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The infectious disease caused by the novel coronavirus 2019 has devastatingly 

affected the global economy and society. However, the drug discovery process from concept 
to approval requires a significant investment of time and resources. To address these 
challenges, we employed structure-based virtual screening techniques, including drug-likeness 
screening, pharmacophore-based virtual screening, molecular docking, molecular dynamics 
simulation, and fragment molecular orbital calculation. The protein target of this investigation 
was the main protease or 3-chymotrypsin-like-protease (3CLpro) of the coronavirus, given its 
pivotal role in the viral replication process. Using our in-house database of natural products 
and their derivatives, we aimed to identify potent compounds with the potential for further 
development as anti-SARS-CoV-2 medications. Notably, the derivatives of sulfonamide 
chalcone (SWC422, SWC423, and SWC424) and ester derivatives of caffeic acid (4k and 4l) 
exhibited exceptional binding energy and substantial interactions with the 3CLpro binding 
pocket compared to peptidomimetic inhibitors (11a, 13b, and N3) and an FDA-approved 
drug (nirmatrelvir). While our findings show that in-silico strategies have the potential to 
identify new potent compounds that inhibit the 3CLpro activity of coronavirus, further studies 
such as enzyme inhibition assay and cell-based assay are necessary to ensure their 
effectiveness from these virtual screenings. 
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CHAPTER I 
INTRODUCTION 

 
1.1 Coronavirus disease 2019 
 Coronavirus disease 2019 (COVID-19) emerged in December 2019 in Wuhan City, Hubei 
Province, China. The initial cases were associated with exposure to wildlife at the Huanan 
seafood wholesale market.(Decaro & Lorusso, 2020) Initially named 2019-nCoV, the virus was 
officially renamed Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) by the 
International Committee on Virus Taxonomy.(Lai, Shih, Ko, Tang, & Hsueh, 2020) Coronaviruses 
belong to the subfamily Coronavirinae, order Nidovirales and are common human pathogens. 
They are enveloped, positive-sense RNA viruses with a diameter of 60–140 nm and 29,903 base 
pair single stranded RNA genome. There are four structural proteins, namely the spike (S), 
membrane (M), envelope (E), and nucleocapsid (N).(Gupta & Gupta, 2020) SARS-CoV-2 shares 
approximately 79.5% genomic homology with SARS-CoV while only about 50% similarity with 
MERS-CoV, indicating that SARS-CoV is closer to SARS-CoV.  

In the process of virus multiplication, the main protease or 3-chymotrypsin-like-protease, 
plays a vital role by cleaving polyproteins at multiple sites to produce functional proteins. This 
enzyme is highly conserved cysteine hydrolases from CoVs, are capable of cleaving polyproteins 
at multiple sites to yield multiple functional proteins.(Lu et al., 2020; Qiao et al., 2021) 
Considering that 3CLpro play a vital role in CoV replication, especially in the two of the most 
severe pandemics of the 21st century caused by SARS-CoV-2 and SARS-CoV, these key hydrolases 
have been validated as promising targets for developing broad-spectrum anti-CoV agents. 
Because no homolog of 3CLpro has been identified in humans, it is feasible to develop 
efficacious and specific 3CLpro inhibitors with extremely weak inhibitory effects on human 
proteases, thereby reducing the side effects caused by 3CLpro inhibitors. 

The 3CLpro of SARS-CoV-2 has specific amino acid residues, H41 and C145, located in its 
active site. The structure of this protease is composed of two monomers, each consisting of three 
domains. Domain I (residues 8–101) and domain II (residues 102–184) are catalytic domains with a 

unique antiparallel -barrel structure. Domain III (residues 201–303) facilitates the dimerization of 

the enzyme and is made up of five -helices. One notable feature of 3CLpro is its distinct 

cleavage site, marked by the conserved L-Q↓ (S/A/G) sequence. This cleavage site is absent in 
closely related human host proteases, which makes the side effects of 3CLpro inhibitors in 
human patients less likely. The first target-based drugs developed are 3CLpro peptidomimetic 

inhibitors (Figure 13), for example, aldehyde inhibitor (11a)(Dai et al., 2020), -ketoamide 
inhibitors (13b)(Liang et al., 2020), and Michael acceptor inhibitor (N3)(H. Yang et al., 2005). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

Moreover, authorized drug such nirmatrelvir showed a strong inhibitory activity against SARS-CoV-
2 3CLpro and has been authorized for emergency use or granted regulatory approvals in several 
countries for treating COVID-19 in specific patient populations.(Joyce, Hu, & Wang, 2022) Although 
nirmatrelvir has curative properties, it must be co-administered with ritonavir to achieve adequate 
plasma concentrations. Beyond that, administering ritonavir-boosted nirmatrelvir may not be the 
best choice for all patients due to the possibility of significant drug-drug interactions with 
concomitant medications.("COVID-19 Treatment Guidelines Panel,") Additionally, the presence of 
the single mutations E166M and H172Y in the SARS-CoV-2 3CLpro significantly reduced its 
inhibitory activity, which affects drug resistance and treatment outcomes.(Clayton et al., 2023; 
Sasi et al., 2022) 
1.2 Virtual screening in structure-based drug discovery 

Structure-based drug design (SBDD) is increasingly essential for the efficient development 
of therapeutic agents and for studying metabolic processes. SBDD has been shown to be more 
efficient than traditional drug discovery since it tries to understand the molecular basis of disease 
and uses information on the biological target's three-dimensional (3D) structure in the process. 
We can now examine the underlying molecular interactions involved in ligand-protein binding 
and interpret experimental results in atomic detail by applying computational approaches and 3D 
structural information of the protein target. The use of computers in drug development has the 
added benefit of delivering new drug candidates more quickly and cost-efficiently. 

Virtual screening (VS) is a cutting-edge structure-based drug design approach. In virtual 
screening, large libraries of commercially available drug-like compounds are computationally 
screened against targets of known structure, and those that are predicted to bind well are 
experimentally tested.(Lavecchia & Di Giovanni, 2013) However, database screening does not 
provide structurally "novel" molecules because these chemicals have already been synthesized 
by commercial suppliers. Existing molecules can only be copyrighted with a "method of use" 
patent that covers their use for a specific application rather than their chemical structure. The 3D 
structure of the receptor is used in the de novo drug design to develop structurally novel 
compounds that have never been synthesized before using ligand-growing programs and the 
medicinal chemist's intuition. 

Recently, significant successes in computer-aided drug discovery have occurred: new 
biologically active compounds have been predicted along with their receptor-bound structures, 
and in several cases, hit rates (ligands discovered per molecules tested) have been significantly 
higher than in HTS.(Benod et al., 2013; T. Cheng, Li, Zhou, Wang, & Bryant, 2012; Lavecchia & Di 
Giovanni, 2013) Furthermore, while it is uncommon to supply lead candidates in the nM regime 
via VS, numerous recent publications detail the identification of nM leads directly from VS; these 
methodologies will be reviewed herein.(Heifetz et al., 2013; Kolb et al., 2009; Schröder et al., 
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2013) As a result, computational methods play an important role in drug design and discovery 

within the context of pharmaceutical research. (a) 
 1.2.1 Structure-based virtual screening (SBVS) 

 Structure-based virtual screening begins with processing the 3D target structural 
information of interest. Experiment data (X-ray, NMR, or neutron scattering spectroscopy), 
homology modeling, or molecular dynamics simulations can all be used to determine the target 
structure. When considering a biological target for SBVS, there are numerous fundamental issues 
to consider, such as receptor druggability, binding site selection, protein structure selection, 
incorporating receptor flexibility, appropriate assignment of protonation states, and consideration 
of water molecules in a binding site, to name a few. Indeed, determining ligand binding locations 
on biological targets is becoming increasingly important. The scientific community has recently 
focused on druggable allosteric binding sites in order to find novel modulators of protein/gene 
function. Another factor to consider for SBVS is the careful selection of the chemical library to be 
screened in the VS exercise based on the target in question, as well as the preprocessing of 
libraries to assign the right stereochemistry, tautomeric, and protonation states.(Lionta, Spyrou, 
Vassilatis, & Cournia, 2014) 
1.3 Drug-likeness screening 

"Drug-likeness" refers to a protein's ability to bind to a high-affinity ligand with drug-like 
properties, thereby regulating its activity. Initially applied to proteins, this concept has expanded 
to include other molecules, such as DNA and RNA, which can serve as potential drug targets. In 
the field of cheminformatics, the evaluation of drug-likeness holds significant importance as it 
aids medicinal chemists in handling hits and lead compounds and screening potential drug 
candidates that can effectively modulate targets. 

In current drug development endeavors, the optimal strategy involves the continuous 
exploration of new chemical entities to identify candidate drugs that closely resemble existing 
drugs in terms of essential physicochemical and biological properties. Assessing the properties of 
drug-likeness facilitates the acquisition of more precise pharmacokinetic and pharmacodynamic 
data. However, the dynamic nature and adaptive range of molecular entities pose significant 
challenges to this work, as they greatly influence the prediction outcomes. Consequently, further 
research on the structural and physicochemical characterization of bioactive compounds is still 
necessary to enhance our understanding in this field. 

  1.3.1 Lipinski’s Rules of Five 
In order to advance the discovery and development of new drugs, great efforts are being 

made to evaluate the similar drug-like properties of molecules in the early stages of the 
discovery-research process. There are different approaches to solving this problem. Still, the 
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simplest and most used method is developed by Chris Lipinski and his colleagues at 
Pfizer(Lipinski, 2004), which is generally referred to either as the Lipinski Rules or the Rule of Five 
(ROF).  

The Rule of Five is a practical guideline to evaluate drug-likeness and determine the 
potential oral activity of a chemical compound in humans. According to the ROF, for a 
biologically active molecule to be considered a potential orally administered drug, it should 
fulfill five specific conditions. Poor absorption or permeation is more likely if the molecule 
exhibits the following characteristics:  

• A molecular mass greater than 500 daltons 

• More than 10 hydrogen bond acceptors  

• More than 5 hydrogen bond donors 

• A calculated octanol-water partition coefficient (Clog P) greater than 5 
Based on the ROF, the rating of an orally active drug ranges between 0 and 4, indicating 

that a potential drug should have no more than one violation of the specified criteria. However, 
Lipinski acknowledges that molecules failing to meet these criteria should not be entirely 
disregarded, as many successful drugs do not conform to the Rule of Five. 

While the Rule of Five finds wide application, it also possesses certain limitations. Two 
significant weaknesses include the equal weight given to each rule and the rigid boundary that 
defines the violation of a specific rule. Another drawback of this rule is its omission of 
considerations for natural and biological compounds, as well as criteria relevant to metabolism. 

  1.3.2 Physicochemical properties 
The term "physicochemical" combines the words "physico" and "chemical," referring to 

the physical and chemical aspects of a compound. In the context of drug development, 
physicochemical properties encompass all the physical and chemical attributes of a drug. These 
properties play a crucial role in eliciting the pharmacological response from the receptor, which 
can be a biological molecule or system that interacts with the prescription. 

When drugs interact with receptors, they form a Drug-Receptor Complex, which is 
responsible for the pharmacological effects of the drug. The diverse range of physicochemical 
properties exhibited by drugs contributes to the pharmacologically varied impact they produce. 

    1.3.2.1 Lipophilicity 
Lipophilicity, commonly known as LogP, represents the equilibrium ratio of a 

compound's concentration between oil and liquid phases. It is a crucial physicochemical 
parameter in drug development, as it significantly influences various pharmacokinetic 
properties such as absorption, distribution, permeability, and clearance routes. The 
demand for drugs with high lipophilicity has increased to meet the requirements of 
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selectivity and potency, mainly due to the lipid nature of biological targets such as 
neurotransmitter pathway targets, anatomical targets, and intracellular 
targets.(Chandrasekaran, Abed, Al-Attraqchi, Kuche, & Tekade, 2018) 

Conversely, suitable drug formulations must exhibit both good aqueous 
solubility and an appropriate level of lipophilicity to ensure optimal oral absorption, 
deposition, and activity. Consequently, computational methods for measuring aqueous 
solubility, lipophilicity, and ionization degree have been integrated into the early stages 
of drug discovery.(Artursson & Bergström, 2003) Given the significant role of lipophilicity 
in understanding the pharmacokinetic properties of drug candidates, there is a persistent 
need for accurate and precise in silico models to predict lipophilicity. LogP prediction 
models have been developed and facilitated the drug design process, leading to other 
prediction approaches based on multiple fragments and atoms.(Wenlock & Barton, 2013) 

    1.3.2.2 Solubility 
Aqueous solubility is crucial role in drug development, affecting drug uptake, 

transfer, and elimination from the body. Intrinsic solubility refers to a drug's 
thermodynamic solubility at a pH where it is completely in the unionized 
form.(Bergström, Charman, & Porter, 2016) The efficiency of drugs heavily relies on their 
aqueous solubility, as poor solubility or low dissolution rates result in inadequate 
pharmacological activity.(Soni et al., 2016) The prevalence of poorly soluble drugs has 
increased, leading to issues with absorbability, food effects, and pharmacokinetic.(Kuentz 
& Imanidis, 2013) Access to sufficient solubility data significantly aids drug development, 
but finding compounds with the desired solubility profile can be challenging. 
Computational approaches can be employed to predict solubility and enhance drug 
absorption.(Lüder, Lindfors, Westergren, Nordholm, & Kjellander, 2007) The solubility of 
chemical compounds is influenced by lipophilicity and crystalline structure tightness, 
with an inverse relationship between these parameters and solubility. While solubility is 
not always considered an ADMET property, it is a critical factor in determining oral 
absorption. Compounds with poor solubility in the gut experience low permeability and 
poor absorption. This has prompted researchers to focus on solubility prediction, an 
important aspect of drug development in recent years. Despite its significance, 
challenges exist in obtaining consistent and reliable solubility data for prediction 
purposes.(Wenlock & Barton, 2013) 

    1.3.2.3 Polar surface area 
The polar surface area (PSA) is determined by subtracting the area covered by 

carbon atoms, halogens, and nonpolar hydrogen atoms (i.e., hydrogen atoms bonded to 
carbon atoms) from the molecular surface. In other words, the PSA represents the 
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surface associated with heteroatoms (such as oxygen, nitrogen, and phosphorus atoms) 
and polar hydrogen atoms.(McCracken & Lipkowitz, 1990) It has been noted that the 
polar area is sensitive to the three-dimensional conformation of a molecule, and 
therefore, a weighted dynamic average that considers all significant conformers provides 
a more accurate description than a single static PSA value.(Palm, Luthman, Unge, 
Strandlund, & Artursson, 1996) For rapid analysis of large datasets, Ertl and colleagues 
introduced an approach that calculates the PSA as the sum of fragment-based 
increments.(Ertl, 2000) Extensive studies on PSA values have shown that the polar area 
exhibits a stronger correlation with hydrogen bonding (both donor and acceptor groups) 
compared to lipophilicity (with R2 values of 0.76 and 0.30, respectively).(Winiwarter et al., 
2003) 

  1.3.3 Drug-likeness profiles 
Drug likeness profiles were conducted using established rules that serve as high-

throughput screening filters in leading pharmaceutical companies. The Abbott bioavailability 
score was also calculated to predict the likelihood of achieving 10% oral bioavailability or Caco-2 
diffusion. These filters have been developed to assess drug-likeness, which involves predicting a 
chemical entity's potential pharmacokinetic properties based on parameters such as molecular 
weight, LogP, and the number of hydrogen bond acceptors and donors. Furthermore, the 
potential of the presented structures to serve as starting scaffolds or lead compounds in future 
synthetic drug discovery programs was evaluated using specific medicinal chemistry and lead-
likeness filters.(Daina, Michielin, & Zoete, 2017) 
1.4 Structure-based pharmacophore modeling 

Pharmacophore models depict the molecular recognition of a biological target by a 
group of compounds rather than representing real molecules or functional group associations. 
They illustrate the spatial arrangement of essential interactions within a receptor-binding 
pocket.(Giordano, Biancaniello, Argenio, & Facchiano, 2022) Structure-based pharmacophores 
(SBPs) can be derived from either a free (apo) structure or a complex structure involving a 
macromolecule and ligand (holo). SBP methods based on protein-ligand complexes utilize 
observed interactions between the ligand and protein, while methods based on ligand-free 
proteins solely use information from the protein's active site. Therefore, SBPs overcome 
challenges related to ligand flexibility, molecular alignment, and proper selection of training set 
compounds encountered in ligand-based pharmacophore modeling.(Pirhadi, Shiri, & Ghasemi, 
2013) 

   1.4.1 Pharmacophore model generation 
 Pharmacophore model generation is the initial step in the process. It involves identifying 

and defining essential chemical features and spatial arrangements for a compound to interact 
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with a biological target. These features can include hydrogen bond acceptors, hydrogen bond 
donors, hydrophobic regions, aromatic rings, and other key functional groups. Various methods, 
such as ligand-based or structure-based approaches, can generate pharmacophore models. 
Ligand-based methods utilize information from known active compounds, while structure-based 
methods utilize the 3D structure of the target or target-ligand complexes.(Vuorinen & Schuster, 
2014) 

  1.4.2 Pharmacophore-based virtual screening 
Pharmacophore-based virtual screening is used to identify potential compounds that 

match the defined pharmacophore model. Virtual screening involves searching large databases of 
chemical compounds and comparing their features and spatial arrangements with those of the 
pharmacophore model. This process helps prioritize and select compounds more likely to 
interact with the target. Virtual screening can significantly reduce the time and cost associated 
with experimental screening of a large number of compounds. (Thomas Seidel, Ibis, Bendix, & 
Wolber, 2010) 

  1.4.3 Pharmacophore model validation 
Pharmacophore model validation is a step to assess the reliability and predictive power 

of the generated model. One commonly used method for pharmacophore model validation is 
the receiver operating characteristic (ROC) curve analysis, which measures the model's ability to 
discriminate between active and inactive compounds. The area under the ROC curve (AUC) value 
is a quantitative measure that indicates the overall performance of the model. (John et al., 2011) 

The ROC curve is constructed by plotting the true positive rate (sensitivity) against the 
false positive rate (1-specificity) at various classification thresholds. The sensitivity represents the 
proportion of correctly identified active compounds, while specificity represents the proportion of 
correctly identified inactive compounds. The ROC curve visually represents the model's 
performance across different threshold values. 

The AUC value ranges from 0 to 1, with a higher value indicating better performance. A 
model with an AUC value close to 1 demonstrates high discriminative power, meaning it can 
effectively distinguish between actives and inactives.(Molla et al., 2023) Conversely, an AUC value 
less than to 0.7 suggests a random or poor performance, where the model is no better than a 
random chance. 
To interpret the results from the ROC curve analysis, the following guidelines can be used: 

• AUC > 0.9: Excellent discrimination power 

• AUC between 0.8 and 0.9: Good discrimination power 

• AUC between 0.7 and 0.8: Fair discrimination power 

• AUC between 0.6 and 0.7: Poor discrimination power 
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• AUC < 0.6: Random or low discrimination power 
1.5 Molecular docking 

Molecular docking is a powerful computational method used to predict the favored 
conformation and orientation (collectively referred to as the "pose") of molecules within the 
binding site of a target macromolecule (receptor).(Torres, Sodero, Jofily, & Silva-Jr, 2019) It plays 
an essential role in computer-aided drug design and facilitates the prediction of ligand binding 
modes. By exploring ligand conformations and ranking them based on binding affinities, docking 
programs such as AutoDock(Trott & Olson, 2010), GOLD(Jones, Willett, Glen, Leach, & Taylor, 
1997), and FlexX(Rarey, Kramer, Lengauer, & Klebe, 1996) provide valuable insights into the 
molecular interactions between ligands and their target proteins. However, challenges arise in 
accurately modeling receptor flexibility, which is essential for capturing induced-fit effects during 
binding. 

