Selective Oxidation of H_2S in Biogas to Sulfur on V_2O_5 Catalyst Dispersed on CeO_2 -MO₂ (M = Ti, Si, Zr) Mixed Oxides

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical Engineering Department of Chemical Engineering FACULTY OF ENGINEERING Chulalongkorn University Academic Year 2019 Copyright of Chulalongkorn University ปฏิกิริยาออกซิเดชันแบบเลือกเกิดของไฮโดรเจนซัลไฟด์ในไบโอแก๊สเป็นซัลเฟอร์ บนตัวเร่งปฏิกิริยา V₂O₅ ที่กระจายตัวบนออกไซด์ผสม CeO₂-MO₂ (M = Ti, Si, Zr)

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2562 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	Selective Oxidation of H_2 S in Biogas to Sulfur on		
	V_2O_5 Catalyst Dispersedon CeO ₂ -MO ₂ (M = Ti, Si, Zr)		
	Mixed Oxides		
Ву	Miss Benjamaporn Tudkesorn		
Field of Study	Chemical Engineering		
Thesis Advisor	Professor JOONGJAI PANPRANOT, Ph.D.		

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Engineering

Dean of the FACULTY OF ENGINEERING

(Associate Professor SUPOT TEACHAVORASINSKUN,

Ph.D.)

THESIS COMMITTEE

Chairman

(AKAWAT SRIRISUK, Ph.D.)

a what is a function of the sis Advisor

(Professor JOONGJAI PANPRANOT, Ph.D.)

Examiner

(Assistant Professor PALANG BUMROONGSAKULSAWAT,

Ph.D.)

External Examiner

(Assistant Professor Soipatta Soisuwan, Ph.D.)

เบญจมาภรณ์ ทัศเกษร : ปฏิกิริยาออกซิเดชันแบบเลือกเกิดของไฮโดรเจนซัลไฟด์ ในไบโอแก๊สเป็นซัลเฟอร์บนตัวเร่งปฏิกิริยา V₂O₅ ที่กระจายตัวบนออกไซด์ผสม CeO₂-MO₂ (M = Ti, Si, Zr). (Selective Oxidation of H₂S in Biogas to Sulfur on V₂O₅ Catalyst Dispersedon CeO₂-MO₂ (M = Ti, Si, Zr) Mixed Oxides) อ.ที่ ปรึกษาหลัก : ศ.จูงใจ ปั้นประณต

งานวิจัยนี้ศึกษาคุณลักษณะและประสิทธิภาพของตัวเร่งปฏิกิริยาวาเนเดียบนตัว รองรับแบบออกไซด์ผสมระหว่างซีเรีย-ออกไซด์ของโลหะ (ไททาเนียม ซิลิคคน ແລະ เซอร์โคเนียม) เปรียบเทียบกับตัวรองรับซีเรียเกรดการค้าในปฏิกิริยาออกซิเดชันแบบเลือกเกิด ของไฮโดรเจนซัลไฟด์ในไบโอแก๊สเป็นซัลเฟอร์ที่อุณหภูมิ 130 องศาเซลเซียส เตรียมตัวรองรับ ออกไซด์ผสมซีเรียต่างๆด้วยวิธีตกตะกอนร่วม โดยมีปริมาณวาเนเดียม ๓ เปอร์เซ็นโดยน้ำหนัก บนตัวรองรับ เตรียมด้วยวิธีเคลือบฝั่งแบบเปียก จากการวิเคราะห์ด้วยเทคนิดการกระเจิงรังสี เอ็กซ์และรามานสเปกโตรสโกปีพบว่าตัวเร่งปฏิกิริยาทุกตัวมีการกระจายตัวของวาเนเดียมบน ตัวรองรับสูง โดยตัวเร่งปฏิกิริยาวาเนเดียบนตัวรองรับแบบออกไซด์ผสมด้วยซิลิกาในอัตราส่วน 1 ต่อ 1 โมลาร์ของออกไซด์โลหะมีประสิทธิภาพดีที่สุด แสดงค่าการเปลี่ยนแปลงร้อยละของแก๊ส ไฮโดรเจนซัลไฟด์สูง (73%) และการเลือกเกิดของแก๊สซัลเฟอร์ไดออกไซด์ต่ำ (19 ppm) จาก การวิเคราะห์ด้วยเทคนิคการคายซับของออกซิเจน พบว่าอันตรกิริยาที่แข็งแรงระหว่าง ้วาเนเดียมเพนตะออกไซด์และตัวรองรับทำให้เกิดช่องว่างระหว่างออกซิเจนมากขึ้น ทั้งนี้ ตัวเร่ง ปฏิกิริยา V₂O₅/CeO₂-SiO₂ สามารถคายซับแก๊สออกซิเจนได้ที่อุณหภูมิต่ำสนับสนุนให้ตัวเร่ง ปฏิกิริยาคืนสภาพจาก V⁴⁺ เป็น V⁵⁺ ได้เร็ว ซึ่งมีผลโดยตรงต่อขั้นตอนกำหนดอัตราเร็วของ ปฏิกิริยาออกซิเดชันแบบเลือกเกิดของไฮโดรเจนซัลไฟด์ทำให้อัตราการเกิดปฏิกิริยาสูงขึ้น

สาขาวิชา	วิศวกรรมเคมี	ลายมือชื่อนิสิต
م	2562	ลายมือชื่อ อ.ที่ปรึกษาหลัก
การศึกษา		

KEYWORD:

Benjamaporn Tudkesorn : Selective Oxidation of H_2S in Biogas to Sulfur on V_2O_5 Catalyst Dispersedon CeO_2 -MO₂ (M = Ti, Si, Zr) Mixed Oxides. Advisor: Prof. JOONGJAI PANPRANOT, Ph.D.

In this research, the characteristics and catalytic performances of V_2O_5 catalysts supported on mixed oxides CeO_2 -MO₂ (M = Ti, Si, Zr) as compared to the commercial CeO₂ supported ones were studied in the selective catalytic oxidation of H₂S in biogas to sulfur at 130°C. The mixed-oxide supports were prepared by coprecipitation method with 3 wt.% vanadium loading by wet impregnation method. From the XRD and Raman spectroscopy results, all the catalysts exhibited high dispersion of V₂O₅ on the supports with the 1:1 molar ratio CeO₂-SiO₂ mixed oxide showed the highest conversion of H₂S at 73% and low selectivity of SO₂ at 19 ppm. From the O₂-TPD results, the strong interaction between V₂O₅ and support produced more oxygen vacancies and as a consequence, the V₂O₅/CeO₂-SiO₂ exhibited low temperature desorption peak of chemically adsorbed oxygen suggesting a rapid restoration of catalyst from V⁴⁺ to V⁵⁺ state, which was directly related to the limiting step of the selective oxidation of H₂S. As a consequence, the catalyst activity could be enhanced.

Field of Study:	Chemical Engineering	Student's Signature	
Academic	2019	Advisor's Signature	
Year:			

ACKNOWLEDGEMENTS

First, I really appreciate to express my sincere to my advisor Prof. Dr. Joongjai Panpranot for suggestions, guidance and encouragement that are useful to support me until my thesis completed. I would be grateful to Dr. Akawat Sririsuk as the chairman, Assistant Professor Dr. Palang Bumroongsakulsawat and Assistant Professor Dr. Soipatta Soisuwan as the committee for their valuable comments and suggestion on my thesis.

In addition, I am grateful to Dr. Boontida Phongthawornsakun for assistance to use the apparatus in the laboratory and teach anything useful in my thesis. Moreover, I am grateful to the scientists, my seniors and my friends for all support.

Finally, I gratefully acknowledge financial supports from the Thailand Research Fund and the Malaysia-Thailand Joint Authority (MTJA).

Benjamaporn Tudkesorn

TABLE OF CONTENTS

Page
ABSTRACT (THAI)iii
ABSTRACT (ENGLISH) iv
ACKNOWLEDGEMENTSv
TABLE OF CONTENTS vi
LIST OF TABLES ix
LIST OF FIGURES
CHAPTER I INTRODUCTION
1.1 Introduction
1.2 Objectives of the Research2
1.3 Scope of the Research
1.4 Research Methodology5
CHAPTER II BACKGROUND AND LITERATURE REVIEW
2.1 Biogas
2.2 Hydrogen sulfide (H ₂ S)7
2.3 Elimination of hydrogen sulfide9
2.4 Vanadium pentoxide10
2.5 Cerium (IV) oxide12
2.6 Mixed metal oxide
CHAPTER III MATERIALS AND METHODS
3.1 Catalyst preparation21
3.1.2 Preparation of CeO_2 -TiO ₂ (1:1 molar ratio base on oxide) support

3.1.3 Preparation of CeO_2 -SiO ₂ (1:1 molar ration base on oxide) support
3.1.4 Preparation of CeO_2 -ZrO ₂ (1:1 molar ratio base on oxide) support23
3.1.5 Preparation of 3 wt.% V_2O_5 over CeO_2 and CeO_2 -MO ₂ Catalyst23
3.2 Reaction test in H_2S oxidation
3.2.1 X-ray diffraction (XRD)25
3.2.2 Raman spectroscopy
3.2.3 N ₂ -physisorption
3.2.4 Inductively coupled plasma-optical emission spectrometry (ICP-OES)26
3.2.5 Scanning electron microscopy with energy dispersive X-ray spectroscopy
(SEM-EDX)
3.2.6 Fourier transform infrared spectroscopy (FT-IR)27
3.2.7 Oxygen-Temperature programmed desorption (O ₂ -TPD)27
3.2.8 X-ray photoelectron spectroscopy (XPS)27
CHAPTER IV RESULTS AND DISCUSSION
4.1 X-ray diffraction (XRD)
4.2 Raman spectroscopy
4.3 N ₂ -physisorption
4.4 Inductively coupled plasma-optical emission spectrometry (ICP-OES) and
Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-
EDX)
4.5 Fourier transforms infrared spectroscopy (FT-IR)
4.6 Oxygen-Temperature programmed desorption (O ₂ -TPD)
4.7 X-ray photoelectron spectroscopy (XPS)
4.8 Catalytic test in the selective oxidation of H_2S to sulfur43

CHAPTER V CONCLUSIONS AND RECCOMENDATIONS	.48
5.1 Conclusion	.48
5.2 Recommendations	.49
REFERENCES	. 50
APPENDIX A CALCULATION FOR CATALYST PREPARATION	.57
APPENDIX B CALCULATION OF THE CRYSTALLITE SIZE	.61
APPENDIX C CALIBRATION CURVE	. 62
APPENDIX D SEM IMAGE OF CATALYSTS	.63
VITA	.65

CHULALONGKORN UNIVERSITY

LIST OF TABLES

Page
Table 1 Typical composition (%) of biogas [2].
Table 2 Specifications of H ₂ S [16]
Table 3 Physical/chemical properties of vanadium pentoxide [23]11
Table 4 Physical/chemical properties of cerium oxide [26]13
Table 5 Summary the research of the catalytic oxidation of H_2S to elemental sulfur 16
Table 6 The chemicals for Preparation of CeO_2 -TiO ₂ (1:1 molar ratio) support21
Table 7 The chemicals for Preparation of CeO ₂ -TiO ₂ (1:1 molar ratio) support22
Table 8 The chemicals for Preparation of CeO_2 -SiO ₂ (1:1 molar ratio) support22
Table 9 The chemicals for Preparation of CeO_2 -TiO ₂ (1:1 molar ratio) support23
Table 10 The chemicals for Preparation of 3 wt.% V_2O_5 over CeO_2 -MO ₂ Catalyst23
Table 11 Gas materials used in the reaction test25
Table 12 Operating condition of gas chromatographs. 25
Table 13 Vanadium composition (wt.%) and physical properties of 3 wt.% V_2O_5/CeO_2 -
MO ₂ catalyst
Table 14 Vanadium composition (wt.%) and physical properties of 3 wt.% V_2O_5/CeO_2 -
MO_2 with vary molar ratio base metal oxide between CeO_2 and MO_2 catalyst
Table 15 Vanadium composition (wt.%) of 3 wt.% V_2O_5/CeO_2-MO_2 with vary molar ratio
base metal oxide between CeO_2 and MO_2 catalyst
Table 16 The ratio of surface atomic concentration of Ce, O and V species of catalyst. 42

LIST OF FIGURES

F	bage
Figure 1 Claus sulfur recovery unit diagram [18].	.9
Figure 2 Vanadium pentoxide [22]	10
Figure 3 Cerium oxide [27]	13
Figure 4 Proposed mechanism of H_2S selective oxidation on the supported V_2O_5 [12]2	20
Figure 5 Flow diagram of H_2 S oxidation reaction system.	24
Figure 6 X-ray diffraction patterns of V_2O_5/CeO_2 -14 (VC14), V_2O_5/CeO_2 -8 (VC8), V_2O_5/CeO_2 -TiO ₂ (VCT), V_2O_5/CeO_2 -SiO ₂ (VCS) and V_2O_5/CeO_2 -ZiO ₂ (VCZ) catalyst: (*)	
line due to CeO_2 ; (Δ) line due to TiO_2 anatase; (o) line due to $\text{Ce}_{0.4}\text{Zr}_{0.6}\text{O}_2$	29
Figure 7 X-ray diffraction patterns of V_2O_5/CeO_2 -TiO ₂ (VCT) with vary molar ratio base	
oxide (CeO ₂ :TiO ₂) catalyst: (*) line due to CeO ₂ ; (Δ) line due to TiO ₂ anatase	30
Figure 8 X-ray diffraction patterns of V_2O_5/CeO_2 -SiO ₂ (VCS) with vary molar ratio base oxide (CeO ₂ :SiO ₂) catalyst: (*) line due to CeO ₂	30
Figure 9 Raman spectroscopy of V_2O_5/CeO_2 -8 (VC8), V_2O_5/CeO_2 -TiO ₂ (VCT) and V_2O_5/CeO_2 -SiO ₂ (VCS) catalyst.	31
Figure 10 FTIR sprctra of V_2O_5/CeO_2 -14 (VC14), V_2O_5/CeO_2 -8 (VC8), V_2O_5/CeO_2 -TiO ₂	
(VCT), V_2O_5/CeO_2 -SiO ₂ (VCS) and V_2O_5/CeO_2 -ZiO ₂ (VCZ) catalyst	35
Figure 11 FTIR sprctra of V_2O_5/CeO_2 -TiO ₂ (VCT) with vary molar ratio base oxide (CeO ₂ :TiO ₂)	36
Figure 12 FTIR sprctra of V_2O_5/CeO_2 -SiO ₂ (VCS) with vary molar ratio base oxide (CeO ₂ :SiO ₂)	36
Figure 13 O_2 -TPD profile of V_2O_5/CeO_2 -14 (VC14), V_2O_5/CeO_2 -8 (VC8), V_2O_5/CeO_2 -Ti O_2	
(VCT), V_2O_5/CeO_2 -SiO ₂ (VCS) and V_2O_5/CeO_2 -ZiO ₂ (VCZ) catalyst:	38

