -1GO ‘SONINIGISUOTSaY 18][0NUOD BIEq ¢10J 9B1eyD Ul 49]]0UO0D BIEP 8Y1 SI TRYM 6T
8z pue ¥T ‘(1)y ss|oiy uolewIou| 1981U0D ‘I3]|0AU0D Bled ¢43]10J1U02 BIEP BY) 01 INO YIeal 01 MOH 8T
8¢ pue (/)y sajomy 18[]011u0) ereg ¢49]1043U0J eYep ay) se paliiuspl ussq sey oypn LT

19]]01U09 BIep 3Y) Buipaebal suonsand

9¢ |eNdsy ,

Q)1 sonIy uoneziwAuopnasd ¢paziwAuopnasd aq e1ep Jeuosiad pinoys Usypn 9T
[EEEIRIINY abel01s IR ¢Paurelqo usaq eep jeuosiad sey aIaymn GT
(9T)5 8pd1uY uonos||09 ereq ¢UOI199]]09 €Jep 8} dZIWIUIW 0} MOH T

6. PUe 17/ S[e1109y .
7 SOy Jajjonuo) ereqg ¢erep euosiad Jo abreyd ui st oym €T
8z pue ‘9 ‘(1) sajonIy Burreys eleq usidiosy ¢£Pas0[asIp SI eyep Jeuosiad Woym o T

€/ pue z9 ‘8S ‘6¢ S[eNI8Y ,

bT DUE £ 2T SOy uonas|0D ered ¢palayreb usaq erep [euostad sey moH 1T
@y sy Buissadoid ereq £Ppasn uaaq exep Jeuosiad sey MoH 0T
6 pue (T)p sajonly eleq |RUOSI3d JO Salobale) ¢erep [euosiad se papJebal sI 1eypn 6

elep jeuosaad Buipaebau suonsand

(eT)o pue 2 ‘(TT)¥ sopoy | uonesidx3/AipieA/uonualey 1ussuod ¢PaMBURI Uda(1USSUOD Sey USUYAA 8
02Z 3101y Allj1geLIod IR JuUasuo) ¢3lqenod aq 01 eyep paniwiad JUasu0d St USYA /
6T puUe /T S9|oIlyY [eMEIPYIAN JUBSUOD $UMBIPYLIM U33(JUSSUOD Sey Usypn 9
(eT)9 pue 7 (TT)¥ SooIIY T VEIEN RIIENVolg) ¢Ppaluelh usag 1UBSUOI Sey UsyYAA S
Ue Z€ S[enoa
cvp mw”m _m_w__tw uonelidx3/A1pIifeA/uonualay uasuo) £1se] swaalbe Juasuod e saop Huo| moH %
Ue €9 S[e1109
9P mmw _o_w._tw [eMEIPYIAN JUBSUOD ¢IUsWwaalbe Jusasu0d 940A3J 0} MOH €
, pue (e1)9 ‘(¥)¥ sooiuy asodind ¢1an09 1uawaalbe Juasuod e saop sasodind 1eym 104 Z
gz pue (e1)9 ‘(L) seppmy 10SS8201d ®leq ‘19]]01U0D Bleq £S1UaWaaIbe Juasu09 Buliayreh 1oy ajqisuodsal s1 OYAA T

1Uasu09 Buipaebal suonsend

a|dIie 4ddo

ssad0ad/Anua Juens|ay

|

uonsan® _

"ON

LE

‘(p.au02) [z6] T8 10 BASUNY] WOIJ PIPUNXI ‘SA[OILIE YJOD 0) JUBA[AI YIIYM UI JUdWOTeUBW JUISUO0D 10J suonsanb Aousjedwos ayJ 1 9[qe],

¥T PUE €T 2T SOPINY | Ayred AL "UOIELIIOJU] J0EIUOD) | ¢01IN0 oeal 0] WOUM | €2

Aured paiyy Buipaebaa suonssn®d

(OIERI 103[gns eleq | ¢103[gns eyep ay) se paiynusp! usaq sey oym | e
103[gns e1ep ay1 buipaebal suonsand
(8)v 3oV | 10559001 Bleq | ¢10ss3204d eJep U Se palyluap! usag sey oym | Te
10ss220.d eyep ayy Buipaebaa suonsand
3loIe Yddo _ ssa00.4d/AQnus 1uens|ay _ uonsand _ ‘ON

8¢

‘[z6] T8 10 BASLINY] WOI} PIPUIXS ‘SI[ONMIE YJ(D O) JUBAJ[II YOIYM UI JUSWAFBURW JUISUOD J0] suonsonb Aousjodwod oy, :¢ 9[qeL,

39

3.2. Event-B

Event-B is a formal model development method in mathematical terms to prove
that a formal model fulfills a set of defined specifications [23, 24]. Event-B is separat-
ed into two parts: 1) contexts, the static specification is used to define static properties
of the model, containing carrier sets s, constants ¢, and axioms A(s, ¢), and 2) ma-
chines, the dynamic specification is used to define behavioral properties of the model,
containing state variables v, invariants I(s, ¢, v), and events evt. The refinement pro-
cess in Event-B is a crucial feature for modeling a complex system [100, 101], as pre-
sented in Figure 17.

It begins with an abstract model and gradually adds features one at a time until a
concrete model is completed [102, 103]. This technique makes the model more
straightforward to prove than modeling an entire system at once. This technique
makes the model more straightforward to prove than modeling an entire system at
once. However, the Event-B model’s consistency requires proof obligations, which
must be proved to guarantee that all invariants are preserved within every event oc-
currence [102, 103].

The Event-B constructs Proof obligations (POs) from the invariants /, the local
concrete invariants J (i.e., gluing invariants), and the specifications of abstract and
concrete operations (Figure 18 A). There are various types of proof obligations [104].
For example, Invariant Preservation (INV) ensures that each invariant is preserved
within each event occurrence. Event-B produces an INV when an action modifies var-
iable values directly into a specific invariant. For example, Figure 19, shows that the
Login event comprises three guards and one action, as shown on the left-hand side of
the figure. The guard grdl indicates that the current session has not been created. The
guard grd2 means a user must be authorized to access the system and is not currently
logged on. Finally, the guard grd3 guarantees that inserting an ordered pair (s = u)
into the variable sessions must satisfy inv1. If all guards are valid, the action actl in-
serts an ordered pair (s + u) to the sessions directly to invl, Event-B thus generates
Login/invl/INV to ensure that the values of the session change preserve invl, as
shown on the right-hand side of the figure.

Well-Definedness of an event Guard (GRD) ensures that a guard has been for-
mulated well-defined. Event-B generates GRD when there are some potentially ill-
defined expressions (e.g., partial, modulo, and max-min functions) in a guard condi-
tion. For example, Figure 20 shows that the AddPatient event comprises four guards
and one action, as shown on the left-hand side of the figure.

40

Requirement Document

&
<

A

Model
(Refinement)
Context Machine
. Refining
Sets Variables
Constants Invariants A
Axioms Events

v\

Guards Actions

Execute Code

Figure 17: The process of refinement in Event-B (Figure 1 of Jarrar & Balouki
[101]).

The guard grdl indicates the user is an authorized user and is currently logged
on. The guard grd2 indicates the user must have a NursingStaff role, while the guard
grd3 means a new patient has not been added to the system. Finally, the guard grd4
guarantees that this event must be deactivated if any states that enter query states. If
all guards are valid, the action actl inserts the patient p into the variable patients.
However, guards grdl and grd4 are involved in the sessions as a potentially ill-
defined expression. To ensure that these two guards are Well-Definedness (WD) con-
ditions, Event-B thus generates AddPatient/grd1/WD and AddPatient/grd4/WD, as
shown on the right-hand side of the figure.

The generated POs must be discharged to prove the correctness of the given
properties in the Event-B model. The guards are a set of predicates indicated as pre-
conditions that should be true before executing the event. An event consists of local
variables /, guards, and actions. Each state machine event may have one or more
guards G(l, s, ¢, v). When guards are valid, the actions S(/, s, ¢, v) will modify the
state variable v, as shown in equation (1).

evt 2 any | when G(l, s, ¢, v) then v :| S(1, s, ¢, v) end

(M

The POs in the Event-B model guarantee that each event must be shown to
preserve the model invariants, where v' is the state variables after executing the event,
and BA(l, ¢, v, v') is the before-after predicate of the assignment event, as shown in
equation (2).

41

I(s, ¢, V) AA(s,) AG(l,s,c, v) ABA(L,c,v,v')=I(s,c,v")
(2)

For each event, the post-condition will automatically be derived from its guards
and actions [105-107]; an Event-B model is deadlocked if all events are disabled in a
particular state [100, 108, 109]. Besides, there is an open-source tool that supports
Event-B, called Rodin Platform [24]. The Rodin Platform is an Eclipse-based IDE
that enables a variety of plug-ins for developing models, such as a proof obligation
generator, provers, model-checker (ProB), etc. Nevertheless, Event-B does not pro-
vide deadlock detection [110, 111]. So, we must plug ProB into the Rodin Platform to
enable deadlock detection, test-case simulation, and state reachability [110-112].
Figure 18 demonstrates the process of model checking in ProB to prove whether a
given model satisfies given specifications. If the output is true, a given model is valid.
Otherwise, ProB produces a counterexample.

To start developing an Event-B model, we need to install Java and Rodin Plat-
form following these instructions: http://www.event-b.org/install.html. To enable a
model checker, it needs to install the ProB plug-in. First, open the Help menu and
click "Install new software." Then, select the update site project, which begins with
the title "ProB - " and click on "ProB for rodin2". Finally, enter the Next button and
complete the installation.

Abstract Model @

© {/ B I Prover

Model M

Invariant |
>
% T

“~ 3 . “
: Proof " [P i
refines Obligation e 3
| Generator \ ~Ha, ProB R
! 77 o ¥x/ Disprover

Refinement R

Counter
Example

eo e
°-®

Invariant J

Concrete Model

Figure 18: The process of model checking in ProB (Figure 1 of Ligot et al. [111]).
(A) demonstrating the generation of proof obligations in compliance with the abstract
and concrete models.

To begin developing Event-B models, we recap some set notations used in our
study. We thus determine set predicates by P and Q, set expressions by S, T, and E,
single variables by x and y, a list of variables by z, and the relation by r, r1, and r2. The
set notations are as follows: 1) the predicate logic, e.g., conjunction (P A Q), disjunc-

http://www.event-b.org/install.html

42

tion (P v Q), and existential quantification ((3z-P) A Q), 2) the pre-defined sets, e.g.,
booleans (BOOL), i.e., TRUE or FALSE, and empty set (@), 3) the set operators, e.g.,
membership (E € S), union (S U T), intersection (S N T), powerset (P(S)), a subset (S
c T), not a subset (S ¢ T), ordered pairs (x » y), set difference (S \ T), cartesian prod-
uct (S x T), and 4) the relations identifying the connection between sets, e.g., relations
(S & T), domain (dom(r)), range (ran(r)), partial functions (S + T), partial injections
(S »» T), domain restriction (S < T), domain subtraction (S < T), range restriction (S >
T), range subtraction (S b T), relational image (1[S]), and overriding r1 < r2. More de-
tailed information regarding Event-B notation is publicly accessible at [113].

Invariant Proof Obligation: Login/inv1/INV
invl : sessions € SESSIONS »» AUTHORIZED USERS i —
grd1
Event
grd2
Login =
STATUS grd3
ordinary -
ANY r
s modified specific invariant (INV) relevant to
u n "
WHERE the partial function
grdl : s € SESSIONS A s ¢ dom(sessions)
grd2 : u € AUTHORIZED USERS A u € ran(sessions)
grd3 : sessions u {s » u} € SESSIONS »» AUTHORIZED USERS
THEN
actl 3 sessions = sessions u {s » u} -
END

Figure 19: The example of generating INV proof obligation from the Login event.

Invariant Proof Obligation: AddPatient/grd1/WD
invl H sessions € SESSIONS »» AUTHORIZED USERS —_ :
inv2 : userRoles € AUTHORIZED USERS <> ROLES inv1 AddPatlent/grd4/WD
inv4 H patients e P(PATIENTS)
invé - queries € AUTHORIZED_USERS -+ (QUERIES < PATIENTS) inv2
Event Iriv4
AddPatient = inve
STATUS - grd2
ordinary
ANY grd3
s
p -
WHERE .) Well-Definedness (WD) conditions for grd1
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r e userRoles[sessions[{s}]] A r = NursingStaff Well-Definedness (WD) conditions for grd4
grd3 : p € PATIENTS A p € patients
grd4 $ sessions(s) € dom(queries) —
THEN
actl § patients = patients v {p}
END

Figure 20: The example of generating GRD proof obligation from the AddPatient
event.

43

3.3. Blockchain Technology

Blockchain technology is the innovation of distributed ledger technology, which
enables the secure transfer and storage of digital assets without central authority man-
agement [114-116]. On the other hand, blockchain provides potential solutions to
safeguard data owners from unauthorized or unlawful collecting and processing of
personal information [48, 114, 115]. For instance, blockchain enables security and
tamper-proof transactions among untrusted participants, eliminates the management
of center entities, and utilizes cryptographic hash functions to protect the integrity of
data stored in the distributed ledger [117, 118]. The blockchain structure lists ordered
transactions [115, 119, 120] called blocks (Figure 21). To begin with, adequate partic-
ipants have confirmed the transaction, it is permanently inserted into the list of blocks,
and each block is securely attached using cryptography. The elements of a block are
as follows: 1) the data which contains information depends on the objective of using
blockchain, 2) the hash is a unique identifier in which generated by a nonce (i.e., a
nonce is a random 32-bit number for ensuring the validity of the block hash), 3) the
previous hash is a hash value of the parent block except for a genesis block that does
not contain a previous hash, and 4) the metadata contains descriptive information
about data, e.g., block number, and timestamp.

The consensus mechanism in blockchain represents a set of methodologies used
to verify and confirm the legitimacy of a new transaction before being added to a dis-
tributed ledger to ensure fault tolerance and security [73, 120, 121]. Besides, it in-
volves the assignment of participants to work on tasks or activities to maintain block-
chain infrastructure by devoting necessary resources, €.g., crypto-asset and energy.
Indeed, there have been two common consensus mechanisms: Proof of Work (PoW)
and Proof of Stake (PoS). The PoW is a mechanism that outlines the difficulty or rules
(e.g., the cryptographic math problem) to which the mining competitors must dedicate
their computing resources to process transactions. The mining competitors who first
solve math problems receive a fee for mining as a reward, while the PoS is similar to
PoW but the better version. The PoS is a mechanism that allows participants who own
cryptocurrency and are randomly selected to validate transactions and earn rewards.
Therefore, the differences between PoW and PoS are the means they determine who
gets the privilege to validate transactions and energy usage.

The PoS is more energy efficient than PoW because it eliminates duplicate tasks.
Furthermore, the blockchain is divided into three types [121-123]:

3.3.1. The private blockchain requires participants to be granted before entering
the network ecosystem, e.g., Hyperledger Fabric (HF) [124]. It is a cen-
tralized system with a central authority to manage user access control and

44

permissions. Besides, it may offer a token or not, depending on block-
chain preferences.

3.3.2. The public blockchain is publicly accessible and has no restrictions on
particular participants and existing validators in the network, e.g., Bitcoin
and Ethereum. It guarantees that no central authority controls the network
and is a fully distributed system.

3.3.3. The consortium or hybrid blockchain comprises two types: 1) some nodes
are partially private, and 2) all the rest are public. This characteristic is
called a hybrid blockchain, e.g., the Ripple network [125], and there are
two types of users: 1) the users who have complete control over the
blockchain and determine the access privileged for individual users, and
2) the others who only have access to the blockchain.

In our study, we focus on the Ethereum blockchain. Ethereum is an open-
source, public, and blockchain-based distributed system. It supports the PoS consen-
sus mechanism and smart contract functionality. The Ethereum blockchain enables a
peer-to-peer network with a trusted ledger of transactions and facilitates smart con-
tracts to share data securely.

Genesis Block Block - 2 Block - 3
Data: "What" Data: "You" Data: "See"
Previous Hash: 0000000000 Previous Hash: 9VQFDNQLM / Previous Hash: B5X9UDMJF
Hash: 9VQFDNQLM / Hash: B5X9UDMJF Hash: LEZ8BNBXMB

Figure 21: List of blocks of transactions in a blockchain data structure, modified from
Figure 1 of Chinnasamy et al. [115].

3.4. Smart Contract

Smart contracts are programs based on certain logic and agreements that auto-
matically execute transactions if conditions are met [73, 126, 127]. They are hosted on
a blockchain network, and all participants can access results without third parties in-
volved. Moreover, smart contracts are composed of three types [128]: 1) smart legal
contracts are used to create legally binding agreements on the parties which derive
from legal requirements, 2) decentralized autonomous organizations (DAOs) are used
to create a set of rules by a group of people to self-govern themselves, and 3) applica-

45

tion logic contracts are used to contain an application-specific code in cooperation
with other blockchain contracts.

In real-world development, smart contracts may need to retrieve information
outside the blockchain, but they cannot accomplish that [79, 129]. So, the oracle has
been introduced to solve this problem. The oracle is a middleware that constructs a
secure connection between the blockchain and various resources outside the chain,
called off-chain. There are five types of the oracle as follows [129]: 1) the hardware
oracle is used to collect data from physical devices (e.g., heat sensors, geolocators)
and push it to smart contracts, 2) the software oracle is used to retrieve information
from online resources, such as public transport, temperature, and supply up-to-date
information to smart contracts, 3) the inbound oracle enables a function for receiving
external data and forwarding it to smart contracts, 4) the outbound oracle allows smart
contracts for sending data to external data sources outside the chain, and 5) the con-
sensus-based oracle provides the query of multiple oracle sources to reduce the risks
of using only one source and combines the outcome based on their consensus.

46

CHAPTER IV
FORMAL MODELS FOR CONSENT MANAGEMENT IN
CENTRALIZED SYSTEMS

This chapter is a slightly modified version of a manuscript published in the
Journal of Logical and Algebraic Methods in Programming, Volume 128, August
2022, and has been reproduced here with the permission of the copyright holder.

To develop CM for centralized systems, we reviewed GDPR articles from a sys-
tem design perspective to build GDPR-aware system models related to PbD [130].
The key roles in GDPR include 1) data subject, 2) data controller, and 3) data pro-
cessor. A data subject has full control of his/her data [Article 4(1) describes personal
data as information that leads to the recognition of an individual]. The data controller
is the organization or person who establishes policies for managing a life cycle of per-
sonal data processing, as described in Article 4(7). Finally, the data processor is the
organization or person who manipulates individual data according to the policies giv-
en by the data controller, as described in Article 4(8). We then defined a set of primi-
tive state machines that cover the basics of consent management functionality, con-
sisting of four state machines: 1) the restricted processing state machine (RPSM), 2)
the withdrawal approval state machine (WASM), 3) the portable approval state ma-
chine (PASM), and 4) the consent renewal state machine (CRSM). Moreover, we
mapped each state machine to GDPR articles (Table 6), which helps developers better
understand how to translate GDPR articles into system requirements and design.

To define a set of states and transitions in RPSM, we determined the logic in-
volved in processing activities by following privacy methods included in Article 5.
This article outlines the context of personal data processing that respects six data pro-
tection principles as follows: 1) it requires that personal data are stored and processed
legitimately (‘lawfulness, fairness and transparency’), 2) the purpose of data pro-
cessing must be clearly defined before beginning the process (‘purpose limitation”), 3)
personal data should only include a minimum amount of data that is strictly necessary
to accomplish a specific purpose (‘data minimization’), 4) personal data must be
complete and kept up-to-date (‘accuracy’), 5) the data controller must ensure that per-
sonal data will be only retained for a necessarily limited period (‘storage limitation’),
and 6) personal data must be ensured with consistency and confidentiality over its life
cycle (‘integrity and confidentiality’). The responsibilities of the data controller must
comply with these fundamentals.

"eyep Jeuostad a1y} Buissadoud a104aq Juasuod ubis 0 paau s1aalgns eleq (T)9 9oy INSHD
"eJep Jeuosiad J1ay1 Jo Adod ajgeniod e 1senbal 01 1ybu ay1 aney s10algns ereq 0Z 301y INSVd
"eJep [euosiad J1ay} asels 0 1sanbas 01 b1 8yl aney s198(gns ereq 6T pue /T S80IV
‘3w Aue 1e BuIssad0.d 10J uasSU09 413Y) 8X0AaJ 0] 1ybu ay1 aney s198lgns ereq (€)2 sy WSVM
'8]9A29)1] 8413U3 S1I JBAO JUSSISUOI puUe B1RINIIR 3Q ISNW
erep Jeuossad (9 pue ‘porsad swin ayy Jo uonesidxa uodn asodind o14108ds e 10} P81dY|
-]09 8¢ 1snwi eyep [euosiad (g ‘a1ep-01-dn 1day pue ayelndde aqg 1snNw eyep jeuostad (¢ ‘uas
-u02 ay) uodn Aressadau elep ayl Ajuo pa1ds)|0d aq 1snw eyep Jeuostad (g ‘esodind 21410 G 3|21y
-ads ® 10J passadsoid pue pa12a]|09 aq 1snw erep Jeuostad (z ‘s108lgns erep yum suinuab
pue ‘udijdxa ‘arewniba) aq sAemje 1snw Buissaso.ad erep jeuostad (T Buipnjoul ‘G 8Py INSdY

ur saseq (839 XIS S YddD Ys SuImo[[oj duop 2q jsnwt ejep [euosidd jo 3urssaoord Auy

"Juasu0d
snon3iquieun IOy /sIy SIAIS 109[qns eiep ay) Jey) SAJeOIPUl JUASUOD S,303[qns elep ayl

(TT)Y 8Py

‘uosJad e Agnuapi Ajpoalipul 1o Apoadip ued 1eyl (spio
-03J [eaIpaw ‘Jaquuinu A1IN2as [e1o0s ‘sweu ||y “Ha) uonew.oyul Aue SI elep [euosiad

(T)¥ 8Py

Arewwng

9PIIe H4ddO

aweu aulyoeN

"PISA0D Aoy so[onIe YJ(O pue souryoewr ojeys pasodod Jo 31T 19 9[qe].

Ly

48

Furthermore, we built WASM as a model dealing with the right to withdraw
consent. Article 7(3) describes that the data subjects are able at all times to revoke
consent for the processing of their data. After revoking the consent, personal data
should be erased automatically [39]. This revoking is also known as the right to eras-
ure (‘right to be forgotten’) under Articles 17 and 19.

The right to data portability, GDPR Article 20, permits data subjects to control
their data by receiving and transferring personal data in a machine-readable format

across controllers. We modeled this discrete behavior through the state transitions in
PASM.

For the renewal of consent effects within GDPR Article 6(1), the data controller
may offer a data subject to extend the retention period to continue using the products
and services. If the data subject accepts the retention offer, the data controller or the
data processor can legitimately process his/her data.

However, if the data subject declines the retention offer, the data controller must
revoke the data subject’s consent. We also modeled this discrete behavior through the
state transitions in CRSM.

4.1. CM State Machines in Centralized Systems

This thesis proposes a set of formal models integrating privacy concerns into
software development under the GDPR. According to Article 4(11) GDPR, consent is
a data subject’s voluntary agreement to permit either a data controller or a data pro-
cessor to process his/her personal data under specific conditions. We considered con-
sent management an essential component of the system design [131, 132]. This means
a system must not process personal data without the validity of a data subject’s con-
sent. In this thesis, we built state machines to depict the dynamic behavior of privi-
leged permissions based on the relationships of the data subject’s consents, user roles,
and data subject’s data fields.

Following PbD concepts and GDPR guidelines present in Table 6, demonstrated
via a software platform for cancer precision medicine called RUN-ONCO [133].
RUN-ONCO allows users (i.e., oncologists, nurses, researchers) to manage and ana-
lyze patient clinical and genetic data, which assists oncologists in designing treatment
plans for patients with cancers. Patients need to sign consent before an authorized user
enters their clinical and genetic data into the platform. Figure 22A shows how RUN-
ONCO supports authentication based on roles but lacks the consent management
functionality. The informed consent process for clinical trials has been paper-based
and outside the platform. Without built-in consent management functionality, a plat-
form is difficult to control and maintain patients’ privacy preferences. To implement a

49

consent management functionality for an existing system without clear guidelines,
developers will need to spend much time analyzing and redesigning the system with-
out knowing if the redesigned platform covers GDPR requirements. To enhance
RUN-ONCO support consent management (Figure 22B and Figure 22C), by follow-
ing RPSM, we first need to alter the Patient class structure to support dynamic access
attributes within role-based consent. Second, we further create the PatientConsent
class to hold patients’ consent. To manage the right to withdraw consent (WASM), the
right to data portability (PASM), and consent renewal (CRSM), we then update the
PatientConsent class by adding methods that obtain the logic of the following state
machines. Third, we must modify logic in the AuthenticationService class to manage
the authorized access patients’ attributes within role-based consent. Fourth, the Pa-
tientService class needs to modify the logic for restricting patient information retrieval
according to given authorization.

Autt vice ConsentRoleField o i DataField 1.0
el .. .
o - fieldName: String —— @
+ checkAuthorizeConsent(q:Query): boolean - fleldType: String Menu
0. N
+ getAvailableDataFields(q:Query): List<ConsentRoleField=> - name: String
.
1. 1.
@ Role 1. Consent 7
1. .
|- name: String - consentDetail: String l1
PatientService 1.4 .
- consentVersion: String Screen
- q: Query K . . N
0. “ 1.*| - dataRetention: Integer - name: String
+ createQuery(u:AuthorizedUser, p:Patient, c:Consent) - routerLink: String
+ executeQuery(): List<DataValue> <cuserRoless> ccreenRoless:
1. 1. 0.* ‘ ‘n,.'
<<inquiries>>
. ‘ PatientConsent e | 1.2 |
AuthorizedUser = - acceptedFlag: String 12 | Patlent ClinicalData
- username: String - createdDate: Date = - referenceNo: String
- password: String - withdrawnFlag: String — N
- displayName: String - withdrawnDate: Date) = 1
y . N 1.0
+ login(usemame, password): Boolean + expireConsent(): boolean 1. o1 ;
lagnosis
+ logout(): Boolean + canWithdraw(): boolean DataValue - 9 o
n - primal iagnosis: Strin
+ assign(r:Role) + canPortable(): boolean - fieldValue: String o PV WV g]
- - diagnosisDate: String
1 0.* + revokeConsent(): boolean
0. |
1
<=<creates>> 0.7
1.7 1.0 0.1 ClinicalCourse
Query Session - recurrenceStatus: String
- recurrenceDate: Date
- recordDate: Date

Figure 22: Class diagram demonstrating how a software platform for cancer precision
medicine manages roles and permissions to restrict users’ access to screens. (A) an
authentication module associated with users, roles, and screens. (B) new classes added
to RUN-ONCO for supporting dynamic access attributes within role-based consent.
(C) relevant classes needed to be enhanced to support consent management.

We provided four state machines that cover the main aspects of consent man-
agement. First, the RPSM explains the behavior of restricting unauthorized user ac-
cess from storing and processing personal data (Figure 23). Based on RPSM, a user

50

must first login to access the platform. By logging in, the user with the NursingStaff
role will be able to add a new patient and informed consent. Moreover, to access the
patient’s personal data, a user has been granted a role based on the patient’s consent.

Logout

INITIALISATION

CheckAuthorize
Consent

Createlnquiry
[Granted user]

Session
Started |

Inquiry

Logged In Received

Returned

AddPatient

CreateInquiry
[Role == NursingStaff)

[Granted user]

Patient
» Consent
Added

AddPatient
[Role == NursingStaff]

AddConsent
[Role == NursingStaff]

Patient

AddConsent
Added

[Role == NursingStaff]

Logout J
Logout

Figure 23: Restricted Processing State Machine (RPSM) describing the transition
states and events used to restrict the processing of personal data.

Second, WASM explains the behavior of approval for withdrawing a data sub-
ject’s consent and deleting his/her personal data (Figure 24). Based on WASM after a
patient requests to withdraw consent, the user with the LegalStaff role login to the
platform and initiates a withdrawal process. A user with the Legal Approver role will
then review a withdrawal request based on the initiated process The platform allows
patients to withdraw consent at any time, as long as the patient has the adequate ca-
pacity to make decisions about medical treatment. After assessing a patient’s capacity,
if a patient can make his/her own treatment decisions, the approver will approve to
revoke consent and submit a delete request to erase the patient’s personal data. Oth-
erwise, the approver will reject the withdrawal request.

Logout
ApproveWithdrawal
INITIALISATION WithdrawalRequested == true
Logged In Session CreateWithdrawal Withdrawal\ ApproveWithdrawal _f\nithdrawall Logout

Started

Reguested i

(

Reject
Withdrawal Logout

RejectWithdrawal [Withdrawa Logout
> :
WithdrawalRequested == true Rejected

O

Figure 24: Withdrawal Approval State Machine (WASM) describing the transition
states and events used to manage a consent revocation request.

51

Third, PASM explains approval behavior for transferring a data subject’s per-
sonal data (Figure 25). Based on PASM, after a patient requests a portable copy of
the personal data, the user with the LegalStaff role login to the platform and initiates a
portable process. The platform offers data portability that allows patients to request all
relevant health and genetic data, as long as the patient accepts prerequisite conditions
(e.g., a fee for preparing and transmitting personal data to other data controllers). The

approver will approve the portable request if the patient accepts prerequisite condi-
tions. Otherwise, the request will be rejected.

Logout

ApprovePortable
INITIALISATION PortableRequested == true

Session CreatePortable
Logged In Started N

Portable
Requested

ApprovePortable

Portable

Reject
Portable

RejectPortable | Portable

PortableRequested == true | Rejected

Figure 25: Portable Approval State Machine (PASM) describing the transition states
and events used to manage a data transferring request.

Fourth, CRSM explains approval behavior for extending the retention period of
a data subject’s consent (Figure 26). Based on CRSM, the user with the LegalStaff

role login to the platform and initiates a renewal process. The patient will then review
a renewal request based on the initiated process.

Logout

ExtendConsentExpiration

[ConsentRequested == true and PatientNotified == true]

MotifyPatient
[ConsentRequested == true]

Logout
INITIALISATION

CreateConsent
RenewalRequest

ExtendConsent
Expiration

Session
Started

NotifyPatient
Logged In Consent y!

Requested

Patient
Notified

Consent | Logout

Extended

DeletePatient Logout
Data

DeletePatientData

5 Patient Logout

[ConsentRequested == true and PatientNotified == true]” | Deleted

Figure 26: Consent Renewal State Machine (CRSM) describing the transition states
and events used to manage a data retention request.

52

The platform offers a mechanism that allows patients to increase the retention
period for keeping the personal data it collects and processes. After the patient replies
accept status (i.e., approve, reject) to the platform, the legal staff responds, followed
by accept status. If the patient approves, the legal staff increases the retention period
within informed consent. Otherwise, the legal staff submits a delete request to erase
the patient’s personal data.

4.2. Formal Development in Event-B

We created an Event-B context and defined necessary sets, constants, and axi-
oms that are relevant to health information privacy as follows: 1) PATIENTS is a set
of data subjects, 2) SESSIONS represents a set of sessions associated with an author-
ized user (i.e., AUTHORIZED USERS), 3) ROLES (e.g., NursingStaff, Oncologist,
LabStaff) specifies a set of user permissions to prevent unauthorized access attempts,
4) FIELDS is a set of patient data fields (e.g., HN, Name, Age, Gender), and 5) STA-
TUSES is a set of workflow statuses (e.g., Void, Approved, Rejected). The state ma-
chines will refer to this context, which contains global static variables to construct the
states and transitions. We built the state machines and defined preserved invariants as
the properties of the states using common naming, e.g., invl, inv2. Events represent
state transitions in Event-B. For each event, we defined guards as preconditions and
actions as state variable assignments using the common naming, e.g., grd1, grd2, and
actl, act2, respectively.

4.2.1. Restricted Processing State Machine (RPSM)

The RPSM (Figure 23) created based on the Event-B method, describes
the dynamic behavior of restricted data processing in terms of events. For this
state machine, we defined invariants that hold all possible states as follows:

invl: sessions € SESSIONS >+ AUTHORIZED USERS

inv2: userRoles € AUTHORIZED USERS <« ROLES

inv3: pc € PATIENTS < CONSENTS

inv4: patients € P(PATIENTS)

inv5: crf € CONSENTS -+ (ROLES < FIELDS)

inv6: queries € AUTHORIZED USERS -+ (QUERIES <« PATIENTS)

inv7: pf e AUTHORIZED USERS -+ (PATIENTS < FIELDS)

inv8: authorizedConsent € AUTHORIZED USERS -+ (PATIENTS <> CONSENTS)

The variable sessions holds the one-to-one relationship between SES-
SIONS and AUTHORIZED USERS, which means a single session can contain
only one user. To limit the data breach risk, we applied role-based access control
(RBAC) in the model and defined the userRoles as a relationship between AU-
THORIZED USERS and ROLES. It indicates that each user can have multiple
roles. The variable patients contains the set of PATIENTS during the refinement

53

process. According to GDPR, we need a patient’s consent to process data.
Hence, we declared the pc as a set of ordered pairs (p = c¢) where p € PA-
TIENTS and ¢ € CONSENTS. The use of pc here specifies that a patient can
have more than one consent. The crf defines (c + rf) as a set of ordered pairs
where ¢ € CONSENTS, rf € ROLES « FIELDS, which combines the relation-
ships of consents, roles, and data fields to restrict user’s access over the specific
fields of data based on the given consent of data subjects. The model allows a
data controller or a data processor to execute a query per data subject to mini-
mize the risk of retrieving large amounts of personal data by creating the varia-
ble named queries. The queries defines (u = qp) as a set of ordered pair where u
€ AUTHORIZED USERS, qp € QUERIES < PATIENTS to hold personal data
inquiries. We stored the result of a query in variable pf, which is a set of ordered
pairs (u = pf) where u € AUTHORIZED USERS and pf € PATIENTS «
FIELDS. The pf represents the final output of RPSM that describes how the
model provides consent-based permission for each user to perform on specified
data fields. We defined authorizedConsent (u = pc) as a set of ordered pairs
where u € AUTHORIZED USERS and pc € PATIENTS < CONSENTS, indi-
cating the valid consent for the authorized user.

The INTIALISATION is an event that was fired first. It allows the initiali-
zation of arbitrary values and establishes invariants before other events are exe-
cuted. Listing 1 introduces the Login event. The guards are defined with three
preconditions. First, the guard grd1l ensures that any session s is a member of
SESSIONS and s does not exist in the domain of sessions. Second, the guard
grd2 ensures that any user u is a member of AUTHORIZED USERS and u does
not exist in the range of sessions. Third, the guard grd3 ensures that adding an
ordered pair (s = u) into sessions must satisfy the invariant invl. Whenever all
guards of the Login event are valid, the action actl adds an ordered pair (s = u)
to the sessions, which indicates that the user has successfully logged in.

Login =
Any s,u Where
grdl : s € SESSIONS A s & dom(sessions)
grd2 : u € AUTHORIZED USERS A u € ran(sessions)
grd3 : sessions u {s » u} € SESSIONS >~ AUTHORIZED USERS
Then
actl : sessions = sessions u {s p» u}
End

Listing 1: The Login event.

Listing 2 shows how we formally modeled the adding of a new patient us-
ing Event-B. The guards are defined with four preconditions. First, the guard
grdl ensures that the user successfully got the session and the user role is within

54

the domain userRoles. Second, the guard grd2 ensures that one of the user roles
is a nursing staff. Third, the guard grd3 ensures that the patient does not exist in
the variable patients. Fourth, the guard grd4 ensures that the AddPatient event
does not fire after entering the inquiry states. Whenever all guards are valid, the
action actl adds the patient p to the patients.

AddPatient =
Any s,p Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = NursingStaff
grd3 : p € PATIENTS A p € patients
grd4 : sessions(s) & dom(queries)
Then
actl : patients = patients u {p}
End
Listing 2: The AddPatient event.

Listing 3 shows the formal model of how a new patient’s consent is added
to the system. The guards are defined with six preconditions. First, the guard
grdl ensures that the user 1s successfully logged in with the user role known by
the system. Second, the guard grd2 ensures that one of the user roles is a nursing
staff. Third, the guard grd3 ensures that any patient p is a member of patients
and consent ¢ is a member of the domain crf. Fourth, the guard grd4 ensures that
a new ordered pair (p = c) does not exist in the pc. Fifth, the guard grd5 ensures
that adding an ordered pair (p = c¢) into variable pc must satisfy the invariant
inv3. Sixth, the guard grd6 ensures that the AddConsent event does not fire after
entering the inquiry states. Whenever all guards are valid, the action actl adds
an ordered pair (p = c) to the pc.

AddConsent =
Any s,p,c Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = NursingStaff
grd3 : p € patients A ¢ € dom(crf)
grdd : p» c € pc
grd5 : pc u {p » c} € PATIENTS < CONSENTS
grdé : sessions(s) & dom(queries)
Then
actl : pc =pcu {ppr c}
End
Listing 3: The AddConsent event.

Listing 4, Listing 5, and Listing 6 show how we formally model the han-
dling of a user inquiry, starting from creating an inquiry (Listing 4), verifying
the consent validation (Listing 5), and executing the inquiry (Listing 6). The

55

Createlnquiry event (Listing 4) is used to prepare a new query under the current-
ly logged on user. The guards are defined with three preconditions. First, the
guard grdl ensures that the user is successfully logged in with the user role
known by the system. Second, the guard grd2 ensures that any query ¢ is a
member of QUERIES, patient p is a member of the domain pc, and session(s)
does not exist in the domain gqueries. Third, the guard grd3 ensures that when
adding an ordered pair (q = p) to the queries(sessions(s)), the invariant inv6
must be satisfied. Whenever all guards are valid, the action actl adds an ordered
pair (q = p) to the queries(sessions(s)).

CreateInquiry =
Any s,q,p Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : q € QUERIES A p € dom(pc) A sessions(s) & dom(queries)
grd3 : queries < {sessions(s) » {q » p}s} €
AUTHORIZED USERS -+ (QUERIES < PATIENTS)
Then
actl : queries(sessions(s)) = {q » p}
End
Listing 4: The Createlnquiry event.

