Electrochemical Reduction of CO₂ to Value-Added Chemicals on Zn/Cu Alloy Catalysts Prepared by Electrodeposition

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical Engineering Department of Chemical Engineering FACULTY OF ENGINEERING Chulalongkorn University Academic Year 2019 Copyright of Chulalongkorn University การรีดักชั้นทางเคมีไฟฟ้าของแก๊สคาร์บอนไดออกไซด์เป็นสารเคมีมูลค่าเพิ่มบนตัวเร่งปฏิกิริยาโลหะ ผสมสังกะสี/ทองแดงที่เตรียมโดยการพอกพูนด้วยไฟฟ้า

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2562 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	Electrochemical Reduction of CO ₂ to Value-Added			
	Chemicals on Zn/Cu Alloy Catalysts Prepared by			
	Electrodeposition			
Ву	Mr. Phongsathon Klongklaew			
Field of Study	Chemical Engineering			
Thesis Advisor	Professor JOONGJAI PANPRANOT, Ph.D.			
Thesis Co Advisor	Associate Professor YUTTANANT BOONYONGMANEERAT,			
	Ph.D.			

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Engineering

		Dean of the FACULTY OF
		ENGINEERING
	(Professor SUPOT TEACHAVORASI	NSKUN, D.Eng.)
THESIS COMMIT	TEE	
	4	Chairman
	(Assistant Professor AMORNCHAI A D.Eng.)	ARPORNWICHANOP,
	CHULALONGKORN UNIN	Thesis Advisor
	(Professor JOONGJAI PANPRANOT,	, Ph.D.)
		Thesis Co-Advisor
	(Associate Professor YUTTANANT	BOONYONGMANEERAT,
	Ph.D.)	
		Examiner
	(Chutimon Satirapipathkul, Ph.D.)	
		External Examiner
	(Assistant Professor Okorn Mekası	uwandumrong, Ph.D.)

พงศธร คล่องแคล่ว : การรีดักชันทางเคมีไฟฟ้าของแก๊สคาร์บอนไดออกไซด์เป็นสารเคมี มูลค่าเพิ่มบนตัวเร่งปฏิกิริยาโลหะผสมสังกะสี/ทองแดงที่เตรียมโดยการพอกพูนด้วย ไฟฟ้า. (Electrochemical Reduction of CO₂ to Value-Added Chemicals on Zn/Cu Alloy Catalysts Prepared by Electrodeposition) อ.ที่ปรึกษาหลัก : ศ. ดร. จูงใจ ปั้นประณต, อ.ที่ปรึกษาร่วม : รศ. ดร.ยุทธนันท์ บุญยงมณีรัตน์

ในงานนี้ศึกษาตัวเร่งปฏิกิริยาทางไฟฟ้าโลหะผสมสังกะสี/ทองแดงที่เตรียมโดยการพอก พูนทางไฟฟ้าของสังกะสืบนแผ่นทองแดงและการพอกพูนทางไฟฟ้าของสังกะสีและทองแดงบน แผ่นทองแดงในอ่างพอกพูนทางไฟฟ้าที่แตกต่างกันประกอบด้วยอ่างโซเดียมคลอไรด์และอ่างไฮโดร คลอริกด้วยเวลาพอกพูน 60 และ 200 วินาที ในปฏิกิริยารีดักชันแบบใช้ไฟฟ้าช่วยของ คาร์บอนไดออกไซด์ ผลจากเทคนิคกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดร่วมกับเอ็กซเรย์สเปก โตรสโกปีแบบกระจายพลังงาน และการกระเจิงของรังสีเอ็กซ์แสดงว่าการพอกพูนทางไฟฟ้าส่งผล ต่อโครงสร้างของซิงค์ (เด็นไดรท์หรือบัลคกี้) ภายใต้ภาวะการดำเนินการที่ศึกษาปฏิกิริยารีดักชัน แบบใช้ไฟฟ้าช่วยของคาร์บอนไดออกไซด์บนตัวเร่งปฏิกิริยาเหล่านี้ได้ผลิตภัณฑ์ที่เป็นก๊าซ ประกอบด้วยคาร์บอนมอนอกไซด์และไฮโดรเจนและงผลิตภัณฑ์ของเหลวประกอบด้วยฟอร์เมท และเอ็น-โพรพานอลจากการวิเคราะห์ด้วยเทคนิคแก๊สโครมาโตกราฟีและนิวเคลียร์แมกเนติกเร โซแนนซ์ตามลำดับ ในหมู่ตัวเร่งปฏิกิริยาที่ศึกษาสังกะสี/ทองแดง-โซเดียม200เป็นตัวเร่งปฏิกิริยา ทางไฟฟ้าที่ดีที่สุดซึ่งผลิตคาร์บอนมอนอกไซด์สูงขณะที่ผลิตไฮโดรเจนต่ำที่ศักย์ -1.6 โวลต์ต่อซิล เวอร์/ซิลเวอร์คลอไรด์ เพราะอนุภาคสังกะสีปกคลุมเพียงพอบนตัวถูกเปลี่ยนทองแดงและความ ้ว่องไวในการเกิดปฏิกิริยามีความเสถียรสำหรับเวลาในการทดสอบปฏิกิริยา 4 ชั่วโมงถึงแม้ว่า อนุภาคของซิงค์เด็นไดรท์จะมีขนาดใหญ่ขึ้นหลังการทำปฏิกิริยาแสดงถึงการกลับมาเกาะใหม่ของ ซิงค์ระหว่างปฏิกิริยา ในทางตรงข้าม ตัวเร่งปฏิกิริยาซิงค์บัลคกี้แสดงผลิตภัณฑ์ฟอร์เมทที่โดด เด่น ทั้งนี้คาดว่าเป็นผลจากการที่ซิงค์บัลคกี้มีสัณฐานในรูปแบบของเฮกซะโกนัลโคลสแพคที่ ส่งเสริมการเกิดฟอร์เมทผ่านการรีดักชั้นของสารอันตรกิริยา HCOO*

สาขาวิชา	วิศวกรรมเคมี	ลายมือชื่อนิสิต
ปีการศึกษา	2562	ลายมือชื่อ อ.ที่ปรึกษาหลัก
		ลายบือซื่อ อ ที่ปรึกษาร่าบ

6170217121 : MAJOR CHEMICAL ENGINEERING

KEYWORD: Electrochemical carbon dioxide reduction, Carbon monoxide production, Electrodeposition, Zinc-copper catalyst
 Phongsathon Klongklaew : Electrochemical Reduction of CO₂ to Value-Added Chemicals on Zn/Cu Alloy Catalysts Prepared by Electrodeposition.
 Advisor: Prof. JOONGJAI PANPRANOT, Ph.D. Co-advisor: Assoc. Prof. YUTTANANT BOONYONGMANEERAT, Ph.D.

In this work, Zn/Cu alloy electrocatalysts prepared by electrodeposition of Zn on Cu foil (Zn/Cu) and electrodeposition of Zn and Cu on Cu foil (ZnCu/Cu) in different electrodeposition baths consisting of NaCl bath (Zn/Cu-Na, ZnCu/Cu-Na) and HCl bath (Zn/Cu-H, ZnCu/Cu-H) with deposition times 60 and 200 s were investigated in the electrochemical reduction of CO₂ (CO₂-ERC). As revealed by SEM-EDX and XRD results, the electroplating conditions affected the Zn structure being formed (dendrite or bulky). Under the conditions used, the electrochemical reduction of CO₂ using these electrodes led to the formation of gaseous products including carbon monoxide and hydrogen and liquid products including formate and n-propanol as confirmed by GC and NMR, respectively. Among the catalysts studied, Zn/Cu-Na200 is the best electrocatalyst that produces high CO product with low H₂ at potential -1.6 V vs. Ag/AgCl because of the high coverage of Zn particles on Cu substrate. The catalyst is stable during the 4 hour reaction time although larger dendritic Zn particles were observed after reaction, suggesting the re-depositing of Zn during CO₂ ERC. Zn/Cu-H with bulky structure, on the other hand, led to formate as the outstanding product due probably to the presence of hexagonal close pack (0001) facet that promotes formate production via the reduction of HCOO* intermediate.