  1.5.1 Methods and scoring 
To simplify calculations, docking methods treat proteins and ligands as rigid bodies while 

employing advanced sampling techniques like genetic algorithms and Monte Carlo simulations to 
explore the vast conformational space.(Altuntaş, Bozkus, & Fraguela, 2016) The selection of the 
most favorable ligand conformations is guided by scoring functions, including empirical and force 
field-based approaches. These scoring functions evaluate binding affinity by considering known 
protein-ligand interactions or utilizing statistical observations from protein-ligand databases. 

  1.5.2 Performance and validation 
The performance of docking programs and scoring functions can vary depending on the 

specific targets and ligands involved. Different systems may require tailored approaches to 
achieve accurate results.(C. Yang, Chen, & Zhang, 2022) The validation of docking outcomes often 
involves comparing them with experimental data or using complementary computational 
techniques. In addition to experimental validation, molecular dynamics simulations can refine 
and validate docking results. 
1.6 Molecular dynamics (MD) simulation 

Molecular dynamics (MD) simulation is a powerful computational technique used to 
study the time-dependent behavior of a system of interacting atoms. By integrating the equations 
of motion for the atoms, MD generates information about atomic positions and velocities, 
providing microscopic insights into the system's dynamics.(Hollingsworth & Dror, 2018) To 
accurately simulate the behavior of a system, an appropriate interaction potential or force field is 
required, which describes the inter-particle interactions. The choice of force field depends on the 
specific application and plays a crucial role in the quality of MD simulation results. 
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The force field used in MD simulations consists of two types of terms: bonded and 
nonbonded. Bonded terms account for intramolecular interactions, such as bond stretching, 
bending, and torsions. These terms are represented by harmonic potentials or cosine series, 
depending on the type of interaction. Nonbonded terms describe van der Waals and electrostatic 
interactions between atoms. A Lennard-Jones potential typically describes the van der Waals 
interactions, while the Coulomb potential represents the electrostatic interactions.(Kubincová, 
Riniker, & Hünenberger, 2020) Although MD simulations can accurately describe the behavior of 
small systems, analytical solutions for large systems are not feasible. Numerical methods 
integrate the equations of motion over discrete time intervals called time steps. Common 
integrators, such as the velocity-Verlet algorithm,(Verlet, 1967) propagate the positions and 
velocities of atoms in the system. To ensure reliable results, the integrator must satisfy specific 
requirements, such as preserving the total energy of the system.(Swope, Andersen, Berens, & 
Wilson, 1982) 

MD simulations can be performed in different ensembles to mimic macroscopic 
behavior. The NVE ensemble represents an isolated system with a constant number of 
molecules/atoms in assembly, volume, and energy. The NVT (constant number of 
molecules/atoms in assembly, volume, and temperature) ensemble maintains a constant 
temperature through thermostats, allowing for kinetic energy fluctuations. The NPT (constant 
number of molecules/atoms in assembly, pressure, and temperature) ensemble controls 
temperature and pressure using barostats, which scale the system volume.(Oh & Klein, 2006) 
Periodic boundary conditions (PBC) are often employed to simulate bulk properties with finite-
size systems. PBC replicates the system in all directions, forming an infinite lattice of image 
atoms. Efficient methods like the particle-mesh Ewald (PME) algorithm are used to compute the 
long-range electrostatic interactions in systems with PBC.(Darden, York, & Pedersen, 1993) 

  1.6.1 Simulation methodology 
MD simulation begins with the knowledge of the system's potential energy to its position 

coordinates. The first derivative of the possible function concerning the position coordinates aids 
in calculating the force operating on each atom in the system. The following are the essential 
steps involved in MD simulations of proteins. 

    1.6.1.1 Simulation environment 
Protein simulations aim to replicate experimental conditions, considering various 

parameters. Typically, simulations are performed in the canonical ensemble during the 
initial equilibration steps or the isothermal-isobaric ensemble. In these simulations, 
proteins are placed in a unit cell and solvated with solvent. Several explicit water 
models, including TIP3P, TIP4P(William L. Jorgensen, 1983), TIP5P(Mahoney & Jorgensen, 
2000), SPC, and SPC/E(Berendsen, Grigera, & Straatsma, 1987), are commonly used to 
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mimic the hydration of molecules. These water models capture important aspects of 
solvent behavior, such as dipole orientation, electrostatic shielding, hydrogen bond 
rearrangements, and hydrophobic interactions. However, due to limited time resolution 
and quantum complexities, hydrogen bonds are often not explicitly treated. Instead, 
average energy contributions and shake algorithms handle solvent hydrogens. 

Implicit solvent models approximate the solute potential of the mean force, 
representing the solute conformations' statistical weight. This is achieved by averaging 
over solvent degrees of freedom. To maintain charge neutrality, solvent molecules may 
be replaced with ions. Boundary models such as PBC can be employed to avoid 
interaction problems. PBC involves replicating the system in adjacent unit cells, allowing 
for the conservation of mass and particle numbers. Long-range non-bonded interactions 
are computed using molecules within image systems, and the Ewald summation method 
is commonly employed to calculate electrostatic interactions in solvated periodic 
boundary simulations of biomolecular systems.(Cheatham, Miller, Fox, Darden, & 
Kollman, 1995) 

 1.6.1.2 Energy minimization 
 During the energy minimization step of MD simulations, the objective is to find 
the global minimum energy by optimizing the positions of the side chain atoms. This 
optimization represents the geometric arrangement where the net attractive force on 
each atom is maximized. Several methods exist for computing the minimum energy, with 
the steepest descent and conjugate gradient methods being widely used. The steepest 
descent method is a first-order iterative descent method that utilizes the gradient of the 
potential energy surface. It is based on the forces in the molecular mechanical 
description of the system and guides the search path toward the nearest energy 
minimum. This method effectively minimizes the energy by iteratively updating the atom 
positions along the direction of the steepest descent. An important aspect of the energy 
minimization step is correcting the protonation state of titratable residues. This can be 
accomplished through free energy of perturbation (FEP) MD simulations or by employing 
continuum electrostatics models such as finite differences Poisson-Boltzmann (FDPB) or 
protein dipole-Langevin dipole (PDLD). These approaches help account for the effects of 
protonation changes and the electrostatic environment on the system's energy and 
stability. 

 1.6.1.3 Heating the system and equilibration 
 During the heating phase of MD simulations, the system is prepared by assigning 
initial velocities to each atom during energy minimization at 0 K. Newton's equations of 
motion are then numerically integrated to simulate the time evolution of the system. At 
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predefined intervals, the velocities are updated to correspond to slightly higher 
temperatures, allowing the simulation to progress until the desired temperature is 
reached. As the system is heated, force constraints on different subdomains are 
gradually released to dissipate structural tensions. Thermalization typically occurs at 
constant volume using Langevin dynamics.(Uberuaga, Anghel, & Voter, 2004) The 
equilibration stage aims to achieve a balance between kinetic and potential energies by 
redistributing the kinetic energy throughout all degrees of freedom. The protein positions 
are fixed in explicit solvent simulations while the water molecules move accordingly. 
Once the solvent has equilibrated, the constraints on the protein can be removed, 
enabling the entire system (protein+solvent) to evolve in time. This equilibration step 
ensures that the system reaches a stable state where the properties and energies of the 
system are well-distributed and representative of the desired conditions. 

 1.6.1.4 Production phase 
 The production phase serves as the final step in the simulation methodology, 
where constraints on the protein are removed. This phase is carried out over a desired 
time scale to generate a trajectory of the protein molecule that conforms to specific 
equilibrium conditions. The duration of the production phase can range from several 
hundred picoseconds to microseconds or longer, depending on the objectives of the 
study. To prevent significant trajectory artifacts during long simulation runs, recent 
versions of CHARMM protein parameter files incorporate a 2D grid correction map known 
as the CMAP correction. This correction map, obtained from the surfaces of alanine, 

proline, and glycine dipeptides, helps improve the accuracy of backbone  and ψ 
parameters. Including the CMAP correction can enhance the quality and reliability of the 
protein trajectory generated during the production phase.(Best et al., 2012) 

1.7 Fragment molecular orbital (FMO) calculation 
The fragment molecular orbital (FMO) method is widely used in quantum mechanical 

(QM) calculations for biomolecule simulations. It involves dividing proteins or nucleic acids into 
substructures or "fragments" and reconstructing the overall structure based on these fragments. 
The FMO method represents the total energy of the system using the energies of fragment 
monomers and fragment dimers, taking into account the environmental electrostatic potentials 
from surrounding fragments. FMO calculations are performed using programs such as GAMESS(D. 
Fedorov, 2017), ABINIT-MP(Tanaka, Mochizuki, Komeiji, Okiyama, & Fukuzawa, 2014), and 
PAICS(Mochizuki, Tanaka, & Fukuzawa, 2021). These programs allow for automatic calculations 
starting from a Protein Data Bank (PDB)(Berman et al., 2000) structure and additional 
fragmentation information. Depending on the size of the target system, FMO calculations can be 
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conducted at various levels of electron correlation, such as MP4(Akisawa et al., 2021) and 
density-functional tight-binding combined with FMO (FMO-DFTB) methods.(Nishimoto, 2021) The 
MP2(D. G. a. K. Fedorov, K, 2004) and DFTB(Mochizuki et al., 2021) methods are commonly used 
due to their cost-performance ratio. 

The FMO method is widely used in high-precision in silico drug screening and QM-based 
biomolecular function elucidation. Large-scale user groups, such as the FMO drug design 
consortium, have developed the FMO database (FMODB),(Takaya et al., 2021) a quantum 
chemical calculation database for biomolecules. In FMO calculations, the interfragment 
interaction energy (IFIE)(Tokutomi, Shimamura, Fukuzawa, & Tanaka, 2020) obtained from the 
FMO method can be analyzed using energy decomposition analysis known as PIEDA. PIEDA allows 
for calculating binding energies, analyzing intermolecular interactions, and subsystem analyses. 
Different components of the PIEDA analysis provide insights into specific types of interactions, 

such as hydrogen bonding, CH/ interactions, and - interactions.(Maghami & Abdelrasoul, 
2020) 

In the FMO method, the total energy is represented by the energies of fragment 
monomers (EI) and fragment dimers (EIJ) subject to the electrostatic potentials of the surrounding 
fragments, 
 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑𝐼𝐸𝐼 + ∑𝐼>𝐽(𝐸𝐼𝐽 − 𝐸𝐼 − 𝐸𝐽) 
 
Transforming Eq. (1) to interaction energy expresses the sum of the monomer energies, excluding 
the contribution of the electrostatic potential of the environment, and the IFIE between 
monomers. 
 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑𝐼𝐸′𝐼 + ∑𝐼>𝐽∆�̃�𝐼𝐽 
 
1.5.1 Fragment molecular orbital-based analysis 
The IFIE (PIE) obtained from Eq. (2) and its PIEDAare widely used in FMO calculations of 

biomolecules. The PIEDA component of IFIE between fragments I and J is defined as follows: 
 

∆�̃�𝐼𝐽 = ∆�̃�𝐼𝐽
𝐸𝑆 + ∆�̃�𝐼𝐽

𝐸𝑋 + ∆�̃�𝐼𝐽
𝐶𝑇+𝑚𝑖𝑥 + ∆�̃�𝐼𝐽

𝐷𝐼 + ∆�̃�𝐼𝐽
𝑠𝑜𝑙 

where ES, EX, CT+mix, DI, and sol stand for the electrostatic, exchange repulsion, charge transfer 
with higher-order mixed terms, dispersion, and solvation contributions, respectively. The final 

term, ∆�̃�𝐼𝐽
𝑠𝑜𝑙 , is only added when the solvent model is considered. PIEDA enables binding 

energy calculations, intramolecular and intermolecular interaction energy,(Okiyama et al., 2019) 

(1) 

(2) 

(3) 
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and analyses of subsystems.(D. G. Fedorov & Kitaura, 2016) Regarding intermolecular interactions, 

hydrogen bonding consists primarily of ES and CT+mix components, whereas CH/ and - 
interactions are dominated by DI components. 
1.8 Research rationality 

In December 2019, the emergence of COVID-19 was reported by Chinese health 
authorities, which was later declared a pandemic by the World Health Organization. This disease 
is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has had 
significant global social and economic repercussions. The duration of the epidemic has been 
uncertain due to various factors, including different modes of transmission, a high number of 
asymptomatic carriers, limited accessibility to affordable testing, ineffective therapies, and the 
emergence of vaccine-resistant variants. Multiple transmission modes present challenges in 
implementing effective prevention and control measures. Consequently, there is a critical need 
for effective treatments for individuals who are unvaccinated or may have insufficient vaccine 
responses, significantly immunocompromised. Furthermore, these treatments should address 
viral mutations that could potentially undermine the effectiveness of vaccines. 

The 3CLpro has emerged as a promising target for addressing these challenges, given its 
crucial role in viral replication and the absence of human proteases with similar cleavage 
specificity. The development of target-based drugs has led to the identification of 3CLpro 

peptidomimetic inhibitors, such as the aldehyde inhibitor (11a), -ketoamide inhibitors (13b), 
Michael acceptor inhibitor (N3), and nirmatrelvir, identified by their respective PDB codes 6Y2F, 
6LU7, 6LZE, and 7VH8. Nirmatrelvir, which inhibits 3CLpro activity by tightly binding to its active 
site, has received emergency use authorization or regulatory approvals in several countries to 
treat COVID-19 in specific patient populations. However, nirmatrelvir requires co-administration 
with ritonavir to achieve adequate plasma concentrations. Furthermore, using ritonavir-boosted 
nirmatrelvir may not be suitable for all patients due to potential significant drug-drug interactions 
with concurrent medications. Additionally, the presence of single mutations, E166M and H172Y, in 
SARS-CoV-2 3CLpro has been shown to significantly reduce its inhibitory activity, affecting drug 
resistance and treatment outcomes. 

In this study, we employed several computational strategies to identify effective 
inhibitors for SARS-CoV-2 3CLpro from a series of natural products and derivatives. Initially, a 
screening of compounds from our in-house database was conducted based on drug-likeness 
properties. Structure-based pharmacophore modeling and molecular docking techniques were 
utilized, using reported peptidomimetic inhibitors (11a, 13b, and N3) and FDA-approved drug 
(nirmatrelvir) in complex with 3CLpro as model templates to narrow the selection of the 
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promising compounds against the activity of SARS-CoV-2 3CLpro. It should be noted that the 
chemical structures of four inhibitors that have been identified are depicted in Figure 13. 
1.9 Research objective 
 To identify promising compounds collected from two in-house databases that strongly 
inhibit the activity of SARS-CoV-2 3CLpro using structure-based virtual screening 
1.10 Expected beneficial outcome(s) from the thesis 

The expected outcomes of this research are to identify and characterize potential 
inhibitors of SARS-CoV-2 3CLpro. The findings will provide valuable insights into developing 
effective antiviral treatments for COVID-19, specifically by targeting the 3CLpro. These insights 
have the potential to offer various therapeutic options and serve as a scaffold for designing 
inhibitors to combat the ongoing global pandemic. 
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CHAPTER II 
METHODOLOGY 

 
2.1 Research 1 

   2.1.1 Data collection and preprocessing from database 
     2.1.1.1 Known 3CLpro inhibitors 

The co-crystal structures of three peptidomimetic inhibitors (11a, 13b, and N3) 
and an approved drug (nirmatrelvir) bound to SARS-CoV-2 3CLpro were obtained from 
the Research Collaboratory for Structural Bioinformatics Protein Data Bank 
(https://www.rcsb.org). The corresponding PDB codes for these structures are 6Y2F, 6LU7, 
6LZE, and 7VH8, respectively. UCSF Chimera(Pettersen et al., 2004) removed water 
molecules and other small molecules from the complexes. To eliminate the covalent 
bond at C145 of SARS-CoV-2 3CLpro, Accelrys Discovery Studio Client 4.0("Discovery 
Studio Modeling Environment, Release 2.5.1," 2009) was utilized. Subsequently, the 3D 
structure of each inhibitor was extracted from its associated protein (3CLpro). 

     2.1.1.2 Natural and synthetic compounds from in-house library 
A total of 1,052 compounds from an in-house database, exclusively designed 

and developed by the Department of Chemistry at Chulalongkorn University (CHEM-CU), 
were subjected to in silico studies. 

2.1.2 Virtual screening by drug-likeness analysis 
This screening was performed using freely available software and tools such as 

DataWarrior 5.5.0(Sander, Freyss, von Korff, & Rufener, 2015) and SwissADME(Daina et al., 
2017) to identify compounds with desirable drug-like characteristics. Filtering criteria 
included assessments based on Lipinski's rule of five, physicochemical properties, and 
drug-likeness profiles, as presented in Table 1. Only compounds meeting the established 
criteria were selected for pharmacophore-based virtual screening. 

 
          Table 1 Properties and criteria of drug-likeness analysis 

Properties Profile Values 

Lipinski’s rules of five 

Molecular weight ≤ 500 
H-bond acceptor ≤ 10 
H-bond donor ≤ 5 

Octanol water coefficient (cLogP) ≤ 5 

Physicochemical 
properties 

No. Rotatable bond ≤ 10 
No. Heavy atom 12< X < 40 

Polar surface area ≤ 140 
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Properties Profile Values 
Lipophilic ligand efficiency (LLE) > 5 

Ligand efficiency lipophilic price (LELP) < 16.5 
Water solubility Soluble 

Drug-likeness profiles 
Drug-likeness Positive 

Bioavailability score 0.55 

  

 2.1.3 Pharmacophore study 
     2.1.3.1 Pharmacophore model generation 

The representative structures of the pharmacophore models (RPMs) for 11a, 
13b, and N3, along with their associated predicted chemical features, were obtained 
from previous studies(K. Sanachai et al., 2022). On the other hand, the representative 
structures for nirmatrelvir were generated based on a total of 2,000 frames obtained 
from three independent runs conducted over the last 50 nanoseconds (250-300 ns). 
Noted that the specific details regarding the MD simulation study carried out on the 
nirmatrelvir/3CLpro complex are described in the later sections. The chemical features 
supported by the LigandScout models encompass hydrophobic interactions, hydrogen 
bond donors/acceptors, positive/negative ionizable areas, aromatic rings, and halogen 
bond donor features. 