The CheckAuthorizeConsent event (Listing 5) is used to verify if the pa-
tient’s consent does not expire. The guards are defined with six preconditions.
First, the guard grdl ensures that the user is successfully logged in and the user
has created queries. Second, the guard grd2 ensures that consentExpired is a
member of the boolean and consentExpired is FALSE. Third, the guard grd3 en-
sures that the consent ¢ is a member of pc/{p}] and c is a member of the domain
crf. Fourth, the guard grd4 ensures that one of the user roles of the logged on us-
er is a member of the domain crf{c). Fifth, the guard grd5 ensures that a new or-
dered pair (p = c) does not exist in the domain authorizedConsent. Sixth, the
guard grd6 ensures that when adding an ordered pair (p = c) to the author-
izedConsent(sessions(s)), the invariant inv8 must be satisfied. Whenever all
guards are valid, the action actl adds an ordered pair (p = c¢) to the author-
izedConsent(sessions(s)).

CheckAuthorizeConsent =

Any s,p,c,consentExpired Where
grdl : s € dom(sessions) A sessions(s) € dom(queries)
grd2 : consentExpired € BOOL A consentExpired = FALSE
grd3 : c € pc[{p}] A c € dom(crf)
grd4 : 3r-r € userRoles[sessions[{s}]] A r € dom(crf(c))
grd5 : sessions(s) & dom(authorizedConsent)
grd6 : authorizedConsent < {sessions(s) » {p » c}} €

AUTHORIZED USERS -+ (PATIENTS <> CONSENTS)
Then

56

actl : authorizedConsent(sessions(s)) = {p » c}
End
Listing 5: The CheckAuthorizeConsent event.

The ExecuteQuery event (Listing 6) is used to get the result of a query.
The guards are defined with five preconditions. First, the guard grd]l ensures
that the user is successfully logged in and the user has created queries. Second,
the guard grd2 ensures that any patient p is a member of the range of que-
ries(sessions(s)) and c is a member of the domain crf. Third, the guard grd3 en-
sures that sessions(s) is a member of the domain authorizedConsent and an or-
dered pair (p = c) is a member of authorizedConsent(sessions(s). Fourth, the
guard grd4 ensures that sessions(s) does not exist in a domain pf. The grd4 rep-
resents that the query has not yet been executed within the user session. Fifth,
the guard grd5 ensures that when adding a cartesian product {p! x ran(
userRoles[sessions[{s}]] <Icrf(c)) to the pf(sessions(s)), the invariant inv7 must
be satisfied. The variable pf represents the result of the query based on consent-
permission which is defined in the variable crf. Whenever all guards are valid,
the action actl adds a cartesian product {p} X ran(userRoles[sessions[{s}]] <

crf(c)) to the pf(sessions(s)).

ExecuteQuery =
Any s,p,c Where
grdl : s € dom(sessions) A sessions(s) € dom(queries)
grd2 : p € ran(queries(sessions(s))) A c € dom(crf)
grd3 : sessions(s) € dom(authorizedConsent) A p » c €
authorizedConsent(sessions(s))
grd4 : sessions(s) & dom(pf)
grd5 : pf < {sessions(s) » {p} x ran(userRoles[sessions[{s}]] <«
crf(c))} € AUTHORIZED USERS -+ (PATIENTS < FIELDS)

Then
actl : pf(sessions(s)) = {p} x ran(userRoles[sessions[{s}]] <«
crf(c))
End

Listing 6: The ExecuteQuery event.

The Logout event (Listing 7) is fired when a user signs out of the system.
The guards are defined with five preconditions. First, the guard grdl ensures
that the user is successfully logged in. Second, the guard grd2 ensures that re-
moving sessions(s) from queries must satisfy the invariant inv6. Third, the guard
grd3 ensures that removing sessions(s) from authorizedConsent must satisfy the
invariant inv8. Fourth, the guard grd4 ensures that removing sessions(s) from pf
must satisfy the invariant inv7. Fifth, the guard grd5 ensures that removing ses-
sions(s) from sessions must satisfy the invariant invl. Whenever all guards of
the Logout event are valid, the action actl removes sessions(s) from queries, ac-

57

tion act2 removes sessions(s) from authorizedConsent, action act3 removes ses-
sions(s) from pf, and action act4 removes sessions(s) from sessions.

Logout =
Any s Where
grdl : s € dom(sessions)
grd2 : {sessions(s)} < queries € AUTHORIZED USERS -~
(QUERIES < PATIENTS)
grd3 : {sessions(s)} < authorizedConsent €
AUTHORIZED USERS -+ (PATIENTS <« CONSENTS)
grd4 : {sessions(s)} < pf € AUTHORIZED USERS -+ (PATIENTS <« FIELDS)
grd5 : sessions > {sessions(s)} € SESSIONS »» AUTHORIZED USERS
Then
actl : queries = {sessions(s)} < queries
act2 : authorizedConsent = {sessions(s)} < authorizedConsent
act3 : pf = {sessions(s)} < pf
act4 : sessions = sessions & {sessions(s)}
End

Listing 7: The Logout event.

4.2.2. Withdrawal Approval State Machine (WASM)

The WASM (Figure 24) was created based on the Event-B method to
describe the dynamic behavior of the model for revoking an individual consent
and automatically deleting personal data. We defined the invariants for the
WASM model as follows. The first three invariants are the same as of RPSM.

invl: sessions € SESSIONS >+ AUTHORIZED USERS

inv2: userRoles € AUTHORIZED USERS <« ROLES

inv3: pc € PATIENTS < CONSENTS

inv4: withdrawalState € (PATIENTS < CONSENTS) »» STATUSES
inv5: markAsDeleted € PATIENTS <« CONSENTS

Additionally, we declared two more variables in the context to support the
refinement of WASM. First, the withdrawalState defines (pc = status) as a set
of ordered pairs, where pc € PATIENTS <> CONSENTS, and status € STA-
TUSES that holds the status of the withdrawal request. Second, the markAsDe-
leted contains the relationship between PATIENTS and CONSENTS that repre-
sents the patient as deleted under the consent.

The INTIALISATION event gets fired first to initialize the variables. Then
the Login event starts to get a new session which holds a user role. The Cre-
ateWithdrawal event (Listing 8) is used to initiate a withdrawal request. The
guards are defined with four preconditions. First, the guard grdl ensures that the
user successfully got the session and the user role is within the domain
userRoles. Second, the guard grd2 ensures that one of the user roles is a legal

58

staff. Third, the guard grd3 ensures that any patient p is a member of the domain
pc, where consent ¢ is a member of the range pc, and the ordered pair (p = ¢)
does not exist in the domain withdrawalState. Fourth, the guard grd4 ensures
that when adding Void status to the withdrawalState({p + c}), the invariant inv4
must be satisfied. Whenever all guards are valid, the action actl adds a status
Void to the withdrawalState({p ~ c}), which will trigger the approval workflow.

CreateWithdrawal =
Any s,p,c Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalStaff
grd3 : p € dom(pc) A c € ran(pc) A {p » c} ¢ dom(withdrawalState)
grd4 : withdrawalState < {{p » c} » Void} €
(PATIENTS <> CONSENTS) >+ STATUSES
Then
actl : withdrawalState({p » c}) = Void
End
Listing 8: The CreateWithdrawal event.

Listing 9 shows the formal model of how to approve the consent with-
drawal. The guards are defined with six preconditions. First, the guard grdl en-
sures that the user successfully got the session and the user role is within the
domain userRoles. Second, the guard grd2 ensures that one of the user roles is a
legal approver. Third, the guard grd3 ensures that pc/ is a member of the domain
withdrawalState and the status of the withdrawalState(pcl) is Void. Fourth, the
guard grd4 ensures that when updating Void to Approved status must satisfy the
invariant inv4. Fifth, the guard grd5 ensures that canWithdraw is a member of a
boolean and canWithdraw is TRUE. The TRUE boolean here indicates that all
required activities before withdrawal were done. Sixth, the guard grd6 ensures
that when adding pc! to the markAsDeleted, the invariant inv5 must be satisfied.
Whenever all guards are valid, the action actl updates the withdrawalState({p
c}) from Void to Approved status, and act2 adds pcl to markAsDeleted.

ApproveWithdrawal =
Any s,pcl,canWithdraw Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalApprover
grd3 : pcl € dom(withdrawalState) A withdrawalState(pcl) = Void
grd4 : withdrawalState < {pcl » Approved} €
(PATIENTS <> CONSENTS) >+ STATUSES
grd5 : canWithdraw € BOOL A canWithdraw = TRUE
grd6 : markAsDeleted < pcl € PATIENTS <> CONSENTS
Then
actl : withdrawalState(pcl) := Approved
act2 : markAsDeleted = markAsDeleted < pcl

59

End
Listing 9: The ApproveWithdrawal event.

Otherwise, the RejectWithdrawal event (Listing 10) will be fired if the var-
iable canWithdraw is FALSE, assuming that some required activities were not
completed. The status of withdrawalState(pcl) will then be changed from Void
to Rejected according to the action actl. In both cases, the request must be ap-
proved or rejected by the legal approver. Especially in the ApproveWithdrawal
event, we defined the markAsDeleted to hold the deleted patients for the ap-
proved cases. The Logout event is fired to indicate that the user is no longer in
the system.

RejectWithdrawal =

Any s,pcl,canWithdraw Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalApprover
grd3 : pcl € dom(withdrawalState) A withdrawalState(pcl) = Void
grd4 : withdrawalState < {pcl » Reject} e

(PATIENTS <> CONSENTS) >+ STATUSES

grd5 : canWithdraw € BOOL A canWithdraw = FALSE

Then
actl : withdrawalState(pcl) = Rejected

End

Listing 10: The RejectWithdrawal event.

4.2.3. Portable Approval State Machine (PASM)

The PASM (Figure 25) created based on Event-B describes the dynamic
behavior of the model allowing patients to port their personal data. The first
three invariants of the model are the same as the previous two models and a new
variable named portableState was introduced to hold the status of data portabil-
ity request.

invl: sessions € SESSIONS >+ AUTHORIZED USERS

inv2: userRoles € AUTHORIZED USERS <« ROLES

inv3: pc € PATIENTS < CONSENTS

inv4: portableState € (PATIENTS <« CONSENTS) >+ STATUSES

The behavior of PASM is similar to the WASM but is used for different
purposes. After initializing the variables and creating a new session, the Create-
Portable event (Listing 11) will be started. The guards are defined with four pre-
conditions. First, the guard grdl ensures that the user successfully got the ses-
sion and the user role is within the domain userRoles. Second, the guard grd2
ensures that one of the user roles is a legal staff. Third, the guard grd3 ensures
that any patient p is a member of the domain pc, consent ¢ is a member of the

60

range pc, and the new ordered pair (p + ¢) does not exist in the domain porta-
bleState. Fourth, the guard grd4 ensures that when adding Void status to the
portableState({p = c}), the invariant inv4 must be satisfied. Whenever all
guards are valid, the action actl adds the status Void to the portableState({p +

cl).

CreatePortable =
Any s,p,c Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalStaff
grd3 : p € dom(pc) A c € ran(pc) A {p » c} & dom(portableState)
grd4 : portableState <« {{p » c} » Void} €
(PATIENTS <> CONSENTS) >+ STATUSES
Then
actl : portableState({p » c}) = Void
End
Listing 11: The CreatePortable event.

After the CreatePortable event is done, the ApprovePortable event (Listing
12) will be fired if the variable canPortable is TRUE. The status of portableS-
tate(pcl) will then be changed from Void to Approved according to the action
actl.

ApprovePortable =

Any s,pcl,canPortable Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalApprover
grd3 : pcl € dom(portableState) A portableState(pcl) = Void
grd4 : portableState < {pcl » Approved} €

(PATIENTS <> CONSENTS) >+ STATUSES

grd5 : canPortable € BOOL A canPortable = TRUE

Then
actl : portableState(pcl) = Approved

End

Listing 12: The ApprovePortable event.

Otherwise, the RejectPortable event (Listing 13) will be fired to change the
status from Void to Rejected. In both cases, the portability request must be de-
termined by the legal approver.

RejectPortable =
Any s,pcl,canPortable Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r e userRoles[sessions[{s}]] A r = LegalApprover
grd3 : pcl € dom(portableState) A portableState(pcl) = Void
grd4 : portableState < {pcl » Rejected} €
(PATIENTS < CONSENTS) >+ STATUSES

61

grd5 : canPortable € BOOL A canPortable = FALSE
Then
actl : portableState(pcl) = Rejected
End
Listing 13: The RejectPortable event.

4.2.4. Consent Renewal State Machine (CRSM)

The CRSM model (Figure 26) created by Event-B describes the dynamic
behavior of the model to extend the renewal period of a consent. The first three
invariants of the model are the same as the previous three models. We also de-
fined four more invariants and variables to cover the refinement of CRSM as
follows.

invl: sessions € SESSIONS >+ AUTHORIZED USERS

inv2: userRoles € AUTHORIZED USERS < ROLES

inv3: pc € PATIENTS < CONSENTS

inv4: isConsentExpired € (PATIENTS < CONSENTS) >~ BOOL

inv5: markAsDeleted € PATIENTS <> CONSENTS

inv6: markAsReceived € PATIENTS < CONSENTS

inv7: consentRenewalState € (PATIENTS <« CONSENTS) >+~ STATUSES

The first variable isConsentExpired is a set of ordered pairs represents by
one-to-one relationship (pc = expired) where pc € PATIENTS < CONSENTS,
and expired € BOOL (i.e., TRUE or FALSE). The second variable markAsDe-
leted contains the relationship between PATIENTS and CONSENTS that repre-
sents the patient as deleted under the consent. The third variable mar-
kAsReceived contains the relationship between PATIENTS and CONSENTS that
keeps track of the patient’s incoming response to the renewal request. The fourth
variable is consentRenewalState, which has held the status of consent renewal. It
is a set of ordered pairs (pc = status), where pc € PATIENTS <> CONSENTS,
and status € STATUSES that holds the status of patient’s consent.

By default, the INTIALISATION event is fired to initialize the variables
before executing a renewal request. The Login event is triggered to retrieve the
user login information, and the session has started. The CreateConsentRenew-
alRequest event (Listing 14) is used to initiate a consent renewal request. The
guards are defined with seven preconditions. First, the guard grdl ensures that
the user successfully got the session and the user role is within the domain
userRoles. Second, the guard grd2 ensures that one of the user roles is a legal
staff. Third, the guard grd3 ensures that any patient p is a member of the domain
pc, consent ¢ is a member of the range pc, and a new ordered pair (p + c) does
not exist in the domain consentRenewalState. Fourth, the guard grd4 ensures
that expired is a member of a boolean and expired is TRUE. Fifth, the guard

62

grd5 ensures that isWithdrawn is a member of a boolean and isWithdrawn is
FALSE. Sixth, the guard grd6 ensures that when adding Void status to the con-
sentRenewalState({p ~ c}), the invariant inv7 must be still satisfied. Seventh,
the guard grd7 ensures that when adding TRUE to the isConsentExpired({p +
¢}), the invariant inv4 must be satisfied. Whenever all guards are valid, the ac-
tion actl adds a status Void to the consentRenewalState({p ~ c}), and act2 adds
TRUE to the isConsentExpired({p + c}).

CreateConsentRenewalRequest =
Any s,p,c,expired,isWithdrawn Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalStaff
grd3 : p € dom(pc) A c € ran(pc) A {p » c} & dom(consentRenewalState)
grd4 : expired € BOOL A expired = TRUE
grd5 : isWithdrawn € BOOL A isWithdrawn = FALSE
grdé : consentRenewalState < {{p » c} » Void} €
(PATIENTS <> CONSENTS) >+ STATUSES
grd7 : isConsentExpired < {{p » c} » TRUE} €
(PATIENTS <> CONSENTS) >~ BOOL
Then
actl : consentRenewalState({p » c}) = Void
act2 : isConsentExpired({p » c}) = TRUE
End

Listing 14: The CreateConsentRenewalRequest event.

The NotifyPatient event (Listing 15) is used to notify the patient about ex-
tending the time period of consent. The guards are defined with five precondi-
tions. First, the guard grd1 ensures that the user successfully got the session and
the user role is within the domain userRoles. Second, the guard grd2 ensures that
one of the user roles is a legal staff. Third, the guard grd3 ensures that pc/ is not
a subset of markAsReceived, pcl is a member of the domain consentRenewal-
State, and consentRenewalState(pcl) is equal to Void. Fourth, the guard grd4 en-
sures that the acceptStatus is a member of STATUSES but excludes Void. Fifth,
the guard grd5 ensures that when updating the acceptStatus to the consen-
tRenewalState(pcl), the invariant inv7 must be satisfied. Whenever all guards
are valid, the action actl adds the acceptStatus to the consentRenewalState(pcl),
and act2 adds pc! to the markAsReceived.

NotifyPatient =
Any s,pcl,acceptStatus Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalStaff
grd3 : pcl ¢ markAsReceived A pcl €
dom(consentRenewalState) A consentRenewalState(pcl) = Void
grd4 : acceptStatus € STATUSES \ {Void}
grd5 : consentRenewalState < {pcl » acceptStatus} €

63

(PATIENTS <> CONSENTS) >+ STATUSES
Then
actl : consentRenewalState(pcl) = acceptStatus
act2 : markAsReceived = markAsReceived u pcl
End

Listing 15: The NotifyPatient event.

After receiving the patient’s response, the ExtendConsentExpiration event
(Listing 16) will be fired if the variable consentRenewalState(pcl) is Approved
and isConsentExpired(pcl) is TRUE. The isConsentExpired(pcl) as a boolean
will then be changed from TRUE to FALSE according to the action.

ExtendConsentExpiration =
Any s,pcl Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalStaff
grd3 : pcl e dom(consentRenewalState) A
consentRenewalState(pcl) = Approved
grd4 : pcl c markAsReceived A pcl € dom(isConsentExpired) A
isConsentExpired(pcl) = TRUE
grd5 : isConsentExpired < {pcl » FALSE} €
(PATIENTS <> CONSENTS) >+ BOOL
Then
actl : isConsentExpired(pcl) = FALSE
End

Listing 16: The ExtendConsentExpiration event

Otherwise, the DeletePatientData event (Listing 17) will be fired to add the
pcl to markAsDeleted. In both cases, the consent renewal request is determined
by the legal staff.

DeletePatientData =
Any s, pcl Where
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalStaff
grd3 : pcl € dom(consentRenewalState) A
consentRenewalState(pcl) = Rejected
grd4 : pcl c markAsReceived A pcl € dom(isConsentExpired) A
isConsentExpired(pcl) = TRUE
grd5 : markAsDeleted n pcl = o
Then
actl : markAsDeleted = markAsDeleted u pcl
End

Listing 17: The DeletePatientData event.

64

4.3. Model Evaluation in Event-B

The refined models are formalized and proved correct using the Rodin Platform.
The Rodin Platform generates the POs that can be proved automatic or manual.
Moreover, it guarantees that all events preserve invariants whenever state variables
have changed. The proving results (Table 7) demonstrate that all models were proved
automatically by Atelier B provers. Moreover, there were no invariant violations or
deadlocks found. The Event-B models are presented in APPENDIX A.

Table 7: The summary of proof statistics by the Rodin platform for the proposed four
consent management state machines based on Event-B models.

Machine name Number of proof Automatic (%) Manual (%)
obligations
RPSM 42 42 (100%) 0 (0%)
WASM 16 16 (100%) 0 (0%)
PASM 16 16 (100%) 0 (0%)
CRSM 22 22 (100%) 0 (0%)

4.4. Event-B Model Transformation to Class Diagram

The proposed models implemented by Event-B can be used as a guideline for
software development on the aspects of consent management. According to the ob-
ject-oriented approach, a class diagram is a static structural model which describes the
system’s classes, attributes, operations, and associations. It helps developers under-
stand a system’s overall structure. Here, we give an example of how to transform our
Event-B models into a class diagram. First, identify the primary classes of the system
which appear in static variables of Event-B (e.g., sets, constants, variables, and defini-
tions). Second, identify the relation between self or other sets which appear in invari-
ants, which indicate the association between classes. Third, identify events as opera-
tions in classes. Also, notice that a transition can be fired, and only if guard conditions
are true, an event occurs. Each guard condition must be implied as a precondition of a
method in a class. The globally declared static variables can be mapped to concrete
classes (e.g., AuthorizedUser, Role, Consent, DataSubject, DataSubjectConsent), as
shown in Figure 27. The set of PATIENTS represents data subjects under GDPR. We
could define a DataSubject associated with DataField, and DataValue classes to hold
patient personal data. Moreover, GDPR requires the systems to get consent from data
subjects before processing data. So, the Consent class needs to be created with a set of
properties (e.g., consentDetail, dataRetention (in months), consentVersion, created-
Date). In the CheckAuthorizeConsent event of RPSM, the variable consentExpired is
a flag indicating if the data’s age exceeds the applicable data retention, defined inside
the ConsentPolicyAccess class. We need to create a DataSubjectConsent class to hold
the properties required for calculating the consentExpired flag. For example, suppose
that we define properties as follows: 1) the acceptedFlag indicates a data subject’s
response to the consent extension, which can be either approved (“Y”) or rejected

65

(“N™), 2) the createdDate represents the data subject’s last response date, 3) the
dataSubject object indicates this data subject, and 4) the consent object indicates the
consent that has been approved or rejected by the data subject.

ConsentAccessPolicy ConsentRoleField DataField
1.* 0.* 0." 1.7
- fieldName: String
0.
+ checkAuthorizeConsent(q:Query): boolean - fieldType: String
0
+ getAvailableDataFields(q:Query): List<ConsentRoleField>
1.
1
e . Role 18 Consent
Query - name: String - consentDetail: String
1
- consentVersion: String
0. 1-"| . gataRetention: Integer
+ createQuery(u:AuthorizedUser, d:DataSubject, c:Consent)
+ executeQuery(): List<DataValue> ceuserRoles>>
1: 0.* ‘ 0.
<<inguiries=>
1. ‘ DataSubjectConsent =
AuthorizedUser - acceptedFlag: String 0.* DataSubject
- username: String — |- createdDate: Date T
- password: String - withdrawnFlag: String 0 T
- displayName: String - withdrawnDate: Date - - TG
+ login(username, password): boolean + expireConsent(): boolean iy
+logout(): Boolean + canWithdraw(): boolean DataValue
+ assign(r:Role) + canPortable(): boolean - fieldValue: String o
1 0.7 + revokeConsent(): boolear
o

<<creates>>

0.1

Session

Figure 27: A class diagram transformed from the proposed consent-based models in
Event-B.

To calculate the consentExpired flag, we need to retrieve the DataSubjectCon-
sent object associated with a specific data subject and consent. After getting the ob-
ject, check if the acceptedFlag = “Y” and getSystemDate() > addMonths(createdDate,
consentObject.dataRetention), then set the expiredFlag = “Y”, otherwise set the ex-
piredFlag = “N”. Our proposed models based on Event-B method are designed to be
simple and applicable, which could be easily mapped to the real codes. In the case of
RUN-ONCO, a web-based application, we adopted the functionality from the Con-
sentPolicyAccess class (Figure 27) and enhanced it into AuthenticationService and
PatientService classes (Figure 22) to make clean and reusable codes.

In addition, particular businesses or systems can also use these models. Accord-
ing to the class diagram in Figure 27, the DataSubject class represents an individual
that can recognize a person’s uniqueness (e.g., customers, patients, employees). Hence
a system has to define a set of data fields of personal data on which can dynamically

66

be added into the DataField class (e.g., full name, social security number, birthdate).
Since data fields have been defined, a stakeholder who is involved in a software sys-
tem (e.g., an individual, team, organization) needs to add consent into the Consent
class and establish a relationship between these data fields. To limit data access pre-
cisely, a stakeholder needs to assign suitable user roles based on consent data. When
collecting personal data, a system needs to obtain the value of personal data in the
DataValue class followed by predefined data fields according to a given consent. This
thesis showed that our formal models support the commonly used features of consent
management.

67

CHAPTER V
A FORMAL MODEL FOR BLOCKCHAIN-BASED CONSENT
MANAGEMENT IN DATA SHARING

This chapter is a slightly modified version of a manuscript published in the
Journal of Logical and Algebraic Methods in Programming, Volume 134, 2023,
100886, and has been reproduced here with the permission of the copyright holder.

Sharing data can lead to a potential loss of control over personal data, as data are
across boundaries between software services. The use of blockchain technology ena-
bles to manage of data subjects’ informed consent for data sharing to build trust,
transparency, and traceability to share data across software services. Nevertheless,
cooperation between data privacy and blockchain technology benefits protecting data
against manipulation.

To develop CM for distributed systems in data sharing, we reviewed data-
sharing issues (Table 8) from the view of system design to build a GDPR-aware sys-
tem model on blockchain related to PbD [20, 36, 43-46].

In this thesis, we defined the data sharing state machine (DSSM) upon require-
ments in Table 8 that covered blockchain-enabled consent management in data shar-
ing and created a mapping of GDPR articles relevant to DSSM in Table 9. This state
machine aims to help developers address GDPR requirements in software engineering
practices.

To define a set of states and transitions in DSSM, we determined the logic with-
in consent management functionality comprises the following fundamental features:
1) the consent authorization feature is used to restrict access to share personal data
based on the given consent (Articles 5 & 20 GDPR), 2) the consent withdrawal fea-
ture is used to revoke permission to share personal data (Articles 17 & 19 GDPR), and
3) the consent renewal feature is used to keep data sharing functionality available (Ar-
ticle 6(1a) GDPR). The consent authorization feature is essential in data-sharing pro-
cessing activities to check whether consent is expired or withdrawn based on the data
subject’s consent. If consent is expired or removed, data transfer is not permitted.
Otherwise, the system can proceed with data-sharing activities, i.e., transfer data to
another service.

*abe10]S B1EP PAINQLISIP 24N28S JO asn syl Buneurwn|s
10} S7dN 9eq|ed Julodpua uoireinbIiuod diwreu

-Ap Yyum uonoeialul asuodsai-1sanbau ay) abeurw

01 Y2.q||ed JUASe a|qeua [[eys walsAs ayl :80OY

"suapJng |euolie
-Jado pue $3509 | | Buronpal ‘safeiols e1ep painguisip
2IN23s Ul elep .SenplAipul Aue sjealjdnp 1ou pjnoys
SJa]]011u09 erep Buowe elep Jeuosiad Jo Bulreys ayl

abr101S BIRP PAINQLISIP 8INJ8S

‘Burreys eyep ybnouyy suosiad [enpialpul
BuiAjnuapi 4o XsLI ay) aanpal 0} erep paziwAuopnasd
Joj wsiueydaw e apiaoid Jeys wiaisAs ayl :20Y

Tre-6v “2v]
suosJtad [enpiaipul Jo uoniubodal syl asned Aew Bul
-Jeys e1ep Ul UoITedlHluapl [euosiad 19a11p JO S ay L

Buysew eyep jeuosiad

"3INS0ISIp

AJ3A3 uo sJ9]j01u09 elep Juedionied usamiaq uonde
-J3)ul asuodsai-1sanbal e Juswinoop 01 Buibboj upne
Jo} wsiueydsw e apinoid [jeys waisAs ayl :90OY

"oy ‘ev ‘0z] papinoid ays/ey yeys Jussuod ayy
uo paseq deis uolissiwisuel) yoea e Buixoel) 1oy sen
-1A119e 60| 1Ipne 0] SS82de aAeY |[eys 19alqgns e1ep ayL

‘[1v ‘ev ‘0] abeiols erep juatedsuel) pue sjgeinLuwi
u1 das uoISSIWISURI) YIBa T8 PajusWinIop aq pInoys
s13]]011u02 elep Buowe eep [euosiad Jo Bulteys ay |

Anjigenpny

"JUasu0d
MaUaJ ued 103lgNs BIep auy1 YoIyM Ul [emaUal JUSSU0D
10} wsiueyoaw e apiaoid [eys waisAs ayl :sOY

Tay “0z] erep reuosiad Jay/sIy aseys
01 Buinunuod Joj porad uonUalal Y} JO UOISUBIX3
ue 198lqns erep ay1 1senbal Aew 13]]041U09 BIRP BY L

|eMmaual JUasuo)

"3l AUe 18 JUasU02 aXoAsl
ued 198lgns e1ep syl YoIym Ul UOIIRIOASI JUSSUOD
10} wsiueyoaw e apiaoid [eys waisAs ayl :¥OY

sy ‘ozl
S9USIM ays/ay Se eyep [euosiad BulLieys sanunuoasip
0] JUaSU0d 8X0A31 03 yBui ays sey 19algns e1ep ay L

[eMEIPYIIM JUSSU0D

"JUBSU0I UBAIB SIY} Ul splaly erep paulapald yim
90UBPIOIIL UL PASO[ISIP 3q [[IM J1 PUR BIRP S [BNPIA
-1pul auo JoyJ papincid Ajuo s1 uonaeiaul asuodsal
-1s9nbaJ auo Jey) aulwILIBp [|eYs wialsAs ayl :£OY

Tev
‘)€ ‘9e] Aressaoau erep [euostad JO Junowe wnwiuiw

3y Ajuo Bulreys 01 pa1dLisal SI 19]]01U09 lep 8y

Ty
‘5] Xs1 Je spenpiAipul Jo Adeatid pue Ayjeruspijuod
ay1 sind e1ep euostad Aressaosuun Jo Buleys ayl

L0033 BIep Ul SPI023J JO JaqUNU pauwi]

"Juasu0d Jay/siy papiao.d sey 12algns
©1Ep AU} JT A[UO ©IEp S[ENPIAIPUL 3SO[ISIP pue 1sanb
-3J 0] $J3]|0J1U0D BIRP MO][E [[eys WwalsAs ayl :zOY

Tev
‘0] s4a]1011u09 eIRp Buowe BIep JRUOSIad JIWSURA O)

JuBsu09 Jayysty anib 01 1ybi ayi sey 198lgns elep ay L

1U8sU02 10 8sodind 8y} UO Paseq UOoII1IISal SS90y

")10MI3U e Jano Burreys-erep juased

-sueJ) pue 60| Jipne a|geInwwi Ue sajqeus Yyaiym ‘A
-1UNJ3s Pazi[esiuadap uo paseq Alljeuonouny juswabe
-UBW JUSSUOJ 8y} auIWIBIeP |[eys walsAs ayl :TOY

‘Tov sy ‘sv ‘0z] pateys Bulaq erep Jeuosiad JaA0 Juas
-u09 Jayysiy apiaoid pue 013U03 ued 198lqns eyep ay L

‘[ev-¢¥ ‘0z] Apuatedsuen pue AjaAndaya
elep |euosiad pue Juasuod abeuew 03 si elep [euosiad
Burieys yum paleroosse Juasuod Jo abusjieyd ayL

asodind Jsejnaiued e uodn Bulreys elep Jo sainy

Juswalinbay

anss|

aido]

“JUSWOTRURLL JUISUOD PISeq-UIBYIYI0][q 10] S)UdWAIINDAI sk sonss1 paje[or-3uLieys eje(] 8 9[qeL

89

durelsawi | umespyim

‘U0ISI9/\IUBSUOD 1004
6T 810V ‘9podIuasuU0d ‘SIN3ISNOD
‘LT 3V ‘plaapuodsal 10RU0DIUBSUODIB[gNSEIRT ‘S103rans viva
‘()2 sjomiy ‘wAuopnasd ‘1on11s:Ussu0D108lgnseIRg 1UasU0DAM0NB sjuasuo0afgnserep ‘SINVIDILYVd jussuoDaonay | vOY
UOISI9/\JUSSUOD
‘9p0DIUBSU0D
‘wAuopnasd
‘prasanbai
‘plesuodsal | 19eNUODBSUOdSaYSSad0VEIR] S1S3NoO3Y
‘sisix3asuodsal ‘10n11:9suU0dsayssa00 IR asuodsayywigns SasU0dsayssa00VeIEp ‘SISNOJSTY asuodseyiuigns
UOISI9/\JUSSUOD
02 3Py ‘9podIUBSU0D SIN3ISNOD
‘(e1)9 3101y ‘wAuopnasd '5103rdns viva
‘(UT)g 9oy ‘prisanbal 19e11U0D1SaNbaYssaaVeIRQ ‘SINVdIDILYVd
‘(8T)g 8joIly ‘s)six3isanba. ‘1on.1s:158nbayssa0ovyereq 159nbaywigns sisanbayssaoowerep 'S1S3NO3Y 1sanbayiwgns | €O
dwreisawi] a1eald
‘uonualayerep
(eT)9 31V ‘UOISIBAIUBSUOD 7004
‘(PT)G 31UV ‘9p0DIUBSUO0D ‘SINISNOD
{(9T)S 901y ‘wAuopnasd 10RU0DIUsSUODIBIgNSEIRQ Ssjuasu0D19algnserep ‘s103rans v.iva
‘(e1)g 801Uy ‘pliapuodsai ‘1onas:ussu0DIv8lgnsereq pI[eAIUBsU0DSI ‘|ooq:palidx3ussuo ‘SINVAIDILYVd z20Y
UOISI9/\JUSSUOD
‘9p0oDIUASU0D 7004
‘wAuopnasd ‘SINISNOD
‘linJspuodsal | 10RAUODIUBSUODIBIGNSEIRQ ‘5103rdns viva
‘pl4apuodsal ‘19n118:UssuU0D1aIgNSEIRg juasuoDdslgnseIegppe sluasuo0afgnserep ‘SINVAIDILYVd | ussuodidslgnsereappy
aweNplaly
‘UOISI9A\IUSSUOD 1orUODP|BIdeIR] sa3ai4
/€ 301Uy ‘9p0DIUBSU0D ‘Jonas:pjaidereq pla1qereappe spjaiqelep ‘SIN3ISNOD
‘8z 991y JiNJa1sanbal
R R0\ ‘plua1sanbal
HCPEETRIN ‘uonualayerep
(Vv 8Py ‘UOISIBA\JUBSUOD
‘(1)y 8oy ‘|re19gIuasuU0d 10RJJU0DIUBSUOD
(T)y 9oy ‘9p0DIUAsU0D ‘1oN11S:1UasU0D juasuoDppe S)UasU02 SIN3ISNOD JuasuoDppy | 1O
aJoIe aINqLNyY sse|d uonesado w_nm__hmw\ﬁ,uw_uﬁw EwWMoo JUsAg
4ddd weubeiq sse|d INSSa
“(P.3U09) PAISA0D 11 S[INIE YJOD pue [opow pasodoid ayJ i 2[qel

69

JiNJajsuely Sale]Slajsuel | eeoeq|jed [SERIED]
‘lANJapuodsal | 10e1U0DBSUOASaYSSEdORIR] ‘sasuodsayssaooyerep ‘SISNOCSIY
‘plesuodsal | ‘Jonuis:asuodsayssaddvereq J1ajsuel] eleyoeq|ed ‘19quINU:8349219.I0 ‘(s1y1)}0adueyeq lajsuel | eeoRq|ed
[MNJapuodsal SIN3ISNOD
‘UOISIBAIUBSUOD '$103rans v.iva
‘9p0DIUBSU0D sajeISIapuodsayyoeq|jed ‘SINVdIDILEVd
‘wAuopnasd | 10enUO0DISaNbaYsseddRIEg ‘s1sanbayssaooyerep ‘5153NO3Y
‘plisanbal ‘10n118:159NbaYssa00VeIR] Japuodsaysioeqg|ed ‘19qWINU:994921]98I0 ‘(siyn)109due|eq Japuodsayioeq|ied
UNJa1sanbsal 7009
‘UOISIBAIUBSUOD ‘SINISNOD
‘9p0DIUBSU0D sa1eISIaISaNbay IRy ‘s103rans v.iva
‘wAuopnasd | 19eAUO0DIUBSUODIdBIgNSEIRQ ‘syuasuoi9algngserep ‘SINVdIDILEVd
‘pliapuodsai “10n138:3UasU0DIv8lgNSEIRg Js1sanbayoeq|es ‘19qWNU:9949z1j0eI0 ‘(siyn)109due|eq Ja1sanbayoeqied | 8dH
[(OTEIRINY: wAuopnasd 19n41s:3uasu0D198lgnsereq 104
MoeqeDJasuel | eregpaulniaybo]
‘yjoeq| e asuel | Bredpail46o
19RJIU0DasU0dsaYSS82IVRIR(‘asuodsaypaniwgnsho]
Moeq|[edlapuodsaypauinieygho]
joeq|eDJapuodsaypali460o]
10R1JU0DISaNbaYSSAIVeIEd ‘Isanbaypaniwansho
1UasUODPamauayho]
“1UBsUODPaNoAaY B0
oeq|jeDJalsanbaypauinaybo]
oeq|eDIa1sanbaypali4fio]
10R.NU0DIUSsSUODIBIgNSeIRQ “ussuod19algnseregpappyBo
Joenuopplsideled plaidereapappyho
JUasuoDpareAndeulbo
10RIIU0DIUISUOD ‘Juasuo)pappybo 90Yd
dwrejsawi] ajeald
‘UOISIBAIUSSUOD 7009
'8PODIUBSU0D ‘SLNISNOD
‘plaspuodsal | 10BAUODIUBSUODIVBIGNSENRQ ‘s103rans v.Llva
(eT)9 901y ‘wAuopnasd ‘19n138:3UasU0DIv8lgNSEIR] JU3SUODMBUBI siuasuodalgnseIep ‘SINVIDILEVd JuasuoDMmauay | sOY
3|geLieA aje1s 1ueISu0)d A
aJoJe aINqLNyY sse|n uonelado /[eao] n9g 1UsAg
4das weubeiq sse|o INSSA

0.