Field of Study:	Chemical Engineering	Student's Signature
Academic Year:	2019	Advisor's Signature
		Co-advisor's Signature

ACKNOWLEDGEMENTS

I appreciate my advisor, Prof. Dr. Joongjai Panpranot has given me support, suggestion, help, and encouragement to complete my thesis. Besides, I would be grateful to Assoc. Prof. Dr. Yuttanant Boonyongmaneerat, as co-advisor, Asst. Prof. Dr. Amornchai Arpornwichanop, as the chairman, Dr. Chutimon Satirapipathkul and Asst. Prof. Dr. Okorn Mekasuwandumrong as a member of the thesis committee and for your valuable comments and suggestions on this thesis.

Moreover, I would like to thank my parents and my friends for all their support throughout this thesis.

The financial support from The Malaysia-Thailand Joint Authority (MTJA) is gratefully acknowledged.

Phongsathon Klongklaew

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

TABLE OF CONTENTS

Pa	ge
ABSTRACT (THAI)iii	i
ABSTRACT (ENGLISH)iv	,
ACKNOWLEDGEMENTSv	1
TABLE OF CONTENTS	i
LIST OF TABLESix	(
LIST OF FIGURES	(
CHAPTER I 1	
INTRODUCTION	
1.1 Introduction	
1.2 Objectives of the Research	-
1.3 Scope of the Research 2	-
CHAPTER II	ł
BACKGROUND AND LITERATURE REVIEWS	ł
2.1 Fundamental of electrochemical reduction of CO_2	ł
2.2 Study on electrodes 4	ł
2.3 Modification of morphology of Zn electrocatalysts	,
2.4 Electrodeposition of Zn/Cu alloy electrocatalysts	I
CHARPTER III	-
MATERIALS AND METHODS	-
3.1 Materials	-
3.2 Catalyst preparation)

3.2.1 Preparation of zinc foil and copper foil
3.2.2 Preparation of Zn/Cu-Na and ZnCu/Cu-Na in NaCl bath
3.2.3 Preparation of Zn/Cu-H and ZnCu/Cu-H in HCl bath
3.3 Catalyst Characterization
3.3.1 Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM- EDX)
3.3.2 X-ray diffraction (XRD)17
3.4 Electrochemical CO ₂ reduction
3.5 Research methodology
CHARPTER IV
RESULTS AND DISCUSSION
4.1 Characterization of Zn/Cu alloy electrocatalysts with different deposition times
4.1.1 X-ray diffraction (XRD)22
4.1.2 Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-
EDX)
4.2 Activity test in the electrochemical CO_2 reduction
4.3 Activity test of Zn/Cu-Na200 in the electrochemical CO_2 reduction at various
potential
4.4 Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) of Zn/Cu-Na200 before and after stability test
4.5 Stability test of Zn/Cu-Na200 in the electrochemical CO $_2$ reduction at potential -1.6 V vs Ag/AgCl
CHAPTER V
CONCLUSIONS

5.1 Conclusions	40
5.2 Recommendation	41
REFERENCES	42
VITA	52

LIST OF TABLES

	F	Page
Table	1 Sn based-electrode in electrochemical CO_2 reduction	. 6
Table	2 Au based-electrode in electrochemical CO ₂ reduction	. 7
Table	3 Ag based-electrode in electrochemical CO ₂ reduction	. 7
Table	4 Zn based-electrode in electrochemical CO ₂ reduction	. 8
Table	5 Cu based-electrode in electrochemical CO_2 reduction	. 8
Table	6 Modification of morphology of Zn electrocatalysts in electrochemical CO_2	
reduct	ion	. 8
Table	7 Zn/Cu alloy electrocatalysts by electrodeposition	12
Table	8 Chemicals used as precursors and electrolyte	14
Table	9 Metals used as electrodes in electrodeposition method and electrochemic	al
reduct	ion of CO ₂	14
Table	10 The operating conditions of gas chromatograph with a thermal conductivity	ty
detect	or	19
Table	11 Percent by weight of deposited electrocatalysts	26
Table	12 The catalytic performances of Zn foil, Cu foil and Zn/Cu alloy	
electro	ocatalysts with different deposition times	33
Table	13 The catalytic performances of Zn/Cu-Na200 at various potentials	36
Table	14 Percent by weight of Zn/Cu-Na200 before and after stability test	37
Table	15 The catalytic performances of Zn/Cu-Na200 in 4 hour	39

LIST OF FIGURES

Page

Figure 1 Mechanism for electrochemical CO_2 reduction on metal surfaces in water 5
Figure 2 Schematic representation of steps in the cathodic deposition of metals11
Figure 3 Schematic of preparation of zinc foil and copper foil
Figure 4 Schematic of preparation of Zn/Cu-Na and ZnCu/Cu-Na in NaCl bath
Figure 5 Schematic of preparation of Zn/Cu-H and ZnCu/Cu-H in HCl bath
Figure 6 Schematic of electrochemical CO ₂ reduction
Figure 7 XRD pattern of (a) Zn foil, (b) Cu foil, (c) Zn/Cu-Na60, (d) Zn/Cu-Na200, (e) ZnCu/Cu-Na60, (f) ZnCu/Cu-Na200, (g) Zn/Cu-H60, (h) Zn/Cu-H200, (i) ZnCu/Cu-H60
and (j) ZnCu/Cu-H200
Figure 8 Enlarged XRD pattern of (a) Zn foil, (b) Cu foil, (c) Zn/Cu-Na60, (d) Zn/Cu-Na200, (e) ZnCu/Cu-Na60, (f) ZnCu/Cu-Na200, (g) Zn/Cu-H60, (h) Zn/Cu-H200, (i)
ZnCu/Cu-H60 and (j) ZnCu/Cu-H200
Figure 9 SEM images of (a) Zn foil, (b) Cu foil, (c) Zn/Cu-Na60, (d) Zn/Cu-Na200, (e)
ZnCu/Cu-Na60, (f) ZnCu/Cu-Na200, (g) Zn/Cu-H60, (h) Zn/Cu-H200, (i) ZnCu/Cu-H60
and (j) ZnCu/Cu-H200
Figure 10 SEM images of Zn/Cu-Na200: (a) before and (b) after stability test

CHAPTER I

INTRODUCTION

1.1 Introduction

Energy sources in this world more than 80% come from fossil fuels because of easiness and high energy density whereas using fossil fuels cause carbon dioxide in the atmosphere [1]. Carbon dioxide is a major contribution that causes the greenhouse effect, so converting carbon dioxide into useful chemicals is an important issue [2].

Among many methods, electrochemical carbon dioxide reduction on electrocatalysts is a clean process when the process is powered by renewable electricity sources (e.g. sunlight, wind, etc.). Electrochemical carbon dioxide reduction in aqueous electrolytes can produce many carbon-containing products such as carbon monoxide, formic acid/formate, methanol and methane [2].

Among many products, carbon monoxide is interesting because it can be fed as a reactant for the Fischer-Tropsch process to produce hydrocarbon fuels. Moreover, carbon monoxide is a gas product, so it does not need to be extracted from electrolyte as liquid products [2].

There are various catalysts for selective CO production including Au, Ag, and Zn [3]. Among these catalysts, Zn is interesting because Zn is cheaper than Au and Ag [4]. Normally, Zn foil was used as catalyst for electrochemical carbon dioxide reduction but it had still low efficiency and selectivity of CO production [5]. Many literature reported that modified Zn catalyst in different structures such as dendritic structure [6], hexagonal structure [7], and foam structure [8] can improve efficiency and selectivity of CO production but each literature tested modified Zn catalyst in electrochemical carbon dioxide reduction with different parameters. So, it is motivation of this work that compare Zn structures in electrochemical carbon dioxide with same parameters. It was also reported that mixing of Cu and Zn can modified Zn structure [8]. Zn/Cu Alloy catalysts also exhibited higher CO selectivity than pure Cu and pure Zn [9].