     2.1.3.2 Pharmacophore-based virtual screening 
Using KNIME 4.4.0(Berthold et al., 2007), a screening process was conducted on 

the drug-like compounds obtained from our in-house database to identify active 
molecules. The pharmacophore models for 11a, 13b, N3, and nirmatrelvir bound to 
SARS-CoV-2 3CLpro were utilized as templates, employing the program's default 
parameters. The resulting file containing the pharmacophore fit scores was sorted in 
descending order using Accelrys Discovery Studio Client 4.0("Discovery Studio Modeling 
Environment, Release 2.5.1," 2009). Only compounds that demonstrated optimal fitting 
with the 3CLpro of the coronavirus were selected for further analysis. 

 2.1.3.3 Pharmacophore model validation 
The active compounds identified during the screening were subjected to 

DecoyFinder(Cereto-Massagué et al., 2012) to identify their corresponding decoy 
molecules. The decoys were obtained from a dataset from the ZINC15(Sterling & Irwin, 
2015) and DrugBank(Wishart et al., 2006) databases. Subsequently, the screened active 
compounds (test set) and decoys underwent further screening using KNIME 4.4.0 for the 
model validation. Upon completing the screening procedure, a hit list of molecules was 
generated and displayed in the Library View, represented by a ROC curve. Validation 
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parameters such as AUC and EF (Enrichment Factor) were computed to assess the 
accuracy of the hit list. This process enabled the determination of the accuracy level 
achieved by the hit list of molecules, as indicated by previous studies.(Fei, Zhou, Liu, & 
Tang, 2013; Réau, Langenfeld, Zagury, Lagarde, & Montes, 2018) 

  2.1.4 Molecular docking 
To conduct a docking study, the 3D structures of the SARS-CoV-2 3CLpro, 

mentioned in section 2.1.1.1, were used as reference models. Two docking programs, 
namely AutoDock VinaXB(Trott & Olson, 2010) and GOLD 5.6.3(Jones et al., 1997), were 
utilized for this purpose, with 200 independent docking runs. The protonation states of 
the 3CLpro structures at a neutral pH of 7.4 were verified using the PDB2PQR web service 
available at https://server.poissonboltzmann.org/pdb2pqr. The known inhibitors, as well 
as the screened compounds, were identified using MarvinSketch from ChemAxon("Marvin 
17.21.0, Chemaxon ").  

Rigid docking was performed using AutoDock VinaXB, where both the ligands and 
receptors were converted to the pdbqt format using AutoDockTools(El-Hachem, Haibe-
Kains, Khalil, Kobeissy, & Nemer, 2017). The docking process involved using a grid box 
with dimensions of 20×20×20 centered on specific XYZ coordinates for each model. The 
coordinates used for the grid box were as follows: (i) 10.87, -0.25, 20.75 for 6Y2F, (ii) -
10.72, 12.41, 68.81 for 6LU7, (iii) -10.94, 12.69, 68.91 for 6LZE, and (iv) -18.76, 17.14, -

25.14 for 7VH8. The docked conformations with the lowest G (Gibbs free energy) were 
selected for subsequent analysis. 

For flexible docking, a docking sphere was created using the GoldScore scoring 
function within GOLD 5.6.3, with a 6 Å radius around the known inhibitors. Compounds 
with a higher GOLD fitness score than their known inhibitors were chosen to evaluate 
their binding interactions and inhibitory activity. The interactions between 3CLpro and 
the compounds were visualized using UCSF ChimeraX 1.4(Pettersen et al., 2004), Accelrys 
Discovery Studio Client 4.0("Discovery Studio Modeling Environment, Release 2.5.1," 
2009), and LigandScout 4.4.9(Wolber & Langer, 2005). 

   2.1.5 Molecular dynamics (MD) simulations  
For the nirmatrelvir/3CLpro and SWC423/3CLpro complexes, all-atom molecular 

dynamics (MD) simulations were conducted using AMBER20(D.A. Case, 2020) under the 
periodic boundary condition. The force field parameters from ff19SB(Tian et al., 2020) 
were applied for the bonded and nonbonded interactions of the target protein. The 
parameters for nirmatrelvir and SWC423 were generated using the tleap module with the 
general AMBER force field 2 (GAFF2)(Wang, Wolf, Caldwell, Kollman, & Case, 2004), and 

https://server.poissonboltzmann.org/pdb2pqr
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their RESP charges(Cornell, Cieplak, Bayly, & Kollman, 1993) were obtained following the 
standard procedure.(Kamonpan Sanachai, Mahalapbutr, Sanghiran Lee, Rungrotmongkol, 
& Hannongbua, 2021; Sripattaraphan et al., 2022) To neutralize the simulated systems, 
sodium ions (Na+) were randomly added. 

Before the MD simulation, the added hydrogen atoms and water molecules 
(TIP3P model)(William L. Jorgensen, 1983) were subjected to energy minimization using 
1,500 steps of the steepest descent (SD) method followed by 3,000 steps of the 
conjugate gradient (CG) method. In contrast, the remaining molecules were held fixed. 
Each system was then further minimized with 1,000 iterations of SD and 2,500 iterations 
of CG, with solvent molecules restrained. Finally, the entire complex was fully minimized 
using the same procedure. 

During the MD simulation, a time step of 2 femtoseconds (fs) was employed. 
The temperature and pressure were controlled using a Langevin thermostat(Uberuaga et 
al., 2004) with a collision frequency of 2 picoseconds (ps) and a Berendsen 
barostat(Berendsen, Postma, van Gunsteren, DiNola, & Haak, 1984) with a pressure 
relaxation time of 1 ps. Electrostatic interactions were treated using the PME 
method(Darden et al., 1993) with a 10 Å cutoff for nonbonded interactions. The SHAKE 
algorithm(Hünenberger, 2005) was applied to constrain all hydrogen-containing covalent 
bonds. The system was heated from 10 to 310 K under 1 atm of pressure, followed by a 
300 ns MD simulation for nirmatrelvir/3CLpro and a 400 ns simulation for 
SWC423/3CLpro. MD trajectories were saved every 1,000 ps for later analysis. 

Each simulation was repeated in triplicate with different random seeds, starting 
from identical minimized structures. The root-mean-square deviation (RMSD), number of 
hydrogen bonds (# H-bonds), and number of atom contacts (# atom contacts) were 
calculated based on the MD trajectories for further analysis. 

  2.1.6 Fragment molecular orbital (FMO) calculation  
To analyze the binding mechanism at 3CLpro, the representative structure was 

subjected to FMO calculations using the resolution of the identity MP2 method 
combined with a polarizable continuum model. The FMO-RIMP2/PCM approach was 
implemented in the GAMESS software(D. Fedorov, 2017), specifically using the 2022 R2 
version. The protocol for FMO-RIMP2/PCM in this study followed similar procedures 
described in literature references(Hengphasatporn, Harada, et al., 2022; Hengphasatporn, 
Wilasluck, et al., 2022; Wansri et al., 2022). These references provide details on the 
specific steps and methodologies employed for the FMO-RIMP2/PCM calculations in this 
study.  
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2.2 Research 2 
The in-house database utilized in this study comprised a total of 553 natural and 

synthetic compounds. These compounds were classified into 12 primary groups, including 4 -
mangostins(Pyae et al., 2023), 18 anticancer agents(Pithi, Supakarn, Chuanpit, & Preeyaporn 
Plaimee, 2016), 9 avicequinones(Karnsomwan, Netcharoensirisuk, Rungrotmongkol, De-Eknamkul, 
& Chamni, 2017), 42 caffeic acid derivatives(Lin et al., 2022), 159 acid homodimers, 92 xanthones, 
78 avenalumic acid derivatives, 9 quinonoids, 30 steroids(Ke, Shi, Zhang, & Yang, 2017), 6 piperic 
acid derivatives(Wansri et al., 2022), 53 renieramycins(Yokoya et al., 2023), and 53 
ureas(Thongsom et al., 2023). These compounds were developed and provided by the 
Department of Pharmacognosy and Pharmaceutical Botany at the Faculty of Pharmaceutical 
Sciences, Chulalongkorn University. 

  2.2.1 Drug-likeness analysis 
The pharmacokinetics, drug-like properties, and medicinal chemistry suitability of the 553 

compounds in the in-house database were assessed using the SwissADME web-based 
interface(Daina et al., 2017). The evaluation was conducted based on criteria including Lipinski's 
rule of five, physicochemical properties, and drug-likeness profiles. A radar chart was generated 
to illustrate the number of compounds meeting each criterion, as listed in Table 2. Only 
compounds that fulfilled all the predicted properties were selected for pharmacophore-based 
virtual screening. 
 
          Table 2 Evaluation criteria for drug-like compounds 

Property Characteristic Criteria 

Lipinski’s rules of five 

Molecular weight ≤ 500 
#H-bond acceptors ≤ 10 
#H-bond donors ≤ 5 

Octanol water coefficient (cLogP) ≤ 5 

Physicochemical 
properties 

#Heavy atoms 12 < x < 40 
#Rotatable bonds ≤ 10 

Topological polar surface area (TPSA) 20 < x < 130 
Water solubility (ESOL Log S) ≤ 6 

Solubility class < 16.5 
Water solubility No poorly soluble 

Drug-likeness profiles 
Gastrointestinal absorption High 

Bioavailability score 0.55, 0.56 
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  2.2.2 Structure-based pharmacophore modeling 
In previous studies, RPMs were developed for inhibitors 11a, 13b, and N3 in complex 

with 3CLpro.(K. Sanachai et al., 2022) These models included predicted chemical features and 
spatial arrangements necessary for effective interaction with the target protein. These RPMs, 
along with the drug-like compounds, were defined as input datasets for pharmacophore-based 
virtual screening. The iScreen node of the KNIME program(Berthold et al., 2007) was utilized to 
perform the pharmacophore-based virtual screening using default parameters. The output 
compounds from the screening were then subjected to model validation to ensure the reliability 
and accuracy of the model and to aid in the interpretation and prioritization of the virtual 
screening results.(Fei et al., 2013) 

The active compounds obtained from the screening process were analyzed using the 
DecoyFinder(Cereto-Massagué et al., 2012). The same datasets as previous research (ZINC(Sterling 
& Irwin, 2015) and DrugBank(Wishart et al., 2006)) were used for finding inactive molecules. 
Additionally, KNIME extensions(Berthold et al., 2007) were employed for model validation as 
well. The input datasets for model validation consisted of RPMs, known active compounds, and a 
set of decoys. The validation result of ROC curves and metrics, such as AUC and EF, were used 
for data analysis and visualization. 

  2.2.3 Molecular docking 
The crystal structures of SARS-CoV-2 3CLpro complexed with 11a, 13b, and N3 were 

downloaded from the Protein Data Bank with PDB codes 6Y2F, 6LU7, and 6LZE, respectively. 
Water molecules and other ligands in the complexes were eliminated. The protein and ligand 
structures were then extracted and saved as separate files. The protonation state of ionizable 
amino acids and ligands at a neutral pH 7.4 was confirmed using PDB2PQR for the protein and 
MarvinSketch("Marvin 17.21.0, Chemaxon ") for the ligands. The protein and ligand files were 
converted to PDBQT format to prepare for redocking simulations using AutoDock Tools(El-
Hachem et al., 2017). These PDBQT files were used as input for AutoDock VinaXB(Trott & Olson, 
2010), with specific docking parameters configured. A grid box with dimensions of 20×20×20 Å 
was centered for the docking process. 

The same procedure was applied to selected active compounds from the 

pharmacophore-based virtual screening. Only hit compounds with G values lower than the 
known inhibitors were chosen for ligand-protein binding analysis using Accelrys Discovery Studio 
Client 4.0. To assess the binding strength of the compounds, the distance from the center of 
mass of each classified group to the center of mass of the H41 and C145 catalytic dyad (dCOM) 
was also considered using ChimeraX (Pettersen et al., 2021). 
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CHAPTER III 
RESULTS AND DISCUSSION 

 
3.1 Research 1 

  3.1.1 Identification of drug-like properties of natural product-based compounds 
In the early stages of drug discovery, it is essential to consider a series of drug-like 

properties to identify compounds that are more likely to succeed in clinical trials. This approach 
is crucial for improving the overall success rate and reducing manufacturing costs18. In the 
present study, out of the 1,052 compounds evaluated, it was observed that 75 compounds 
fulfilled the bioavailability criterion, as listed in Table 3, indicating that they exhibited desirable 
drug-like properties. These 75 compounds were considered orally active compounds since they 
did not violate more than one of Lipinski's parameters, which include molecular weight (MW) ≤ 
500 g/mol, H-bond acceptors (HBA) ≤ 10, H-bond donors (HBD) ≤ 5, and cLogP value ≤ 5. 
Furthermore, these compounds underwent physicochemical inspections to determine their 
suitability as oral drug candidates. The results indicated that these compounds displayed high 
membrane permeability, and their minimum permissible bioavailability score suggested good 
systemic absorption, with the potential for over 10% bioavailability in rats. This characteristic is 
crucial for the drug delivery system and is linked to the enzymatic and physical environment of 
the gastrointestinal tract. 
 