"PAISA0D J1 SI[I1IE YJOD pue [opow pasodoid ayJ :6 9[qeL

71

5.1. CM State Machine for Data Sharing in Distributed Systems

This chapter proposes a formal model for data sharing in distributed systems
which embeds data protection into software development upon the GDPR. Based on
Article 4(11) GDPR, for the consent to be valid, the data subject voluntarily agrees to
enable either a data controller or a data processor to process his/her personal data for a
specific purpose. We considered consent management essential for promoting privacy
awareness in the system design [131, 132]. Furthermore, it indicates that the system
cannot process or share personal data without the data subject’s consent. In this chap-
ter, we built a state machine for data sharing to depict the dynamic behavior of a re-
quester sending requests to access personal data on the blockchain relevant to the rela-
tionships of a data subject’s consent, a requester, a responder, and a smart contract’s
balance. We followed PbD concepts and GDPR guidelines presented in Table 9 and
provided the example of request-response interaction through the data-sharing se-
quence diagram (Figure 28 and Figure 29) and the DSSM (Figure 30) that covers
the main aspects of blockchain-based consent management in data sharing.

10: callbackRequester(callbackData)

11: return(success)

. ServiceA ServiceB "
Data Subject (Responder) (Requester) Blockchain
L} 1 ! .
1 [|
1 1 .
: : 1) 1: addConsent(consent)
1 1
' ' 2: return(success)
1 " I e T T T
] [T
1 1
; i K !
e [] [
" ' '
(2)) y '
3: getActiveConsents() L '
—> 4: getActiveConsents()
j
1
5: return{consents)
6: return(consents) E L] J‘
M i :
] L)
']
L Ll ' L)
1 1 1 L}
T T T T
1 1 1l L}
- M T T
1] L)
3 7: acceptConsent(dataSubjectConsent) : L
- g J 8: addDataSubjectConsent({dataSubjectConsent)
'
9: return(success)
’ 10: return(success) | [€"TTTTTommemeees R e LR
'
'
1]
1
1
1
L}
1
L}
1
1
1
1
L)

[T
T T

Figure 28: Data sharing sequence diagram illustrating the request-response interac-
tion between ServiceA (responder) and Service B (requester).

72

. ServiceA ServiceB .
Data Subject (Responder) (Requester) Blockchain

(4) 12: submitRequest(request)

13: return(success)

1
1
Ll
1
1
Ll
1
1
Ll
1
1
Ll
——

5) 14: callbackResponder(callbackData)

15: return(success)
---------------------- P e e e s s mmm ===

16: submitRéspcnse(response)
1

17: return(success)
R e R B e T
Ll

1
= 1
T
1

18: caIIbackDatéTransfer(caIIbackData)
(6) - i

19: return(success) 5
______________________ P T T T e pp—
1

20: transferData(encryptData)

-
[
T

Figure 29: Data sharing sequence diagram continued from the previous diagram
(Figure 28), which illustrates the request-response interaction between ServiceA and

ServiceB.

We utilize the blockchain to obtain records of all request-response interactions
without storing personal data. Moreover, the requester and responder communicate
through blockchain, which is strictly forbidden to communicate directly with each
other. The interactions between the requester and the responder begin with the re-
quester requesting to access personal data through smart contracts (i.e., providing
consent management) live on a blockchain. Then smart contracts automatically check
if the data subject has authorized access to their personal data. If the request is ap-
proved, the blockchain makes a callback to trigger the responder. Finally, the re-
sponder sends the response back to the blockchain and transmits personal data to the
requester through an off-chain channel (i.e., the channel allowing transactions to oc-
cur outside the blockchain).

Based on sequence diagrams, the requester (ServiceB) first adds its new consent
into the blockchain (Figure 28(1)). Second, the data subject accesses the front-end of
his/her data provider, a responder (ServiceA), and retrieves from the blockchain all
available consents required by the requester (ServiceB) offering new products or ser-
vices (Figure 28(2)). The data subject must accept before using its products or ser-

73

vices. Third, after the data subject agrees with a requester’s consent, the responder
(ServiceA) sends back the data subject’s acceptance status into the blockchain (Figure
28(3)). Fourth, when the new data subject’s consent has been stored on the block-
chain, the blockchain makes a callback to trigger the requester (ServiceB), which can
prepare a request for accessing personal data (Figure 29(4)). Fifth, when the request
has been stored on the blockchain, the blockchain makes a callback to trigger the re-
sponder (ServiceA), which can respond to access the personal data within the reten-
tion period (Figure 29(5)). Sixth, when the response has been stored on the block-
chain, the blockchain makes a callback to trigger the responder (ServiceA), which can
transfer personal data directly to the requester (ServiceB) via an off-chain channel
(Figure 29(6)). One request will get only one response in our model, as tracking all
requests and responses on the blockchain is easier.

INITIALISATION

AddConsent

State
Initiated

Consent

Requester
Added

Notified

Access
Denied

Transfer
Succeeded

Requester
Requested

Responder
Notified

CallbackResponder

Callback |
Failed

| Responder \CallbackDataTransfer
Replied

Transfer
Initiated

Consent
Expired

Figure 30: Data Sharing State Machine (DSSM) illustrating the transition states and
events used to share personal data between a requester and a responder through
blockchain.

5.2. Formal Development in Event-B

To build the data sharing model, first, we created the data sharing context
(DSCX) to define carrier sets, and constants associated with blockchain as follows: 1)
CONSENTS is a set of personal data sharing agreements (e.g., ConsentA, ConsentB)
between the services sending and receiving data, 2) FIELDS is a set of data fields
(e.g., Name, BirthDate, BirthDefects) that identifies individuals, 3) DA-
TA SUBJECTS is a set of data subjects (e.g., DataSubjectl), 4) PARTICIPANTS is a

74

set of services (e.g., ServiceA, ServiceB) that require data sharing based on block-
chain technology, 5) ADDRESSES is a set of contract addresses to interact with de-
ployed smart contracts, 6) the constant this is a member of ADDRESSES, which re-
fers to the contract address itself, 7) the constant initialBalance is a natural number
representing the initial balance of contract address this, 8) REQUESTS is a set of data
requests, the requesting services (requesters) create requests (e.g., Requestl) to the
responding services (responders) for accessing personal data, and 9) RESPONSES is
a set of data responses, the responders check whether the requests have authorized
access to personal data and return the responses (e.g., Responsel) back to the re-
questers.

Second, we created DSSM and referred to DSCX; the state machine can directly
access the defined global static variables. State machine naturally encapsulates states
and behaviors related to variables, invariants, and transitions. In the Event-B model,
variables represent the states of the system, and invariants, e.g., invl, inv2, represent
the preserved properties of the states. A transition represents the change from one state
to another according to an event. Every event comprises guards as preconditions and
actions for variable modification, labeled, e.g., grdl, grd2, and actl, act2, respective-
ly. A transition will take place only if it satisfies all invariants and guards.

5.2.1. Data Sharing State Machine (DSSM)

The DSSM (Figure 30) was modeled and formally proved for blockchain-
based data sharing. It depicts the dynamic behavior of a requester sending re-
quests to access personal data on the blockchain that provides consent-based ac-
cess control. If the request is authorized, the responder will send the response
back to the blockchain and transmit personal data to the requester through an
off-chain channel. For this state machine, we defined the preserved invariants as
follows:

5.2.1.1. Invariants in DSSM

invl: consents € P(CONSENTS)
inv2: dataFields € CONSENTS -+ P1(FIELDS)
inv3: dataSubjectConsents e

PARTICIPANTS x DATA SUBJECTS x CONSENTS -+ BOOL
inv4: addresses ¢ ADDRESSES
inv5: balanceOf € addresses — N
inv6: callbackRequesterStates €

P(PARTICIPANTS x DATA SUBJECTS x CONSENTS)
inv7: dataAccessRequests €

REQUESTS -+ PARTICIPANTS x DATA SUBJECTS x CONSENTS
inv8: callbackResponderStates € P(REQUESTS)
inv9: dataAccessResponses € RESPONSES »-» REQUESTS

75

inv10: callbackDataTransferStates € P(RESPONSES)
inv1ll: encryptedData € RESPONSES -+ P(DATA SUBJECTS x FIELDS)
inv12: dataTransferStates € RESPONSES -~ BOOL

The variable consents contains a set of CONSENTS, which holds all
consents offered by the requesters. According to PbD, the requester must
demonstrate that data subjects agreed to process their personal data for a
specific purpose on the defined data fields. Hence, we declared the varia-
ble dataFields as a set of ordered pairs (consent — dataField) where con-
sent € CONSENTS and dataField € P1(FIELDS). The dataFields speci-
fies that consent can have one or more data fields. The dataSubjectCon-
sents defines (pdc — active) as a set of ordered pairs, where pdc € PAR-
TICIPANTS X DATA_SUBJECTS X CONSENTS, and active € BOOL
(i.e., TRUE or FALSE). The variable dataSubjectConsents represents a
record of the data subject’s consent that allows a requester to process
his/her personal data under the purpose of the consent. The addresses is a
subset of the ADDRESSES set where each represents a unique smart con-
tract address on the blockchain. We defined the balanceOf(address — bal-
ance) where address € addresses and balance is a natural number, keeping
track of the contract address balance. The variable callbackRequesterStates
contains a set of ordered triples (responder +— dataSubject — consent)
where responder € PARTICIPANTS, dataSubject € DATA SUBJECTS,
consent € CONSENTS to track which requesters have been successfully
invoked after the data subjects have given their consents for their data pro-
cessing. The variable dataAccessRequests is a set of ordered pairs (request
— dataSubjectConsent) where request € REQUESTS, and dataSub-
jectConsent € dom(dataSubjectConsents), represents a record of data re-
quest of a requester to the blockchain after receiving a callback of data
subject’s permission. The callbackResponderStates contains a set of RE-
QUESTS to track which responders have been successfully invoked after
the requesters have initiated their requests. Hence, we declared the
dataAccessResponses that holds the one-to-one relationship between RE-
SPONSES and REQUESTS. This mapping allows transferring data be-
tween the responder and requester. The variable callbackDataTransfer-
States contains a set of RESPONSES to track which responders have been
successfully invoked for starting an off-chain data transfer after accepting
the requests. We stored the encrypted data in variable encryptedData, a set
of ordered pairs (response — personalData) where response € RESPONS-
ES, and personalData € DATA SUBJECTS X FIELDS. Furthermore, we
defined a variable dataTransferStates to hold the status of successful data
transfer as a set of ordered pairs (response — success) where response €
RESPONSES, and success € BOOL (i.e., TRUE or FALSE).

76

5.2.1.2. Events in DSSM

The DSSM state machine is executed starting from the INITIALI-
SATION event, then all variables of DSSM are initialized. Listing 18
shows the formal model of how a new requester’s consent is added to the
blockchain. The guards are defined with three preconditions. First, the
guard grdl ensures that the consent does not exist in the variable consents.
Second, the guard grd2 ensures that any dataField is a member of
P1(FIELDS). Third, the guard grd3 ensures that adding an ordered pair
(consent — dataField) into variable dataFields must satisfy the invariant
inv2. Whenever all guards are valid, action actl adds the consent to the
consents, and action act2 adds an ordered pair (consent = dataField) to the
dataFields.

AddConsent =
Any consent, dataField Where

grdl : consent € dom(consents) A consent € consents

grd2 : dataField € P1(FIELDS)

grd3 : dataField < {consent » dataField} € CONSENTS -+ P1(FIELDS)
Then

actl : consents = consents u {consent}

act2 : dataFields(consent) = dataField
End

Listing 18. The AddConsent event.

Listing 19 shows how to formally model the addition of a new data
subject’s consent. The guards are defined with five preconditions. First, the
guard grdl ensures that the responder is a member of PARTICIPANTS.
Second, the guard grd2 ensures that the dataSubject is a member of DA-
TA SUBIJECTS. Third, the guard grd3 ensures that the consent is a mem-
ber of the variable consents and within the domain dataFields. Fourth, the
guard grd4 ensures that a new ordered triple (responder + dataSubject -
consent) does not exist in the domain dataSubjectConsents, which means
no active data subject’s consent is already granted for the requester on the
blockchain. Fifth, the guard grd5S ensures that when adding TRUE to the
dataSubjectConsents(responder + dataSubject ~ consent), the invariant
inv3 must be satisfied. Finally, whenever all of the guards are valid, the ac-
tion actl adds TRUE to the dataSubjectConsents(responder + dataSubject
> consent).

AddDataSubjectConsent =
Any responder, dataSubject, consent Where
grdl : responder € PARTICIPANTS

77

grd2 : dataSubject € DATA SUBJECTS
grd3 : consent € consents A consent € dom(dataFields)
grd4 : responder » dataSubject » consent ¢ dom(dataSubjectConsents)
grd5 : dataSubjectConsents <
{responder » dataSubject » consent » TRUE} €
(PARTICIPANTS x DATA SUBJECTS x CONSENTS) -+ BOOL
Then
actl : dataSubjectConsents(responder » dataSubject » consent) = TRUE
End
Listing 19. The AddDataSubjectConsent event.

Listing 20 shows how we formally model the handling of the re-
quest-response mechanism on the blockchain. After adding a new data
subject’s consent, the blockchain creates a callback to the requester
(Listing 20) via an outside API call. When the requester receives a
callback, it will prepare a request to access personal data. The guards are
defined with three preconditions. First, the guard grdl ensures that the
constant this is a member of the domain balanceOf, the oraclizeFee is the
charge for sending a payload to an API call outside the blockchain, which
is a member of a set of natural numbers, and the oraclizeFee must be less
than or equal to balanceOf{this). Second, the guard grd2 ensures that the
decreased balanceOf(this) with the oraclizeFee must satisfy the invariant
inv5. Third, the guard grd3 ensures that the dataSubjectConsent is a mem-
ber of the domain dataSubjectConsents, dataSubjectConsent does not exist
in the callbackRequesterStates, and the active status of the dataSub-
JjectConsents(dataSubjectConsent) is TRUE. Whenever all guards are val-
id, action actl charges oraclizeFee from the balanceOf(this), and action
act2 adds the dataSubjectConsent to the callbackRequesterStates.

CallbackRequester =
Any oraclizeFee, dataSubjectConsent Where
grdl : this € dom(balanceOf) A oraclizeFee € N A
oraclizeFee = balanceOf(this)
grd2 : balanceOf < {this » balanceOf(this) - oraclizeFee} €
addresses — N
grd3 : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsent ¢ callbackRequesterStates A
dataSubjectConsents(dataSubjectConsent) = TRUE

Then
actl : balanceOf := balanceOf < {this » balanceOf(this) —
oraclizeFee}
act2 : callbackRequesterStates = callbackRequesterStates u
{dataSubjectConsent}
End

Listing 20: The CallbackRequester event.

78

The SubmitRequest event (Listing 21) allows a requester to create a
request for accessing personal data. In this event, we defined a set of con-
straints to restrict the request access: 1) the consent has not expired, 2) the
consent has not been withdrawn, and 3) the request ID has not been sub-
mitted. These constraints were then described as five guards of the event.
First, the guard grdl ensures that the consentExpired is a member of the
boolean and consentExpired is FALSE. Second, the guard grd2 ensures
that the dataSubjectConsent is a member of the dataSubjectConsents, and
the range of dataSubjectConsents(dataSubjectConsent) is TRUE. Third,
the guard grd3 ensures that the dataSubjectConsent is a member of the var-
iable callbackRequesterStates. Fourth, the guard grd4 ensures that the re-
quest is a member of REQUESTS and the request does not exist in the
domain dataAccessRequests. Fifth, the guard grd5 ensures that adding an
ordered pair (request = dataSubjectConsent) into variable dataAccessRe-
quests must satisfy the invariant inv7. Whenever all guards are valid, ac-
tion actl adds an ordered pair (request = dataSubjectConsent) to the
dataAccessRequests.

SubmitRequest =
Any consentExpired, dataSubjectConsent, request Where
grdl : consentExpired € BOOL A consentExpired = FALSE
grd2 : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = TRUE
grd3 : dataSubjectConsent € callbackRequesterStates
grd4 : request € REQUESTS A request ¢ dom(dataAccessRequests)
grd5 : dataAccessRequests < {request » dataSubjectConsent} €
REQUESTS -+ PARTICIPANTS x DATA SUBJECTS x CONSENTS
Then
actl : dataAccessRequests(request) = dataSubjectConsent
End

Listing 21: The SubmitRequest event.

The CallbackResponder event (Listing 22) handles a callback from
the blockchain to the responder. When the responder receives a callback, it
will respond to a request to access the personal data within the retention
period. The guards are defined with four preconditions. The first two
guards are the same as in the CallbackRequester event. Additionally, we
declared the guard grd3 to ensure that the request is a member of the do-
main dataAccessRequests, and the request does not exist in the
callbackResponderStates. Finally, through the guard grd4, we specified
that the dataAccessRequests(request) as a dataSubjectConsent is a member
of the domain dataSubjectConsents, and the range of the dataSubjectCon-
sents(dataAccessRequests(request)) as a boolean is TRUE. Whenever all

79

guards are valid, action actl charges oraclizeFee from the balanceOf(this),
and action act2 adds the request to the callbackResponderStates.

CallbackResponder =
Any oraclizeFee, dataSubjectConsent Where
grdl : this € dom(balanceOf) A oraclizeFee € N A
oraclizeFee = balanceOf(this)
grd2 : balanceOf < {this » balanceOf(this) - oraclizeFee} €
addresses — N
grd3 : request € dom(dataAccessRequests) A request e
callbackResponderStates
grd4 : dataAccessRequests(request) € dom(dataSubjectConsents) A
dataSubjectConsents(dataAccessRequests(request)) = TRUE
Then
actl : balanceOf = balanceOf < {this » balanceOf(this) —
oraclizeFee}
act2 : callbackResponderStates = callbackResponderStates u {request}
End

Listing 22: The CallbackResponder event.

The SubmitResponse event (Listing 23) is used to handle the re-
sponse of a responder to a requester. Before returning the response to the
requester, the event must check the following constraints: 1) the consent
has not expired, 2) the consent has not been withdrawn, and 3) the re-
sponse ID has not been submitted. Based on these constraints, guards are
defined with five preconditions. The first two guards are the same as in the
SubmitRequest event. Additionally, we declared guards grd3 to ensure that
the request is a member of the variable callbackResponderStates and grd4
to ensure that the response is a member of RESPONSES and the response
does not exist in the domain dataAccessResponses. Finally, the last guard
grd5 ensures that adding an ordered pair (response = request) into variable
dataAccessResponses must satisfy the invariant inv9. Whenever all guards
are valid, action actl adds an ordered pair (response + request) to the
dataAccessResponses.

SubmitResponse =
Any consentExpired, request, response Where
grdl : consentExpired € BOOL A consentExpired = FALSE
grd2 : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = TRUE
grd3 : request € callbackResponderStates
grd4 : response € RESPONSES A response ¢ dom(dataAccessResponses)
grd5 : dataAccessResponses < {request » response} € RESPONSES >+
REQUESTS
Then
actl : dataAccessResponses(response) = request

80

End
Listing 23: The SubmitResponse event.

The CallbackDataTransfer event (Listing 24) is used to handle a
callback from the blockchain to trigger the responder for data transfer.
When the responder receives a callback, it will transfer personal data to the
requester directly. The guards are defined with four preconditions. The first
two guards are the same as in the CallbackRequester event. Additionally,
we declared the guard grd3 to ensure that the response is a member of the
domain dataAccessResponses, and the response does not exist in the
callbackDataTransferStates. By means of the guard grd4, we specified that
the dataAccessResponses(response) as a request is a member of the do-
main dataAccessRequests, dataAccessRequests(dataAccessResponses(re-
sponse)) as a dataSubjectConsent is member of the domain dataSub-
jectConsents, and the range of the dataSubjectConsents(dataAccessRe-
quests(dataAccessResponses(response))) as a boolean is TRUE. Whenever
all guards are valid, action actl charges oraclizeFee from the balance-
Of(this), and action act2 adds the response to the callbackDataTransfer-
States.

CallbackDataTransfer =
Any oraclizeFee, request Where
grdl : this € dom(balanceOf) A oraclizeFee € N A
oraclizeFee = balanceOf(this)
grd2 : balanceOf < {this » balanceOf(this) - oraclizeFee} €
addresses — N
grd3 : response € dom(dataAccessResponses) A response €
callbackDataTransferStates
grd4 : dataAccessResponses(response) € dom(dataAccessRequests) A
dataAccessRequests(dataAccessResponses(response)) €
dom(dataSubjectConsents) A
dataSubjectConsents(dataAccessRequests(dataAccessResponses(
response))) = TRUE

Then
actl : balanceOf := balanceOf < {this » balanceOf(this) —
oraclizeFee}
act2 : callbackDataTransferStates = callbackDataTransferStates u
{response}
End

Listing 24: The CallbackDataTransfer event.

The TransferData event (Listing 25) transmits personal data from the
responder to the requester via an off-chain channel. Before the personal
data is transmitted, all constraints must be satisfied. The guards are defined
with five preconditions. First, the guard grd1l ensures that the response is a
member of the callbackDataTransferStates and the domain dataAccessRe-

81

sponses, and the response does not exist in the domain dataTransferStates.
Second, the guard grd2 ensures that consent is a member of the domain da-
taFields. Third, the guard grd3 ensures that the data subject’s consent is
active and exists in the variables dataAccessRequests. Fourth, the guard
grd4 ensures that adding an ordered pair (response = {dataSubject} x da-
taFields(consent)) into variable encryptedData must satisfy the invariant
invl1. Fifth, the guard grd5 ensures that adding an ordered pair (response
= TRUE) into variable dataTransferStates must satisfy the invariant
invl12. Whenever all guards are valid, the action actl adds an ordered pair
(response — {dataSubject} x dataFields(consent)) to the encryptedData,
and action act2 adds an ordered pair (response = TRUE) to the dataTrans-
ferStates.

TransferData =
Any responder, dataSubject, consent, response Where
grdl : response € callbackDataTransferStates A response €
dom(dataAccessResponses) A response &
dom(dataTransferStates)
grd2 : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = TRUE
grd3 : 3x-x € dataAccessRequests[{dataAccessResponses(response)}] A
X = responder » dataSubject » consent A responder »
dataSubject » consent € dom(dataSubjectConsents) A
dataSubjectConsents(x) = TRUE
grd4 : encryptedData < {response » {dataSubject} x
dataFields(consent)} € RESPONSES -+ P(DATA SUBJECTS x
FIELDS)
grd5 : dataTransferStates < {response » TRUE} € RESPONSES -+ BOOL
Then
actl : encryptedData(response) = {dataSubject} x dataFields(consent)
act2 : dataTransferStates(response) = TRUE
End

Listing 25: The TransferData event.

The RevokeConsent event (Listing 26) is fired when a data subject
requests to withdraw his/her consent. The guards are defined with two pre-
conditions. First, the guard grdl ensures that dataSubjectConsent is a
member of the domain dataSubjectConsents and the active status of the
dataSubjectConsents(dataSubjectConsent) is TRUE. The second guard
grd2 ensures that when updating FALSE to the dataSubjectCon-
sents(dataSubjectConsent), the invariant inv3 must be satisfied. Whenever
all guards are valid, action actl assigns FALSE to the dataSubjectCon-
sents(dataSubjectConsent).

RevokeConsent =
Any dataSubjectConsent Where
grdl : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = TRUE

82

grd2 : dataSubjectConsents < {dataSubjectConsent » FALSE} €
(PARTICIPANTS x DATA SUBJECTS x CONSENTS) -+~ BOOL
Then
actl : dataSubjectConsents(dataSubjectConsent) = FALSE
End

Listing 26: The RevokeConsent event.

The RenewConsent event (Listing 27) is fired when a data subject
requests to renew his/her consent. The guards are defined with two pre-
conditions. First, the guard grdl ensures that dataSubjectConsent is a
member of the domain dataSubjectConsents and the active status of the
dataSubjectConsents(dataSubjectConsent) is FALSE. The guard grd2 en-
sures that when updating TRUE to the dataSubjectConsents(dataSub-
jectConsent), the invariant inv3 must be satisfied. Whenever all guards are
valid, the action actl assigns TRUE to the dataSubjectConsents(dataSub-
jectConsent).

RenewConsent =
Any dataSubjectConsent Where
grdl : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = FALSE
grd2 : dataSubjectConsents < {dataSubjectConsent » TRUE} €
(PARTICIPANTS x DATA SUBJECTS x CONSENTS) -~ BOOL
Then
actl : dataSubjectConsents(dataSubjectConsent) = TRUE
End

Listing 27. The RenewConsent event.

The InsufficientBalance event (Listing 28) handles the insufficient
balance within a smart contract. An insufficient balance occurs when a
smart contract’s balance is too low to cover fees. The guards are defined
with three preconditions. First, the guard grdl ensures that the constant
this 1s a member of the domain balanceOf, the oraclizeFee is a member of
the set of natural numbers, and the oraclizeFee must be greater than bal-
anceOf{this). Second, the guard grd2 ensures that dataSubjectConsent is a
member of the domain dataSubjectConsents and the active status of the
dataSubjectConsents(dataSubjectConsent) is TRUE. Third, the guard grd3
ensures that insufficient balance occurs in callback events. Whenever all of
the guards are valid, the process ends.

InsufficientBalance =
Any oraclizeFee, dataSubjectConsent, request, response Where
grdl : this € dom(balanceOf) A oraclizeFee € N A
oraclizeFee > balanceOf(this)
grd2 : dataSubjectConsent € dom(dataSubjectConsents) A

83

dataSubjectConsents(dataSubjectConsent) = TRUE
grd3 : (dataSubjectConsent ¢ callbackRequesterStates) v
(request » dataSubjectConsent € dataAccessRequests A
request € callbackResponderStates) v
(response » request € dataAccessResponses A
response € callbackDataTransferStates)
Then
skip
End
Listing 28. The InsufficientBalance event.

The CheckConsentExpiration event (Listing 29) is used to handle
when data subjects’ consent is expired. The guards are defined with three
preconditions. First, the guard grdl ensures that the consentExpired is a
member of the boolean and consentExpired is TRUE. Second, the guard
grd2 ensures that dataSubjectConsent is a member of the domain dataSub-
jectConsents and the active status of the dataSubjectConsents(dataSub-
jectConsent) is TRUE. Third, the guard grd3 ensures that when updating
FALSE to the dataSubjectConsents(dataSubjectConsent), the invariant
inv3 must be satisfied. Whenever all guards are valid, the action actl as-
signs FALSE to the dataSubjectConsents(dataSubjectConsent).

CheckConsentExpiration =
Any consentExpired, dataSubjectConsent Where
grdl : consentExpired € BOOL A consentExpired = TRUE
grd2 : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = TRUE
grd3 : dataSubjectConsents < {dataSubjectConsent » FALSE} €
PARTICIPANTS x DATA SUBJECTS x CONSENTS -+ BOOL
Then
actl : dataSubjectConsents(dataSubjectConsent) = FALSE
End

Listing 29. The CheckConsentExpiration event.

The UnauthorizedAccess event (Listing 30) is used to handle when
there is a request to access the data of a data subject, but the data subject’s
consent has been revoked or expired. The guard grd1 ensures that dataSub-
jectConsent is a member of the domain dataSubjectConsents and the active
status of the dataSubjectConsents(dataSubjectConsent) is FALSE. When-
ever the guard is valid, the process ends.

UnauthorizedAccess =
Any dataSubjectConsent Where
grdl : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = FALSE
Then

84

skip
End
Listing 30. The UnauthorizedAccess event.

5.3. Model Evaluation in Event-B

The DSSM was formalized with Event-B, and its correctness was verified using
the Rodin Platform. The Rodin Platform produces and discharges a set of POs auto-
matically or manually to ensure that all events preserve all invariants. The resulting
model (Table 10) demonstrates that the DSSM was proved automatically by Atelier B
provers. As a result, there are no invariant violations or deadlocks found. The Event-B
model are presented in APPENDIX B.

Table 10: The summary of proof statistics by the Rodin platform for the proposed
state machine based on the Event-B model.

Machine name Number of proof ob- Automatic (%) Manual (%)
ligations
DSSM 42 42 (100%) 0 (0%)

5.4. Event-B Model Transformation to Class Diagram

The proposed model constructed by Event-B assists developers as a guideline in
applying consent management functionality among distributed services based on
blockchain technology. In an object-oriented approach, a class diagram depicts a static
view of a system, which is described by modeling its classes, attributes, operations,
and associations. Moreover, a class diagram makes it easier for developers to under-
stand how to implement smart contracts to support consent management. Here is an
example of transforming our Event-B model into a class diagram. First, identify a sys-
tem’s classes that appear in static variables of Event-B (e.g., carrier sets, constants,
and variables). Second, identify a system’s class associations among itself or other
sets that appear in invariants. Third, identify a system’s operations in classes. Besides,
each of the transitions has guard conditions, and it can be fired when the guard condi-
tions are evaluated to be true, then an event occurs. Each guard condition represents a
precondition based on state variables inside a method within classes. Figure 31 and
Figure 32 show the class diagram designed based on Ethereum smart contracts using
Solidity. We mapped the static variables in Event-B to concrete classes, which are di-
vided into two groups: 1) classes used in consent management functionality, e.g.,
Consent, ConsentContract, DataSubjectConsent, DataSubjectConsentContract, as
shown in Figure 31, and 2) classes used in request-response interactions between ser-
vices, e.g., DataAccessRequest, DataAccessRequestContract, DataAccessResponse,
DataAccessResponseContract, as shown in Figure 32. The set of DATA SUBJECTS
and CONSENTS represents data subjects and consents under GDPR, respectively.
According to GDPR, the system requires gaining data subjects’ consent before pro-
cessing data. Therefore, we first defined structs (i.e., user-defined data types that ob-

85

tain related data items, probably of different data types); for example, Consent is used
to hold a set of properties (e.g., consentCode, consentVersion, consentDetail, dataRe-
tention (in days), createTimestamp, requesterUrl). Within our proposed model, the
system should inform data subjects which piece of personal data is being used. So, we
created DataField to hold predefined data fields upon the requesters’ consent and used
it to specify the personal data to be transferred. Moreover, DataSubjectConsent must
be created to keep the relationship between data subjects and requesters’ consent.

<<struct>> <<contract>>
. o,
Consent T - ontract ap|string)|uint256]>- <<struct>>
- id: uint256 consents - consentCount: uint256 | conseniExists Entry
- consentCode: string 1 |+ addConse de:string, :string, version:uint256, r wint2se,| 1 - id: uint256
Id:address, createTir uint256, -
- il - H " P - exists: bo
consentDetail: string updateTimestamp:uint256, requesterUrl:string): void exists: bool
- consentVersion: uint256 + getActiveConsents(): Array<Consent>
. I - =<gvent=> LoginactivatedConsent{ldx:uint256, code:string, detail:string,
dataRetention: uini256 version:uint2se, r : , feq |d:address,
- requesterid: address createTimestamp:uint256, requesterUrl string): void
. createTimestamp: uint256 - <<event>> LogAddedConsent(idx:uini256, code:string, detail:string, . -
P version:uint256, retention:uint256, requesterld:address, ok S'“:; ';5" entedAct .

- updateTimestamp: uint256 updateTimestamp:uint256, requesterUrl:string): void alaSubjecti-onsel clive
- requesterUr: string - S
- active: bool Use TeaUse

. 1

<<contract>> <<contract>
DataFieldContract D Contract

- dataFieldCount: uint256

- dataSubjectConsentGount: uint256

+ addDataField(fieldName string, consentGode:string,
consentVersion:siring): void

consentCode:string, consentVersion:string): void

+ isConsentValid(pseudonym:string, consentCode:string,
consentVersion:uint256, responderid address): bool

consentVersion:uint256, responderld:address,

+ getDataFieldsByConsent{consentCode string, + gelD jectCar ym:string, consentCode:string, 0.1
consentVersion:string):DataFieldList consentVersion:uint256, responderld:address): void
- <<svent>>addDataField||dx:uint256, fieldName:string, + addDataSubjectConsent(pseudonym:string, consentCode:string, callback

3 1 ptedFlag:string, createTimestamp: 3
T T 1 withdrawnFlag:string, withdrawn Timestamp:uint256, 1
rasponderUrl:string): void
pluint266}= ing][uint256}=> dataFieldList + revokeC m:string, consentCod ing,
dataFieldsiap dataFieldExists congentversion:uint256, responderld:address,
responderld:siring, withdrawnTimestamp:uint256): void
+ renewConsent(pseudonym:string, consentCode:string,
0.1 consentVersion:uint256, resp \d:address,
T:::;:f:: responderld:siring, createTimestamp:uini256): void
e <<structss - <<payable=> callbackRequester(pseudonym:string, consentCode:string,
- Id: uint256 DataFieldList consentyersion:uint256, responderld.address,
- figldName: string . +| - DataFieldList: Array<DataField> requesterUrl:string): void

- <gvent>> LogAddedDataSubjectConsent{pseudonym:string, consentCode:string,
consentVersion:uint256, responderld address, acceptedFlag:string,
createTimastamp:uint256, requesterUr:string): void

- <<gvent== LogFiredR liback donym:string, cor
consentVersion:uint256, responderld.address, requesterUrl:string,
queryld:uint256, message:string): void

- <<gvent>> LogReturnedRequesterCallback(queryld:uint256, result:string): void

- <<gvent>> LogRevokedConsent(pseudonym:siring, consentCode:string,
consentVersion:uint256, responderid:address,
withdrawnTimestamp uint258): void

- <<event=> LogRenewedConsent(pseudonym:string, consentCode:string,
consentVersion:uint256, responderld.address,
createTimestamp:uint256): void

- consentCode: string
- consentVersion: uint256

1

<emap[uint256==
dataSubjectConsents

<<struct>x>
DataSubjectConsent

- id: uint256
- pseudonym: string

- consentCode: string

- consentVersion: uint256

- responderld: address

- acceptedFlag: string

- createTimestamp: uint256

- withdrawnFlag: string

- withdrawnTimestamp: uint256

= responderlrl: string
Figure 31: Class diagram resulted from mapping the proposed model in Event-B to
code for supporting consent management in the context of data sharing.

86

<<contract=>
DataSubjectConsentContract
- dataSubjectConsentCount: uint256
+ isConsentValid(pseudonym:string, consentCoda:string,
o S<eontract> Use consentVersion uint256, responderld:address): bool
. SO — > + getD: ym:string, consentCode:string,
- datafccessResponses: mapping(string => DataAccessRequest) consentVersionuint258, responderld:address): void
- responseExists: mapping(string = mapping(string == bool) + addDataSubjeciGonsent(pseudonym:string, consentCode:string,
consentVersion:uint256, responderidaddress,
= czmodifier== validConsent{pseudonym:siring, consentCode:string, accaptedFlag string, createTimestamp: umt256
consentVersion:uint256, requesterld:address): void .1 tring, wi VT 1256,
+ ponse{resp Int256, req JIN256, responderUrl:string): void
accepledFlag:siing, accepledMessage, callback | T revokeConsenlipseudonym string, consentGooe:siring, a1
createTimstampuint256, responderUr:string): void consentVersionuint256, @55, =
payabl DataTransfer(resp responderld:string, withdrawnTimastamp:uint256): void
responderUrl:siring, dataTransferUrl:string): void 1 + renewConsent{pseudonym:string, consenGode:string, callback
- <<event> LogSubmitied Request{requestid:string, psauncnym string, consent 225, / ess,
conseniCode:string, consent respnnner\d.s’mng createTlmsslamp uint256): void P
uint256, createTi nzss onym:string, consentCode:string,
dataTransterUr:string): vold consentVersicn: u1m255 responderld:address,
Fil d :string string requesterUrl:string): void
consentCode:siring, consentVersion uint256, - <<Bvent=> Logs# Aonser iring, consentCaode:string,
responderUrl:string, queryld:uint256, message:string): void consentVh 256, :
- <zgvent== LogReturnedResponderCallback{queryld:uint258, result:string): void cma'e“ms:amp uInt238, requesm”” s'""g] m'd
AT LogFir :string, consentCode string,
1 oonsenl |l258. P ql Url:string,
queryld:uint256, message:string); void
LogReturnedF yld:uint256, result:string): void
- <<Bvent== Logk vsiring, consentGode:string,
<emaplstring]>> Sl consentVersion uint256, responderld:address,
dataAccessResponses craaleﬂmeetamp uint258): vold
LogR Conser 1:string. consentCode:string,
consentVersion:uint256, responderld:address.
withdrawnTimestamp :uint256): void
/
<csiruct>> <<struct> <<contract>>
A Resp quest DataAccessRequestContract
- requestld: string - requestid: siring mapr =D {equest)
- respansald: string - pseudanym: string A F:ng:» - requestExists: mapping(string => 1g == bool)
. . atafccessRequests
- acceptedFlag: string consentCode: stiing - cemodifier== VEJJGGD!’IESI’“‘[B&LICIDFIVI’I\ string, :unssmCuda string,
- acceptedMessage: strin - consentVersion: uint258 y ion:uint256, void
P Sage:siing — + ge1DalaAmessHequssi{requestld uint256): DataField]]
- createTimestamp: uint256) + sUbmItF :siring, consentCode:siring o.1
- createTimestamp: uint256 ccnsenl‘u‘erslon u|n|256 responderld:address,
-r rrl:
esponderlrl: string createTimestamp:uint256, dataTransferUrl:string): void callback

- dataTranslerUrl: string

Aesponderd tring, pseudonym:string
consentCode:siring, consentVersion:uint256,
responderUrl:string): void

- <<gvent>> LogSubmittec uestid:string, p :string
conseniCode: slnng consent\c’arslon uthSG
ring, createT
dataTransTerUri string): void
- z<avents> LogFiradResponderCallbac tring
consenCode:siring, consentversion; u.ntZSG
Url:string, queryld: void

- copvant=x> LogFlammeclResponﬂsrCaJJback[quswld slnng resull string): void

1

Figure 32: Class diagram continued from the previous diagram (Figure 31) demon-
strating how to transform the proposed model in Event-B for supporting request-
response interactions.

Second, we defined contracts (i.e., classes that obtain state variables and meth-
ods); for example, ConsentContract is to provide the addConsent() method, which is
mapped to the AddConsent event. In the AddDataSubjectConsent event, we created
DataSubjectConsentContract to obtain the addDataSubjectConsent() method. In addi-
tion, we added isConsentValid() as a common method to check whether consent is
expired or withdrawn. As for the request-response interactions, we created DataAc-

cessRequestContract and DataAccessResponseContract to obtain DataAccessRequest

and DataAccessResponse structs, respectively.

