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There is still no effective treatment for type 2 diabetes, which has been on the 

rise for years. By repositioning current medications for new indications, drug repurposing 
can aid in the discovery of novel medications. Deep learning has recently been applied 
to this problem via link prediction utilizing a graph representation that learns from either 
the structure of a graph or the semantic meaning of entity text. However, because they 
used a single representation as the basis for their work without making any model 
improvements, earlier attempts still had restricted performance. In this study, we suggest 
a new deep-learning approach for the drug repurposing of entities associated with type 2 
diabetes. Transformer, a current deep learning network, serves as the foundation of our 
model's architecture. Regarding our link prediction in the graph, each entity is embedded 
utilizing both (1) structural information embedded from the node and its neighbor nodes 
and (2) semantic information retrieved from its name and descriptions. The experiment 
was conducted using type 2 diabetes data gathered from PubMed and UMLS 
Metathesaurus. The findings demonstrated that our combined model can outperform 
other models that only contain a single module, i.e. StAR and HittER, by exhibiting an 
increase of 77.17% on the mean reciprocal rank score for the drug discovery task. 
Finally, using the model for drug repurposing, we can identify several medications that 
may be employed to treat type 2 diabetes. 
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CHAPTER 1 

INTRODUCTION 

Diabetes is a chronic disease related to the abnormality of the pancreas 
functionality. Diabetes can be divided into two different types: type 1 diabetes or 
insulin-dependent, and type 2 diabetes or non-insulin-dependent. Both types are 
similar since all are related to the problem posed by the way our body uses insulin. 
While type 1 diabetes patients produce less insulin which as a result is not enough 
for body usage, type 2 diabetes is concerned with how our body inefficiently uses 
insulin. It is reported that greater than 95% of the people who are diagnosed with 
diabetes are type 2 diabetes which also shows symptoms later if we compare it to 
type 1 diabetes [1]. There is no known cure for diabetes yet. As for the first type the 
patient needs to inject insulin regularly. Most drugs used by type 2 diabetes patients 
are mainly consumed to help the body improve the usage of insulin as well as 
control and reduce the amount of insulin when it is produced excessively [2]. 

Although there is no way of completely recovering from diabetes, some drugs 
are recommended to help lessen the condition. There are many types of drugs 
recommended for coping with diabetes, however, there is also the possibility of using 
a cure for other diseases for treating diabetes as well. Drug repurposing is the 
method of looking for new usage of clinical drugs. These drugs which were not 
known to be able to be used for a certain disease would go through certain 
procedures so the researcher can be sure whether the new indication would work on 
another disease. Some popular approach includes molecular-docking-based, and 
drug screening which involves looking at how the drug affects the host protein of the 
disease [3]. 

Researchers have been publishing academic works on biomedical for ages. 
This knowledge is very useful for our understanding of the nature of different types 
of diseases and ways to cope with them which provides an imminent source of data 
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for lots of useful purposes. However, text from academic papers is largely 
unstructured and cannot be immediately useful to be shown as insight. But thanks to 
the development of natural language processing (NLP), which mainly concerns text 
data, has eased the way we deal with all the text information in a way that we could 
not before. All the long unstructured text from academic research can then be 
processed to extract useful knowledge by using what is known as name entity 
recognition and relation extraction. With entity recognition, real-world entities such as 
people, places, or biomedical fields such as proteins, drugs, or diseases are extracted 
from sentences and classified with each of their types. As the entities appear in the 
sentences, relation extraction would infer the type of semantic relation that different 
entities appear in the same sentence or even cross-sentences. Through these two 
tools, multi-relation sets are combined into a network of entities which different 
relations connecting them all into a knowledge graph. However, knowledge graphs 
can be incomplete. A task that is concerned in the knowledge graph field is the 
knowledge graph complete or specifically link prediction. The goal of the link 
prediction task is to predict whether there is a new possible link between the entity 
existing in the graph. Hence, through the knowledge graph of biomedical entities, we 
can infer a new connection between drugs and disease which is not known to be 
related before.  

The real-world names of most knowledge graph entities and relations can be 
used to represent natural language text textually. Many pre-trained language models 
are capable of providing information from their textual meaning in human language 
by developing a language model paired with transformer architecture [4].  BERT [5] is 
an instance of a transformer-based language model that only has an encoder 
component. A model like this is frequently used to extract textual embedding and 
may be used for many downstream applications. Since a pre-trained model is trained 
on an extensive text corpus, such as the text of Wikipedia, it is a valuable source for 
textual encoding. As a result, the textual embedding produced by the language 
model can be considered a very potent feature used in training the link prediction 
model. The authors of [6] proposed the KG-BERT model, which applies a language 
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model to knowledge graph tasks. The text includes representations of both entities 
and relations that are organized in a series. KG-BERT likewise employs a single 
transformer model but experiences severe overload due to the need to compute all 
conceivable combinations of entities and relations during the inference stage, which 
slows down the execution time. To address the issue encountered by KG-BERT, the 
“Structure-augmented text representation” (StAR) model has been implemented [7]. 
Additionally, while entities and relations can be considered textual data in language 
models, a different type of transformer model, namely HittER, views each entity and 
relation as a single token [8]. Instead of depending on the semantic information 
offered by language models, these tokens are subsequently put into the model to 
learn how nodes interact with their surrounding nodes. 

 
Figure 1 Comparing the two methods of representing a graph: (a) Textual 

representation, which consists of a head, relation, and tail sequence of text; and (b) 
Structural representation, which shows the primary triple in connection to its 

neighbors. 

In Figure 1, two separate transformer-based models, StAR and HittER, embed 
knowledge graphs using various forms of data. A series of texts serve as an instance 
of textual representation. For example, the phrase “Metformin treats Type 2 
Diabetes” is the textual representation of the entities “Metformin” and “Type 2 
Diabetes”, which are linked by the relation “TREATS”. Regarding structural 
representation, the model instead learns embedding from surrounding nodes with 
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various kinds of relations rather than using the semantic meaning of nodes. 
Additional insights into the link prediction model can be given when textual and 
structural representations are combined. Although semantic or textual information 
tasks have previously proven to be highly effective, the relevance of graph structure 
information, that stores a node's relationship with its neighbor nodes, cannot be 
ignored.  We assume that both representations work well together and can improve 
link prediction task performance. 

In this work, we will focus on how we could use link prediction task to 
propose new drugs as the treatment to type 2 diabetes disease as well improving 
the performance of the older link prediction model. By combining the model which 
learns embedding from structure information and entity textual information. 

1.1. Aims and objectives 

1. To improve the existing performance of the link prediction model for drug 
repurposing by using knowledge graph data 

2. To combine the embedding from different types of representations 

3. To propose a drug list for the treatment of type 2 diabetes 

1.2. The scope of work 

1. Perform link prediction on dataset scraping from SemMedDB database which 
stores all the biomedical predication extracted from academic papers. 

2. Further scraping of entity description from UMLS Metathesaurus is done to 
enhance the performance of the textual encoder 

3. Propose a method combining different types of link prediction models from 
the graph structure and textual representation. 

4. Evaluate link prediction performance by using several evaluating metrics to 
verify the performance of the model. 
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1.3. Research funding 

I receive funding for my studies through the Graduate School at 
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CHAPTER 2 

BACKGROUND 

This chapter provides the background information that is related to the rest of 
the thesis. General knowledge of diabetes, drug repurposing, link prediction, and its 
evaluation methods will be discussed. 

2.1. Diabetes 

Diabetes is a type of long-lasting disease. Our body turns what we consume 
into sugar or its other name glucose. We eat to gain energy. The mechanism behind 
this is that our body turns food into glucose which is released into our blood. If the 
glucose level is high, it will trigger the pancreas to produce insulin. Insulin is very 
crucial as it turns glucose into energy. Hence, the abnormality of insulin happened 
when a person is diagnosed with diabetes either the level of insulin is too low, or our 
body's insulin usage is not efficient anymore. Without good insulin management or 
an insufficient amount of insulin to respond to the level of glucose in our blood 
could lead to many other malfunctioning of the body such as heart disease, vision 
loss, and kidney disease. 

 There is still no real cure for diabetes, but some activities can be taken to 
lessen the condition by decreasing weight, eating well, and exercising.  Other 
measures that should be taken are to get prescribed drugs from a specialist and take 
the drugs regularly, educate on how to manage one's lifestyle to cope with the 
disease and meet the doctor as frequently as possible. 

We can divide diabetes into two categories depending on the problem with 
our production of insulin: type 1 diabetes and type 2 diabetes. Many believe that 
autoimmune reaction is the main cause of type 1 diabetes which means the body 
makes a mistake and try to attack our own body. This type of diabetes affects our 
body by producing less insulin and can be diagnosed in a very early stage in humans 
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(kids or teenagers). However, only about 5-10% of diabetes patients have type 1 
diabetes. There is currently no way to prevent this type of diabetes. 

More people got type 2 diabetes which accounts for approximately 90%-95% 
of all diabetes patients. This type of diabetes causes our body to not use insulin as 
well as a normal person should. It takes years to develop but has shown more and 
more at early age recently. The symptoms are not very noticeable, which is why we 
should get our blood tested if there is a risk presented.  