Figure 14 O_2 -TPD profile of V_2O_5 /Ce O_2 -Ti O_2 (VCT) with vary molar ratio base oxide
(CeO ₂ :TiO ₂)
Figure 15 O_2 -TPD profile of V_2O_5 /Ce O_2 -Si O_2 (VCS) with vary molar ratio base oxide (Ce O_2 :Si O_2)
Figure 16 XPS Ce 3d spectra of V Ω /Ce Ω -14 (VC14) V Ω /Ce Ω -8 (VC8) V Ω /Ce Ω -
$TiO_{2} (VCT), V_{2}O_{5}/CeO_{2}-SiO_{2} (VCS), V_{2}O_{5}/CeO_{2}-ZiO_{2} (VCZ) and V_{2}O_{5}/CeO_{2}-SiO_{2} 1:2$
(VCS12) catalyst
Figure 17 XPS O 1s spectra of V_2O_5/CeO_2 -14 (VC14), V_2O_5/CeO_2 -8 (VC8), V_2O_5/CeO_2 -
$\text{TiO}_2 \text{ (VCT), } V_2 O_5 \text{/CeO}_2 \text{-} \text{SiO}_2 \text{ (VCS), } V_2 O_5 \text{/CeO}_2 \text{-} \text{ZiO}_2 \text{ (VCZ) and } V_2 O_5 \text{/CeO}_2 \text{-} \text{SiO}_2 \text{ 1:2}$
(VCS12) catalyst
Figure 18 XPS V 2p spectra of V_2O_5/CeO_2 -14 (VC14), V_2O_5/CeO_2 -8 (VC8), V_2O_5/CeO_2 -
$\text{TiO}_2 \text{ (VCT), } \text{V}_2 \text{O}_5 \text{/CeO}_2 \text{-} \text{SiO}_2 \text{ (VCS), } \text{V}_2 \text{O}_5 \text{/CeO}_2 \text{-} \text{ZiO}_2 \text{ (VCZ) and } \text{V}_2 \text{O}_5 \text{/CeO}_2 \text{-} \text{SiO}_2 \text{ 1:2}$
(VCS12) catalyst
Figure 19 (a) H_2S conversion (b) SO_2 concentration as a function of time of supported
V ₂ O ₅ catalyst45
Figure 20 a) H_2S conversion (b) SO_2 concentration as a function of time of supported
V_2O_5 catalyst (V_2O_5/CeO_2 -Ti O_2 series)
Figure 21 a) H_2S conversion (b) SO_2 conventration as a function of time of supported
V_2O_5 catalyst (V_2O_5/CeO_2 -SiO ₂ series)
Figure 22 Calibration curve of sulfur dioxide (SO ₂)62

CHAPTER I

1.1 Introduction

Biofuel or biogas is an eco-friendly for energy production. It is naturally the decompose of organic, food and animal waste, in an anaerobic environment and is now becoming an important source of green and clean energy [1]. Biogas contains mainly two compounds are methane (CH_4) and carbon dioxide (CO_2) in different percentages depending on the source of decompose. There are 0-1% composition of other components such as hydrogen sulfide (H_2S), hydrogen (H_2), nitrogen (N_2), oxygen (O_2), carbon monoxide (CO) and ammonia (NH_3) [2, 3].

The presence of H_2S strongly affects the use of biogas in equipment directly and indirectly by the means of contraction between H_2S and moisture which results in sulfuric acid. For the carbon steel and alloyed steel, the corrosion rate by H_2S is around 0.1-1 mm/year to the wall. In case of combination of H_2S and moisture, the corrosion rate by sulfuric acid was 1-3 mm/year to the wall of carbon steels. The corrosive tendency effect increases when temperature increases, at temperature of 100 °C it exceeds 10 mm/year. Therefore, In order to protect the equipment, H_2S must be removed from biogas before entering to the process [4].

The most popular conversion method used for removal of H_2S is the Claus process which involves burning of the H_2S in air at high temperature of 980-1540 °C and high pressure of 70 kPa. The selective H_2S catalytic oxidation is an interesting alternative method for H_2S removal because it operates at low temperature and low pressure [5-7].

Total oxidation of H_2S is following reaction (1) : [8]

$$2H_2S + 3O_2 \longrightarrow 2H_2O + 2SO_2$$
------(1)

Selective oxidation of	H_2S to sulfur ele	ement i	s following reacti	ion (2)-(5): [9]
Main reaction	$H_2S + \frac{1}{2}O_2$	\rightarrow	$1/nS_{n} + H_{2}O$	(2)
Side reaction	H ₂ S + 3/2O ₂	\rightarrow	$SO_2 + H_2O$	(3)
	$1/nS_{n} + O_{2}$	\rightarrow	SO ₂	(4)
	$3/nS_{n} + 2H_{2}O$	\leftrightarrow	$H_2S + SO_2$	(5)

Vanadium-based catalysts have been reported to be active for selective catalytic oxidation of hydrogen sulfide (H₂S) to sulfur [10-13]. A series of CeO₂-MO₂ (M = Ti⁴⁺, Si⁴⁺ and Zr⁴⁺) supported vanadium catalyst were investigated and V₂O₅/CeO₂ showed better performance compared with TiO₂ and CuFeO₄ [8]. In this experiment, CeO₂-based mixed metal oxide were prepared and employed as the supports for preparation of supported V₂O₅ catalysts in the selective oxidation of H₂S to sulfur compound.

In this research, we aim to study the characteristics and catalytic activity of V_2O_5 dispersed on pure CeO₂ and CeO₂-MO₂ mixed oxide supports prepared with different molar ratios between CeO₂ and MO₂ in the selective oxidation of H₂S to sulfur element. This research contains three parts of studies: first, preparation the mixed-metal oxide supports, CeO₂-TiO₂, CeO₂-SiO₂ and CeO₂-ZrO₂ using co-precipitation method and preparation of 3 wt.% of V₂O₅ supported on CeO₂-MO₂ using impregnation method: second, the properties and characteristics of catalysts analyzed by X-ray diffraction (XRD), Raman spectroscopy, N₂-physisorption, Inductively coupled plasma-optical emission spectrometry (ICP-OES), Scanning electron microscopy with energy dispersive X-ray spectroscopy (XPS) and Oxygen-Temperature programmed desorption (O₂-TPD). And the last part is the catalytic activity test were carried out in H₂S oxidation at 130°C and atmospheric pressure.

1.2 Objectives of the Research

To study the characteristics and catalytic performances of CeO_2 and CeO_2-MO_2 (M = Ti, Si, Zr) supported V₂O₅ in the selective catalytic oxidation of H₂S.

1.3 Scope of the Research

1.3.1 To study the characteristics and catalytic performances of CeO_2 and CeO_2 -

 MO_2 (M = Ti, Si, Zr) supported V_2O_5 in the selective catalytic oxidation of H_2S

- 1) Preparation of CeO_2 -MO₂ with 1:1 molar ratio (M = Ti, Si, Zr) support by coprecipitation method and calcined at 500°C for 5 h in air with 10°C/min of ramp rate on temperature.
- 2) Preparation of 3 wt.% V_2O_5 over CeO_2 and CeO_2 -MO₂ (M = Ti, Si, Zr) catalyst by wet impregnation method and calcined at 500°C for 5 h in air with 10°C/min of ramp rate on temperature.
- The catalysts were pretreated with helium at 200°C for 1 h before reaction tests.
- 4) The catalytic activity tests were carried out in selective oxidation of H_2S at 130°C and atmospheric pressure with 0.5 of O_2/H_2S ratio.
- 5) Characterization of the prepared catalysts by various method following
 - 5.1) X-ray diffraction (XRD)
 - 5.2) Raman spectroscopy
 - 5.3) N₂-physisorption
 - 5.4) Inductively coupled plasma-optical emission spectrometry (ICP-OES)
 - 5.5) Scanning electron microscopy with energy dispersive X-ray

spectroscopy (SEM-EDX)

- 5.6) Fourier transforms infrared spectroscopy (FT-IR)
- 5.7) Oxygen-Temperature programmed desorption (O₂-TPD)
- 5.8) X-ray photoelectron spectroscopy (XPS)

1.3.2 The best catalyst from above study was selected to study the effect of mixing molar ratio between CeO_2 and MO_2 support on catalytic performance for selective catalytic oxidation of H₂S.

- Preparation of CeO₂-MO₂ with desired molar ratio support by co-precipitation method and calcined at 500°C for 5 h in air with 10°C/min of ramp rate on temperature.
- 2) Preparation of 3 wt.% V_2O_5 over mixed oxide support catalyst by wet impregnation method and calcined at 500°C for 5 h in air with 10°C/min of ramp rate on temperature.
- The catalysts were pretreated with helium at 200°C for 1 h before reaction tests.
- 4) The catalytic activity tests are carried out in selective oxidation of H_2S at 130°C and atmospheric pressure with 0.5 of O_2/H_2S ratio.
- 5) Characterization of the prepared catalysts by various method following
 - 5.1) X-ray diffraction (XRD)
 - 5.2) Raman spectroscopy
 - 5.3) N₂-physisorption
 - 5.4) Inductively coupled plasma-optical emission spectrometry (ICP-OES)
 - 5.5) Scanning electron microscopy with energy dispersive X-ray

spectroscopy (SEM-EDX)

- 5.6) Fourier transforms infrared spectroscopy (FT-IR)
- 5.7) Oxygen-Temperature programmed desorption (O₂-TPD)
- 5.8) X-ray photoelectron spectroscopy (XPS)

1.4 Research Methodology

1.4.1 To study the characteristic and catalytic performance of CeO₂ and CeO₂- MO_2 (M = Ti, Si, Zr) supported V₂O₅ in the selective catalytic oxidation of H₂S

1.4.2 The best catalyst from above study was selected to study the effect of mixing molar ratio between CeO_2 and MO_2 (SiO₂ and TiO₂) support on catalytic performance for selective catalytic oxidation of H₂S.

CHAPTER II BACKGROUND AND LITERATURE REVIEW

2.1 Biogas

Biofuel or biogas is an eco-friendly for energy production. It is naturally decomposition in decompose of organic, food and animal waste, in an anaerobic environment become too important source of green and clean energy, yielding 5.5-7 kWh.m⁻³. The energy directly depends on methane content [1, 14]. Biogas contains mainly two compounds are methane (CH₄) and carbon dioxide (CO₂) in difference percentage depend on source of decompose. There are 0-1% composition of each other components such as hydrogen sulfide (H₂S), hydrogen (H₂), Nitrogen (N₂), Oxygen (O₂), carbon monoxide (CO) and ammonia (NH₃) [2].

Table 1	Typical	composition	(%) (of biogas	[2].
---------	---------	-------------	-------	-----------	------

Component	Agricultural waste	Landfills	Industrial waste
Methane (CH ₄)	50-80	50-80	50-70
Carbon dioxide (CO ₂)	30-50	20-50	30-50
Hydrogen sulfide (H ₂ S)	0.70	0.10	0.80
Hydrogen (H ₂)	0-2	0-5	0-2
Nitrogen (N ₂)	0-1	0-3	0-1
Oxygen (O ₂)	0-1	0-1	0-1
Carbon monoxide (CO)	LONGK0-1N UNI	0-1	0-1
Ammonia (NH ₃)	Trace	Trace	Trace

2.2 Hydrogen sulfide (H₂S)

The extremely hazardous hydrogen sulfide (H_2S) gas is colorless and flammable with a strongly rotten egg smell although the concentration of H_2S is very low in air. H_2S occurs naturally in petroleum crude oil, natural gas, biomass decomposition and hot spring [15]. However, is available in the processing industry such as refinery industry, heavy and metal industry, pulp and paper industry, chemical industry and public utilities i.e. bacteriological composing of west and dewatering of sewage sludge [16]. Health effects of H_2S are both irritation, block sense of smell and interrupt cells from receiving oxygen. The toxic limitation value that immediately dangerous to life and health is 100 ppm of H_2S concentration [16].

Table 2 Specifications of H₂S [16].

Synonyms	Hydrogen sulfide
	Hydrosulfuric acid
	Sulfane
s à últ	Dihydrogen monosulfide
Molecular Formula	H ₂ S
Molecular weight	34.08 g/mol
Density	0.002 g/mL (at 68 ̊ F / 20 ̊ C)
Ignition temperature	518 F / 270 C
Melting point	-122.08 ̊ F / -85.6 ̊ C
Boiling point	-76.36 ̊ F / -60.2 ̊ C
UEL Queen	45.5 Vol.%
LEL	4.3 Vol.%
Hazard symbols	

HULALONGKORN UNIVERSITY

The effect of H_2S on the equipment directly and indirectly by the means of contraction between H_2S and moisture result to sulfuric acid. For the carbon steel and alloyed steel, the corrosion rate by H_2S affect 0.1-1 mm/year to the wall. In the case of combination of H_2S and moisture, the corrosion rate by sulfuric acid affect 1-3 mm/year to the wall of carbon steels. The corrosive tendency effect increases when temperature increases, at temperature of 100 °C it exceeds 10 mm/year. Therefore, In order to protect the equipment, H_2S must be removed from biogas before entering to the process [4].