For the SubmitRequest and SubmitResponse events, the model is required to
check whether consent is valid. Hence, we then added the isConsentValid() method
into these two contracts by calling DataSubjectConsentContract.isConsentValid().
According to the class diagram in Figure 31 and Figure 32, our proposed model was
designed for generic usage and can be applied to any business model.

87

To allow the developers to quickly adopt the model, we developed SmartData-
Trust that implemented smart contracts based on these class diagrams and exposed a
REST API to interact with the blockchain. The requester and responder services only
need to focus on implementing a REST API for consuming SmartDataTrust API and
providing the callback URLs made by the blockchain.

5.5. SmartDataTrust Implementation

The SmartDataTrust API is a middleware that interacts with smart contracts live
on the Ethereum blockchain by exposing REST services to the outside world (Figure
33). Implementing this API aims to provide a set of consent functionality for requester
and responder services, which minimizes the effort of incorporating GDPR-compliant
consent management in their interacting services. Moreover, it supports scalability by
separating configuration from code in the YAML format (i.e., config.yaml), which is
easily configured to deploy as Docker containers [134] with Kubernetes [135]. The
API was designed based on a three-layer architecture [136] partitioned into REST
controllers (i.e., consent controller.py, data subject controller.py, data access
request_controller.py, data access_response_controller.py), application services (i.e.,
consent_service.py, data_field service.py, data subject service.py, data access
request_service.py, data_access_response_service.py), and the blockchain connector
(i.e., blockchain connector.py). The REST controllers handle incoming HTTP re-
quests from requester and responder services and pass them through the application
services. As for application services, they encapsulate data validation and conversion.
Finally, the blockchain connector uses web3 frameworks [137] (e.g., Web3.py,
Ethers.js, Infura API) for connecting smart contracts on the Ethereum blockchain
through their contacts’ addresses and contracts’ schema files, which are configured in
config.yaml.

In smart contract development, we first plug Truffle Suite [138] into
SmartDataTrust API for building and deploying smart contracts on the Ethereum
blockchain. Second, we implemented smart contracts with Solidity followed by the
class diagram, as shown in Figure 31 and Figure 32. Third, we deployed smart con-
tracts using Truffle’s command (i.e., truffle migrate). After successful deployment,
Truffle Suits generates the contracts’ address and contracts’ schema in JSON format
files. Fourth, we configured the contracts’ address and schema path into config.yaml.
Finally, we start the Python REST API.

88

SmartDataTrust API Framework
Callback i
H f
v 5 3 ogs
Service A H g EE
H - w 8
; o
Request ||Responder . SmartDataTrust API 5 —
Controller || Controller | ——yp ¢ :
: - H - =
: ¢ 0 o [5
| RestClientProxy | 4 g E : L g
I 3 g i E H]
- .
Data transfer E &> £ <> g «— 5 = @
S -] = 1 s 'L
- g g f E
RestClientProxy n = g : 3 b
w o x
1 T | = g 8 s § | 3
> < @ i £ s
Request ||Responder | H w C
Controller || Controller v
o
®
Service B %
T]
[:+]
Callback

Figure 33: Overview of SmartDataTrust API framework.

Unfortunately, a smart contract is an immutable program. Once it is deployed on
the blockchain, it preserves a new address. However, the multiple times of deploy-
ments of the smart contract lead to difficulty managing addresses and increasing exe-
cution time. We then designed reusable smart contracts to keep only states of data
subjects’ consent and request-response interactions between services. To create a
callback URL outside the blockchain, we use blockchain oracles [79], e.g., Provable,
Chainlink, and Astraea. In particular, we chose Provable for integrating into smart
contracts because it is easy to implement and support dynamic data retrieval from
trusted sources in large-scale applications. As for any service, it can be either a re-
quester or a responder. We then created RequesterController and ResponderController
classes following the available services in the SmartDataTrust API, and to handle API
calls and HTTPS GET/POST requests among blockchain; we created RestClientProxy
class.

To enhance an existing system integrated with the SmartDataTrust API, we
demonstrate via a software platform for cancer precision medicine called RUN-
ONCO [133]. RUN-ONCO allows users (i.e., oncologists, nurses, and researchers) to
manage and create their own data analyzes to examine clinical, biospecimen, and ge-
netic data, which assists oncologists in making specific treatment plans for individual
cancer patients based on their genetics. To engage in research on cancer precision
medicine, we need more patient data to help discover how to improve patient out-
comes, such as genetic data and drug response. Therefore, we need to enhance RUN-
ONCO to enable data sharing to exchange health data across organizations and be-

89

tween services. We then divided services into two types: 1) the service which manag-
es its own patients’ data, e.g., health information systems, and 2) the service which
does not contain any patients’ data, e.g., third-party API. RUN-ONCO and other ser-
vices only focused on implementing a REST API for consuming the SmartDataTrust
API to manage consent requests/responses on the blockchain and handling the re-
quester and responder callbacks made by the blockchain. To enhance RUN-ONCO
support consent management in data sharing (Figure 34A and Figure 34B), by fol-
lowing DSSM, we first need to alter the ConsentService class by adding the addCon-
sent() method. Second, we need to add the encryptData() and decryptData() methods
into the PatientService class to support secure data transfer between services.

Ethereum

0.1
1

SmartDataTrust API

RUN-ONCO @ ' +addConsent(c: Consent): void

-
! 1
| <<callbacks> | + getActiveConsents(): List<Consents

+ addDataSubjectConsent(d: DataSubjectContent): void
ConsentEntity o 1 ConsantService ' + renewGonsent(d: DataSubjectContent): void

+ revokeConsent(d: DataSubjectContent): void

+ add(c:ConsentEntity): void + addConsent(c: Consent): ConsentEntity . + submitRequest(r: DataAccessRequest): void <=<callback>>

i

0.1 1 + submitResponse(r: DataAccessResponse): void
,

1 f 0.1

RequesterController o1 1

RestClientProxy

+addConsent(c: Consent): void

1 0.1
+ submitRequest(c: Consent): void + get(r: HttpRequest): HttpResponse
+ callbackForRequestSubmit(c: CallbackData) + post(r: HttpRequest): HitpResponse
+ receiveDataTransfer(b: byte[]): void 0.1
1
0.1 1
PatientEntity PatientService ResponderController
- 0. 1 0.1 1 0.1
- pseudonym: String
+ add(p: PatientEntity): void + encryptData(pseudonym: String): byte(] +gatActveConsents(}: List<Consent>
+ decryptData(b: byte[): PatientEntity + addDataSubjectConsent(d: DataSubjectContent): void
1 + revokeConsent(d: DataSubjectContent): void
0.1 + renewConsent(d: DataSubjectContent): void
Encryption + submitResponse(r: DataAccessResponse): void
+ callbackForResponseSubmit(c: CallbackData): void
+ encrypt(b: bytef]): byte[] + callbackForDataTransfer(c: CallbackData): byte[]
+ decrypt(b: byte(]): byte[]

Figure 34: Class diagram demonstrating how a software platform for cancer precision
medicine handles GDPR-compliant blockchain-based consent management in data
sharing. (A) relevant classes needed to be enhanced to support data sharing. (B) new
classes added to RUN-ONCO for supporting managed consent into the blockchain
and handling the requester and responder callbacks made by the blockchain.

90

CHAPTER VI
ANALYSIS AND INTERPRETATION OF RESULTS

To justify our formal models corresponding to the competency questions in
Table 5, we used the ProB for generating test cases to ensure that formal models
fulfill a given coverage criteria. The ProB generates test cases based on non-
deterministic choice in Event-B separated into three places [139]: 1) the choice
derives from different events, 2) the choice derives from local variables of events, and
3) the choice derives from the non-deterministic assignment. The ProB executes
events to perform test scenarios based on the non-deterministic choice corresponding
to current state variables, invariants, and guards restricted to small finite sets. Besides,
if unsatisfied guards exist in any events during the model checking simulation, then
these events will be absent from the choice of the possible events on the next ones.

We thus specified test cases in both CM for centralized systems and CM for dis-
tributed systems in data sharing.

6.1. Test Cases in CM for Centralized Systems

6.1.1. Test Cases in the RPSM Model

This RPSM model describes the dynamic behavior of how the system ma-
nipulates patients’ consent and how to restrict privileged permissions of author-
ized users (e.g., doctors, nurses, lab staff) for processing personal data within
patients’ consent.

We then specify the test case objectives as follows:

e RP1: In the AddPatient and AddConsent events, a user who does not ob-
tain a nursing staff role shall not perform these events.

e RP2: A user who does not obtain any role granted in consents shall not
perform the ExecuteQuery event.

¢ RP3: In the ExecuteQuery event, the local variable consentExpired shall
be FALSE (i.e., the patient’s consent is valid), and the user shall obtain
the role granted in the consent configuration and hold in the variable crf.

e RP4: After the ExecuteQuery event firing, the variable pf (i.e., query re-
sults) shall contain only selected data fields corresponding to consent
configuration.

91

¢ RP5: If a user has more than one role to access a patient’s data under the
same given consent, the value of variable pf'shall contain all selected da-
ta fields corresponding to a user’s roles.

First, we determine the variable value of crf and userRoles, before
running the ProB simulation.

The variable value crfis:

{(CONSENTS1 » {(NursingStaff » HN)}),
(CONSENTS2 » {(Oncologist » HN),
(Oncologist » Name),

(Oncologist » Age),
(Researcher » HN),
(Researcher » Omics)})}

The value of crf indicates that if a patient provides the CON-
SENTSI, only a user who has a NursingStaff role can access a patient’s
HN. As for the CONSENTS2, each role has access data fields differently.
An oncologist can access a patient’s information, e.g., HN, Name, and
Age, but a researcher can access a patient’s HN and Omics.

The variable value userRoles is:

{(AUTHORIZED_ USER1 » NursingStaff),
(AUTHORIZED USER1 » LabStaff),
(AUTHORIZED USER2 » Oncologist),
(AUTHORIZED USER2 » Researcher),
(AUTHORIZED USER3 » LabStaff)}

The value of userRoles indicates that AUTHORIZED USERSI1
obtains two roles, e.g., NursingStaff, and LabStaff. As for AUTHOR-
IZED USERS2 also has two roles, e.g., Oncologist, and Researcher.
Lastly, AUTHORIZED USERS3 obtain a role as LabStaff.

6.1.1.1. The RP1 Test Case

According to Figure 35(A), AUTHORIZED USERS3 login to the
system as lab staff with SESSIONS2. Within the choice of events generat-
ed by ProB (Figure 35(B)), the Logout event is the only choice for AU-
THORIZED USERS3 to perform for the next event execution. It indicates
that this user has no access to the AddPatient and AddConsent events be-
cause guard conditions are invalid for both events. Then, the state variable
sessions has been updated with a new ordered pair (SESSIONS2 - AU-
THORIZED USERS3), as shown in Figure 36.

92

Hence, simulation results point out that the RPSM model covered
the RP1 test case.

IONS1, U=AUTHORIZED_USERS1)
IONS1, U=AUTHORIZED_USERS?)

Name Value

> sets —

» ivariants true e CRSM bum
v adoms e nue

v event guards

» Login true true
» CreateConsentRenewRequest faise false
» NolifyPatient faise false
» ExtendConsentExpiration fakse falsa
» DeletePatientData false false.
» Logout e false

= @ |- @ol—

‘_i‘ Status ‘ Name FroB B-Console

Transition
e
SETUP_CONSTANTS @

a

1

2 INITIALISATION

3 | Login(s=SESSIONS2, u=AUTHORIZED_USERS3) |

Figure 35: The simulation of the RP1 test case. (A) the Login event and its variables
are produced by ProB, which has been executed in the history panel. (B) the choice of
events allows AUTHORIZED USERS3 to perform for the next event execution.

Name Value
v - RPSM

authorizedConsent @

art {[CONSENTS1m{(NursingStaffr-HN)}),[CONSENTS 2+{(Or (0 i (0 is X HN), Omics)})}

patients a

pe a

pf @

queries 2

| - sessions {(SESSIONS2~AUTHORIZED_USERS3)}|

userRoles {{AUTHORIZED_USERST=NursingStafl),(AUTHORIZED_USERS1-LabStaff), (AUTHORIZED_USERS2~Oncalogist], (AUTHORIZED_USERS2+Researcher), (AUTHORIZED_USERS3~LabStaf)}

Figure 36: The latest value of the variable sessions corresponds to event execution in
the RP1 test case.

6.1.1.2. The RP2 Test Case

In Figure 37(A), AUTHORIZED USERS3 login to the system as
lab staff with SESSIONS1 and creates an inquiry QUERIESI to retrieve
the personal data of PATIENTS1. Within the choice of events generated by
ProB (Figure 37(B)), the Logout event is the only choice for AUTHOR-
IZED USERS3 to perform for the next event execution. It indicates that
this user cannot access the ExecuteQuery event because guard conditions
are invalid. Then, the state variable queries has been updated with a new
ordered pair {(AUTHORIZED USERS3 = {(QUERIES1 - PATIENTSI)
1)}, as shown in Figure 38.

Hence, simulation results point out that the RPSM model covered
the RP2 test case.

93

« < o - x2va @

» variables = =
canstants [+ (2]
» et T
» invariants true RPSMbum
» axioms e

¥ event guards

> Login e
» AddPatient false
» AddCansent fase
» Createinguiry false
» CheckhusharizeConsent fase
» ExecuteQuery false
> Logout e
« <) B @
& - @ fpens Dol—— Transition
ml Status I Name J7=os s-console pryran
SETUP_CONSTANTS
INITIALISATION

Login(s=SESSIONS1, u=AUTHORIZED_USERS1)

AddPatient(p=PATIENTS1, s=SESSIONS1)

AddConsent(c=CONSENTS1, p=PATIENTS1, s=SESSIONS1)
quiry(p=PATIENTS1, g $=SESSIONS1)

CheckAuthorizeConsentic=CONSENTS, p=PATIENTS, s=SESSIONS1, consent.
ExeculeQuery(e=CONSENTS1, p=PATIENTS1, s=SESSIONS1)
Logoutis=SESSIONS1

NoTraces

R

23

Login{s=SESSIONS1, u: ATu:nn:IE‘n::sTusq @
Figure 37: The simulation of the RP2 test case. (A) the Createlnquiry event and its
variables are produced by ProB, which has been executed in the history panel. (B) the
choice of events allows AUTHORIZED_ USERS3 to perform for the next event exe-

cution.

Name Value
A RPSM

authorizedConsent 2

erf {(CONSENTS1-{(MursingStaffesHN)}), (CONSENTS2-{(O i), [gl (O ge), [Researchen-HN}, (Researcher-Omics)})}

patients {PATIENTS1}

pc {(PATIENTS1-CONSENTS1)}

pf @

| queries {(AUTHORIZED_USERSH(DI-IEHIES1—PATIENTS'UH}I

sessions {(SESSIONS1~AUTHORIZED_USERS3)}

userRoles {(AUTHORIZED_USERS1=NursingStaff), (AUTHORIZED_USERS1~Lab5taff), (AUTHORIZED_USERS2-0: ist),(AUTHORIZED_USER!),IAUTHORIZED_USERS 3~LabStaff)}

Figure 38: The latest value of the variable queries corresponds to event execution in
the RP2 test case.

6.1.1.3. The RP3 Test Case

Figure 39(A) demonstrates that AUTHORIZED USERSI login
into the system as nursing staff creates an inquiry QUERIES] to retrieve
the personal data of PATIENTSI, and the query has been verified accord-
ing to the patient’s consent. Within the choice of events generated by ProB,
two events are available for AUTHORIZED USERSI to perform for the
next event execution, e.g., the ExecuteQuery event, and Logout events. It
indicates that this user can access the ExecuteQuery event because guard
conditions are valid (Figure 39(B)). Then, the state variable author-
izedConsent has been updated with a new ordered pair {(AUTHOR-
IZED USERS1 +~ {(PATIENTS1 ~ CONSENTSI)})}, as shown in
Figure 40.

Hence, simulation results point out that the RPSM model covered
the RP3 test case.

94

« < Bl e+ <+ Q@
b Login(s=SESSIONSZ, U=AUTHORIZED_USERSZ) Name
SESSIONS2, u=AUTHORIZED USERS3)
I TSI) » variables
» ExecuteQuerylc=CONSENTSI, p=PATIENTS, s=SESSIONS1)
> Logout(s=SESSIONS1) canstants
v osets “ RPSM
» invariants e RPSMbum
» axioms e
v eventquards
» Logn true
» AddPatient false
» AddConsent false.
» Createinquiry false.
b CheckAuthofizeConsent false.
» ExecuteQuery true
» Logout tue

History (state

b

R - Qol— = |

wj‘ Status ‘ MName

Prom B-Console
oventa>

—fo0l—

SETUP_CONSTANTS
INITIALISATION
Login{s=SESSIONS 1, u=AUTHORIZED_USERS1)
AddPatient(p=PATIENTS1, s=SESSIONS1)
AddConsent{c=CONSENTS1, p=PATIENTS1, s=SESSIONS1) @
Createlnguiry(p=PATIENTS1, g=QUERIES1, s=SESSIONS1)
| epRENTS 2 |

NaTraces.

Figure 39: The simulation of the RP3 test case. (A) the CheckAuthorizeConsent

event and its variables are produced by ProB, which has been executed in the history

panel. (B) the choice of events allows AUTHORIZED USERSI to perform for the
next event execution.

Name Value
h RPSM

| authorizedConsent ((Au'rHomzEn_ussnsH(PATlENTs1-caNssNTs1)M

erf {(CONSENTS1-{(NursingStaffrHN)}),(CONSENTS2+{(Oncologist+HN), (Oncologist-Name), (Oncologi: |) Omics)}}

patients {PATIENTS1}

pc {{PATIENTS1-CONSENTS1)}

pf "]

queries {{AUTHORIZED_USERS1~{(QUERIES1-PATIENTS1)})}

sessions {(SESSIONSI+AUTHORIZED_USERS1)}

userRoles {{AUTHORIZED_USERS1-NursingStaff), (AUTHORIZED_USERS1~LabStaff),(AUTHORIZED_USERS2wOncologist), (AUTHORIZED_USERS2~Researcher),(AUTHORIZED_USERS3wLabStaff)}

Figure 40: The latest value of the variable authorizedConsent corresponds to event
execution in the RP3 test case.

6.1.1.4. The RP4 Test Case

According to Figure 41(A), AUTHORIZED USERSI executes
the query and receives the personal data of PATIENTSI within CON-
SENTSI1. Then, the state variable pf has been updated with a new ordered
pair {(AUTHORIZED UERSI1 = {(PATIENTSI - HN)})}. Based on the
configuration of CONSENTSI1, any user who obtains a nursing staff role
has access to the patient’s HN. So, the value of variable pf corresponds to
the given consent, as shown in Figure 42.

Hence, simulation results point out that the RPSM model covered
the RP4 test case.

95

€ < s x-a @
> L ESSIONSZ, U=AUTHORIZED_USERS2) Name
> L ESSIONS?, u=AUTHORIZED_USERS3) Status | Preferences | Project
> Logout(s=SESSIONS1) > vmiatios
constants [+ (2]
o RPSM
> invariants e APSMbum
» adoms true
¥ event guards
» Logn true
» AddPatient false
» AddConsent false
» Cresteinquiry false.
» CheckhutherizeConsent false
» ExecuteQuery false
» Logowt e
€ < b - @
L) e T
@] swws | Name Pro8 B-Conscle 0 rool—
Frentes 1 SETUP_CONSTANTS
2 INITIALISATION
3 Login{s=SESSIONS1, usAUTHORIZED_USERS1)
4 AddPatient(p=PATIENTS1, s=SESSIONS1)
5 AddConsent(c=CONSENTS1, p=PATIENTS1, s=SESSIONS1)
8 Greateinquiry(p=PATIENTS1. q=QUERIES, s=SESSIONS1)
No'Traces 7 CheckAuthorizeConsentic=CONSENTS1, p=PATIENTS1. s=SESSIONS1, cogaagiExpired=FALSE)
8 ExecuteQuary(c=CONSENTSH, p=PATIENTS1, s=SESSIONS1) @

Figure 41: The simulation of the RP4 test case. (A) the ExecuteQuery event and its
variables are produced by ProB, which has been executed in the history panel.

Name

v RPSM

authorizedConsent

Value

{(AUTHORIZED_USERS1={{PATIENTS1=CONSENTS1)})}

crf {(CONSENTS1-+{{NursingStatfHN)}), (CONSENTS 2+{(Oncologist-HN), (Oncalogist-Name), (Gncologist=Age), (ResearcherHN), (ResearchernOmics))}
patients {PATIENTS1}
pc {(PATIENTS1-CONSENTST)}

| I {[AUTHORIZED_USERS I{(PATIENTS1-HN)})}|
queries {{AUTHORIZED_USERS 1{(QUERIESI-PATIENTS 1))}
sessions {(SESSIONST»AUTHORIZED_USERS1)}
userRoles

{(AUTHORIZED_USERS1=NursingStaff), (AUTHORIZED_USERST-LabStaff},(AUTHORIZED_USERS2Oncologist), AUTHORIZED_USERS 2#Researcher),[AUTHORIZED_USERS3~Labstaff)}

Figure 42: The latest value of the variable pf corresponds to event execution in the

RP4 test case.
6.1.1.5. Test RP5 Test Case

To begin with, AUTHORIZED USERSI adds PATIENTS]1 and the
patient’s consent (PATIENTS1 — CONSENTS?2) into the system (Figure
43(A)). However, the configuration of CONSENTS?2 states that a user with
an oncologist role can access a patient’s HN, Name, and Age; a user with a
researcher role can access a patient’s HN and Omics. So, a user who ob-

tains these roles, e.g., oncologist and researcher, shall access a patient’s
HN, Name, Age, and Omics.

According to Figure 43(B), AUTHORIZED USER?2 login to the
system, which obtains two roles, e.g., oncologist and researcher. Then, the
user creates a query for accessing the personal data of PATIENTS1 under
CONSENTS2. After verifying the consent validation, the system executes
the query result. Hence, the value of variable pf corresponds to the ex-
pected result (Figure 44), which indicates that the RPSM model covered
the RPS test case.

96

Operations

P Statistics (states 11 of 42)

« < 2 #-x-a@
» Login(s=SESSIONST, u=AUTHORIZED_USERS1) Name Value
P Login(s=SESSIONS1, u=AUTHORIZED_USERS3) Machines [Status | Preferences
P Logout{s=SESSIONS2) v vaitles
constants o- €
v "~ RPSM
v Invarlants e RPSM.bum
> adoms true
w @vent guards
» Login true
» AddPatient false
» AddConsent false
» Createlnguiny false
» CheckAuthorizeConsent faise
» ExecuteQuery faise
» Logout true
€ <] [

= - @ fpene @9 Position & Transition

@[staws MName | R =100l
SETUP_CONSTANTS @

INITIALISATION
Login{s=SESSIONS1, u=AUTHORIZED_USERST)
AddPatient(p=PATIENTS1, s=SESSIONS1)
AddConsent(c=CONSENTS2, p=PATIENTS1, s=SESSIONS1)
Logout(s=SESSIONS1
Login(s=SESSIONS2, u=AUTHORIZED_USERS2)

=PATIENTS1, q=QUERIES2, s=SESSIONS2)

izeConsentic=CONSENTS2, p=PATIENTS1, s=SESSIONS2, consentExpired=F ALSE)

0 ExecuteQuery(c=CONSENTSZ, p=PATIENTS1, s=SESSIONS2)

Figure 43: The simulation of the RP5 test case. (A) AUTHORIZED USERSI adds
PATIENTS1 and his/her given consent. (B) AUTHORIZED USERS?2 creates query
to access the information of PATIENTS1 under CONSENTS?2.

eventa>

Mo Traces

FEEEREEEEYN IR

Name Value
~ - RPSM

authorizedCansent {(AUTHORIZED_USERS 2+{(PATIENTS 1-CONSENTS2)}}

erf {(CONSENTS1{(NursingStatfmHN)}], (CONSENTS2+{(O ist-HN), (Oncologist=Name), (O X X Omics)})}

patients {PATIENTS1}

pc {(PATIENTS1-CONSENTS2]}

| I {(AUTHORIZED_USERS2++{(PATIENTS1=HN), (PATIENTS1~Name), (PATIENTS1-Age), (PATIENTS 1~Omics)))}

queries {(AUTHORIZED_USERS 2~{(QUERIES2~PATIENTS1)})}

sessions {{SESSIONS2-AUTHORIZED_USERS2]}

userRoles {(AUTHORIZED_USERST+NursingStaff), [AUTHORIZED_USERS1-LabStaff),[AUTHORIZED_USERS2-Oncologist),(AUTHORIZED_USERS2+Researcher), (AUTHORIZED_USERS 3~LabStaff)}

Figure 44: The latest value of the variable pf corresponds to event execution in the
RPS5 test case.

6.1.2. Test Cases in the WASM Model

The WASM model describes the dynamic behavior of how the system
manages the withdrawal approval process when patients request to withdraw
their consent. The user’s roles that are involved in this process are legal staff and
legal approvers.

We then specify the test case objectives as follows:

e WAL: In the CreateWithdrawal, ApproveWithdrawal, and RejectWith-
drawal events, a user who does not obtain the legal staff and legal ap-
proval roles shall not perform these events.

« WA2: In the CreateWithdrawal event, a user who has a legal staff role
shall create the withdrawal request.

¢ WA3: In the ApproveWithdrawal event, a user who has a legal approver
role shall permit to approve the withdrawal request on the condition that

97

canWithdraw 1s TRUE. After the withdrawal request has been approved,
the withdrawal request’s status shall be updated to approved, and the sys-
tem shall add the patient’s consent into the variable markAsDeleted to
indicate that the patient’s personal data shall be deleted from the system.

e WA4: In the RejectWithdrawal event, a user who has a legal approver
role shall permit to reject the withdrawal request on the condition that
canWithdraw is FALSE.

First, we determine the variable value of userRoles and pc, before
running ProB.

The variable value userRoles is:

{(AUTHORIZED USERS1 » LegalStaff),
(AUTHORIZED USERS2 » LegalApprover),
(AUTHORIZED USERS3 » NursingStaff),
(AUTHORIZED USERS3 » LabStaff)}

The value of userRoles indicates the AUTHORIZED USERS1 and AU-
THORIZED USERS?2, users obtain a role, i.e., LegalStaff, and LegalApprover,
respectively. As for the AUTHORIZED USERS3 obtains two roles, i.e.,
NursingStaff, and LabStaff.

The variable value pc is:

{(PATIENTS1 » CONSENTS1),
(PATIENTS2 » CONSENTS1)}

The value of pc contains patients’ consents, e.g., the PATIENTSI has giv-
en the CONSENTSI, and the PATIENTS2 has given the CONSENTSI.

6.1.2.1. The WA1 Test Case

According to Figure 45(A), AUTHORIZED USERS3 login to the
system with SESSIONS1. However, AUTHORIZED USERS3 obtains
two roles, i.e., nursing staff, and lab staff. Within the choice of events gen-
erated by ProB (Figure 45(B)), the Logout event is the only choice for
AUTHORIZED USERS3 to perform for the next event execution. It indi-
cates that this user cannot access the CreateWithdrawal, ApproveWith-
drawal, and RejectWithdrawal events because guard conditions are invalid
for all three events. Then, the state variable sessions has been updated with
a new ordered pair (SESSIONS1 - AUTHORIZED USERS3), as shown
in Figure 46.

98

Hence, simulation results point out that the WASM model covered

the WAL test case.

« < o a4 x-a @

» Login(s=SESSIONSZ, u=AUTHORIZED_USERS1)
Login{s=SESSIONS2, u=AUTHORIZED_USERS2)

» variables

constants

» sets
» invariants

b axioms
v eventguards
» Login
» CreateWithdrawal
» ApproveWithdrawal
» RejectWithdrawal
» Logout

true

tue

true
false
false
false
true

Machines | Status | Preferences | Project

T WASM
WASM.bum

History (state 3 of 3)

= Tanston

0
1
2
3

—root—
SETUP_CONSTANTS @
INITIALISATION

|__ Login(s=SESSIONS1, u=AUTHORIZED_USERS3) |

Figure 45: The simulation of the WA test case. (A) the Login event and its variables
are produced by ProB, which has been executed in the history panel. (B) the choice of
events allows AUTHORIZED USERS3 to perform for the next event execution.

Name

v WASM
markAsDeleted
pc

Value

a
{(PATIENTS1»CONSENTS1), (PATIENTS2-CONSENTS1)}

I sessions

{(SESSIONS1~-AUTHORIZED_USERS3)}|

userRoles {(AUTHORIZED_USERS1~LegalStaff),(AUTHORIZED_USERS2-LegalApprover), (AUTHORIZED_USERS3»NursingStaff), (AUTHORIZED_USERS3~LabStaff)}

withdrawalState

=]

Figure 46: The latest value of the variable sessions corresponds to event execution in

the WA test case.

6.1.2.2. The WAZ2 Test Case

In Figure 47(A), AUTHORIZED USERSI login to the system as
legal staff and creates the withdrawal request for PATIENTS1 under
CONSENTSI1. Within the choice of events generated by ProB (Figure
47(B)), the Logout event is the only choice for AUTHORIZED USERSI1
to perform. It indicates that this user cannot access the ApproveWithdrawal
and RejectWithdrawal events because guard conditions are invalid for both
events. Then, the state variable withdrawState has been updated with a
new ordered pair {({(PATIENTS1 - CONSENTSI)} - Void)}, as shown

in Figure 48.

Hence, simulation results point out that the WASM model covered

the WA?2 test case.

99

Operations State View | Edit » Statistics (states 5 0f 16)
« < o) 2 © e
> Login(s=SESSIONS2, u=AUTHORIZED_USERS2) Name | vave [Project _
= [Machines [status | Preterences [project
~ » variables | 2
constants
» sets T WASM
» invariants true WASM.bum
> axoms true
v eventguards
» Login true
> CreateWithdrawal faise
> ApproveWithdrawal faise
> Rejectwithdrawal faise
> Logout true
i « < o
& @ fpers 0 Position & Transition
il Status | Name [ProB B-Console 0 ~—f00t—
vents>
1 SETUP_CONSTANTS
2 INITIALISATION @
3 Login(s=SESSIONS1, u=AUTHORIZED_USERS1)
4 | ¢ 1, p=PATIENTS1, 1) |

Figure 47: The simulation of the WA?2 test case. (A) the CreateWithdrawal event and
its variables are produced by ProB, which has been executed in the history panel. (B)
the choice of events allows AUTHORIZED USERSI to perform for the next event

execution.

Name Value
v~ WASM

markAsDeleted]

pc {(PATIENTS1»CONSENTS1), (PATIENTS2»CONSENTS1)}

sessions {(SESSIONS1~AUTHORIZED_USERS1)}

userRoles {(AUTHORIZED_USERS1»LegalStaff),(AUTHORIZED_USERS2+~LegalApprover), (AUTHORIZED_USERS3~NursingStaff), (AUTHORIZED_USERS 3~LabStaff)}

| - withdrawalState {({(PATIENTS1»CONSENTS1)}Void)}|

Figure 48: The latest value of the variable withdrawState corresponds to event execu-
tion in the WA2 test case.

6.1.2.3. The WAS3 Test Case

Figure 49(A) demonstrates that AUTHORIZED USERS?2 login to
the system as legal approver and the local variable canWithdraw is TRUE
(i.e., there is no conflict of interest on the consent revocation), then this
user approves the withdrawal request. Hence, the withdrawState and mar-
kAsDeleted variables have been updated with a new ordered pair {({(PA-
TIENTS1 - CONSENTSI1)} — Approved)} and {(PATIENT = CON-
SENTS1)}, respectively, as shown in Figure 50.

Hence, simulation results point out that the WASM model covered
the WA3 test case.

100

o s x-a @
SIONS1, u=AUTHORIZED_USERST) Mame
SIONS1, u=AUTHORIZED_USERS3)
SSIONS2] » variabies
‘constants.
» sats
» invariants rue
» axioms true
v event guards
» Login true
» CreateWithdrawal false
» ApproveWithdrawal faise
» RejectWithrawal faise
» Logout true
€ < b B @
= @ s @ (2) Transition
w‘;| Status ‘ Name [ProB B-Cansole 0 —root-—
1 SETUP_CONSTANTS
2 INITIALISATION
venee 3 Login(s=SESSIONS1, u=AUTHORIZED_USERS1)
4 CrealeWithdrawal({c=CONSENTS 1, p=PATIENTS1, s=SESSIONS1)
5 Logout(s=SESSIONS1) @
3 Login(s=SESSIONSZ, u=AUTHORIZED_USERS2)
NoTraces 7 RUE, s= pci={(PATIENTS1|->CONSENTS1))) |

Figure 49: The simulation of the WA3 test case. (A) the ApproveWithdrawal event
and its variables are produced by ProB, which has been executed in the history panel.

Name Value

v WASM
I markAsDeleted ([PATIENTShCONSENTSU}I
pc {(PATIENTS1=CONSENTS1), (PATIENTS2~-CONSENTS1)}
sessions {(SESSIONS1~AUTHORIZED_USERS1), (SESSIONS2»AUTHORIZED_USERS2)}
userRoles {{AUTHORIZED_USERS1-LegalStaff), (AUTHORIZED_USERS2~Legal Approver), (AUTHORIZED_USERS3=NursingStaff), (AUTHORIZED_USERS3~LabStaff)}
{({(PA‘I’IENT51»CDNSENTS1])~Appm\md]}I

I withdrawalState

Figure 50: The latest values of withdrawState and markAsDeleted variables corre-
spond to event execution in the WA3 test case.

6.1.2.4. The WA4 Test Case

Figure 51(A) demonstrates that AUTHORIZED USERS2 login to
the system as legal approver and the local variable canWithdraw is FALSE
(i.e., there exists a conflict of interest in the consent revocation), then this
user rejects the withdrawal request. Hence, the withdrawState variable has
been updated with a new ordered pair {({(PATIENTS1 - CONSENTS1)}
~ Rejected)}, as shown in Figure 52.

Hence, simulation results point out that the WASM model covered
the WA4 test case.

101

State View | Edit

« < 2 ar x~a @

B Logins=SESSIONST, u=AUTHORIZED_USERST)
> Login(s=SESSIONSY, u=AUTHORIZED_USERS3)
> Logoutis=SESSIONS2)

ii

w eventguards
b Login true
» CreateWithdrawal false
» Approvewithdrawal false
» RejectWithdrawal false
» Logout true

SETUP_CONSTANTS
INITIALISATION

0
1
2
a Login(s=SESSIONS1, u=AUTHORIZED_USERS1)

4 ONSENTS1, p: 1, s=SESSIONS1)
5

6

7

Login(s=SESSIONS2, u=AUTHORIZED_USERS2)

[RelectWitharawalicanWitharaw=FALSE, s=SESSIONS2, pe1=((PATIENTS1| >CONSENTSTI |

NoTraces

Figure 51: The simulation of the WA4 test case. (A) the RejectWithdrawal event and
its variables are produced by ProB, which has been executed in the history panel.

Name Value

v WASM

markAsDeleted)

pc {(PATIENTS1=CONSENTS1), (PATIENTS2-CONSENTS1)}
sessions {(SESSIONS2~AUTHORIZED_USERS2)}
userRoles {(AUTHORIZED_USERS1~LegalStaff), (AUTHORIZED_USERS2~LegalApprover), (AUTHORIZED_USERS3~NursingStaff), (AUTHORIZED_USERS 3~LabStaff)}
| withdrawalState ((((PATIENTs1nCONSENTS'I))»Rajac(edm
Figure 52: The latest value of the variable withdrawState corresponds to event execu-
tion in the WA4 test case.

6.1.3. Test Cases in the PASM Model

The PASM model describes the dynamic behavior of how the system man-
ages the portable approval process when patients request to portable their per-
sonal. The user’s roles that are involved in this process are legal staff and legal
approver.

We then specify the test case objectives as follows:

e PA1: In the CreatePortable, ApprovePortable, and RejectPortable events,
a user who does not obtain the legal staff and legal approver roles shall
not perform these events.

e PA2: In the CreatePortable event, a user who has a legal staff role shall
create the portable request.

¢ PA3: In the ApprovePortable event, a user who has a legal approver role
shall permit to approve the portable request on the condition that can-
Portable is TRUE.

102

¢ PA4: In the RejectPortable event, a user who has a legal approver role
shall permit to reject the portable request on the condition that can-
Portable is FALSE.

First, we determine the variable value of userRoles and pc, before
running ProB.

The variable value userRoles is:

{(AUTHORIZED USERS1 » LegalStaff),
AUTHORIZED USERS2 » LegalApprover),
AUTHORIZED USERS3 » NursingStaff),
AUTHORIZED USERS3 » LabStaff)}

(

(

(

(

The value of userRoles indicates the AUTHORIZED USERSI1 and

AUTHORIZED USERS2, users obtain a role, i.e., LegalStaff, and Le-

galApprover, respectively. As for the AUTHORIZED USERS3 obtains
two roles, i.e., NursingStaff, and LabStaff.

The variable value pc is:

{(PATIENTS1 » CONSENTS1),
(PATIENTS2 » CONSENTS1)}

The value of pc contains patients’ consents, e.g., the PATIENTSI
has given the CONSENTSI1, and the PATIENTS2 has given the CON-
SENTSI.

6.1.3.1. The PA1 Test Case

According to Figure 53(A), AUTHORIZED USERS3 login to the system
with SESSIONS1. However, AUTHORIZED USERS3 obtains two roles, e.g.,
nursing staff, and lab staff. Within the choice of events generated by ProB
(Figure 53(B)), the Logout event is the only choice for AUTHOR-
IZED USERS3 to perform for the next event execution. It indicates that this us-
er cannot access the CreatePortable, ApprovePortable, and RejectPortable events
because guard conditions are invalid for all three events. Then, the state variable
sessions has been updated with a new ordered pair (SESSIONS1 » AUTHOR-
IZED USERS3), as shown in Figure 54.

Hence, simulation results point out that the PASM model covered the PA1
test case.