There are also interesting conditions of diabetes such as gestational diabetes 
and prediabetes. Gestational diabetes happens in a pregnant woman without 
diabetes but increases the baby's risk of diabetes at some point in their life. 
Prediabetes has also started to cause concern in adults. About 1 in 3 adults is 
diagnosed with prediabetes. The condition of prediabetes is very similar to those of 
type 2 diabetes as insulin cannot control the level of sugar in the bloodstream, but 
on a lower scale than those of diabetes. 

2.2. Drug repurposing 

Drug Repurposing or sometimes called drug repositioning, reprofiling, or re-
tasking is a study on searching for already existing drugs and looking for more 
indications of use for other diseases. This method is effective and a lot less 
expensive than trying to come up with a brand-new drug which is a very long process 
taking lots of experiments and trials. Repurposing the original existing drug can cut 
down the time in a drug development process that is needed before the drug is put 
out such as preclinical testing, and safety. One successful example of drug 
repurposing is Sildenafil or more known as Viagra. Originally it was intended to treat 
hypertension, Pfizer repurposed sildenafil and marketed it as Viagra, giving it a 
market-leading 47% share of the erectile dysfunction medicine market in 2012. 
Global sales of Viagra in 2012 reached $2.05 billion. The first three steps of the drug 
repurposing strategy that need to be done before the development pipeline is taken 
are to find a potential chemical for a certain indication, conduct mechanistic 
assessments of drug effects in preclinical models, and phase II clinical studies are 
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used to evaluate efficacy. However, out of the three steps the first step, identifying 
potential drugs is the most crucial part as these candidate drugs need to be very 
confident to be able to continue to the next process [9]. 

There are multiple approaches to drug repurposing. They can be grouped into 
two main types: computational approaches and experimental approaches. 
Computational approaches are concerned with the use of any types of data which 
are associated with the understanding of drug usage such as gene expression, 
chemical structure, etc. Some popular method includes signature matching which 
compares a drug's unique signature with that of other types of drugs, disease, or 
even clinical prototype, and molecular docking, which look for the binding site 
between the drug and target (could be a gene or receptor) [9]. Figure 2 summarizes 
the different approaches to drug repurposing. 

 
Figure 2 Different approaches to drug repurposing [9] 
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2.3. Link prediction 

Knowledge graphs are far from complete and dirty just like any form of data. 
That is why knowledge graph completion comes in to fill in and fixes the 
incorrectness of the information. Link prediction is a task in knowledge graph 
completion. It works by searching for new linkages in the existing graph. Starting by 
learning from original data, it could infer new possible relations that may not be 
presented. There are many ways to achieve the task with one of the most primitive 
ones being latent matrix factorization as graph representation could be illustrated 
with a matrix. Nowadays, many studies on graphs have proposed multiple methods 
to produce a small-sized embedding for every node and relation in the graph, or 
what we can call graph embedding. The new representation encodes insightful 
information which could then be used for predicting new linkage.  We can use the 
notion 𝒦 ⊆  ℰ ×  ℛ ×  ℰ which means that a knowledge graph is a set of entities 
and relations combined which consisted of three parts the head, relation, and tail. ℰ 

is the set of all the entities while ℛ is the set of relations in the knowledge graph. 
Link prediction is a way to complete the graph. So, the model would learn from 𝒦 

to create 𝑠(ℎ, 𝑟, 𝑡) which is the scoring function of a particular model giving a higher 
score to triple with high linkage possibility and keeping impossible linkage score as 
low as possible with ℎ, 𝑡 ∈  ℰ and 𝑟 ∈  ℛ mostly represent in vector in knowledge 
graph embedding method. By representing ℎ, 𝑟, 𝑡 as the head, relation, and tail 
with𝑒ℎ, 𝑒𝑡  ∈  ℝ𝑑𝑒 , 𝑒𝑟  ∈  ℝ𝑑𝑟  and 𝑒ℎ, 𝑒𝑟 , 𝑒𝑡  represent the embedding of the three 
parts of the triple we can say that 𝑠(ℎ, 𝑟, 𝑡) = 𝑓(𝑒ℎ, 𝑒𝑟 , 𝑒𝑡). So, the model of link 
prediction needs to be able to find the optimal solution to the 𝑓 function. 

2.4. Evaluation metrics 

For a triple (I, k, j) in the testing set, we will calculate the ranking either by 
masking the head or tail part of the triple. So, to predict either the head part or the 
tail part of the triple we would replace each part with all the entities in the 
knowledge graph to create the corrupted set. We then filtered any corrupted triple 
that already exists in the training or the validation set. With the filtered corrupted 
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triples, we calculate the score for each triple and rank them from the highest to the 
lowest. Therefore, we can get the ranking of the ground truth for the calculation of 
mean rank (MR), mean reciprocal rank (MRR), and Hits@K score as represented in the 
formula below. 

 MR =  
1

2|𝒦𝑡𝑒𝑠𝑡|
∑ (𝑟𝑎𝑛𝑘(𝑖|𝑘, 𝑗) + 𝑟𝑎𝑛𝑘(𝑗|𝑖, 𝑘))

(𝑖,𝑘,𝑗)𝜖𝒦𝑡𝑒𝑠𝑡

 (1) 

 MRR =  
1

2|𝒦𝑡𝑒𝑠𝑡|
∑ (

1

𝑟𝑎𝑛𝑘(𝑖|𝑘, 𝑗)
+

1

𝑟𝑎𝑛𝑘(𝑗|𝑖, 𝑘)
)

(𝑖,𝑘,𝑗)𝜖𝒦𝑡𝑒𝑠𝑡

 (2) 

 Hits@K =
1

2|𝒦𝑡𝑒𝑠𝑡|
∑ (𝟙(𝑟𝑎𝑛𝑘(𝑖|𝑘, 𝑗) ≤ 𝐾) + 𝟙(𝑟𝑎𝑛𝑘(𝑗|𝑖, 𝑘) ≤ 𝐾))

(𝑖,𝑘,𝑗)𝜖𝒦𝑡𝑒𝑠𝑡

 (3) 
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CHAPTER 3 

LITERATURE REVIEW 

The focus of this chapter will be on the related model for the thesis including 
the broad concept of deep learning and its variations technique which are used to 
apply the task of link prediction. After that, we will discuss several different 
approaches such as the traditional method, graph convolutional network, graph 
attention network, and transformer-based graph embedding. 

3.1. Deep learning  

Deep learning is a part of machine learning algorithms that focus more on 
trying to imitate how neurons work in the human brain. It consists of nodes 
connecting with multi nodes on multilayers which is where the word deep comes 
from as the number of layers is dependent on the specific design of the different 
models and some models can have a very steep network. Deep learning can learn to 
extract useful features from the data without the need for humans. Additionally, the 
success of deep learning also owes to the increase in the amount of data that we 
could acquire in this age. These factors have gathered more interest in deep learning 
models and have the effect of improving the performance of many underperformed 
tasks immensely such as speech recognition, image classification, and image 
segmentation. As the study of deep learning became widespread many types of 
models are proposed for solving different domain-specific problems. Some examples 
include Convolutional Neural Network and the Transformer model. 

3.1.1. Transformer 

Transformer, from the paper “Attention Is All You Need” from Google with its 
highly improved architecture, has transformed the deep learning field forever. The 
model consisted of two parts: an encoder and a decoder. As with most tasks in NLP, 
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the input of the model is a sequence of text, and the output produces a sequence 
of output. The encoder encodes the input while the decoder receives the 
representation from the encoder and transforms it into the output. The backbone of 
the transformer model is mainly based on the attention mechanism which is defined 
in the equation below. With self-attention, the model would be able to attend to 
some parts of the input more than others as not all segments of the inputs are 
equally relevant. 

 
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄𝐾𝑇

√𝑑𝑘

) 𝑉  (4) 

The whole transformer architecture consists of self-attention as well as 
pointwise put on top of each other multiple times with similar architecture for both 
the encoder and encoder model [4]. Although, the architecture in Figure 3 contains 
both the encoder and decoder we can also have a transformer composed only of 
the encoder or decoder by itself for example the Bidirectional Encoder 
Representations from Transformers (BERT) consists only of encoders while the 
popular text generation model GPT may include only decoders in its architecture. 
Transformer has become widely popular and found new usage in other fields besides 
NLP as well such as in computer vision with the Vision Transformer model [10]. 
Because of its flexibility and high performance, the transformer model has been used 
in a variety of domains and became the state-of-the-art model for many problems. 
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Figure 3 Transformer architecture [4] 

3.1.2. Bidirectional encoder representations from transformers (BERT) 

Bidirectional Encoder Representations from Transformers (BERT) is a type of 
transformer with only the encoder as the component. This type of transformer is 
very popular for generating embedding for downstream tasks. BERT is provided as a 
pre-trained model on a large corpus with each model that could be trained on the 
varying type of domains that we can choose from to accommodate the purpose and 
objective of our job. The pre-trained process provides the base for creating rich 
embedding which is trained with unsupervised tasks by using a masked language 
model, where some words are left out for the model to predict or the next sentence 
prediction which are important for finetuning of tasks like question answering and 
natural language inference which it is crucial to understand the nature and the 
relation of multiple sentences [5]. As shown the Figure 4, the BERT model begins 
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with the pre-training phase which the model is trained to predict the masked word of 
the masked language model. After completing the first step we can use the pre-
trained model on our downstream tasks such as Named-Entity Recognition. In BERT 
some special tokens are also included. [CLS] token is used at the beginning of the 
sequence as a global representation while [SEP] is a special token for separating 
different sections of input e.g., in question answering task we could use [SEP] as a 
separator between the question-and-answer part of the output. 