In this work, Zn/Cu alloy electrocatalysts were prepared by electrodeposition of Zn on Cu foil (Zn/Cu) and electrodeposition of Zn and Cu on Cu foil (ZnCu/Cu) in various electrodeposition bath consisting of NaCl bath (Zn/Cu-Na, ZnCu/Cu-Na) and HCl bath (Zn/Cu-H, ZnCu/Cu-H) with different deposition times. These catalysts were tested in the electrochemical reduction of CO_2 to CO. The morphology, bulk composition and crystalline structure of these catalysts were investigated by several characterization techniques such as scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) and X-ray diffraction (XRD).

1.2 Objectives of the Research

1. To study the characteristics and catalytic performances of Zn/Cu alloy electrocatalysts prepared by electrodeposition of Zn on Cu foil (Zn/Cu) and electrodeposition of Zn and Cu on Cu foil (ZnCu/Cu) in various electrodeposition bath consisting of NaCl bath (Zn/Cu-Na, ZnCu/Cu-Na) and HCl bath (Zn/Cu-H, ZnCu/Cu-H) with different deposition times in the electrochemical reduction of CO₂ to CO.

2. To identify appropriate potential and stability of the best Zn/Cu alloy electrocatalyst that gave the highest ratio of CO/H_2 rate from the first objective.

1.3 Scope of the Research

- 1. Before the electrodeposition and electrolysis experiment, Zn foil $(10x25mm^2)$ and Cu foil $(10x25mm^2)$ were mechanically polished with 800G sandpaper and were rinsed with DI water before drying with N₂.
- 2. For NaCl bath, Zn/Cu alloy electrocatalysts prepared by electrodeposition of Zn on Cu foil (Zn/Cu) and electrodeposition of Zn and Cu on Cu foil (ZnCu/Cu) in NaCl solution (Zn/Cu-Na, ZnCu/Cu-Na). Various deposition times including 60 s and 200 s. The current density for electrodeposition was set at 20 mA/cm². Pt rod was used as counter electrode. After the electrodeposition method, the catalysts were washed with deionized water several times before drying with N₂.

- 3. For HCl bath, Zn/Cu alloy electrocatalysts prepared by electrodeposition of Zn on Cu foil (Zn/Cu) and electrodeposition of Zn and Cu on Cu foil (ZnCu/Cu) in HCl solution (Zn/Cu-H, ZnCu/Cu-H). Various deposition times including 60 s and 200 s. The current density for electrodeposition was set at 0.3 A/cm². Pt rod was used as counter electrode. After the electrodeposition method, the catalysts were washed with deionized water several times before drying with N₂.
- 4. The catalysts were tested in the electrochemical reduction of CO₂ in an Htype cell at room temperature, ambient pressure, potential -1.6 V vs. Ag/AgCl and inlet CO₂ flow rates 20 mL/min for 70 minutes. The cathodic part and the anodic part of H-type cell were separated by Nafion® 117. Pt foil was used as counter electrode. Ag/AgCl was used as reference electrode.
- 5. The best one Zn/Cu electrocatalyst that gets the highest CO selectivity was further tested at potential -1.4, -1.8 and -2.0 V vs. Ag/AgCl.
- 6. The best one Zn/Cu electrocatalyst and appropriate potential that gets the highest CO/H_2 rate ratio was further tested at appropriate potential for 4 h.
- 7. 20 mL of $KHCO_3$ 0.1 M was used as both catholyte and anolyte. Before the electrolysis experiment, the electrolyte was saturated with 100 mL/min CO_2 gas for 30 minutes.
- 8. A potentiostat was used for the electrodeposition method and the electrochemical CO₂ reduction experiments.
- 9. The catalysts were characterized by
 - 6.1 Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX)
 - 6.2 X-ray diffraction (XRD)

CHAPTER II

BACKGROUND AND LITERATURE REVIEWS

2.1 Fundamental of electrochemical reduction of CO₂

The reactions in aqueous solutions vs. NHE at pH 7, 25° C, 1 atm) are given below.

$$CO_{2} + H_{2}O + 2e^{-} \rightarrow HCOO^{-} + OH^{-} \quad (E^{\circ} = -0.43 \text{ V})$$

$$CO_{2} + H_{2}O + 2e^{-} \rightarrow CO^{-} + 2OH^{-} \quad (E^{\circ} = -0.52 \text{ V})$$

$$CO_{2} + 6H_{2}O + 6e^{-} \rightarrow CH_{3}OH + 6OH^{-} \quad (E^{\circ} = -0.38 \text{ V})$$

$$CO_{2} + 6H_{2}O + 8e^{-} \rightarrow CH_{4} + 8OH^{-} \quad (E^{\circ} = -0.25 \text{ V})$$

$$2CO_{2} + 8H_{2}O + 12e^{-} \rightarrow C_{2}H_{4} + 12OH^{-} \quad (E^{\circ} = -0.34 \text{ V})$$

$$2CO_{2} + 9H_{2}O + 12e^{-} \rightarrow C_{2}H_{5}OH + 12OH^{-} \quad (E^{\circ} = -0.33 \text{ V})$$

$$3CO_{2} + 13H_{2}O + 18e^{-} \rightarrow C_{3}H_{7}OH + 18OH^{-} \quad (E^{\circ} = -0.32 \text{ V})$$

$$2H_{2}O + 2e^{-} \rightarrow 2OH^{-} + H_{2} \quad (E^{\circ} = -0.41 \text{ V})$$

The real potentials are more negative than equilibrium potentials because of singleelectron reduction of CO_2 to CO_2 . This reaction requires -1.90 V that is a lot of energy for changing linear molecule of CO_2 into bent radical anion. This step is the first step and the rate determining step (RDS) for reduction of CO_2 [10].

$$CO_2 + e^- \to CO_2^{\bullet^-}$$
 ($E^\circ = -1.90 \text{ V}$)

Although thermodynamically methane and ethylene occur at less negative potential but this reaction is still limited by kinetics at less negative potential [11]. Increment of negative potential will increase transfer of proton and electron [12].

2.2 Study on electrodes

Various products from electrochemical CO_2 reduction occur depending on electrode and electrolyte that are used in reaction. Various reactions occur on the surface of electrode. The selectivity of product depends on the adsorption strength of substrate [3]. Most studies focus on transition metals beginning in 1985. Hori and Suzuki reported that methane and ethylene are the main products for CO_2 reduction reaction on copper electrode. Many studies have compared the activity of transition metals and found that the product yield of CO_2 reduction reaction depends on the bind energy of CO with transition metal. Therefore, it is believed that it is an important key for reduction of CO_2 . Metals with strong CO binding energy will produce less products form CO_2 reduction reaction because poisoning from CO or other media on the transition metal surface during reaction. Therefore, Hydrogen that occurs from reduction of water is the main product. On the other hand, Metals with weak CO binding energy will produce a lot of CO because CO is released from the metal surface before it can be reduced to other products such as alcohol and hydrocarbons [13].

Mechanism for electrochemical CO_2 reduction on metal surfaces in water show in Figure 1 [10].

Figure 1 Mechanism for electrochemical CO₂ reduction on metal surfaces in water

 CO_2^{-} will occur in the first step. CO_2^{-} is high energy and rapidly reacts with water or another CO_2 . Subsequent steps occur almost immediately. Metals are classified by binding of CO_2^{-} intermediate and reducing of CO. Group 1 such as Pb, Hg, In, Sn, Cd, and Tl. These metals are low tendency for binding of CO_2^{-} . CO_2^{-} reduction reaction occurs through an outer-sphere mechanism and normally produces formate or formic acid. Group 2 such as Au, Ag, Zn, and Ga. These metals bind CO_2^{-} intermediate but it cannot further reduce CO. So, CO is the main product. Group 3 such as only Cu. This metal bind CO_2^{-} and it can further reduce CO into other products such as alcohols and hydrocarbons. Some metals cannot reduce CO_2 readily such as Ni, Fe, Pt, and Ti. These metals strongly bind hydrogen [10]. Table 1-5 show summary of Sn, Au, Ag, Zn and Cu electrodes. Faradaic efficacy (FE) is the selectivity of products [10].