Table 3 Molecular properties of drug-likeness analysis of 75 selected compounds 

Compoun
d 

Lipinski’s rules of five Physicochemical Drug-likeness profiles 

MW 
HB
A 

HB
D 

cLog
P 

#Rotatable 
bonds 

#Heav
y 

atoms 
PSA LLE 

LEL
P 

Water 
solubility 

Drug-
likeness 

Bioavailabilit
y score 

STK001 275.1 4 0 0.94 1 15 
44.7

6 
5.6
2 

1.57 Soluble 16.37 0.55 

STK002 
214.2

2 
5 1 -0.72 2 15 

64.9
9 

7.3
9 

-
1.18 

Very soluble 11.9 0.55 

STK004 
277.0

7 
5 1 0.11 4 15 

72.8
3 

6.4
4 

0.19 Very soluble 7.04 0.55 

STK005 
260.2

4 
5 1 1.01 5 19 

72.8
3 

5.5
8 

2.12 Soluble 3.57 0.55 

STK008 
260.2

4 
5 1 1.01 5 19 

72.8
3 

5.5
8 

2.12 Soluble 3.57 0.55 

NST005 
478.5

3 
7 3 7.21 4 35 

105.
5 

-0.9 29.1 Soluble 2.57 0.55 

STK013 275.1 4 0 0.94 1 15 
44.7

6 
5.6
2 

1.57 Soluble 16.37 0.55 

NPT018 
302.2

4 
7 5 1.49 1 22 

131.
4 

5.0
3 

3.67 Soluble 0.08 0.55 

NPT019 
290.2

7 
6 5 1.51 1 21 

110.
4 

5.0
3 

3.53 Soluble 0.32 0.55 
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Compoun
d 

Lipinski’s rules of five Physicochemical Drug-likeness profiles 

MW 
HB
A 

HB
D 

cLog
P 

#Rotatable 
bonds 

#Heav
y 

atoms 
PSA LLE 

LEL
P 

Water 
solubility 

Drug-
likeness 

Bioavailabilit
y score 

NPP002 
250.2

5 
5 1 1.25 1 18 

57.1
5 

5.3
6 

2.48 Soluble 0.71 0.55 

NWC014 
182.1

7 
4 2 1.57 2 13 

66.7
6 

5.1
4 

2.39 Soluble 3.84 0.55 

NWC015 
210.1

8 
5 2 1.16 3 15 

83.8
3 

5.5
2 

1.9 Soluble 5.99 0.55 

NWC016 196.2 4 2 1.57 2 14 
66.7

6 
5.1
4 

2.39 Soluble 3.84 0.55 

NWC017 
194.1

8 
4 1 0.64 1 14 

55.7
6 

6.0
7 

0.98 Soluble 1.25 0.55 

SWC019 
176.1

7 
3 0 1.43 1 13 

39.4
4 

5.3
3 

2 Soluble 3.13 0.55 

SWC025 
206.1

9 
4 1 0.91 3 15 

59.6
7 

5.7
8 

1.48 Soluble 3.48 0.55 

NPT042 
204.1

8 
4 0 1.36 2 15 

56.5
1 

5.3
3 

2.22 Soluble 5.28 0.55 

NPT044 
470.5

1 
8 0 1.03 1 34 

104.
6 

5.3 4.03 Soluble 3 0.55 

NPT052 
352.3

8 
6 1 0.87 2 26 

71.3
6 

5.5
8 

2.57 Soluble 1.71 0.55 

SPT054 
217.2

2 
4 1 0.97 4 16 

64.1
1 

5.6
9 

1.7 Soluble 3.8 0.55 

SPT058 
215.2

5 
3 0 1.43 1 16 

38.2
5 

5.2
3 

2.51 Soluble 1.15 0.55 

SPT061 
218.2

1 
4 0 0.37 3 16 

61.1
9 

6.2
9 

0.65 Very soluble 0.56 0.55 

SPT063 
191.1

4 
5 1 0.5 1 14 

91.8
3 

6.2
2 

0.76 Very soluble 7.18 0.55 

SPT066 206.2 5 1 1.28 2 15 
64.4

7 
5.4
1 

2.09 Soluble 1.69 0.55 

SPT076 
260.2

5 
5 0 0.51 2 19 

84.0
7 

6.0
7 

1.08 Soluble 4.03 0.55 

SPT078 
233.2

4 
4 0 1.53 1 17 

38.2
5 

5.1 2.87 Soluble 0.19 0.55 

SPT079 275.3 5 0 1.29 3 20 
56.7

1 
5.2
7 

2.88 Soluble 1.15 0.55 

NWC054 
286.2

8 
5 0 1.42 1 21 

69.6
7 

5.1
3 

3.32 Soluble 1.77 0.55 

NTK015 
245.2

7 
3 2 1.2 2 18 

54.6
2 

5.4
1 

2.39 Very soluble 2.95 0.55 

NTK016 
228.2

4 
5 1 -0.25 2 16 

72.8
3 

6.8
9 

-
0.44 

Very soluble 0.19 0.55 

SWC054 
204.1

8 
4 0 1.48 2 15 

56.5
1 

5.2
1 

2.43 Soluble 3.17 0.55 

NPP004 
176.1

7 
3 0 1.72 2 13 

35.5
3 

5.0
3 

2.42 Soluble 5.35 0.55 

NTK028 
408.4

9 
5 2 5.36 4 30 

75.9
9 

1.0
3 

18.3 Soluble 0.07 0.55 

PPP032 
205.2

1 
5 5 -2.2 2 14 110 

8.8
9 

-
3.35 

Highly 
soluble 

0.09 0.55 
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Compoun
d 

Lipinski’s rules of five Physicochemical Drug-likeness profiles 

MW 
HB
A 

HB
D 

cLog
P 

#Rotatable 
bonds 

#Heav
y 

atoms 
PSA LLE 

LEL
P 

Water 
solubility 

Drug-
likeness 

Bioavailabilit
y score 

PPP033 
233.2

6 
5 5 -1.29 4 16 110 

7.9
2 

-
2.27 

Highly 
soluble 

0.34 0.55 

PPP034 
261.3

1 
5 5 -0.38 6 18 110 

6.9
6 

-
0.76 

Very soluble 9.41 0.55 

PPP035 
261.3

1 
5 5 -0.38 6 18 110 

6.9
6 

-
0.76 

Very soluble 9.41 0.55 

PPP036 
317.4

2 
5 5 1.44 10 22 110 

5.0
6 

3.55 Very soluble 19.11 0.55 

PPP037 
317.4

2 
5 5 1.44 10 22 110 

5.0
6 

3.55 Very soluble 19.11 0.55 

PPP040 
191.2

2 
5 5 -1.85 2 13 

92.9
5 

8.5
7 

-
2.61 

Highly 
soluble 

1.59 0.55 

PPP041 
219.2

8 
5 5 -0.94 4 15 

92.9
5 

7.6 
-

1.54 
Very soluble 0.22 0.55 

PPP042 
219.2

8 
5 5 -0.94 4 15 

92.9
5 

7.6 
-

1.54 
Very soluble 0.22 0.55 

PPP043 
247.3

3 
5 5 -0.03 6 17 

92.9
5 

6.6
4 

-
0.06 

Very soluble 7.66 0.55 

PPP044 
247.3

3 
5 5 -0.03 6 17 

92.9
5 

6.6
4 

-
0.06 

Very soluble 7.66 0.55 

PPP048 
219.2

8 
5 4 -1.18 3 15 

84.1
6 

7.8
3 

-
1.93 

Very soluble 2.99 0.55 

PPP049 
219.2

8 
5 4 -1.18 3 15 

84.1
6 

7.8
3 

-
1.93 

Very soluble 2.99 0.55 

PPP050 
275.3

8 
5 4 0.64 7 19 

84.1
6 

5.9
2 

1.36 Very soluble 1.92 0.55 

PPP051 
275.3

8 
5 4 0.64 7 19 

84.1
6 

5.9
2 

1.36 Very soluble 1.92 0.55 

SWC102 
178.1

4 
4 2 0.77 0 13 

70.6
7 

5.9
8 

1.08 Soluble 2.83 0.55 

SWC110 234.2 5 0 0.99 4 17 
65.7

4 
5.6
5 

1.84 Soluble 5.18 0.55 

SWC111 
250.2

5 
5 0 1.06 5 18 57.9 

5.5
5 

2.1 Soluble 10.88 0.55 

SWC113 
173.1

7 
2 1 0.61 0 13 

60.1
6 

6.1
5 

0.86 Very soluble 3.07 0.55 

SWC122 
231.2

7 
2 2 1.33 2 16 

99.5
7 

5.3 2.34 Soluble 2.55 0.55 

SWC123 260.2 5 0 -0.53 1 17 
99.7

2 
7.1
1 

-
0.94 

Very soluble 5.35 0.55 

NPP027 
459.4

9 
8 5 0.3 10 33 

137.
7 

6.0
4 

1.13 Soluble 2.74 0.55 

NPP030 
207.1

8 
4 2 0.67 1 15 

75.6
3 

6.0
1 

1.09 Very soluble 1.49 0.55 

SWC128 
220.2

2 
4 1 1.36 4 16 

59.6
7 

5.3 2.39 Soluble 5.3 0.55 

NWC084 
302.2

4 
7 5 1.49 1 22 

131.
4 

5.0
3 

3.67 Soluble 0.08 0.55 

NWC088 
290.2

7 
6 5 1.51 1 21 

110.
4 

5.0
3 

3.53 Soluble 0.32 0.55 
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Compoun
d 

Lipinski’s rules of five Physicochemical Drug-likeness profiles 

MW 
HB
A 

HB
D 

cLog
P 

#Rotatable 
bonds 

#Heav
y 

atoms 
PSA LLE 

LEL
P 

Water 
solubility 

Drug-
likeness 

Bioavailabilit
y score 

SWC195 
224.2

1 
5 3 0.71 2 16 

94.8
3 

5.9
4 

1.24 Soluble 1.85 0.55 

NWC097 
182.1

7 
4 2 1.23 2 13 

66.7
6 

5.5
1 

1.72 Soluble 3.84 0.55 

NWC098 
210.1

8 
5 2 1.16 3 15 

83.8
3 

5.5
2 

1.9 Soluble 5.99 0.55 

NWC099 196.2 4 2 1.57 2 14 
66.7

6 
5.1
4 

2.39 Soluble 3.84 0.55 

SWC219 
322.3

3 
4 1 0.25 1 24 51.8 

6.2
5 

0.66 Soluble 2.14 0.55 

NWC100 
302.2

4 
7 5 1.49 1 22 

131.
4 

5.0
3 

3.67 Soluble 0.08 0.55 

NTK049 
273.2

4 
5 3 0.15 0 20 

103.
7 

6.4
2 

0.32 Soluble 5.31 0.55 

NTK064 
192.1

7 
4 1 1.08 1 14 

59.6
7 

5.6
3 

1.64 Soluble 3.06 0.55 

NTK066 
280.2

7 
6 1 0.43 3 20 

74.2
2 

6.1
2 

0.96 Soluble 0.08 0.55 

NTK073 
318.3

2 
6 1 1.42 7 23 89.9 

5.0
8 

3.67 Soluble 1.92 0.55 

SWC272 
254.2

8 
5 0 1.27 9 18 

53.9
9 

5.3
3 

2.52 Very soluble 15.75 0.55 

SWC307 
281.2

6 
6 0 0.88 5 20 

90.5
8 

5.6
7 

1.95 Soluble 14.15 0.55 

SWC339 196.2 4 0 1.38 5 14 
44.7

6 
5.3
3 

2.1 Very soluble 3.94 0.55 

SWC422 
447.9

3 
3 1 5.4 6 31 

71.6
2 

0.9
5 

19.2 Soluble 3.76 0.55 

SWC423 
458.4

9 
5 1 3.88 7 33 

117.
4 

2.4
6 

14.7 Soluble 7.22 0.55 

SWC424 
463.5

5 
3 1 5.99 6 34 

71.6
2 

0.3
4 

23.5 Soluble 2.9 0.55 

 
  3.1.2 Screened Compounds from an Investigation of pharmacophore models 

The pharmacophore models of inhibitors 11a, 13b, N3, and the nirmatrelvir/3CLpro 
complex, generated from MD trajectories, were analyzed using LigandScout. This analysis 
provided insights into the spatial arrangement and composition of the ligands at a molecular 
level. Figure 1 illustrates that all pharmacophore models have three chemical features: H-bond 
donor, H-bond acceptor, and hydrophobic interaction. Specifically, the interactions between 
SARS-CoV-2 3CLpro and inhibitors 11a, 13b, N3, and nirmatrelvir resulted in two, three, five, and 
three hydrophobic interactions, respectively. Moreover, H-bond donor and H-bond acceptor 
features were observed to interact with key binding residues, including T25, M49, C145, M165, 
E166, and A191, as previously described by Zhu et al.(Zhu et al., 2022). These interactions play a 
vital role in the binding mechanism and stability of the ligand-protein complex. 
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Figure 1 Representative pharmacophore models (RPMs) of the 3CLpro complex of three 
peptidomimetic inhibitors originated from a previous study and the nirmatrelvir/3CLpro complex 
from the current study. The yellow spheres represent hydrophobic interactions, while the red 
and green arrows indicate the H-bond acceptor and H-bond donor, respectively. 
 

In pharmacophore-based virtual screening, the geometric fit of a molecule's features to 
each 3D structure-based pharmacophore model was evaluated using the pharmacophore fit 
score. This study determined the pharmacophore fit score of 75 compounds, selected based on 
drug-likeness screening, using KNIME. Virtual screening used the pharmacophore models of 
inhibitors 11a, 13b, N3, and the nirmatrelvir/3CLpro complex. As a result, 41 compounds were 
identified that matched the features of the 11a pharmacophore model, 49 compounds matched 
the features of the 13b pharmacophore model, 2 compounds matched the features of the N3 
pharmacophore model, and 5 compounds matched the features of the nirmatrelvir/3CLpro 
pharmacophore model. Overall, this screening process demonstrated that 60 compounds from 
the focused library matched the features of the four pharmacophore models (Table 4). 
 
Table 4  Pharmacophore fit score of 60 compounds derived from the pharmacophore-based 
virtual screening 

Compound 
Model 

11a/3CLpro 13b/3CLpro N3/3CLpro nirmatrelvir/3CLpro 
STK001   35.71     
STK002 35.86 36.78     
STK004   36.99     
STK005 38.05 36.21     
STK008 38.03 36.22     
NST005 37.84 46.2   46.42 
NPT018 37.43       
NPT019 38.38       

11a 13b N3 Nirmatrelvir

H-bond donor H-bond acceptor Hydrophobic interaction
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Compound 
Model 

11a/3CLpro 13b/3CLpro N3/3CLpro nirmatrelvir/3CLpro 
NPP002   37.17     
NWC014 36.74 36.02     
NWC015 36.71 37.18     
NWC016 36.74 36.02     
NWC017 36.95       
NPT044   37.81     
NPT052   36.34     
SPT054   43.91     
SPT058   36.02     
SPT061   36.26     
SPT063   35.71     
SPT076   35.71     
SPT078   37.6     
NTK015 36.64       
NTK016 35.61       
NTK028 38.44 37.86   45.42 
PPP032 36.42 45.83     
PPP033 36.23       
PPP034 45.41 44.39     
PPP035 38.81 47.05     
PPP036 39.63 53.91     
PPP037 43.85 37.87     
PPP040   45.78     
PPP041 36.24 56.49     
PPP042   56.46     
PPP043 55.07 37.69     
PPP044 45.31 57.34     
PPP048   38.46     
PPP049 54.84 38.54     
PPP050 36.25 37.78     
PPP051   56.32     
SWC111   37.42     
SWC113   35.65     
SWC122   35.48     
SWC123   36.08     
NPP027 36.36 56.08     
NPP030 35.9 37.82     
NWC084 37.43       
NWC088 38.36       
SWC195 36.68 37.96     
NWC097 36.82 35.68     
NWC098 36.71 37.18     
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Compound 
Model 

11a/3CLpro 13b/3CLpro N3/3CLpro nirmatrelvir/3CLpro 
NWC099 36.74 36.02     
NWC100 37.43       
NTK049 35.54 44.52     
NTK066 36.37       
NTK073 35.9 36.91     
SWC272 36.02       
SWC307 38.54 36.58   46.99 
SWC422 38.1 35.78 45.61 53.32 
SWC423 34.31 35.94 43.22 55.43 
SWC424 43.65 56.21     

 
Four datasets consisting of actives and decoys were used to validate the pharmacophore 

model. By comparing the features of the active compounds to those of the decoys, the model 
could learn the specific patterns and characteristics associated with active compounds. This 
enabled the model to differentiate between compounds with the desired biological activity and 
those without it.(Kaserer, Beck, Akram, Odermatt, & Schuster, 2015; T. Seidel, Wieder, Garon, & 
Langer, 2020) The model's performance distinguishing true active compounds from decoys was 
assessed using AUC and EF values. A high AUC value, typically above 0.7, indicates a strong 
capability of the four models to accurately classify true active compounds from decoys (Figure 
2).(Hamza, Wei, & Zhan, 2012) 

The pharmacophore model yielded significant hits, with 550, 694, 3, and 44 compounds 
identified for inhibitors 11a, 13b, N3, and nirmatrelvir, respectively. Among these models, the 13b 
pharmacophore model exhibited the highest performance, with an impressive EF of 22.6 and AUC 
values of 1.00, 1.00, 1.00, and 0.85 at 1%, 5%, 10%, and 100% of the screened database, 
respectively. These results indicate that the 13b model is highly sensitive and specific, 
successfully identifying 694 active compounds and 49 decoys. However, the other models (11a, 
N3, and nirmatrelvir) also demonstrated successful discrimination between true actives and 
decoys. Therefore, all the models possess the capability to accurately identify inhibitors with high 
accuracy and favorable quality for effective pharmacophore-based virtual screening. Notably, this 
test set validation demonstrates that the pharmacophore model can identify active molecules. 
Nonetheless, it does not guarantee the exclusion of compounds lacking binding affinity. 
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Figure 2 Curve validation of receiver operating characteristic (ROC). It was generated by KNIME 
4.4.0 based on the recognized ability of actives to decoys of four structure-based pharmacophore 
models. Actives were selected hit compounds from pharmacophore-based virtual screening, and 
decoys were based on the dataset downloaded from ZINC15 and DrugBank databases. 

  3.1.3 Common hits identification 
Molecular docking studies were conducted on candidate compounds to refine the hits 

obtained through pharmacophore screening. All 60 compounds, along with known inhibitors 11a, 
13b, N3, and nirmatrelvir, were individually docked into the active site of SARS-CoV-2 3CLpro 

using AutoDock VinaXB(Trott & Olson, 2010). The binding free energy (G) and RMSD below 2 Å 
were used to assess the agreement between experimental and predicted binding poses. The 
structural arrangement of the known inhibitors guided the evaluation of the orientation of the 

docked poses. The predicted G values of all 60 compounds were compared with the reported 
inhibitors from crystal structures 6Y2F (11a, -7.2 kcal/mol), 6LU7 (13b, -7.4 kcal/mol), 6LZE (N3, -

7.6 kcal/mol), and 7VH8 (nirmatrelvir, -7.3 kcal/mol). In Figure 3, compounds with a lower G 
than the known inhibitors were highlighted in yellow, indicating a favorable binding affinity. On 

the other hand, compounds with a higher G was shown in gray, suggesting weaker binding or 
unfavorable interactions with the target protein, as described by Pantsar and Poso(Pantsar & 
Poso, 2018). 
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Figure 3 A heatmap generated using AutoDock VinaXB to display the G (kcal/mol) values for the 
complex formed by 60 in-house compounds and SARS-CoV-2 3CLpro, with the first row (white 

box) showing G values of re-docked inhibitors (11a, 13b, N3, and nirmatrelvir) in the crystal 

structures 6Y2F, 6LU7, 6LZE, and 7VH8, respectively. The compounds with a lower G than the 

known inhibitor in each column were indicated by a yellow box, while those with a higher G 
was represented by a gray box.  

Among the compounds, NST005, NPT018, NPT019, NPT044, NTK028, NPP027, NWC084, 

NWC088, NWC100, SWC422, SWC423, and SWC424 exhibited more negative G values than their 
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reference inhibitors. This observation suggests these compounds have a favorable binding affinity 
and a likelihood of tight binding to the 3CLpro target. Conversely, the remaining compounds 

displayed higher positive G values, indicating weaker binding or unfavorable interactions with 

the target protein. To further evaluate the 12 compounds with lower G, flexible docking using 
the GOLD 5.6.3 suite(Jones et al., 1997) was performed. The results of the GOLD fitness score, 
presented in Figure 4, revealed that a series of three sulfonamide chalcones (SWC422, SWC423, 
and SWC424) exhibited higher GOLD fitness scores, indicating better binding affinity to the active 
site of SARS-CoV-2 3CLpro compared to nirmatrelvir. 
 

 
Figure 4 GOLD fitness score for 12 candidate compounds with their respective SARS -CoV-2 
models relative to the known inhibitors 11a (6Y2F), 13b (6LU7), N3 (6LZE), and nirmatrelvir (7VH8). 
 

Previous studies have highlighted the inhibitory potential of natural-based chalcones 
against the 3CLpro enzyme of SARS and MERS coronaviruses,(Elkhalifa, Al-Hashimi, Al Moustafa, & Khalil, 2021; Park et 

al., 2016; Valipour, 2022) as well as their antiviral activity against other viruses such as influenza(Dao et al., 
2011), herpes simplex(Phrutivorapongkul et al., 2003), hepatitis C(Mateeva et al., 2017), HIV(Cole, 
Hossain, Cole, & Phanstiel, 2016), and Zika(Mottin et al., 2022). Given the wide range of natural-
based and synthetic chalcone derivatives available, further investigation is warranted to discover 
more potent derivatives specifically targeting SARS-CoV-2. 

The three sulfonamide chalcones were superimposed with nirmatrelvir in the active site 
of SARS-CoV-2 3CLpro, as shown in Figure 5A. The docked poses of the sulfonamide chalcones 
aligned in the same orientation as nirmatrelvir, indicating their potential as anti-SARS-CoV-2 

6Y2F 6LU7 6LZE 7VH8 Color GOLD fitness score

Inhibitor 72.7 78.0 70.2 63.9 Nirmatrelvir 63.92

NST005 63.7 69.4 60.3 62.5 SWC422 72.29

NPT018 47.7 50.6 - 49.8 SWC423 67.64

NPT019 - - - 46.7 SWC424 71.80

NPT044 48.4 46.9 50.5 50.9

NTK028 57.6 62.2 - 60.9

NPP027 58.2 60.4 - 61.7

NWC084 46.8 50.9 - 48.6

NWC088 43.3 - - 47.4

NWC100 47.2 - - 49.9

SWC422 66.8 68.3 - 72.3

SWC423 63.8 65.5 63.0 68.6

SWC424 67.4 69.5 66.2 71.8
SWC422 SWC423

SWC424 PF-07321332GOLD fitness score

Min Max

Reference inhibitor
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3CLpro agents. Figure 5B illustrates the intermolecular interactions of the three docked 
complexes. All compounds shared binding residues (T25, L27, M49, N142, G143, C145, and E166) 
at the active site of SARS-CoV-2 3CLpro. Hydrophobic interactions were observed with residues 
T25, L27, M49, M165, and E166, similar to N3 and 13b inhibitors.(K. Sanachai et al., 2022) 
Hydrogen bond acceptors were found at N142 and G143, while a hydrogen bond donor 
interacted with C145, resembling the interaction observed with other compounds such as 
remdesivir, paritaprevir, glecaprevir, and lopinavir.(Hasan et al., 2021) It should be noted that 
there may be differences in the predicted binding residues compared to other studies, which 
could be attributed to variations in docking methods and experimental techniques for structural 
analysis. 

 
Figure 5 (A) Structural overlay of the docked structures (licorice three-dimensional model) of 
sulfonamide chalcones (SWC422-424) and nirmatrelvir in the substrate binding cleft of SARS-CoV-
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2 3CLpro (PDB code: 7VH8). (B) Intermolecular interactions of three screened sulfonamide 
chalcones interacting with SARS-CoV-2 3CLpro obtained from LigandScout. 
 

According to our findings, the sulfonamide moiety of the compounds formed three 
hydrogen bonds, one with the catalytic residue C145 and the other with residues N142 and G143. 

The phenyl ring of the ,-unsaturated ketone interacted hydrophobically with residues T25, 
L27, and M49, while the aromatic substituents induced hydrophobic interactions with M165, 
E166, and L167. Additionally, the chlorine (Cl) attached to the aromatic ring of SWC422 interacted 
with L167 and A191 in the SARS-CoV-2 3CLpro binding pocket. The three sulfonamide chalcones 
exhibited similar intermolecular interactions with important residues (M49, G143, C145, and E166) 
as nirmatrelvir in complex with 3CLpro.(Zhao et al., 2022) Noting that binding free energies do not 
fully define binding equilibria because they do not consider entropic contributions and the 
influence of water polarity. Then the collaborators in research conducted experimental 
investigations (results shown in Figure 14 of the appendix), and we conducted MD simulations to 
overcome these limitations. Studies on experiments shed light on the behavior of hit compounds 
in practical circumstances. At the same time, MD simulations enable a more comprehensive 
analysis of the binding characteristics of our hits in a solution environment.(Gapsys et al., 2021) 

  3.1.4 Dynamics and stability of SWC423 binding to SARS-CoV-2 3CLpro 
The binding dynamics of the three SWC inhibitors were investigated through a 500-ns MD 

simulation. The stability of the SWC423/SARS-CoV-2 3CLpro complex was assessed based on the 
all-atom RMSD, # H-bonds, and # Atom contacts over the simulation time, as depicted in Figure 
6A. Initially, the RMSD values of the complex increased during the first 100 ns but subsequently 
reached a stable state, oscillating around an average value of 1.85 Å. This observation indicates a 
high level of overall stability throughout the simulation. The equilibrium phase was achieved at 
300 ns and maintained until the end of the 500-ns simulation, with an average of 3 ± 1 # H-
bonds and 16 ± 5 # atom contacts.  