 
Figure 4 Bidirectional Encoder Representations from Transformers [5] 

3.2. Knowledge graph representation 

To get the most benefit from knowledge graphs, they need to be represented 
in a way that computers can process and learn from them. Most knowledge graph 
representation involves embedding entities and relations into small-sized vectors. 
Many methods are employed to achieve this from the simplest to the most 
sophisticated model. 

3.2.1. Traditional graph embedding 

In most traditional graph embedding, the scoring function is used to learn the 
embedding of both the entities and the relation. As the entities with head and tail 
parts are connected by a relation, embedding can also be translated from how all 
the entities are attached in the graph. For example, in the simplest graph embedding 
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model TransE, it is hypothesized that from a triple (h, r, t) the sum of the head (h) 
and relation (r) embedding should be as close to the embedding of the tail 
embedding as possible. Hence, in link prediction, any (h, r, t) triples with the highest 
scoring function will have the highest probability of being a real triple. The scoring 
function of various traditional graph embedding is listed in Table 1. 

Table 1 Scoring function of different graph embedding models [11] 

Model Scoring Function 𝒇(𝒉, 𝒓, 𝒕) 

TransE [3] −‖ℎ + 𝑟 − 𝑡‖1
2
 

TransR [12] −‖𝑀𝑟ℎ + 𝑟 − 𝑀𝑟𝑡‖2
2 

DistMult [13] ℎ𝑇𝑑𝑖𝑎𝑔(𝑟)𝑡 

ComplEx [14] 𝑅𝑒𝑎𝑙(ℎ𝑇𝑑𝑖𝑎𝑔(𝑟)𝑡̅) 

RESCAL [15] ℎ𝑇𝑀𝑟𝑡 

RotatE [16] −‖ℎ ∘ 𝑟 − 𝑡‖1
2
 

3.2.2. Graph convolutional networks and graph attention networks  

There is also an attempt in implementing a convolutional neural network 
(CNN) on graph embedding which is introduced in the paper [17] Graph 
Convolutional Network or GCN. While CNN is designed for image data GCN is 
designed so that it would work with graph data. In CNN, the kernel of fixed is applied 
to the image by performing a calculation on each window of the segment of the 
image one by one until it covers all the pixels in the image. In other words, in each 
window, the pixels that are next to each other are calculated with the kernel and are 
averaged to get the numeral representation of that window. Similarly, in graph data, 
each node is accompanied by several adjacent nodes which are connected by 
relations. To get the embedding of each node the embedding for the node itself is 
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combined with the embedding of the neighbor node and averaged to create the final 
embedding. Figure 5 illustrates the similarity between GCN and CNN. 

 
Figure 5 CNN and GCN comparison [18] 

Another graph embedding technique called, Graph Attention Networks (GAT) which is 
an improvement from GCN, assigned an attention score to the neighbor node so that 
the most important neighbor node would have the highest effect in the calculation 
of the node embedding. Both techniques mentioned above have become the 
standard in graph embedding for many tasks. However, as you may have noticed 
these models do not consider relation embedding while calculating the node 
embedding. 

Although graphs can consist of only graphs with nodes attaching most 
knowledge graphs are real entities connected by the relation of multiple types. So, if 
any two nodes are connected by one type of relation they may or may not be also 
connected by another relation type as well which is why the relation type 
embedding is very crucial in the representation of a knowledge graph. In [19], the 
authors integrate the power of GAT with the embedding of relation type by 
concatenating the head, tail, and relation together into one long vector and assigning 
different attention weights to all the triples in the knowledge graph. Same with GCN, 
neighboring nodes still play an important role in embedding the knowledge graph. 
The model considers the context of a node with more than just the immediate 
neighbor node but also the next hop as shown in Figure 6 the embedding of the 
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node U.S. is calculated from 2 hop neighbors which could provide even more rich 
embedding as more information is learned from the farther node. 

 
Figure 6 Multi-hop neighbor in KBAT 

3.2.3. Graph textual embedding approach 

Most knowledge graph entities and relations also have their correspondent’s 
real-world name which could be used as the textual representation of natural 
language text. For example, the entity “Joe Biden” has the relation “Is president of” 
with the entity “USA”. As mentioned in (3.1.2), with a pre-trained BERT model these 
texts could also provide information from their textual meaning in human language.  
In [6], the authors proposed a model called KG-BERT, which makes use of a language 
model on knowledge graph tasks. Entities and relations are represented in text and 
put together in a sequence, as shown in Figure 7 The model helps improve the 
previous by increasing the robustness of the model which was suffering from unseen 
entities. However, KG-BERT uses a single transformer model and suffers from high 
overload since in the inference stage it must calculate all the possible combinations 
of entities and relations which results in slow running time. 
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Figure 7 Architecture of KG-BERT [6] 

The model named “Structure-Augmented Text Representation” (StAR) was 
proposed to fix the problem faced by KG-BERT. The architecture of StAR is illustrated 
in Figure 8. In StAR, the triple is divided into two separate parts. The first part is the 
concatenation of the head entity and relation text. The second part consists only of 
the entity text of the tail section of the triple. By doing this, it reduces the number of 
combinations as seen in KG-BERT which must feed all three parts of the triple in one 
go. The model parts are twisted by adding a pair of BERT models instead of only a 
single model. StAR uses a Siamese network with shared weight. Hence, the first 
model is fed with the head and relation concatenation part, and the second part is 
fed with the tail entity text. After that, the output of both parts of the triple is used 
to compute two loss scores. The first loss score is the classification objective, which 
follows a similar approach to other NLP tasks and implements multi-layer perceptron 
and utilizes binary cross entropy loss to produce the label if the triple combination is 
possible or not (1 for real triple and 0 for negative triple). The second training 
objective called the contrastive objective uses scoring like traditional graph 
embedding methods by finding the distance between the head and relation part 
with the tail part so that the negative triple would have a bigger distance compared 
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to the positive triple. StAR proves to be very efficient and performs much faster than 
KG-BERT and the model performance also improves. 

 
Figure 8 Architecture of StAR model [7] 

3.2.4. Graph structural embedding approach 

HittER is another transformer-based graph embedding model. The difference 
between HittER and KG-BERT and StAR is that the transformer model used in HittER is 
not a language model. As most language models use the token of textual data as the 
input Hitter treats every single entity or relation as one token to train the transformer 
model. As seen in Figure 9, HittER is a hierarchical model which means there are two 
blocks of transformers placed on top of each other. The first block creates head 
relation-specific embedding by incorporating the head and relation of the triple as 
the input while the second block combines the embedding of the main triple and its 
neighbor. The possibility score of the triple is computed by the dot-product of the 
output of the second block with the embedding of the tail entity. Therefore, HittER 
not only learns the representation at the triple level but also includes information 
from the context which in this case is the neighbor nodes of the head embedding. 
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Figure 9 HittER architecture [8] 
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CHAPTER 4 

CONCEPT AND RESEARCH METHODOLOGY 

In this chapter, the model concept proposed for improving the link prediction 
task for drug repurposing is discussed. As discussed in the last chapter, there are two 
types of transformer-based models one focuses on nodes and relations textual 
representation while the other one is to learn the contextual embedding from 
surrounding nodes. For the model in this thesis, we would like to propose a way to 
combine both representations from the already existing model to further increase 
the performance of the link prediction model. 

4.1. Data acquisition 

Most of the data acquisition process is replicated from the paper [3] which is 
a paper on drug repurposing for Covid-19. The input data of this thesis is a 
knowledge graph extracted from the research literature database. The overview of 
the whole data is illustrated in Figure 10. 

 
Figure 10 Data preparation process 

4.1.1. SemMedDB 

All the triples data used in this thesis is provided by SemMedDB [20]. 
SemMedDB is a database that contains all the predicates (relations) in the 
biomedical field extracted from PubMed citations (approximately 29.1 million 
citations) by using NLP tools called SemRep (rule-based relation extraction). A 
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summary of how SemRep works is it maps all the entities appearing in a sentence to 
UMLS Metathesaurus, another database that keeps track of biomedical field 
vocabulary. After that, it will look for how those entities interact in the sentence and 
normalize the relation to the standardized relation name of Semantic Network (a 
standard controlling the schema of one entity interacting with another) since there 
may be multiple ways to say the same word. Further preprocessing is needed to 
clean useless triples and limit the number. The latest version of the raw dataset that 
was extracted from SemMedDB contains a total of 116,603,760 predicates. 

4.1.2. Preprocessing 

We began by removing the first class of unnecessary entity types in 
SemMedDB called generic biomedical concepts. The list of generic concepts is pre-
defined in one of the tables in the database of SemMedDB and includes entity types 
like Pharmaceutical Preparation. Then, we consulted with the domain experts to 
select the most useful relation type for our drug repurposing task. We were provided 
with a list of 20 relation types. Additionally, any entities with the entity types of 
Activities & Behaviors, Concepts & Ideas, Objects, Occupations, Organizations, and 
Phenomena were also discarded from the dataset. After the filtering of this step, 
54,735,504 predicates are left for further processing. 