Flastrada	E (V vs.	Faradaic efficiency			Defense	
Electrode	SCE)	СО	Formate	Hydrogen	Reference	
Sn foil	-1.7	N/A	95%	N/A	Wu, J. 2012 [14]	
Sn plate	-1.85	N/A	>91%	N/A	Lv, W. 2014 [15]	
Sn particles						
deposited over C	-1.45	N/A	95%	N/A	Castillo, A. D. 2015 [16]	
paper			2			
OE-Sn	-1.85	N/A	85%	N/A	Zhang, R. 2015 [17]	
Sn/Cu	-1.4	N/A	>91%	N/A	Zhoa, C. 2016 [18]	
Sn/f-Cu	-1.85	N/A	83.5%	N/A	Wang, Y. 2016 [19]	
SnO ₂ /CA GDE	-1.65	N/A	76%	~24%	Yu, J. 2017 [20]	
SnS ₂ /rGO	-1.45	~6%	84.5%	~17%	Li, F. 2017 [21]	
Sn plate	-1.8	N/A	40.2%	N/A	Jiang, H. 2018 [22]	
mesoporous SnO ₂	-1.44	~37%	~40%	~23%	Ge, H. 2018 [23]	
Ag-Sn	-1.47	~10%	85%	~5%	Wang, S. 2019 [24]	
Sn metal	-2.04	N/A	80%	N/A	Rasul, S. 2019 [25]	
SnO ₂ / γ -Al ₂ O ₃ /CPF	-2.05	N/A	65%	N/A	Kim, Y, E. 2019 [26]	
SnO ₂ –NCs loaded	1 50	1204	720/	904	Vang H 2010 [27]	
C fiber	-1.37	~13%	~12%0	~0%	ταιις, Π. 2019 [21]	
Cu-Sn	-1.24	>90%	N/A	<8%	Sarfraz, S. 2016 [28]	
Cu-Sn foam	-1.44	94%	~1%	~5%	Zeng, J. 2018 [29]	

Table 1 Sn based-electrode in electrochemical CO2 reduction

Flactrada	E (V vs.	Faradaic efficiency		Poforonco	
Liectiode	SCE)	CO	Formate	Hydrogen	herefelice
Oxide-derived Au	-1.02	>96%	~1%	N/A	Chen, Y. 2012 [1]
Gold sheet	-2.8	93%	N/A	N/A	Li, Q. 2017 [30]
Au foil	-3.14	92%	N/A	~5%	Shi, J. 2017 [31]
Au/Cu	-1.64	58%	1%	41%	Kim, J. 2017 [32]
PF-Au-75	-1.27	90.5%	N/A	~10%	Chen, C. 2017 [33]
Au foil	-1.32	97.01%	~3%	~5%	Cave, E. R. 2017 [34]
Au foil	-2.7	92%	N/A	8%	Shen, F. 2018 [35]
Au on hydrophobic	-1 37	91%		~30%	Park G 2019 [36]
carbon substrate	1.51	5470		570	Tan, G. 2017 [50]
Gold disc	-1.35	7106		~26%	Ahangari, H. T. 2019
dota disc	-1.55	1470		2070	[37]
Au/Cu foam	-1.4	41.3%	N/A	N/A	Lee, H. 2017 [38]
PVA-Au/C	-1.25	97%	N/A	N/A	Ma, L. 2019 [39]
			and a	<u> </u>	

Table 2 Au based-electrode in electrochemical CO₂ reduction

Table 3 Ag b	based-electrode in	electrochemical	CO ₂ reduction
--------------	--------------------	-----------------	---------------------------

Electrode	E (V vs.	Fai	radaic efficie	Reference	
Llectiode	SCE)	CO	Formate	Hydrogen	herefelice
Silver foil	-1.74	>90%	~3%	~10%	Hatsukade, T. 2014 [12]
Ag GDE	-3.05	>80%	N/A	<20%	Kim, B. 2015 [40]
Ag ₁₀₀ dendrite	-1.7	64.6%	N/A	~13%	Choi, J. 2016 [2]
Ag _{66.0} In _{34.0}	-1.04	65.3%	N/A	~30%	Park, H. 2017 [41]
Ag/Cu	-1.5	60.81%	N/A	~22%	Ham, Y. S. 2017 [42]
Dendritic Ag/CP	-1.5	80.7%	N/A	~15%	Ham, Y. S. 2018 [43]
Ag foil	-2.7	85%	N/A	15%	Shen, F. 2018 [35]
Ag/In/Cu foam	-1.2	77.4%	N/A	~19%	Lee, H. 2018 [44]
Ag foam	-1.43 to -	<u>\0106</u>		~1%	Rudney Λ V 2010 [45]
	1.73	>>+70		/~170	Kuanev, A. V. 2019 [45]

Electrodo	E (V vs.	Fa	radaic efficie	Poforonco	
Liectiode	SCE)	CO	Formate	Hydrogen	herefence
RE-Zn	-1.77	95.3%	N/A	N/A	Nguyen, D. L. T. 2017 [4]
Porous network Zinc	1.77	~80%	~10%	~10%	Lu, Y. 2018 [46]
Zn foil	-2.7	90%	N/A	5.2%	Shen, F. 2018 [35]
Multilayered Zn nanosheets	-1.8	86%	N/A	~14%	Zhang, T. 2018 [47]
Porous Zn	-1.43	81%	N/A	~11%	Morimoto, M. 2018 [48]
ZnS/Zn	-2.8	92%	N/A	5.2%	Zhen, J. 2019 [49]

Table 4 Zn based-electrode in electrochemical CO_2 reduction

Table 5 Cu based-electrode in electrochemical CO₂ reduction

Floc	E (V		Faradaic efficiency							
trada	VS.	$\mathcal{C}\mathcal{O}$	For	Hydro	Me	Ethy	Etha	n-Pro	Allyl	Reference
trode	SCE)	CO	mate	gen	thane	lene	nol	panol	alcohol	
Copper	1.60	104	104	2204	2504	~27	~10	2 504	104	Kuhl, K. P.
foil	-1.09	~1%	~1%	~22%	~23%	%	%	~2.5%	~1%	2012 [50]
Cu			W 161 V	11 3 5664		0 166				
oxide	-1.84	N/A	~19%	~17%	~14%	~6%	N/A	N/A	N/A	∧ie, j. 2015 [51]
NNs										2015 [51]

2.3 Modification of morphology of Zn electrocatalysts

Table 6 Modification of morphology of Zn electrocatalysts in electrochemical \mbox{CO}_2 reduction

Researcher	Electrode	Catalyst preparation	Faradaic
	name		efficiency
Quan, F.	nanoscale	Zn foil was anodized at 0.3 mA/cm ² for 90	CO : 57%
et al.	Zn	min in zincate-saturated solution. Then, Zn	at -1.6 V

(2015) [5]		foil was activated at 5 mA/cm ² for 5 min in	vs. SCE
		0.2 M Na ₃ PO ₄ . Then, Zn foil was reduced at	
		-1.3 V vs. SCE for 30 min in 0.5 M NaHCO $_3$. in	
		50% H_3PO_4 for 2 min at 2.1 V.	
Rosen, J.	Zn	Zn foil was polished with sand paper. Then,	CO : 79%
et al.	dendrite	Zn foil was sonicated in acetone and water.	at -1.1 V
(2015) [6]		Zn foil was used as working electrode for	vs. RHE
		deposition. Current density was applied at -	
		1 A/cm ² for 60 s. ZnO powder was dissolved	
		in 6 M KOH and was used as supporting	
		electrolyte.	
Won, D.H.	Hexagonal	Zn foil was polished with sand paper. Then,	CO : 85%
et al.	Zn	Zn foil was cleaned with ethanol, acetone,	at -0.95 V
(2016) [7]		and DI. Zn foil was used as working	vs. RHE
		electrode for deposition. Current density	
		was applied at multi-step potentials for 3 s	
	Ó	each of -2 and -2.5 V vs. SCE with 30	
	1	cycles. SCE was used as reference	
		electrode. Pt coil was used as counter	
	ຈຸາ	electrode. Supporting electrolyte include	
	Сни	-0.05 M ZnCl ₂ .	
Moreno-	Foam Zn	Cu foil (0.8x20 mm ²) was electropolished in	CO : 90%
García, P.		50% H_3PO_4 for 2 min at 2.1 V. Then, Cu foil	at -0.95 V
et al.		was rinsed by Milli-Q water and sonicated in	vs. RHE
(2018) [8]		ethanol for 15 min. Area for deposition was	
		1 cm ² . Cu foil was used as working	
		electrode for deposition. Current density	
		was applied at -3 A/cm ² for 20 s. Ag/AgCl	
		was used as reference electrode. Zn foil	
		was used as counter electrode. Supporting	

electrolyte	include	1.5M	H ₂ SO ₄ ,	0.203M
ZnSO ₄ and	0.006 M C	uSO ₄ .		