To further explore the intermolecular interactions, the last 200 ns of the MD trajectories 
were analyzed, focusing on the hydrogen bonding between SWC423 and SARS-CoV-2 3CLpro. 
Hydrogen bonds play a critical role in stabilizing ligands within the open conformational 
environment of protein structures. Our analysis revealed the formation of eight hydrogen bonds 
in the SWC423 inhibitor. Notably, these hydrogen bonds predominantly occurred at specific sites, 
including the sulfonamide moiety (N1...OG1(T25) at 65%, O1…N(T26) at 28%, O1…OG1(T25) at 
15%, O2…OG1(T45) at 18%, and O2…OG1(T24) at 12.54%), the chalcone carbonyl group 
(O3...N(G143) at 81%), and the nitro benzyl group (O4...NE2(H163) at 32% and O5…NE2(H163) at 
13%). For clarity, only hydrogen bonds with occupancies greater than 30% are depicted in Figure 
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6B. Interestingly, our results revealed that the binding orientation of SWC423 to the active site of 
3CLpro differed from the initial prediction obtained through GOLD docking (Figure 5B). 
Specifically, the nitro group of SWC423 showed an affinity for residue H163, while the 

sulfonamide nitrogen moved closer to T26. Moreover, the oxygen atom of the ,-unsaturated 
ketone formed strong hydrogen bonding with G143, which was not anticipated in the docking 
structure. These findings suggest that protein flexibility, solvent effects, differences in force fields 
between docking and MD simulation, and the ligand's adaptability to the protein environment 
during the MD simulation may contribute to these observed differences. 

To gain insights into the energy contributions of key binding residues interacting with 
SWC423, fragment molecular orbital calculation using PIE and decomposition analysis (PIEDA) was 
conducted. The analysis revealed that electrostatic interactions involving G23, R40, S139, and S1' 

played a significant role, as indicated by the Eij
ES shown in Figure 6B. These findings highlight the 

importance of electrostatic interactions in binding SWC423 to the target protein. In addition to 
electrostatic interactions, hydrophobic interactions involving T25, T45, M49, and N142 were 

observed, as supported by Eij
DI. These interactions are crucial in maintaining the compound 

within the binding pocket. Notably, the S- interaction between M49 and the aromatic ring of 
SWC423 contributed to the binding complex's overall stability, which aligns with previous 

reports.(Hengphasatporn, Harada, et al., 2022). However, repulsion effects (Eij
ES) were observed 

in residues L27, E47, G146, E166, A173, and D187, as indicated by PIEDA values greater than 10 
kcal/mol. These repulsion effects could be attributed to the specific arrangement of the ligand 
within the active site.  
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Figure  6  (A) Analysis of the structure and dynamics of SWC423 binding to SARS-CoV-2 3CLpro 
over 500 ns-MD trajectories, represented by all-atom RMSD, # H-bonds, and # atom contacts. (B) 
Binding pattern of SWC423/3CLpro complex, determined from fragment molecular orbital 
calculation with RIMP2/PCM on the last snapshot of the MD simulation. Strong H -bond 
interactions and residues with >10 kcal/mol and <-10 kcal/mol binding energy are labeled.  
 
3.2 Research 2 

 3.2.1 Evaluation of drug-like properties 
 Evaluating compounds with drug-like properties is crucial in drug discovery as it helps 
identify potential and safe compounds for further development. According to Lipinski's rule, most 
compounds from our database met these criteria, with 490, 488, 549, and 515 compounds 
fulfilling the requirements for molecular weight, number of H-bond donors, number of H-bond 
acceptors, and cLogP, respectively (Figure 7). These results indicate that these compounds are 
likely to exhibit favorable drug-like properties, including oral bioavailability and permeability 
probability. However, some compounds did not meet the criteria for physicochemical properties 
and drug-likeness profiles. These provide insights into a compound's behavior in biological 
systems, such as solubility, stability, and safety.(Council, 2014; Daina et al., 2017; Martin, 2005) To 
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increase the chances of identifying compounds with improved pharmacokinetics, bioavailability, 
and therapeutic potential for further development, selecting compounds that fulfill all the 
criteria is crucial. 
 

 
Figure 7 Radar chart with the compounds eligible for drug-like characteristic 
 

In our subsequent studies, we focused on 358 compounds derived from 11 different 

groups, including -mangostin, anticancer agents, avicequinones, caffeic acid derivatives, acid 
homodimers, xanthones, avenalumic acid derivatives, quinonoids, steroids, piperic acid 
derivatives, and ureas. These compounds were selected based on their properties predicted by 
SwissADME, listed in Table 5. 
 
Table 5 Drug-like properties of 358 selected compounds predicted by SwissADME 

Compound 

Lipinski’s rules of five Physicochemical properties Drug-likeness profiles 

MW 
#HB
A 

#HB
D 

cLog
P 

#Heav
y 

atoms 

#Rotatabl
e bonds  

TPSA XLOGP3 
ESOL 
Log S  

ESOL Class 
GI 

Absorptio
n  

Bioavai 
score 

 
-Mangostins  

1a 408.5 4 3 4.27 30 5 111.71 5.62 -5.93 Moderately High 0.55  

Anticancer agents  

2a 368.4 6 2 3.03 27 8 93.06 3.2 -3.94 Soluble High 0.55  

2b 270.3 4 0 3.31 20 3 52.58 3.5 -4 Moderately High 0.55  

2c 284.3 5 2 2.56 21 2 79.9 3.49 -4.23 Moderately High 0.55  

2d 290.3 5 3 2.61 21 5 79.15 3.02 -3.64 Soluble High 0.55  

2e 304.3 5 2 2.86 22 6 68.15 3 -3.62 Soluble High 0.55  

2f 274.3 4 2 2.86 20 5 58.92 3.03 -3.56 Soluble High 0.55  

2g 332.4 5 0 3.55 24 8 46.15 3.58 -4 Soluble High 0.55  

2h 318.4 5 1 3.19 23 7 57.15 3.25 -3.79 Soluble High 0.55  

2i 318.4 5 1 3.22 23 7 57.15 3.33 -3.84 Soluble High 0.55  

2j 198.2 4 1 1.65 14 3 47.92 1.38 -2.06 Soluble High 0.55  
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2k 344.4 6 0 2.25 25 3 78.9 2.4 -3.29 Soluble High 0.55  

2l 386.5 4 2 3.68 28 1 70.67 3.2 -4.35 Moderately High 0.55  

2m 270.2 5 3 2.24 20 1 90.9 3.16 -4.03 Moderately High 0.55  

2n 284.3 5 2 2.54 21 2 79.9 3.49 -4.23 Moderately High 0.55  

Avicequinones  

3a 256.3 4 1 1.99 19 1 67.51 2.01 -3.06 Soluble High 0.55  

3b 240.2 4 0 1.95 18 1 64.35 2.28 -3.15 Soluble High 0.55  

3c 254.2 4 0 2.3 19 2 64.35 2.75 -3.45 Soluble High 0.55  

3d 198.2 3 0 1.9 15 0 47.28 2.27 -3.04 Soluble High 0.55  

Caffeic acid derivatives  

4a 193.2 3 3 0.93 14 3 69.56 0.9 -1.72 Soluble High 0.55  

4b 207.2 3 3 1.29 15 4 69.56 1.4 -2.04 Soluble High 0.55  

4c 221.3 3 3 1.55 16 4 69.56 1.7 -2.3 Soluble High 0.55  

4d 235.3 3 3 1.93 17 5 69.56 2.37 -2.72 Soluble High 0.55  

4e 221.3 3 3 1.65 16 5 69.56 1.93 -2.38 Soluble High 0.55  

4f 249.3 3 3 2.23 18 5 69.56 2.76 -3.04 Soluble High 0.55  

4g 235.3 3 3 1.99 17 6 69.56 2.29 -2.61 Soluble High 0.55  

4h 323.3 6 3 3.29 23 5 69.56 3.36 -4.02 Moderately High 0.55  

4i 323.3 6 3 3.23 23 5 69.56 3.24 -3.94 Soluble High 0.55  

4j 323.3 6 3 3.24 23 5 69.56 3.34 -4 Moderately High 0.55  

4k 194.2 4 2 1.35 14 3 66.76 1.48 -2.1 Soluble High 0.55  

4l 208.2 4 2 1.82 15 4 66.76 2.56 -2.78 Soluble High 0.55  

4m 222.2 4 2 2 16 4 66.76 2.28 -2.67 Soluble High 0.55  

4n 236.3 4 2 2.42 17 5 66.76 3.52 -3.45 Soluble High 0.55  

4o 222.2 4 2 2.21 16 5 66.76 3.17 -3.16 Soluble High 0.55  

4p 250.3 4 2 2.68 18 5 66.76 3.92 -3.78 Soluble High 0.55  

4q 236.3 4 2 2.46 17 6 66.76 3.53 -3.39 Soluble High 0.55  

4r 324.3 7 2 3.61 23 5 66.76 3.93 -4.38 Moderately High 0.55  

4s 324.3 7 2 3.61 23 5 66.76 3.93 -4.38 Moderately High 0.55  

4t 324.3 7 2 3.62 23 5 66.76 3.92 -4.38 Moderately High 0.55  

4u 392.3 10 2 4.61 4.61 6 66.76 4.82 -5.24 Moderately High 0.55  

4v 392.3 10 2 4.61 4.61 6 66.76 4.82 -5.24 Moderately High 0.55  

Acid homodimers  

5a 318.3 7 2 2.15 23 6 102.29 2.45 -3.35 Soluble High 0.56  

5b 304.3 7 3 1.84 22 5 113.29 2.49 -3.37 Soluble High 0.56  

5c 304.3 7 3 1.78 22 5 113.29 2.12 -3.14 Soluble High 0.56  

5d 290.2 7 4 1.38 21 4 124.29 1.79 -2.93 Soluble High 0.56  

5e 290.2 7 4 1.43 21 4 124.29 1.78 -2.92 Soluble High 0.56  

5f 304.3 7 3 1.82 22 5 113.29 2.49 -3.37 Soluble High 0.56  

5g 288.3 6 2 2.07 21 5 93.06 2.54 -3.32 Soluble High 0.56  

5h 304.3 7 3 1.82 22 5 113.29 2.67 -3.48 Soluble High 0.56  

5i 304.3 7 3 1.75 22 5 113.29 2.18 -3.17 Soluble High 0.56  

5j 290.2 7 4 1.38 21 4 124.29 1.79 -2.93 Soluble High 0.56  

5k 274.2 6 3 1.81 20 4 104.06 2.35 -3.2 Soluble High 0.56  

5l 290.2 7 4 1.43 21 4 124.29 2.26 -3.22 Soluble High 0.56  

5m 290.2 7 4 1.37 21 4 124.29 1.96 -3.03 Soluble High 0.56  

5n 290.2 7 4 1.51 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5o 290.2 7 4 1.43 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5p 288.3 6 2 2.24 21 5 93.06 3.09 -3.67 Soluble High 0.56  
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5q 274.2 6 3 1.94 20 4 104.06 2.9 -3.55 Soluble High 0.56  

5r 304.3 7 3 1.87 22 5 113.29 2.73 -3.52 Soluble High 0.56  

5s 290.2 7 4 1.55 21 4 124.29 2.51 -3.38 Soluble High 0.56  

5t 304.3 7 3 1.99 22 5 113.29 2.73 -3.52 Soluble High 0.56  

5u 290.2 7 4 1.56 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5v 304.3 7 3 1.8 22 5 113.29 2.34 -3.27 Soluble High 0.56  

5w 290.2 7 4 1.44 21 4 124.29 2.16 -3.16 Soluble High 0.56  

5x 274.2 6 3 1.87 20 4 104.06 2.9 -3.55 Soluble High 0.56  

5y 258.2 5 2 2.26 19 4 83.83 3.04 -3.56 Soluble High 0.56  

5z 274.2 6 3 1.96 20 4 104.06 3.16 -3.71 Soluble High 0.56  

5aa 274.2 6 3 1.84 20 4 104.06 2.9 -3.55 Soluble High 0.56  

5ab 290.2 7 4 1.51 21 4 124.29 2.51 -3.38 Soluble High 0.56  

5ac 274.2 6 3 1.89 20 4 104.06 2.9 -3.55 Soluble High 0.56  

5ad 290.2 7 4 1.66 21 4 124.29 2.81 -3.57 Soluble High 0.56  

5ae 290.2 7 4 1.5 21 4 124.29 2.51 -3.38 Soluble High 0.56  

5af 290.2 7 4 1.53 21 4 124.29 2.55 -3.4 Soluble High 0.56  

5ag 274.2 6 3 1.94 20 4 104.06 2.69 -3.41 Soluble High 0.56  

5ah 290.2 7 4 1.72 21 4 124.29 2.81 -3.57 Soluble High 0.56  

5ai 290.2 7 4 1.45 21 4 124.29 2.55 -3.4 Soluble High 0.56  

5aj 290.2 7 4 1.34 21 4 124.29 1.79 -2.93 Soluble High 0.56  

5ak 274.2 6 3 1.72 20 4 104.06 2.14 -3.07 Soluble High 0.56  

5al 290.2 7 4 1.6 21 4 124.29 2.8 -3.56 Soluble High 0.56  

5am 290.2 7 4 1.32 21 4 124.29 1.79 -2.93 Soluble High 0.56  

5an 304.3 7 3 1.88 22 5 113.29 2.73 -3.52 Soluble High 0.56  

5ao 290.2 7 4 1.54 21 4 124.29 2.51 -3.38 Soluble High 0.56  

5ap 304.3 7 3 1.89 22 5 113.29 2.73 -3.52 Soluble High 0.56  

5aq 290.2 7 4 1.43 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5ar 330.3 7 3 2.13 24 6 113.29 2.43 -3.39 Soluble High 0.56  

5as 316.3 7 4 1.74 23 5 124.29 2.22 -3.26 Soluble High 0.56  

5at 290.2 7 4 1.52 21 4 124.29 2.51 -3.38 Soluble High 0.56  

5au 274.2 6 3 1.89 20 4 104.06 2.9 -3.55 Soluble High 0.56  

5av 290.2 7 4 1.53 21 4 124.29 2.81 -3.57 Soluble High 0.56  

5aw 290.2 7 4 1.41 21 4 124.29 2.51 -3.38 Soluble High 0.56  

5ax 290.2 7 4 1.54 21 4 124.29 2.55 -3.4 Soluble High 0.56  

5ay 274.2 6 3 1.9 20 4 104.06 2.69 -3.41 Soluble High 0.56  

5az 290.2 7 4 1.66 21 4 124.29 2.81 -3.57 Soluble High 0.56  

5ba 290.2 7 4 1.5 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5bb 316.3 7 4 1.72 23 5 124.29 2.22 -3.26 Soluble High 0.56  

5bc 300.3 6 3 2.13 22 5 104.06 2.57 -3.39 Soluble High 0.56  

5bd 316.3 7 4 1.87 23 5 124.29 2.77 -3.6 Soluble High 0.56  

5be 316.3 7 4 1.72 23 5 124.29 2.22 -3.26 Soluble High 0.56  

5bf 304.3 7 3 1.76 22 5 113.29 2.67 -3.48 Soluble High 0.56  

5bg 304.3 7 3 1.73 22 5 113.29 2.12 -3.14 Soluble High 0.56  

5bh 304.3 7 3 1.82 22 5 113.29 2.49 -3.37 Soluble High 0.56  

5bi 304.3 7 3 1.91 22 5 113.29 2.67 -3.48 Soluble High 0.56  

5bj 290.2 7 4 1.45 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5bk 290.2 7 4 1.32 21 4 124.29 1.79 -2.93 Soluble High 0.56  

5bl 290.2 7 4 1.46 21 4 124.29 2.21 -3.19 Soluble High 0.56  

5bm 290.2 7 4 1.55 21 4 124.29 2.26 -3.22 Soluble High 0.56  
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5bn 304.3 7 3 1.72 22 5 113.29 2.12 -3.14 Soluble High 0.56  

5bo 304.3 7 3 1.76 22 5 113.29 2.73 -3.52 Soluble High 0.56  

5bp 330.3 7 3 2.18 24 6 113.29 2.57 -3.48 Soluble High 0.56  

5bq 330.3 7 3 2.1 24 6 113.29 2.43 -3.39 Soluble High 0.56  

5br 290.2 7 4 1.36 21 4 124.29 1.79 -2.93 Soluble High 0.56  

5bs 290.2 7 4 1.45 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5bt 316.3 7 4 1.75 23 5 124.29 2.22 -3.26 Soluble High 0.56  

5bu 316.3 7 4 1.67 23 5 124.29 2.22 -3.26 Soluble High 0.56  

5bv 274.2 6 3 1.98 20 4 104.06 3.25 -3.77 Soluble High 0.56  

5bw 274.2 6 3 1.89 20 4 104.06 2.7 -3.42 Soluble High 0.56  

5bx 274.2 6 3 1.79 20 4 104.06 2.61 -3.36 Soluble High 0.56  

5by 274.2 6 3 1.95 20 4 104.06 3.16 -3.71 Soluble High 0.56  

5bz 290.2 7 4 1.74 21 4 124.29 3.1 -3.75 Soluble High 0.56  

5ca 290.2 7 4 1.53 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5cb 290.2 7 4 1.4 21 4 124.29 2.26 -3.22 Soluble High 0.56  

5cc 290.2 7 4 1.61 21 4 124.29 2.81 -3.57 Soluble High 0.56  

5cd 290.2 7 4 1.67 21 4 124.29 2.9 -3.63 Soluble High 0.56  

5ce 290.2 7 4 1.46 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5cf 290.2 7 4 1.46 21 4 124.29 2.26 -3.22 Soluble High 0.56  