103

Operations State View | Edit » Statistics (states 4 of 1)

& ¢ o) B X+ Q e | » Verifications.

v Project

P Login(s=SESSIONSZ, u=AUTHORIZED_USERS1)
P Login(s=SESSIONS2 u=AUTHORIZED_USERS2)
»_Logout(s=SESSIONST)

Name ‘ Value

Machines | Status | Preferences

b variables

constants

> e 2 PASM

b invariants true PASM.bum

b axioms true
¥ event guards
» Login true
» CreatePortable false
» ApprovePortable false
» RejectPortable false
» Logout true

« < 0

= - @ fepens (2] PnsmnnAl Transition

[ProB B-Console

0 ==T00t—

levent s> o 1 SETUP_CONSTANTS @
2 INITIALISATION
3

I Login(s=SESSIONS1, u=AUTHORIZED_USERS3) I

@ | Status | Name

Figure 53:The simulation of the PA1 test case. (A) the Login event and its variables
are produced by ProB, which has been executed in the history panel. (B) the choice of
events allows AUTHORIZED USERS3 to perform for the next event execution.

Name Value

v PASM

pc {(PATIENTS1=CONSENTS1), (PATIENTS2CONSENTS1)}

portableState 2
| sessions {(SESSIONS1-AUTHORIZED_USERS3)}|

userRoles {(AUTHORIZED_USERS 1»LegalStaff), (AUTHORIZED_USERS2+LegalApprover), (AUTHORIZED_USERS3wNursingStaff), (AUTHORIZED_USERS3wLabStaff)}

Figure 54: The latest value of the variable sessions corresponds to event execution in
the PA1 test case.

6.1.3.2. The PA2 Test Case

In Figure 55(A), AUTHORIZED USERSI login to the system as
the legal staff and creates the portable request for PATIENTS1 under
CONSENTSI1. Within the choice of events generated by ProB Figure
55(B), the Logout event is the only choice for AUTHORIZED USERSI to
perform for the next event execution. It indicates that this user cannot ac-
cess the ApprovePortable and RejectPortable events because guard condi-
tions are invalid for both events. Then, the state variable withdrawState
has been updated with a new ordered pair {({(PATIENTS1 - CON-
SENTS1)} - Void)}, as shown in Figure 56.

Hence, simulation results point out that the PASM model covered
the PA2 test case.

104

State View | Edit

» Statistics (states 5 of 16)

« < D ea-rx-a@

P Login(s=SESSIONS2, u=AUTHORIZED_USERS2)
ESSIONS2 u=AUTHORIZED_USERS3)

Name Value

» variablas

constants {
- —
» invariants true PASM.bum
» axioms true
¥ eventguards
» Login true
» CreatePortable false
» ApprovePortable false
» RejectPortable false
» Logout true

History (state 4 of 4)

Clea N N
0 [~ Tarston

—ro0t—
SETUP_CONSTANTS

0

1

2 INITIALISATION @
3 Login(s=SESSIONS1, u=AUTHORIZED_USERS1)

4

[CreatePortable(c=CONSENTS1, p=PATIENTS1, s=SESSIONS1) |

@l Status | Name era B-Consols
e ventar

Figure 55: The simulation of the PA2 test case. (A) the CreatePortable event and its
variables are produced by ProB, which has been executed in the history panel. (B) the
choice of events allows AUTHORIZED USERSI to perform for the next event exe-

cution.
Name Value
v . PASM
pc ([PATIENTS-CONSENTS1), (PATIENTS2-CONSENTS1)}
| -~ portablestate {{{{PATIENTS1=CONSENTS1)}Void)}|
sessions {(SESSIONS1-AUTHORIZED_USERS1)}
userRoles ({AUTHORIZED_USERS LegalStaff), (AUTHORIZED_USERS2-LegalApprover], (AUTHORIZED_USERS3-NursingStaf), (AUTHORIZED_USERS3wLabstaff)}

Figure 56: The latest value of the variable portableState corresponds to event execu-
tion in the PA2 test case.

6.1.3.3. The PA3 Test Case

Figure 57(A) demonstrates that AUTHORIZED USERS2 login to
the system as legal approver and the local variable canPortable is TRUE
(i.e., there might be a fee for exporting personal data, and if the patient ac-
cepts to pay, then this variable becomes TRUE), then this user approves
the portable request. Hence, the portableState variable has been updated
with a new ordered pair {({(PATIENTSI = CONSENTSI1)} ~ Ap-
proved)}, as shown in Figure 58.

Hence, simulation results point out that the PASM model covered
the PA3 test case.

105

« < o5 w#-x-a@
> Login(s=SESSIONS1, u=AUTHORIZED_USERS1) MName Valve
P Login{s=SESSIONS1, u=AUTHORIZED_USERS3)
» Logout(s=SESSIONS2) » vaishies
constants. o- 1
o PASM
» invariants e PASMbum
» atioms true
- event guards
» Login true
» CreatePortable false
» ApprovePortsble false
» RejectPortable faise
» Logout true
i . € < b =~ f
=~ 0|~ @ol—
@ sews | Name Fros a-console a rool—
1 SETUP_CONSTANTS
2 INITIALISATION
3 Login(s=SESSIONS1, u=AUTHORIZED_USERS1)
4 CreatePortable(c=CONSENTS1, p=PATIENTS1, s=SESSIONS1)
5 Logout{s=SESSIONS1) @
L] Login{s=SESSIONS2, u=AUTHORIZED_USERS2)
No Traces 7 | Aep ESSIONS2, TRUE, pe1={(PATIENTS 1| >CONSENTS1))} |

Figure 57: The simulation of the PA3 test case. (A) the ApprovePortable event and its
variables are produced by ProB, which has been executed in the history panel.

Name Value
v PASM

pc {(PATIENTS1-CONSENTS]), (PATIENTS2-CONSENTS1)}

| portablestate {[{(PATIENTS1~-CONSENTS1)}~Approved)}|

sessions {[SESSIONS2~AUTHORIZED_USERS2)}

userRoles {(AUTHORIZED_USERS+-LegalStaff),[AUTHORIZED_USERS2wLegalApprover), (AUTHORIZED_USERS3-NursingStaff), (AUTHORIZED_USERS3+LabStaff)}

Figure 58: The latest value of the variable portableState corresponds to event execu-
tion in the PA3 test case.

6.1.3.4. The PA4 Test Case

Figure 59(A) demonstrates that AUTHORIZED USERS?2 login to
the system as legal approver and the local variable canPortable is FALSE
(i.e., there might be a fee for exporting personal data, and if the patient de-
clines to pay, then this variable becomes FALSE), then this user rejects the
portable request. Hence, the portableState variable has been updated with
a new ordered pair {({(PATIENTS1 - CONSENTSI1)} ~ Rejected)}, as
shown in Figure 60.

Hence, simulation results point out that the PASM model covered
the PA4 test case.

106

€ < 29 w#-x-a @
b Login(s=SESSIONST, u=AUTHORIZED_USERST) Name Value
» Login(s=SESSIONST, u=AUTHORIZED_USERS3)
P Logout{s=SESSIONS2) variables
constants
> st T PASM
> invariants true PASM bum
» axoms true
* event guards
» Login true
» CreatePortable false
» ApprovePortable false
» RejectPortable false
» Logout true
« < o B
= - @ fpente @ (2] Transition
@] s | Name Prob B-Consols [] roni—
e ventes 1 SETUP_CONSTANTS
2 INITIALISATION
3 Lagin{s=SESSIONS1, u=AUTHORIZED_USERS1)
4 CreatePortable{c=CONSENTS1, p=PATIENTS1, s=SESSIONS1)
5 Logout{s=SESSIONS1) @
6 Login(s=SESSIONS2, u=AUTHORIZED_USERS2)
R 7 [Feie SE, pei=(IPATIENTS1->CONSENTST]] |

Figure 59: The simulation of the PA4 test case. (A) the RejectPortable event and its
variables are produced by ProB, which has been executed in the history panel.

Name Value
v - PASM

pc {(PATIENTS1~CONSENTS1), (PATIENTS2~CONSENTS1)}

| - portablestate {({(PATIENTS1-CONSENTS1)}»Rejected))|

sessions {(SESSIONS1~AUTHORIZED_USERST), (SESSIONS2-AUTHORIZED_USERS2)}

userRoles {(AUTHORIZED_USERS1LegalStaff), (AUTHORIZED_USERS2~LegalApprover), (AUTHORIZED_USERS3~NursingStaff), (AUTHORIZED_USERS3+LabStaff)}

Figure 60: The latest value of the variable portable corresponds to event execution in
the PA4 test case.

6.1.4. Test Cases in the CRSM Model

The CRSM model describes the dynamic behavior of how the system
manages the consent renewal process when patients’ consent expires. The user’s
role that is involved in this process is the legal staff.

We then specify the test case objectives as follows:

e CR1: In CreateConsentRenewRequest, NotifyPatient, ExtendConsen-
tExpiration, and DeletePatientData events, a user who does not obtain
the legal staff role shall not perform these events.

« CR2: In the CreateConsentRenewRequest event, only the legal staft shall
create the consent renewal request under these conditions: the patient’s
consent is expired but is not withdrawn.

e CR3: As for the NotifyPatient event, the legal staff shall inform the pa-
tient about the consent renewal and receives the patient’s response for
approval or rejection on extending the data retention.

107

e CR4: If the patient approves the consent renewal, the legal staff shall
update the consent to unexpired.

e CRS: If the patient rejects the consent renewal, the legal staff shall add
the consent into the variable markAsDeleted to indicate that the patient’s
personal data shall be deleted from the system.

First, we determine the variable value of userRoles and pc, before running
ProB.

The variable value userRoles is:

{ (AUTHORIZED USERS1 » LegalStaff),
(AUTHORIZED USERS2 » LegalApprover),
(AUTHORIZED USERS3 » NursingStaff),
(AUTHORIZED USERS3 » LabStaff)}

The value of userRoles indicates the AUTHORIZED USERS1 and AU-
THORIZED USERS?2, users obtain a role, i.e., LegalStaff, and Legal Approver,
respectively. As for the AUTHORIZED USERS3 obtains two roles, i.e.,
NursingStaff, and LabStaff.

The variable value pc is:

{(PATIENTS1 » CONSENTS1),
(PATIENTS2 » CONSENTS1)}

The value of pe contains patients’ consents, e.g., the PATIENTSI has giv-
en the CONSENTSI, and the PATIENTS2 has given the CONSENTSI.

6.1.4.1. The CR1 Test Case

According to Figure 61(A), AUTHORIZED USERS3 login to the
system with SESSIONSI1. However, AUTHORIZED USERS3 obtains
two roles, 1.e., nursing staff, and lab staff. Within the choice of events gen-
erated by ProB (Figure 61(B)), the Logout event is the only choice for
AUTHORIZED USERS3 to perform for the next event execution. It indi-
cates that this user cannot access the CreateConsentRenewRequest, No-
tifyPatient, ExtendConsentExpiration, and DeletePatientData events be-
cause guard conditions are invalid for all four events. Then, the state vari-
able sessions has been updated with a new ordered pair (SESSIONS1 -
AUTHORIZED USERS3), as shown in Figure 62.

Hence, simulation results point out that the CRSM model covered
the CR1 test case.

« <

State View | Edit

s 2Xv a @

20

P Login{s=SESSIONS2, u=AUTHORIZED_USERS1)
P Login{s=SESSIONS2, u=AUTHORIZED_USERS2)

Name

Value

» variables

tates 4 of 11)

Machines | Status | Preferences | Project

constants
b sets
» invariants.
» axioms
¥ eventguards
» Login
» CreateConsentRenewRequest
> NotifyPatient
» ExtendConsentExpiration
» DeletePatientData
» Logout

@ [pee

w

true

true

false
false
false
false

true

Do

108

7* CRSM
CRSM.bum

«€ < 0

Position & | Transition

@ | Status |

Name ProB B-Console

EventB>

—root—

0

1 SETUP_CONSTANTS @
2 INITIALISATION

3

| Login(s=SESSIONS1, u=AUTHORIZED_USERS3) |

Figure 61: The simulation of the CR1 test case. (A) the Login event and its variables
are produced by ProB, which has been executed in the history panel. (B) the choice of

Name

events allows AUTHORIZED USERS3 to perform for the next event execution.

Value

@
@
a

@

{(PATIENTS1-»CONSENTS1), (PATIENTS2-CONSENTS1)}

{(SESSIONS1~AUTHORIZED_USERS3)}|

{(AUTHORIZED_USERS1=LegalStaff), (AUTHORIZED_USERS2+Legal Approver), (AUTHORIZED_USERS3~NursingStaff), (AUTHORIZED_USERS 3~LabStaff)}

Figure 62: The latest value of the variable sessions corresponds to event execution in
the CR1 test case.

6.1.4.2. The CR2 Test Case

Figure 63(A) demonstrates that AUTHORIZED USERSI login to

the system as legal staff and the local variables of expired is TRUE (i.e.,
the patient’s consent is expired) and isWithdraw is FALSE (i.e., the pa-
tient’s consent is not withdrawn), then this user creates the consent renewal
request to inform the patient about the data retention extension to allow the
hospital to continue to process his/her personal. Within the choice of
events generated by ProB (Figure 63(B)), there are two events available
for AUTHORIZED USERSI to perform, e.g., the NotifyPatient, and Log-
out events. It indicates that this user can access the NotifyPatient event be-
cause guard conditions are valid. Then, the consentRenewalState and is-
ConsentExpired variables have been updated with a new ordered pair
{({(PATIENTS1 = CONSENTSI1)} = Void)} and {({(PATIENTS1 =
CONSENTS1)} » TRUE)}, respectively, as shown in Figure 64.

109

Hence, simulation results point out that the CRSM model covered
the CR2 test case.

= [+ variables -
constants ©O- (]

b s ~ CRSM
» invanants true CRSM bum

» axioms true

w eventguards
» Login e
» CreateConsentRenevRequest false
» NotityPatient true
» ExtendConsentExpiration false
» DelatePatientData false
» Logout true

5 @ s Lo X2) Taresion

o | - T

o

1 SETUP_CONSTANTS

3 Login(s=SESSIONS1, usAUTHORIZED_USERS1)

4 teC P 1,) sE)|

Figure 63: The simulation of the CR2 test case. (A) the CreateConsentRenewRequest
event and its variables are produced by ProB, which has been executed in the history
panel. (B) the choice of events allows AUTHORIZED USERS to perform for the

Name

next event execution.

Value

CRSM

I consentRenewalState ((((PATIE"TS1»CONSENTS1)}-V0id]}I

I isConsentExpired {({[PATIENTS1~00NSENT51)}-TRUE)}I
markAsDeleted @
markAsReceived d
pc {(PATIENTS1=-CONSENTS1), (PATIENTS2»CONSENTS1)}
sessions {(SESSIONS2~AUTHORIZED_USERS1)}
userRoles {(AUTHORIZED_USERS1~LegalStaff), (AUTHORIZED_USERS2+~LegalApprover), (AUTHORIZED_USERS3~NursingStaff), (AUTHORIZED_USERS 3~LabStaff)}

Figure 64: The latest values of consentRenewalState and isConsentExpired variables

correspond to event execution in the CR2 test case.
6.1.4.3. The CR3 Test Case

As for the NotifyPatient event, AUTHORIZED USERSI1 informs
the patient to extend data retention (Figure 65(A) and Figure 67(A)). Af-
ter receiving the patient’s answer (i.e., Approved, Rejected), then this user
saves the answer into the system. If the patient approves extending data re-
tention, then ProB generates the two possible events for AUTHOR-
IZED USERSI to perform. i.e., the ExtendConsentExpiration, and Logout
events (Figure 65(B)). The state variables consentRenewalState and mar-
kAsReceived have been updated with a new ordered pair {({(PATIENTSI
~ CONSENTS1)} » Approved)}, and {(PATIENTS1 » CONSENTSI1)},
respectively (Figure 66).

On the other hand, If the patient rejects to stop processing his/her
personal data, then ProB generates the two events for AUTHOR-

110

IZED USERSI to perform. e.g., the DeletePatientData, and Logout events
(Figure 67(B)). The state variables consentRenewalState and mar-
kAsReceived have been updated with a new ordered pair {({(PATIENTSI1
= CONSENTSI1)} — Rejected)}, and {(PATIENTS1 = CONSENTSI1)},
respectively (Figure 68).

Hence, simulation results point out that the CRSM model covered
the CR3 test case.

Operations State View | Edit

Name

b variables

constants

v "~ CRSM
» imvariants e CRSM.bum
» axioms true
v event guards

» Logn ue

» CreateConsentRenewRequest false

» NotifyPatient false

» ExtendConsentExpiration rue

» DeletePatientData false

» Logout e

o s] — =, p——

SETUP_CONSTANTS
INITIALISATION

a
1
2
3 Login(s=SESSIONS2, u=AUTHORIZED_USERS1)
4
5

| y] pet=((i

CreateConseniRenewRequestic=CONSENTS1, p=PATIENTS1, s=SESSIONS2, expired=TRUE, \SW\LM@LSE)

Figure 65: The simulation of the CR3 test case. (A) the NotifyPatient event with
“Approved” status, which has been executed in the history panel. (B) the choice of
events allows AUTHORIZED USERSI to perform for the next event execution.

Name Value

v CRSM
I consentRenewalState
isConsentExpired
markAsDeleted
| markAsReceived
pc
sessions

{({(PATIENTS1.-CONSENTS1)}~Approved)}|
(({(PATIENTS1=CONSENTS1)}=TRUE)}
2
{(PATIENTS1-CONSENTS1)}|
{(PATIENTS1-CONSENTS1), (PATIENTS2-CONSENTS1)}
{(SESSIONS2~AUTHORIZED_USERS1)}
userRoles {(AUTHORIZED_USERS1-LegalStaff), (AUTHORIZED_USERS2+LegalApprover), (AUTHORIZED_USERS3+NursingStaff), (A\UTHORIZED_USERS3»LabStaff)}

Figure 66: The latest values of consentRenewalState and markAsReceived variables
correspond to event execution in the CR3 test case.

111

« ¢ D e x-a @

b Loginis=SESSIONST, u=AUTHORIZED_USERS2) Mar

B DeletePationtData(s=SESSIONSZ, pei={IPATIENT
P Logout(s=SESSIONSZ) constants o . o

b osets ~ CRSM
» invariants. true CRSM.bum
true

b axioms.

v eventguards

» Login true
» CreateConsentRenewRequest false
» NotifyPatient false
» ExtendConsentExpiration false:
» DeletePatientData true
» Logout tue

* @ s e T |
o] = | e s 5-comeeie CE——
B> 1 SETUP_CONSTANTS
2 INITIALISATION
3 Login(s=SESSIONSZ, u=AUTHORIZED_USERS1)
4 CreateConsentRenewRequestic=CONSENTS 1, p=PATIENTS1, s=SESSIONS2, expired=TRUE, wsz@FALSE]
5 pei=((sl

Figure 67: The simulation of the CR3 test case. (A) the NotifyPatient event with “Re-
jected” status, which has been executed in the history panel. (B) the choice of events
allows AUTHORIZED USERSI to perform for the next event execution.

Name Vvalue
v CRSM
I consentRenewalState {[{{PAT|ENTS1»CONSENTS1))-Reiected)}I
isConsentExpired {({{PATIENTS1=CONSENTS1)=TRUE)}
markAsDeleted 2
| © markAsReceived {(PATIENTS1-CONSENTS1)}{
pc {(PATIENTS1-CONSENTS1), (PATIENTS2»CONSENTS1)}
sessions {(SESSIONS2»AUTHORIZED_USERS1)}
userRoles {(AUTHORIZED_USERS1»LegalStaff), (AUTHORIZED_USERS2+LegalApprover), (AUTHORIZED_USERS3~NursingStaff), (AUTHORIZED_USERS 3~LabStaff)}

Figure 68: The latest values of consentRenewalState and markAsReceived variables
correspond to event execution in the CR3 test case.

6.1.4.4. The CR4 Test Case

After the patient approves the consent renewal request, then AU-
THORIZED USERSI extends the data retention within the given consent
(Figure 69(A)). Hence, the isConsentExpired variable has been updated
with a new ordered pair {({(PATIENTS1 » CONSENTS1)} - FALSE)},
as shown in Figure 70.

Hence, simulation results point out that the CRSM model covered
the CR4 test case.

112

b #- x> a @
jgin(s=SESSIONS1, U=AUTHORIZED_USERS2) Mame
SESSIONS1, u=AUTHORIZED_USERS3)
B CresteConsentReneviRequestic=CONSENTS1, p=PATIENTS2, J] *_Variables
P Logout(s=SESSIONS2) constants o . 9
o ~ CRSM
b invanant s true CRSM bum
+ asioms e
w event guards
» Login true
» CreateConsentRenewRequest true
» NotifyPatient false
» ExtendConsentExparation false:
» DeletePatientData false
» Logout e
: « < b n- @
B - @ fpene @ @ | s Transition |
@[saus | Namme | [rool—
1 SETUP_CONSTANTS
2 INITIALISATION
3 Login(s=SESSIONS2, u=AUTHORIZED_USERS1)
Events> 4 CreataConsentRenewRequest(c=CONSENTS1, p=PATIENTS1, s=SESSIONSZ, expired=TRUE....
5 MolifyPatient(accepiStatus=Approved, s=SESSIONSZ, pel1={(PATIENTS1|->CONSENTS1,
No Traces

Figure 69: The simulation of the CR4 test case. (A) the ExtendConsentExpiration
event and its variables are produced by ProB, which has been executed in the history

panel.

Name Value
h CRSM

consentRenewalState {({{PATIENTS1-CONSENTS1)}»Approved)}

I isConsentExpired {({(PATIENT51-CDN5ENT51)}-FALSE]}I

markAsDeleted E]

markAsReceived {(PATIENTS1-CONSENTS1)}

[{(PATIENTS1=CONSENTS1),(PATIENTS2#CONSENTS1)}

sessions {(SESSIONS2~AUTHORIZED_USERS1)}

userRoles {(AUTHORIZED_USERS1~LegalStaff), (AUTHORIZED_USERS2~LegalApprover), (AUTHORIZED_USERS3~»NursingStaff), (AUTHORIZED_USERS 3~LabStaff)}

Figure 70: The latest value of the variable isConsentExpired corresponds to event ex-
ecution in the CR4 test case.

6.1.4.5. The CR5 Test Case

After the patient rejects the consent renewal request, then AU-
THORIZED USERSI deletes the patient’s personal data. Figure 71(A).
Hence, the markAsDeleted variable has been updated with a new ordered
pair {(PATIENTS1 - CONSENTS1)}, as shown in Figure 72.

Hence, simulation results point out that the CRSM model covered
the CRS test case.

113

Operations State View | Edit » Statistics (states 7 of 25)
« < 5 8 xva @
P Login(s=SESSIONS1, u=AUTHORIZED_USERS?) Nan

P Login(s=SESSIONST, u=AUTHORIZED_USERS3)
» Logoutfs=sessionszy [v s
constants
> sets
» invariants true
» axioms true
v event guards
» Login true

» CreateConsentRenewRequest false

» NotifyPatient false
» ExtendConsentExpiration false.
» DeletePatientData false
» Logout true
« < o B @
5+ @ s A o= Transton |
@] suus | Name ProB B-Console —root—

SETUP_CONSTANTS
INITIALISATION
Login{s=SESSIONS2, u=AUTHORIZED_USERS1)
CreateConsentRenewRequest{c=CONSENTS1, p=PATIENTS1, s=SESSIONS2, expired=TRUE, isWithdraw=FALSE)
NotifyPatient(acceptStatus=Rejected, s=SESSIONS2, pc1:{[F'ATIENTS1|—>CONS®))
pet={(

B

No Traces

Figure 71: The simulation of the CRS test case. (A) the DeletePatientData event and
its variables are produced by ProB, which has been executed in the history panel.

Name Value

v + CRSM
consentRenewalState {({{PATIENTS1~CONSENTS1)}+Rejected)}
isConsentExpired {{(PATIENTS1-CONSENTS1)}»TRUE) }

I markAsDeleted {[PATIENTS1~CONSENTS1]}I

markAsReceived {(PATIENTS1-CONSENTS1)}
pc {(PATIENTS1=CONSENTS1), (PATIENTS2-CONSENTS1)}
sessions {(SESSIONS2~AUTHORIZED_USERS1)}
userRoles {(AUTHORIZED_USERS1~LegalStaff), (AUTHORIZED_USERS 2~LegalApprover), (AUTHORIZED_USERS 3~NursingStaff), (AUTHORIZED_USERS3~LabStaff)}

Figure 72: The latest value of the variable markAsDeleted corresponds to event exe-
cution in the CRS test case.

6.2. Test Cases in CM for Distributed Systems in Data Sharing

6.2.1. Test Cases in the DSSM Model

The DSSM model describes the dynamic behavior of manipulating data
subjects’ consent and sharing personal data across multiple services through
blockchain.

We then specify the test case objectives as follows:

e DS1: The model shall conduct consent and data subjects’ consent.

e DS2: The model shall correctly manage the interaction between the re-
quester and response services. As for the data transfer among services, it
shall select data fields corresponding to consent configuration.

e DS3: For every step of the request-response services interaction, the
model shall verify consent validity.

¢ DS4: The model shall manage one-time request per a patient’s data.

114

e DSS: For every step of callback to request-response services, the model
shall handle the blockchain oracle charge for API calls (i.e., an oraclize’s
fee) and the smart contract’s insufficient balance.

Before running ProB, we first determined the constant initialBalan-
ce with 3 points representing the initial balance of the smart contract.
Then, we assigned the initialBalance to the smart contract’s address this as
an ordered pair {(this = 3)} in the variable balanceOf, indicating this sma-
rt contract’s address has balance as 3 points.

6.2.1.1. The DS1 Test Case

According to Figure 73(A), ConsentB has been added to the block-
chain by ServiceB, and DataSubjectl provides permission to access per-
sonal data within ConsentB and its data fields. The relevant state variables
which have been updated (Figure 74) are as follows: 1) the variable con-
sents contains the collection of available consents updated with ConsentB,
2) the variable dataFields contains the collection of data fields under the
specific consent updated with {(ConsentB = {Name, BirthDate, BirthDe-
fects})}, and 3) the variable dataSubjectConsents contains the valid data
subject’s consent within the specific responder service updated with {(Ser-
viceA — DataSubject] = ConsentB = TRUE)}.

Hence, simulation results point out that the DSSM model covered
the DS1 test case.

» Statistics (states 5 of 21)
‘ = 9 » Verifications

v Project

Name Value

Machines | Status | Preferences | Project

» variables

» constants

» sets ~DSSM
» invariants true DSSM.bum
» axioms true
w event guards

» AddConsent false

» AddDataSubjectConsent true

» CallbackRequester true
» SubmitRequest false
» CallbackResponder false
» SubmitResponse false
» CallbackDataTransfer false & <) - 0

» TransferData false

Positi Ti
» RevokeConsent true osition & | ransition |

—root—

SETUP_CONSTANTS @
INITIALISATION

» RenewConsent false
» InsufficientBalance true
» CheckConsentExpiration true

» UnauthorizedAccess false

a @ N = O

AddConsent{dataField={Name,BirthDate,BirthDefects}, consent=ConsentB)
AddD: j ject=DataSubject1, ”

Figure 73: The simulation of the DSI1 test case. (A) the AddConsent and
AddDataSubject events and their variables are produced by ProB, which has been ex-
ecuted in the history panel.

Name

v DSCX

initialBalance

DSSM
addresses
balanceOf

115

Value

3

{this}
{(this»3)}

callbackDataTransferStates 2

callbackRequesterStates [}

callbackResponderStates 2

consents

{ConsentB} |

dataAccessRequests 2

dataAccessResponses 2

dataFields

{(ConsentB~{Name,BirthDate,BirthDefects})}

dataSubjectConsents {(ServiceA~DataSubject1»ConsentB~TRUE)}

dataTransferStates 2

encryptedData 2

Figure 74: The latest values of consents, dataFields, and dataSubjectConsents varia-

bles correspond to event execution in the DS1 test case.

6.2.1.2. The DS2 Test Case

Figure 75(A) demonstrates the request-response interaction be-
tween ServiceA and ServiceB on the blockchain. After ServiceA submits
the data subject’s consent, the blockchain then handles a callback URL to
ServiceB. Besides, in every callback URL in the blockchain, the smart
contract must pay a fee for the blockchain oracle to manage an API call
with 1 point.

After ServiceB receives the API call, ServiceB submits the request
back to the blockchain. The balanceOf, callbackRequester, and dataAc-
cessRequestes variables have been updated with {(this = 2)}, {(ServiceB
= DataSubject] = ConsentB)}, and {(Requestl — (ServiceA = DataSub-
jectl = ConsentB))}, respectively (Figure 76).

The request submission of ServiceB triggers the blockchain to
make the callback URL to ServiceA. Then, ServiceA submits the response
back to the blockchain (Figure 75(B)). Then, the balanceOf, callbackRe-
sponderStates, and dataAccessResponses have been with {(this - 1)}, Re-
questl, and {(Responsel = Requestl)}, respectively (Figure 76).

After the blockchain receives the response from ServiceA, the
blockchain makes the callback URL to ServiceA again to give the callback
URL of ServiceB. Then, ServiceA encrypts the selected data fields based
on the data subject’s consent, and transfers encrypted personal data to Ser-
viceB (Figure 75(C)). In doing so, the state variables balanceOf,
callbackDataTransferStates, dataTransferStates, and encryptedData have
been with {(this = 0)}, Responsel, {(Responsel = TRUE)}, and {(Re-

116

sponsel = {(DataSubjectl = Name), (DataSubjectl +~ BirthDate),
(DataSubjectl — BirthDefects)})}, respectively (Figure 76).

Hence, simulation results point out that the DSSM model works
correctly, and the change of state variables corresponds to the execution of
the events, which covered the DS2 test case.

State View | Edit

P Statistics (states 11 of 41)

» Verifications
¥ Project
Machines | Status | Preferences | Project
» variables
» constants o v o
t -
b * DSSM
» invariants true DSSM.bum
» axioms true
v eventguards
» AddConsent false
» AddDataSubjectConsent true
» CallbackRequester
» SubmitReguest
» CallbackResponder
History (state 10 of 10)
» SubmitResponse R
» CallbackDataTransfer false] « <« [} - o
» TransferData false
» RevokeConsent true || Position & Transition |
» RenewConsent false | © —voot—
» InsufficientBalance faise | 1 SETUP_CONSTANTS
» CheckConsentExpiration tue | 2 INITIALISATION
» UnauthorizedAccess false 3 AddConsent(dataField={Name,BirthDate, BirthDefects}, consent=ConsentB)
4 AddDataSubjectC: i jectt, iceA, consent=ConsentB)
>V fisati 5 @ CallbackRequester(dataSubjectConsent=(ServiceA|->DataSubject1|->ConsentB), craclizeFee=1)
isualisation
6 SubmitRequest(requ qt 1, |->DataSubject1|->ConsentB), consentExpired=FALSE)
v b s 7 CallbackRespender(request=Request1, oraclizeFee=1)
Event-B @ o 8 SubmitResponse(request=Request1, dataSubjectConsent=(ServiceA|->DataSubject1|->ConsentB), ¢ ired=FALSE, resp ponsel)
9 CallbackDataTransfer(oraclizeFee=1, response=Response1)
ProB B-Console
i load 10 TransferDatal dahSuhiechDataSuly_ecﬂ. viceA, onsentB, resp 1)
EventB>

Figure 75: The simulation of the DS2 test case. (A) the CallbackRequester and Sub-
mitRequest events, which have been executed in the history panel. (B) the
CallbackResponder and SubmitResponse events, which have been executed in the his-
tory panel. (C) the CallbackDataTransfer and TransferData events, which have been
executed in the history panel.

Name Value
v DSCX
initialBalance 3
v DSSM
addresses {this}
balanceOf {(this~0)}
callbackDataTransferStates {Response1}
callbackRequesterStates {(ServiceAnDataSubject1»ConsentB)}
callbackResponderStates {Request1}
consents {ConsentB}
dataAccessRequests {(Request1~(ServiceAr»DataSubject1»ConsentB))}
dataAccessResponses {(Responsel~Request1)}
dataFields {(ConsentB»{Name,BirthDate,BirthDefects})}
dataSubjectConsents {(ServiceA»DataSubject1»ConsentB»TRUE)}
dataTransferStates {(Response1~TRUE)}
encryptedData {(Response1~{(DataSubjecti»Name), (DataSubject1~BirthDate), (DataSubject1~BirthDefects)})}

Figure 76: The latest values of all state variables in the DSSM model correspond to

event execution in the DS2 test case.

117

6.2.1.3. The DS3 Test Case

To verify the consent validation is working correctly, we then simu-
late the test case by firing the RevokeConsent event to make the consent
invalid, before entering the following events: 1) the CallbackRequester
event, 2) the SubmitRequest event, 3) the CallbackResponder event, 4) the
SubmitResponse event, 5) the CallbackDataTransfer event, and 6) the
TransferData event.

After firing the RevokeConsent event (Figure 77(A)), the guards
of above events are invalid, as shown in Figure 77(B).

Hence, simulation results point out that the DSSM model covered
the DS3 test case.

« < 0 srxva @

| » AddDataSubjectConsentidataSubject-DataSubject], respander=Servicas,
» RenewCe 1|->Con
[N = I->D

Name

» variables
» constants
b osels

b invariants. DSSM bum

HH

b adoms

[+ event guards
» AddConsent false
» AddDataSubjectConsent tue
» CallbackRequester false
» SubmitRequest false
» CallbackResponder false
» SubmitResponse false
» CallbackDataTransfer false

» TransferData false

History (state 6 of 6]

» RevokeConsent false

» RenewConsent e

o
v Insufficientiialance false: 1 SETUP_CONSTANTS
2

INITIALISATION
AddConsentdataField=(Name BirthDale,BirthDefects), consent=ConsentB)
AddDataSubjeciConsentdataSubject=DataSubject, responder=ServiceA, consent=ConsentB)

variables produced by ProB, which have been executed in the history panel. (B) the
list of unsatisfied and satisfied event guards corresponds to current state variables.

6.2.1.4. The DS4 Test Case

Firstly, we defined a fee for the blockchain oracle to manage an
API call as 0 points, and the smart contract’s balance currently remains at
3 points. Secondly, we simulated the different requests (e.g., Requestl, Re-
quest2) for transferring personal data of the same data subject.

According to Figure 78, we executed events alternately between
Requestl and Request2. The state variables during ProB simulation are
correct, as shown in Figure 79.

118

The simulation results point out that the DSSM model covered the
DS4 test case.

State View | Edit es 16 of 89)
¥ Project
- Machines | Status | Preferences | Project
» variables
» constrts o- P>)
» sets “ DSSM
» invariants true | DssMbum
» axioms true
» eventguards
» AddConsent false
» AddDataSubjectConsent true
» CallbackRequester
» SubmitRequest
» CallbackResponder History (state 15 of 15)
» SubmitResponse
» CalbackataTransfer false| € < 2 - @
» TransferData false § position & Transition |
» RevokeConsent tue o ool
b RenewConsent faise]l SETUP_CONSTANTS
» InsufficientBalance false § 5 INITIALISATION
» CheckConsentExpiration true I 5 AddConsent(dataField={Name,BirthDale,BirthDefects}, consent=Consent8)
» UnauthorizedAccess false§ 4 AddD: i 1, ServiceA, consent=ConsentB)
5 CallbackRequester(dataSubjectConsent=(ServiceA|->DataSubject1]->ConsentB), oraclizeFee=0)
6 SubmitRequest(request=Request1, dataSubjectConsent=(ServiceA|->D: jecti|->ConsentB), co ALSE)
v Interactive Console 7 bmilR quesi2, sent=(ServiceAl->DalaSubject1]->ConsentB), consenlExpired=F ALSE)
Event-8 @ 9 8 CallbackResponder(request=Request1, oraclizeFee=0)
9 CallbackResponder(request=Request2, oraclizeFee=0)
ProB B-Console
. " 10 ponse(requ questi, iceA|->DataSubject1]->ConsentB), consentExpi LSE, resp ponsel)
1" SubmitResponss(requ X viceA|->DataSubjsct1]->ConsentB), consentExpired=FALSE, response=Response2)
[EventB>
12 CallbackDataTransfer(oraclizeFee=0, response=Response1)
13 CallbackDataTransfer(oraclizeFee=0, response=Response2)
14 TransferData(dataSubject=DataSubject1, resp iceA, onsentB, P Resp 1)
15 Transfer j Subject1, viceA, consent=ConsentB, response=Response2)
Name Value
v DSCX
initialBalance .
DSSM
addresses {this}
balanceOf {{this=3)}

callbackDataTransferStates
callbackRequesterStates
callbackResponderStates

{Response1,Response2}
{(ServiceAnDataSubjectinConsent8)}
{Request1,Request2}

consents {Consent8}

dataAccessRequests {(Request nsent8)) i jectinC

dataAccessResponses quest1),

dataFields {(C: BirthDate,

dataSubjectConsents {(ServiceA-DataSubject1-ConsentB~TRUE)}
dataTransferStates "{(Response1~TRUE), (Response2=TRUE))|

Name),

Figure 79: The latest values of all state variables in the DSSM model correspond to

event execution in the DS4 test case.

6.2.1.5. The DS5 Test Case

Firstly, we defined a fee for the blockchain oracle to manage an
API call as 3 points, and the smart contract’s balance remained 3 points.

The request-response interaction has begun after ServiceA submits
the data subject’s consent into the blockchain. After the CallbackRequester
event firing, the smart contract’s balance remains 0 points. ServiceB re-
ceives an API call and then submits the request to the blockchain, which

119

triggers the CallbackResponder event fires. It causes insufficient balance
on the smart contract (Figure 80(A)).

Hence, simulation results point out that the DSSM model covered
the DSS5 test case.