The most popular conversion method used to remove H_2S is the Claus process which involves hydrogen sulfide burning in air at high temperature of 980-1540 °C and high pressure of 70 kPa. The other alternative is selective H_2S catalytic oxidation, was operated at low temperature and low pressure [7].

2.3 Elimination of hydrogen sulfide [7, 17]

Claus process is the most common used to recover the hydrogen sulfide and converted to sulfur element. Claus process also consist of multistage following:

1) Thermal oxidation

 $2H_2S + 3O_2 \rightarrow 2SO_2 + 2H_2O + heat$ ------(6)

One-third of hydrogen sulfide (H_2S) is burning with air to generate sulfur dioxide (SO_2) at temperature of 980-1540 °C and higher pressure of 70 kPa.

2) Catalytic reaction

$$2H_2S + 3SO_2 \rightarrow 3S + 2H_2O + heat$$
 ------(7)

Two-third remaining unconverted of hydrogen sulfide (H_2S) reacts with sulfur dioxide to produce sulfur element through the subsequent catalytic reaction at temperature of 200-315 °C. From the limitation in chemical equilibrium reaction, 3-5% of H_2S cannot converted to sulfur element. So, it is necessary to treat the residual gas of the Claus process by another techniques such as adsorption wet catalytic reaction and catalytic reaction.

Figure 1 Claus sulfur recovery unit diagram [18].

The importance developed processes to treat the residual gas from Claus process are Mobil direct oxidation process (MODOP) and Super Claus process. The principles of two processes are based on the irreversible selective oxidation of H_2S [19].

Total oxidation of hydrogen sulfide is following reaction (8): [8]

Selective oxidation of hydrogen sulfide to sulfur element is responded following reaction (9)-(12): [9]

Main reaction	$H_2S + \frac{1}{2}O_2$	\rightarrow	$1/nS_n + H_2O$	 (9)
Side reaction	H ₂ S + 3/2O ₂	\rightarrow	$SO_2 + H_2O$	 (10)
	$1/nS_n + O_2$	\rightarrow	SO ₂	 (11)
	$3/nS_{n} + 2H_{2}O$	\leftrightarrow	$H_2S + SO_2$	 (12)

2.4 Vanadium pentoxide

Vanadium pentoxide (V_2O_5) appears as a yellow to rust-brown crystalline powder and slightly soluble in water. Vanadium pentoxide is popularly used in oxidation catalyst both homogeneous and heterogeneous processes for many industries such as the sulfuric acid production from sulfur dioxide, adipic from cyclohexanol and acetaldehyde from alcohol. The preparation of vanadium pentoxide also involves the ammonium metavanadate decomposition at temperature of 500-550 °C [20, 21].

Figure 2 Vanadium pentoxide [22]

Synonyms	Vanadium (V) oxide
	Divanadium pentoxide
Molecular Formula	V ₂ O ₅
Molecular weight	181.88 g/mol
Density	3.357 g/cm ³
Flash point	Non-flamable
Melting point	690 [°] C
Boiling point	1,750 °C (decompose)
Solubility in water	0.8 g/L at 20 [°] C
Hazard symbols	

Table 3 Physical/chemical properties of vanadium pentoxide [23]

Davydov et al. (2003) [10] Study the catalytic activity of 12 metal oxides (MgO, TiO₂ ZrO₂, V₂O₅, Mn₂O₃, Cr₂O₃, Fe₂O₃, CuO, CoO, Al₂O₃, Sb₆O₁₃ and Bi₂O₃) in selective oxidation of H₂S by molecular of oxygen to propose for sulfur selective production. V₂O₅ is the most active catalyst for the selective catalytic oxidation of H₂S to give high conversion of H₂S while BiO₃, Fe₂O₃ and CuO mainly carried out the SO₂ formation in complete oxidation of H₂S reaction.

Li et al (1996) [9] Study the catalytic activity of hydrogen sulfide selective oxidation over single oxide, the result shows that vanadium oxide had to be the best performance in H_2S conversion and sulfur selectivity. The catalytic activity decreased in the following iron oxide, bismusth oxide, molybdenum oxide and magnesium oxide respectively. In case of vanadium-based mixed oxide catalyst studied, consist of vanadium-molydenum (V/Mo = 1/0, 5/1, 2/1, 1/1, 2/7 and 0/1), vanadium-bismust (V/Bi = 1/0, 2/1, 1/1, 1/2 and 0/1) and vanadium-magnesium (V/Mg = 1/0, 3/1, 1/1, 1/3 and 0/1). the addition of Mo, Bi and Mg significantly improve the catalytic performance due to exhibits strong synergistic behavior.

Kim et al (2006) [24] The selective oxidation of hydrogen sulfide containing excess water and ammonia were studied over the V_2O_5/TiO_2 aerogel catalyst. The aerogel catalyst with 2 wt.% of vanadium oxide showed the highest surface area compared with higher content of vanadium (5 wt.% and 10 wt.%). The comparison between V_2O_5/TiO_2 aerogel and xerogel catalyst, aerogel catalyst exhibited on higher conversion of H₂S without SO₂ formation.

Soriano et al (2015) [5] V_2O_5 supported on porous clay heterostructure (PCH) catalysts were studied for the partial oxidation of H₂S. The catalyst with higher V_2O_5 content are more active, a higher of H₂S conversion and SO₂ selectivity, and resistance to the deactivation.

Soriano et al (2009) [25] V_2O_5 supported on mesoporous zircronium phosphate (MZP) catalyst were studied for the selective oxidation of H_2S . The catalytic activity and stability increasing with the V-loading and sulfur deposit on the catalyst is favored in catalyst with low V-loading.

Pongthawornsakun et al (2018) [12] TiO_2 supported vanadium oxide were investigated at 130 °C for selective oxidation of H_2S . V_2O_5/TiO_2 (anatase) exhibited the best catalyst performance with 80% conversion of H_2S and low selectivity of SO_2 (<7 ppm). The highly dispersed vanadium oxide on the support result to partially reduced V-Ti species influenced the redox capability of V^{5+}/V^{4+} , directly affect to the limiting step of reaction.

2.5 Cerium (IV) oxide

Cerium (IV) oxide (CeO_2) appears as a yellow to white powder. CeO_2 is insoluble in water and moderately soluble in strong mineral acids. Ceria was used as a catalyst in automotive application and co-catalyst in many reaction such as Fischer-Tropsch reaction, selective oxidation and steam reforming of ethanol into carbondioxide and hydrogen. The structure of ceria is fluorite, oxygen atom are all in a plane which allows for rapid diffusion of the oxygen vacancies [26].

Figure 3 Cerium oxide [27]

- MI 11/1000	
Synonyms	Cerium dioxide
	Ceria
Molecular Formula	CeO ₂
Molecular weight	172.11 g/mol
Density	7.65 g/cm ³
Melting point	2,500 [°] C
Boiling point	3,500 [°] C
Solubility in water	Insoluble
Hazard symbols	(!)
A M 191 A 11 3 219 4	

Table 4 Physical/chemical properties of cerium oxide [26]

Barba et al (2013) [8] To compare the activity for selective catalytic H_2S oxidation, different vanadium (V_2O_5) based supported catalyst including TiO₂, CeO₂ and CuFe₂O₄ were studied. The surface area of the supported was decreased after V_2O_5 doped because V_2O_5 could be clogging in the pore of support but $V_2O_5/CuFe_2O_4$ wasn't observed the difference of surface area after V_2O_5 doped due to the initial specific surface area of CuFe₂O₄ is very low. At the reaction temperature of 250 °C, the result has shown a higher conversion of H_2S and low selectivity of SO₂ at 3% on CeO₂ supported V_2O_5 . From studied the effect of temperature on the reaction, it was found that the conversion of H_2S increase and selectivity of SO₂ decrease when reaction temperature increased.

Palma et al (2014) [11] To study the catalytic activity for selective catalytic H_2S oxidation of CeO₂ supported vanadium (V_2O_5) catalyst in different loading of V_2O_5 . 2.55-20 wt.% loading of V_2O_5 on the support were characterized, the result showed increasing of vanadium content could lead to blocking and clogging in the pores of support result to decrease the surface area of catalyst. For 20 wt.% loading of V_2O_5 , cerium vanadate (CeVO₄) can be observed at XRD peak of 2 Θ ~ 24°, 32.4° and 33.1° due to the reaction between CeO₂ and V_2O_5 following:

 $CeO_2(s) + 0.5V_2O_5(s) \longrightarrow CeVO_4(s) + 0.5O_2(g)$ ------(13)

After catalytic activity test of 20 wt.% V_2O_5 /CeO₂, the catalyst was a good activity with 99% of sulfur selectivity and 98.7% of H₂S conversion at 150 °C which very close to the calculation of thermodynamic equilibrium.

Zang et al (2013) [13] A series of vanadium supported on ceria doped with Lamponite clay catalyst was studied the structural and activity for selective oxidation of H_2S . V_2O_5 /CeO_2-Lap is a mesoporous structure with high surface area. The emperature programed desorption technique was used to characterize the ability to adsorb and desorb O_2 of catalyst. The peak observed at 120 °C attributed to chemically adsorbed oxygen. The peak at 450 °C represented to desorption of oxygen molecule on the oxygen vacancies. For the 5% V_2O_5 /CeO₂-Lap exhibits the largest peak, indicating that it is the largest of oxygen vacancies amount which agreeable with the result from the activity test. The maximum conversion of H_2S is 98% and yield of sulfur is 98% at 180 °C. In order to study the catalyst deactivated after reaction time for 7 h, catalyst as purge with the N_2 at 300 °C and then fed with 2% O_2 . The experiments are shown the existence of Ce³⁺ could be resistant to the deactivation of catalyst.

Yasyerli et al (2006) [28] Ce-V mixed oxides have studied the activity for selective oxidation of H₂S to sulfur, Ce-V mixed oxide atomic ratio of one (Ce/V = 2/2) showed 100% H₂S conversion when O_2/H_2S feed ratios of 0.5 used at 250 °C. The selectivity of sulfur decreased with O_2/H_2S ratio increased to over the stoichiometric value.

2.6 Mixed metal oxide

Reddy et al (2004) [29] To investigate structural characteristics of a series of V_2O_5/CeO_2 -MO₂ (M = Si⁴⁺, Ti⁴⁺ and Zr⁴⁺) with 1:1 molar ratio catalyst. The highest surface area found on CeO₂-SiO₂ support.

For the CeO₂-SiO₂, the result from XRD indicating that SiO₂ is an amorphous due to the peak of SiO₂ are absent. Calcination of catalyst at 500 °C, 600 °C and 800 °C gave a good dispersion of V₂O₅, formation of CeVO₄ and formation of Ce_{9.33}(SiO₄)₆O₂ phase between CeO₂ and SiO₂ respectively. For the CeO₂-TiO₂, the result from XRD indicating that TiO₂ is an anatase phase with a few formation of CeVO₄ at calcination of 500 °C. Calcination of catalyst at 800 °C and 1250 °C, TiO₂ rutile phase and Ce-Ti oxides (Ce₂TiO₅, Ce₂Ti₂O₇ and Ce₄Ti₉O₂₄) could be found respectively. For the CeO₂-ZrO₂, the result from XRD showed CeO₂-ZrO₂ is a cubic fluorite-type with composition Ce_{0.75}Zr_{0.25}O₂ when calcined at 500 °C. Calcination of catalyst at 500 °C and 800 °C, Ce_{0.4}Zr_{0.6}O₂ and tetragonal phase of Ce_{0.16}Zr_{0.84}O₂ are visible respectively. The RS results, show the oxygen vacancies/Ce³⁺ presence in different proportion in all sample.

Shin et al (2001) [17] VO_x/SiO_2 catalyst s were investigated using a packed bed reactor for selective oxidation of H₂S. The conversion of H₂S is very high values (>90%) for V₂O₅/SiO₂ at 270-350 °C.

Reddy et al (2002) [30] Characterization of V_2O_5/CeO_2 -SiO₂ calcined at 500-800°C. The catalyst is a very high specific surface area and the surface of SiO₂ was covered by CeO₂. At high calcination temperature, the XRD shown CeVO₄ peak due to the reaction between V_2O_5 and CeO₂. V⁵⁺ has been found at the surface when calcination temperature increased.

Kang et al (2015) [31] CeO_2 -TiO₂ were studied for catalytic oxidation of H₂S in a vary atom ratio of Ce/Ti are 1/1 1/3, 1/5 and 3/1. The surface area of mixed-oxide CeO₂-TiO₂ is higher than pure cerium oxide. The highest surface area was investigated when atom ration of Ce/Ti is 1/3, decreasing of surface area occur when Ce content increased. Catalysts with Ce/Ti = 1/3 and 1/5 exhibited the highest conversion of H₂S because the uniform dispersion of metal oxides.