The next filtering involves removing uninformative links which use statistical 
value as the threshold. The value is calculated by using network degree centrality to 
filter out high-degree concepts and log-likelihood ratio for any triples which do not 
contain useful information. To calculate the degree of an entity, we use an 
adjacency matrix which is one way to present a knowledge graph. The rows and 
columns of the matrix represented the entities in the knowledge so that if there is a 
connection between any two entities the cell 𝐴𝑗𝑖  would equal 1 (𝑖 and 𝑗 correspond 
to the first and second entity). Then, the in and out degrees of concept 𝑖 can be 
calculated by using the following formula. 
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𝑘𝑖

𝑖𝑛 = ∑ 𝐴𝑗𝑖

𝑛

𝑗=1

  (5) 

 
 𝑘𝑖

𝑜𝑢𝑡 = ∑ 𝐴𝑖𝑗

𝑛

𝑗=1

 (6) 

 

As for uninformative links calculation, we used 𝐺2 score which is the indicator 
of how strongly the three terms (head, relation, tail) are linked together. If the 
observed and expected frequencies differ significantly, the triple is less likely to 
happen by random and has a high 𝐺2 score. The formula which is used to calculate 
the score is as follows. 

 
𝐺2 = 2 ×  ∑ 𝑛𝑖𝑗𝑘

𝑖,𝑗,𝑘

 ×  log (
𝑛𝑖𝑗𝑘

𝑚𝑖𝑗𝑘
) (7) 

 𝑚𝑖𝑗𝑘 =
∑ 𝑛𝑗𝑘𝑖  ×  ∑ 𝑛𝑖𝑘𝑗  ×  ∑ 𝑛𝑖𝑗𝑘

𝑇2
 (8) 

𝑛𝑖𝑗𝑘  is the frequency of the term i, j, k appearing together, and 𝑇 is calculated by 
𝑇 =  ∑ 𝑛𝑖𝑗𝑘 

All three measures mentioned above (𝐺2, 𝑘𝑖
𝑖𝑛, 𝑘𝑖

𝑜𝑢𝑡 ) were normalized to the 
range of 0 to 1 and summed up together to produce the final score. The score 
indicates that the more specific the relation the lower the score. A group of an entity 
related to diabetes was all kept in the dataset without any filtering. (Refer to the list 
in APPENDIX A). Also, with the limitation of GPU and model size, we only kept only 
an adequate number of triples for training which result in the final number of triples 
in the dataset being 81,008 triples after removing duplication and more entity type 
filtering. 

4.1.3. Time-slicing data split 

To test the ability of our model performance we divided the dataset into 
training, validation, and testing sets. We split the dataset in the same way as a time 
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series dataset. We use the data from before 2021 as the material to train our model 
while testing it on the future triple. This is an imitation of a real-case scenario to see 
if the knowledge that is available to us at the current time could be used to predict 
the drug which can be a possible treatment for the future. Duplicate predicate from 
different timeframe is also deleted in this step. As a result, the final number of 
examples in each set is 64,830, 6,215, and 9,963 triples for the training, validation, 
and testing sets respectively. 

4.1.4. Entity description 

As shown in Table 2, the dataset consists of 26,598 entities with 18 relation 
types. The top 3 relation types with the most triples are INTERACTS_WITH, 
COEXISTS_WITH, and AFFECTS. TREATS, which is the main type for identifying 
treatment in drug repurposing tasks, accounts for 6.77% of the data. To enhance the 
quality of the textual encoder module, we incorporated additional entity 
descriptions for link prediction. The descriptions were scraped from UMLS 
Metathesaurus through rest API. We were able to scrape descriptions for 17,421 out 
of 26,598 entities. As for entities without descriptions, only the entity names will be 
used. 

Table 2 Relation Name 

Relation Name Inverse Relation Name Count (%) 

INTERACTS_WITH INTERACTS_WITH 25.71 

COEXISTS_WITH COEXISTS_WITH 14.60 

AFFECTS IS_AFFECTED_BY 9.59 

ASSOCIATED_WITH ASSOCIATED_WITH 8.41 

INHIBITS IS_INHIBITED_BY 7.87 

CAUSES IS_CAUSED_BY 7.43 

TREATS IS_TREATED_BY 6.77 

STIMULATES IS_STIMULATED_BY 6.67 
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PREDISPOSES IS_PREDISPOSED_BY 3.89 

DISRUPTS IS_DISRUPTED_BY 2.36 

PREVENTS IS_PREVENTED_BY 1.80 

AUGMENTS IS_AUGMENTED_BY 1.72 

PRODUCES IS_PRODUCED_BY 1.62 

COMPLICATES IS_COMPLICATED_BY 0.50 

USES IS_USED_BY 0.49 

PRECEDES IS_PRECEDED_BY 0.33 

MANIFESTATION_OF IS_MANIFESTED_BY 0.14 

CONVERTS_TO IS_CONVERTED_FROM 0.09 

4.2. The combined model method 

We used two models of graph embedding as the base for the combination. 
The text or the description if implemented in pair with pre-trained language can 
immensely provide deep meaningful semantic information about the entities and 
relations. However, we cannot ignore the neighbor node size of information which is 
another useful source. Hence, in this section, we will describe the two base models 
and how we will combine them to improve performance. Table 3 compares the 
definition and the description of the two types of graph embeddings. 

Table 3 Comparison of textual and structural graph representations along with 
aspects such as node representation, input, and training method. 

Topic Textual representation Structural representation 

Node representation Each node and relation can be 
represented with meaningful 
words or phrases. 

Each node is connected to its 
neighbors via different types of 
relations. 

Input The combination of head, 
relation, and tail in its textual 
form is used to learn from. 

Utilizing information from nearby 
nodes, node embedding can be 
enriched. 
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Topic Textual representation Structural representation 

Training method Can be seen as a possible 
sentence classification where 
each word/token provides the 
semantic information and 
collocation of surrounding words. 

With information about its neighbors, 
the model can learn clues to predict 
similar relations with relatively similar 
structured neighbors. 

4.2.1. Structure-augmented text representation (StAR) 

The triple is split into two separate components in StAR [7]. The head entity 
and relation text are concatenated to form the first component. The entity text for 
the triple tail segment is included in the second component. The Siamese network 
used by StAR consists of two BERT models with shared weights. As a result, the first 
model receives the head and relation concatenation, while the second receives the 
tail entity, both in text form. First encoder module inputs are as follows: 
𝑥[𝐶𝐿𝑆], 𝑥(ℎ), 𝑥[𝑆𝐸𝑃], 𝑥(𝑟), 𝑥[𝑆𝐸𝑃]second encoder module inputs are 𝑥[𝐶𝐿𝑆], 𝑥(𝑡), 𝑥[𝑆𝐸𝑃]. 
To make a more complex embedding, the head and tail input can also include their 
description, adding extra definitions for each entity input. There are no negative 
examples in the knowledge graph. However, it is essential to sample negative cases 
to train the model. By introducing some random entities into one of the triple's 
entity parts, negative sampling is accomplished. If the graph's positive triple is 
denoted by 𝑡𝑝 = (ℎ, 𝑟, 𝑡) , the negative triple is denoted by 
{(ℎ′, 𝑟, 𝑡)|ℎ′ ∈ ℰ ∧ (ℎ′, 𝑟, 𝑡) ∉ 𝒦} or 𝑡𝑝′ ∈ {(ℎ, 𝑟, 𝑡′)|𝑡′ ∈ ℰ ∧ (ℎ, 𝑟, 𝑡′) ∉ 𝒦} , 
respectively, depending on whether the corrupted triple is in the head or tail of the 
original K. 

After that, two loss scores are computed using the output from both sections 
of the triple. The classification objective is utilized as the first loss. The classification 
objective uses a multi-layer perceptron with a binary cross entropy loss to determine 
if the classification of the combination is correct or not: 1 for a positive triple and 0 
for a negative triple. This approach is like that of other NLP tasks. The following 
formula can be computed: 
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ℒ𝑐 = −

1

|𝒟|
∑

1

1 + |𝒩(𝑡𝑝)|
(log 𝑠𝑐 + ∑ (1 − log 𝑠𝑐′

)
𝑡𝑝′∈𝒩(𝑡𝑝)

)

𝑡𝑝∈𝒟

 (9) 

where 𝒩(𝑡𝑝) is the number of negative triples for every positive triple and 𝒟 is the 
total number of positive triples. The scores or probabilities of the positive and 
negative triples, respectively, are denoted by 𝑠𝑐 and 𝑠𝑐′ . 