» Statistics (states 7 of 27)

Callb a c b viceA|->D: ject1]->ConsentB), oraclizeFee=3) @
SubmitRequest(requ qL 1, j onser iceA|->DataSubject1|->ConsentB), consentExpired=FALSE)

» Visualisation

» Verifications
v Project
Name |
Machines | Status | Preferences | Project
» variables
» constants 0 A 0
> et 7 DSSM
» invariants true | DSSM.bum
» axioms true
w eventguards
» AddConsent false
» AddDataSubjectConsent true
» CallbackRequester false
» SubmitRequest false
» CallbackResponder true
3 Sibmitinsponse false History (state 7 of 7)
» CallbackDataTransfer fasel « ¢) B 9
» TransferData false
» RevokeConsent i Position & | Transition |
» RenewConsent false | © —foot—
» InsufficientBalance tue |1 SETUP_CONSTANTS
» CheckConsentExpiration true | 2 INITIALISATION
» UnauthorizedAccess faise | 3 AddConsent(dataField={Name,BirthDate BirthDefects}, consent=ConsentB)
4 AddDataSubjectCo ject=DataSubject1, respor eA, te
5
-]
7

¥ Interactive Console

I tBalar q\ q\ 1, (J j |), oraclizeFee=3, response=Response1) I

Event-B @ 0

Figure 80: The simulation of the DSS5 test case. (A) the InsufficientBalance event and
its variables produced by ProB, which have been executed in the history panel.

Based on the above test cases, our proposed models covered five common func-
tionalities outlined in the scope of work in CHAPTER 1. Moreover, we constructed
the mapping among competency questions and our study (Table 11), which comprises
five state machines and covered the main aspects of consent management as follows:
1) Restricted Processing State Machine (RPSM), which explains the behavior of re-
striction for collecting and processing of individuals’ data according to their given
consent, 2) Withdrawal Approval State Machine (WASM), which explains the behav-
ior of approval for revoking individuals’ consent and removing their data, 3) Portable
Approval State Machine (PASM), which explains the behavior of approval for re-
questing a portable copy of personal data, 4) Consent Renewal State Machine
(CRSM), which explains the behavior of approval for renewing consent to extend the
period of personal data usage, and 5) Data Sharing State Machine (DSSM), which ex-
plains the behavior of sharing personal data among requester and responder services
through blockchain-based consent management, which allows automatic data sharing
and open-access permanent audit logs.

1004

d1epaleald jussuo)1dalgnsereq pasdx31usasuosi ‘SINISNOD INSHD
27 109y ‘uonualayelep ‘Jussuo)d ssuoDalidxe ‘pasidxa ‘SIN3IILVd
‘2€ 09y a1eQpaleald jussuoDdalgnsereq
(1)s 1w ‘uonualayerep ‘Juasu0) ussuoDalIdxe paJidx31uasuod NSdd
£1se| 1uawiaaafe 1uasuod e saop Buo| moH vO
A9V paluUssU0D10algnSeIep
‘dwieisawil | umelpyiim
‘Bejqumelpylim
‘UOISI9AIUBSU0D Joog INSSd
‘ap0DIUBSU0D ‘SLNISNOD
‘plUspuodsal | 19eAUODIUSSUODIdBIgNSEIRg ‘'S123rdns vilvda
‘wAuopnasd ‘Jonus:ussuo1dalgnsereq 1U3SUOD 803 sjluasuoD1slgnserep ‘SINVIDILYVd 1USSU0D3M 0B
99 "8y SASNLVIS
‘eg 09y ‘912 QUMBIPYIIM ‘SLN3ISNOD NSV
R\ ‘Bejqumelpylim juasuo1dslgnsereq JUBSU0DBY0NS dJeIS[eMBIPYIM ‘S1IN3ILVd JUBSUODBYONRI
¢luswiaaafe 1uasu09 830Aa4 01 MOH ‘€0
uonualeYeIep
‘UOISI9AJUBSUOD J0BJJUODIUBSUOD INSSA
‘apoDIuBsSU0d JON11S:1U8SU0D juasuoppe SJUaSU0D S1N3ISNOD JU3SUODPPY
R\ uonualayeIep
‘(eT)9 UV ‘UOISI9AJUBSUOD NS
(P uv ‘[1e19gIuasuod jussuod S1IN3ISNOD
¢ 4902 JUBWa6E JUasU0d e saop sesodand yeym o4 ‘2O
8Z UV 10n115:3UssUODIdB[gNSEIRQ Japuodsai SINVdIDILYVd INSSd
'(e1)9 WY 310y B S370Y NSAY
‘(v uv $9]0yJasn ‘Jasnpazuoyiny $910448sn | 'SYIASN A3IZIYOH1INV
¢Sluawiaaabe Juasuod Buriayieh Joy sjgisuodsad st oypn ‘1O
a|onJe
ddas uolejey/aNquUNY sse|D uonesado 3| qelIeA 291e1s/|e20 7] 189S AIEY =] aulyoe
weJabelp sse|n |opow [ew.doH

0cl

“(p.3u09) Apmys InO pue JUSWISEUBW JUISUOD 10} suonsanb Loudjodwiod usomiaq Surddew oy 11 2[qeL

[CHEEN 7009
‘) UY areqpaleald wasuodalgnsereq pasidx3iuasuo)si ‘SINISNOD INSHD
(T Uy ‘uonualayeIep ‘Juasu0) jussuoDalIdxe ‘pasidxa ‘SIN3ILVd
¢PaMaUaI Usad 1Uasu0d sey uaymn '8d
02 UV i wasuodalgnsereq a|qerodued a]qenodued 7009 NSvd
¢alqeniod aq 01 eyep paniwiad 1ussuod st usyp 2O
6T UV
T Uy Wssuoowafansered MEIPYHAAUED MEIDYIANUED 7008 NSV
SUMBIPULIM U3 1UaSU0D sey Uaypn 90
dweysawi | 818310
‘Bej4pardadoe
‘uonusleyelep
‘U0ISIBAIUBSUOD 1004 NSSA
‘ap0DIUBSUOD ‘SINISNOD
‘wAuopnaesd | 10enUODIIBSUODNBINSEIRQ '5103rans v.ivdad
‘pl4apuodsal ‘Jonaisiuasuo) | jussuodidalgnseregppe | - siussuodidelgnserep ‘SINVdIDILYVYd | 1uasuoDidslgnseregppy
areqpaleald
‘Bej4pardadoe
(e1)9 UV ‘uonuaisyelep INSdY
‘LU ‘UOISIBAIUBSUOD 1uasuoDvalgnsereq SLINISNOD
(TDy MY ‘|1e}egIuasu0d ‘Jussu0) ad ‘SIN3ILvd JUaSUODPPY
¢paluelf usag 1UasU0d sey Usym\ ‘SO
aANoYpaluasUoDIalgnseIep
‘dwreisawli | 81810
‘uonualayerep
‘UOISIBAIUBSUOD Jood INSSd
[A7AReE)C] ‘8poOIUBSU0D ‘SIN3ISNOD
‘7€ 09y ‘wAuopnasd 10RUODIBSUODdB[gNSEIRg sjuasuoD1dalgnserep ‘s103rdns v.ivda
(1)s "uv ‘pl4apuodsal ‘Jonas:uasuodIslgngereq ‘pasidx31uasuod ‘SINVdIDILYVd
£1se| 1uswiaaabe 1uasuod e saop Buo| moH vO
aponJae
Hdas uole[y/eINguUNY sse|D uoneJtado 3| geLIeA 31€]S/[e207] 185 uaAg auIydBRN

weJabelp sse|n

|opow [ew.io4

1¢T

‘(p.3u09) Apmys InO pue JUSWISEUBW JUISUOD 10} suonsanb Louajodwiod uoomiaq Surddew oy 11 2[qeL

uolIsisaA\Juasuod

€/ "9y ‘ap0oDIuUasSU0d
‘29 09y ‘wAuopnasd INSSa
‘95 "9y ‘plesuodsal | 1oeJIUODBSUOdSaYSSad0VelRd 31S3nd3y
‘6 "09Y ‘sisixgasuodsal ‘1onJ1s:85U0dsaHSS8IVRIRQ asuodsaynwgns sasuU0dsayssad0eIR ‘SISNOJS3Y asuodsayquuwgns
‘T UV anjeAered
‘€T UV ‘JuasuoD1oslgnsereq syusied SIN3ISNOD ussuooppy INSdd
‘2T UY 108[qnsered ‘od ‘SIN3ILVd usnedppy
¢padayreb uaaq erep Jeuosiad sey moH ‘T10O
plasuodsal
‘sisix3asuodsal
‘UOISIBAIUBSUOD
‘9p0oDIuUasSU0d | 19BAUO0DBSUOdSaHSSBdYRIR(S3ISNOJSIY INSSa
‘wAuopnasd ‘19N11S:95U0dsaYSSa00VeIR(‘s103rans v.iva
‘plisenbai ‘19e11U0D1saNbaYssadaVeIRd asuodseyuwgns Sasu0dsayssadoveIep ‘SINVdIDILEVd asuodsayliwgns
‘s1sIx31senbal “1on11s:1s8nbayssanayeleq “1sanbayniwgns ‘s1s9nbayssadavrelep ‘s1s3nd3y “1sanbaywgng
S3143n0O
4 ‘s34
A1andanoaxa ‘JuasuoQpaziioyine ‘S3710Y A1andanoaxy INSdY
A1and ‘f1andaleald ‘salianb ‘SIN3ISNOD ‘K1andaleal)
@y uv '$5900\/A21]041U3SU0D JuUasU0DAZIIoOYINYXI8Yd ‘140 ‘SIN3IILVd JUasU0DAZIIOYINYYI3YD
¢pasn uaaq erep Jeuostad sey moH ‘01O
aweNp|aly
‘UOISIBAIIBSUOD 1orNUODPIBI4RIR] NeREI[E NSSa
‘9p0ODIUBSU0D ‘Pnis:plsifered Sp|siqelep ‘SIN3ISNOD
6 MV adA1pjaly 1algnseleq
(v Uy ‘aLENpIeY ‘plaiereq saTald NS
¢patayreb usaq erep feuosiad sey moH ‘60
1004
(eT)9 "MV | 3AndYpajUssU0DIBfgnSeIEp ‘SINISNOD
R, ‘dwejsawia1ealo | 19eNUODIBSUODIAIGNSER sjuasuogalngserep | 'S103raNs Viva WSSd
(IT)Y uv ‘uonusleyeIep ‘Jon.1s:1ussuoD1v8lgnseIeg plleAIUSSUODSI ‘palidx31uasuod ‘SINVdIDILYVd JUISUODMBUDY
¢Pamauaa usaq 1uasuod sey uaypn ‘8dd
a|onJe
d4das uole|ayd/eINquUNY sse|D uonesado 3|qelIeA 31e1s/[ed07] 188 JUsng auIyoRN
webeip sse|n |epow [ew.104

¢cl

‘(p.3u09) Apmys InO pue JUSWISEUBW JUISUOD 10} suonsanb Louajodwiod uoomiaq Surddew oy 11 2[qeL

9¢ "99d

(Q)y Uy wAuopnasd 1ona1s:uasu0Dv8lgnseleq Wssa
¢paziwAuopnasd aq eiep [euostad pjnoys usymn 91d
1004
‘s34
sejeISIajSuel LErep 's103raNs v1va NSSd
‘eregpardAious ‘S3SNOJS3H
anfeAeled
“ussuoD18lgnsered sjuaired SLNISNOD INSdH
(e7)s vy 108[gnsered ‘od ‘SIN3ILVd
¢£paure1qo usaq eiep jeuostad sey aaym ‘STO
EIVENEN
‘UOISIBAIUBSUOD 10enu0Dp|BI4erRd sai3id INSSQ
‘3p0OIUBSU0D ‘Jonuis:plaiereq splaidelep ‘SINISNOD
sanaid
‘s310d INSdY
(O1)s Uy o ‘SLNISNOD
£ UO0I199][09 eJep ay1 aziwiuiw 01 MOH T
4NJapuodsal
‘pldapuodsai
‘[dNJa1sanbal 10n1s:UssU0D18lgNSeIRQ Wssd
6/, "9y ‘plia1sanbal ‘10N11S1USU0D SINVdIOIldVvd
Nty 3104 S310d NSVd
‘vZ UV $8]04Jasn ‘1Iasnpazuoyiny $9]0yasn ‘SY43SN AIZIYOHLNY
¢erep euosaad Jo abaeyd ul st oypa ‘€10
14NJapuodsal
‘pldapuodsal
‘[dNJa1sanbal 10n1s:UssU0D1BlgNSeIRQ Wssd
8¢ WV ‘plia1sanbal ‘10N11S1U8SU0D SINVdIOIldvd
'9 Uy 5108 _ S3104 Wsvd
‘(Dy uv $8]04Jasn ‘Jasnpazuoyiny $9]0yJasn ‘S43sSN a3IzI¥oH1LINY
£Pasojasip st eyep [euostad woym o] ‘21O
aponae
ddas uole[y/eINguUNY sse|D uonetsdo d|gelIeA 91e1S/[ed07] 185 UsAg auIyoRN
weabeip sse| |epow [ew.1o4

ecl

‘(p.3u09) Apmys InO pue JUSWISEUBW JUISUOD 10} suonsanb Louajodwiod usomyaq Surddew oy 11 2[qeL

310y S3710d
(8)y Wy $9]0yJasn ‘Jasnpazioyiny $9]0yJasn ‘SY43SN AIZIYOHLNY WSdd
¢40ss320.4d e1RP BY] Se paljiuspl usag sey oym ‘120
[1NJapuodsal
‘pliapuodsal
‘[AnJa1sanbai 19n11s:ussuoDalgnsereg Jopuodsal S1INVdIOILEVd WSsd
‘plad1sanbal RRITERITEN o)) RUENT0k] ‘SIN3ISNOD
SY3ISN d3ZI4OHLNY
‘SIN3ILVd
1uesuoD0eafgnsereq s9|0yasn ‘s@1aid INSdH
‘pla148]0H1uUasSU0D pik] ‘s3710yd
[T ART\"/ s9]0Y4Jasn ‘$$900y/A01]0d41USSU0D ‘od ‘SINIASNOD
¢erep Jeuostad Buissadoad U0y Buinies 1nejep e se uoildalo.ad eyep paquwia 0} MoH ‘020
[1NJapuodsal
‘plispuodsal
1€ UV ‘linJa1sanbai 1on48:3UssuU0D10algNSeIRg Japuodsal SINVdIDILYVd Wssd
‘82 "MV ‘pl4arsanbai JonJ3s:juasu0) ‘Juasu09 ‘SIN3ISNOD
‘YT UV 3|0y S3710d
(v 1y 581034495 JesnpezuioyIny saloysesn | ‘syasn”a3ZIMOHLNY NS
¢40} abaeyd ul 4a]j041u09 1ep 3yl st leym 61O
(a1geo1jdde 10u) ¢48]]043U0D BIRP 81 01 INO0 Ydead 01 MOH '8TO
aweNp[aly
‘UOISI9AIUBSU0D 10rIUODP|BI4EIRQ sai3id INSSQ
‘9p0DIUBSU0I ‘Pnis:pjalfereq Splaiderep ‘SINISNOD
8¢ UV 3|0y S3710d
(Dy Wy 581034495 ‘JasnpezuioyInY sajoxasn | 'SYISN”AIZIMOHLNY WSdd
¢19]1041U02 BIRP BY3 Se paljiluapI usaq sey oym “L10O
a|onJe
d4das uolejey/aNquUNY sse|D uonesado 3| qelIeA 91e1S/|e20 7] 188 Uang auIyoRN
weabeip sse| Jopow [ew.104

144"

‘(p.3u09) Apmys InO pue JUSWISEUBW JUISUOD 10} suonsanb Louajodwiod usomiaq Jurddew oy 11 2[qeL

(a1geardde 10u) ¢01 1IN0 Yaead 01 WOYM €20

10n18:1ussU0D198lgnSeIRg s1o8lgnserep sS103rans v.iva INSSA
310y S3710d
My Uy s8]0 88N JasnpazLIOGINY s8l0dJasN | 'Sy3SN”AIZIMOHLNY NS
¢108[qns eyep sy} se paynuap! Usaq sey oYM zzd
p|asuodsai
10R.1U0D3sU0dsaySSa09VeIR(] ‘s1s1x3asuodsal s1s3and3y
“1oN118:9sU0dsaySsS80yeIeq ‘UOISI8AJUBSUOD ‘SISNOJS3IY
S9sU0dSaYSSa20VRIRD ‘10eU0DISaNbayssadveIeq ‘9p0oDIUBSUOD 1009 INSSA
‘s1sonbayssadov/eIep “Jon.a1s:1sanbayssadoyeieq asuodsaynwgns ‘wAuopnasd ‘SIN3ISNOD
‘syuasuoD1o8lgnserep “19e]U0DIUBSUODIdBlgNSEIRQ ‘1sanbaynwgns ‘prisanbai 's103rdNs vivda
(8)y uv ‘pasidx3iuasuod ‘Jon.1s:1ussuoD1v8lgnseIeg ‘PIIRAIUSSUODSI ‘sis1x31senbal ‘SINVAIDILYVd
¢40ss320.4d B1Rp BY) S palyiuapl usag sey oym ‘120
a|onJe
ddas uolejey/aNquUNY sse|D uonesado 3|qelIeA 31e1s/[ed07] 189S AIEY =] aulyoe

Gcl

"Apnjs Ino pue JudwdFeuLW JUISU0D 10J suonsanb Aoudadwos usamiaq Surddew oy ;11 9[qeL

126

CHAPTER VII
DISCUSSION AND CONCLUSION

7.1. Discussion

The objective of CM for centralized systems is to manage legal documents (i.e.,
consent) and data subjects’ consent choices for collecting and processing personal da-
ta inside its system according to the role-based consent assignment, which consists of
four state machines, including RPSM, WASM, PASM, and CRSM. The advantages of
CM for centralized systems are that it provides great control of the personal data
lifecycle and is easy to adopt into software systems. Moreover, the RPSM provides
consent-based permission combined with RBAC to restrict stakeholders to process
only specified data fields within the data subject’s consent. Based on RBAC and a
consent, all authorized users with the same roles can access data fields consented by
the data subject. For example, all doctors can access a patient data even though that
patient is not their case. We can adopt and formalize ABAC (Attribute-Based Access
Control) to give more restrictions on data access in future work. As for the PASM, it
only provides a portable approval workflow that permits data subjects to request a
portable copy of their personal data. However, transferring personal data between or-
ganizations or services must proceed outside the system. To enable the automatic
transferring of personal data across services, we then extended our research by de-
signing CM for distributed systems in data sharing under the assumption that commu-
nications among systems are secured, which is described in the DSSM. Using block-
chain technology in CM for distributed systems in data sharing helps enable secure,
transparent, and traceable data sharing across services. The advantages of CM for dis-
tributed systems in data sharing are that it manages consent-authorized validation and
request-response interaction among services as a middleware. Unfortunately, pro-
grams (i.e., smart contracts) that live on the blockchain are irreversible. Once they are
deployed, it generates new addresses. With multiple times of deployments, it hardly
maintains addresses and increases execution time. To bridge this gap, we designed
reusable smart contracts which obtain only states of data subjects’ consent and re-
quest-response interactions among services.

Choosing the right CMs for software systems depends on business objectives.
For instance, the use of CM for centralized systems is proper for systems that have
individuals’ data to manage but do not provide disclosure of individuals’ data auto-
matically between organizations or services. In contrast, using CM for distributed sys-
tems in data sharing is proper only for systems that need to share individuals’ data se-
curely and enable irreversible audit trails among systems utilizing blockchain tech-
nology. By its nature, the blockchain’s programs are not easy to alter once data has

127

persisted. Therefore, CM for distributed systems in data sharing shall use blockchain
for keeping only the state of shared data subjects’ data.

7.2. Conclusion

Privacy issues become a threat to individuals’ lives. The GDPR then seeks to
minimize the threat by outlining the data protection law to give individuals the power
to control their personal data. According to the literature, the GDPR provisions are
difficult to interpret and apply to software systems, leading to violating individuals’
privacy. To bridge the gap, this thesis introduces CM for centralized systems and data
sharing in distributed systems, which covers five common functionalities stated in the
scope of work in CHAPTER 1.

To begin with, CM in centralized systems handles the entire personal data
lifecycle for a system with its own data subjects’ data. On the other hand, CM in dis-
tributed systems is used to control the lifecycle of sharing personal data among multi-
ple systems. The difference between these two approaches is that CM in centralized
systems focuses on managing their data subjects’ data based on role-based consent. In
contrast, CM in distributed systems uses blockchain technology to enable open-access
immutable audit logs and secure sharing of personal data among systems.

According to a modern software system, the system can conduct and disclose
data subjects’ data to other service providers, such as customer service management
systems. To integrate data protection into the system, it simply adopts our proposed
models and class diagrams as guidelines, which are proven correctness by the Event-
B method.

As for further research, we will evaluate the operational performances of these
two approaches against existing studies. Moreover, in the CM in distributed systems,
we will assess data subjects’ compensation costs for sharing their personal data to mo-
tivate their data contribution to healthcare research.

128

APPENDIX A
EVENT-B MODELS FOR CONSENT MANAGEMENT IN CEN-
TRALIZED SYSTEMS

Event-B models were constructed based on four state machines: 1) RPSM,
which covered conducting individuals’ consent and limiting access to authorized per-
sonal data based on a given consent, 2) WASM, which provided a withdrawal approv-
al process for allowing individuals to withdraw their consent at any time they wish to,
3) PASM, which provided a portable approval process for allowing individuals to re-
quest portable their personal data, and 4) CRSM, which provided a consent renewal
process for enabling individuals to renew their consent for continued use of services
and products offered by service providers. Besides, Event-B models are available for
the public at https://github.com/cucpbioinfo/ConsentBasedPrivacy .

1. The RPSM Model

We modeled RPSM (Figure 81) to describe the dynamic behavior of how the
system conducts data subjects’ consent and how to restrict privileged permissions of
stakeholders (e.g., doctors, nurses, researchers) for processing personal data within
data subjects’ consent. The RPSM model is divided into two parts, including the
RPCX context, and the RPSM machine.

A10: Logout

A10: Logout

A7: Createlnquiry (qll:u-y\AB: CheckAuthorize ®A9: ExecuteQuery

Received Consent “\Authorized
\“Q\;\d

A10: Logout

A3: INITIALISATION

Logged In

Ad: Login [gession
Started

AS5: AddPatient

Patient
»{ Consent
Added

A6: AddConsent

Patient

AS5: AddPatient Added

A6: AddConsent

A10: Logout
A10: Logout J

Figure 81: RPSM demonstrating how to restrict access to personal data according to
data subjects’ consent.

1.1. The RPCX Context

The RPCX context is the static part of the RPSM model containing the
sets, constants, and axioms.

https://github.com/cucpbioinfo/ConsentBasedPrivacy

129

1.1.1. Sets in RPCX

Sets are a set of abstracts in the context of CM in health systems
are comprises the following sets:

e PATIENTS is a set of individuals.
e CONSENTS is a set of consent agreements.

e FIELDS is a set of data fields that leads to specific personal char-
acteristics.

e AUTHORIZED USERS is a set of privileged users in the sys-
tem.

e SESSIONS is a set of login sessions according to privileged us-
ers’ requests to access the system.

e ROLES is a set of permissions that specify the users’ area of re-
sponsibility and functionalities on the system.

e QUERIES is a set of queries to retrieve patients’ information.

1.1.2. Constants in RPCX

Constants are elements of sets, which declare in the axiom section.
There are two particular sets define in this section:

1. FIELDS contains the following constants: HN (i.e., hospital
number), Name, Age, Weight, Height, Gender, and Race.

2. ROLES contains the following constants: NursingStaff, Oncolo-
gist, and LabStaff.

1.1.3. Axioms in RPCX

Axioms are used to determine known static relations written with
predicate logic and assumed to be true. Moreover, they are also used to
assign constants to pre-defined sets. According to Listing Al, the axml
and axm?2 are added to specify constants to pre-defined sets, e.g., ROLES
and FIELDS, respectively. As for the four axioms (axm3 - axm6), they are
added to deal with empty set assignments in variables restrained by par-
tial functions, e.g., sessions, queries, pf, and authorizedConsent, respec-
tively.

AXIOMS
axml : partition(ROLES, {NursingStaff}, {Oncologist}, {LabStaff})
axm2 : partition(FIELDS, {HN}, {Name}, {Age}, {Weight}, {Height},

axm3 :
axmd :

axmb

axmé :

130

{Gender}, {Race})

g € SESSIONS »» AUTHORIZED USERS

2 € AUTHORIZED USERS -+ (QUERIES >+ PATIENTS)
: @ € AUTHORIZED USERS -~ (PATIENTS « FIELDS)

2 € AUTHORIZED USERS -~ (PATIENTS <« CONSENTS)

Listing Al: The list of axioms in RPCX.

1.2. The RPSM Machine

The RPSM machine is the dynamic part of the RPSM model containing
the invariants, variables, and events.

1.2.1.1

nvariants in RPSM

Invariants are constraints of state variables described by first-order

logic expressions, as shown in Listing A2. In every event execution, ac-
tions change state variables’ value, which must preserve all their invariants
in the whole model.

INVARIANTS
invl : sessions € SESSIONS >+ AUTHORIZED USERS
inv2 : userRoles € AUTHORIZED USERS <« ROLES
inv3 : pc € PATIENTS <> CONSENTS
inv4 : patients € P(PATIENTS)
inv5 : crf € CONSENTS + (ROLES < FIELDS)
inv6e : queries € AUTHORIZED USERS -~ (QUERIES <> PATIENTS)
inv7 : pf € AUTHORIZED USERS -+ (PATIENTS < FIELDS)
inv8 : authorizedConsent € AUTHORIZED USERS -+

(PATIENTS <> CONSENTS)
Listing A2: The list of invariants in RPSM.

The state variables are divided into eight variables:

e The variable sessions contains the one-to-one relationships be-
tween SESSIONS and AUTHORIZED USERS.

The example of the sessions value:

{(SESSIONS1 » AUTHORIZED USER1)}

e The variable userRoles contains the relation between two given
sets, e.g., AUTHORIZED USER and ROLES for determining
user activities and tasks based on user permissions that each sys-
tem configures.

The example of the userRoles value:

131

{ (AUTHORIZED USER1 » NursingStaff),
(AUTHORIZED USER1 » Oncologist),
(AUTHORIZED USER1 » LabStaff),
(AUTHORIZED USER2 » LabStaff)}

e The variable patients contains the PATIENTS set during the
model refinement.
The example of the patients value:

{PATIENTS1}

¢ The variable pc contains the relation between two given sets, e.g.,
PATIENTS and CONSENTS, representing patients’ consent
agreements in which patients permit users who have been defined
in consent agreements to process their personal data.

The example of the pc value:
{(PATIENTS1 » CONSENTS1)}

e The variable crf contains the relation between three given sets,
e.g., CONSENTS, ROLES, and FIELDS, representing consent-
based permission in which only authorized users can access per-
sonal data according to a given consent.

The example of the crf value:

{ (CONSENT1 » {(NursingStaff » HN)}),
(CONSENT2 » {(NursingStaff » HN),
(NursingStaff » Name),
(NursingStaff » Age)})}

e The variable gueries contains the relation between three given
sets, e.g., AUTHORIZED USERS, PATIENTS, and QUERIES,
representing personal data queries.

The example of the queries value:
{ (AUTHORIZED_ USER1 + {(QUERIES1 » PATIENTS1)})}

e The variable pf contains the relation between three given sets,
e.g., AUTHORIZED USERS, PATIENTS, and FIELDS, repre-
senting query results. This variable holds query results of person-
al data in which selected only data fields that are apparent in the
variable crf.

The example of the queries value:

132

{ (AUTHORIZED USER1 » {(PATIENTS1 » HN)})}

e The variable authorizedConsent contains the relation between
three given sets, e.g., AUTHORIZED USERS, PATIENTS, and
CONSENTS, representing consent validation results. This varia-
ble holds the result of consent validation which checks the validi-
ty before executing users’ query to retrieve patients’ data.

The example of the authorizedConsent value:

{(AUTHORIZED USER1 » {(PATIENTS1 » CONSENTS1)})}
1.2.2. Events in RPSM

Events are the state transitions of the given model. In Event-B, the
event will be executed when its guards meet conditions then state variables
will be updated values.

The RPSM are partitioned into eight events:

1.2.2.1. The INITIALISATION Event

This event is used to initiate all state variable values of the
model. According to Listing A3, the six actions (actl — act6) are as-
signed empty sets. As for act7 and act8, they are specified variables
with first-order logic expressions using operation, called choice from
set (1.e., :€). In doing so, the userRoles and crf variables are automat-
ically generated by the Rodin Platform.

INITIALISATION =
STATUS
ordinary
BEGIN
actl : sessions
act2 : patients
act3 : pc = @
act4 : queries = @
acts : pf = o
act6 : authorizedConsent = @
act7 : userRoles :e AUTHORIZED USERS «» ROLES
act8 : crf :e CONSENTS — P1(ROLES x FIELDS)
END

Listing A3: The INITIALISATION event.

133

1.2.2.2. The Login Event

This event describes the behavior of login (Listing A3). The
event will be executed when the current user session does not exist,
and this user is registered, then the user successfully login to the sys-
tem.

Login =
STATUS
ordinary
ANY
s, u
WHERE
grdl : s € SESSIONS A s & dom(sessions)

grd2 : u € AUTHORIZED USERS A s € ran(sessions)

grd3 : sessions u {s » u} € SESSIONS >~ AUTHORIZED USERS
THEN

actl : sessions = sessions U {s » u}
END

Listing A4: The Login event.

1.2.2.3. The AddPatient Event

The event describes the behavior of creating a patient (Listing
AS5). The event will be executed when the authorized user has logged
on with the nursing staff role, and this patient does not register to the
system before, then the user adds the patient information successful-

ly.

AddPatient =
STATUS
ordinary
ANY
S, P
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = NursingStaff
grd3 : p € PATIENTS A p € patients
grd4 : sessions(s) & dom(queries)
THEN
actl : patients = patients u {p}
END

Listing A5: The AddPatient event.

134

1.2.2.4. The AddConsent Event

The event describes the behavior of adding consent (Listing
A6). The event will be executed when the authorized user has logged
on with the nursing staff role, and this patient’s consent is not added
to the system before, then the user adds the patient’s consent success-
fully.

AddConsent =
STATUS
ordinary
ANY
s, p, C
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = NursingStaff
grd3 : p € patients A c € dom(crf)
grdd : p» Cc & pcC
grd5 : pc u {p p c} € PATIENTS < CONSENTS
grd6 : sessions(s) e dom(queries)
THEN
actl : pc =pcu {ppr c}
END

Listing A6: The AddConsent event.

1.2.2.5. The Createlnquiry Event

This event describes the behavior of creating (Listing A7). The
event will be executed when the authorized user has logged on, and
this user wishes to retrieve a patient’s information who has given
their consent, then the user creates an inquiry successfully.

CreateInquiry =
STATUS
ordinary
ANY
S, Pr Q
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : q € QUERIES A p € dom(pc) A sessions(s) € dom(queries)
grd3 : queries < {sessions(s) » {q » p}} €
AUTHORIZED USERS -+ (QUERIES <« PATIENTS)
THEN
actl : queries(sessions(s)) = {q » p}
END

Listing A7: The Createlnquiry event.

135

1.2.2.6. The CheckAuthorizeConsent Event

This event describes the behavior of checking authorized con-
sent (Listing A8). The event will be executed when the created query
is passed on the following conditions: 1) the patient’s consent does
not expire, and 2) the authorized user who created the query has con-
sent permission to access the information of this patient. Then, the
system captures the consent validation result.

CheckAuthorizeConsent =
STATUS
ordinary
ANY
s, p, ¢, consentExpired
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(queries)
grd2 : consentExpired € BOOL A consentExpired = FALSE
grd3 : c € pc[{p}] A c € dom(crf)
grd4 : 3r-r e userRoles[sessions[{s}]] A r € dom(crf(c))
grd5 : sessions(s) € dom(authorizedConsent)
grd6 : authorizedConsent < {sessions(s) » {p » Cc}} €
AUTHORIZED USERS -+ (PATIENTS <> CONSENTS)
THEN
actl : authorizedConsent(sessions(s)) = {p » c}
END

Listing A8: The CheckAuthorizeConsent event.

1.2.2.7. The ExecuteQuery Event

This event describes the behavior of executing query (Listing
A9). The event will be executed when the authorized consent has
been verified, then the system returns the patient’s data fields to the
user.

ExecuteQuery =
STATUS
ordinary
ANY
S, P, C
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(queries)
grd2 : p € ran(queries(sessions(s))) A c € dom(crf)
grd3 : sessions(s) € dom(authorizedConsent) A p » Cc €
authorizedConsent(sessions(s))
grd4 : sessions(s) & dom(pf)
grd5 : pf < {sessions(s) » {p} x ran(userRoles[sessions[{s}]] «

136

crf(c))} € AUTHORIZED USERS -+ (PATIENTS <« FIELDS)

THEN
actl : pf(sessions(s)) = {p} x ran(userRoles[sessions[{s}]] <«
crf(c))
END

Listing A9: The ExecuteQuery event.

1.2.2.8. The Logout Event

This event describes the behavior of logout (Listing A10). The
event will be executed when the current user session exists, then the
system removes state variables values within the current user, includ-
ing the pf, queries, authorizedConsent, and sessions variables.

Logout =
STATUS
ordinary
ANY
s
WHERE
grdl : s € dom(sessions)
grd2 : {sessions(s)} < queries € AUTHORIZED USERS -+
(QUERIES <« PATIENTS)
grd3 : {sessions(s)} < authorizedConsent € AUTHORIZED USERS -~
(PATIENTS <> CONSENTS)
grd4 : {sessions(s)}<pfeAUTHORIZED USERS -+ (PATIENTS <> FIELDS)
grd5 : sessionse {sessions(s)} &SESSIONS >+ AUTHORIZED USERS
THEN
actl : queries = {sessions(s)} < queries
act2 : authorizedConsent = {sessions(s)} < authorizedConsent
act3 : pf = {sessions(s)} < pf
act4 : sessions = sessions » {sessions(s)}
END

Listing A10: The Logout event.
2. The WASM Model

We modeled WASM (Figure 82) to describe the dynamic behavior of how the
system manages the withdrawal approval process when patients request to withdraw
their consent. The WASM model is divided into two parts, including the WACX con-
text and the WASM machine.

137

Al17: Logout

A15: ApproveWithdrawal

A13: INITIALISATION

Logaed In Session |A15: CreateWithdrawal (withdrawall A15: ApproveWithdrawal

99 Started Requested d
Al6: Reject

Withdrawal A17: Logout

Al16: RejectWithdrawal ‘m Al7: Logout
"\ Rejected

Figure 82: WASM demonstrating how to conduct the withdrawal approval process.

Al4: Login

2.1. The WACX Context

The WACX context is the static part of the WASM model containing the
sets, constants, and axioms.

2.1.1. Sets in WACX

Sets are a set of abstracts in the context of CM in health systems
are comprises the following sets:

e PATIENTS is a set of individuals.
e CONSENTS is a set of consent agreements.

e AUTHORIZED USERS is a set of privileged users in the sys-
tem.

e SESSIONS is a set of login sessions according to privileged us-
ers’ requests to access the system.

e ROLES is a set of permissions that specify the users’ area of re-
sponsibility and functionalities on the system.

e STATUSES is a set of withdrawal statuses.
2.1.2. Constants in WACX

Constants are elements of sets, which declare in the axiom section.
There are two particular sets define in this section:

1. ROLES is obtained with the following constants: LegalStaff, and
Legal Approver.

2. STATUES is obtained with the following constants: Void, Ap-
proved, and Rejected.

138

2.1.3. Axioms in WACX

Axioms are used to determine known static relations written with
predicate logic and assumed to be true. Moreover, they are also used to
assign constants to pre-defined sets. According to Listing A11, the axml
and axm?2 are added to specify constants to pre-defined sets, e.g., ROLES,
and STATUSES, respectively. As for the axm3 and axm4, they are added
to deal with empty set assignments in variables restrained by partial func-
tions, e.g., sessions, and withdrawalState, respectively.

AXIOMS
axml : partition(ROLES, {LegalStaff}, {LegalApprover})
axm2 : partition(STATUSES, {Void}, {Approved}, {Rejected})
axm3 : @ € SESSIONS > AUTHORIZED USERS
axm4 : @ € (PATIENTS < CONSENTS) >+ STATUSES

Listing A11: The list of axioms in WACX.

2.2. The WASM Machine

The WASM machine is the dynamic part of the WASM model containing
the invariants, variables, and events.

2.2.1. Invariants in WASM

Invariants are constraints of state variables described by first-order
logic expressions, as shown in Listing A12. In every event execution, ac-
tions change state variables’ value, which must preserve all their invariants
in the whole model.

INVARIANTS
invl : sessions € SESSIONS »» AUTHORIZED USERS
inv2 : userRoles € AUTHORIZED USERS <« ROLES
inv3 : pc € PATIENTS < CONSENTS
inv4 : withdrawalState € (PATIENTS < CONSENTS) »» STATUSES
inv5 : markAsDeleted € PATIENTS < CONSENTS

Listing A12: The list of invariants in WASM.

The state variables are divided into five variables:

e The variable sessions contains the one-to-one relationships be-
tween SESSIONS and AUTHORIZED USERS.

The example of the sessions value:

139

{(SESSIONS1 » AUTHORIZED USER2),
(SESSIONS2 » AUTHORIZED USER1)}

e The variable userRoles contains the relation between two given
sets, e.g., AUTHORIZED USER, and ROLES for determining
user activities and tasks based on user permissions that each sys-
tem configures.

The example of the userRoles value:

{ (AUTHORIZED USER1 » LegalStaff),
(AUTHORIZED USER1 » LegalApprover),
(AUTHORIZED USER2 » LegalStaff)}

¢ The variable pc contains the relation between two given sets, e.g.,
PATIENTS and CONSENTS, representing patients’ consent
agreements in which patients permit users who have been defined
in consent agreements to process their personal data.

The example of the pc value:

{ (PATIENTS1 » CONSENTS1),
(PATIENTS1 » CONSENTS2),
(PATIENTS2 » CONSENTS1),
(PATIENTS2 » CONSENTS2)}

e The variable withdrawalState contains the relation between three
given sets, e.g., PATIENTS, CONSENTS, and STATUSES, rep-
resenting withdrawal requests.

The example of the withdrawalState value:

{({(PATIENTS1 » CONSENTS1)} » Void),
({(PATIENTS1 » CONSENTS2)} » Approved),
({(PATIENTS2 » CONSENTS2)} » Rejected)}

e The variable markAsDeleted contains the relation between two
given sets, e.g., PATIENTS, and CONSENTS, representing pa-
tient data has been deleted.