Quan, F. et al. (2015) [5] studied nanoscale Zn that was prepared by a facile electrochemical strategy. CO faradaic efficiency was 57% at -1.6 V vs. SCE for NaHCO₃ solution. Highest CO faradaic efficiency was 93% at -1.6 V vs. SCE for NaCl solution. The high conversion efficiency is the result of the nano-size of the catalyst. Nanoscale Zn has resistance to deactivation during electrolysis.

Rosen, J. et al. (2015) [6] studied Zn dendrite by electrodeposition method. The results showed highest CO faradaic efficiency 79% at -1.1 V vs. RHE. Because Zn dendrite has a higher density of stepped sites that suppress hydrogen evolution.

Won, D.H. et al. (2016) [7] studied Hexagonal Zn by electrodeposition method. The results showed highest CO faradaic efficiency 85% at -0.95 V vs. RHE. Because Zn(101) facet was developed for Hexagonal Zn and Zn(101) facet has low reduction potential for CO_2 reduction to CO.

Moreno-García, P. et al. (2018) [8] studied Zn–Cu alloys by electrodeposition method with different ratio of Zn ion and Cu ion in bath. The results showed $Zn_{94}Cu_6$ (ratio Zn 30 : Cu 1) was the best in this work. Highest CO faradaic efficiency 90% at - 0.95 V vs. reversible hydrogen electrode because of high density of low-coordinated active sites and more Zn(101) than Zn(002).

CHULALONGKORN UNIVERSITY

2.4 Electrodeposition of Zn/Cu alloy electrocatalysts

Electrodeposition was performed in electrolysis cell including an electrolytic bath, an anode (the positive electrode), a cathode (the negative electrode), a current source and an ampere/volt meter. Reduction reaction occurs at cathode. Oxidation reaction occurs at anode. Cathode is substrate that is deposited by metal (M). Anode is soluble or inert [52].

Reduction reaction: $M^{z^+} + ne^- \rightarrow M$

Oxidation reaction for soluble anode: $M \rightarrow M^{z_+} + ne^-$

Oxidation reaction for inert anode: $H_2O \rightarrow 2H^+ + 1/2 O_2 \uparrow + 2 e^-$

Figure 2 show schematic representation of steps in the cathodic deposition of metals in simple salt solutions. Metal ion in bulk solution is a form of hydrated ions $M(H_2O)_x^{Z+}$, where x is number of water molecules. Hydrated ions are transported to cathode surface. Alignment of water molecules occurs in diffusion layer and is removed in Helmholtz layer. Then, adsorption of ions occurs at cathode surface (adatoms). Then, surface diffusion and the incorporation of adatoms occur into the crystal lattice [52].

Figure 2 Schematic representation of steps in the cathodic deposition of metals.

The quantity of metal deposited (W) on cathode surface is calculated from the electrochemical equivalent of the metal (z_c) and the product of quantity of total coulombs passed (Q_c).

$$Q_{c} = \int I \partial t$$
$$z_{c} = M_{w} / nF$$
$$W = \int I \partial t M_{w} / nF$$

Where I is applied current, t is times, M_w is molecular weight of metal, F is faradaic constant and n is number of electron [52].

Researcher	Electrode	Catalyst preparation	Faradaic
	name		efficiency
Katah, A.	pure Zn	Gold flag electrode (1.5x1.5 cm ²) was used	CO: 30%
et al.		as working electrode for electroplating with a	at -1.50 V
(1994) [53]		10 C charge. Current density was applied at	vs. SHE
		200 A/m ² . Bath compositions include 150	
	1	g/dm^3 ZnCl ₂ and 25 g/dm^3 NaCl (pH3.7).	
	Cu-Zn	Gold flag electrode (1.5x1.5 cm ²) was used	CO : 80%
	alloy G HL	as working electrode for electroplating with a	at -1.50 V
		10 C charge. Current density was applied at	vs. SHE
		222 A/m ² . Bath compositions include 17	
		g/dm^{3} Cu(CN) ₂ , 60 g/dm^{3} Zn(CN) ₂ , 80 g/dm^{3}	
		KCN and 60 g/dm ³ KOH.	
Keerthiga,	Cu/Zn-A	Zn sheet was polished with sand paper and	CH ₄ : 15%
G. et al.		then used as counter electrode. Potential for	C ₂ H ₆ : 10%
(2017) [9]		deposition was applied at -0.3 V vs. platinum	at -1.8 V
		for 15 min. Cu was polished with sand paper	vs. NHE
		and immersed in 1 M $\rm H_3PO_4$ and 1 M $\rm H_2SO_4$	

	for 15 min. Then, Cu was washed with	
	acetone and DI before drying with N_2 . Then,	
	Cu was used as working electrode. Platinum	
	was used as reference electrode. 0.6 M	
	sodium zincate was used as electrolytic	
	solution.	
Cu/Zn-B	Zn sheet was polished with sand paper and	CH ₄ : 52%
	then used as counter electrode. Potential for	C ₂ H ₆ : 25%
	deposition was applied at -0.3 V vs. platinum	at -1.6 V
	for 15 min. Cu was polished with sand paper	vs. NHE
	and immersed in 1 M $\rm H_3PO_4$ and 1 M $\rm H_2SO_4$	
	for 15 min. Then, Cu was washed with	
	acetone and DI before drying with N_2 . Then,	
	Cu was used as working electrode. Platinum	
	was used as reference electrode. 6 M	
	sodium zincate was used as electrolytic	
	solution.	
1	EL JE	

Katah, A. et al. (1994) [53] studied Cu-Zn alloys electrodes by electroplating with different composition of Zn ion and Cu ion in bath. The results showed various crystals of Zn and Cu when deposition with different composition bath. Selectivity and reactivity of CO were excellent for Cu_5Zn_8 crystals.

Keerthiga, G. et al. (2017) [9] studied zinc-modified copper electrodes by electrodeposition method. The bath concentration of Zn was varied during low concentration (low deposit of Zn on Cu, Cu/Zn-A) and high concentration (high deposit of Zn on Cu, Cu/Zn-B). The results showed Cu/Zn-B got conversion efficiency more than Cu/Zn-A. Descending order of CH₄ faradaic efficiency was shown as: Cu/Zn-B (52%) > Cu (23%) > Zn (7%). Hydrogen was suppressed for Cu/Zn-B (8%) when compared with bare Cu (68%).

CHARPTER III

MATERIALS AND METHODS

3.1 Materials

Table 8 Chemicals used as precursors and electrolyte.

Chemicals	Formular	Suppliers
Zinc chloride	ZnCl ₂	Ajax Finechem Pty Ltd
Copper(II) chloride dihydrate	CuCl ₂ •2H ₂ O	Aldrich Chemical Ltd
Potassium hydrogen carbonate	KHCO ₃	Acros Organics
Hydrochloric acid	HCL	Merck Ltd
Sodium chloride	NaCl	Sigma-Aldrich

Table 9 Metals used as electrodes in electrodeposition method and electrochemical reduction of CO_2

1 11 V NORTH AND	
Electrodes	Suppliers
Copper foil	Alfa Aesar
(0.1mm thick, 99.9999%)	
Zinc foil	Alfa Aesar
(0.1mm thick, 99.994%)	ุกยาลัย
Platinum foil	Alfa Aesar
(0.1mm thick, 99.997%)	
Platinum rod	Metrohm
(Length 76mm, Diameter 2mm)	

3.2 Catalyst preparation

3.2.1 Preparation of zinc foil and copper foil

Before the electrodeposition and electrolysis experiment, Zn foil ($10x25mm^2$) and Cu foil ($10x25mm^2$) were mechanically polished with 800G sandpaper and were rinsed with DI water before drying with N₂.