The contrastive objective is the name of the second training objective. By 
measuring the distance between (1) the head and relation component and (2) the 
tail part, the contrastive objective employs scoring like conventional graph 
embedding methods to ensure that a negative triple has a greater distance than a 
positive triple. For the positive triple 𝑡𝑝 and the negative triple 𝑡𝑝′, the distance-
derived score is denoted with 𝑠𝑑 and 𝑠𝑑′ , respectively. The following is an example 
of a margin-based hinge loss: 

 ℒ𝑑 =
1

|𝒟|
∑

1

|𝒩(𝑡𝑝)|
∑ 𝑚𝑎𝑥(0, 𝜆 − 𝑠𝑑 + 𝑠𝑑′

)
𝑡𝑝′∈𝒩(𝑡𝑝)

𝑡𝑝∈𝒟

 (10) 

The final learning objective's propagation and training are done at the same time. 
The following is the definition of the two-loss equations' sum: 

 ℒ𝑑 = ℒ𝑐 + 𝛾ℒ𝑑 (11) 

where 𝛾 represents the weight. 

Figure 11 depicts an overview of the entire textual model. The transformer 
encoder model's output provides the embedding vector to the loss module, which 
may be thought of as a decoder. The score for the triple in link prediction can be 
produced by either one of the two losses. Our initial study shows that both losses 
produce comparable results. The architecture's fine-tuned encoder module can be 
utilized to produce the embedding for textual representation in the proposed model 
once the pre-trained model has been trained using the link prediction task. 
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Figure 11 Architecture of textual model (StAR) [7] 

4.2.2. Hierarchical transformers for knowledge graph embeddings (HittER) 

Another transformer-based graph embedding approach is HittER [8]. The 
transformer model used in HittER differs from those used in KG-BERT and StAR in that 
it is not a language model. Textual data is the primary input for most language 
models. In contrast, HittER trains the transformer model by treating each entity or 
relation as a single token. Since HittER uses a hierarchical framework, two blocks of 
transformers are stacked one on top of the other in the encoder. The head and 
relation of the triple are used as inputs in the first block to generate the head 
relation-specific embedding. The embedding of the primary triple and its neighbors 
are combined in the second block. The dot-product of the second block's output 
and the tail entity's embedding is used to calculate the triple possibility score. Since 
the neighbor nodes of the head embedding are the context in this instance, HittER 
not only learns representation at the triple level but also incorporates context-
related data. 
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Figure 12 Comparison of (a) tail prediction and (b) head prediction in the HittER 

mechanism. For data input, the triple (Metformin, TREATS, and Type 2 Diabetes) is 
used as an illustration. The head and relation are inputted into the encoder for the 
tail prediction task, whereas the tail and relation are input into the encoder for the 

head prediction task. Utilizing different values for relation embedding, in which 
various colors are employed to represent different relation inputs. 

HittER uses two different scoring types for head and tail prediction, as shown 
in Figure 12. Both the head and the relation must be provided into the encoder for it 
to forecast the tail. Both the tail and the relation must be provided into the encoder 
for it to forecast the head. The effectiveness of the model can be increased by 
dividing the two scoring functions for prediction [21, 22]. 

4.2.3. Proposed method 

The vector representation of the textual side is created using StAR. We can 
benefit from the pre-trained embedding of biology text by using BioBERT as the pre-
trained model. StAR models are trained in two different ways. We will fit the original 
data in its original order into the model in the first one, which is called Normal StAR. 
While the second, called Inverse StAR, will be input with the triple's reversed form. 
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As an example, a triple “A treats B” will be changed to “B is treated by A”. We 
obtain the embedding matrices for the head part (entity and relation) and the tail 
part, which will be further implemented in the following phase, after training both 
models. Both models are trained using the BioBERT pre-trained transformer model, 
which was created using a sizable biomedical corpus, including PubMed Abstracts 
(4.5 billion words) and PMC full-text articles (13.5 billion words) [23]. 

 
Figure 13 StAR inverse dataset reversion 

We employed another transformer-based graph embedding called HittER to 
take the structure information into account. HittER predicts the tail part (A treats 
___) and the head part (B is treated by ___) via different scoring functions. Therefore, 
StAR requires two separate embeddings. For combining with predicting the tail and 
head score functions of HittER, respectively, the normal StAR and inverse StAR will 
be used. The inversed process is shown in Figure 13. For example, the relation 
between “Metformin treats type 2 diabetes” and “Type 2 diabetes treats Metformin” 
must be changed for the language model to understand the new, altered triple. For 
instance, the passive form of the original relation IS_TREATED_ BY is the inverse 
counterpart of the relation TREATS. All remaining relations follow a similar process, 
except a few, like COEXISTS_WITH, where reading in any direction does not affect the 
meaning. Both the relation's original text and its inversed form are listed in Table 2. 
After training, the two StAR models are applied to the source component (entity and 
relation) as textual embedding generators or textual encoders. 

HittER serves as the foundation of our model combination. As a result, inputs 
are initially initialized as embedding vectors made up of three tokens: the relation 
(𝐸𝑟𝑝

), the source entity (𝐸𝑒𝑠𝑟𝑐
), and the [CLS] special BERT token (𝐸[𝐶𝐿𝑆]). The exact 

same procedure is applied to neighbor nodes for source entities and their 
relationships. It is possible to manually set the number of neighbor nodes, which is 
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denoted by (𝑁𝑒). The token [CLS], which is used to represent both the source entity 
and relation in pair, is then produced by the first layer of the BERT entity 
transformer. The context transformer is a second transformer block that takes as 
input the output [CLS] tokens of the source and neighbor entities. The source triple 
and its neighbors' final embedding representation are created by this transformer 
block. The [GCLS] special token is added before the [CLS] token outputs from the 
previous transformer block. The global embedding is learned by [GCLS] from the 
remaining tokens. 

The [GCLS] output of the structural encoder will be instantly concatenated 
with the embedding of the source and relation parts of the textual representation. 
The training process begins with the tail prediction, where textual representation for 
concatenation is created using the normal pre-trained textual transformer encoder. 
An inverse pre-trained textual transformer encoder is then used in the head 
prediction stage. The embedding will then use the input text “Metformin treats” for 
the triple (Metformin, TREATS, and Type 2 Diabetes), using the normal textual 
transformer encoder. In contrast, the text will be entered into the inversed 
embedding generator as “Type 2 diabetes is treated by”. A more thorough 
explanation of the two different scoring functions is provided in Section 4.2.2. It 
should be noted that the textual encoders only provide the textual embedding, and 
their weights are not learned in the combined model training process. 

After concatenation, the vector goes through fully-connected layers. As such, 
the model can capture the information from both textual and structural 
representation. After that, the link prediction score is calculated using the new 
representation-combined embedding. The true triplet's plausibility score is calculated 
as the dot-product of 𝑇[𝐺𝐶𝐿𝑆]  and the target entity's token embedding via the 
decoder. The plausibility scores for all other candidate entities are calculated in the 
same manner. Then, they are normalized using the softmax function. Finally, the 
cross-entropy loss is obtained using normalized distribution: 

 ℒ𝐿𝑃 = − log(𝑒𝑡𝑔𝑡|𝑇[𝐺𝐶𝐿𝑆]) (12) 
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Masked entity prediction (MEP) was also used to help lessen the 
overwhelming noise of the surrounding nodes. The already-high-quality input may at 
times disregard the newly added context vector. Forcing the model to learn new 
knowledge could require more work. Another unique token [MASK] was added to 
help solve this issue. The position of the source entity is where this token is 
randomly substituted. As a result, noise is added to the input, forcing the model to 
take into account contextual information when learning. Masked entity prediction 
uses the output of the second block of the original source embedding, 𝑇𝑒𝑠𝑟𝑐

. By 
doing this, the additional context vector won't have a significant impact on the 
quality of the source embedding, making it impossible for 𝑇𝑒𝑠𝑟𝑐

 to predict its original 
self. The accumulation of ℒ𝐿𝑃  (link prediction loss) and ℒ𝑀𝐸𝑃  (masked entity 
prediction loss) results in the modification of the loss as follows: 

 ℒ𝑀𝐸𝑃 = − log(𝑒𝑠𝑟𝑐|𝑇𝑒𝑠𝑟𝑐
) (13) 

 ℒ = ℒ𝐿𝑃 + ℒ𝑀𝐸𝑃 (14) 

The proposed model architecture is visualized in summary in Figure 14. 
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Figure 14 Proposed architecture for the link prediction model that combines textual 

and structural representation. 

4.3. Evaluation 

We will utilize mean rank (MR), mean reciprocal rank (MRR), and Hits@K to 
evaluate the whole test set, as is common practice in link prediction tasks. The top K 
values of the Hits@K score will be 1, 3, 10, and 100, even though the real-world drug 
list for testing can reach 500 substances. In contrast to MRR, which is more sensitive 
to high-ranking scores, MR is more sensitive to low-ranking values (bottom). Due to 
our greater interest in placing the right medicine at the top of the list, MRR offers 
better insight into the model performance. However, MR is a value that is easier to 
comprehend and understand. Additionally, it's crucial to note that, in contrast to the 
other metrics, MR measures performance as a function of value, where a lower value 
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indicates greater performance. All metrics can only reach a maximum value of 1. The 
quantitative evaluation process makes use of these metrics. We forecast the top 10 
high-potential drugs to further evaluate the model's qualitative performance. 