The example of the markAsDeleted value:

{(PATIENTS1 » CONSENTS2)}
2.2.2. Events in WASM

Events are the state transitions of the given model. In Event-B, the
event will be executed when its guards meet conditions then state variables
will be updated values.

140

The WASM are partitioned into six events:

2.2.2.1. The INITIALISATION Event

This event is used to initiate all state variable values of the
model. According to Listing A13, the three actions (actl — act3) are
assigned empty sets. As for act4 and act5, they are specified varia-
bles with first-order logic expressions using operation, called
choice from set (i.e., :€). In doing so, the userRoles and pc varia-
bles are automatically generated by the Rodin Platform.

INITIALISATION =
STATUS
ordinary
BEGIN
actl : sessions = o
act2 : withdrawalState = &
act3 : markAsDeleted = &
act4 : userRoles :e AUTHORIZED USERS <« ROLES
act5 : pc :€ P1(PATIENTS x CONSENTS)
END

Listing A13: The INITIALISATION event.

2.2.2.2. The Login Event

This event describes the behavior of login (Listing A14). The
event will be executed when the current user session does not exist,
and this user is registered, then the user successfully login to the
system.

Login =
STATUS
ordinary
ANY
s, u
WHERE
grdl : s € SESSIONS A s € dom(sessions)

grd2 : u € AUTHORIZED USERS A s € ran(sessions)

grd3 : sessions u {s » u} € SESSIONS > AUTHORIZED USERS
THEN

actl : sessions = sessions u {s b u}
END

Listing A14: The Login event.

141

2.2.2.3. The CreateWithdrawal Event

The event describes the behavior of creating a withdrawal re-
quest (Listing A15). The event will be executed when the author-
ized user has logged on with the legal staff role, and this patient
does not request to withdraw consent before, then the user creates
the withdrawal request successfully.

CreateWithdrawal =
STATUS
ordinary
ANY
s, p, C
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalStaff
grd3 : p € dom(pc) A c € ran(pc) A
{p » ¢} e dom(withdrawalState)
grd4 : withdrawalState < {{p » c} » Void} €
(PATIENTS <> CONSENTS) >+ STATUSES
THEN
actl : withdrawalState({p » c}) = Void
END

Listing A15: The CreateWithdrawal event.

2.2.2.4. The ApproveWithdrawal Event

The event describes the behavior of approving a withdrawal
request (Listing A16). The event will be executed when the author-
ized user has logged on with the legal approver role, the with-
drawal request has the current status as Void, and there is no con-
flict exists the consent agreement, then the user approves the re-
quest successfully.

ApproveWithdrawal =
STATUS
ordinary
ANY
s, pcl, canWithdraw
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalApprover
grd3 : pcl € dom(withdrawalState) A
withdrawalState(pcl) = Void
grd4 : withdrawalState < {pcl » Approved} €
(PATIENTS <« CONSENTS) > STATUSES
grd5 : canWithdraw € BOOL A canWithdraw = TRUE

142

grd6 : markAsDeleted < pcl € PATIENTS <« CONSENTS
THEN

actl : withdrawalState(pcl) = Approved

act2 : markAsDeleted = markAsDeleted < pcl
END

Listing A16: The ApproveWithdrawal event

2.2.2.5. The RejectWithdrawal event

The event describes the behavior of rejecting a withdrawal
request (Listing A17). The event will be executed when the author-
ized user has logged on with the legal approver role, the with-
drawal request has the current status as Void, and there is conflict
exists the consent agreement, then the user rejects the request suc-
cessfully.

RejectWithdrawal =
STATUS
ordinary
ANY
s, pcl, canWithdraw
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalApprover
grd3 : pcl € dom(withdrawalState) A
withdrawalState(pcl) = Void
grd4 : withdrawalState < {pcl » Rejected} €
(PATIENTS <> CONSENTS) >+ STATUSES
grd5 : canWithdraw € BOOL A canWithdraw = FALSE
THEN
actl : withdrawalState(pcl) = Rejected
END

Listing A17: The RejectWithdrawal event.

2.2.2.6. The Logout event

This event describes the behavior of logout (Listing A18).
The event will be executed when the current user session exists,
then the system removes the variable sessions values within the
current usetr.

Logout =
STATUS
ordinary
ANY
s

143

WHERE
grdl : s € dom(sessions)
grd2 : sessions » {sessions(s)} €
SESSIONS >+ AUTHORIZED USERS
THEN
actl : sessions = sessions » {sessions(s)}
END

Listing A18: The Logout event.

3. The PASM Model

We modeled PASM (Figure 83) to describe the dynamic behavior of how the
system manages the portable approval process when patients request portable their
personal data. The PASM model is divided into two parts, including the PACX con-
text and the PASM machine.

A26: Logout

A24: ApprovePortable

A21: INITIALISATION

Logged In

)

Session |A23: CreatePortable (portable |A24: ApprovePortable { portable |A26: Logout
Started Requested “\ Approved

(

A25: Reject
Portable A26: Logout

D

A25: RejectPortable { pgrtable A26: Logout
Rejected

(

Figure 83: PASM demonstrating how to conduct the portable approval process.
3.1. The PACX Context

The PACX context is the static part of the PASM model containing the
sets, constants, and axioms.

3.1.1. Setsin PACX

Sets are a set of abstracts in the context of CM in health systems
are comprises the following sets:

e PATIENTS is a set of individuals.
o CONSENTS is a set of consent agreements.

e AUTHORIZED USERS is a set of privileged users in the sys-
tem.

144

e SESSIONS is a set of login sessions according to privileged us-
ers’ requests to access the system.

¢ ROLES is a set of permissions that specify the users’ area of re-
sponsibility and functionalities on the system.

o STATUSES is a set of portable statuses.

3.1.2. Constants in PACX

Constants are elements of sets, which declare in the axiom section.
There are two particular sets define in the section:

1. ROLES contains the following constants: LegalStaff, and Le-
galApprover.

2. STATUES contains the following constants: Void, Approved,
and Rejected.

3.1.3. Axioms in PACX

Axioms are used to determine known static relations written with
predicate logic and assumed to be true. Moreover, they are also used to as-
sign constants to pre-defined sets. According to Listing A19, the axm1 and
axm?2 are added to specify constants to pre-defined sets, e.g., ROLES, and
STATUSES, respectively. As for the axm3 and axm4, they are added to
deal with empty set assignments in variables restrained by partial func-
tions, e.g., sessions, and portableState, respectively.

AXIOMS
axml : partition(ROLES, {LegalStaff}, {LegalApprover})
axm2 : partition(STATUSES, {Void}, {Approved}, {Rejected})
axm3 : @ € SESSIONS >+ AUTHORIZED USERS
axm4 : @ € (PATIENTS < CONSENTS) >+ STATUSES

Listing A19: The list of axioms in PACX.

3.2. The PASM Machine

The PASM machine is the dynamic part of PASM model containing the
invariants, variables, and events.

3.2.1. Invariants in PASM

Invariants are constraints of state variables described by first-order
logic expressions, as shown in Listing A20. In every event execution, ac-

145

tions change state variables’ value, which must preserve all their invariants
in the whole model.

INVARIANTS
invl : sessions € SESSIONS >~ AUTHORIZED USERS
inv2 : userRoles € AUTHORIZED USERS <« ROLES
inv3 : pc € PATIENTS < CONSENTS
inv4 : portableState € (PATIENTS <> CONSENTS) >+ STATUSES

Listing A20: The list of invariants in PASM.

The state variables are divided into four variables:

e The variable sessions contains the one-to-one relationships be-
tween SESSIONS and AUTHORIZED USERS.

The example of the sessions value:

{(SESSIONS1 » AUTHORIZED USER2),
(SESSIONS2 » AUTHORIZED USER1)}

e The variable userRoles contains the relation between two given
sets, e.g., AUTHORIZED USER and ROLES for determining
user activities and tasks based on user permissions that each sys-
tem configures.

The example of the userRoles value:

{ (AUTHORIZED USER1 » LegalStaff),
(AUTHORIZED USER1 » LegalApprover),
(AUTHORIZED USER2 » LegalStaff)}

¢ The variable pc contains the relation between two given sets, e.g.,
PATIENTS and CONSENTS, representing patients’ consent
agreements in which patients permit users who have been defined
in consent agreements to process their personal data.

The example of the pc value:

{(PATIENTS1 » CONSENTS1),
(PATIENTS1 » CONSENTS2)}

e The variable portableState contains the relation between two giv-
en sets, e.g., PATIENTS, CONSENTS, and STATUSES, repre-
senting portable requests.

The example of the portableState value:

{({(PATIENTS1 » CONSENTS1)} » Approved),
({ (PATIENTS1 » CONSENTS2)} » Rejected)}

146

3.2.2. Events in PASM

Events are the state transitions of the given model. In Event-B, the
event will be executed when its guards meet conditions then state variables
will be updated values.

The PASM are partitioned into six events:

3.2.2.1. The INITIALISATION Event

This event is used to initiate all state variable values of the
model. According to Listing A21, the actl and act2 actions are as-
signed empty sets. As for act3 and act4, they are specified variables
with first-order logic expressions using operation, called choice
from set (i.e., :€). In doing so, the userRoles and pc variables are au-
tomatically generated by the Rodin Platform.

INITIALISATION =
STATUS
ordinary
BEGIN
actl : sessions = @
act2 : portableState = &
act3 : userRoles :e€ AUTHORIZED USERS « ROLES
act4 : pc :€ P1(PATIENTS x CONSENTS)
END

Listing A21: The INITIALISATION event.

3.2.2.2. The Login Event

This event describes the behavior of login (Listing A22). The
event will be executed when the current user session does not exist,
and this user is registered, then the user successfully login to the
system.

Login =
STATUS
ordinary
ANY
s, u
WHERE
grdl : s € SESSIONS A s & dom(sessions)
grd2 : u € AUTHORIZED USERS A s & ran(sessions)
grd3 : sessions u {s » u} € SESSIONS > AUTHORIZED USERS
THEN

147

actl : sessions = sessions u {s » u}
END

Listing A22: The Login event.

3.2.2.3. The CreatePortable Event

The event describes the behavior of creating a portable re-
quest (Listing A23). The event will be executed when the authorized
user has logged on with the legal staff role, and this patient does not
request portable personal data before, then the user creates the port-
able request successfully.

CreatePortable =
STATUS
ordinary
ANY
s, p, C
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalStaff
grd3 : p € dom(pc) A c € ran(pc) A {p» c} ¢
dom(portableState)
grd4 : portableState < {{p » c} » Void} €
(PATIENTS <> CONSENTS) >+ STATUSES
THEN
actl : portableState({p » c}) = Void
END

Listing A23: The CreatePortable event.

3.2.2.4. The ApprovePortable Event

The event describes the behavior of approving a portable re-
quest (Listing A24). The event will be executed when the authorized
user has logged on with the legal approver role, the portable request
has the current status as Void, and the patient accept the prerequisite
conditions (e.g., fee for data transferring), then the user approves the
request successfully.

ApproveWithdrawal =
STATUS
ordinary
ANY
s, pcl, canPortable
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)

148

grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalApprover
grd3 : pcl € dom(portableState) A portableState(pcl) = Void
grd4 : portableState < {pcl » Approved} €
(PATIENTS <> CONSENTS) >+ STATUSES
grd5 : canPortable € BOOL A canPortable = TRUE
THEN
actl : portableState(pcl) = Approved
END

Listing A24: The ApprovePortable event.

3.2.2.5. The RejectPortable Event

The event describes the behavior of rejecting a portable re-
quest (Listing A25). The event will be executed when the authorized
user has logged on with the legal approver role, the portable request
has the current status as Void, and there is conflict exists the consent
agreement, then the user rejects the request successfully.

RejectPortable =
STATUS
ordinary
ANY
s, pcl, canPortable
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalApprover
grd3 : pcl € dom(portableState) A portableState(pcl) = Void
grd4 : portableState < {pcl » Rejected} €
(PATIENTS <> CONSENTS) >+ STATUSES
grd5 : canPortable € BOOL A canPortable = FALSE
THEN
actl : portableState(pcl) = Rejected
END

Listing A25: The RejectPortable event.
3.2.2.6. The Logout Event

This event describes the behavior of logout (Listing A26). The
event will be executed when the current user session exists, then the
system removes the variable sessions values within the current user.

Logout =
STATUS
ordinary
ANY
s

149

WHERE
grdl : s € dom(sessions)
grd2 : sessions » {sessions(s)} €
SESSIONS >+ AUTHORIZED USERS
THEN
actl : sessions = sessions » {sessions(s)}
END

Listing A26: The Logout event.

4. The CRSM Model

We modeled CRSM (Figure 84) to describe the dynamic behavior of how the
system manages the consent renewal process when patients’ consent expires. The
CRSM model is divided into two parts, including the CRCX context and the CRSM
machine.

35: Logout

33: ExtendConsentExpiration
35: Logout

Patient 133: ExtendConsent Consent | 35: Logout
Notified Expiration Extended

4: DeletePatient 35: Logout
Data

32: NotifyPatient

29:INITIALISATION

Session |31: CreateConsent
Legged In Started | RenewalRequest

34: DeletePatientData

Consent \32: NotifyPatient

3
[Patient 35: Logout

Figure 84: CRSM demonstrating how to conduct the consent renewal process.

4.1. The CRCX Context

The CRCX context is the static part of the CRSM model containing the
sets, constants, and axioms.

4.1.1. Sets in CRCX

Sets are a set of abstracts in the context of CM in health systems
are comprises the following sets:

e PATIENTS is a set of individuals.
o CONSENTS is a set of consent agreements.

e AUTHORIZED USERS is a set of privileged users in the sys-
tem.

150

e SESSIONS is a set of login sessions according to privileged us-
ers’ requests to access the system.

e ROLES is a set of permissions that specify the users’ area of re-
sponsibility and functionalities on the system.

o STATUSES is a set of portable statuses.
4.1.2. Constants in CRCX

Constants are elements of sets, which declare in the axiom section.
There are two particular sets define in this section:

1. ROLES contains the following constants: LegalStaff, and Le-
galApprover.

2. STATUES is obtained with the following constants: Void, Ap-
proved, and Rejected.

4.1.3. Axioms in CRCX

Axioms are used to determine known static relations written with
predicate logic and assumed to be true. Moreover, they are also used to
assign constants to pre-defined sets. According to Listing A27, the axm1
and axm?2 are added to specify constants to pre-defined sets, e.g., ROLES,
and STATUSES, respectively. As for the three axioms (axm3 - axm5),
they are added to deal with empty set assignments in variables restrained
by partial functions, e.g., sessions, isConsentExpired, and consentRenew-
alState, respectively.

AXIOMS
axml : partition(ROLES, {LegalStaff}, {LegalApprover})
axm2 : partition(STATUSES, {Void}, {Approved}, {Rejected})
axm3 : @ € SESSIONS >+ AUTHORIZED USERS
axm4 : @ € (PATIENTS < CONSENTS) >~ BOOL
axm5 : @ € (PATIENTS < CONSENTS) >~ STATUSES

Listing A27: The list of axioms in CRCX.

4.2. The CRSM machine

The CRSM machine is the dynamic part of the CRSM model containing
the invariants, variables, and events.

4.2.1. Invariants in CRSM

151

Invariants are constraints of state variables described by first-order

logic expressions, as shown in Listing A28. In every event execution, ac-
tions change state variables’ value, which must preserve all their invariants

in the whole model.

INVARIANTS
invl : sessions € SESSIONS >~ AUTHORIZED USERS
inv2 : userRoles € AUTHORIZED USERS <« ROLES
inv3 : pc € PATIENTS <« CONSENTS
inv4 : isConsentExpired € (PATIENTS < CONSENTS) >+~ BOOL
inv5 : consentRenewalState € (PATIENTS <> CONSENTS) >~ STATUSES
inve : markAsDeleted € PATIENTS <« CONSENTS
inv7 : markAsReceived € PATIENTS <> CONSENTS

Listing A28: The list of invariants in CRSM.

The state variables are divided into seven variables:

e The variable sessions contains the one-to-one relationships be-
tween SESSIONS and AUTHORIZED USERS.

The example of the sessions value:

{(SESSIONS1 » AUTHORIZED USER2),
(SESSIONS2 » AUTHORIZED USER1)}

e The variable userRoles contains the relation between two given
sets, e.g., AUTHORIZED USER and ROLES for determining
user activities and tasks based on user permissions that each sys-
tem configures.

The example of the userRoles value:

{ (AUTHORIZED USER1 » LegalStaff),
(AUTHORIZED USER1 » LegalApprover),
(AUTHORIZED USER2 » LegalStaff)}

e The variable pc contains the relation between two given sets, e.g.,
PATIENTS and CONSENTS, representing patients’ consent
agreements in which patients permit users who have been defined
in consent agreements to process their personal data.

The example of the pc value:

{(PATIENTS1 » CONSENTS1),
(PATIENTS1 » CONSENTS2),
(PATIENTS2 » CONSENTS1),
(PATIENTS2 » CONSENTS2)}

152

e The variable isConsentExpired contains the relation between
three given sets, e.g., PATIENTS, CONSENTS, and BOOL, rep-
resenting the patient’s consent is expired.

The example of the isConsentExpired value:

{({(PATIENTS1 » CONSENTS1)} » FALSE),
({(PATIENTS2 » CONSENTS2)} » TRUE)}

e The variable consentRenewalState contains the relation between
three given sets, e.g., PATIENTS, CONSENTS, and STATUSES,
representing consent renewal requests.

The example of the consentRenewalState value:

{({(PATIENTS1 » CONSENTS1)} » Approved),
({(PATIENTS2 » CONSENTS2)} » Rejected)}

e The variable markAsDeleted contains the relation between two
given sets, e.g., PATIENTS, and CONSENTS, representing pa-
tient data has been deleted.

The example of the markAsDeleted value:

{ (PATIENTS2 » CONSENTS2)}

¢ The variable markAsReceived contains the relation between two
given sets, e.g., PATIENTS, and CONSENTS, representing the
system has sent the notification to the patient for consent renew-
al.

The example of the markAsReceived value:

{ (PATIENTS1 » CONSENTS1),
(PATIENTS2 » CONSENTS2)}

4.2.2. Events in CRSM

Events are the state transitions of the given model. In Event-B, the
event will be executed when its guards meet conditions then state variables
will be updated values.

The CRSM are partitioned into seven events:

4.2.2.1. The INITIALISATION Event

This event is used to initiate all state variable values of the
model. According to Listing A29, the five actions (actl — act5) are
assigned empty sets. As for act6 and act7, they are specified varia-

153

bles with first-order logic expressions using operation, called
choice from set (i.e., :€). In doing so, the userRoles and pc varia-
bles are automatically generated by the Rodin Platform.

INITIALISATION =
STATUS
ordinary
BEGIN
actl : sessions = @
act2 : consentRenewalState = o
act3 : isConsentExpired = o
act4 : markAsDeleted = @
act5 : markAsReceived = @
act6 : userRoles :e AUTHORIZED USERS <« ROLES
act7 : pc :€ P1(PATIENTS x CONSENTS)
END

Listing A29: The INITIALISATION event.

4.2.2.2. The Login Event

This event describes the behavior of login (Listing A30). The
event will be executed when the current user session does not exist,
and this user is registered, then the user successfully login to the
system.

Login =
STATUS
ordinary
ANY
s, u
WHERE
grdl : s € SESSIONS A s & dom(sessions)
grd2 : u € AUTHORIZED USERS A s & ran(sessions)
grd3 : sessions u {s » u} € SESSIONS »» AUTHORIZED USERS
THEN
actl : sessions = sessions u {s b u}
END

Listing A30: The Login event.

4.2.2.3. The CreateConsentRenewRequest Event

This event describes the behavior of creating a consent re-
newal request (Listing A31). The event will be executed when the
authorized user has logged on with the legal staff role, and select a

154

patient whose consent is expired, then the user creates the renewal
request successfully.

CreateConsentRenewRequest =

STATUS

ordinary
ANY

s, p, ¢, expired, isWithdraw
WHERE

grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalStaff
grd3 : p € dom(pc) A c € ran(pc) A {p» c} ¢
dom(consentRenewalState)
grd4 : expired € BOOL A expired = TRUE
grd5 : isWithdraw € BOOL A isWithdraw = FALSE
grdé : consentRenewalState < {{p » c} » Void} €
(PATIENTS <> CONSENTS) >+ STATUSES
grd7 : isConsentExpired < {{p » c} » TRUE} €
(PATIENTS < CONSENTS) >~ BOOL
THEN
actl : consentRenewalState({p » c}) = Void
act2 : isConsentExpired({p » c}) = TRUE
END

Listing A31: The CreateConsentRenewRequest event.
4.2.2.4. The NotifyPatient Event

This event describes the behavior of notifying a consent re-
newal to the patient in which request for continuing the process of
personal data (Listing A32). The event will be executed when the
authorized user has logged on with the legal staff role, and the pa-
tient returns the answer to approve or reject a consent renewal re-
quest for permitting the process of his/her personal data, then the
user saves the patient’s answer into the system successfully.

NotifyPatient =
STATUS
ordinary
ANY
s, pcl, acceptStatus
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalStaff
grd3 : pcl ¢ markAsReceived A pcl €
dom(consentRenewalState) A
consentRenewalState(pcl) = Void

155

grd4 : acceptStatus € STATUSES \ {Void}
grd5 : consentRenewalState < {pcl » acceptStatus} e
(PATIENTS <> CONSENTS) >+ STATUSES
THEN
actl : consentRenewalState(pcl) = acceptStatus
act2 : markAsReceived = markAsReceived u pcl
END

Listing A32: The NotifyPatient event.
4.2.2.5. The ExtendConsentExpiration Event

This event describes the behavior of extending a consent’s da-
ta retention after a patient approves the consent renewal request
(Listing A33). The event will be executed when the authorized user
has logged on with the legal staff role and has received approval
from the patient, then the user extends the renewal period of con-
sent.

ExtendConsentExpiration =
STATUS
ordinary
ANY
s, pcl
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalStaff
grd3 : pcl € dom(consentRenewalState) A
consentRenewalState(pcl) = Approved
grd4 : pcl c markAsReceived A pcl € dom(isConsentExpired) A
isConsentExpired(pcl) = TRUE
grd5 : isConsentExpired < {pcl » FALSE} €
(PATIENTS < CONSENTS) >~ BOOL
THEN
actl : isConsentExpired(pcl) := FALSE
END

Listing A33: The ExtendConsentExpiration event

4.2.2.6. The DeletePatientData Event

This event describes the behavior of deleting patient data af-
ter a patient rejects the consent renewal request (Listing A34). The
event will be executed when the authorized user has logged on with
the legal staff role and has received a rejective from the patient,
then the user deletes the personal data.

156

ExtendConsentExpiration %
STATUS
ordinary
ANY
s, pcl
WHERE
grdl : s € dom(sessions) A sessions(s) € dom(userRoles)
grd2 : 3r-r € userRoles[sessions[{s}]] A r = LegalStaff
grd3 : pcl € dom(consentRenewalState) A
consentRenewalState(pcl) = Rejected
grd4 : pcl c markAsReceived A pcl € dom(isConsentExpired) A
isConsentExpired(pcl) = TRUE
grd5 : markAsDeleted n pcl = o
THEN
actl : markAsDeleted = markAsDeleted u pcl
END

Listing A34: The DeletePatientData event.

4.2.2.7. The Logout Event

This event describes the behavior of logout (Listing A35).
The event will be executed when the current user session exists,
then the system removes the variable sessions values within the cur-
rent user.

Logout =
STATUS

ordinary
ANY

s
WHERE

grdl : s € dom(sessions)

grd2 : sessions » {sessions(s)} €

SESSIONS >+ AUTHORIZED USERS

THEN

actl : sessions = sessions » {sessions(s)}
END

Listing A35: The Logout event.

157

APPENDIX B
AN EVENT-B MODEL OF CONSENT MANAGEMENT FOR
DISTRIBUTED SYSTEMS IN DATA SHARING

An Event-B model was constructed based on DSSM. The DSSM is a state ma-
chine that explains the dynamic behavior of how to conduct data subjects’ consent and
how to manage the interaction between the requester and response services for sharing
personal data based on giving consent using blockchain technology without storing
any personal data on-chain or off-chain storage servers. The Event-B model contains
five functionalities: 1) conducting individuals’ consent, 2) limiting access to author-
ized personal data based on the individual’s consent, 3) allowing individuals to with-
draw consents, 4) allowing individuals to request portable their personal data, and 5)
enabling individuals to renew their consent for continued use of services and products
offered by service providers. Besides, the Event-B model are available for the public
at https://github.com/cucpbioinfo/BlockchainBasedDataSharing. Moreover, we devel-
oped a platform followed by the DSSM called SmartDataTrust. The source code is
available at https://github.com/cucpbioinfo/SmartDataTrust.

1. The DSSM Model

We modeled DSSM (Figure 85) to describe the dynamic behavior of how to
manage data subjects’ consent and the sharing of personal data among services on
blockchain. The DSSM model is divided into two parts, including the DSCX context
and the DSSM machine.

B3: INITIALISATION

State
Initiated

B4: AddConsent

Added onsent Consent

R
‘Added Notified

BS: AddDataSubject , [DataSubject) B6: CallbackRequester

Transfer
Succeeded

Callback
Failed

Figure 85: DSSM demonstrating blockchain-based consent management in data shar-
ing

https://github.com/cucpbioinfo/BlockchainBasedDataSharing
https://github.com/cucpbioinfo/SmartDataTrust

158

1.1. The DSCX Context

The DSCX context is the static part of the DSSM model containing the
sets, constants, and axioms.

1.1.1. Setsin DSCX

Sets are a set of abstracts in the context of CM in data sharing are
comprises the following sets:

e DATA SUBJECTS is a set of individuals.
e CONSENTS is a set of consent agreements.

e FIELDS is a set of data fields that leads to specific personal char-
acteristics.

e PARTICIPANTS is a set of requester and responder services.

e REQUESTS is a set of data requests created by requester services
for retrieving personal data.

e RESPONSES is a set of data responses created by responder ser-
vices for replying to requester services.

e ADDRESSES is a set of smart contracts’ addresses. The smart
contract’s address is a unique identifier that points to the collec-
tion of code and data on the blockchain.

1.1.2. Axioms in DSCX

Axioms are used to determine known static relations written with
predicate logic and assumed to be true. Moreover, they are also used to as-
sign constants to pre-defined sets. According to Listing B/, the nine axi-
oms (axml — axm9) are added to specify constants to pre-defined sets, e.g.,
PARTICIPANTS, CONSENTS, FIELDS, DATA SUBJECTS, RE-
QUESTS, RESPONSES, this (i.e., the smart contract’s address), initial-
Balance and {this » initialBalance} (i.e., defining the smart contract’s bal-
ance), respectively. As for the six axioms (axm10 — axm15), they are add-
ed to deal with empty set assignments in variables restrained by partial
functions, e.g., dataFields, dataSubjectConsents, requests, responses, en-
cryptedData and dataTransferStates, respectively.

AXIOMS
axml :
axm2 :
axm3 :
axm4 :
axm5 :
axmé6 :
axm7
axm8 :
axm9 :
axmlo

axmll :
axml2 :
axml3 :
axml4d
axml5 :

159

partition(PARTICIPANTS, {ServiceA}, {ServiceB})
partition(CONSENTS, {ConsentB})

partition(FIELDS, {Name}, {BirthDate}, {BirthDefects})
partition(DATA SUBJECTS, {DataSubjectl})
partition(REQUESTS, {Requestl})

partition(RESPONSES, {Responsel})

: this € ADDRESSES

initialBalance € N
{this » initialBalance} € {this} — N

: @ € CONSENTS - P1(FIELDS)

PARTICIPANTS x DATA SUBJECTS x CONSENTS - BOOL
REQUESTS -+ (PARTICIPANTS x DATA SUBJECTS x CONSENTS)
RESPONSES >+~ REQUESTS

RESPONSES -+~ P (DATA_SUBJECTS x FIELDS)

RESPONSES -+ BOOL

Listing B1: The list of axioms in DSCX.

| 8 & 8 8
M M M M M

1.2. The DSSM Machine

The DSSM machine is the dynamic part of the DSSM model containing
the invariants, variables, and events.

1.2.1. Invariants in DSSM

Invariants constraints of state variables described by first-order log-
ic expressions, as shown in Listing B2. In every event execution, actions
change state variables’ value, which must preserve all their invariants in

the whole model.

INVARIANTS

invl : consents € P(CONSENTS)

inv2 : dataFields € CONSENTS - P1(FIELDS)

inv3 : dataSubjectConsents € PARTICIPANTS x DATA SUBJECTS x
CONSENTS -+ BOOL

inv4 : addresses c ADDRESSES

inv5 : balanceOf € addresses — N

inve : callbackRequesterStates € P(PARTICIPANTS x
DATA_SUBJECTS x CONSENTS)

inv7 : dataAccessRequests € REQUESTS -+ PARTICIPANTS x
DATA_SUBJECTS x CONSENTS

inv8 : callbackResponderStates € P(REQUESTS)

inv9 : dataAccessResponses € RESPONSES »» REQUESTS

inv1l0 : callbackDataTransferStates € P(RESPONSES)

inv1ll : encryptedData € RESPONSES -+ P(DATA SUBJECTS x FIELDS)

invl2 : dataTransferStates € RESPONSES -+ BOOL

Listing B2: The list of invariants in DSSM.

160

The state variables are divided into seven variables:

e The variable consents obtains the CONSENTS set during the
model refinement.
The example of the consents value:

{ConsentB}

e The variable dataFields contains the relation between two given
sets, e.g., CONSENTS, and FIELDS, representing the required
data fields within each consent agreement.

The example of the dataFields value:

{(ConsentB » {Name, BirthDate, BirthDefects})}

e The variable dataSubjectConsents contains the relation between
four given sets, e.g., PARTICIPANTS, DATA SUBJECTS,
CONSENTS, and BOOL (i.e., TRUE or FALSE). This variable
represents the valid data subject’s consent within each responder
service (i.e., the service which provides personal data for other
services) for permitting the requester service to access personal
data.

The example of the dataSubjectConsents value:

{(ServiceA » DataSubjectl » ConsentB » FALSE),
(ServiceB » DataSubjectl » ConsentB » FALSE)}

e The variable addresses obtains the ADDRESSES, representing
the smart contract’s address.

The example of the addresses value:
{this}

e The variable balanceOf contains the relation between two given
sets, e.g., ADDRESSES, and a natural number, representing the
smart contract’s balance.

The example of the balanceOf value:

{(this » 2)}

e The variable callbackRequesterStates contains the relation be-
tween three given sets, e.g., PARTICIPANTS, DATA
SUBJECTS, and CONSENTS, representing the blockchain in-

161

voking the callback URL to notify the requester service for re-
questing personal data from the responder service.
The example of the callbackRequesterStates value:

{(ServiceA » DataSubjectl » ConsentB),
(ServiceB » DataSubjectl » ConsentB)}

The variable dataAccessRequests contains the relation between
four given sets, e.g., REQUESTS, PARTICIPANTS, DATA
SUBJECTS, and CONSENTS, representing the record of data
request submitted by the requester service.

The example of the dataAccessRequests value:
{(Requestl » (ServiceB » DataSubjectl » ConsentB))}
The variable callbackResponderStates obtains the REQUESTS
set, representing the blockchain invoking the callback URL to no-
tify the responder service for replying to the requester service.
The example of the callbackResponderStates value:
{Requestl}
The variable dataAccessResponses contains the relation between
two given sets, e.g., RESPONSES, and REQUESTS, represent-
ing the record of data response submitted by the responder ser-
vice.
The example of the dataAccessResponses value:

{(Response » Request)}

The variable callbackDataTransferStates obtains the RESPONS-
ES set, representing the blockchain invoking the callback URL to
notify the responder service for transferring personal data be-
tween requester service.

The example of the callbackDataTransferStates value:

{Responsel}

The variable encryptedData contains the relation between three
given sets, e.g., RESPONSES, DATA SUBJECTS, and FIELDS,
representing the personal data encryption in which data has been
selected from the consent’s data fields mapping.

The example of the encryptedData value:

162

{(Responsel » {(DataSubjectl » Name),
(DataSubjectl » BirthDate)}})

e The variable dataTransferStates contains the relation between
three given sets, e.g., RESPONSES, and BOOL, representing da-
ta transfer between the responder and requester services success-
ful.

The example of the dataTransferStates value:

{(Responsel » TRUE)}

1.2.2. Events in DSSM

Events are the state transitions of the given model. In Event-B, the
event will be executed when its guards meet conditions then state varia-
bles will be updated values.

The DSSM are partitioned into thirteen events:

1.2.2.1. The INITIALISATION Event

This event is used to initiate all state variable values of the
model. According to Listing B3: The INITIALISATION event., the
ten actions (actl — actl0) are assigned empty sets. As for actll and
act12, they are specified variables with first-order logic expressions
using operation, called choice from set (i.e., :€). In doing so, the
addresses and balanceOf variables are automatically generated by
the Rodin Platform.

INITIALISATION =
STATUS
ordinary
BEGIN
actl : consents = @
act2 : dataFields = &
act3 : dataSubjectConsents = @

act4 : callbackRequesterStates = o
act5 : dataAccessRequests = @
act6 : callbackResponderStates = &

act7 : dataAccessResponses = @

act8 : callbackDataTransferStates = &
act9 : encryptedData = @

actlo : dataTransferStates = o

actll : addresses = {this}

163

actl2 : balanceOf = {this » initialBalance}
END

Listing B3: The INITIALISATION event.

1.2.2.2. The AddConsent Event

This event describes the behavior of adding consent
(Listing B4). The event will be executed when the consent does not
exist, then the requester service adds a new consent into block-
chain.

AddConsent =
STATUS
ordinary
ANY
consent, dataField
WHERE
grdl : consent € CONSENTS A consent & consents
grd2 : dataField e P1(FIELDS)
grd3 : dataFields < {consent » dataField} e
CONSENTS -+ P1(FIELDS)
THEN
actl : consents = consents u {consent}
act2 : dataFields(consent) = dataField
END

Listing B4: The AddConsent event.

1.2.2.3. The AddDataSubjectConsent Event

This event describes the behavior of adding a data subject’s
consent (Listing BS). The event will be executed when the data
subject’s consent within the responder service does not exist in the
blockchain (i.e., the data subject gives his/her consent under the re-
sponder service for the first time), then the blockchain saves the da-
ta subject’s consent successfully.

-

AddDataSubjectConsent
STATUS
ordinary
ANY
responder, consent, dataField
WHERE
grdl : responder € PARTICIPANTS
grd2 : dataSubject e DATA SUBJECTS
grd3 : consent € consents A consent € dom(dataFields)
grd4 : responder » dataSubject » consent €

164

dom(dataSubjectConsents)
grd5 : dataSubjectConsents < {responder » dataSubject »
consent » TRUE} € (PARTICIPANTS x DATA SUBJECTS x
CONSENTS) -+ BOOL
THEN
actl : dataSubjectConsents(responder » dataSubject »
consent) = TRUE
END

Listing B5: The AddDataSubjectConsent event.

1.2.2.4. The CallbackRequester Event

This event describes the behavior of making an API call to
requester service by blockchain (Listing B6). The event will be ex-
ecuted when the smart contract’s balance is enough to pay the ora-
clize’s fee for the callback URL, the data subject’s consent is valid,
then the blockchain makes an API call to the requester service suc-
cessfully.

CallbackRequester =
STATUS
ordinary
ANY
oraclizeFee, dataSubjectConsent
WHERE
grdl : this € dom(balanceOf) A oraclizeFee € N A
oraclizeFee =< balanceOf(this)
grd2 : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsent & callbackRequesterStates A
dataSubjectConsents(dataSubjectConsent) = TRUE
grd3 : balanceOf < {this » balanceOf(this) - oraclizeFee} €
addresses — N

THEN
actl : callbackRequesterStates = callbackRequesterStates v
{dataSubjectConsent}
act2 : balanceOf = balanceOf < {this » balanceOf(this) —
oraclizeFee}
END

Listing B6: The CallbackRequester event.

1.2.2.5. The SubmitRequest Event

This event describes the behavior of submitting the data re-
quest to the blockchain by the requester service (Listing B7). The
event will be executed when the data subject’s consent is valid, and

165

the data request does not exist in the blockchain, then the block-
chain saves the data request successfully.

SubmitRequest =

STATUS
ordinary
ANY
consentExpired, dataSubjectConsent, request
WHERE
grdl : consentExpired € BOOL A consentExpired = FALSE
grd2 : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = TRUE
grd3 : dataSubjectConsent € callbackRequesterStates
grd4 : request € REQUESTS A request & dom(dataAccessRequests)
grd5 : dataAccessRequests < {request » dataSubjectConsent} €
REQUESTS -+ PARTICIPANTS x DATA SUBJECTS x CONSENTS
THEN
actl : dataAccessRequests(request) = dataSubjectConsent
END

Listing B7: The SubmitRequest event.

1.2.2.6. The CallbackResponder Event

This event describes the behavior of making an API call to

responder service by blockchain (Listing B8). The event will be
executed when the smart contract’s balance is enough to pay the
oraclize’s fee for the callback URL, the data subject’s consent is
valid, then the blockchain makes an API call to the responder ser-
vice successfully.

CallbackResponder =

STATUS
ordinary
ANY
oraclizeFee, request
WHERE
grdl : this € dom(balanceOf) A oraclizeFee € N A
oraclizeFee =< balanceOf(this)
grd2 : request € dom(dataAccessRequests) A
request € callbackResponderStates A
dataAccessRequests(request) €
dom(dataSubjectConsents) A
dataSubjectConsents(dataAccessRequests(request)) =
TRUE
grd3 : balanceOf <« {this » balanceOf(this) - oraclizeFee} €

THEN

addresses — N

166

actl : callbackResponderStates = callbackResponderStates u
{request}
act2 : balanceOf = balanceOf < {this » balanceOf(this) —
oraclizeFee}
END

Listing B8: The CallbackResponder event.