Figure 3 Schematic of preparation of zinc foil and copper foil

3.2.2 Preparation of Zn/Cu-Na and ZnCu/Cu-Na in NaCl bath

The Zn/Cu-Na catalysts were prepared on a Cu foil substrate using an electrodeposition method. ZnCl₂ was used as the Zn precursors with NaCl. The concentrations of ZnCl₂ and NaCl was fixed at 0.05 M. Various deposition times including 60 s and 200 s (Zn/Cu-Na60, Zn/Cu-Na200). The ZnCu/Cu-Na catalysts were prepared on a Cu foil substrate using an electrodeposition method. ZnCl₂ and CuCl₂ were used as the Zn and Cu precursors with NaCl. The concentrations of ZnCl₂ and NaCl were fixed at 0.05 M. The concentration of CuCl₂ was fixed at 0.0015 M. Various deposition times including 60 s and 200 s (ZnCu/Cu-Na60, ZnCu/Cu-Na200). The current for electrodeposition was set at 20 mA/cm². Pt rod was used as counter electrode. After the electrodeposition method, these catalysts were washed with deionized water several times before drying with N₂.

2. ZnCl₂ 0.05 M, NaCl 0.05 M, CuCl₂ 0.0015 M (ZnCu/Cu-Na)

Figure 4 Schematic of preparation of Zn/Cu-Na and ZnCu/Cu-Na in NaCl bath

3.2.3 Preparation of Zn/Cu-H and ZnCu/Cu-H in HCl bath

The Zn/Cu-H catalysts were prepared on a Cu foil substrate using an electrodeposition method. ZnCl₂ was used as the Zn precursors with HCl. The concentrations of ZnCl₂ and HCl were fixed at 0.2 M and 1.5 M, respectively. Various deposition times including 60 s, and 200 s (Zn/Cu-H60, Zn/Cu-H200). The ZnCu/Cu-H catalysts were prepared on a Cu foil substrate using an electrodeposition method. ZnCl₂ and CuCl₂ were used as the Zn and Cu precursors with HCl. The concentrations of ZnCl₂ and HCl were fixed at 0.2 M and 1.5 M, respectively. The concentration of CuCl₂ was fixed at 0.006 M. Various deposition times including 60 s, and 200 s (ZnCu/Cu-H60, ZnCu/Cu-H200). The current for electrodeposition was set at 0.3 A/cm². Pt rod was used as counter electrode. After the electrodeposition method, these catalysts were washed with deionized water several times before drying with N₂.

2. ZnCl₂ 0.2 M, HCl 1.5 M, CuCl₂ 0.006 M (ZnCu/Cu-H)

Figure 5 Schematic of preparation of Zn/Cu-H and ZnCu/Cu-H in HCl bath

3.3 Catalyst Characterization

3.3.1 Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX)

Zn foil, Cu foil, Zn/Cu-Na60, Zn/Cu-Na200, ZnCu/Cu-Na60, ZnCu/Cu-Na200, Zn/Cu-H60, Zn/Cu-H200, ZnCu/Cu-H60, and ZnCu/Cu-H200 were characterized by scanning electron microscopy (SEM) of Hitachi mode S-3400N and energy dispersive X-ray spectroscopy (EDX) to investigate the morphology of the surface and the bulk composition, respectively.

3.3.2 X-ray diffraction (XRD)

The X-ray diffraction (XRD) pattern of electrocatalyst samples were recorded in the 2 θ range 20°-80° (scan rate = 0.5 sec/step) using a Siemens D5000 diffractometer using nickel filtered Cu K_{α} radiation.

3.4 Electrochemical CO₂ reduction

Electrochemical reduction of CO_2 was performed in an H-type cell, and all experiments were performed at room temperature and ambient pressure. The cathodic part and the anodic part were separated by Nafion® 117. All the experiments were carried out in a three-electrode cell system. Zn foil, Cu foil, Zn/Cu-

Na60, Zn/Cu-Na200, ZnCu/Cu-Na60, ZnCu/Cu-Na200, Zn/Cu-H60, Zn/Cu-H200, ZnCu/Cu-H60, and ZnCu/Cu-H200 were used as the working electrodes which were immersed in electrolyte solution with a geometrical area of 1 cm². Silver/silver chloride electrode (Ag/AgCl) was used as the reference electrode. Platinum foil was used as the counter electrode. KHCO₃ 0.1 M 20 mL was used both as catholyte and anolyte. The electrolyte was saturated with 100 mL/min CO₂ gas for 30 minutes. CO₂ flow rate of 20 mL/min was performed during reaction. A potentiostat was used for all the electrochemical CO_2 reduction experiments. Potential was used at -1.6 V vs. Ag/AgCl. Electrolysis was performed for 70 minutes. The gas chromatography system with a thermal conductivity detector (TCD), which was used to analyze H₂ and CO. Liquid phase products were identified and quantified using NMR. The best one Zn/Cu alloy electrocatalyst that gets the highest CO selectivity was further tested at potential -1.4, -1.8 and -2.0 V vs. Ag/AgCl. For stability test, the best one Zn/Cu alloy electrocatalyst and appropriate potential that gets the highest CO/H₂ rate ratio was further tested at appropriate potential for 4 h.

Figure 6 Schematic of electrochemical CO₂ reduction.

Table 10 The operating conditions of gas chromatograph with a thermal conductivity detector

Gas chromatography (Shimadzu GC-2014)	Conditions
Detector	TCD
Column information	Shincarbon ST(50/80)
Carrier gas	Helium (99.999%)
Injector temperature	180°C
Column initial temperature	40°C, Hold time 5 min
Column temperature rate	10°C/min
Column final temperature	200°C
Detector temperature	170°C
Total time analysis	21 min

Chulalongkorn University

3.5 Research methodology

Part I. To study the characteristics and catalytic performances of Zn/Cu alloy electrocatalysts prepared by electrodeposition of Zn on Cu foil (Zn/Cu) and electrodeposition of Zn and Cu on Cu foil (ZnCu/Cu) in various electrodeposition bath consisting of NaCl bath (Zn/Cu-Na, ZnCu/Cu-Na) and HCl bath (Zn/Cu-H, ZnCu/Cu-H) with different deposition times in the electrochemical reduction of CO_2 to CO.

Part II. To identify appropriate potential and stability of the best one Zn/Cu alloy electrocatalyst that gets the highest CO/H_2 rate ratio from Part I.

CHARPTER IV RESULTS AND DISCUSSION

Part I. To study the characteristics and catalytic performances of Zn/Cu alloy electrocatalysts prepared by electrodeposition of Zn on Cu foil (Zn/Cu) and electrodeposition of Zn and Cu on Cu foil (ZnCu/Cu) in various electrodeposition bath consisting of NaCl bath (Zn/Cu-Na, ZnCu/Cu-Na) and HCl bath (Zn/Cu-H, ZnCu/Cu-H) with different deposition times in the electrochemical reduction of CO₂ to CO.