Researcher	Study	Catalyst	Reaction	Result
			condition	
Davydov	Catalytic	MgO, CaO, La ₂ O ₃ ,	Feed	V_2O_5 is the best
et al.	activity of	TiO ₂ ZrO ₂ , V ₂ O ₅ ,	concentration	performance for
(2003) [10]	metal oxide in	Cr ₂ O ₃ , MoO ₃ ,	is 0.5 vol.% of	selective oxidation
	H_2S oxidation	Mn ₂ O ₃ , Fe ₂ O ₃ ,	$\rm H_2S$ and 0.25	of H_2S to sulfur
		CoO, NiO, CuO,	vol.% of O_2	both total and
		ZnO, Al ₂ O ₃ ,	T = 250°C	selective oxidation
		Ga_2O_3 , In_2O_3 , SiO_2 ,	>	of H_2S
		SnO_{2} , Sb_6O_{13} and		
		Bi ₂ O ₃		
	2			
	8			
Li et al	Catalytic	Iron oxide	Molar ratio of	Vanadium oxide is
(1996) [9]	activity of	Vanadium oxide	$H_2S:O_2 = 1/5$	the best
	vanadium-	Bismust oxide	T = 200 -	performance and
	based mixed-	Magnesium oxide	220 [°] C	Mo, Bi and Mg
	oxide in	Molybdenum		significantly
	selective	oxide		improve the
	oxidation of	V/Mo		catalytic
	H_2S	V/Bi		performance more
		V/Mg		than pure
				vanadium oxide at
				any temperature

Table 5 Summary the research of the catalytic oxidation of $\rm H_2S$ to elemental sulfur.

Kim et al	Performance	2% V ₂ O ₅ /TiO ₂	Feed mixture	5% V ₂ O ₅ /TiO ₂
(2006) [24]	of a series of	5% V ₂ O ₅ /TiO ₂	composed of	aerogel catalyst
	V ₂ O ₅ /TiO ₂	10% V ₂ O ₅ /TiO ₂	$H_2S/O_2 =$	exhibited on higher
	aerogel were	(aerogel)	5.0/2.5	conversion of H_2S
	prepared by	5% V_2O_5/TiO_2	T = 220-	without SO_2
	sol-gel method	(xerogel)	260 [°] C	formation
		5% V ₂ O ₅ /TiO ₂		
		(impregnated)		
Soriano	Catalytic	2% V ₂ O ₅ /PCH	Feed mixture	The catalyst with
et al (2015)	activity of V ₂ O ₅	4% V ₂ O ₅ /PCH	composed of	higher V_2O_5
[5]	on porous clay	8% V ₂ O ₅ /PCH	$H_2S/air =$	content are more
	heterostructure	12% V ₂ O ₅ /PCH	1.2/5.0	active with higher
	(PCH) in	16% V ₂ O ₅ /PCH	T = 180°C	of H ₂ S conversion
	partial			and SO_2
	oxidation of			
	H_2S	La		
Soriano	Catalytic	เงกรถMzpเกวิทย	Feed mixture	The catalytic
et al (2009)	activity of V_2O_5	2% V ₂ O ₅ /MZP	composed of	activity and
[25]	on	4% V ₂ O ₅ /MZP	H ₂ S/air =	stability increasing
	mesoporous	8% V ₂ O ₅ /MZP	1.2/5.0	with the V-loading
	zirconium	12% V ₂ O ₅ /MZP	T = 180 –	and sulfur deposit
	phosphate	16% V ₂ O ₅ /MZP	260 °C	on the catalyst is
	heterostructure	V_2O_5		flavored in catalyst
	(MZP) in			with low V-loading.
	partial			
	oxidation of			
	H_2S			

Pongthawo	Activity of TiO ₂	V ₂ O ₅ /anatase-43	Feed mixture	V ₂ O ₅ /anatase-21
rnsakun et	supported	V ₂ O ₅ /anatase-21	composed of	exhibited the best
al (2018)	vanadium	V ₂ O ₅ /solvo	300 ppm of	catalyst
[12]	oxide for	V ₂ O ₅ /P25	H_2 S and 150	performance with
	selective	V ₂ O ₅ /rutile	ppm of O_2	80% conversion of
	oxidation of		T = 130 °C	$\rm H_2S$ and low
	H_2S			selectivity of SO_2
				(<7 ppm)
Barba et al	Catalytic	CeO ₂	Feeding 1000	V ₂ O ₅ / CeO ₂
(2013) [8]	activity of	TiO ₂	> ppm of H ₂ S,	exhibited the
	vanadium-	CuFe ₂ O ₄	500 ppm of	highest conversion
	based support	V ₂ O ₅ / CeO ₂	O ₂	of $H_2^{}S$ and low
	on mixed 🥖	V ₂ O ₅ /TiO ₂	T = 50 –	selectivity of
	oxide in	V ₂ O ₅ / CuFe ₂ O ₄	250 °C	SO ₂ .The selectivity
	partial			of SO_2 decrease
	oxidation of			with reaction
	H ₂ S			temperature
	Tim			increased.
Palma et al	Catalytic	2.55% V ₂ O ₅ / CeO ₂	Feeding 200	20 wt.%
(2014) [11]	activity for	5% V ₂ O ₅ / CeO ₂	ER ppm of	V ₂ O ₅ /CeO ₂ ,
	selective	8% V ₂ O ₅ / CeO ₂	H ₂ S,100 ppm	catalyst was a
	oxidation of	10% V ₂ O ₅ / CeO ₂	of O ₂	good activity with
	H_2S on CeO ₂	20% V ₂ O ₅ / CeO ₂	T = 150 –	99% of sulfur
	supported		250 °C	selectivity and
	vanadium			98.7% of H_2S
	(V ₂ O ₅) catalyst			conversion at
	at varies V_2O_5			150 [°] C
	load			

Zang et al	The structural	3% V ₂ O ₅ /Ce-Lap	Feeding 5000	5% V ₂ O ₅ /Ce-Lap
(2013) [13]	and activity of	5% V ₂ O ₅ /Ce-Lap	ppm of H ₂ S,	catalyst presented
	a series of	8% V ₂ O ₅ /Ce-Lap	2500 ppm of	the best catalytic
	vanadium		O ₂	activity and could
	supported on		T = 120 –	be resistance the
	ceria doped		220 °C	deactivation of
	with Lamponite			catalyst.
	clay catalyst			
	for selective			
	oxidation of		>	
	H ₂ S			
Yasyerli	Catalytic 🥖	CeO ₂	Molar ratio of	Ce-V mixed oxide
et al (2006)	activity of Ce-V	Ce3V1	$H_2 S/O_2 = 0.5$	atomic ratio of one
[28]	mixed oxide in	Ce2V2	T = 200 -	(Ce/V = 2/2)
	partial	Ce1V3	300 [°] C	showed 100% H_2S
	oxidation of			conversion when
	H ₂ S			O_2/H_2S feed ratios
			M	of 0.5 used at
	จุหาะ	เงกรณ์มหาวิทย	าลัย	250 [°] C

Chulalongkorn University

2.8 Catalytic Mechanism

Although the literature widely proposed the type of mechanism for the total catalytic oxidation reaction of H_2S on the vanadium catalyst as Langmuir–Hinshelwood and Rideal-type or Rideal–Eley-type mechanisms. For the selective oxidation of H_2S reaction over supported V_2O_5 catalyst, Mars-van Krevelen or so-called redox mechanism is usually established to explain the oxidized active site on the catalyst surface oxidizes the reactant and regenerated back to the original (re-oxidized) by the oxygen in gas phase in a stepwise mechanism [10].

A stepwise mechanism for the selective oxidation of H_2S reaction over supported V_2O_5 catalyst is shown in Figure 4. First, the reaction occurs on the active site vanadium with H_2S in gas phase. H_2S adsorbed on the active site and take oxygen atom from V_2O_5 to produce the products of sulfur element and water. H_2S was oxidized to sulfur by V^{5+} . At the same time, V^{5+} was reduced to V^{4+} then oxygen vacancies occurred. Simultaneously, oxygen in the gas phase was adsorbed on the catalyst surface, V^{4+} was re-oxidized back to the initial state by reacting with oxygen in the gas phase called re-oxidation. The catalytic activity was determined based on the redox cycle of V^{5+} [12]. Shin et al. [27] rate of re-oxidation step much slower than the reduction step by H_2S so, the re-oxidation step would be as the limiting step which affect significantly to the performance of the catalyst.

Figure 4 Proposed mechanism of H_2S selective oxidation on the supported V_2O_5 [12]

CHAPTER III MATERIALS AND METHODS

The experiment is described in this chapter, which is divided into three parts including catalyst preparation, catalyst characterization, and H₂S oxidation reaction test.

3.1 Catalyst preparation

 V_2O_5 (3 wt.%) on the CeO₂ and modified CeO₂-MO₂ mixed-oxides (M = Ti⁴⁺, Si⁴⁺ and Zr⁴⁺) support were prepared by wet impregnation.

3.1.1 Preparation of CeO₂ support

 CeO_2 was prepared into two samples, The first one is commercial powder CeO_2 provide by Sigma-Aldrich and the second one was synthesized. Synthesized CeO_2 was obtained by calcination $Ce(NO_3)_3$ $^{\circ}6H_2O$ at 500°C for 5 h in air with 10°C/min of ramp rate on temperature. The chemicals are shown in Table 6.

Table 6 The chemicals for Preparation of CeO₂-TiO₂ (1:1 molar ratio) support

Chemical	Formula	a Supplier
Cerium (III) nitrate hexahyd	ate, 99.5% Ce(NO ₃) ₃ *6	H ₂ O Sigma-Aldrich
Cerium (IV) oxide, < 2	5 nm CeO ₂	Sigma-Aldrich
UHULALU	JNGKUKN UNIVERSITT	•

3.1.2 Preparation of CeO₂-TiO₂ (1:1 molar ratio base on oxide) support

 CeO_2 -TiO_2 support was synthesized by co-precipitation method. 3.5 g of cerium (III) nitrate hexahydate and 2.8 g titanium (IV) butoxide were dissolved in 30 ml of distilled water and 30 ml of ethanol respectively. The solution were mixed together. Ammonium hydroxide was added to the previous mixture solution until precipitation was complete at pH = 8 and stirred at 80°C on a heating plate for 1 h. The chemicals are shown in Table 7. After obtained hydroxide gels, the solution were washed with deionize water, dried at 110 °C overnight in oven and calcined at 500°C for 5 h in air with 10°C/min of ramp rate on temperature.

Table 7 The chemicals	for Preparation	of CeO ₂ -TiO ₂	(1:1	molar ratio) support
-----------------------	-----------------	---------------------------------------	------	-------------	-----------

Chemical	Formula	Supplier
Cerium (III) nitrate hexahydate, 99.5%	Ce(NO ₃) ₃ •6H ₂ O	Sigma-Aldrich
Titanium (IV) butoxide, 97%	$Ti(C_4H_9O)_4$	Sigma-Aldrich
Ammonium hydroxide, 28% NH_3 in water, 99.99%	NH₄OH	Sigma-Aldrich
A CONTRACTOR OF		

3.1.3 Preparation of CeO₂-SiO₂ (1:1 molar ration base on oxide) support

 CeO_2 -SiO_2 support was synthesized by co-precipitation method. 4.7 g of ammonium cerium (IV) nitrate was dissolved in 30 ml of distilled water and mixed together with 1 ml of colloidal silica. Ammonium hydroxide was added to the previous mixture solution until precipitation was complete at pH = 8 and stirred at 80°C on a heating plate for 1 h. The chemicals are shown in Table 8. After obtained hydroxide gels, the solution were washed with deionize water, dried at 110 °C overnight in oven and calcined at 500°C for 5 h in air with 10°C/min of ramp rate on temperature.

Table 8 The chemicals for Preparation of CeO₂-SiO₂ (1:1 molar ratio) support

Chemical	Formula	Supplier
Ammonium cerium (IV) nitrate, > 99.99%	$Ce(NH_4)_2(NO_3)_6$	Sigma-Aldrich
Colloidal silica, 40 wt.% suspension in H_2O		Sigma-Aldrich
Ammonium hydroxide, 28% $\rm NH_3$ in water, 99.99%	NH_4OH	Sigma-Aldrich

3.1.4 Preparation of CeO₂-ZrO₂ (1:1 molar ratio base on oxide) support

 CeO_2 -ZrO₂ support was synthesized by co-precipitation method. 3.2 g of cerium (III) nitrate hexahydate and 1.5 g zirconium (IV) oxynitrate hydrate were dissolved in 30 ml of distilled water separately. The solution were mixed together. Ammonium hydroxide was added to the previous mixture solution until precipitation was complete at pH = 8 and stirred at 80°C on a heating plate for 1 h. The chemicals are shown in Table 9. After obtained hydroxide gels, the solution were washed with deionize water, dried at 110 °C overnight in oven and calcined at 500°C for 5 h in air with 10°C/min of ramp rate on temperature.

Table 9 The chemicals for Preparation of CeO2-TiO2 (1:1 molar ratio) support

Chemical	Formula	Supplier
Cerium (III) nitrate hexahydate, 99.5%	Ce(NO ₃) ₃ [•] 6H ₂ O	Sigma-Aldrich
Zirconium (IV) oxynitrate hydrate, 99%	ZrO(NO ₃) ₂ [•] 2H ₂ O	Sigma-Aldrich
Ammonium hydroxide, 28% NH_3 in water, 99.99%	NH₄OH	Sigma-Aldrich

3.1.5 Preparation of 3 wt.% V₂O₅ over CeO₂ and CeO₂-MO₂ Catalyst

3 wt.% V_2O_5 over CeO_2 -MO₂ was synthesized by wet impregnation method. Ammonium metavanadate was dissolved in 1 M of oxalic acid solution and adding support into the solution. The chemicals are shown in Table 10. The solution was stirred at 80°C on a heating plate until completing in evaporating, dried at 110 °C overnight in oven and calcined at 500°C for 5 h in air with 10°C/min of ramp rate on temperature.

Table 10 The chemicals for Preparation of 3 wt.% V₂O₅ over CeO₂-MO₂ Catalyst

Chemical	Formula	Supplier
Ammonium metavanadate, 99.99%	NH_4VO_3	Sigma-Aldrich
Cerium (IV) oxide, < 25 nm	CeO ₂	Sigma-Aldrich
Mixed-oxide support from 4.1.1-4.1.3	CeO ₂ -MO ₂	-

3.2 Reaction test in H₂S oxidation

Figure 5 Flow diagram of H₂S oxidation reaction system.

0.03 g of catalysts were packed into the glass fixed bed reactor which the inner diameter is 9 mm, supported the catalyst with 0.15 g of quartz wool. Before the reaction test, the catalyst was pretreat with 50 ml/min of Helium at 200 °C for 1 h. The activity test for selective oxidation of H₂S were carried out in temperature of 130 °C and atmospheric pressure for 3 h with gaseous mixture feed containing of 400 ppm of H₂S, 200 ppm of O_2 , 1.3% of CH₄, 1.3% of CO₂, and 2% of N₂ balanced with helium. The total flow rate of feed is 320 ml/min was mixed from gas 1, gas 2 and gas 3 are shown in the Table 11. Sulfur dioxide (SO₂) and hydrogen sulfide (H₂S), was analyzed by a gas chromatograph (GC-2014) containing Porapak QS column. Methane (CH₄) and carbon dioxide (CO₂) were analyzed by a gas chromatograph (GC-8A) containing Porapak Q column. A flow diagram of reaction system are shown in Figure 5. Operating condition of gas chromatography are shown in Table 12. The conversion of H₂S were calculated by following equation:

$$x\% H_2S = (H_2S reacted/ H_2S fed) \times 100$$
 ------ (14)
Table 11 Gas materials	used in the	reaction	test.
------------------------	-------------	----------	-------

Gas NO.	Gas materials	Supplier
Gas 1	Methane 48.8%, Carbon dioxide 48.2%, Nitrogen	Linde
	1.5%, and Hydrogen sulfide 1.5%	
Gas 2	1% Oxygen in Nitrogen	Linde
Gas 3	Helium Ultra High Purity (Purity 99.999%)	BIG

 Table 12 Operating condition of gas chromatographs.

Gas Chromatograph	GC-2014	GC-8A
Detector	FPD	TC
Column	Porapak QS	Polarpak Q
Carrier gas	Helium	Helium
Injection temperature	120	100
Column temperature (Initial)	140	70
Column temperature (Final)	236	70
Detector temperature	250	100
Analyzer gas	H_2S and SO_2	$\mathrm{CH}_{\!$
Retention time	23	10

จุหาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

3.3 Catalyst characterization

3.2.1 X-ray diffraction (XRD)

The X-ray diffraction (XRD) patterns were investigated by a SIEMENS D5000 X-ray diffractometer with radiation of CuK α in scanning rate of 0.5 sec/step (2 θ = 20° to 80°). The crystallite size was calculated using the Scherrer's equation and α -alumina as the external standard.

3.2.2 Raman spectroscopy

Raman spectra used to analyzed the functional group of catalysts. The spectra were obtained on a spectrometer (DILORXY) with a CCD detector (liquid nitrogen cooled) with an Ar^+ laser, emission line at 514.5 nm. Analyze in Raman shift of 100-1300 cm⁻¹ are accurate within 2 cm⁻¹. The power incident beam was 3 mW. The analyzed spot was 1 μ m.

3.2.3 N₂-physisorption

The BET surface area (m²/g), average pore size diameters (nm), and pore volume (cm³/g) of catalyst were investigated by using N₂ physisorption technique on a Micromeritics ASAP 2020 automated system.

3.2.4 Inductively coupled plasma-optical emission spectrometry (ICP-OES)

The actual percentages of V_2O_5 loading of the catalysts were measured by inductively coupled plasma-optical emission spectrometry (ICP-OES), using an Iris advantage Thermo Jarrel Ash devide. The principle of ICP is the instrument to analyze the number of elements in samples that were completely degraded to solution. Preparation of sample analysis by 0.01 g of catalyst was dissolve in 5 ml of sulfuric acid (98%) and then dilute with 100 ml of deionized water.

3.2.5 Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX)

The morphology of catalysts and elemental distribution on the surface of catalysts were analyzed by Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDX) using Link Isis series 300 program SEM (JEOL model JSM-5800LV).

3.2.6 Fourier transform infrared spectroscopy (FT-IR)

The functional group of catalysts were analyzed by the Fourier transform infrared spectroscopy (FT-IR) that can analyze in the range of 400-4000 cm^{-1} . The resolution was 4 and a number of scan was 200.

3.2.7 Oxygen-Temperature programmed desorption (O₂-TPD)

Temperature programmed desorption of oxygen (O_2 -TPD) technique was used to analyze the amount of oxygen (O_2) in the catalyst. 0.1 g of catalyst was packed in quartz reactor supported by quartz wool. In order to removal moisture in the catalyst, the catalyst was pre-heated with helium at 350 °C for 1 h and then cooled down to the room temperature. After that, 50 ml/min of the of 1% of O_2 in He was fed into the reactor for 1 h at room temperature. Then, purge the residual oxygen by He for 1.5 h. Finally, Temperature programmed desorption of oxygen was increased from room temperature to 800 °C (ramp rate of 10 °C/min) The effluent of oxygen concentration was continuously recorded by using a thermal conductivity detector.

จุหาลงกรณมหาวทยาลัย

3.2.8 X-ray photoelectron spectroscopy (XPS)

The surface properties such as electronic state, chemical state, and atomic elemental concentrations were determined by the XPS on a Kratos Amicus X-ray photoelectron spectrometer with Mg K α X-ray source. The internal standard of XPS spectra of C 1s line at binding energy was 285.0 eV.

CHAPTER IV RESULTS AND DISCUSSION

The characteristics and catalytic activity of V_2O_5 dispersed on pure CeO₂ and CeO₂-MO₂ mixed oxide supports prepared with different molar ratios between CeO₂ and MO₂ in the selective oxidation of H₂S to sulfur element were reported and discussed in this chapter. The properties and characteristics of catalysts were analyzed by X-ray diffraction (XRD), Raman spectroscopy, N₂-physisorption, inductively coupled plasma-optical emission spectrometry (ICP-OES), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), Fourier transformed Infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and oxygen-temperature programmed desorption (O₂-TPD. In the last part, the catalytic performanced in H₂S oxidation at 130 °C and atmospheric pressure were discussed.

4.1 X-ray diffraction (XRD)

The X-ray diffraction (Figure 6) was used to investigate the structure of V_2O_5 supported on different supports. The X-ray diffraction peak corresponding to cerium oxide were evidenced at 2 theta ~ 28.6°, 33.1°, 47.5°, and 56.3° [31, 32]. The peaks at 2 theta ~ 28.6°, 33.2°, 47.5°, and 56.3° suggesting CeO₂ were observed for all catalysts, whereas the diffraction peaks corresponding to V_2O_5 were not detected, suggesting that they were highly dispersed on the support at low 3 wt.% loading. According to the literature [33], the XRD peak of V_2O_5 supported on ceria appeared when V_2O_5 was increased to more than 20 wt.%. The X-ray diffraction peaks of cerium vanadate which could be obtained from the reaction between CeO₂ and V_2O_5 due to high calcination temperature (> 500°C) and high V_2O_5 loading (> 20% wt.%) according to the following reaction were also not detected [11]:

$$CeO_2(s) + 0.5V_2O_5(s) \rightarrow CeVO_4(s) + 0.5O_2(g) -----(15)$$

For the case of mixed oxide support catalysts (Figure 7-8), no diffraction peak of SiO₂ were detected as it is known to be an amorphous [30]. In case of V₂O₅/CeO₂-TiO₂, a diffraction patterns of the ceria along with low intensity TiO₂ anatase phase peak were observed. The anatase phase TiO₂ with high crystallinity can be observed at 2 theta ~ 25°, 37°, and 53° [34]. Preuss et al. [35] reported Ce-Ti-O oxides specifically Ce₂TiO₅, Ce₂Ti₂O₇ and Ce₄Ti₉O₂₄ by heating the mixtures of solida containing Ce and Ti at high temperature of 1250° C. However, the crystalline phase as mentioned could not be observed in the present study due to lower calcination temperature of 500° C. Lin et al. [36] suggested the Ti⁴⁺ enter the CeO₂ lattice at the interface to form octahedral site because titanium is locked by 8 coordinated oxygen atoms as surrounding cerium [36, 37]. For V₂O₅/CeO₂-ZrO₂, in addition to the CeO₂ X-ray diffraction peaks, the X-ray diffraction of another cubic fluorite-type in composition of Ce_{0.4}Zr_{0.6}O₂ was detected at 2 theta ~ 29.8°, 34.8°, 49.6° and 58.3° [38].

Figure 6 X-ray diffraction patterns of V_2O_5/CeO_2 -14 (VC14), V_2O_5/CeO_2 -8 (VC8), V_2O_5/CeO_2 -TiO₂ (VCT), V_2O_5/CeO_2 -SiO₂ (VCS) and V_2O_5/CeO_2 -ZiO₂ (VCZ) catalyst: (*) line due to CeO₂; (Δ) line due to TiO₂ anatase; (o) line due to Ce_{0.4}Zr_{0.6}O₂.

Figure 7 X-ray diffraction patterns of V_2O_5/CeO_2 -TiO₂ (VCT) with vary molar ratio base oxide (CeO₂:TiO₂) catalyst: (*) line due to CeO₂; (Δ) line due to TiO₂ anatase.

Figure 8 X-ray diffraction patterns of V_2O_5/CeO_2 -SiO₂ (VCS) with vary molar ratio base oxide (CeO₂:SiO₂) catalyst: (*) line due to CeO₂.

4.2 Raman spectroscopy

High specific surface area V_2O_5/CeO_2 -SiO₂ and low specific surface area V_2O_5/CeO_2 -TiO₂ catalysts were selected for the investigation of the dispersion of V_2O_5 on the support in comparison to the V_2O_5/CeO_2 -8 by Raman spectroscopy technique. Figure 9 showed raman spectra of ceria at 462 cm⁻¹. No peaks corresponding to the crystalline of V_2O_5 were observed for all the samples (Raman spectra at 995, 702, 527, 404 and 284 cm⁻¹), in agreement with the results from XRD that all the catalysts exhibited good dispersion of the vanadium species on the supports. [29, 39]

. A fill fill at ...

Figure 9 Raman spectroscopy of V_2O_5/CeO_2 -8 (VC8), V_2O_5/CeO_2 -TiO₂ (VCT) and V_2O_5/CeO_2 -SiO₂ (VCS) catalyst.

4.3 N₂-physisorption

The BET surface area (m²/g), pore volume (cm³/g), and average pore diameter (nm) of the catalysts are given in the Table 13. Clogging of the catalyst pores from V₂O₅ species resulted in low distribution on the surface. V₂O₅/CeO₂-SiO₂ had the highest specific surface (144.5 m²/g) and was higher than pure supported ceria V₂O₅/CeO₂-8 and V₂O₅/CeO₂-14 (56.7 and 49.1 m²/g, respectively). The high specific surface area of V₂O₅/CeO₂-SiO₂ corresponded to the highest amount of pore volume (0.28 cm³/g). On the other hand, V₂O₅/CeO₂-TiO₂ had lowest specific surface area and the lowest amount of pore volume (0.04 cm³/g). The average crystal size of CeO₂ was calculated from the FWHM (full width at half maximum) of XRD peak corresponding to crystalline of CeO₂ at 2 theta ~ 28.6 ° in Figure 6-8 using the Scherrer's equation . Smaller crystallite size of CeO₂ in the range of 3-6 nm was found on all the mixed-oxide supported catalysts. The crystallite size decreased in the following order: V₂O₅/CeO₂-TiO₂ (3 nm).

Table 13 Vanadium composition (wt.%) and physical properties of 3 wt.% V2O5/CeO2-

	N ₂ Physisorption			
Catalyst	SA (m²/g)	Pore volume (cm ³ /g)	Average pore diameter (nm)	Crystallize size of CeO ₂ (nm) ^a
3%V ₂ O ₅ /CeO ₂ -8 (VC8)	56.7	0.18	11.9	8
3%V ₂ O ₅ /CeO ₂ -14 (VC14)	49.1	0.10	7.6	14
$3\%V_2O_5/CeO_2$ -TiO ₂ (VCT)	27.0	0.04	6.0	3
$3\%V_2O_5/CeO_2-SiO_2$ (VCS)	144.5	0.28	7.8	5
$3\%V_2O_5/CeO_2-ZrO_2$ (VCZ)	69.8	0.09	4.7	3

MO ₂	catalyst
-----------------	----------

^a Crystallite size was calculated from the Scherrer's equation

From the above characterization results from N₂ physisoption and XRD, small crystallite size of CeO₂ and high specific surface area were obtained after SiO₂ was doped to the V₂O₅/CeO₂ with molar ratio 1:1 based on mixed-oxide support so, the ratio of CeO₂-SiO₂ was further varied in different ratios at 1:2, 1:3, 2:1 and 3:1 to investigate the physical properties and performances of CeO₂-SiO₂ supported catalysts. From Table 14, it was found that increasing SiO₂ molar ratio resulted in the increased specific surface area, and vice versa for increasing CeO₂ molar ratio. In the case of V₂O₅/CeO₂-TiO₂ with molar ratio 1:1, 1:2 and 2:1, the specific surface area were not much changed between 19.8-21.4 m²/g and were found to be less than the pure supported ceria (V₂O₅/CeO₂-8 and V₂O₅/CeO₂-14). The crystallite size of CeO₂ on all the mixed-oxide supported catalyst were also in the range of 3-6 nm.

Table 14Vanadium composition (wt.%) and physical properties of 3 wt.% V_2O_5/CeO_2 - MO_2 with vary molar ratio base metal oxide between CeO_2 and MO_2 catalyst.