1.2.2.7. The SubmitResponse Event

This event describes the behavior of submitting the data re-
sponse to the blockchain by the responder service (Listing B9). The
event will be executed when the data subject’s consent is valid, and
the data response does not exist in the blockchain, then the block-
chain saves the data response successfully.

SubmitResponse =
STATUS
ordinary
ANY
consentExpired, dataSubjectConsent, request, response
WHERE
grdl : consentExpired € BOOL A consentExpired = FALSE
grd2 : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = TRUE
grd3 : request € callbackResponderStates
grd4 : response € RESPONSES A response ¢
dom(dataAccessResponses)
grd5 : dataAccessResponses < {response » request} €
RESPONSES >+ REQUESTS
THEN
actl : dataAccessResponses < {response » request} €
RESPONSES =+ REQUESTS
END

Listing B9: The SubmitResponse event.

1.2.2.8. The CallbackDataTransfer Event

This event describes the behavior of making an API call to
responder service by blockchain (Listing B10). The event will be
executed when the smart contract’s balance is enough to pay the
oraclize’s fee for the callback URL, the data subject’s consent is
valid, then the blockchain makes an API call to the responder ser-
vice successfully.

167

CallbackDataTransfer =
STATUS
ordinary
ANY
oraclizeFee, response
WHERE
grdl : this € dom(balanceOf) A oraclizeFee € N A
oraclizeFee = balanceOf(this)
grd2 : response € dom(dataAccessResponses) A
response € callbackDataTransferStates
grd3 : dataAccessResponses(response) €
dom(dataAccessRequests) A
dataAccessRequests(dataAccessResponses(response)) €
dom(dataSubjectConsents) A dataSubjectConsents(
dataAccessRequests(dataAccessResponses(response))) =
TRUE
grd4 : balanceOf < {this » balanceOf(this) - oraclizeFee} €
addresses — N

THEN
actl : callbackDataTransferStates = callbackResponderStates u
{response}
act2 : balanceOf = balanceOf < {this » balanceOf(this) —
oraclizeFee}
END

Listing B10: The CallbackDataTransfer event.

1.2.2.9. The TransferData Event

This event describes the behavior of transferring data be-
tween the responder and requester services (Listing B11). The
event will be executed when the data subject’s consent, data re-
quest, and data response are valid, then the responder service en-
crypts and transfers personal data to the requester service success-
fully.

TransferData =
STATUS
ordinary
ANY
responder, dataSubject, consent, response
WHERE
grdl : response € callbackDataTransferStates A
response € dom(dataAccessResponses) A
response & dom(dataTransferStates)
grd2 : consent € dom(dataFields)
grd3 : Ix-x €
dataAccessRequests[{dataAccessResponses(response)}] A

168

X = responder » dataSubject » consent A
responder » dataSubject » consent €
dom(dataSubjectConsents)A dataSubjectConsents(x) =
TRUE

grd4 : encryptedData < {response » {dataSubject} x
dataFields(consent)} € RESPONSES -+ P(DATA SUBJECTS x

FIELDS)
grd5 : dataTransferStates < {response » TRUE} € RESPONSES -+
BOOL
THEN
actl : encryptedData(response) = {dataSubject} x
dataFields(consent)
act2 : dataTransferStates(response) = TRUE
END

Listing B11: The TransferData event.
1.2.2.10. The InsufficientBalance Event

This event describes the behavior of the smart contract hav-
ing a balance insufficient to cover the oraclize’s fee for making an
API call outside the blockchain (Listing B12).

The event will be executed when the oraclize’s fee is great-
er than the smart contract’s balance which occurs in the callback
URL events, then the blockchain handles the insufficient balance
exception.

InsufficientBalance =
STATUS
ordinary
ANY
oraclizeFee, dataSubjectConsent, request, response
WHERE
grdl : this € dom(balanceOf) A oraclizeFee € N A
oraclizeFee > balanceOf(this)
grd2 : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = TRUE
grd3 : (dataSubjectConsent ¢ callbackRequesterStates) v
(request » dataSubjectConsent € dataAccessRequests A
request € callbackResponderStates) v
(response » request € dataAccessResponses A
Response & callbackDataTransferStates)
THEN
..skip
END

Listing B12: The InsufficientBalance event.

169

1.2.2.11. The CheckConsentExpiration Event

This event describes the behavior of checking consent expi-
ration (Listing B13). The event will be executed when the data sub-
ject’s consent is expired, then the blockchain handles the expired
exception.

CheckConsentExpiration =
STATUS
ordinary
ANY
consentExpired, dataSubjectConsent
WHERE
grdl : consentExpired € BOOL A consentExpired = TRUE
grd2 : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = TRUE
grd3 : dataSubjectConsents < {dataSubjectConsent » FALSE} €
PARTICIPANTS x DATA SUBJECTS x CONSENTS -+ BOOL
THEN
actl : dataSubjectConsents(dataSubjectConsent) = FALSE
END

Listing B13: The CheckConsentExpiration event.

1.2.2.12. The UnauthorizedAccess Event

This event describes the behavior of handling invalid data
subject’s consent during the interaction between the requester and
responder services (Listing B14). The event will be executed when
the data subject’s consent is invalid, then the blockchain handles
the invalid exception.

UnauthorizedAccess =
STATUS
ordinary
ANY
dataSubjectConsent
WHERE
grdl : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = FALSE
THEN
..skip
END

Listing B14: The UnauthorizedAccess event.

170

1.2.2.13. The RevokeConsent Event

This event describes the behavior of withdrawing the data
subject’s consent via the responder service (Listing B15). The
event will be executed when the data subject’s consent is valid,
then the blockchain updates the data subject's consent to invalid.

RevokeConsent =
STATUS
ordinary
ANY
dataSubjectConsent
WHERE
grdl : dataSubjectConsent € dom(dataSubjectConsents) A
dataSubjectConsents(dataSubjectConsent) = TRUE
grd2 : dataSubjectConsents< {dataSubjectConsent » FALSE} €
(PARTICIPANTS x DATA SUBJECTS x CONSENTS) -+ BOOL
THEN
actl : dataSubjectConsents(dataSubjectConsent) = FALSE
END

Listing B15: The RevokeConsent event.

1.2.2.14. The RenewConsent Event

This event describes the behavior of renewing the data sub-
ject’s consent via the responder service (Listing B16). The event
will be executed when the data subject’s consent is invalid, then the
blockchain updates the data subject's consent to valid.

RenewConsent =
STATUS
ordinary
ANY
dataSubjectConsent
WHERE
grdl : dataSubjectConsent € dom(dataSubjectConsents) A
grd2 : dataSubjectConsents(dataSubjectConsent) = FALSE
grd3 : dataSubjectConsents < {dataSubjectConsent » TRUE} €
(PARTICIPANTS x DATA SUBJECTS x CONSENTS) - BOOL
THEN
actl : dataSubjectConsents(dataSubjectConsent) := TRUE
END

Listing B16: The RenewConsent event.

10.
11.

12.

13.

14.

15.

16.

17.

171

REFERENCES

Commission, E., Regulation (EU) 2016/679 of the European Parliament and of
the Council of 27 April 2016 on the protection of natural persons with regard to
the processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation) (Text with
EEA relevance). 2016, European Commission.

Daoudagh, S., et al. How to Improve the GDPR Compliance through Consent
Management and Access Control. in Proceedings of the 7th International
Conference on Information Systems Security and Privacy - ICISSP. 2021.
Agrafiotis, I., et al. Applying Formal Methods to Detect and Resolve Ambiguities
in Privacy Requirements. 2011. Berlin, Heidelberg: Springer Berlin Heidelberg.
de Carvalho, R.M., et al., Protecting Citizens’ Personal Data and Privacy. Joint
Effort from GDPR EU Cluster Research Projects. SN Computer Science, 2020.
1(4): p. 217.

Alhazmi, A. and N.A.G. Arachchilage, 'm all ears! Listening to software
developers on putting GDPR principles into software development practice.
Personal and Ubiquitous Computing, 2021. 25(5): p. 879-892.

Awanthika, S. and A. Nalin A. G., Why developers cannot embed privacy into
software systems? An empirical investigation, in Proceedings of the 22nd
International Conference on Evaluation and Assessment in Software
Engineering 2018. 2018: Christchurch, New Zealand. p. 211-216.

Bu, F., etal., “Privacy by Design” implementation: Information system
engineers’ perspective. International Journal of Information Management, 2020.
53: p. 102124.

Hadar, I., et al., Privacy by designers: software developers’ privacy mindset.
Empirical Software Engineering, 2018. 23(1): p. 259-2809.

Spalevic, Z. and K. Vicentijevi¢, GDPR and challenges of personal data
protection. The European Journal of Applied Economics, 2022. 19(1): p. 55-65.
Cavoukian, A., Privacy by Design: The 7 Foundational Principles. 2011.
Cavoukian, A., Understanding How to Implement Privacy by Design, One Step
at a Time. IEEE Consumer Electronics Magazine, 2020. 9(2): p. 78-82.
Alkhariji, L., et al., Synthesising Privacy by Design Knowledge Toward
Explainable Internet of Things Application Designing in Healthcare. ACM
Transactions on Multimedia Computing, Communications, and Applications,
2021. 17: p. 1-29.

Levin, A., The Case Study of Ontario (January 1, 2018). Canadian Journal of
Comparative and Contemporary Law, 2018. 4 (1): p. 115-160.

al, K.S.e., Deliverable D3.2: Cross Sectoral Cybersecurity Building Blocks.
2020.

al, S.A.e., Deliverable D3.11: Definition of Privacy by Design and Privacy
Preserving Enablers. 2020.

Gruschka, N. and M. Jensen, Aligning user consent management and service
process modeling. Lecture Notes in Informatics (LNI), Proceedings - Series of
the Gesellschaft fur Informatik (Gl), 2014: p. 527-538.

Fatema, K., et al., Compliance through Informed Consent: Semantic Based
Consent Permission and Data Management Model, in Proceedings of the 5th

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

172

Workshop on Society, Privacy and the Semantic Web - Policy and Technology
(PrivOn2017) (PrivOn). 2017.

Bincoletto, G., Data protection issues in cross-border interoperability of
Electronic Health Record systems within the European Union. Data & Policy,
2020. 2: p. e3.

Koops, B.-J. and R.E. Leenes, Privacy Regulation Cannot Be Hardcoded. A
Critical Comment on the 'Privacy by Design’ Provision in Data-Protection Law.
International Review of Law, Computers & Technology, 2014. 28(2): p. 159-
171.

Kakarlapudi, P. and Q. Mahmoud, A Systematic Review of Blockchain for
Consent Management. Healthcare, 2021. 9: p. 137.

Stephen, C., et al., Report on the NSF Workshop on Formal Methods for
Security. 2016, National Science Foundation, USA.

Tschantz, M.C. and J.M. Wing. Formal Methods for Privacy. 2009. Berlin,
Heidelberg: Springer Berlin Heidelberg.

Abrial, J.-R., Modeling in Event-B: system and software engineering. 2010:
Cambridge University Press.

Abrial, J.-R. A System Development Process with Event-B and the Rodin
Platform. 2007. Berlin, Heidelberg: Springer Berlin Heidelberg.

Abrial, J.-R., et al., Rodin: an open toolset for modelling and reasoning in
Event-B. International Journal on Software Tools for Technology Transfer, 2010.
12(6): p. 447-466.

Michael, J.P.M., Butler, Rodin User's Handbook: Covers Rodin v.2.8. 2014:
Publishing Platform, North Charleston, SC, USA.

Albanese, G., et al., Dynamic consent management for clinical trials via private
blockchain technology. Journal of Ambient Intelligence and Humanized
Computing, 2020. 11(11): p. 4909-4926.

Dijana, P. Guidelines for GDPR compliant consent and data management model
in ICT businesses. in 29th international conference of central European
conference on information and intelligent systems. 2018.

Steinbrook, R., Personally Controlled Online Health Data — The Next Big
Thing in Medical Care? The New England journal of medicine, 2008. 358: p.
1653-6.

Fatehi, F., et al., General Data Protection Regulation (GDPR) in Healthcare:
Hot Topics and Research Fronts. Studies in health technology and informatics,
2020. 270: p. 1118-1122.

Asghar, M.R., et al. A Review of Privacy and Consent Management in
Healthcare: A Focus on Emerging Data Sources. in 2017 IEEE 13th
International Conference on e-Science (e-Science). 2017.

Simone, F.-H., IT-Security and Privacy: Design and Use of Privacy-Enhancing
Security Mechanisms. 2001: Springer-Verlag, Berlin.

Hert, P. and V. Papakonstantinou, The proposed data protection Regulation
replacing Directive 95/46/EC: A sound system for the protection of individuals.
The Computer Law & Security Review, 2012. 28: p. 130-142.

Blume, P., The myths pertaining to the proposed General Data Protection
Regulation. International Data Privacy Law, 2014. 4: p. 269-273.

Grses, S.F., C. Troncoso, and C. Diaz. Engineering Privacy by Design. in

36.

37.

38.

39.

40.

41.

42,

43.

44,

45,

46.

47.

48.

49,

50.

51.

52.
53.

54.

173

Computers, Privacy & Data Protection 2011.

Blake, M.B. and S. Iman, Formal Methods for Preserving Privacy for Big Data
Extraction Software, in NSF Workshop on Big Data Security and Privacy. 2014.
Kitchin, R., Big data and human geography:Opportunities, challenges and risks.
Dialogues in Human Geography, 2013. 3(3): p. 262-267.

Besik, S. and J.-C. Freytag, Managing Consent in Workflows under GDPR, in
ZEUS. 2020.

Politou, E., E. Alepis, and C. Patsakis, Forgetting personal data and revoking
consent under the GDPR: Challenges and proposed solutions. Journal of
Cybersecurity, 2018. 4(1).

Voss, W.G., Looking at European Union Data Protection Law Reform Through
a Different Prism: The Proposed EU General Data Protection Regulation Two
Years Later. Journal of Internet Law, 2014. 17(9).

Wolters, P.T.J., The Control by and Rights of the Data Subject Under the GDPR.
Journal of Internet Law, 2018. 22(1): p. 7-18.

Resnik, D., Re-consenting human subjects: Ethical, legal and practical issues.
Journal of medical ethics, 2009. 35: p. 656-7.

Jaiman, V. and V. Urovi, A Consent Model for Blockchain-Based Health Data
Sharing Platforms. IEEE Access, 2020. 8: p. 143734-143745.

Vargas, J.C. Blockchain-based consent manager for GDPR compliance. in Open
Identity Summit. 2019.

Jung, H.-H. and F.J. Pfister, Blockchain-enabled Clinical Study Consent
Management. Technology Innovation Management Review, 2020. 10: p. 14-24.
Ameyed, D., et al. Blockchain Based Model for Consent Management and Data
Transparency Assurance. in 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security Companion (QRS-C). 2021.

Jung, S.-S., S.-J. Lee, and I.-C. Euom, Delegation-Based Personal Data
Processing Request Notarization Framework for GDPR Based on Private
Blockchain. Applied Sciences, 2021. 11(22): p. 10574.

Finck, M., Blockchains and Data Protection in the European Union,
M.P.1.f.1.a.C.U.0. Oxford, Editor. 2017.

Miltiadou, D., et al., Leveraging Management of Customers’ Consent Exploiting
the Benefits of Blockchain Technology Towards Secure Data Sharing, in Big
Data and Artificial Intelligence in Digital Finance: Increasing Personalization
and Trust in Digital Finance using Big Data and Al, J. Soldatos and D. Kyriazis,
Editors. 2022, Springer International Publishing: Cham. p. 127-155.

Abedjan, Z., et al., Data Science in Healthcare: Benefits, Challenges and
Opportunities, in Data Science for Healthcare: Methodologies and Applications,
S. Consoli, D. Reforgiato Recupero, and M. Petkovi¢, Editors. 2019, Springer
International Publishing: Cham. p. 3-38.

Stalla-Bourdillon, S., et al., Data protection by design: Building the foundations
of trustworthy data sharing. Data & Policy, 2020. 2: p. e4.

Schupp, S., Tool Support of Formal Methods for Privacy by Design. 2019.
Matwin, S., et al. Privacy in Data Mining Using Formal Methods. 2005. Berlin,
Heidelberg: Springer Berlin Heidelberg.

Team, C.D. The Coqg Proof Assistant reference manual: Version 8.13.1. 2021 26
September 2022]; Available from:

55.

56.

S7.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

174

https://github.com/cog/coqg/releases/download/V8.13.1/coq-8.13.1-reference-
manual.pdf.

Zdravko, M. and R. Ingrid, An introduction to the WEKA data mining system, in
Proceedings of the 11th annual SIGCSE conference on Innovation and
technology in computer science education. 2006, Association for Computing
Machinery: Bologna, Italy. p. 367—368.

Stouppa, P. and T. Studer. A Formal Model of Data Privacy. 2007. Berlin,
Heidelberg: Springer Berlin Heidelberg.

Ni, Q., et al., Privacy-aware role-based access control. ACM Trans. Inf. Syst.
Secur., 2010. 13(3): p. Article 24.

Ashley, P., et al., Enterprise privacy authorization language (EPAL). IBM
Research, 2003. 30: p. 31.

Abe, A. and A. Simpson. Formal Models for Privacy. in EDBT/ICDT
Workshops. 2016.

Data Protection Act 2018 Explanatory Notes. 2018 26 September 2022];
Available from: http://www.legislation.gov.uk/ukpga/2018/12/notes

Alagar, V.S. and K. Periyasamy, The Z Notation, in Specification of Software
Systems. 1998, Springer New York: New York, NY. p. 281-360.

Plagge, D. and M. Leuschel. Validating Z Specifications Using the ProB
Animator and Model Checker. 2007. Berlin, Heidelberg: Springer Berlin
Heidelberg.

Besik, S.1. and J.-C. Freytag, A formal approach to build privacy-awareness into
clinical workflows. SICS Software-Intensive Cyber-Physical Systems, 2020.
35(1): p. 141-152.

Tokas, S. and O. Owe. A Formal Framework for Consent Management. 2020.
Cham: Springer International Publishing.

McCracken, D. and E. Reilly, Backus-Naur form (BNF). Encyclopedia of
Computer Science, 2003: p. 129-131.

Hyysalo, J., et al., Consent Management Architecture for Secure Data
Transactions. 2016.

Kuikkaniemi, K., A. Poikola, and H. Honko. MyData A Nordic Model for
human-centered personal data management and processing. in Ministry of
Transport and Communications. 2015.

Bystrom, N., et al. MyData Architecture—The Stack, version 1.0.0. 2015 26
September 2022]; Available from: https://hiit.github.io/mydata-stack/.

Atomic Commit In SQLite. 2017 26 September 2022]; Available from:
http://www.sglite.org/atomiccommit.html.

Marillonnet, P., et al., An Efficient User-Centric Consent Management Design
for Multiservices Platforms. Security and Communication Networks, 2021.
2021: p. 1-19.

IBM Security Cost of a Data Breach Report. 2022 26 September 2022];
Available from: https://www.ibm.com/security/data-breach.

Daudén-Esmel, C., et al. Lightweight Blockchain-based Platform for GDPR-
Compliant Personal Data Management. in 2021 IEEE 5th International
Conference on Cryptography, Security and Privacy (CSP). 2021.

Khan, S.N., et al., Blockchain smart contracts: Applications, challenges, and
future trends. Peer-to-Peer Networking and Applications, 2021. 14(5): p. 2901-

https://github.com/coq/coq/releases/download/V8.13.1/coq-8.13.1-reference-manual.pdf
https://github.com/coq/coq/releases/download/V8.13.1/coq-8.13.1-reference-manual.pdf
http://www.legislation.gov.uk/ukpga/2018/12/notes
https://hiit.github.io/mydata-stack/
http://www.sqlite.org/atomiccommit.html
https://www.ibm.com/security/data-breach

74.

75.

76.

77,

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

175

2925.

Merlec, M.M., et al., A Smart Contract-Based Dynamic Consent Management
System for Personal Data Usage under GDPR. Sensors, 2021. 21(23): p. 7994.
Zheng, G., et al., Decentralized Application (DApp), in Ethereum Smart
Contract Development in Solidity. 2021, Springer Singapore: Singapore. p. 253-
280.

Chase, J.P.M. A Permissioned Implementation of Ethereum. 2018 26 September
2022]; Available from: https://github.com/jpmorganchase/quorum.

Vitalik, B. Ethereum: A next-generation smart contract and decentralized
application platform. 2014 26 September 2022]; Available from:
https://github.com/ethereum/wiki/ wiki/White-Paper.

Benet, J., IPFS - Content Addressed, Versioned, P2P File System. 2014.

Ezzat, S.K., Y.N.M. Saleh, and A.A. Abdel-Hamid, Blockchain Oracles: State-
of-the-Art and Research Directions. IEEE Access, 2022. 10: p. 67551-67572.
Chris, D., Introducing Ethereum and Solidity: Foundations of Cryptocurrency
and Blockchain Programming for Beginners. 1st. ed. ed. 2017: Apress, USA.
Istanbul BFT. 26 September 2022]; Available from:
https://github.com/ethereum/EIPs/issues/650.

Raft-based consensus for Ethereum/Quorum. 26 September 2022]; Available
from: https://github.com/ jpmorganchase/quorum/blob/master/raft/doc.md.
Rantos, K., et al. ADvoCATE: A Consent Management Platform for Personal
Data Processing in the 10T Using Blockchain Technology. 2019. Cham: Springer
International Publishing.

Kosko, B., Fuzzy cognitive maps. International Journal of Man-Machine Studies,
1986. 24(1): p. 65-75.

Nguyen, L.V., et al., Cognitive Similarity-Based Collaborative Filtering
Recommendation System. Applied Sciences, 2020. 10(12): p. 4183.

Azaria, A., et al. MedRec: Using Blockchain for Medical Data Access and
Permission Management. in 2016 2nd International Conference on Open and
Big Data (OBD). 2016.

Hu, C., et al., CrowdMed-I1: a blockchain-based framework for efficient consent
management in health data sharing. World Wide Web, 2022. 25(3): p. 1489-
1515.

Shah, M., et al. CrowdMed: A Blockchain-Based Approach to Consent
Management for Health Data Sharing. 2019. Cham: Springer International
Publishing.

Harbitter, A., A critical look at centralized and distributed strategies for large
scale justice sharing applications. 2004, Washington, D.C: Integrated Justice
Information Systems Institute.

van Steen, M. and A.S. Tanenbaum, A brief introduction to distributed systems.
Computing, 2016. 98(10): p. 967-10009.

The proposed EU General Data Protection Regulation. 2015, Hunton &
Williams.

Kurteva, A., et al., Consent Through the Lens of Semantics: State of the Art
Survey and Best Practices. Semantic Web, 2021: p. 1-27.

Pandit, H.J., et al. GConsent - A Consent Ontology Based on the GDPR. 2019.
Cham: Springer International Publishing.

https://github.com/jpmorganchase/quorum
https://github.com/ethereum/wiki/
https://github.com/ethereum/EIPs/issues/650
https://github.com/

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

176

Kirrane, S., et al., The SPECIAL-K Personal Data Processing Transparency and
Compliance Platform. ArXiv, 2020. abs/2001.09461.

Pandit, H.J., et al. Creating a Vocabulary for Data Privacy. 2019. Cham:
Springer International Publishing.

Lioudakis, G.V., et al. Facilitating GDPR Compliance: The H2020 BPR4GDPR
Approach. 2020. Cham: Springer International Publishing.

Palmirani, M., et al. PrOnto: Privacy Ontology for Legal Reasoning. 2018.
Cham: Springer International Publishing.

Loukil, F., et al. LIoPY: A Legal Compliant Ontology to Preserve Privacy for the
Internet of Things. in 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC). 2018.

Toumia, A., S. Szoniecky, and 1. Saleh. ColPri: Towards a Collaborative
Privacy Knowledge Management Ontology for the Internet of Things. in 2020
Fifth International Conference on Fog and Mobile Edge Computing (FMEC).
2020.

Abrial, J.-R. and H. Stefan, Refinement, Decomposition, and Instantiation of
Discrete Models: Application to Event-B. Fundam. Inf., 2007. 77(1-2): p. 1-28.
Jarrar, A. and Y. Balouki, Formal modeling of a complex adaptive air traffic
control system. Complex Adaptive Systems Modeling, 2018. 6(1): p. 6.
Hallerstede, S., On the purpose of Event-B proof obligations. Formal Aspects of
Computing, 2011. 23(1): p. 133-150.

Ruiz Barradas, H., L. Burdy, and D. Déharbe. Existence Proof Obligations for
Constraints, Properties and Invariants in Atelier B. 2020. Cham: Springer
International Publishing.

Hoang, T.S., An Introduction to the Event-B Modelling Method, in Industrial
Deployment of System Engineering Methods. 2013, Springer-Verlag. p. 211-236.
Dobrikov, I. and M. Leuschel. Enabling Analysis for Event-B. 2016. Cham:
Springer International Publishing.

Sato, N. and F. Ishikawa, Separation of considerations in event-B refinement
toward industrial use. CEUR Workshop Proceedings, 2015. 1385: p. 43-50.
Méry, D. Teaching programming methodology using Event B. in The B Method:
from Research to Teaching. 2008. Nantes, France: APCB.

Cansell, D. and D. Méry, Tutorial on the event-based B method. 2006, IFIP
FORTE 2006 Paris.

Hoang, T.S. and J.-R. Abrial. Reasoning about Liveness Properties in Event-B.
2011. Berlin, Heidelberg: Springer Berlin Heidelberg.

Yang, F. and J.-P. Jacquot. An Event-B Plug-in for Creating Deadlock-Freeness
Theorems. in 14th Brazilian Symposium on Formal Methods. 2011. S&o Paulo,
Brazil.

Ligot, O., J. Bendisposto, and M. Leuschel. Debugging Event-B Models using
the ProB Disprover Plug-in ! in AFADL’07. 2007.

Leuschel, M. and M. Butler. ProB: A Model Checker for B. 2003. Berlin,
Heidelberg: Springer Berlin Heidelberg.

Robinson, K. A Concise Summary of the Event-B mathematical toolkit. 2014
11.06.2022; Available from: https://wiki.event-b.org/images/EventB-Summary-

refcard.pdf.
Suripeddi, M.K.S. and P. Purandare, Blockchain and GDPR — A Study on

https://wiki.event-b.org/images/EventB-Summary-refcard.pdf
https://wiki.event-b.org/images/EventB-Summary-refcard.pdf

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.
130.

177

Compatibility Issues of the Distributed Ledger Technology with GDPR Data
Processing. Journal of Physics: Conference Series, 2021. 1964(4): p. 042005.
Chinnasamy, P., et al., Blockchain based Access Control and Data Sharing
Systems for Smart Devices. Journal of Physics: Conference Series, 2021.
1767(1): p. 012056.

Sutton, A. and R. Samavi. Blockchain Enabled Privacy Audit Logs. 2017. Cham:
Springer International Publishing.

Wang, X., Design and Implementation of a Data Sharing Model for Improving
Blockchain Technology. Advances in Multimedia, 2022. 2022: p. 4578525.
Agrawal, T.K., et al., Demonstration of a blockchain-based framework using
smart contracts for supply chain collaboration. International Journal of
Production Research, 2022: p. 1-20.

Monrat, A.A., O. Schelén, and K. Andersson, A Survey of Blockchain From the
Perspectives of Applications, Challenges, and Opportunities. IEEE Access,
2019. 7: p. 117134-117151.

Ramkumar, N., G. Sudhasadasivam, and K.G. Saranya. A Survey on Different
Consensus Mechanisms for the Blockchain Technology. in 2020 International
Conference on Communication and Signal Processing (ICCSP). 2020.

Sharma, D.K., et al., Chapter 13 - Cryptocurrency Mechanisms for Blockchains:
Models, Characteristics, Challenges, and Applications, in Handbook of
Research on Blockchain Technology, S. Krishnan, et al., Editors. 2020,
Academic Press. p. 323-348.

Sharma, G., A. Kumar, and S.S. Gill, Chapter 4 - Applications of blockchain in
automated heavy vehicles: Yesterday, today, and tomorrow, in Autonomous and
Connected Heavy Vehicle Technology, R. Krishnamurthi, A. Kumar, and S.S.
Gill, Editors. 2022, Academic Press. p. 81-93.

Aggarwal, S. and N. Kumar, Chapter Ten - Core components of

blockchain ¢ >¢Introduction to blockchain, in Advances in Computers, S.
Aggarwal, N. Kumar, and P. Raj, Editors. 2021, Elsevier. p. 193-209.

Elli, A., et al. Hyperledger fabric: a distributed operating system for
permissioned blockchains. in Proceedings of the Thirteenth EuroSys Conference.
2018. Porto, Portugal: Association for Computing Machinery.

Akcora, C.G., Y.R. Gel, and M. Kantarcioglu, Blockchain networks: Data
structures of Bitcoin, Monero, Zcash, Ethereum, Ripple, and lota. WIREs Data
Mining and Knowledge Discovery, 2022. 12(1): p. e1436.

Wang, S., et al. An Overview of Smart Contract: Architecture, Applications, and
Future Trends. in 2018 IEEE Intelligent Vehicles Symposium (IV). 2018.

Bakri, A., S. Ellis, and A. Adel. Blockchain-Based Applications in Higher
Education: A Systematic Mapping Study. in The 5th International Conference on
Information and Education Innovations (ICIEI '20). 2020. Association for
Computing Machinery.

Somboun, T., Survey of Smart Contract Technology and Application Based on
Blockchain. Open Journal of Applied Sciences, 2021. 11: p. 1135-1148.
Abdeljalil, B., A Study of Blockchain Oracles. ArXiv, 2020.

Vanezi, E., et al. GDPR Compliance in the Design of the INFORM e-Learning
Platform: a Case Study. in 2019 13th International Conference on Research
Challenges in Information Science (RCIS). 20109.

131.

132.

133.

134.

135.

136.
137.

138.

139.

178

Hoepman, J.-H. Privacy Design Strategies. 2014. Berlin, Heidelberg: Springer
Berlin Heidelberg.

Rest, J.v., et al. Designing privacy-by-design. in Annual Privacy Forum. 2012.
Springer.

Peyrone, N. and D. Wichadakul, RUN-ONCO: A Highly Extensible Software
Platform for Cancer Precision Medicine, in Proceedings of the 2019 6th
International Conference on Biomedical and Bioinformatics Engineering. 2019,
Association for Computing Machinery: Shanghai, China. p. 142-147.

Merkel, D., Docker: lightweight Linux containers for consistent development
and deployment. Linux J., 2014. 2014(239): p. Article 2.

Dikaleh, S., O. Sheikh, and C. Felix, Introduction to kubernetes, in Proceedings
of the 27th Annual International Conference on Computer Science and Software
Engineering. 2017, IBM Corp.: Markham, Ontario, Canada. p. 310.

Ramirez, A.O., Three-Tier Architecture. Linux J., 2000. 2000(75es): p. 7—€s.
Panda, S.K. and S.C. Satapathy. An Investigation into Smart Contract
Deployment on Ethereum Platform Using Web3.js and Solidity Using
Blockchain. 2021. Singapore: Springer Singapore.

Group, T.B. Truffle. 2020 26 April 2023]; Available from:
https://www.trufflesuite.com/truffle.

Amine, M., B. Delahaye, and A. Lanoix, Moving from Event-B to probabilistic
Event-B, in Proceedings of the Symposium on Applied Computing. 2017,
Association for Computing Machinery: Marrakech, Morocco. p. 1348-1355.

https://www.trufflesuite.com/truffle

179

AWIAINTAUNNIINY 1A D
CHuLALONGKORN UNIVERSITY

180

VITA

NAME Neda Peyrone

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I INTRODUCTION
	1.1. Objective of the Work
	1.2. Contributions
	1.3. Research Methodology

	CHAPTER II RELATED WORK
	CHAPTER III BACKGROUND
	3.1. Consent Management
	3.2. Event-B
	3.3. Blockchain Technology
	3.4. Smart Contract

	CHAPTER IV FORMAL MODELS FOR CONSENT MANAGEMENT IN CENTRALIZED SYSTEMS
	4.1. CM State Machines in Centralized Systems
	4.2. Formal Development in Event-B
	4.2.1. Restricted Processing State Machine (RPSM)
	4.2.2. Withdrawal Approval State Machine (WASM)
	4.2.3. Portable Approval State Machine (PASM)
	4.2.4. Consent Renewal State Machine (CRSM)

	4.3. Model Evaluation in Event-B
	4.4. Event-B Model Transformation to Class Diagram

	CHAPTER V A FORMAL MODEL FOR BLOCKCHAIN-BASED CONSENT MANAGEMENT IN DATA SHARING
	5.1. CM State Machine for Data Sharing in Distributed Systems
	5.2. Formal Development in Event-B
	5.2.1. Data Sharing State Machine (DSSM)
	5.2.1.1. Invariants in DSSM
	5.2.1.2. Events in DSSM

	5.3. Model Evaluation in Event-B
	5.4. Event-B Model Transformation to Class Diagram
	5.5. SmartDataTrust Implementation

	CHAPTER VI ANALYSIS AND INTERPRETATION OF RESULTS
	6.1. Test Cases in CM for Centralized Systems
	6.1.1. Test Cases in the RPSM Model
	6.1.1.1. The RP1 Test Case
	6.1.1.2. The RP2 Test Case
	6.1.1.3. The RP3 Test Case
	6.1.1.4. The RP4 Test Case
	6.1.1.5. Test RP5 Test Case

	6.1.2. Test Cases in the WASM Model
	6.1.2.1. The WA1 Test Case
	6.1.2.2. The WA2 Test Case
	6.1.2.3. The WA3 Test Case
	6.1.2.4. The WA4 Test Case

	6.1.3. Test Cases in the PASM Model
	6.1.3.1. The PA1 Test Case
	6.1.3.2. The PA2 Test Case
	6.1.3.3. The PA3 Test Case
	6.1.3.4. The PA4 Test Case

	6.1.4. Test Cases in the CRSM Model
	6.1.4.1. The CR1 Test Case
	6.1.4.2. The CR2 Test Case
	6.1.4.3. The CR3 Test Case
	6.1.4.4. The CR4 Test Case
	6.1.4.5. The CR5 Test Case

	6.2. Test Cases in CM for Distributed Systems in Data Sharing
	6.2.1. Test Cases in the DSSM Model
	6.2.1.1. The DS1 Test Case
	6.2.1.2. The DS2 Test Case
	6.2.1.3. The DS3 Test Case
	6.2.1.4. The DS4 Test Case
	6.2.1.5. The DS5 Test Case

	CHAPTER VII DISCUSSION AND CONCLUSION
	7.1. Discussion
	7.2. Conclusion

	APPENDIX A EVENT-B MODELS FOR CONSENT MANAGEMENT IN CENTRALIZED SYSTEMS
	1. The RPSM Model
	1.1. The RPCX Context
	1.1.1. Sets in RPCX
	1.1.2. Constants in RPCX
	1.1.3. Axioms in RPCX

	1.2. The RPSM Machine
	1.2.1. Invariants in RPSM
	1.2.2. Events in RPSM
	1.2.2.1. The INITIALISATION Event
	1.2.2.2. The Login Event
	1.2.2.3. The AddPatient Event
	1.2.2.4. The AddConsent Event
	1.2.2.5. The CreateInquiry Event
	1.2.2.6. The CheckAuthorizeConsent Event
	1.2.2.7. The ExecuteQuery Event
	1.2.2.8. The Logout Event

	2. The WASM Model
	2.1. The WACX Context
	2.1.1. Sets in WACX
	2.1.2. Constants in WACX
	2.1.3. Axioms in WACX

	2.2. The WASM Machine
	2.2.1. Invariants in WASM
	2.2.2. Events in WASM
	2.2.2.1. The INITIALISATION Event
	2.2.2.2. The Login Event
	2.2.2.3. The CreateWithdrawal Event
	2.2.2.4. The ApproveWithdrawal Event
	2.2.2.5. The RejectWithdrawal event
	2.2.2.6. The Logout event

	3. The PASM Model
	3.1. The PACX Context
	3.1.1. Sets in PACX
	3.1.2. Constants in PACX
	3.1.3. Axioms in PACX

	3.2. The PASM Machine
	3.2.1. Invariants in PASM
	3.2.2. Events in PASM
	3.2.2.1. The INITIALISATION Event
	3.2.2.2. The Login Event
	3.2.2.3. The CreatePortable Event
	3.2.2.4. The ApprovePortable Event
	3.2.2.5. The RejectPortable Event
	3.2.2.6. The Logout Event

	4. The CRSM Model
	4.1. The CRCX Context
	4.1.1. Sets in CRCX
	4.1.2. Constants in CRCX
	4.1.3. Axioms in CRCX

	4.2. The CRSM machine
	4.2.1. Invariants in CRSM
	4.2.2. Events in CRSM
	4.2.2.1. The INITIALISATION Event
	4.2.2.2. The Login Event
	4.2.2.3. The CreateConsentRenewRequest Event
	4.2.2.4. The NotifyPatient Event
	4.2.2.5. The ExtendConsentExpiration Event
	4.2.2.6. The DeletePatientData Event
	4.2.2.7. The Logout Event

	APPENDIX B AN EVENT-B MODEL OF CONSENT MANAGEMENT FOR DISTRIBUTED SYSTEMS IN DATA SHARING
	1. The DSSM Model
	1.1. The DSCX Context
	1.1.1. Sets in DSCX
	1.1.2. Axioms in DSCX

	1.2. The DSSM Machine
	1.2.1. Invariants in DSSM
	1.2.2. Events in DSSM
	1.2.2.1. The INITIALISATION Event
	1.2.2.2. The AddConsent Event
	1.2.2.3. The AddDataSubjectConsent Event
	1.2.2.4. The CallbackRequester Event
	1.2.2.5. The SubmitRequest Event
	1.2.2.6. The CallbackResponder Event
	1.2.2.7. The SubmitResponse Event
	1.2.2.8. The CallbackDataTransfer Event
	1.2.2.9. The TransferData Event
	1.2.2.10. The InsufficientBalance Event
	1.2.2.11. The CheckConsentExpiration Event
	1.2.2.12. The UnauthorizedAccess Event
	1.2.2.13. The RevokeConsent Event
	1.2.2.14. The RenewConsent Event

	REFERENCES
	VITA