4.4. Drug List 

Following model training, the drug list can be easily acquired by utilizing the 
model prediction method. The dataset contains a list of all the Pharmacological 
Substances that could be used as potential medications. Then we can add the drug 
entities to the triple “___ TREATS Type 2 Diabetes” in the head portion. The 
plausibility score for each medicine as well as the pairs for TREATS and Type 2 
Diabetes was then determined using the inference model. By doing this, we may 
order the medicine from most to least probable. In our graph, there are 25,598 
entities. Only the top-ranked drugs, however, will be subjected to additional testing. 
Given that not all entities are connected to drugs, it is advisable to get rid of them 
from the drug list. This list serves merely as a preliminary shortlist. To undertake a 
more thorough study procedure, a drug domain specialist is required. However, by 
using the model we can save time by removing the need to concentrate on drugs 
with low potential. 

4.5. Experimental setup and model parameters 

BioBERT version 1.1, a pre-trained model from huggingface, which keeps a 
variety of pre-trained models and datasets, was used for the textual transformer 
model [24]. For contrastive objectives, Euclidean distance was used with a learning 
rate of 10-5 for the textual module with a batch size of 40, which was the maximum 
number that our GPU could handle. The learning rate for the suggested model was 
set to 10-1, and the activation function was chosen to be the Gaussian error linear 
unit (GEULU). A batch size of 128 was used for the model's training. The combined 
method used an embedding size of 320. Two dense layers were used to integrate 
the two representations.  
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CHAPTER 5 

EXPERIMENTS AND RESULTS 

This preliminary result from the combined model from Chapter 4 is compared 
with other baseline models. After learning about the training set, the performance of 
the model is evaluated by using the metrics discussed in 4.3.  

5.1. Result 
5.1.1. Overall result 

A comparison of the performance of our suggested model and the baseline is 
shown in Table 4. We used the StAR model, a text-only graph embedding encoder 
model, and the HittER model, a structural information graph embedding encoder 
model, as our baseline models for this study. The best MRR was demonstrated by 
our suggested model when compared to the baseline models. Metrics for MRR 
showed a rise from 23.84 to 27.19. HittER confirmed its significance as the foundation 
of our model by outperforming all other baseline models. The lowest MR was shown 
by StAR inverse, giving it the top overall rating. Since inverse rank value gives more 
weight to models that correctly rank triples higher, MRR is advised as the primary 
metric. In all Hits@K measures, our model performed better than all baseline 
models, especially for the Hits@3 metrics. These results thus emphasize the 
beneficial effects of adding textual representations to triples that are already highly 
scored by the HittER model. As a result, using our approach, the initial scoring by 
HittER was elevated even more. On the other hand, the performance improvement 
diminished as K's value grew. These results provide empirical support for the model's 
two-representation encoder design. The model is found to perform better when 
many representations are added to it rather than depending just on one 
representation. As related nodes frequently display comparable patterns with one 
another, structural representation gives information on node interactions with its 
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neighbors in the graph dataset. On the other hand, the entity descriptions provide 
additional information about how things act in the real world, and the textual 
encoder teaches the model its semantic meaning. That such an improvement may 
be observed when applied to the same architecture is not unexpected. 

Table 4 Performance of the test set using the prediction model. The performance 
score with the highest rating is bolded. 

Model MR (↓) MRR(↑) Hits@1(↑) Hits@3(↑) Hits@10(↑) Hits@100(↑) 

StAR 4,203.58 13.32 6.73 15.63 27.01 45.46 

StAR inv 4,650.22 16.43 10.10 19.04 28.58 45.91 

HittER 4,479.08 23.84 15.59 27.48 41.73 49.87 

Ours 4,502.62 27.19 18.18 33.23 43.17 50.11 

5.1.2. Treatment-task result 

The main goal of our study is medication repurposing. We only considered 
the TREATS relation while evaluating the model's performance. The efficacy of the 
model was subsequently examined to find triples that were connected to the 
treatment. Table 5 shows that our model beat the typical HittER model across all 
metric scores, which is noteworthy. The effectiveness of head prediction was then 
examined. Since the drug is the head portion of the triple (Drug, TREATS, Disease), 
head prediction provides the answer to the question: “Which drug is the treatment 
for the disease?” The MRR head prediction score significantly increased from the 
HittER assessment score of 12.31, reaching a value of 21.81 in the findings of the 
head prediction. When compared to the highest baseline value of 5.33, the Hits@1 
score shows a 126.83% increase in numbers. This result once more demonstrates 
that our suggested model outperformed the HittER model, which simply uses 
structural representations. Regarding the StAR inverse model, Table 5 reports the tail 
prediction results since the drug section is really in the inverse model's tail input 
(Disease, IS_TREATED_BY, Drug). 
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Table 5 The performance of the link prediction model for treatment-related 
relation is shown in the "head" column, which only displays results from head 
predictions, while the "both" column averages results from both head and tail 

predictions. Bold text indicates the top performance score. As the dataset triple 
direction is reversed, the StAR inverse result is based on the tail prediction. 

Model 
MRR(↑) Hits@1(↑) Hits@3(↑) Hits@10(↑) 

both head both head both head both head 

StAR 12.00 9.24 4.15 4.38 15.34 10.55 28.25 19.55 

StAR inv 13.16 6.84 8.00 3.44 14.22 6.75 23.64 14.22 

HittER 28.26 12.31 18.96 5.33 33.77 12.44 45.85 31.28 

Ours 31.06 21.81 22.10 12.09 36.97 22.39 46.15 32.58 

5.1.3. Description ablation study 

This section aims to demonstrate how adding entity descriptions may 
enhance a model's capabilities. To compare the suggested model that makes use of 
description embeddings with a no-description version, we trained the textual model 
with and without entity descriptions for both the normal and inverse versions. Table 
6 compares the MRR values for each setting. Overall, we saw a common tendency in 
all the models: when trained on data containing descriptions, all metric values rose. 
Such a finding demonstrates how including descriptions gives the model more 
meaningful data for forecasting. The MRR values of StAR dramatically increased from 
11.69 to 13.32 and from 14.92 to 16.43 for the StAR inversed model after including 
the additional entity descriptions as input. It should be highlighted that the structural 
model and description-added textual model together achieved the greatest MRR and 
Hits@1 values of any model, at 27.19 and 18.18, respectively. 
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Table 6 Link prediction model comparison between those with (w/) and without 
(w/o) descriptions. The highest performance rating is highlighted in bold. 

Model MR (↓) MRR(↑) Hits@1(↑) Hits@3(↑) Hits@10(↑) Hits@100(↑) 

StAR w/o des 4602.98 11.69 4.23 15.29 25.54 44.27 

StAR w/ des 4203.58 13.32 6.73 15.63 27.01 45.46 

StAR inv w/o des 4801.23 14.92 8.87 17.32 26.84 44.39 

StAR inv w/ des 4650.22 16.43 10.10 19.04 28.58 45.91 

Ours w/o des 4509.87 26.24 17.32 32.07 42.01 49.61 

Ours w/ des 4502.62 27.19 18.18 33.23 43.17 50.11 

5.2. Synonym augmentation 

In the main experiment, we only use the entities and their descriptions as the 
representation of the textual information. However, in real life drugs can also have 
multiple names used in literature. For example, Metformin can also be known as 
“1,1-Dimethylbiguanide”, or “Dimethylbiguanid”. Thus, we would like to test 
whether the performance of the model can be improved model performance even 
further. The entities with the semantic type of “Organic Chemical” and 
“Pharmacologic Substance” are chosen to search for their entities. The total number 
of entities of this type is 5,680 with only 965 found to have additional synonyms. The 
total number of synonyms is 3,929 terms. The augmented triples are created by 
every possible combination based on the existing triple. For example, for a triple “A 
TREATS B” if A has 5 total names and B has 3 total names (including the original 
entity name) the total number of possible triples quantity is 15. Thus, the newly 
augmented triples of this example are 14 triples without counting the original 
combination. We do this for all the triples in the training set and finally, the total 
number of augmented triples is 114,823 triples. Since synonyms are different words 
for the same entity node, they can only be used to apply to a model with a textual 
encoder. The result of the augmentation is shown in Table 7. The model with 
augmented triples only surpasses the Hits@1 value of the original StAR model. One 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 39 

explanation for this is that the StAR is trained with more triples of a certain entity 
making the model always predicting the same entities frequently pushing the ranking 
to the highest top value. While starting from Hits@3 the model performance begins 
to drop significantly with a value of 37.53 in comparison to the Hits@100 value of 
44.27 of the original StAR model. This may be the result of a triple without any 
synonym being overshadowed by other high-number synonym triples, thus, making 
the model not rank the correct triple properly. Moreover, most research papers has a 
standard naming for certain drugs. The additional synonyms are mostly just 
nicknames to the drugs and do not appear in literature. As the language model is 
trained on research papers, the new additional synonyms may not be fully learned 
during the pre-trained period compared to the standard term. 

Table 7 Comparing textual encoder model with and without augmentation 

Model MR(↓) MRR(↑) Hits@1(↑) Hits@3(↑) Hits@10(↑) Hits@100(↑) 

StAR 4602.98 11.69 4.23 15.29 25.54 44.27 

StAR with synonym 
augmented 

6266.46 10.64 6.15 11.53 19.66 37.53 

5.3. Filter negative sample experiment 

The most general method of link prediction is to replace the head or tail part 
with all the entities that existed in the graph to create corrupted triples. However, 
the flaw of this method is that each entity has its semantic type like a drug or 
disease. Not all types are compatible with one another in forming a triple. For 
example, a drug cannot treat another drug. Therefore, replacing the triple without 
considering the type of entity could create negative triples that may not be possible 
at all in the first place. We performed two experiments on filtering these negative 
samples.  
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5.3.1. Re-evaluation with negative sample filtering 

The first experiment is done to test the performance of the originally trained 
model on evaluation with filtering on negative sample setting. As described in section 
2.4, the evaluation process is performed by corrupting the positive triple to create 
negative triples. However, in this experiment, only those triples that are compatible 
with the incomplete triple are counted in the ranking. Table 8 Illustrated the type of 
entities that could appear as the head part of the triple with “TREATS” relation and 
“Disease”.  