Catalyst	N ₂ Physisorption	Crystallize size of
	SA ^ª (m ² /g)	CeO_2 (nm) ^b
VC8	46.3	8
VC14	40.2	14
VCT	เงกรณ _{19.8} กวทย	าลัย ₃
VCT12	ONGK 20.5	ERSITY ³
VCT21	21.4	6
VCS	107.6	5
VCS12	136.6	4
VCS13	145.2	5
VCS21	99.7	5
VCS31	79.3	4
VCZ	50.1	3

^a SA were characterize from N_2 physisorption on monolayer

^b Crystallite size was calculated from the Scherrer's equation

4.4 Inductively coupled plasma-optical emission spectrometry (ICP-OES) and Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX)

The actual metal loading amounts on the mixed metal oxide supports as determined by the ICP-OES shown in Table 15 were close to the design amount at 3 wt.% V_2O_5 loading amount. The analysis results from EDX showed the composition of element, V_2O_5/CeO_2 -SiO₂ had the highest vanadium distribution on the surface of support compared to the other catalyst

Table 15Vanadium composition (wt.%) of 3 wt.% V_2O_5/CeO_2 -MO2 with vary molar ratiobase metal oxide between CeO2 and MO2 catalyst.

	EDX (wt.%)				
Catalyst	0	N N	Се	M ^a	V (wt.%)
VC8	15.3	0.8	83.9	-	2.7
VC14	15.0	0.6	84.4	-	3.3
VCT	24.5	0.8	56.2	18.3	3.1
VCT12	30.4	1.8	43.0	24.8	2.8
VCT21	23.2	3.4	44.5	15.9	3.0
VCS	23.9	1.7	55.3	19.1	2.9
VCS12	40.7	6.4	15.5	37.5	2.8
VCS13	20.7	2.0	70.6	6.6	3.2
VCS21	25.2	3.8 1 1	າວິງ 65.5 ລັຍ	5.5	3.1
VCS31	20.4	2.2	56.3	5.9	2.7
VCZ	20.3	0.9	40.3	38.5	3.2

 a M = Mixed-oxide for VCT (M = Ti), VCS (M = Si) and VCZ (M = Zr)

 $^{\rm b}$ wt.% of $\rm V_2O_5$

4.5 Fourier transforms infrared spectroscopy (FT-IR)

The Fourier transforms infrared spectroscopy (FTIR) spectra of the catalysts are shown in Figure 10-12. The Ce-O stretching mode was seen between at 500-700 cm⁻¹ [40]. According to the spectra, the presence of CeO₂ particles were confirmed [40, 41]. The bands were attributed to the bending vibration of adsorbed water appearing at around 1660 cm⁻¹. For the –OH groups, the broad bands are shown at 3200-3600 cm⁻¹ [6, 42]. To confirm the formation of V₂O₅, overtone of V=O absorption bands mod was assigned at 1900-2100 cm⁻¹ [39]. The band at 1083 cm⁻¹ which was clearly observed, was attributed to the Si-O-Si stretching [8]. In case of VCT, the peak was seen around between at 600-800 cm⁻¹ related to the O-Ti-O bonding in TiO₂ anatase phase [43, 44]. The attributed to the vibration of $ZrO_3^{2^2}$, the region between at 497-502 cm⁻¹ were observed [45, 46].

Figure 10 FTIR sprctra of V_2O_5/CeO_2 -14 (VC14), V_2O_5/CeO_2 -8 (VC8), V_2O_5/CeO_2 -TiO₂ (VCT), V_2O_5/CeO_2 -SiO₂ (VCS) and V_2O_5/CeO_2 -ZiO₂ (VCZ) catalyst.

Figure 12 FTIR sprctra of V_2O_5 /CeO $_2$ -SiO $_2$ (VCS) with vary molar ratio base oxide (CeO $_2$:SiO $_2$)

4.6 Oxygen-Temperature programmed desorption (O₂-TPD)

The oxygen-temperature programmed desorption (O₂-TPD) analysis was carried out in order to investigate the ability to adsorb and desorb molecules of oxygen on the catalyst surface, the analysis results are shown in Figure 15-17. The first peak at low temperature less than 300 m C represent to the physically adsorbed oxygen (O₂) or weakly chemisorbed oxygen. The peak area consistent with the specific area of catalyst. The high peak area of V2O5/CeO2-SiO2 explained the high specific surface area of catalyst. The second desorption peak appeared at 300-700 °C corresponding to strongly chemically adsorbed oxygen $(O_2^{2^2}/O^2)$ on the oxygen vacancies. The desorption peak of chemically adsorbed oxygen was observed at lower temperature on V2O5/CeO2-SiO2 suggesting that the desorption of chemically adsorbed oxygen on the oxygen vacancies for V₂O₅/CeO₂-SiO₂ was easier than the others catalyst. It is indicated that the capability of adsorption, mobility and desorption of oxygen $(O_2^{2^2}/O^2)$ on oxygen vacancies was easier which resulted in the faster re-oxidation step of V^{4+} to V^{5+} than the others catalyst. In the case of V₂O₅/CeO₂-TiO₂, a sharp second peak around temperature of 200-700 °C corresponded to the chemically adsorbed oxygen on the oxygen vacancies but the peak shifted to high temperature so, the re-oxidation step of reaction must be slower than V₂O₅/CeO₂-SiO₂. Henrik Hogh et al. [47] also suggested that the largest peak of chemically adsorbed oxygen on the oxygen vacancies on V2O5/CeO2-TiO2 due to the oxygen vacancies on the support titania. The unpaired of electron occur when oxygen atom of titania was removed to form oxygen vacancies while V2O5/TiO2 synthesized, reduce Ti^{4+} to Ti^{3+} . The electron will react to the V_2O_5 to form VO^{3-} and VO^{2-} . The desorption peaks, which were observed at higher temperature (700-800 °C) due to desorption of lattice oxygen (O^{2}) . Obviously, the oxygen vacancy promote the O_{2} dissociative adsorption to formation the oxygen ion (O2-) which could re-oxidize the partially active phase of V_2O_{5-x} component [31, 48, 49].

Figure 14 O₂-TPD profile of V_2O_5 /CeO₂-TiO₂ (VCT) with vary molar ratio base oxide (CeO₂:TiO₂)

Figure 15 O_2 -TPD profile of V_2O_5 /Ce O_2 -Si O_2 (VCS) with vary molar ratio base oxide (Ce O_2 :Si O_2)

4.7 X-ray photoelectron spectroscopy (XPS)

The chemical state of Ce 3d and O 1s and surface composition were investigated by using XPS technique. The XPS spectra of Ce 3d of catalysts are shown in Figure 16, the peaks labeled p and q are related to spin-orbital state of $3d_{2/5}$ and $3d_{2/3}$, respectively. Additional, the labeled p1 and q1 correspond to Ce³⁺ whereas the peaks label p, p2, p3, q, q2 and q3 represent to Ce⁴⁺. The partial existence of Ce³⁺ was determined by XPS analysis. The area percentage of Ce³⁺ is determined to be VC8 (40%) > VC14 \approx VCT \approx VCS \approx VCZ (19-22%) > VCS12 (12%). As is known Ce³⁺ can result in a charge imbalance, oxygen vacancies occur on the surface of catalyst are favorable for the formation of chemically adsorbed oxygen on the oxygen vacancies, which has been reported to be the most active oxygen directly affect to performance of catalyst in the oxidation reaction [32].

Figure 16 XPS Ce 3d spectra of V_2O_5/CeO_2 -14 (VC14), V_2O_5/CeO_2 -8 (VC8), V_2O_5/CeO_2 -TiO₂ (VCT), V_2O_5/CeO_2 -SiO₂ (VCS), V_2O_5/CeO_2 -ZiO₂ (VCZ) and V_2O_5/CeO_2 -SiO₂ 1:2

(VCS12) catalyst.

The XPS spectra of O 1s were deconvoluted into 3 peaks representing 3 types of oxygen species as shown in Figure 17. The binding energy values of O 1s reported around 530 eV was attributed to the lattice oxygen species (O₁) of V₂O₅ and CeO₂ while the binding energy values of O 1s reported around 531.5 eV was represented to the surface oxygen (O_s) although the binding energy values of O 1s reported around 533 eV was accordance with the adsorbed molecular water (O_w). The surface oxygen related to the chemically adsorbed oxygen on the oxygen vacancies, which has been reported to be the most active oxygen directly affect to performance of catalyst in the oxidation reaction. From Table 4.4, the ratios of O_s/(O₁+O_s) were found to be in the following order: VCT > VCZ > VC8 > VC14. Liu et at. [50] suggested the O 1s peak around 533 eV of V₂O₅/CeO₂-SiO₂ correspond to oxygen in SiO₂, ensure the ability to adsorb water of silica

encourage to larger peak of adsorbed molecular water (O_w) observed and complicate the other peaks.

(VCS12) catalyst.

CHULALONGKORN UNIVERSITY

The XPS spectra of V 2p were fitted and deconvoluted into 2 peaks indicating of V^{5+} and V^{4+} species in form of V_2O_5 and V_2O_4 , respectively (Figure 18). According to the literature, the binding energy of vanadium ions in form of vanadium oxide for instance V_2O_5 , V_2O_4 and V_2O_3 reported around 517.2-517.7 eV, 516.2-516.6 and 515.2-515.9 eV. Nevertheless, the biding energy of V 2p in this study were slightly shifted higher due to decreasing of electron around V atom as Chi et al. [20] reported, due probably to the intimate contact of the two metal oxides (active site and support) caused the decrease in electron density of V and Ce resulting in higher binding energy of V 2p on the V_2O_5/CeO_2 catalyst. However, the partial existence of V^{4+} was determined by XPS

analysis, and the area percentage of $V^{4+}/(V^{4+}+V^{5+})$ is found to be VC8 > VC14. For the other catalysts, the chemical state of V species could not be detected by XPS. The lower valence state of vanadium ion may be formed, which related to interaction between vanadium oxide and support [21]. Therefore, V^{4+} could be more oxygen vacancies for improving the electron transfer result to strong redox capability.

Catalyst	Ce ³⁺ /(Ce ³⁺ + Ce ⁴⁺)	O _S /(O _S + O _I)	$V^{4+}/(V^{4+}+V^{5+})$
VC8	0.21	0.89	0.45
VC14	0.21	0.77	0.43
VCT	0.19	0.97	-
VCS	0.40	n.d.	-
VCZ	0.22	0.96	-
VCS12	0.12	n.d.	-

Table 16 The ratio of surface atomic concentration of Ce, O and V species of catalyst.

n.d. = not determined

4.8 Catalytic test in the selective oxidation of H₂S to sulfur

The catalytic tests in the selective oxidation of H_2S to elemental sulfur were conducted in order to investigate the performances of the prepared V_2O_5 on different mixed metal oxides at temperature of 130 °C. By plotting the conversion-time profiles in Figure 18, it can be seen that the V_2O_5/CeO_2 -SiO₂ with the highest specific surface area of 149 m²/g exhibited the highest conversion of H_2S at ~73% during the 3 h reaction time. The V_2O_5/CeO_2 -8, V_2O_5/CeO_2 -TiO₂, V_2O_5/CeO_2 -14 and V_2O_5/CeO_2 -ZrO₂ exhibited 66%, 64%, 61% and 57% H₂S conversion, respectively.

The nature of support plays an important role in determination the properties of catalyst, the supported vanadium interaction affects redox properties and dispersion of active site on the support. Previous report showed that CeO₂ has the ability to capture, store and transfer surface oxygen species which exhibits exceptional redox properties so, presumable supplies active oxygen to V_2O_5 that are reduced during the reaction [34, 51]. In the present study, different metal oxides (TiO₂, SiO₂ and ZrO₂) were doped to modify the catalysts. The smaller CeO₂ crystallite size suggested the subsistence of a strong interaction between CeO₂ support and mixed-oxide support resulting in the improved performances of catalyst. The highest H₂S conversion on the V₂O₅/CeO₂-SiO₂ catalysts was correlated to the highest specific surface area, the smallest CeO₂ crystallite size, and the lowest desorption temperature for adsorption-desorption temperature of oxygen. In the same trend, Kugai et al. [52] reported the smaller crystallite size of ceria after Rh were doped result to highest ethanol conversion in oxidation of ethanol reaction. Kundakovic et al. [53] reported the smaller crystallite size of ceria accommodated the formation of highly reducible O2 and increase activity of methane oxidation. The effect of crystallite size to the activity of catalyst can observed from the experiments using pure CeO₂, the results showed higher H₂S conversion on V_2O_5/CeO_2 -8 (crystallite size = 8 nm) than on V_2O_5/CeO_2 -14 (crystallite size = 14 nm).

Considering the V₂O₅/CeO₂-TiO₂ and V₂O₅/CeO₂-ZrO₂, the conversion of H₂S were lower than V₂O₅/CeO₂-SiO₂ although the crystallite sizes of CeO₂ were quite similar but the specific surface area of the V₂O₅/CeO₂-TiO₂ and the V₂O₅/CeO₂-ZrO₂were less than the V₂O₅/CeO₂-SiO₂. The catalysts also desorb oxygen on oxygen vacancies at higher temperature. Thus, the re-oxidation which is the limiting step for the selective oxidation of H₂S to sulfur element was slower comparing to the V₂O₅/CeO₂-SiO₂ catalyst.

Due to the complex of the H_2S oxidation reaction, SO_2 was also formed by a secondary reaction of sulfur on the catalyst surface [8]. Plotting concentration of SO_2 time profiles showed the SO_2 concentration less than 20 ppm with no change of CO_2 and CH_4 for all the V_2O_5/CeO_2 and V_2O_5/CeO_2 -MO₂ catalysts. To confirm the presence of sulfur element product, used catalysts were characterized by EDX and the highest amount of sulfur element was found to deposit on the V_2O_5/CeO_2 -SiO₂ at 5.5 wt.% (H₂S conversion ~73%). For the V_2O_5/CeO_2 -8 (H₂S conversion ~ 66%) and V_2O_5/CeO_2 -8 (H₂S conversion ~ 61%) the elemental sulfur deposited on the catalyst were 4.1 wt.% and 3.9 wt.%, respectively.

Figure 19 (a) H_2S conversion (b) SO_2 concentration as a function of time of supported V_2O_5 catalyst.