5cg 290.2 7 4 1.61 21 4 124.29 2.81 -3.57 Soluble High 0.56  

5ch 290.2 7 4 1.58 21 4 124.29 2.67 -3.48 Soluble High 0.56  

5ci 290.2 7 4 1.33 21 4 124.29 1.79 -2.93 Soluble High 0.56  

5cj 290.2 7 4 1.35 21 4 124.29 1.79 -2.93 Soluble High 0.56  

5ck 290.2 7 4 1.45 21 4 124.29 2.26 -3.22 Soluble High 0.56  

5cl 274.2 6 3 1.84 20 4 104.06 2.9 -3.55 Soluble High 0.56  

5cm 274.2 6 3 1.91 20 4 104.06 3.25 -3.77 Soluble High 0.56  

5cn 300.3 6 3 2.24 22 5 104.06 3.13 -3.75 Soluble High 0.56  

5co 300.3 6 3 2.23 22 5 104.06 3.13 -3.75 Soluble High 0.56  

5cp 290.2 7 4 1.54 21 4 124.29 2.51 -3.38 Soluble High 0.56  

5cq 290.2 7 4 1.34 21 4 124.29 3.1 -3.75 Soluble High 0.56  

5cr 316.3 7 4 1.85 23 5 124.29 2.77 -3.6 Soluble High 0.56  

5cs 316.3 7 4 1.78 23 5 124.29 2.77 -3.6 Soluble High 0.56  

5ct 290.2 7 4 1.57 21 4 124.29 2.55 -3.4 Soluble High 0.56  

5cu 290.2 7 4 1.62 21 4 124.29 2.9 -3.63 Soluble High 0.56  

5cv 316.3 7 4 1.89 23 5 124.29 2.77 -3.6 Soluble High 0.56  

5cw 316.3 7 4 1.91 23 5 124.29 2.77 -3.6 Soluble High 0.56  

5cx 290.2 7 4 1.32 21 4 124.29 1.79 -2.93 Soluble High 0.56  

5cy 290.2 7 4 1.22 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5cz 316.3 7 4 1.72 23 5 124.29 2.24 -3.27 Soluble High 0.56  

5da 316.3 7 4 1.69 23 5 124.29 2.22 -3.26 Soluble High 0.56  

5db 290.2 7 4 1.64 21 4 124.29 3.1 -3.75 Soluble High 0.56  

5dc 290.2 7 4 1.53 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5dd 290.2 7 4 1.46 21 4 124.29 2.26 -3.22 Soluble High 0.56  

5de 290.2 7 4 1.36 21 4 124.29 2.81 -3.57 Soluble High 0.56  

5df 290.2 7 4 1.67 21 4 124.29 2.9 -3.63 Soluble High 0.56  

5dg 290.2 7 4 1.55 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5dh 290.2 7 4 1.49 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5di 290.2 7 4 1.62 21 4 124.29 2.81 -3.57 Soluble High 0.56  

5dj 316.3 7 4 1.74 23 5 124.29 2.77 -3.6 Soluble High 0.56  
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5dk 316.3 7 4 1.76 23 5 124.29 2.22 -3.26 Soluble High 0.56  

5dl 316.3 7 4 1.72 23 5 124.29 2.21 -3.25 Soluble High 0.56  

5dm 316.3 7 4 1.86 23 5 124.29 2.77 -3.6 Soluble High 0.56  

5dn 290.2 7 4 1.52 21 4 124.29 2.51 -3.38 Soluble High 0.56  

5do 290.2 7 4 1.54 21 4 124.29 3.1 -3.75 Soluble High 0.56  

5dp 316.3 7 4 1.78 23 5 124.29 2.77 -3.6 Soluble High 0.56  

5dq 316.3 7 4 1.81 23 5 124.29 2.77 -3.6 Soluble High 0.56  

5dr 290.2 7 4 1.56 21 4 124.29 2.34 -3.27 Soluble High 0.56  

5ds 290.2 7 4 1.68 21 4 124.29 2.9 -3.63 Soluble High 0.56  

5dt 316.3 7 4 1.82 23 5 124.29 2.79 -3.61 Soluble High 0.56  

5du 316.3 7 4 1.91 23 5 124.29 2.77 -3.6 Soluble High 0.56  

5dv 316.3 7 4 1.72 23 5 124.29 2.22 -3.26 Soluble High 0.56  

5dw 316.3 7 4 1.57 23 5 124.29 2.77 -3.6 Soluble High 0.56  

5dx 342.3 7 4 2.1 25 6 124.29 2.64 -3.58 Soluble High 0.56  

5dy 342.3 7 4 2.11 25 6 124.29 2.64 -3.58 Soluble High 0.56  

Xanthones    

6a 426.5 7 3 3.77 31 3 109.36 4.71 -5.59 Moderately High 0.55  

6b 394.4 6 3 4.02 29 2 100.13 5.3 -5.85 Moderately High 0.55  

6c 274.2 6 3 1.53 20 1 100.13 1.87 -3.17 Soluble High 0.55  

6d 274.2 6 3 1.71 20 1 100.13 2.42 -3.52 Soluble High 0.55  

6e 302.3 6 1 2.3 22 3 78.13 2.52 -3.57 Soluble High 0.55  

6f 260.2 6 4 1.3 19 0 111.13 2.09 -3.32 Soluble High 0.55  

6g 326.3 5 2 3.54 24 3 79.9 4.7 -5.06 Moderately High 0.55  

6h 356.4 6 2 3.58 26 4 89.13 4.67 -5.13 Moderately High 0.55  

6i 326.3 5 2 3.54 24 3 79.9 4.7 -5.06 Moderately High 0.55  

6j 326.3 5 2 3.54 24 3 79.9 4.7 -5.06 Moderately High 0.55  

6k 342.3 6 3 3.21 25 3 100.13 4.35 -4.92 Moderately High 0.55  

6l 442.5 8 4 3.13 32 4 129.59 4.15 -5.26 Moderately High 0.55  

6m 440.5 7 3 4.1 32 6 109.36 5.02 -5.66 Moderately High 0.55  

6n 410.5 6 2 4.33 30 3 89.13 5.13 -5.76 Moderately High 0.55  

6o 396.4 6 3 3.78 29 3 100.13 4.74 -5.44 Moderately High 0.55  

6p 426.5 7 4 3.81 31 5 120.36 4.69 -5.44 Moderately High 0.55  

6q 426.5 7 3 3.51 31 3 109.36 4.16 -5.24 Moderately High 0.55  

6r 440.5 7 2 3.89 32 4 98.36 4.48 -5.45 Moderately High 0.55  

6s 398.5 6 4 3.89 29 5 111.13 4.93 -5.44 Moderately High 0.55  

6t 412.5 6 3 4.29 30 6 100.13 5.25 -5.65 Moderately High 0.55  

6u 396.4 6 3 4.2 29 2 100.13 5.36 -5.9 Moderately High 0.55  

6v 412.4 7 4 3.41 30 2 120.36 4.38 -5.37 Moderately High 0.55  

6w 426.5 7 4 3.62 31 6 120.36 5.22 -5.71 Moderately High 0.55  

6x 428.5 7 3 3.52 31 4 109.36 3.75 -4.93 Moderately High 0.55  

6y 428.5 7 3 3.76 31 4 109.36 4.31 -5.28 Moderately High 0.55  

6z 378.4 5 2 4.39 28 2 79.9 5.65 -5.98 Moderately High 0.55  

6aa 396.4 6 2 4.11 29 0 89.13 4.76 -5.65 Moderately High 0.55  

6ab 426.5 7 3 3.73 31 4 109.36 4.71 -5.52 Moderately High 0.55  

6ac 394.4 6 3 4.06 29 2 100.13 5.3 -5.85 Moderately High 0.55  

6ad 408.4 6 1 4.33 30 1 78.13 5.03 -5.82 Moderately High 0.55  

6ae 396.4 6 3 3.7 29 3 100.13 4.74 -5.44 Moderately High 0.55  

6af 424.4 7 3 3.87 31 6 117.2 4.93 -5.52 Moderately High 0.55  

6ag 324.3 5 3 2.77 24 0 90.9 3.65 -4.58 Moderately High 0.55  
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6ah 394.4 6 3 4.02 29 2 100.13 5.3 -5.85 Moderately High 0.55  

6ai 376.4 5 1 4.24 28 0 68.9 5.01 -5.7 Moderately High 0.55  

6aj 326.3 5 2 3.3 24 3 79.9 4.15 -4.71 Moderately High 0.55  

6ak 342.3 6 3 3.16 25 3 100.13 4.35 -4.92 Moderately High 0.55  

6al 458.5 8 4 3.56 33 7 129.59 4.25 -5.21 Moderately High 0.55  

6am 384.4 7 3 3.09 28 3 109.36 4.19 -5.03 Moderately High 0.55  

6an 460.5 8 4 3.66 33 8 129.59 4.45 -5.28 Moderately High 0.55  

6ao 386.4 7 3 3.23 28 4 109.36 4.39 -5.11 Moderately High 0.55  

Avenalumic acid derivatives  

7a 285.3 3 0 3.03 21 4 38.77 3.46 -3.74 Soluble High 0.55  

7b 293.3 3 1 3.43 22 5 47.56 4.54 -4.59 Moderately High 0.55  

7c 353.4 5 1 3.3 26 7 66.02 3.58 -4.17 Moderately High 0.55  

7d 353.4 5 1 3.28 26 7 66.02 3.58 -4.17 Moderately High 0.55  

7e 353.4 5 1 3.23 26 7 66.02 3.58 -4.17 Moderately High 0.55  

7f 280.3 3 2 3.26 21 5 57.53 3.56 -3.91 Soluble High 0.55  

7g 286.4 3 2 3.59 21 5 57.53 4.64 -4.42 Moderately High 0.55  

7h 288.3 4 2 3.21 21 5 66.76 3.94 -3.99 Soluble High 0.55  

7i 315.8 3 3 3.29 22 5 69.56 3.74 -4.23 Moderately High 0.55  

7j 295.3 3 3 3.06 22 5 69.56 3.48 -3.94 Soluble High 0.55  

7k 295.3 3 3 3.06 22 5 69.56 3.48 -3.94 Soluble High 0.55  

7l 295.3 3 3 2.98 22 5 69.56 3.48 -3.94 Soluble High 0.55  

7m 315.8 3 3 3.23 22 5 69.56 3.63 -4.16 Moderately High 0.55  

7n 311.3 4 3 2.75 23 6 78.79 2.97 -3.63 Soluble High 0.55  

7o 311.3 4 3 2.69 23 6 78.79 2.97 -3.63 Soluble High 0.55  

7p 311.3 4 3 2.69 23 6 78.79 2.97 -3.63 Soluble High 0.55  

7q 315.8 3 3 3.23 22 5 69.56 3.63 -4.16 Moderately High 0.55  

7r 297.3 4 4 2.35 22 5 89.79 2.76 -3.5 Soluble High 0.55  

7s 297.3 4 4 2.3 22 5 89.79 2.65 -3.43 Soluble High 0.55  

7t 350.2 3 3 3.81 23 5 69.56 4.37 -4.82 Moderately High 0.55  

7u 299.3 4 3 3.06 22 5 69.56 3.22 -3.8 Soluble High 0.55  

7v 299.3 4 3 3.01 22 5 69.56 3.1 -3.72 Soluble High 0.55  

7w 299.3 4 3 3 22 5 69.56 3.1 -3.72 Soluble High 0.55  

7x 350.2 3 3 3.72 23 5 69.56 4.26 -4.75 Moderately High 0.55  

7y 349.3 6 3 3.86 25 6 69.56 4 -4.48 Moderately High 0.55  

7z 349.3 6 3 3.78 25 6 69.56 4 -4.48 Moderately High 0.55  

7aa 349.3 6 3 3.78 25 6 69.56 4 -4.48 Moderately High 0.55  

7ab 350.2 3 3 3.72 23 5 69.56 4.26 -4.75 Moderately High 0.55  

7ac 310.4 4 4 2.25 23 6 95.58 2.52 -3.34 Soluble High 0.55  

7ad 310.4 4 4 2.16 23 6 95.58 1.97 -3 Soluble High 0.55  

7ae 310.4 4 4 2.15 23 6 95.58 1.97 -3 Soluble High 0.55  

7af 350.2 3 3 3.8 23 5 69.56 4.26 -4.75 Moderately High 0.55  

7ag 309.4 3 3 3.38 23 5 69.56 3.84 -4.23 Moderately High 0.55  

7ah 309.4 3 3 3.36 23 5 69.56 3.84 -4.23 Moderately High 0.55  

7ai 309.4 3 3 3.36 23 5 69.56 3.84 -4.23 Moderately High 0.55  

7aj 350.2 3 3 3.78 23 5 69.56 4.26 -4.75 Moderately High 0.55  

7ak 341.4 5 3 2.62 25 7 88.02 2.94 -3.7 Soluble High 0.55  

7al 341.4 5 3 2.67 25 7 88.02 2.94 -3.7 Soluble High 0.55  

7am 341.4 5 3 2.67 25 7 88.02 2.94 -3.7 Soluble High 0.55  

7an 350.2 3 3 3.75 23 5 69.56 4.37 -4.82 Moderately High 0.55  
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7ao 313.3 5 5 1.99 23 5 110.02 2.41 -3.36 Soluble High 0.55  

7ap 350.2 3 3 3.76 23 5 69.56 4.37 -4.82 Moderately High 0.55  

7aq 317.3 5 3 3.37 23 5 69.56 3.32 -3.95 Soluble High 0.55  

7ar 317.3 5 3 3.3 23 5 69.56 3.2 -3.88 Soluble High 0.55  

7as 317.3 5 3 3.3 23 5 69.56 3.2 -3.88 Soluble High 0.55  

7at 339.4 5 5 1.73 25 7 121.6 1.38 -2.71 Soluble High 0.55  

7au 339.4 5 5 1.58 25 7 121.6 0.83 -2.36 Soluble High 0.55  

7av 339.4 5 5 1.58 25 7 121.6 0.83 -2.36 Soluble High 0.55  

7aw 309.4 3 3 3.4 23 5 69.56 3.84 -4.23 Moderately High 0.55  

7ax 309.4 3 3 3.41 23 5 69.56 3.84 -4.23 Moderately High 0.55  

7ay 309.4 3 3 3.39 23 5 69.56 3.84 -4.23 Moderately High 0.55  

7az 339.4 5 5 1.58 25 7 121.6 0.83 -2.36 Soluble High 0.55  

7ba 309.4 3 3 3.4 23 5 69.56 3.84 -4.23 Moderately High 0.55  

7bb 309.4 3 3 3.41 23 5 69.56 3.84 -4.23 Moderately High 0.55  

7bc 309.4 3 3 3.39 23 5 69.56 3.84 -4.23 Moderately High 0.55  

7bd 309.4 3 3 3.39 23 5 69.56 3.84 -4.23 Moderately High 0.55  

7be 341.4 5 3 2.7 25 7 88.02 2.94 -3.7 Soluble High 0.55  

7bf 341.4 5 3 2.75 25 7 88.02 2.94 -3.7 Soluble High 0.55  

7bg 341.4 5 3 2.71 25 7 88.02 2.94 -3.7 Soluble High 0.55  

7bh 341.4 5 3 2.73 25 7 88.02 3.06 -3.78 Soluble High 0.55  

7bi 313.3 5 5 1.93 23 5 110.02 2.41 -3.36 Soluble High 0.55  

7bj 313.3 5 5 2.02 23 5 110.02 2.41 -3.36 Soluble High 0.55  

7bk 317.3 5 3 3.33 23 5 69.56 3.2 -3.88 Soluble High 0.55  

7bl 317.3 5 3 3.34 23 5 69.56 3.2 -3.88 Soluble High 0.55  

7bm 317.3 5 3 3.33 23 5 69.56 3.32 -3.95 Soluble High 0.55  

7bn 317.3 5 3 3.31 23 5 69.56 3.32 -3.95 Soluble High 0.55  

7bo 339.4 5 5 1.65 25 7 121.6 1.38 -2.71 Soluble High 0.55  

7bp 339.4 5 5 1.67 25 7 121.6 1.38 -2.71 Soluble High 0.55  

7bq 339.4 5 5 1.61 25 7 121.6 0.83 -2.36 Soluble High 0.55  

7br 339.4 5 5 1.68 25 7 121.6 1.38 -2.71 Soluble High 0.55  

Quinonoids  

8a 240.2 4 0 1.95 18 1 64.35 2.28 -3.15 Soluble High 0.55  

8b 254.2 4 0 2.3 19 2 64.35 2.75 -3.45 Soluble High 0.55  

8c 242.2 5 1 1.48 18 1 84.58 2.13 -3.07 Soluble High 0.56  

8d 228.2 3 3 2.48 17 2 60.69 3.13 -3.62 Soluble High 0.55  

8e 368.4 6 2 3.03 27 8 93.06 3.2 -3.94 Soluble High 0.55  

Steroids  

9a 372.5 2 2 3.31 27 3 58.2 3.03 -3.86 Soluble High 0.55  

9b 392.5 2 2 3.62 29 3 58.2 3.6 -4.5 Moderately High 0.55  

9c 406.6 2 1 3.77 30 3 49.41 3.79 -4.7 Moderately High 0.55  

9d 440.5 6 2 3.46 31 5 75.27 3.32 -4.33 Moderately High 0.55  

9e 440.5 6 2 3.46 31 5 75.27 3.32 -4.33 Moderately High 0.55  

9f 364.5 1 2 4.12 27 2 41.13 5.33 -5.49 Moderately High 0.55  

9g 488.6 5 2 4.79 35 5 58.2 4.88 -5.74 Moderately High 0.55  

9h 488.6 5 2 4.79 35 5 58.2 4.88 -5.74 Moderately High 0.55  

9i 454.5 6 2 3.64 32 5 75.27 3.51 -4.54 Moderately High 0.55  

9j 383.5 3 2 2.71 28 3 81.99 2.42 -3.54 Soluble High 0.55  

9k 464.6 3 2 4.13 34 5 67.43 4.1 -5.1 Moderately High 0.55  

9l 371.6 2 1 4.16 27 3 46.17 4.11 -4.53 Moderately High 0.55  
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9m 396.6 3 1 4.2 29 3 69.96 4.51 -4.94 Moderately High 0.55  

9n 331.5 3 1 3.03 24 2 55.4 3.52 -3.98 Soluble High 0.55  

9o 446.6 2 2 4.45 33 4 58.2 5.14 -5.72 Moderately High 0.55  

9p 350.9 2 2 2.73 24 1 72.19 3.38 -4.08 Moderately High 0.55  

9q 385.6 2 0 4.58 28 3 37.38 5.48 -5.49 Moderately High 0.55  

9r 315.5 3 1 3.83 23 2 49.66 4.05 -4.22 Moderately High 0.55  

9s 403.6 2 1 4.59 28 3 84.97 4.94 -5.26 Moderately High 0.55  

9t 406 2 1 4.9 28 3 46.17 5.42 -5.57 Moderately High 0.55  

9u 450.5 2 1 4.94 28 3 46.17 5.48 -5.89 Moderately High 0.55  

Piperic acid derivatives  

10a 285.3 3 0 3.03 21 4 38.77 3.46 -3.74 Soluble High 0.55  

10b 293.3 3 1 3.43 22 5 47.56 4.54 -4.59 Moderately High 0.55  

10c 353.4 5 1 3.3 26 7 66.02 3.58 -4.17 Moderately High 0.55  

10d 353.4 5 1 3.28 26 7 66.02 3.58 -4.17 Moderately High 0.55  

10e 353.4 5 1 3.23 26 7 66.02 3.58 -4.17 Moderately High 0.55  

Ureas  

11a 220.3 3 2 1.45 15 4 95.15 1.77 -2.6 Soluble High 0.55  

11b 282.4 1 2 3.71 21 6 41.13 3.87 -4.06 Moderately High 0.55  

11c 426.9 5 3 2.81 30 8 115.57 2.75 -4.09 Moderately High 0.55  

11d 375.4 3 4 3.68 28 5 95.83 3.86 -4.82 Moderately High 0.55  

11e 454.9 7 2 3.79 32 8 107.74 4.03 -5.16 Moderately High 0.55  

11f 242.3 2 2 2.4 18 5 50.36 2.06 -2.8 Soluble High 0.55  

11g 226.3 1 2 2.8 17 4 41.13 2.85 -3.3 Soluble High 0.55  

11h 242.3 2 2 2.52 18 5 50.36 2.69 -3.2 Soluble High 0.55  

11i 226.3 1 2 2.67 17 4 41.13 2.24 -2.91 Soluble High 0.55  

11j 246.7 1 2 3.03 17 4 41.13 3.11 -3.59 Soluble High 0.55  

11k 226.3 1 2 2.85 17 4 41.13 3.07 -3.44 Soluble High 0.55  

11l 230.2 2 2 2.77 17 4 41.13 2.42 -3.05 Soluble High 0.55  

11m 230.2 2 2 2.8 17 4 41.13 2.59 -3.16 Soluble High 0.55  

11n 230.2 2 2 2.89 17 4 41.13 3.04 -3.44 Soluble High 0.55  

11o 246.7 1 2 2.93 17 4 41.13 2.67 -3.31 Soluble High 0.55  

11p 257.2 3 2 2.04 19 5 86.95 3.05 -3.49 Soluble High 0.55  

11q 246.7 1 2 3.22 17 4 41.13 4.07 -4.19 Moderately High 0.55  

11r 242.3 2 2 2.49 18 5 50.36 2.42 -3.03 Soluble High 0.55  

11s 237.3 2 2 1.75 18 5 53.49 2.47 -3.03 Soluble High 0.55  

11t 288.3 1 2 3.83 22 5 41.13 4.11 -4.49 Moderately High 0.55  

11u 262.3 1 2 3.37 20 4 41.13 3.4 -3.94 Soluble High 0.55  

11v 256.3 3 2 2.21 19 4 59.59 2.15 -2.99 Soluble High 0.55  

11w 314.7 4 2 4.2 21 5 41.13 4.72 -4.86 Moderately High 0.55  

11x 178.2 1 2 1.79 13 4 41.13 1.92 -2.23 Soluble High 0.55  

11y 218.3 1 2 2.54 16 4 41.13 2.77 -2.95 Soluble High 0.55  

11z 226.3 1 2 2.51 17 5 41.13 2.42 -2.96 Soluble High 0.55  

11aa 240.3 1 2 2.88 18 6 41.13 3.23 -3.46 Soluble High 0.55  

11ab 238.3 1 2 2.75 18 5 41.13 2.91 -3.31 Soluble High 0.55  

11ac 202.2 2 2 1.78 15 4 54.27 1.88 -2.56 Soluble High 0.55  

11ad 218.3 1 2 2.43 15 4 69.37 2.49 -3.04 Soluble High 0.55  

11ae 251.3 1 3 2.55 19 4 56.92 2.61 -3.36 Soluble High 0.55  

11af 228.3 3 2 1.28 17 4 66.91 1.08 -2.19 Soluble High 0.55  

11ag 228.3 2 3 2.07 17 4 61.36 2.11 -2.84 Soluble High 0.55  
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11ah 241.3 2 3 1.91 18 5 67.15 1.34 -2.34 Soluble High 0.55  

11ai 244.3 1 2 2.7 17 4 79.93 2.64 -3.28 Soluble High 0.55  

11aj 278.3 2 3 3.01 21 4 61.36 3.38 -3.99 Soluble High 0.55  

11ak 256.3 3 2 2.21 19 4 59.59 2.15 -2.99 Soluble High 0.55  

11al 305.2 1 2 3.4 18 4 41.13 3.42 -4.12 Moderately High 0.55  

11am 264.7 2 2 3.52 18 4 41.13 4.17 -4.34 Moderately High 0.55  

11an 296.4 1 2 4.14 22 6 41.13 3.8 -4.08 Moderately High 0.55  

11ao 262.7 2 3 2.8 18 4 61.36 3.72 -4.04 Moderately High 0.55  

11ap 206.3 1 2 2.62 15 7 41.13 3.07 -2.89 Soluble High 0.55  

11aq 216.2 2 2 1.85 16 5 54.27 1.52 -2.32 Soluble High 0.55  

11ar 227.3 2 2 1.67 17 5 54.02 1.39 -2.32 Soluble High 0.55  

11as 279.3 1 3 2.69 21 6 56.92 2.34 -3.18 Soluble High 0.55  

11at 213.2 2 2 1.73 16 4 54.02 1.8 -2.59 Soluble High 0.55  

11au 263.3 2 2 2.83 20 4 54.02 3.3 -3.88 Soluble High 0.55  

11av 251.3 1 3 2.45 19 4 56.92 1.94 -2.94 Soluble High 0.55  

11aw 329.4 1 2 3.87 25 5 46.06 4.2 -4.76 Moderately High 0.55  

11ax 192.3 1 1 2.03 14 5 32.34 1.87 -2.2 Soluble High 0.55  

11ay 192.3 1 1 2.04 14 5 32.34 1.84 -2.18 Soluble High 0.55  

 
 3.2.2 Pharmacophore-based virtual screening and model validation 

The pharmacophore models of previous work were used to identify compounds that 
share similar chemical features and spatial arrangements. The virtual screening results, depicted 
in Figure 8, revealed the identification of 258, 230, and 157 active compounds using models 11a, 
13b, and N3, respectively. These active compounds were further categorized into 11 groups, 

including -mangostin, anticancer agents, avicequinones, caffeic acid derivatives, acid 
homodimers, xanthones, avenalumic acid derivatives, quinonoids, steroids, piperic acid 
derivatives, and ureas. The identified compounds exhibited good alignment with the key 
chemical features, such as hydrogen bond donor, hydrogen bond acceptor, and hydrophobic 
interaction, as defined by their corresponding reference model.(K. Sanachai et al., 2022) They 
were considered promising candidates for further exploration due to their higher likelihood of 
exhibiting the desired biological activity against 3CLpro. So, these screened compounds were also 
utilized in the model validation step to identify decoys. 
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Figure 8 Pharmacophore fit scores of 296 active compounds derived from pharmacophore-based 
virtual screening 
 
 In order to comprehensively evaluate the performance of the pharmacophore models 
used in this study, we conducted a thorough validation process. This involved assessing the 
models using ROC curves, which offer their ability to accurately classify compounds as either 
active or inactive. Figure 9 represents the obtained ROC curves. The AUC values were obtained 
by considering the top 5%, 10%, and 100% of the ranked compounds from each model, which 
ranged between 0.5 and 1.0. These values indicate that all the models have a moderate to 
strong ability to classify compounds as active or inactive correctly. The EF value measures the 
degree of enrichment the screening method achieves compared to random sampling.(Gan et al., 
2023; Li et al., 2009) When the EF value is greater than 1, it indicates a higher probability of 
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detecting active compounds than random selection. Based on the AUC and EF values evaluation, 
the N3 model demonstrated superior discrimination and enrichment compared to the other two 
models. The 11a model showed moderate discrimination and enrichment, while the 13b model 
exhibited lower performance. However, further analysis and validation should be conducted to 
ensure the reliability and robustness of the findings. Validation methods such as cross-validation, 
external testing on independent datasets, and experimental assays are necessary to confirm the 
performance of the models and validate their predictive capabilities. 
 

 
Figure 9 ROC curves of pharmacophore model validation generated by KNIME 
 

  3.2.3 Hits identification from molecular docking 
Molecular docking was performed on the 296 active compounds obtained from the 

pharmacophore-based virtual screening to predict their binding modes and affinities with the 

SARS-CoV-2 3CLpro protein target. The predicted binding energies (G) of the best pose 

compounds were analyzed based on three criteria: RMSD < 2 Å, low G, and similar binding 

orientation to their reference compounds. Figure 10A shows the predicted G values in kcal/mol 
for the 43 compounds that exhibited stronger binding affinity with the SARS-CoV-2 3CLpro than 

the known inhibitors. The variations in G can be attributed to the specific interactions between 
the protein and the ligands, such as hydrogen bonding, electrostatic interactions, hydrophobic 
interactions, and van der Waals forces. These interactions play a critical role in determining the 
strength and stability of the ligand-protein complex, ultimately influencing the overall binding 
energy. The 43 selected hit compounds belong to six groups: 8 caffeic acid derivatives, 10 acid 
homodimers, 14 xanthones, 6 avenalumic acid derivatives, 2 steroids, and 3 ureas. Figure 10B 
depicts the intermolecular interactions between these hit compounds and the 3CLpro protein. It 
should be noted that Table 6 provides detailed data on the identification of the selected hit 
compounds, corresponding to the compound numbers in Figure 10A. 
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Table 6 Correspondence between compound number in molecular docking (Figure 10A) and 
compound name from visual inspection (Figure 10B) 

Compound No.  Compound name 
Caffeic acid derivatives 

21 4i 
22 4j 
23 4k 
24 4l 
26 4n 
28 4p 
33 4u 
34 4v 

Acid homodimers 
42 5h 
44 5j 
73 5as 
84 5bd 
85 5be 
91 5bl 
95 5bp 
99 5bt 
121 5cr 
129 5cz 

Xanthones 
154 6b 
162 6n 
165 6q 
166 6r 
167 6s 
169 6u 
172 6x 
174 6z 
175 6aa 
177 6ac 
178 6ad 
179 6ae 
182 6ah 
183 6ai 

Avenalumic acid derivatives 
203 7u 
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Compound No.  Compound name 
208 7z 
209 7aa 
225 7aq 
242 7bm 
243 7bn 

Steroids 
253 9d 
257 9i 

Ureas 
269 11d 
270 11e 
296 11aw 

 
Previous studies have reported the potential inhibitory activities of compounds from the 

discovered groups against the 3CLpro. For example, caffeic acid phenethyl esters have shown 
comparable binding efficacy and binding energies to the known N3 inhibitor.(Kumar, Dhanjal, Kaul, 
Wadhwa, & Sundar, 2021) Xanthone derivatives, particularly rubraxanthone, have been found to 
bind to the allosteric site stably and potentially the active site of 3CLpro. Steroids and ureas, 
such as glycyrrhizin, withanolides, curcumin, and quercetin, have also demonstrated potential 
inhibitory activities against the 3CLpro enzyme.(Alves et al., 2022; Bahun et al., 2022; Dhanjal et 
al., 2021; van de Sand et al., 2021) These findings from previous studies align with the 
computational results of this study, further supporting the potential of the identified compounds 
as promising hit candidates for inhibiting the activity of the 3CLpro. 

The qualitative and quantitative interactions between compounds and the protein target 
play a significant role in their binding ability and the stability of the resulting complexes.(Suriya, 
Mahalapbutr, & Rungrotmongkol, 2022) Figure 10B provides information on the proportion of 
intermolecular interactions between each compound and the SARS-CoV-2 3CLpro protein target, 

including hydrogen bonding, -alkyl interaction, halogen interaction, and alkyl-alkyl interaction. 
Hydrogen bonds are found to be highly involved in the binding of derivatives of caffeic acid, acid 
homodimer, avenalumic acid derivatives, and steroids to the SARS-CoV-2 3CLpro. These hydrogen 
bonds contribute to the stabilization of the ligand-protein complex and facilitate specific 

interactions at the binding site. Furthermore, -alkyl interactions play a crucial role in ensuring 
the complementary shape and fit of all screened compounds, particularly xanthones and ureas, 
within the active site of the enzyme. These interactions involve the stacking of aromatic moieties 
and alkyl groups, contributing to the overall binding affinity and specificity. Halogen interactions 
are observed in four caffeic acid derivatives, three avenalumic acid derivatives, a steroid, and 
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urea. These interactions involve the interaction of halogen atoms (e.g., chlorine or bromine) with 
specific residues in the protein, contributing to the stabilization of the ligand-protein complex. 
Lastly, alkyl-alkyl interactions are likely present in some caffeic acid derivatives, xanthones, and 
avenalumic acid derivatives. These interactions involve the interaction of alkyl groups, such as 
methyl or ethyl groups, contributing to the overall binding stability and hydrophobic interactions 
within the binding site. These various types of intermolecular interactions play a crucial role in 
the binding of the screened compounds to the SARS-CoV-2 3CLpro, ensuring favorable binding 
affinity and stability of the ligand-protein complex. 
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Figure 10 (A) The calculated G (kcal/mol) from molecular docking study via AutoDock VinaXB. 

Each dot indicates the G of a particular compound/3CLpro complex, whereas the dashed line 

represents the G of known inhibitors derived from the redocking of the crystal structures. (B) A 
stacked bar chart displaying the proportion of intermolecular interactions observed in the 
selected docking complexes resulted from Accelrys Discovery Studio Client 4.0. (C) The center of 
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mass calculated from the docked poses for each group (left) and  its distance to the catalytic 
dyad H41 and C145 (right) 

Figure 11 illustrates the aligned structure of the selected hit compounds, revealing 
variations and similarities among compound groups in their binding to the target protein. 
Avenalumic acid derivatives and steroids primarily occupied the S1 and S3 subsites, while acid 
homodimers and ureas preferred binding to the S1, S2, and S3 subsites. Caffeic acid derivatives 
showed potential binding to all four subsites: S1, S2, S3, and S1'. Xanthones exhibited diverse 
binding interactions with 3CLpro. To assess the positioning of hit compounds within the active 
site, we calculated the center of mass for each compound group and measured its distance from 
the catalytic dyad (H41 and C145), referred to as dCOM. In Figure 10C, caffeic acid derivatives 
displayed a dCOM value of 4.7 Å, indicating closer proximity to the catalytic site compared to 
others (≥ 6.5 Å). These findings suggest that caffeic acid derivatives are well-positioned for strong 
interactions with 3CLpro, prioritizing their synthesis and subsequent experimental testing, 
particularly those demonstrating at least ten ligand-protein interactions. 

 

 
Figure 11 Alignment of selected hit compounds in the active site of 3CLpro  according to their 
optimal binding orientation from molecular docking 
 

The laboratories collaborated on the synthesis of six caffeic acid derivatives and the in 
vitro investigation of an enzyme inhibition assay, as depicted in Figures 15 and 16. Compounds 4k 
and 4l showed better inhibitory activity than rutin, the standard compound. At 100 µM 
concentration, compounds 4k and 4l decreased enzymatic activity to 68.8% and 58.0%, 
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respectively. These results indicate the potential of these two ester derivatives of caffeic acid as 
promising 3CLpro inhibitors, highlighting their suitability for additional testing and development as 
SARS-CoV-2 antiviral agents.            

Figure 12 displays the intermolecular interactions between two ester caffeic acid 
derivatives (4k and 4l) and SARS-CoV-2 3CLpro. Both compounds interact with key residues H41, 
F140, L141, N142, S144, H164, and E166, which are similar to the critical contact residues of the 
orally active inhibitors nirmatrelvir and ensitrelvir.(Lee et al., 2022; Unoh et al., 2022) Hydrogen 
bonds are formed between two hydroxyl groups of the phenyl moiety and residues F140, L141, 
N142, S144, and H163. The ester carbonyl oxygen forms a hydrogen bond with H164, and in the 

case of 4k, it also interacts with C145. Additionally, two -alkyl interactions with H41 and E166 
contribute to stabilizing the binding of the caffeic acid ester derivatives at the methyl and 
cinnamyl catechol groups, respectively. The ethyl ester of compound 4l favorably contacts 
residues F181 and D187 via alkyl-alkyl interactions. These interactions provide information on the 
particular molecular interactions of these two potent compounds with the active site of SARS-
CoV-2 3CLpro. Although their potency may not be as strong as other compounds identified in 
virtual screening, the findings suggest that ester derivatives of caffeic acid could be a starting 
point for developing more potent inhibitors.(Ang, Kendall, & Atamian, 2023; Onyango, Odhiambo, 
Angwenyi, & Okoth, 2022; K. Sanachai et al., 2022) 
 

 
Figure 12 Intermolecular interactions of the two ester derivatives of caffeic acid, 4k and 4l,  
interacting with SARS-CoV-2 3CLpro active site 
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CHAPTER IV 
CONCLUSIONS 

 
Conclusions  

This study focused on identifying potential inhibitors for the SARS-CoV-2 3CLpro using 
computational approaches. Through screening of in-house compounds, three sulfonamide 
chalcones (SWC422, SWC423, and SWC424) were identified as promising inhibitors with strong 
binding affinity and comparable inhibitory efficiency to the authorized drug nirmatrelvir. Further 
MD trajectory analysis of SWC423 revealed its stability in the active site of 3CLpro and supported 
by various interactions that contribute to its binding efficacy. Moreover, a comprehensive 
investigation involving 553 compounds, including natural products and their derivatives, identified 
43 hits from six distinct groups (caffeic acid derivatives, acid homodimers, xanthones, avenalumic 
acid derivatives, steroids, and ureas). These compounds displayed superior binding affinity to the 
target protein, with caffeic acid derivatives exhibiting the most favorable binding free energy and 
positioning closest to the catalytic dyad of 3CLpro (H41 and C145). These findings underscore the 
potential of targeting the SARS-CoV-2 3CLpro enzyme using inhibitors such as sulfonamide 
chalcones and caffeic acid derivatives. These findings highlight the potential of targeting the 
SARS-CoV-2 3CLpro with inhibitors such as sulfonamide chalcones and caffeic acid derivatives, 
providing valuable insights and exciting scaffolds for the development of effective treatments 
against COVID-19. 
 
Limitations of research  

The in vitro cytotoxicity testing and MD simulation of caffeic acid derivatives in Vero E6 
cells were not performed. 
 
Suggestions for future research  

i) The MD simulations of SWC422, SWC424, 4k, and 4l should be run. 
ii) Although two ester derivatives of caffeic acid (4k and 4l) exhibited better inhibitory 

activity than the standard rutin, they still have a lower inhibition rate than many previously 
published inhibitors. {a,  #1} 
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1. Enzyme inhibition and kinetic studies of SWC inhibitors 
According to the previous descriptions for the SARS-CoV-1 3CLpro, SARS-CoV-2 3CLpro 

was expressed, purified and stored.132 In each experiment, a concentration of 0.2 M of 3CLpro 
was utilized. The initial rate of cleavage of the fluorogenic substrate 
E(EDANS)TSAVLQSGFRK(DABCYL) was used to determine enzymatic activity, with excitation and 
emission wavelengths recorded at 340 and 490 nm, respectively. For the preliminary screening of 

inhibitory activity, enzymatic activity was evaluated with and without 10 and 100 M of SWC 
inhibitors. The initial rate since there was no inhibitor present was employed for the 
normalization. The IC50 value was determined by measuring the initial rate of substrate cleavage 

at varying concentrations of 25 M SWC423, followed by fitting the data with GraphPad Prism 
9.5.0.133 The Ki value was subsequently obtained by applying the Cheng-Prusoff equation134 to the 

previously reported Km value (51 M).135 

2. Cell-based assay of SWC inhibitors 
2.1 Cells and virus culture 
Vero E6 cells (ATCC, CRL-1587) were maintained in minimal essential medium (MEM) 

(Gibco, Langley, OK, USA) supplemented with 10% fetal bovine serum (Gibco® , Langley, OK, 

USA), 100 I.U./ml penicillin (Bio Basic Canada, Ontario, CA), and 100 g/ml streptomycin (Bio Basic 
Canada, Ontario, CA), 10 mM HEPES (4-(2- hydroxyethyl)-1-piperazineethanesulfonic acid ) (Sigma 
Aldrich, St. Louis, MO, USA), Non-essential amino acid (NEAA) (Gibco, Langley, OK, USA), and 
sodium pyruvate (Gibco, Langley, OK, USA). Cells were incubated at 37 °C humidified chamber 
under 5% CO2. 

The SARS-CoV-2 (accession number: pending) was isolated from clinical specimens. The 
virus was propagated in Vero E6 cells with MEM supplemented with 1% fetal bovine serum, 100 

I.U./ml penicillin, and 100 g/ml streptomycin, 10 mM HEPES, NEAA, and sodium pyruvate at 
37 °C humidified chamber under 5% CO2. Virus titers were determined as TCID 50 /ml in 
confluent cells in 96-well cell culture plates. All experiment with live SARS-CoV-2 was performed 
in a certified biosafety level 3 facility of the research affair-Medical Research Center (MRC), 
Faculty of Medicine, Chulalongkorn University. The study was conducted according to the 
guidelines of the Declaration of Helsinki, and Chulalongkorn University Institutional Biosafety 
Committee (CU-IBC 003/2021). The Institutional Review Board of Faculty of Medicine, 
Chulalongkorn University certified the protocol exemption for the use of a leftover specimen 
(COE 017/2021, IRB No. 297/64). 

2.2 Efficacy study 
Three sulfonamide chalcones were tested against SARS-CoV-2 (accession number: 

pending). Briefly, Vero E6 cells at 5 x 104 cells per well were seeded into a 24-well plate and 
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incubated overnight at 37 °C under 5% CO2 . Cells were infected with SARS-CoV-2 at the 100 
TCID50. After infection, cells were washed with phosphate buffer saline (PBS) and incubated with 
1 ml of maintenance medium. The compounds were prepared at the indicated concentrations in 
0.1% DMSO in the maintenance medium during infection and after infection. Cells were 
incubated at 37 °C for 72 h under 5% CO2 humidified chamber. Supernatants were collected for 
analysis of the viral infectivity by TCID 50 /ml (v2.1 - 20-01-2017_MB* by Marco Binder; adapted @ 
TWC.5.6, accessed on 16 May 2022). The compound was serially diluted to 6-8 different 
concentrations and was added to final concentrations into SARS-CoV2-infected cells. 
Dihethylsulfoxide at 0.1% was used as a vehicle, no inhibition control. Cells were incubated for 
72 h and supernatants were collected for subsequent TCID 50 /ml analysis (Lei et al.136 and Davis 
et al.137). Data were plotted and EC50 values were calculated from nonlinear regression analysis. 
Results were reported as means and standard error of the means (SEM) of three independent 
experiments. 

2.3 Cytotoxicity in cell-based assay 
The cytotoxicity of the active compounds was tested with Vero E6 cell lines (Wansri et 

al.).98 Results were reported as means and SEM of three independent experiments. 
3. Preparation of ester derivatives of caffeic acid 

Caffeic acid and reagents were purchased from Sigma-Aldrich (Missouri, USA). Analytical 
grade solvents were obtained from Carlo Erba (Michigan, USA) and Honeywell (North Carolin, 
USA) and distilled before use. Anhydrous solvents were dried over 4 Å molecular sieves. 
Reactions were carried out in oven-dried glassware and magnetically stirred under a nitrogen 
atmosphere using a small balloon unless otherwise noted. Room temperature was 25 °C unless 
otherwise stated. Thin-layer chromatography (TLC) was used to monitor all reactions by utilizing 
aluminum silica gel 60 F254 from Merck (Darmstadt, Germany) and observed under ultraviolet 
(UV) light at 254 nm. Flash column chromatography was also used to purify all synthetic 
compounds using silica gel (60 Å, 230-400 mesh) as the stationary phase and the suitable 
mixtures of ethyl acetate, dichloromethane, and hexane as the mobile phases. Spectroscopic 
methods were used to elucidate the structures of all synthetic compounds. Nuclear magnetic 
resonance (NMR) spectra, both proton (1H) and carbon (13C), were measured on Bruker Avance 

NEO 400 MHz spectrometer. 1H-NMR chemical shifts are reported as δ values in ppm relative to 
residual CHCl3 (7.27 ppm). 1H-NMR coupling constants (J) are reported in Hertz (Hz). Unless 
otherwise indicated, deuterochloroform (CDCl3) served as an internal standard (77.0 ppm) for all 
13C spectra. Infrared (IR) spectra were recorded on Perkin Elmer Frontier Fourier-transform IR 
Spectrometer. High-resolution mass spectra were performed on Bruker Daltonics microTOF mass 
spectrometer. 
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Synthesis of caffeic acid methyl ester (4k) and 3-hydroxyl-4-methoxy cinnamic acid 
methyl ester (4l). Caffeic acid (40 mg, 0.22 mmol) was added to an oven-dried round-bottomed 
flask and dissolved in a 4 mL mixture of dry tetrahydrofuran: dry methanol (1:1) under the inert 
atmosphere. The reaction mixture was cooled at 0 °C using an ice bath. Then trimethylsilyl 
diazomethane (0.6 M in hexane, 1.1 mL, 0.66 mmol) was slowly added dropwise to the reaction 
mixture until the yellow color persisted. The reaction was stirred at room temperature for 30 
minutes. The reaction was monitored by TLC. After that, the volatile solvent was removed under 
reduced pressure to obtain the crude product. The synthesized compounds were purified by 
column chromatography with silica gel as the stationary phase and the mixture of ethyl acetate 
and hexane as the mobile phase. The chemical structures of the purified compounds were 
elucidated by spectroscopic techniques. Caffeic acid methyl ester (4k) was obtained as the brown 

oil at 15 mg (35%). 1H-NMR (CDCl3, 400 MHz) δ 7.58 (1H, d, J = 16.0 Hz, 7-H), 7.08 (1H, d, J = 2.0 
Hz, 3-H), 7.00 (1H, dd, J = 8.4, 2.0 Hz, 5-H), 6.87 (1H, d, J = 8.0 Hz, 6-H), 6.26 (1H, d, J = 16.0 Hz, 8-

H),  3.79 (3H, s, 10-H) ppm; IR (ATR, νmax) 3361, 2927, 1698, 1634, 1601, 1511, 1263, 1159, 854, 807 
cm-1 138. 3-Hydroxyl-4-methoxycinnamic acid methyl ester (4l) was obtained as the brown oil at 

32 mg (70%) 1H-NMR (CDCl3, 400 MHz) δ 7.58 (1H, d, J = 16.0 Hz, 7-H), 7.00 (1H, dd, J = 8.4, 2.0 
Hz, 5-H), 6.88  (1H, d, J = 8.4 Hz, 3-H), 6.81 (1H, d, J = 7.2 Hz, 6-H), 6.26 (1H, d, J = 16.0 Hz, 8-H), 

3.87 (3H, s, 10-H), 3.76 (3H, s, 11-H) ppm; IR (ATR, νmax) 3354, 2949, 1692, 1631, 1599, 1509, 1258, 
1157, 852, 807 cm-1; HRMS–ESI m/z 231.0625 ([M+Na]+, calcd for C11H12NaO4 231.0628) and 
209.0807 ([M+H]+, calcd for C11H13O4 209.0808). 

Synthesis of 3,4-diacetyloxy cinnamic acid (4n). Caffeic acid (500 mg, 2.78 mmol), 
acetic anhydride (5 mL, 52.82 mmol), and pyridine (0.1 mL) were added to an oven-dried round-
bottomed flask. Then, the reaction mixture was refluxed at 120 °C for 5 h and monitored by TLC. 
After that, the reaction was cooled in the ice bath and quenched by adding water. The product 
was precipitated and filtered to obtain 4n as a pale light brown solid at 589.3 mg (80%). 1H-NMR 

(CDCl3, 400 MHz) δ 7.74 (1H, d, J = 16.0 Hz, 11-H), 7.46 (1H, dd, J = 8.4, 2.0 Hz, 7-H), 7.41 (1H, d, J 
= 2.0 Hz, 5-H), 7.27 (1H, d, J = 8.4 Hz, 8-H), 6.42 (1H, d, J = 16.0 Hz, 12-H), 2.34 (3H, s, 1-H), 2.33 

(3H, s, 10-H) ppm; 13C-NMR (CDCl3, 100 MHz) δ 170.8 (C-13), 168.1 (C-9), 168.0 (C-2), 145.0 (C-11), 
143.9 (C-3), 142.5 (C-4), 132.9 (C-6), 126.7 (C-7), 124.0 (C-8), 123.0 (C-5), 118.3 (C-12), 20.7 (C-1), 

20.6 (C-10); IR (ATR, νmax) 2822, 2522, 1755, 1674, 1628, 1328, 1290, 1251, 878. 824 cm-1; HRMS–
ESI m/z 265.0702 ([M+H]+, calcd for C13H13O6 265.0707). 

Synthesis of 3,4-diacetyloxy cinnamic acid-2,2-dimethyl-1-propyl ester (4p). Caffeic 
acid (30 mg, 0.11 mmol) and 2,2-dimethyl-1-propanol (9.69 mg, 0.11 mmol) were added to an 
oven-dried round-bottomed flask and dissolved in 20 mL dry dichloromethane under the inert 
atmosphere. The reaction mixture was cooled at 0 °C in an ice bath. Then, 1-ethyl-3-(3-dimethyl 
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aminopropyl) carbodiimide (EDCI HCl: 24.9 mg, 0.13 mmol), hydroxybenzotriazole (HOBt: 17.6 mg, 
0.13 mmol), and N,N-diisopropylethylamine (DIPEA: 0.038 mL, 0.22 mmol) were added to the 
reaction mixture. The reaction was stirred at room temperature for 4 h. TLC was used to monitor 
the reaction. After that, the volatile solvent was removed under reduced pressure to obtain the 
crude product. The synthesized compounds were purified by column chromatography with silica 
gel as the stationary phase and dichloromethane as the mobile phase to obtain 4p as a white 

amorphous solid at 3.9 mg (11%). 1H-NMR (CDCl3, 400 MHz) δ 7.65 (1H, d, J = 16.0 Hz, 11-H), 7.44 
(1H, dd, J = 8.4, 2.0 Hz, 7-H), 7.40 (1H, d, J = 2.0 Hz, 5-H), 7.25 (1H, d, J = 8.4 Hz, 8-H), 6.44 (1H, d, 
J = 16.0 Hz, 12-H), 3.93 (2H, s, 14-H), 2.33 (3H, s, 1-H), 2.33 (3H, s, 10-H), 1.02 (9H, s, 16-H) ppm; 
13C-NMR (CDCl3, 100 MHz) δ 168.1 (C-9), 168.0 (C-2), 166.7 (C-13), 143.4 (C-3), 142.6 (C-11), 142.4 
(C-4), 133.4 (C-6), 126.4 (C-7), 123.9 (C-8), 122.7 (C-5), 119.5 (C-12), 74.0 (C-14), 68.2 (C-15), 26.5 (C-

16), 20.7 (C-1), 20.6 (C-10) ppm; IR (ATR, νmax) 2921, 2851, 1763,  1658, 1632, 1368, 1252, 1209, 
1172, 1146, 1106, 874, 836, 803 cm-1; HRMS–ESI m/z 357.1319 ([M+Na]+, calcd for C18H22NaO6 
357.1309) and 335.1492 ([M+H]+, calcd for C18H23O6 335.1489). 

Synthesis of 3,4-diacetyloxy cinnamic acid-2,5-bis(trifluoromethyl) phenyl ester 
(4u). Caffeic acid (30 mg, 0.11 mmol) and 2,5-bis(trifluoromethyl)phenol (25.3 mg, 0.11 mmol) 
were added to an oven-dried round-bottomed flask and dissolved in 20 mL dry dichloromethane 
under the inert atmosphere. The reaction mixture was cooled down to 0 °C using an ice bath. 
Then, EDCI HCl (24.9 mg, 0.13 mmol), HOBt (17.6 mg, 0.13 mmol), and DIPEA (0.038 mL, 0.22 
mmol) were added. The reaction was stirred at room temperature for 4 h and monitored by TLC. 
After that, the reaction was stopped by concentration under reduced pressure. The crude 
product was worked up by redissolving in ethyl acetate and washing with 0.5% HCl, 2.5% 
NaHCO3, and brine, respectively, to remove the by-products. The organic layers were combined 
and dried over anhydrous sodium sulfate. Then, the organic filtrate was dried under reduced 
pressure to obtain the crude product. The synthesized compounds were purified by column 
chromatography with silica gel as the stationary phase and the mixture of ethyl acetate and 
hexane as the mobile phase. Ester 4u was obtained as a white amorphous solid at 7.0 mg (13%). 
1H-NMR (CDCl3, 400 MHz) δ 7.88 (1H, d, J = 16.0 Hz, 11-H), 7.88 (1H, d, J = 8.5 Hz, 16-H),  7.68 (1H, 
s, 19-H), 7.66 (1H, d, J = 8.5 Hz, 17-H), 7.53 (1H, dd, J = 8.4, 2.0 Hz, 7-H), 7.48 (1H, d, J = 2.0 Hz, 5-
H), 7.31 (1H, d, J = 8.4 Hz, 8-H), 6.60 (1H, d, J = 16.0 Hz, 12-H), 2.35 (3H, s, 1-H), 2.34 (3H, s, 10-H) 

ppm; 13C-NMR (CDCl3, 100 MHz) δ 168.1 (C-9), 168.0 (C-2), 163.8 (C-13), 148.6 (q, J = 1.0 Hz, C-14), 
146.4 (C-11), 144.3 (C-3), 142.6 (C-4), 135.2 (q, J = 34.0 Hz, C-15), 132.5 (C-6), 127.8 (q, J = 5.0 Hz, 
C-16), 126.9 (C-7), 126.3 (q, J = 33.0 Hz, C-18), 124.2 (C-8), 123.2 (C-5), 122.8 (q, J = 5.0 Hz, C-17), 
121.9 (q, J = 4.0 Hz, C-19), 116.8 (C-12), 124.2 & 123.6 & 121.4 & 120.9 (J = 330.0 Hz, C-15a & 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 74 

C18a),  20.7 (C-1), 20.6 (C-10) ppm; IR (ATR, νmax) 2921, 2851, 1753, 1212, 1176, 1125, 873, 835 cm-

1; HRMS–ESI m/z 499.0591 ([M+Na]+, calcd for C21H14F6NaO6 499.0587). 
Synthesis of 3,4-diacetyloxy cinnamic acid-3,4-bis(trifluoromethyl) phenyl ester 

(4v). Caffeic acid (30 mg, 0.11 mmol) and 3,4-bis(trifluoromethyl)phenol (25.3 mg, 0.11 mmol) 
were employed under the same esterification protocol as described above. The ester 4v was 

obtained as a white amorphous solid at 7.5 mg (14%). 1H-NMR (CDCl3, 400 MHz) δ 7.93 (1H, d, J = 
8.7 Hz, 18-H), 7.88 (1H, d, J = 16.0 Hz, 11-H), 7.71 (1H, d, J = 2.1 Hz, 15-H), 7.57 (1H, dd, J = 8.7, 2.1 
Hz, 19-H), 7.51 (1H, dd, J = 8.4, 2.0 Hz, 7-H), 7.47 (1H, d, J = 2.0 Hz, 5-H), 7.31 (1H, d, J = 8.4 Hz, 8-
H), 6.59 (1H, d, J = 16.0 Hz, 12-H), 2.35 (3H, s, 1-H), 2.35 (3H, s, 10-H) ppm; 13C-NMR (CDCl3, 100 

MHz) δ 168.1 (C-9), 168.0 (C-2), 163.9 (C-13), 153.1 (C-14), 146.2 (C-11), 144.3 (C-3), 142.6 (C-4), 
132.5 (C-6), 130.1 (dd, J = 30.0, 1.0 Hz, C-17), 129.6 (q, J = 6.0 Hz, C-18), 126.9 (C-7), 125.5 (dd, J = 
32.0, 1.5 Hz, C-16),  125.1 (C-19), 124.2 (C-8), 128.9 & 123.5 & 121.3 & 120.8 (J = 307.0 Hz, C-16a & 
C17a), 123.2 (C-5), 121.8 (q, J = 7.0 Hz, C-15), 117.1 (C-12), 20.7 (C-1), 20.6 (C-10) ppm; IR (KBr) 
2918, 2849, 1763, 1275, 1181, 1141, 903, 841 cm-1; HRMS–ESI m/z 499.0595 ([M+Na]+, calcd for 
C21H14F6NaO6 499.0587). 
4. Evaluation of caffeic acid derivatives for SARS-CoV-2 3CLpro inhibitory activity 

In order to evaluate the enzymatic activity of SARS-CoV-2 3CLpro using an enzyme 
inhibition assay, the enzyme was expressed, purified, and stored following similar procedures 

described for SARS-CoV-1 3CLpro 132. A concentration of 0.2 μM of 3CLpro was used in each 
experiment. The enzymatic activity was monitored by measuring the initial rate of cleavage of the 

fluorogenic substrate E(EDANS)TSAVLQSGFRK(DABCYL) (25 μM). The excitation and emission 
wavelengths were recorded at 340 and 490 nm, respectively. To assess inhibitory activity, the 

enzymatic activity was examined in the presence of 100 μM of caffeic acid compounds, with a 
group of control that did not include any inhibitor. The initial rate of the enzymatic reaction in 
the absence of inhibitors was used as a normalization factor, allowing for the relative assessment 
of inhibitory effects induced by the caffeic acid compounds. 
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Figure  13  Chemical structure of SARS-CoV-2 3CLpro peptidomimetic inhibitors 
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Figure 14 In vitro enzymatic and cell-based assays. (A) Relative activity of SARS-CoV-2 

3CLpro in the presence of 100 μM and 10 μM of three sulfonamide chalcones, 
blank, and rutin. (B) Lineweaver-Burk plot demonstrating competitive inhibition of 
SWC423 inhibitor with the fluorogenic peptide substrate. The K i value of SWC423 is 
10.0 ± 1.8 µM. (C) Dose-response curves for reduction of SARS-CoV-2 titers. (D) Dose-
response curves for cell viability of three sulfonamide chalcones in Vero E6 cells. 
Data in the table are presented as mean ± SEM (Selectivity Index). 
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Figure 15 Synthesis of six ester derivatives of caffeic acid 
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Figure 16 Relative activity of SARS-CoV-2 3CLpro with ester derivatives of caffeic acid and rutin at 

100 μM concentration and a blank 
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