4.1 Characterization of Zn/Cu alloy electrocatalysts with different deposition times

4.1.1 X-ray diffraction (XRD)

The samples were examined by X-ray diffraction, and Figure 7 showed the XRD patterns of Zn foil, Cu foil, Zn/Cu-Na60, Zn/Cu-Na200, ZnCu/Cu-Na60, ZnCu/Cu-Na200, Zn/Cu-H60, Zn/Cu-H200, ZnCu/Cu-H60, and ZnCu/Cu-H200. All electrocatalysts except Zn foil showed the XRD characteristic peak around 50.1[°] that related to Cu(200) facet [9]. Cu(200) facet occurs from Cu substrate that is used for electrodeposition method. Cu(200) intensity of Cu foil is higher than deposited electrocatalysts. Decreasing Cu(200) intensity of deposited electrocatalysts is affected from electrodeposition Zn on Cu foil. In the part of Zn/Cu-Na, ZnCu/Cu-Na, Zn/Cu-H and ZnCu/Cu-H, the Cu(200) intensity decreased when increasing deposition time from 60 s to 200 s because Cu substrate was deposited by a lot of Zn. When comparing between Zn/Cu-Na and ZnCu/Cu-Na, Cu(200) intensity of ZnCu/Cu-Na is higher than Zn/Cu-Na this was probably due to the effect of Cu that is deposited on Cu foil affecting the increasing of Cu(200) intensity. However, when comparingZn/Cu-H and ZnCu/Cu-H, intensity of the Cu(200) was not affected by the addition of Cu Maybe because of the changes in morphology. When compared electrocatalysts from NaCl bath with HCl bath, Cu(200) intensity of electrocatalysts from HCl bath is lower than NaCl bath because of the higher ZnCl₂ concentration and deposited current for HCl bath. Thus, electrocatalysts from HCl bath resulted in a lot of Zn on Cu foil. Figure 8 shows the enlarged XRD patterns of Zn foil, Cu foil, Zn/Cu-Na60, Zn/Cu-Na200, ZnCu/Cu-Na60, ZnCu/Cu-Na200, Zn/Cu-H200, ZnCu/Cu-H60 and ZnCu/Cu-H200. The XRD pattern of Zn foil and Cu foil (Figure 8a and 8b) corresponded to Zn and Cu by their reported diffraction peaks (Cu: JCPDS 04-0836, Zn: JCPDS 00-004-0831). The XRD patterns of deposited electrocatalysts match well with diffraction peaks of Zn foil and Cu foil. Among the XRD patterns of deposited electrocatalysts, Cu₄Zn phase was detected on the XRD patterns of Zn/Cu-H60, Zn/Cu-H60, Zn/Cu-H200, ZnCu/Cu-H60 and ZnCu/Cu-H200 [8]. The intensity of Zn facet increased with increasing deposition time from 60 s to 200 s. However, for ZnCu/Cu-H60, the Zn(002) intensity is relatively high and the Zn(002) intensity of ZnCu/Cu-H60.

Figure 7 XRD pattern of (a) Zn foil, (b) Cu foil, (c) Zn/Cu-Na60, (d) Zn/Cu-Na200, (e) ZnCu/Cu-Na60, (f) ZnCu/Cu-Na200, (g) Zn/Cu-H60, (h) Zn/Cu-H200, (i) ZnCu/Cu-H60 and (j) ZnCu/Cu-H200

Figure 8 Enlarged XRD pattern of (a) Zn foil, (b) Cu foil, (c) Zn/Cu-Na60, (d) Zn/Cu-Na200, (e) ZnCu/Cu-Na60, (f) ZnCu/Cu-Na200, (g) Zn/Cu-H60, (h) Zn/Cu-H200, (i) ZnCu/Cu-H60 and (j) ZnCu/Cu-H200

4.1.2 Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX)

Entry	Electrocatalyst	Percent by weight	
		Zn (%)	Cu (%)
1	Zn/Cu-Na60	74.9	25.1
2	Zn/Cu-Na200	92.9	7.1
3	ZnCu/Cu-Na60	72.5	27.5
4	ZnCu/Cu-Na200	93.1	6.9
5	Zn/Cu-H60	96.0	4.0
6	Zn/Cu-H200	98.1	1.9
7	ZnCu/Cu-H60	86.1	13.9
8	ZnCu/Cu-H200	88.8	11.2

Table 11 Percent by weight of deposited electrocatalysts

Table 11 shows the percent by weight of Cu and Zn on the deposited electrocatalysts. All deposited electrocatalysts, percent by weight of Zn increased with increasing deposition time from 60 s to 200 s. For electrodeposition using HCl bath, when Cu ion was added, higher percent by weight of Cu was observed. This was not the case for electrodeposition using NaCl bath that there was no significant change in percent by weight of Cu upon addition of Cu ion during electrodeposition, due probably to the low concentration of CuCl₂ in deposited bath.

The scanning electron microscopic images of Zn foil, Cu foil, Zn/Cu-Na60, Zn/Cu-Na200, ZnCu/Cu-Na60, ZnCu/Cu-Na200, Zn/Cu-H200, ZnCu/Cu-H60 and ZnCu/Cu-H200 are shown in Figure 9. Figure 9a corresponds to Zn foil and Figure 9b corresponds to Cu foil, showing a rock-like surface with some streaks, presumably left by the mechanical polishing pretreatment. As shown in Figure 9c and 9d, Zn/Cu-Na60 and Zn/Cu-Na200 have dendritic structures. Because deposition rate of Zn is very high for concentration of ZnCl₂ (0.05 M), the regions of electrocatalyst surface have low concentration of Zn ion. Thus, It forced the dendritic structures to grow outward toward high concentration regions of Zn ion [6].

The morphology of Zn/Cu-Na60 and Zn/Cu-Na200 are similar. Thus, it can be concluded that deposition time does not affect the morphology of Zn/Cu-Na. When adding Cu ion during the electroplating, dendritic structures were also observed as seen on Figure 9e for ZnCu/Cu-Na60 and Figure 9f for ZnCu/Cu-Na200, due probably low concentration of CuCl₂ (0.0015 M) in deposited bath. Figure 9g to the corresponds to Zn/Cu-H60 and Figure 9h corresponds to Zn/Cu-H200, Zn/Cu-H60 and Zn/Cu-H200 have bulky structures with average particle sizes of 1-4 μ m and 4-10 **U**m, respectively. It is suggested that bulky structure is formed because of high Zn ion near the electrocatalyst surface while electrodeposition [6] may be the result of high ZnCl₂ concentration (0.2 M) was used in deposited bath. Increasing deposition time resulted in increased particle size of Zn/Cu-H. However, when Cu ion was simultaneously added in the HCl bath with Zn ion, another form of dendritic structure was observed as shown in Figure 9i for ZnCu/Cu-H60 and Figure 9j for ZnCu/Cu-H200. In this case, deposition time does not affect the dendritic morphology of ZnCu/Cu-H. But Cu ion in deposited bath can change morphology from bulky structure to be dendritic structure. When Cu was added, conditions of low concentration regions of Zn ion near electrocatalyst surface may occurred because Cu ions can compete with Zn ions for deposition on Cu foil and Cu that is deposited on Cu foil also accelerates the formation of hydrogen gas during electrodeposition method. In addition, Cu has higher hydrogen bond strength than Zn [8] so, hydrogen gas that occurs during electrodeposition also compete with Zn ion, resulting in Zn ion being more difficult to move to the electrocatalyst surface. The conditions of low concentration regions of Zn ion near electrocatalyst surface promotes the formation of dendritic structure, to grow outward toward high concentration regions of Zn ion. It can be noticed that the particle size of the dendritic structure in the case of ZnCu/Cu-HCl bath is bigger than those formed under NaCl bath because of the higher concentration of ZnCl₂ in deposited bath.