The best catalyst from the first part of the study was selected to study the effect of mixing molar ratios between CeO₂ and MO₂ support on the catalytic performance for selective catalytic oxidation of H₂S. V_2O_5/CeO_2 -TiO₂ and V_2O_5/CeO_2 -SiO₂ were selected to further study. The molar ratio between CeO₂ and MiO₂ were varied in order: 1:2, 1:3, 2:1 and 3:1. For the case of V_2O_5/CeO_2 -TiO₂, the optimum molar ration of VCT was 1:1 in which the catalyst was mostly active among the VCT catalyst series. Higher component of TiO₂ occur two electrons will leave the polarons and will react with the V_2O_5 cluster to form and VO₃⁻ and VO₂⁻ result to low activity [47]. From Figure 21, the experiment results showed that V_2O_5/CeO_2 -SiO₂ with 1:1 molar ratio base metal oxide exhibited the highest conversion of H₂S among the VCS catalyst series. According to Shin et al. [47], a characteristic of reduced V_2O_5 , such as V_2O_3 and V_2O_4 which were found on V_2O_5/SiO_2 affected the re-oxidation to its original V_2O_5 with difficultly. Therefore, higher component of SiO₂ in support disguised good properties of ceria resulting in poor performances of catalyst. Decreasing of H₂S conversion of VCS21 and VCS31 compared with VCS due to the decreasing component of SiO₂ led to low specific surface area. Plotting concentration of SO_2 time profiles showed the SO_2 concentration less than 20 ppm with no change of CO_2 and CH_4 for all the V_2O_5/CeO_2 and V_2O_5/CeO_2 -MO₂ catalysts similar to the previous part.

Figure 20 a) H_2S conversion (b) SO_2 concentration as a function of time of supported V_2O_5 catalyst (V_2O_5 /CeO₂-TiO₂ series).

Figure 21 a) H_2S conversion (b) SO_2 conventration as a function of time of supported V_2O_5 catalyst (V_2O_5 /CeO₂-SiO₂ series).

CHAPTER V CONCLUSIONS AND RECCOMENDATIONS

5.1 Conclusion

The characteristics and catalytic activity of V₂O₅ dispersed on pure CeO₂ and CeO₂-MO₂ mixed oxide supports prepared with different molar ratios between CeO₂ and MO₂ in the selective oxidation of H₂S were reported and discussed. The catalytic activity tests were carried out in H₂S oxidation at 130 °C and atmospheric pressure. The characteristics of catalysts were analyzed by XRD, N₂ physisorption, ICP-OES, SEM-EDX, FTIR, and O₂-TPD. Ceria has the ability to capture, store and transfer surface oxygen species which exhibits exceptional redox properties so, presumable supplies active oxygen to V2O5 that are reduced during the reaction. It is suggested that interaction between V2O5 and support and well dispersion of active site played an importance role in determining the performance of catalysts. From this study, the effect of adding mixed-metal oxide support led to smaller CeO₂ crystallite suggesting the subsistence of a strong interaction between CeO₂ support and the mixed-oxide support. V₂O₅/CeO₂-SiO₂ catalysts exhibited the highest specific surface area, smallest crystallite size, and lowest desorption temperature for adsorption-desorption temperature of oxygen on the oxygen vacancies, indicating the easier desorption of chemically adsorbed oxygen $(O_2^{2^2}/O)$ on the oxygen vacancies for V_2O_5/CeO_2 -SiO₂ as compared to the others catalyst. The highest partial existence of Ce^{3+} on V₂O₅/CeO₂-SiO₂ catalyst also favored the formation of chemically adsorbed oxygen on the oxygen vacancies, which could be the most active oxygen directly affecting the performance of catalyst in the oxidation reaction. In addition, the presence of partially reduced V-Ce may influence the amount of active surface oxygen (Os) which led to the easier adsorb/desorb oxygen on the oxygen vacancies. V⁴⁺ with more oxygen vacancies can develop strong redox capability and improved catalytic performance as shown by the higher activity of VC8 comparing to VC14. The products from this reaction are sulfur element and $SO_2 < 20$ ppm with no change of CO_2 and CH_4 . It may be applied in H_2S removal from biogas.

5.2 Recommendations

1. The effect of amount dopant on the characteristics and properties of V_2O_5 on supports should be further studied in the selective oxidation of H_2S .

2. The characterization of V_2O_5 catalysts supported on the supports should be analyzed by high resolution analytical techniques because of very low content of dopant.

3. The characterization of mixed-oxide supported catalysts with vary molar ratio should be analyzed by more technique in order to explain and discuss.

4. The stability and catalyst deactivation of catalysts should be further tested.

REFERENCES

Chulalongkorn University

- Sindhu,R., Binod, P., Pandey, A., Ankaram, S., Duan, Y., and Awasthi, M. K.,
 Biofuel Production From Biomass. *Current Developments in Biotechnology and Bioengineering* 2019, 79-92.
- [2] Chen, X. Y., Vinh-Thang, H., Ramirez, A. A., Rodrigue, D., and Kaliaguine, S.,
 Membrane gas separation technologies for biogas upgrading. *RSC Advances* 2015, 5(31), 24399-24448.
- [3] Mamun, M. R. A., and Torii, S., Removal of Hydrogen Sulfide (H₂S) from Biogas
 Using Zero-Valent Iron. *Journal of Clean Energy Technologies* 2015, 3(6), 428-432.
- [4] Latosov, E., Loorits, M., Maaten, B., Volkova, A., and Soosaar, S., Corrosive effects of H₂S and NH₃ on natural gas piping systems manufactured of carbon steel. *Energy Procedia* 2017, 128, 316-323.
- [5] Soriano, M. D., Cecilia, J. A., Natoli, A., Jiménez-Jiménez, J., López Nieto, J. M., and Rodríguez-Castellón, E., Vanadium oxide supported on porous clay heterostructure for the partial oxidation of hydrogen sulphide to sulfur. *Catalysis Today* 2015, 254, 36-42.
- [6] Zhang, X., Dou, G., Wang, Z., Li, L., Wang, Y., Wang, H., and Hao, Z., Selective catalytic oxidation of H₂S over iron oxide supported on alumina-intercalated Laponite clay catalysts. *J Hazard Mater* 2013, 104-11.
- [7] Fahim, M. A., Al-Sahhaf, T. A., Elkilani, A. S., *Fundamentals of Petroleum Refining* **2015**. Elsevier Netherlands.
- [8] Barba, D., Palma, V., and Ciambelli, P., Screening of catalysts for H₂S abatement from biogas to feed molten carbonate fuel cells. *International Journal of Hydrogen Energy* 2013, 38(1), 328-335.
- [9] Li, K. T., Huang, M. Y., and Cheng, W. D., Vanadium-Based Mixed-Oxide Catalysts for Selective Oxidation of Hydrogen Sulfide to Sulfur. *Industrial & Engineering Chemistry Reserch* **1996**, 35, 621-626.

- [10] Davydov, A. A., Marshneva, V. I., and Shepotko, M. L., Metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide. *Applied Catalysis A: General* 2003, 244(1), 93-100.
- Palma, V., and Barba, D., Low temperature catalytic oxidation of H₂S over
 V₂O₅/CeO₂ catalysts. *International Journal of Hydrogen Energy* 2014,.39(36), 21524-21530.
- [12] Pongthawornsakun, B., Phatyenchuen, S., Panpranot, J., and Praserthdam, P., The low temperature selective oxidation of H₂S to elemental sulfur on TiO₂ supported V₂O₅ catalysts. *Journal of Environmental Chemical Engineering* 2018, 6(1), 1414-1423.
- [13] Zhang, X., Dou, G., Wang, Z., Cheng, J., Wang, H., Ma, C., and Hao, Z.,
 Selective oxidation of H₂S over V₂O₅ supported on CeO₂-intercalated Laponite clay catalysts. *Catalysis Science & Technology* 2013, 3(10).
- [14] Plugge, C. M., Biogas. *Microb Biotechnol* **2017**, 10(5), 1128-1130.
- [15] Hydrogen Sulfide (H₂S). Occupational Safety and Health Administration 2005,
 U. S. Department of Labor.
- [16] H₂S (hydrogen sulfide) Knowledge can save lives 2014, Drager Safety AG & Co.
 KGaA United Areb Emirates.
- [17] Shin, M. Y., Nam, C. M., Park, D. W., and Chunga, J. S., Selective oxidation of H₂S to elemental sulfur over VO_x/SiO₂ and V₂O₅ catalysts. *Applied Catalysis A: General* 2001, 213-225.
- [18] Bai, Y., and Bai, Q., Subsea Corrosion and Scale. Subsea Engineering Handbook 2019, 455-487.
- [19] Bineesh, K. V., Kim, D. K., Kim, D. W., Cho, H. J., and Park, D. W., Selective catalytic oxidation of H₂S to elemental sulfur over V₂O₅/Zr-pillared montmorillonite clay. *Energy & Environmental Science* 2010, 3(3), 302-310.
- [20] Brauer, G., Vanadium, Niobium, Tantalum. *Handbook of Preparative Inorganic Chemistry* **1963**, 1, 1270-1272.

- Bauer, G., Guther, V., Hess, H., Otto, A., Roidl, O., Roller, H., and Sattelberger,
 S., Vanadium and vanadium compounds. *Encyclopedia of Industrial Chemistry* 2003, 38, 1-21.
- [22] Londero, E., and Schröder, E., Role of van der Waals bonding in the layered oxide V₂O₅: First-principles density-functional calculations. *Physical Review B* 2010, 82(5).
- [23] Costigan, M., Cary, R., and Dobson, S., Identify and Physical/Chemical
 Properties. Vanadium Pentoxide and Other Inorganic Vanadium Compound
 2001, 7.
- [24] Kim, M. I., Park, D. W., Park, S. W., Yang, X., Choi, J. S., and Suh, D. J., Selective oxidation of hydrogen sulfide containing excess water and ammonia over vanadia–titania aerogel catalysts. *Catalysis Today* 2006, 111(3-4), 212-216.
- [25] Soriano, M. D., Jiménez-Jiménez, J., Concepción, P., Jiménez-López, A., Rodríguez-Castellón, E., and Nieto, J. M. L., Selective oxidation of H₂S to sulfur over vanadia supported on mesoporous zirconium phosphate heterostructure. *Applied Catalysis B: Environmental* **2009**, 92(3-4), 271-279.
- [26] Scirè, S., and Palmisano, L., Cerium and cerium oxide: A brief introduction.
 Cerium Oxide (CeO₂): Synthesis, Properties and Applications 2020, 1-12.
- [27] Shin, M. Y., Nam, C. M., Park, D. W., and Chung, J. S., Selective oxidation of H₂S to elemental sulfur over VO_x/SiO₂ and V₂O₅ catalysts. *Applied Catalysis A: General* 2001, 211, 213-225.
- [28] Yasyerli, S., Dogu, G., and Dogu, T., Selective oxidation of H₂S to elemental sulfur over Ce–V mixed oxide and CeO₂ catalysts prepared by the complexation technique. *Catalysis Today* **2006**, 117(1-3), 271-278.
- [29] Reddy, B. M., Lakshmanan, P., and Khan, A., Investigation of Surface Structures of Dispersed V₂O₅ on CeO₂-SiO₂, CeO₂-TiO₂, and CeO₂-ZrO₂ Mixed Oxides by XRD, Raman, and XPS Techniques. *The Journal of Physical Chemistry B* 2004, 108, 16855-16863.

- [30] Reddy, B. M., and Khan, A., Surface Characterization of CeO₂/SiO₂ and V₂O₅/CeO₂/SiO₂ Catalysts by Raman, XPS, and Other Techniques. *The Journal of Physical Chemistry B* 2002, 106, 10964-10972.
- [31] Kang, D. H., Kim, M. I., and Park, D. W., Selective oxidation of H₂S to sulfur over CeO₂-TiO₂ catalyst. *Korean Journal of Chemical Engineering* 2016, 33(3), 838-843,.
- [32] Palma, V., Barba, D., and Ciambelli, P., Selective Oxidation of H₂S to Sulphur from Biogas on V₂O₅/CeO₂ Catalysts. *Chemical Engineering Transactions* 2013, 32, 631-636.
- [33] Gu, X., Ge, J., Zhang, H., Auroux, A., and Shen, J., Structural, redox and acid-base properties of V₂O₅/CeO₂ catalysts. *Thermochimica Acta* 2006, 451(1-2), 84-93.
- [34] Gannoun, C., Delaigle, R., Debecker, D. P., Eloy, P., Ghorbel, A., and
 Gaigneaux, E. M., Effect of support on V₂O₅ catalytic activity in chlorobenzene oxidation. *Applied Catalysis A: General* 2012, 447-448, 1-6.
- [35] Preuss, A., and Gruehn, R., Preparation and Structure of Cerium Tatantes Ce_2TiO_5 , $Ce_2Ti_2O_7$ and $Ce_4Ti_9O_{24}$. *Journal od Solid Atate Chemistry* **1994**, 110, 363-369.
- [36] Lin, J., and Yu, J. C., An investigation on photocatalytic activities of mixed TiO,rare earth oxides for the oxidation of acetone in air. *Journal of Photochemistry and Photobiology A: Chemistry* **1998**, 116, 63-67.
- [37] Reddy, B. M., and Khan, A., Nanosized CeO₂–SiO₂, CeO₂–TiO₂, and CeO₂–ZrO₂
 Mixed Oxides: Influence of Supporting Oxide on Thermal Stability and Oxygen
 Storage Properties of Ceria. *Catalysis Surveys from Asia* 2005, 9(3), 155-171.
- [38] Tian, W., Yin, J., Wei, L., Shen, Q., Bibi, R., Liu, M., Yang, B., Li, N., and Zhou, J., Hydrothermally prepared nanosized and mesoporous Ce_{0.4}Zr_{0.6}O₂ solid solutions with shape dependence in photocatalysis for the degradation of methylene blue. *RSC Advances* **2017**, 7(28), 17020-17029.