Table 8 Schema of a triple with TREATS as the relation and "Disease or Syndrome" 
as the tail type  

Head type Relation Tail type 

Amino Acid, Peptide, or Protein TREATS Disease or Syndrome 

Antibiotic TREATS Disease or Syndrome 

Biologically Active Substance TREATS Disease or Syndrome 

Biomedical or Dental Material TREATS Disease or Syndrome 

Chemical Viewed Functionally TREATS Disease or Syndrome 

Chemical Viewed Structurally TREATS Disease or Syndrome 

Element, Ion, or Isotope TREATS Disease or Syndrome 

Enzyme TREATS Disease or Syndrome 

Food TREATS Disease or Syndrome 

Gene or Genome TREATS Disease or Syndrome 

Hazardous or Poisonous Substance TREATS Disease or Syndrome 

Hormone TREATS Disease or Syndrome 

Immunologic Factor TREATS Disease or Syndrome 

Inorganic Chemical TREATS Disease or Syndrome 

Indicator, Reagent, or Diagnostic Aid TREATS Disease or Syndrome 

Molecular Function TREATS Disease or Syndrome 
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Nucleic Acid, Nucleoside, or Nucleotide TREATS Disease or Syndrome 

Organic Chemical TREATS Disease or Syndrome 

Pharmacologic Substance TREATS Disease or Syndrome 

Receptor TREATS Disease or Syndrome 

Vitamin TREATS Disease or Syndrome 
 

The result of this experiment can be seen in Table 9. All the metrics value is 
better compared to the non-filtering method. This is not surprising as the ranking was 
done on a filtered list of negative samples. However, the leading value on the MRR 
and all the Hits@K values are very marginal which could be evidence that the model 
can already discriminate the non-compatible triple from the rest of the negative 
triple well. A huge increase is seen in the MR metrics. One possible explanation is 
that although the new evaluation setting does not affect the positive triple that is 
already on the top ranking much, the ranking greatly jumps up for the poorly ranked 
positive triple. However, since our work is more concerned about the top rank value, 
the standard method has been already an adequate evaluation method of the 
models. 

Table 9 Comparing the result of non-filtering and negative sample filtering methods 

Model MR (↓) MRR(↑) Hits@1(↑) Hits@3(↑) Hits@10(↑) Hits@100(↑) 

Non-filtering method 
(standard) 

4502.62 27.19 18.18 33.23 43.17 50.11 

Negative samples 
filtering method 

3470.53 27.59 18.52 33.67 43.75 50.25 
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5.3.2. Training and evaluating with filtering method 

 

 
Figure 15 The similarity score calculation procedure of the filtering method 

Figure 15 illustrated the similarity score calculation method between the 
head embedding and all the tail embeddings. Since not all tail types are compatible 
with the head part (including the relation), not all the similarity scores should be 
calculated during the loss calculation step. To discard the influence of the unwanted 
node score we replace their value with minus infinity. Since the probability of each 
head and tail node is achieved by using the softmax function the value of minus 
infinity will make the value of the probability becomes zero, thus canceling its effect. 
We re-trained the model with this loss calculation method and compared it to the 
standard training process. The result in Table 10 shows that standard training is still 
the best method to train the model. We assume that since the incompatible node 
similarity is still computed, it may result in instability during the loss calculation. 
Since we are working in batch, separately filtering, and calculating the similarity score 
with only the compatible nodes will need high computational power. We assume a 
better method compared to masking the unwanted score with minus infinity is 
needed. 

Table 10 Comparing the training of standard and filtering method 

Training method MR(↓) MRR(↑) Hits@1(↑) Hits@3(↑) Hits@10(↑) Hits@100(↑) 

Standard training 3470.53 0.2759 0.1852 0.3367 0.4375 0.5025 

Filter training 3418.07 0.2409 0.1498 0.2948 0.4227 0.4984 
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5.4. Different combination result 

As seen in Figure 14, the embedding of the textual representation is only 
combined in the head part of the entity to enhance the performance of the 
structural model. To make sure our proposed method provided the best 
performance, a preliminary experiment is undertaken to test different combinations 
of the model: head-only, tail-only, and both head and tail enhancement. The result 
of this experiment is shown in Table 11. The result shows that head only is the best-
performing combination method with the highest MRR score of 22.29. Although the 
head-only combination gives in to the MR metrics, the result of the rest of the 
metrics is far too low compared to the head-only combination, thus confirming that 
it is the best combination for the proposed model. 

  Table 11 Result of different enhancements on the triples part for the combined 
model 

Model MR(↓) MRR(↑) Hits@1(↑) Hits@3(↑) Hits@10(↑) Hits@100(↑) 

Head only 4789.49 22.29 14.36 27.00 37.04 44.31 

Tail only 3410.81 6.38 2.27 7.81 13.00 28.57 

Head and tail 3716.31 2.86 0.55 3.95 6.01 17.92 

5.5. Discussion 

From Table 4, we have seen that StAR performs well on MR metrics while 
failing on the others. Figure 16 shows the histogram of the entity ranking between 
three models: StAR, HittER, and our proposed model. We can see that StAR generally 
performs better than HittER and our model in the upper rank. While at the bins 
around 10,000 to 15,000, we can see the group of HittER-based model ranking which 
is stuck at the bottom. These clusters of low-ranked triples are the reason for the 
low performance of the MR score since this metric is calculated based on raw rank 
value.  
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Figure 16 All ranking histogram of StAR and HittER 

However, from Figure 17, in the top 100, our model and HittER model 
significantly outperforms the StAR model, especially in the first 2 bins. This is the 
reason why HittER-based models are better models for predicting entities at the top 
ranks while at the same time, many entities are gathered at the bottom which makes 
its overall ranking worse than StAR. Since our model used HittER as the backbone it 
exhibits similar results with the HittER model while also improving the ranking result. 
For the link prediction task, we are more interested in getting all the feasible drugs 
inside the top ranking as much as possible which is why a better performance in the 
top 100 could conclude that our proposed model is the better model for drug 
repurposing use case. 
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Figure 17 Top 100 ranking histogram 

5.6. Type 2 diabetes drugs repurposed by the model 

We obtained a drug list predicted by the model on (___, TREATS, Type 2 
Diabetes) triple to demonstrate the model's capacity to acquire new medicines for 
disease treatment. To avoid undesirable unrelated medicine node types, we 
intentionally chose just the “Pharmacologic Substance” and “Organic Chemical” 
node types. In addition, as type 2 diabetes-related treatments were already present 
in the training, validation, and test sets, we filtered them out. Treatment that has 
already been shown to “TREATS” and “PREVENTS” interaction with “Type 2 
Diabetes”, “Type 1 Diabetes”, and diabetes in general is not considered new 
treatment. Therefore, using the confidence scores of the drugs, we came up with a 
list of the top 10. We selected 5 medications with a high potential for repurposing by 
considering evidence from the literature and drug interactions in the dataset (refer to 
the table in each subsection). 

The medicines associated with type 2 diabetes mostly emerge in the 
literature before the date of our training cut-off in the dataset. The drug list shows 
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that, even in situations when these connections are supported by the literature but 
absent from our dataset, our algorithm is still able to find the missing ties between 
medications and diseases. Despite the dataset's restrictions, we can successfully 
detect and extract relevant associations between medications and diseases by 
utilizing our model. This illustrates the usefulness of our method. 

5.6.1. Triterpenes 

This medication has the impact of accelerating biological processes in the 
heart and metabolism-related diseases [25]. Reducing postprandial glucose levels is 
reportedly a technique for managing type 2 diabetes. Alpha-glucosidases and alpha-
amylases, which delay the absorption of carbohydrates in the intestine and lower 
the postprandial insulin level, can be inhibited to achieve this [26]. An interaction 
between terpenes and alpha-glucosidases (shown in Table 12) has been seen in one 
of the training triples in our dataset. This demonstrates that the model can infer 
other links in the network from existing triples to forecast new medications. 