Figure 9 SEM images of (a) Zn foil, (b) Cu foil, (c) Zn/Cu-Na60, (d) Zn/Cu-Na200, (e) ZnCu/Cu-Na60, (f) ZnCu/Cu-Na200, (g) Zn/Cu-H60, (h) Zn/Cu-H200, (i) ZnCu/Cu-H60 and (j) ZnCu/Cu-H200

Figure 7 SEM images of (a) Zn foil, (b) Cu foil, (c) Zn/Cu-Na60, (d) Zn/Cu-Na200, (e) ZnCu/Cu-Na60, (f) ZnCu/Cu-Na200, (g) Zn/Cu-H60, (h) Zn/Cu-H200, (i) ZnCu/Cu-H60 and (j) ZnCu/Cu-H200

Figure 7 SEM images of (a) Zn foil, (b) Cu foil, (c) Zn/Cu-Na60, (d) Zn/Cu-Na200, (e) ZnCu/Cu-Na60, (f) ZnCu/Cu-Na200, (g) Zn/Cu-H60, (h) Zn/Cu-H200, (i) ZnCu/Cu-H60 and (j) ZnCu/Cu-H200

Figure 7 SEM images of (a) Zn foil, (b) Cu foil, (c) Zn/Cu-Na60, (d) Zn/Cu-Na200, (e) ZnCu/Cu-Na60, (f) ZnCu/Cu-Na200, (g) Zn/Cu-H60, (h) Zn/Cu-H200, (i) ZnCu/Cu-H60 and (j) ZnCu/Cu-H200

Figure 7 SEM images of (a) Zn foil, (b) Cu foil, (c) Zn/Cu-Na60, (d) Zn/Cu-Na200, (e) ZnCu/Cu-Na60, (f) ZnCu/Cu-Na200, (g) Zn/Cu-H60, (h) Zn/Cu-H200, (i) ZnCu/Cu-H60 and (j) ZnCu/Cu-H200

4.2 Activity test in the electrochemical CO₂ reduction

Table 12 The catalytic performances of Zn foil, Cu foil and Zn/Cu alloy electrocatalysts with different deposition times

Entry	Electrocatalyst	Rate (µ mol/min)		CO/H ₂		
		CO	H ₂	formate	n-	rate ratio
					Propanol	
1	Zn foil	0.87	0.21	0.07	0.04	4.1
2	Cu foil	0.96	2.21	0.48	0.15	0.4
3	Zn/Cu-Na60	2.93	0.92	0.13	0.06	3.2
4	Zn/Cu-Na200	3.61	0.77	0.09	0.06	4.7
5	ZnCu/Cu-Na60	3.28	0.93	0.05	0.04	3.5
6	ZnCu/Cu-Na200	4.72	1.29	0.06	0.03	3.7
7	Zn/Cu-H60	0.65	0.45	0.36	-	1.5
8	Zn/Cu-H200	1.01	0.54	0.36	-	1.8
9	ZnCu/Cu-H60	3.21	0.89	0.13	0.02	3.6
10	ZnCu/Cu-H200	4.14	1.63	0.16	0.02	2.5

Reaction (Electrolyte: 0.1 M KHCO₃) at potential -1.6 V vs. Ag/AgCl in 70 minutes

Under potential at -1.6 V vs. Ag/AgCl, the working electrodes including Zn foil, Cu foil, Zn/Cu-Na60, Zn/Cu-Na200, ZnCu/Cu-Na60, ZnCu/Cu-Na200, Zn/Cu-H60, Zn/Cu-H200, ZnCu/Cu-H60, and ZnCu/Cu-H200 were tested in the electrochemical reduction of CO₂ for 70 minutes. The molar flow rate of the products including CO, H₂, formate and n-propanol are shown in Table 12. The CO molar flow rate using Cu foil is slightly higher than Zn foil because resistance of Cu metal is lower than resistance of Zn metal. Thus, potential that is lost with resistance of Cu metal is lower than Zn metal, resulting in the faster rate of transfer of proton/electron pair to the surface of the working electrode. The higher amount of reactants on Cu foil resulted in the formation of higher hydrocarbon products (CO, formate, and npropanol) whereas Cu foil still produced more H₂ gas. Thus, CO/H₂ rate ratio of Cu foil is low. Formate molar flow rate of Cu foil is higher than Zn foil. That can be rationalized by two effects: First, resistance of Cu metal is lower than Zn metal as described above. Second, Theoretical limiting potentials of Cu metal for formate production is lower than Zn metal [54]. As a consequence, Cu foil can easily produce formate than Zn foil. In case of Zn foil, the major product is CO. Owing to the fact that Zn binds CO more weakly so that CO was rapidly released from Zn surface before occurring CO reduction reaction [13]. n-Propanol molar flow rate of Cu foil is higher than Zn foil about 4 times. Because Cu possesses higher binding energy for CO than Zn, the CO product can be further reduced to other products such as npropanol [13]. Deposited electrocatalysts exhibited higher total molar flow rate than Zn foil because deposited electrocatalysts have higher surface area than Zn foil. In case of Zn/Cu-Na60, Zn particles may not sufficiently cover on Cu substrate. As observed from percent by weight of Cu of Zn/Cu-Na60 (25.1%) that is still high when compared with Zn/Cu-Na200 (7.1%), of the presence of Cu substrate on Zn/Cu-Na60 may be the reason for higher H₂ being produced than Zn/Cu-Na200. Because the theoretical limiting potentials of Cu metal for H₂ production is lower than Zn metal [54], Zn/Cu-Na60 can easily produce H₂ than Zn/Cu-Na200. Comparing the electrodepositing Zn/Cu catalysts prepared in NaCl bath with different deposition times, CO molar flow rate is higher for the one prepared with longer deposition time (Zn/Cu-Na200) as compared to Zn/Cu-Na60. The reaction results are correlated well with the higher surface area of Zn/Cu-Na200 than Zn/Cu-Na60. Both Zn/Cu-Na60 and Zn/Cu-Na200 have similar dendritic structure, so surface area of Zn particles that are deposited on Cu foil increased with increasing deposition time. For the bimetallic ZnCu on Cu foil prepared in NaCl bath with 60 s deposition time, CO and H₂ molar flow rate of ZnCu/Cu-Na60 is not much different from Zn/Cu-Na60, due probably to the low concentration of CuCl₂ (0.0015 M) in deposited bath and low deposited current (20 mA/cm²) so the catalysts exhibited similar characteristics and activity in CO2 electrochemical reduction. However, for those prepared with 200 s deposition time (ZnCu/Cu-Na200), CO and H₂ molar flow rate of ZnCu/Cu-Na200 is found to be higher than Zn/Cu-Na200 but CO/H₂ rate ratio is lower than Zn/Cu-Na200 owing to Cu particles deposited on Cu foil leading to the increase of H₂. The higher CO molar flow rate in case of Zn/Cu-H200 compared to Zn/Cu-H60 is maybe due to the higher surface area of Zn/Cu-H200 than Zn/Cu-H60 as the deposition time increases. However, among the other deposited electrocatalysts, the total molar flow rate of Zn/Cu-H60 and Zn/Cu-H200 is relatively low, suggesting the influence of low surface area bulky structure of the Zn/Cu-H60 and Zn/Cu-H200 on the electrochemical reduction activity [6]. Nevertheless, the production of formate on Zn/Cu-H60 and Zn/Cu-H200 is outstanding although the molar flow rate of CO and H_2 is lower than the other deposited electrocatalysts. It is possible that the bulky structure may possess more hexagonal close pack (0001) facet that promotes formate production via reduction of HCOO* intermediate. This pathway leads to the production of formate with limited formation of CO and H₂ [54]. For the ZnCu/Cu-H60 and ZnCu/Cu-H200, the molar flow rate of CO and H₂ increases as deposition time increases with ZnCu/Cu-H200 producing large amount of H₂. Among the electrocatalysts studied, Zn/Cu-Na200 is the best electrocatalyst to provide the highest CO/H₂ rate ratio about 4.7 because dendritic structure of Zn/Cu-Na200 has a higher density of stepped sites that suppress hydrogen evolution [6]. Zn/Cu-Na200 was selected to be further tested in part II. In 2015 [6], it was reported that Zn dendrite electrode showed CO/H₂ ratio about 4 that is lower than Zn/Cu-Na200 in this work may be the result of higher concentration of electrolyte (0.5 M NaHCO₃). Higher cat ion (Na⁺) will block the adsorption of CO₂ on working electrode [55].

> จุฬาลงกรณมหาวิทยาลัย Chulalongkorn University

Part II. To identify appropriate potential and stability of the best one Zn/Cu alloy electrocatalyst that gets the highest CO/H_2 rate ratio from part I.

4.3 Activity test of Zn/Cu-Na200 in the electrochemical CO₂ reduction at various potential

Entry	Potential (V	Rate (µ mol/min)		CO/H ