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Carbon nanohorns (CNHs) are considered as promising drug carriers for cancer therapy.
However, the pristine CNHs exhibit low solubility and dispersion in aqueous solution, and
especially are high toxicity to our body. To solve such problems, the mixture of biocompatible
polymers such as chitosan (CS) and B-cyclodextrin (BCD) with CNHs is rather promising. In this
study, we modeled an effective delivery system of doxorubicin anticancer drug in complex with
pristine CNH and functionalized CNH. To investigate the loading of anticancer drug, doxorubicin,
we prepared an effective drug delivery system for delivery the drug, such as pristine carbon
nanohorn system (CNH/DOX), chitosan functionalized CNH system (CS-f-CNH/DOX) and 2,6-
dimethyl-B-cyclodextrin  (DMBCD) on CS functionalized carbon nanohorn system (CSf-
CNH/DOX/CD). ALl atom molecular dynamics (MD) simulations were firstly carried out on all
types of drug delivery system and then the binding free energy were performed by MMPBSA
method. The binding of DOX inside and outside indicated that the binding between DOX and
CNH is higher than that between DOX and CS. Moreover, the movement of drug inside and
outside CNH surfaces suggest that DOXs can stably move around middle and edge of CNH while
the DOXs on CS slightly move around initial CS residues. In conclusion, all data showed that
the designed drug delivery systems of CNH and functionalized CNH can be served as drug carrier,
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ABSTRACT

Nowadays the nanocomposite materials have shown to be the key applications in a
wide range of industries due to their unique properties such as thermal and electrical properties.
Polymer/carbon nanotube (CNT) nanocomposite is one of interesting nanocomposite matetials
manufactured for improving mechanical, thermal and electrical properties of polymert.
Unfortunately, polypropylene (PP)/CNT preparation is difficult because of CNT dispersion
and aggregation. In this study, amylose (AMY) and chitosan (CS) are selected in order to study
how biopolymer could diminish such problems by non-covalent modification on outer surface
of single-walled CN'T using molecular dynamics (MD) simulations. The results reveal that AMY
can induce the atactic, isotactic and syndiotactic PPs contacting with CNT exterior surface in
spiral-shape, while these PPs ate aligned in snake-shape by CS modification instead. Additionally,
electrostatic force is the main interaction for a complexation of CNT/biopolymer/PPs.

Keywords : nanocomposite materials, carbon nanotube, amylose, polypropylenes, molecular

dynamics simulation
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1. INTRODUCTION

Nanocomposite is a multiphase solid
material in which at least one of the phases
shows dimensions of less than 100 nanometers
called “nanofillers” ot “nanoparticles” [1]. The
addition of nanofillets in ceramic, metal and
polymer can enhance the thermal and mechanical
properties, including toughness as well as
electrical and thermal conductivities. The
examples of nanofillers added to composite
arc clay, gold particle and carbon nanotube
[2-3]. Applications of nanocomposites can be
used as capacitors, car components and in drug
delivery [4-5].

Carbon nanotubes (CN'TSs) are members
of the fullerene structural family discovered
by “Sumio Ijima” in 1991 [6]. CN'Ts are tube-
shaped materials with diameter in nanometer
scale and length up to several centimeters. They
have high curvature and extra-large surface
area, CNTs are composed of one catbon atom
linked to three other carbon atoms by covalent
bonds [7]. CNTs ate attractive to reseatrch
interests due to their unique properties such
as high electrical and thermal conductivities,
excellent stiffness against bending, high tensile
strength, highly flexible, low mass density, vety
elastic and good electron field emitters [8].
They are made up from folding of graphene
sheet, in which one sheet of graphene produces
single-walled carbon nanotube (SWCNT) with
diameter of around 0.4 nanometer, while the
folding of multiple sheets becomes multi-walled
carbon nanotube (MWCNT) with diameter of
around 100 nanometers [2-3].

Polymer/CNT nanocomposites comptise
a polymer or copolymer with CNT nanofiller.
CNT is used as nanofiller in polymer for
improving the mechanical, thermal and electrical
properties of polymert [9-12]. In this work, the
polypropylene (PP)/CNT nanocomposite is
focused. PP is widely used in many industries
due to its several beneficial properties, including
low mass, high tensile strength and chemical
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resistance. However, it shows the low propetties
of thermal stability as well as electrical conductivity
[13-14]. Thus, the addition of CNT into polymer
matrix is able to improve those properties.
Deng and co-worker [15] investigated the
dispersion of CNT in PP/CNT nanocomposite
using scanning electron microscopy (SEM)
and they found that CNTs were aggregated
and showed a poor dispersion in polymer
matrix, leading to a difficulty in synthesis of
PP/CNT nanocomposite. Moreover, Syamol
and co-worker [10] indicated that isotactic
polypropylene (iPP) could pootly wrap around
CNT outer surface and the intramolecular
interactions within iPP units were also found
using molecular dynamics (MD) simulation.
A biopolymer with notable chemical and
biological properties is amylose (AMY). It is
biocompatibility, biodegradability, and nontoxicity
[16]. AMY is formed by a-D-glucose units
through «(1—4) glycosidic bonds [17]. Zang
and co-worker [18] added AMY and the other
polysacccarides into CNTs for investigation
of cell behavior. They found that AMY, which
can wrap around CNT, led to a dectrease in the
CNT aggregation and to enhance cell adhesion.
In addition, Xie and co-worker [19] studied
the intermolecular interactions between AMY
and CNT using MD simulations at 300 K. The
results showed that AMY wrapped around
CNT outer surface through van der Waals
interaction and it could encapsulate into CNT
cavity. Basu and co-worker [20] investigated
the blending of AMY/PP. They suggested that
AMY can interact with PP, leading to an
enhancement of melt flow index of PP. Chitosan
(CS) 1s a well-known functional material due
to its excellent properties such as biocompatibility,
non-toxicity and adsorption properties [21].
By investigation of cell behavior, Zang and
co-worker [18] found that CS, which can wrap
around the outer surface of CNT, decreased
the aggregation of CNT and inctreased cell
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adhesion. Aztatzi-Pluma and co-wotker [22]
used MD simulation for studying interactions
between different degrees of deacetylation
(DD) of chitosan and CNT at 300 K for 3.5
ns. The MD results displayed that chitosan at
60% of DD showed the strongest interaction
with CNT. Salmah and co-workers [23] revealed
that adding CS and modified CS into PP matrix
could help to increase the young modulus and
thermal properties.

Although, the previous studies suggested
that these two biopolymers can interact with
PPs or CNT, the formulation of CNT/
biopolymer/PPs has not yet known. Therefore,
in the present work, we aimed to theoretically
elucidate the effect of AMY or CS non-covalently
modified on SWCNT towards the binding of
the three different PPs (atactic polypropylene
(aPP), isotactic polypropylene (iPP) and
syndiotactic polypropylene (sPP)) using molecular
dynamics simulation. Moreovet, the intermolecular
interactions of PPs with CNT and modified
CNTs are compared.

2. MATERIALS AND METHODS
2.1 Molecular Models of Amylose,
Polypropylene and Carbon Nanotube
The 3D structures of AMY containing
30 units of alpha-D-glucose and the two models
of 60%DD chitosan (CS) containing 30 (30CS)
and 50 units (50CS) were constructed using
the tLEaP module implemented in AMBER
16. The three types of polypropylene (PP),
including atactic polypropylene (aPP), isotactic
polypropylene (iPP) and syndiotactic polypropylene
(sPP) consisting of 30 repeating units of PP
were generated using the Material Studio 5.5
Suite [21]. Note that, the methyl groups are
randomly positioned in aPP form, whereas the
methyl groups are constructed along the same
side and alternate side of the polymer chain
in iPP and sPP systems, respectively. The (10,0)
zigzag of single-walled CNT with a diameter
of 7.8 A, chiral vectors n = 10 and m = 0,
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containing 30 repeating units was built using
the Material Studio 5.5 Suite. Subsequently, the
CNT was wrapped spirally with each biopolymer
in according to the previous research [18-19].
Each PP was placed in parallel with the length
(x axis) of CNT. AMY and CS were parameterized
by Glycam_06j-1 force field [25], while PPs
and CNT were treated by the General Amber
Force Field (GAFF). In total, there are twelve
generated systems without and with AMY or
CS as shown in Figure 1.

2.2 Molecular Dynamics (MD) Simulation
MD simulation was petformed under
vacuum condition using AMBERI16 package
with the NVT ensemble at 1 atm and 298 K
using a time step of 2 fs. The SHAKE algorithm
[26] was applied to all bonds involving hydrogen
atoms. The long-range electrostatic interactions
were calculated using the Particle Mesh Ewald
(PME) summation method. All systems wete
heated up to 298 KK for 100 ps and equilibrated
at 298 KK for 5 ns. Finally, the production stage
was performed until 100 ns and the structural
coordinates were saved every 2 ps for analysis.
The root mean square displacement (RMSD),
radius of gyration (Rg) and van der Waals and
Electrostatic interactions were calculated by
the cpptraj module implemented in AMBER16,
while the distance between the centers of
gravity of each polymer unit and CNT was
computed with FORTRAN script [6].

3. RESULTS AND DISCUSSION
3.1 System Stability

To estimate the system stability of the
CNT/PPs nanocomposites without and with
biopolymer non-covalent modification on the
external surface of SWCNT, the RMSD of
each system relative to the minimized structure
was calculated along the simulation time and
plotted in Figure 2. The RMSD values of all
three PPs (dark green) on CNT rapidly increase
at the first 60 ns and fluctuate in the range of



550 Chiang Mai J. Sci. 2019; 46(3)

IND

SJ0E/LND ANV/IND

SO0S/LND

Figure 1. The initial models of CNT/PPs nanocomposite without and with AMY (green),

30CS and 50CS (blue) modification for MD study: PP (red) was placed in parallel with the X
axis of CNT and biopolymer was spirally wrapped around CNT surface.
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~16-20 A until the end of the simulations. In
case of AMY wrapped on CNT, the RMSD
values of PP show relatively lower fluctuation
and reached the equilibrium state after ~40 ns
for the CNT/AMY/iPP and CNT/AMY/sPP
systems and after ~60 ns for the CNT/AMY/
aPP system. This is in contrast to AMY, in
which the RMSD of 6 A compared to its initial
structure with a very low fluctuation is observed
along the simulations in these three systems.
For CS modified systems, the RMSD values
of PP and CS (blue) enhance at the first 10 ns
and then maintain at ~11-12 A and ~4-6 A,
respectively. As expected, no structural change
of CNT is detected as evidenced by RMSD
close to 0 A. Taken together, this is therefore
the atomic coordinates of each system in the
last 40 ns were collected for further analysis.

Polypropylene binding toward carbon
nanotube

The final orientation of PPsand AMY or
CS on CNT outer surface taken from the last
MD snapshot of each system was depicted in
Figure 3. In case of pristine CNT, the results
reveal that all three PPs preferentially interact
within themselves on CNT surface and do not
spirally wrap around the tube, in a strong
correlation with previous studies [12, 27].
Interestingly, the biopolymer conjugating on
CNT could enhance the efficacy of PPs bindings
to become significantly locate closer toward
CNT with a formation of a spiral- or snake-
shaped structure of PPs in case of AMY or
CS modification, respectively. However, the
steric effect of CS’s functional groups is higher
than AMY, leading to the lower wrapping
efficiency than AMY as evidenced by the
distance analysis demonstrating that the d(PP,
- CNTgne) of AMY is significantly lower than
that of CS (Figure 4, discussed later).

In order to compare the direct binding
capacity between PPs toward CNT without
and with biopolymer conjugation on the external

a5

surface, the distances measured from the center
of gravity (Cg) of each unit of PPs to surface
of CNT (d(PP¢, -CNT,c) averaged over
the last 40 ns were calculated in relative to the
distance measured from Cg of each biopolymer
unit to surface of CNT (d(AMY - CN T, ,c)
or d(CS¢,- CNT.

unit of polymer are given in Figure 4. It can

suface))+ Lhese distances versus
be clearly seen that all AMY units well interact
with the CNT outer surface with the averaged
d(AMY ¢, - CNType) of ~4 A (Figure 4b).
The AMY wrapping importantly decreases the
averaged d(PPg, - CNTj,,.) for the iPP and
sPP systems from ~8 A to ~4 A for the systems
without and with AMY non-covalently
modification. This finding suggests that CNT/
AMY could help these two PPs directly interacts
with the CNT outer surface. However, only
the 10 aPP units of one end exhibit a similar
tight binding on the CNT/AMY, whilst the
rest units show a high fluctuation as detected
in the previous work [28]. In case of CS modified
CNT systems (Figure 4c-d), almost all CS units
ate in range of 4 to 6 A according to the CN'T/
CS/doxotubicin study of 4.4 A [6]. All PPs
favorably interact with both 30CS (d(PP,-
CNTgupe) of 5-10 A) and 50CS (d(PP,-
CNTy,pe) of 6-11 A) in a snake-like shape
rather than show a direct interaction with CNT
surface (Figure 3).

Taken together, the use of conjugated
biopolymer on CNT exterior leads to an
enhanced interfacial adhesion of PPs toward
CNT, which is in good agreement with the
electrostatic and van der Waals attractions as
discussed later.

3.2 Polypropylene Folding

The effect of conjugated biopolymer on
polypropylene folding towards CNT is
characterized in terms of Rg and end to end
distance of PPs. The Rg calculation was used
to identify the mean squared distance of each
point on the polymer from its center of gravity
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Figure 3. The last MD snapshots of all 12 systems, where PP, AMY, CS, CNT structures are
shaded by red, green, blue and gray, respectively.
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[29] using equation 1:

1 2

Rg= |[S3"(r;— 1,) (1)

where N is the number of atoms, t; denotes
atomic position and r, denotes the mean
position of all atoms.

As shown in Figure 5, in case of no
conjugated biopolymer on CNT, the Rg of all
three PPs dramatically reduces within the first
20 ns and consequently retains at the fluctuation
of ~8-11 A until the end of simulation. This

Chiang Mai J. Sci. 2019; 46(3)

is because PPs preferentially interact with each
other rather than spirally contact with CNT as
described above (see also Figure 3). Interestingly,
the use of AMY non-covalently modified on
CNT significantly increases the Rg stability of
iPP and sPP after 40 ns, reflecting the stable
conformation of partial spiral form for these
PPs. However, in the aPP system, the Rg
fluctuation is similar to that of no AMY
conjugation due to the high flexibility of one
terminal end, which was also reported previously
[30] The reduction of Rg values for all PPs is
even faster in CS modified systems (within 5
ns) and fluctuates at ~11 A until the end of
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simulation. Note that, the Rg plots of either
AMY or CS are likely comparable, which is
significantly lower than those of PPs in terms
of fluctuation as expected.

The distance of end-to-end chain of PPs
measured between centers of gravity of the
first and last units of PP along simulation
period for all systems is plotted in Figure 6.
Note that the initial distance of end-to-end
chain of PPsis ~70 A. After 100-ns simulation,
such distance is importantly shortening to ~10
A in iPP and sPP and ~20 A in aPP for CNT/
AMY systems, whilst in almost all CNT/CS
systems with two different lengths of CS chain
the distance is of ~30 A. The obtained results
can confirm the spiral-shape and snake-like
shape of PP folding in CNT/AMY and CNT/
CS, respectively (see also Figure 3).

555

3.3 Electrostatic and Van Der Waals
Interactions

The electrostatic (AE,,) and van der Waals
(AE, ) interaction energies between PP and
CNT (or modified CNT) versus simulation
time are given in Figure 7. Consideting all
systems without any modification, the AE,,
and AE  values between PPs and CNT are
~2200kcal/moland ~ -350 kcal/mol, respectively,
suggesting that vdW interaction is the main
force for molecular complexation. In case of
the systems with AMY non-covalently conjugated
on CNT, both interaction energies of all PPs
are dramatically reduced to ~ -1500 and ~ - 800
keal/mol for AE,, and AE ., respectively.
Similatly, for all systems with CS wrapping, the
AE,. and AE _ values are ~ -1000 kcal/mol
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Figure 6. The distance plot of end-to-end chain of PPs versus simulation time for the CNT
systems modified by two biopolymers, AMY and CS.
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Figure 7. AE,,
(blue) and CN'T/50CS (gtreen).

and ~ -800 kcal/mol for CN'T/30CS systems
and ~ -3000 and ~ -1200 kcal/mol for
CNT/50CS systems. From this finding, it can
be concluded that two focused biopolymers
could promote the binding efficacy of PPs
toward CNT through both electrostatic and
vdW interactions in accordance with the previous
works [11, 19, 44, 46, 48]. By considering the
energy difference between the systems without
and with non-covalent surface modification,
electrostatic attraction is likely found to be the
main driving force for CNT/biopolymer/PPs
formation.

4. CONCLUSION

In the present study, the all-atom MD
simulations for 100-ns reveal that either AMY
or CS non-covalently modified on CNT outer
surface could induce the PPs binding toward
CNT with a formation of better-formed

nanocomposite. While PPs recognize to bind
with both AMY and CNT by folding in the

(top) and AE, (below) of PP with CNT (black), CNT/AMY (ted), CN'T/30CS

spiral-shape around tube surface, the presence
of CS introduces the PPs to otientate in the
snake-like shape and only interact with CS
spirally wrapped around the tube. Moreover,
the main interaction causing PPs to become
better contact with CNT/biopolymer is
electrostatic attraction. Taken together, besides
the non-covalent surface modification is able
to prevent the CNTs aggregation as well-known,
the biopolymer AMY or CS could significantly
increase the interfacial adhesion of PPs toward
CNT.
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Abstract

Carbon nanohorns (CNHs) are considered as promising drug carriers for cancer therapy.
However, the pristine CNHs exhibit low solubility and dispersion in aqueous solution, and
especially are high toxicity to our body. To solve such problems, the mixture of biocompatible
polymers such as chitosan (CS) and B-cyclodextrin (BCD) with CNHs is rather promising. In this
study, we modeled an effective delivery system of doxorubicin anticancer drug in complex with
pristine CNH and functionalized CNH. To investigate the loading of anticancer drug, doxorubicin,
we prepared an effective drug delivery system for delivery the drug, such as pristine carbon
nanohorn system (CNH/DOX), chitosan functionalized CNH system (CS-f~-CNH/DOX) and
2,6-dimethyl-B-cyclodextrin (DMBCD) on CS functionalized carbon nanohorn system
(CS-f-CNH/DOX/CD). All atom molecular dynamics (MD) simulations were firstly carried out
on all types of drug delivery system and then the binding free e;1ergy were performed by MMPBSA
method. The binding of DOX inside and outside indicated that the binding between DOX and
CNH is higher than that between DOX and CS. Moreover, the movement of drug inside and outside
CNH surfaces suggest that DOXs can stably move around middle and edge of CNH while the

DOXs on CS slightly move around initial CS residues. In conclusion, all data showed that the

designed drug delivery systems of CNH and functionalized CNH can be served as drug carrier.

Keywords: Doxorubicin, Carbon nanohorns, chitosan and MD simulation



Introduction

Most people have been concerned about diseases causing death, especially cancers that are
considered as the number fifth deadliest diseases in the world in 2018 [1]. In Thailand, female
population with breast cancers have dramatically increased every year [2]. Doxorubicin (DOX;
Adriamycin) is a potential anticancer drug that is used to treat several types of cancers [3]. It is
absorbed into the human body and serves as an intercalating agent between DNA strand, leading
to inhibit gene expression and synthesis of biomolecules involved in progression of cancer [3].
This enzyme can release the helicity of supercoil structure of DNA during transcription and
regulate topoisomerase II complex after separating of the DNA in DNA replication. When
chromaromatic rings of this drug interact with minor grooves of the DNA, they prevent the forming
of DNA double helix. In previous study [4], protonated DOXs are used in simulation for
investigating drug loading and releasing of carbon nanotube. The main reason why the drug had
to be protonated because this simulation will run in pH 7.0.

In fact, anticancer drugs not only target the cancer cells, but also kill the normal cells with
the same function. This is the main reason why most patients who are treated with chemotherapy
could present many adverse effects [5]. For avoiding the unwanted effects, the anticancer drug will
be loaded with targeted drug delivery systems (DDSs) to specific site of action [6]. There were a
number of studies that focused on the development of the DDSs, including the use of liposome
[7-8], necrosome [9-10], nanoemulsions [11-12], cyclodextrin inclusion complexes [13-14], lipid
nanocapsules [15-16], polymeric micelles [17-18], and carbon nanomaterials [19-20]. Ideally, the
best suitable systems must have good interactions with drugs and release them at the targeted
places [21]. To date, nanomaterials have become one of the great choices for practical uses in

DDSs, especially carbon nanomaterials. Specifically, carbon nanohorns (CNHs) have been



attention in recent years. With their lower toxicity, CNHs are more interesting to study as
comparison to classical carbon nanotube [22]. Nevertheless, the hydrophobic surface of CNHs
usually forms the petal-dahlia-like, dahlia-like, bud-like and seed-like SWNHS aggregates, which
is first available for research in experiment way [23].

In the DDSs, there are other kinds of drug carriers, particularly cyclodextrins (CDs) [24].
CDs are naturally divided into three classes depending on the size of the inner cavity that consisted
of 6 to 8 glucoses for alpha-, beta- and gamma-CDs, respectively, and connected each glucose
subunit with a-1,4 glycosidic linkages [25]. The hydrophobic cavity of CDs forms as turn-acted
cone-shape, while the outer surface is relatively hydrophilic. In this study, we decided to choose
the beta-type cyclodextrin (or BCD) and their derivatives, such as DMBCD since DMBCD, which
functions as a carrier of drugs, has an inner cavity that suits DOX [26-28]. the BCD can conjugate
them with chitosan, which improves the system of carrying a greater number of drugs. The
conjugated systems are supposed to be the powerful systems for carrying more drugs killing cancer
cells at the targeted places [26-28]. Moreover, the DOX is carrier inside and outside pristine CNH
and functionalized CNH are simulated using molecular dynamics (MD) simulations and binding
free energy were performed by MMPBSA technique to understand the molecular interactions and
the movement of DOX within and without CNH and CS functionalized CNH. We hope that this
research can help to understand the movement and behavior of DOX with pristine CNH and CS

functionalized CNH which have potential as drug carrier.



2. Computational Methods
2.1 Preparation of DOX, CNH, CS and BCD

The geometry of DOX structure was optimized by the HF/6-31(d) level of theory using
Gaussian09 program [29]. Moreover, CNH was built by the Material studio program and
calculated using Gaussian 09 program at the same level of theory there were parameterized using
the General Amber Force Field (GAFF). Furthermore, each molecular sugar of the 60% of degree
deacetylation chitosan (CS) chain and B-cyclodextrin (BCD) were generated and parameterized by
GLYCAMO6 force field. CS chain was constructed from randomly 65 units of 2 different sugars:
D-glucosamine (GCS or G) and N-acetyl-D-glucosamine (NAG or N) while BCD ring are
constituted by 7 units of a-D-glucopyranoside. In addition, the complexation of DOX and BCD
were predicted using molecular docking technique.

The DOX was docked into the cavity of cyclodextrin and calculated interaction energy
using Autodock vina program [29]. The poses with the first and second lowest interaction energies
of clearly different conformations of DOX (as A-form and B-form in Fig. m1) were selected form
100 different conformations of that as the initial structure for applying to BCD at the first repeating

unit of CS chain. DOX in CNH, CS and BCD

2.2 Molecular design of drug delivery systems

The DOX drug and single-walled CNH configurations were prepared as 16 systems in total
defined as system 1.1(T), 1.1(M), 1.1(E), 1.2(M), 2.1(T), 2.1(M), 2.1(E), 2.2(M), 3.1(T, A), 3.1(M,
A), 3.1(E, A), 3.1(T, B), 3.1(M, B), 3.1(E, B), 3.2(M, A) and 3.2(M, B) (figure 1). The letters T,
M and E are abbreviation of tip, middle and edge, respectively. For the system 1.1(M) and 1.2(M),

both systems were consisted of one molecule of CNH and DOX. However, there was difference



in positions of DOX molecule inside CNH cavity for system 1.1(M) and outside CNH cavity for
system 1.2(M). In system 2.1(M) and 2.2(M), they were additionally wrapped by one chain of CS.
Note that the sequence of CS was presented in fig. 1. The 65 units of CS chain were built from the
two components: G and N (what are G and N? Please clarify). Each CS unit was bonded together
via beta-1.4 linkage in 3:2 ratio of G:N (60% of degree deacetylation) in the simple random
sequences of D-glucosamine (GCS or G) and N-acetyl-d-glucosamine (NAG or N) as
“GGNGNGNGNNGNGNGNGNNNNGNGNGNGNNGNGNGNGNNNGGNNNGNGNNNGN

GNGNGNNNGNGG”. The helix-like chitosan was wrapped on the external surface of CNH.
Moreover, the CS chain in system 2.1(M) and 2.2(M) were modified by different two DOX-BCD
complexes (A-form and B-form) at the first repeating unit of CS chain (system 3.1(M, A) —3.2(M,
B)). In addition to getting suitable regions of DOX within CNH, DOX structures of system 1.1(M),
2.1(M) and 3.1(M) were started at different position of CNH hole such as tip (system 1,1(T),
2,1(T), 3.1(T, A) and 3.1(T, B)), middle (system 1,1(M), 2,1(M), 3.1(M, A) and 3.1(M, B)) and
edge (system 1,1(E) 2,1(E), 3.1(E, A) and 3.1(E, B)) of CNH. Then, each system was neutralized
with a chlorine ion and solvated with TIP3P water solvent parameter in octagonal box over 15 A
from the complex. MD simulation of all explicit systems were conducted. In this work, parameters

for each system was prepared as the same way for MD simulation method [30].
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Figure 1. The three-dimension (3D) structures of 14 systems. The CNH (dim grey), CS or
CD-f-CS (orange) were presented by their surface while DOXs (C atom in green) are highlighted

in stick. E is DOX at edge CNH, M is DOX at middle CNH and DOX is tip CNH.

2.3 Molecular dynamics (MD) simulations

The MD simulation of each system was performed using pmemd.cuda module in
AMBERI16 package with NVT ensemble at 1 atm and the time of step of 2 fs. The SHAKE
algorithm was applied to all bonding hydrogen atoms and cut off function was set at 12 A for non-
boned interaction [31]. The long-range electrostatic interactions were calculated by the Particle

Mesh Ewald (PME) summation method [32]. Each system was heated up from 0 K to 300 K for



500 ps and equilibrated at the 300 K for 1 ns with NPT ensemble. Finally, the production state was
performed at 300 K until reaching 500 ns. The trajectories of the systems were collected every 2
ps for analysis using CPPTRAJ module in AMBER program and the binding free energy were
calculated using The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) method.

2.4 Binding free energy calculations

The MMPBSA method was used to compute binding free energies of both systems using
1000 snapshots taken from MD trajectories in the last 10 ns. The MMPBSA function to calculate
the inhibitor-protein free energy was written as following [33]:

AGpind = Gcomp]ex - Gprolein i G]igand

Geomplex, Gprotein and Giigana are the free energy of complex, protein and ligand, respectively. In
addition, each the free energy was calculated from the molecular mechanic (Enm), the solvation
free energies (Gsolv) and the entropic contribution (TS). The equations were written as following:

G =Ewmm + Gsotv — TS
EmM = Ebond + Eangle + Edihedral + Eele + Evaw
Gsolv = Gpg + Gsa

Ewmwu is consist of bonded term as bond angle and dihedral energies (Evond, Eangle and Edinedral) and
non-bonded term as Van der Waals and electrostatic energies (Eele and Evaw). Moreover, Gsoly
was calculated from Poisson—Boltzmann equation (Gpp) and the nonpolar contribution (Gsa)
between the solute and the solvent continuously.

3. Results and Discussion
3.1 Stability and DOX movement of complexes

The distance between center of mass of CNH and DOX were investigated along the
simulation time and depicted in Figure 2. For all CNH/DOXiuside systems, the DOX molecule
initialized placed at the middle of CHN moved out to the edge of CHN with the distance of 0-3 A
for the first 200 ns of simulation. Then, the DOX translocated within a range from 0 to 15 A till
the end of simulation. Likewise, the distance analysis revealed that the DOX molecule, which was

placed at the tip of CNH can move to the middle region at the beginning of simulation (~10 ns).



and then translocate within a range of -5 to 15 A. Instead, the DOX molecule started at the edge
of CNH intermediately pointed toward the middle part of CNH in the first 10 ns and slightly
fluctuated ~5-10 A above the center of CNH after 200 ns of simulation. In addition, the distance
plot of CS-f-CNH/DOX system, in which the DOX molecule was positioned at the center of CNH
can translocate up and down in the range of -10 to 10 A until reaching 500 ns. The result suggested
that the DOX at different 3 initial position of CNH within and without surface of CNH have the
same pattern of movement. The DOX can carrier around middle and edge of CNH surface.

For the DOX within CS-f-CNH/DOX and CS-f-CNH/DOX/CD, the movement of DOXs
are similar to results of CNH/DOX. However, the movement of DOX on CS and CS/CD chains
are different. The DOX move and fluctuate around initial residue of CS all of simulation. The
results indicated that DOX on CS chains can interact with CS and CS/CD chains while CS chain
wrapped around CNH surface. The stability of DOX movement within and without CNH surface
are same pattern. The DOX fluctuate at middle and edge of CNH. Interestingly, the DOX inside
CS-f-CNH/DOX/CD present the same pattern of drug movement. The small drug as cisplatin on
CNH was investigated [34]. They reported that CNH have ability as drug carrier. the cisplatin
fluctuates within the tip of CNH [34] whereas DOX cannot fluctuate around tip of CNH. this is

case of steric hindrance of DOX structure.
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Figure 2. The distance between the center of mass of DOX and CNH.

Apart from the movement of DOX in each system mentioned above, the plots of the
distance of DOX and center of mass of CNH versus the distance of DOX and surface of CNH
extracted from the last 250 ns are given in Fig. 3. For the systems with DOX located inside the
CNH, the distance between center of mass of DOX and CNH surface (Y-axis) showed the similar
pattern. The distance was distributed at about 3 A, while the systems with DOX located outside
the CNH showed the high deviation of the distance ranging from 3 to 8.5 A. This reflected that the
DOX molecule can move on the surface of CNH and chitosan. The results of drug outside are
different in CS-f-CNH/DOX result. The distance of CS-f-CNH/DOX is about 8 A. While, the CS-
f-CNH/DOX/CD are presented the difference from CS-f-CNH/DOX. The DOX of CS-f-
CNH/DOX/CD system move from CS chain to CNH surface that result will represent in contact

result.



For the distance between center of DOX and center of CNH (X-axis), the distances of
different initial location of DOX within and without CNH were found around -10 to 20 A. These
observations supported that results of drug movement. The DOX fluctuated at the middle and edge
of CNH. In addition, the distance between center of DOX and surface DOX are about 3 A for all

results of drug inside. So, the middle initial location of DOX for all drug insides will select to

represent the results for others part.
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Figure 3. The plot of distance between center of DOX and center of CNH (X-axis) versus the
distance between center of DOX and CNH surface (Y-axis) for a) DOX at the edge of CNH, b)

DOX at the middle of CNH, ¢) DOX at the tip of CNH and d) DOX at the outside of CNH.



The representative last MD snapshots of DOX at the middle of CNH (located inside and
outside of CNH) were illustrated in Figure 4. Each DOX from drug inside systems showed the
similar conformation to each other. The aromatic ring of DOX was parallel to the surface of CNH,
while the sugar moiety of DOX was vertical to the surface of CNH. These results were also similar
to the CNH/DOXoussige system. The DOX molecule can move along the surface of CNH with the
same conformation as observed in the DOX inside system. However, for the CS-f-
CNH/DOXoutside/CD system, there was the large gap of CD-CS chain wrapped on the CNH surface,
resulting in the accessible movement of DOX in this gap. For another DOX outside CS-f-CNH,
The DOX can move on a chitosan chain. The aromatic ring showed parallel conformation on
surface of chitosan while the sugar ring upward from chitosan chain. In addition, the chitosan can
wrap around the CNH surface (a snack-like structure). The DOX(A) inside cyclodextrin ring can
bind together and the cyclodextrin ring.

In addition to chitosan wrapped on the CNH surface, the average distance between each
chitosan residue and CNH surface were showed in Figure 5. Each system displayed the similar
trend of the average distance values. The average distance of each residue was found at ~3 to 6 A.
The results indicated that the chitosan can constantly wrap on the outer surface of CNH. However,
the CS-f~-CNH/DOXusside System showed the distinct value for the first residue. This is because

this residue is freely movable without CD bound.
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3.2 solubility of complex

The water accessibility of each system is calculated by the radial distribution function
(RDF), as shown in fig. 7. These plots presented the distribution of water oxygen atom around
heteroatoms of DOX. The first solvation shell was found ~3 A. For DOXinside System, a minimum
of the 06, O7, 08, Ol1 and N atoms shows a movable solvation while other presents a
disappearing of the peak in the first solvation shell. For CD-CS-f-CNH system, O10 shows no
water was detected within a distance around 3 A. Moreover, the DOXousside System shows similar
results with DOX inside system. However, water accessibility of DOXousside are decreased by CD-

CS.
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Figure 6. The RDFs of water molecules around the DOX inside (a) and DOX outside (b) of all

system.



3.3 molecular Interaction

The number of atomic contacts within 3 A around DOX structure in Figure 6 were plotted
to describe the interaction of DOX in its vehicle. The black line was found high values in all
DOXinside system and DOXousige Without CS system all of simulation time. For DOXougside On
chitosan chain at start of simulation, the gray peaks showed the value higher than the value in CNH
all of simulation time. However, in system CD-CS-f-CNH/DOXousside (A), the results are different
with others. Its contact between DOXousside and CNH increased while that between DO Xousside and
CD-CS chain decreased after 350 ns of dynamic. The results suggest that DOX can occur
molecular interaction between DOX and CNH and CD-CS chain. CD-CS-f-CNH/DOXousside (A)
results indicated that the DOX can move from CD-CS to bind with CNH when there was large gap
between a CS chain wrapped CNH.

The behavior of DOX with its vehicle were found by results of distance and number of
contacts. Binding between The DOX and CNH prefers to bind around center of CNH both DOX
inside and outsides CNH when CNH was wrapped with CS or CD-CS, the DOX inside can more
move from center of CNH while DOX outside showed strong interaction between DOX and CS.

However, DOX outside CNH can bind with CNH when the S-ring were twisted.
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Figure 7. the plot of number of contact between DOXinside/outside and CNH (color), DOXinside/outside

and CS (COIOI’), and DOXinside/outside and CD (COIOI’)

3.4 binding free energy of system

The binding between DOX and CNH, CS-fCHN/DOX and CS-fCHN/DOX/CD were
calculated using MMPBSA and represented in Table 1 and 2. The VDW is lowest interaction
energy for all systems. The results indicated that the main interaction between DOX and CNH and
CS is VDW interaction. For AG, the results of the drug inside CNH presents the same value as well
as the result in DOX/CNHougside- AG between DOX and CNH surface are about -51 to -67 kcal/mol.
the lowest AG is CS-fCHN/DOXixsige/CD while the AG values of drug outside are found around
-15 to -23 kcal/mol. the results indicated that binding affinity between DOX and surface of CNH

is stronger than binding affinity between DOX and CS chain. Furthermore, the CS chain wrapped



around CNH surface can enhance binding affinity of DOX within CNH by increasing of VDW

interaction.

Table 1. The binding free energy of drug inside systems from MMPBSA (kcal/mol)

Drug inside VDW EEL AEgas AEsov AEtotal AG
CHN/DOX -60.69+0.04 | -9.76+0.08 | -70.45+0.09 | 27.30+0.10 | -43.16+0.04 | -53.53+0.04
CS-fCHN/DOX -58.05+0.06 | -1.49+£0.02 | -59.54+0.07 | 13.19+0.04 | -46.35+0.04 | -51.72+0.04
CS-fCHN/DOX/CD | -77.29+0.05 | 10.72+0.02 | -66.57+0.05 | 5.27+0.03 -61.30+0.04 | -67.26+0.04

Table 2. The binding free energy of drug outside systems from MMPBSA (kcal/mol)

Drug outside VDW EEL AE s AEsory AEtotal AG

CHN/DOX -39.55+0.02 | -4.89+0.04 | -44.44+0.04 | 10.05+0.05 | -34.38+0.02 | -58.68+0.02
CS-fCHN/DOX | -29.50+0.03 | -10.19+0.05 | -39.69+£0.07 | 25.74+0.05 | -13.94+0.03 | -14.91+0.03
CS-fCHN/DOX/CD | -38.62+0.07 | -12.81+0.10 | -51.43£0.10 | 29.58+0.10 | -21.85+0.06 | -23.68+0.06

Conclusions

Pristine CNH, CS-f-CHN and CS-f-CHN/DOX/CD have ability of drug carrier for DOX
and the DOX within DMBCD present increasing of capacity of CS-f-CHN/DOX/CD system. the
DOX within and without CNH surfaces can move and fluctuate between middle and Edge of CNH.
However, The DOX on CS present stability at the initial residue of CS but DOXutside can move to
bind with CNH surface. For salvation properties of DOX the drug inside and outside CNH are
similar properties as well as results in CS-f-CHN and CS-f-CHN/DOX/CD system. the location
and CS wrapped around surface of CNH no effect to DOX solubility. In addition, the binding
affinity from contact atoms and MMPBSA results suggested that the binding affinity between
DOX and CNH is stronger than DOX and CS chain. Whereas number of contact atom between
DOX and CS are higher than that between DOX and CNH. The DOX can move from CS to bind
with CNH. However, the CS chain can promote binding affinity of DOX inside CHN. This mean
that CS can help the drug binding with CNH lead to increasing drug release by VDW interaction.
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