Table 12 Triterpenes 

Head name Relation Tail name 

tolbutamide INTERACTS_WITH Triterpenes 

Triterpenes AFFECTS Diabetes 

Triterpenes COEXISTS_WITH acarbose 

Triterpenes INHIBITS Alpha-glucosidase 

Triterpenes INTERACTS_WITH tolbutamide 

acarbose COEXISTS_WITH Triterpenes 

Triterpenes AFFECTS Carbohydrate Metabolism 

Triterpenes AFFECTS cholesterol metabolism 

Triterpenes INTERACTS_WITH Disulfides 
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5.6.2. Sho-saiko-to 

Another intriguing discovery from our model is a herbal medication known as 
Sho-saiko-to. This herbal drug has been given orally to patients in Japan with chronic 
liver disease [27]. Our dataset reveals that this medication interacts substantially with 
tolbutamide, one of the medications used to treat type 2 diabetes [28], through 
many sorts of relations such as “INTERACTS_WITH”, “COEXISTS_WITH”, and 
“STIMULATES”. The interaction is illustrated in Table 13. The drug's ability to reduce 
blood glucose after 120 minutes of glucose loading was also confirmed by a study 
into a glucose tolerance test on a diabetic rat. A further indication of the drug's 
potential in lipid and mineral metabolism-related pathological conditions of diabetes 
mellitus is the drug's ability to lower cholesterol levels in the kidney's elastin-
cholesterol fraction [29]. 

Table 13 Sho-saiko-to 

Head name Relation Tail name 

tolbutamide COEXISTS_WITH Sho-saiko-to 

tolbutamide INTERACTS_WITH Sho-saiko-to 

Sho-saiko-to COEXISTS_WITH tolbutamide 

Sho-saiko-to INHIBITS tolbutamide 

Sho-saiko-to INTERACTS_WITH tolbutamide 

Sho-saiko-to STIMULATES tolbutamide 

5.6.3. LY294002 

The major enzyme that LY294002 inhibits is phosphatidylinositol 3-kinase 
(PI3K) [30]. This raises the potential that PI3Ks may be implicated in the onset of 
diabetes mellitus because PI3Ks are essential for managing glucose levels. It has 
been shown that inhibiting PI3K G protects against the onset of diabetes while 
activating PI3K A protects against heart failure brought on by diabetes [31]. 
Additionally, in Table 14, this medication interacts with several diabetic medications, 
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including “Glyburide”, “Metformin”, and “Exenatide”. We suppose that because of 
these relationships, the model gives this medicine a high rating. 

Table 14 LY 294002 

Head name Relation Tail name 

glyburide INTERACTS_WITH LY 294002 

Metformin INTERACTS_WITH LY 294002 

exenatide INTERACTS_WITH LY 294002 

exenatide STIMULATES LY 294002 

LY 294002 COEXISTS_WITH insulin glargine 

LY 294002 INTERACTS_WITH glyburide 

LY 294002 INTERACTS_WITH exenatide 

LY 294002 INTERACTS_WITH rosiglitazone 

LY 294002 STIMULATES liraglutide 

LY 294002 INTERACTS_WITH Metformin 

rosiglitazone INTERACTS_WITH LY 294002 

insulin glargine COEXISTS_WITH LY 294002 

5.6.4. Clomiphene Citrate 

This medication works by increasing the production of the hormones that aid 
in the formation and release of a mature egg, which is how it treats female infertility 
[32]. Even while just a few researchers have studied how clomiphene citrate affects 
glucose metabolism, they have all found favorable results. Clomiphene citrate 
improved insulin and glucose levels in obese dysmetabolic individuals with low 
testosterone levels, [33] suggesting its potential use in participation. As a result, 
Clomiphene Citrate has a connection to both glucose and fat, which in turn has a 
direct bearing on type 2 diabetes. As shown in Table 15, the drug has multiple 
relationships with the prominent type 2 diabetes drug, Metformin. 
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Table 15 Clomiphene Citrate 

Head name Relation Tail name 

bromocriptine COEXISTS_WITH Clomiphene Citrate 

Metformin COEXISTS_WITH Clomiphene Citrate 

Metformin INTERACTS_WITH Clomiphene Citrate 

rosiglitazone STIMULATES Clomiphene Citrate 

Clomiphene Citrate COEXISTS_WITH bromocriptine 

Clomiphene Citrate COEXISTS_WITH Metformin 

Clomiphene Citrate INTERACTS_WITH Metformin 

5.6.5. Mitogen-activated protein kinase inhibitors (MAPK Inhibitors) 

The two primary pathogenic processes that lead to the development of type 
2 diabetes are insulin resistance and beta cell dysfunction. According to one research 
on p38 MAPK (p38), this protein plays a part in stress and inflammatory responses 
[34]. The p38 pathway is activated, and this results in ERS and inflammatory 
responses, which kill beta cells. The same study's findings showed that suppressing 
P38 MAPK might, at least in part, by reducing cell death, lower blood sugar levels 
and improve cell function [34]. From the training set, MAPK inhibitors frequently 
coexist and interact with prominent type 2 diabetes medications like exenatide and 
metformin, respectively. As seen in Table 16, although there are only a few 
interactions existing in the dataset, the model can rank this drug highly. 

Table 16 Lipoxins 

Head name Relation Tail name 

pioglitazone STIMULATES Lipoxins 

rosiglitazone STIMULATES Lipoxins 

Lipoxins TREATS Macular edema due to diabetes mellitus 

Lipoxins AFFECTS Diabetes 
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CHAPTER 6 

Conclusion 

In this research, we introduce a novel link prediction model for type 2 
diabetes drug repurposing based on a modern deep learning architecture known as 
“transformer”. By combining the structural information from each entity's neighboring 
nodes and the textual information from its name and description, a graph 
representation of the entity is created. We believe that this is the first model that 
incorporates both elements of the link prediction model of transformer type. The 
textual encoder is first trained over a pre-trained language model. The textual 
property of the entity and relation is then embedded using the model. A second 
transformer model is trained to create the structural representation's embedding. 
Through fully connected layers, the two different types of representations are 
combined and fused. Lastly, the feature provided by the encoder is used to 
determine the triples' scores. The rating of the true triple can be obtained to 
evaluate the model after corrupted triples are sorted in descending order using the 
score. 

Overall, our findings showed that our suggested design performed better than 
models that just used one type of embedding technique. On tasks relevant to 
treatment, the mean rank reciprocal value nearly doubles from 12.31 to 21.81, 
indicating a significant improvement over the best baseline model. Similar enormous 
number jumps can be seen in the Hits@K measures, especially at the low K value, as 
evidenced by the Hits@1 metrics' increase of 126.33%. These findings support the 
model's capacity to accurately forecast the right drug's high ranking. Finally, we found 
many medications that have a promising potential for repurposing from the top of 
the sorted list predicted by the algorithm. Our research presents a promising strategy 
for type 2 diabetes medicine repurposing and has the potential to significantly 
improve patient outcomes and healthcare expenditures. Although our results mark a 
significant first step in drug repurposing, additional research and screening are 
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required to confirm the viability of the suggested approach. The non-explainable 
nature of our model further emphasizes the necessity for further research on 
explainable models, which would offer insightful data to enhance medication 
shortlist decision-making. 
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APPENDIX A 

DRUG LIST FOR DATA SCRAPING 

In this appendix, we list all the drugs that are used during the process of 
scraping triples from SemMedDB. The list provided by [2, 35]. Although included in 
this list, any entities that could not be found in UMLS Metathesaurus [36] are 
discarded from the final drug scraping list. 

Table 17 Drug Names used in data scraping. 
Diabetes Type Drug Name 

Type 1 Diabetes Drugs Humulin 

Novolin 

NovoLog 

FlexPen 

Fiasp 

Apidra 

Humalog 

Humulin N 

Novolin N 

Tresiba 

Levemir 

Lantus 

Toujeo 

NovoLog Mix 70/30 

Humalog Mix 75/25 

Humalog Mix 50/50 

Humulin 70/30 

Novolin 70/30 

Ryzodeg 

Pramlintide 

SymlinPen 

https://www.healthline.com/health/drugs/humalog
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Type 2 Diabetes Drugs acarbose 

miglitol 

metformin 

Kazano 

Invokamet 

Xigduo XR 

Synjardy 

Glucovance 

Jentadueto 

Actoplus 

PrandiMet 

Avandamet 

Kombiglyze XR 

Janumet 

Bromocriptine 

alogliptin 

alogliptin-metformin 

alogliptin-pioglitazone 

linagliptin 

linagliptin-empagliflozin 

linagliptin-metformin 

saxagliptin 

saxagliptin-metformin 

sitagliptin 

sitagliptin-metformin 

sitagliptin 

Vildagliptin 

albiglutide 

dulaglutide 

exenatide 

exenatide extended-release 

liraglutide 

semaglutide 

https://www.healthline.com/health/bromocriptine-oral-tablet
https://www.diabetes.co.uk/diabetes-medication/diabetes-and-galvus.html
https://www.healthline.com/health/cdi/bydureon
https://www.healthline.com/health/cdi/ozempic
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Lixisenatide 

nateglinide  

repaglinide 

repaglinide-metformin 

dapagliflozin 

dapagliflozin-metformin 

canagliflozin 

canagliflozin-metformin 

empagliflozin 

empagliflozin-linagliptin 

empagliflozin-metformin 

ertugliflozin 

glimepiride 

glimepiride-pioglitazone 

glimepiride-rosiglitazone 

gliclazide 

glipizide 

glipizide-metformin 

glyburide 

glyburide-metformin 

chlorpropamide 

tolazamide 

tolbutamide 

Glibenclamide 

Gliquidone 

Glyclopyramide 

rosiglitazone 

rosiglitazone-glimepiride 

rosiglitazone-metformin 

pioglitazone 

pioglitazone-alogliptin 

pioglitazone-glimepiride 

pioglitazone-metformin 
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