- [39] Bosco, M. V., Bañares, M. A., Martínez-Huerta, M. V., Bonivardi, A. L., and Collins, S. E., In situ FTIR and Raman study on the distribution and reactivity of surface vanadia species in V₂O₅/CeO₂ catalysts. *Journal of Molecular Catalysis A: Chemical* 2015, 408, 75-84.
- [40] Farahmandjou, M., and Zarinkamar, M., Synthesis of nano-sized ceria (CeO₂) particles via a cerium hydroxy carbonate precursor and the effect of reaction temperature on particle morphology. *Journal of Ultrafine Grained and Nanostructured Materials* 2015, 48, 5-10.
- [41] Babitha, K. K., Sreedevi, A., Priyanka, K. P., Sabu, B., and Varghese, T., Structure Characterization and Optical Studies of CeO₂ Nanaoparticles Synthesized by Chemical Precipitation. *Indian Journal of pure & Applied Physics* 2015, 53, 596-603.
- [42] Farahmandjou, M., Zarinkamar, M., and Firoozabadi, T. P., Synthesis of Cerium
 Oxide (CeO₂) nanoparticles using simple CO-precipitation method. *Revista Mexicana de F´ısica* 2016, 62, 496-499.
- [43] Bagheri, S., Shameli, K., and Abd Hamid, S. B., Synthesis and Characterization of Anatase Titanium Dioxide Nanoparticles Using Egg White Solution via Sol-Gel Method. *Journal of Chemistry* 2013, 2013, 1-5.
- [44] Yu, J. C., Zhang, L., Zheng, Z., and Zhao, J., Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity. *Chemistry Mater* 2003, 15, 2280-2286.
- [45] Singh, A. K., and Nakate, U. T., Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia. *Scientific Worl dJournal* 2014, 2014, 349-457.
- [46] Vivekanandhan, S., Venkateswarlu, M., Rawls, H. R., and Satyanarayana, N.,
 Acrylamide assisted polymeric citrate route for the synthesis of nanocrystalline
 ZrO₂ powder. *Materials Chemistry and Physics* 2010, 120(1), 148-154.

- [47] Kristoffersen, H. H., Neilson, H. L., Buratto, S. K., and Metiu, H., Stability of V₂O₅
 Supported on Titania in the Presence of Water, Bulk Oxygen Vacancies, and
 Adsorbed Oxygen Atoms. *The Journal of Physical Chemistry C* 2017, 121(15), 8444-8451.
- [48] An, Z., Zhuo, Y., Xu, C., and Chen, C., Influence of the TiO₂ crystalline phase of MnO_x/TiO₂ catalysts for NO oxidation. *Chinese Journal of Catalysis* 2014, 35(1), 120-126.
- [49] Song, D., Shao, X., Yuan, M., Wang, L., Zhan, W., Guo, Y., Guo, Y., and Lu, G.,
 Selective catalytic oxidation of ammonia over MnO_x-TiO₂ mixed oxides. *RSC Advances* 2016, 6(91), 88117-88125.
- [50] Liu, Y., Jiang, C., Chu, W., Sun, W., and Xie, Z., Novel F–V₂O₅/SiO₂ catalysts for oxidative dehydrogenation of propane. *Reaction Kinetics, Mechanisms and Catalysis* **2010**, 101(1), 141-151.
- [51] Zhu, H., Qin, Z., Shan, W., Shen, W., and Wang, J., "Low-temperature oxidation of CO over Pd/CeO₂–TiO₂ catalysts with different pretreatments. *Journal of Catalysis* 2005, 233(1), 41-50.
- [52] Kugai, J., Subramani, V., Song, C., Engelhard, M., and Chin, Y., "\Effects of nanocrystalline CeO₂ supports on the properties and performance of Ni–Rh bimetallic catalyst for oxidative steam reforming of ethanol. *Journal of Catalysis* 2006, 238(2), 430-440.
- [53] Kundakovic, L., and Flytzani-Stephanopoulos, M., Cu- and Ag-Modified CeriumOxide Catalysts for Methane Oxidation. *Journal of catalysis* **1998**, 179, 203-221.

CALCULATION FOR CATALYST PREPARATION

A1. Calculation for the CeO_2 -TiO₂ support preparation (1:1 molar ratio base on oxide)

Chemical information

Cerium (III) nitrate hexahydate, 99.5% M_w = 434.22 g/mol Titanium (IV) butoxide, 97% $M_w = 340.32 \text{ g/mol}$

Calculation

To preparation 1:1 molar ratio base on oxide of CeO₂-TiO₂ support following:

- Desire CeO₂ 0.0086 mole
- Desire TiO₂ 0.0086 mole

Prepare Ce(NO₃)₃[•]6H₂O for CeO₂ 0.0086 mole $0.0086 \text{ mole } \text{CeO}_2 \times \frac{1 \text{ mole } \text{Ce}(\text{NO}_3)_3 \text{GH}_2 \text{O}}{0.995 \text{ mole } \text{Ce}} \times \frac{1 \text{ mole } \text{CeO}_2}{1 \text{ mole } \text{CeO}_2} = 0.00864 \text{ mole } \text{Ce}(\text{NO}_3)_3 \text{GH}_2 \text{O}$ $= 3.75 \text{ g } \text{Ce}(\text{NO}_3)_3 \text{GH}_2 \text{O}$

Prepare $Ti(C_4H_9O)_4$ for $TiO_2 0.0086$ mole $0.0086 \text{ mole } \text{TiO}_{2} \times \frac{1 \text{ mole } \text{Ti}(\text{C}_{4}\text{H}_{9}\text{O})_{4}}{0.97 \text{ mole } \text{TiO}_{2}} = 0.0089 \text{ mole } \text{Ti}(\text{C}_{4}\text{H}_{9}\text{O})_{4} = 0.0089 \text{ mole } \text{Ti}(\text{C}_{4}\text{H}_{9}\text{O})_{4} = 3.02 \text{ g } \text{Ti}(\text{C}_{4}\text{H}_{9}\text{O})_{4}$

So, for preparation of CeO_2 -TiO_2 support, used 3.75 g $Ce(NO_3)_3$ $^{\bullet}6H_2O$ and 3.02 g $Ti(C_4H_9O)_4$

A2. Calculation for the CeO_2 -SiO₂ support preparation (1:1 molar ratio base on oxide)

Chemical information

Ammonium cerium (IV) nitrate: $Ce(NH_4)_2(NO_3)_6$, 99.99% $M_w = 548.22$ g/molColloidal silica 40% in water, $\rho = 1.3$ g/ml $M_w = 60.08$ g/mol

Calculation

To preparation 1:1 molar ratio base on oxide of CeO₂-SiO₂ support following:

- Desire CeO₂ 0.0086 mole

- Desire SiO₂ 0.0086 mole

Prepare Ce(NH₄)₂(NO₃)₆ for CeO₂ 0.0086 mole

 $0.0086 \text{ mole } CeO_2 \times \frac{1 \text{ mole } Ce(NH_4)_2(NO_3)_6}{0.9999 \text{ mole } Ce} \times \frac{1 \text{ mole } Ce}{1 \text{ mole } CeO_2} = 0.0086 \text{ mole } Ce(NH_4)_2(NO_3)_6$ $0.0086 \text{ mole } Ce(NH_4)_2(NO_3)_6 \times \frac{548.22 \text{ g } Ce(NH_4)_2(NO_3)_6}{1 \text{ mole } Ce(NH_4)_2(NO_3)_6} = 4.71 \text{ g } Ce(NH_4)_2(NO_3)_6$

Prepare colloidal silica for SiO₂ 0.0086 mole 0.0086 mole SiO₂ × $\frac{1 \text{ mole colloidal silica}}{0.4 \text{ mole SiO}_2}$ = 0.0215 mole colloidal silica 0.0215 mole colloidal silica × $\frac{60.08 \text{ g colloidal silica}}{1 \text{ mole colloidal silica}}$ × $\frac{ml}{1.3 \text{ g}}$ = 0.99 ml colloidal silica

So, for preparation of CeO_2 -SiO₂ support, used 4.71 g $Ce(NH_4)_2(NO_3)_6$ and 0.99 ml colloidal silica

A3. Calculation for the CeO_2 -ZrO₂ support preparation (1:1 molar ratio base on oxide)

Chemical information

Cerium (III) nitrate hexahydate, 99.5%	$M_{w} = 434.22 \text{ g/mol}$
Zirconium (IV) oxynitrate hydrate, 99%	M _w = 231.23 g/mol

Calculation

To preparation 1:1 molar ratio base on oxide of CeO₂-ZrO₂ support following:

- Desire CeO₂ 0.0086 mole
- Desire ZrO₂ 0.0086 mole

Prepare Ce(NO₃)₃ 6H₂O for CeO₂ 0.0086 mole $\begin{array}{l} 0.0086 \text{ mole } \text{CeO}_2 \times \ \frac{1 \text{ mole } \text{Ce}(\text{NO}_3)_3 \text{6H}_2 \text{O}}{0.995 \text{ mole } \text{Ce}} \times \frac{1 \text{ mole } \text{Ce}}{1 \text{ mole } \text{CeO}_2} \\ 0.00864 \text{ mole } \text{Ce}(\text{NO}_3)_3 \text{6H}_2 \text{O} \times \ \frac{434.22 \text{ g} \text{Ce}(\text{NO}_3)_3 \text{6H}_2 \text{O}}{1 \text{ mole } \text{CeO}_2} \end{array}$ = 0.00864 mole $Ce(NO_3)_3^{\bullet} 6H_2O$ 0.00864 mole Ce(NO₃)₃6H₂0 × = $3.75 \text{ g Ce}(\text{NO}_3)_3 \,^{\circ}6\text{H}_2\text{O}$ 1 mole Ce(NO₃)₃6H₂O

Prepare ZrO(NO₃)₂ [•]2H₂O for ZrO₂ 0.0086 mole $0.0086 \text{ mole } ZrO_2 \times \frac{1 \text{ mole } ZrO(NO_3)_2 2H_2 O}{0.99 \text{ mole } ZrO_2}$ $0.0087 \text{ mole } ZrO(NO_3)_2 2H_2 O \times \frac{231.23 \text{ g } ZrO(NO_3)_2 2H_2 O}{1 \text{ mole } ZrO(NO_3)_2 2H_2 O}$ = 0.0087 mole $ZrO(NO_3)_2$ $^{\circ}2H_2O$ = 2.01 g ZrO(NO₃)₂[•]2H₂O

So, for preparation of CeO_2 -ZrO₂ support, used 3.75 g $Ce(NO_3)_3$ $^{\circ}6H_2O$ and 2.01 g ZrO(NO₃)₂[•]2H₂O

A4. Calculation for the 3 wt.% V2O5/CeO2 catalyst preparation

Chemical information

Ammonium metavanadate, 99.99%	M _w = 116.98 g/mol
Vanadium pentoxide	M _w = 181.88 g/mol
Cerium (IV) oxide	M _w = 172.115 g/mo

Calculation

So, for preparation of 3 wt.% $\rm V_2O_5/CeO_2$ catalyst, used 2 g CeO_2 and 0.80 g $\rm NH_4VO_3$
CALCULATION OF THE CRYSTALLITE SIZE

B1. Calculation of the crystallite size of CeO₂ by using Debye – Scherrer's equation

The average crystal size of CeO_2 used Scherrer's equation to calaulate from FWHM (full width at half maximum) of XRD peak corresponding crystalline of CeO_2 at 2 theta ~ 28.6 ° follow equeation:

$$\mathsf{D} = \frac{\mathsf{K}\lambda}{\beta\cos\theta}$$

D = Crystallite size, Å

- λ = the X-ray wavelength, 1.5418 Å for Cu K_{α}
- β = X-ray diffraction broadening, radian
- θ = Observes peak angel, degree

Example

Where;

Calculation of the crystallite size of CeO_2 (< 25 nm, supplier: Sigma Aldrich)

Information The major peak of CeO_2 was observed at 2 theta ~ 28.55° The half-height width of the diffraction peak at 28.55° = 0.42°

Calculation 28.55° to radian = $\frac{28.55(2\pi)}{360}$ = 0.5 radian 0.42° to radian = $\frac{0.42(2\pi)}{360}$ = 0.0073 radian

D =
$$\frac{K\lambda}{\beta \cos\theta}$$

= $\frac{0.9(1.5418)}{0.0073\cos 0.5}$
= 190.1 Å
= 19 nm

APPENDIX C CALIBRATION CURVE

The calibration curve is used to calculate a concentration of substance. It is created from area which analyzed by injecting the standard gas at different volumes into GC (gas chromatography). Ploting graph between peak area at different concentrations (x-axis) and mole or concentration of gas (y-axis).

Figure 22 Calibration curve of sulfur dioxide (SO₂).

APPENDIX D SEM IMAGE OF CATALYSTS

Figure 24 SEM image of VCT

Figure 25 SEM image of VCS

Figure 26 SEM image of VCZ

Figure 27 SEM image of VCS12

Figure 28 SEM image of VCS13

Figure 29 SEM image of VCS21

Figure 30 SEM image of VCS31

Figure 31 SEM image of VCT12

Figure 32 SEM image of VCT21

VITA

NAME	Benjamaporn Tudkesorn
DATE OF BIRTH	28 September 1995
PLACE OF BIRTH	Suphanburi
INSTITUTIONS ATTENDED	Bachelor Degree of Chemical Engineering from Faculty of
	Engineering, King Mongkut Institute of Technology
	Ladkrabang, Thailand 2018.
	Continuous study in Master Degree of Chemical
	Engineering, Faculty of Engineering, Chulalongkorn
	University, Thailand in August 2018.
HOME ADDRESS	41 Moo 6 Hua Khao Sub-district, Doembangnangbuat
	District,Suphanburi Thailand 72120
จุหา	ลงกรณ์มหาวิทยาลัย
	LONGKORN UNIVERSITY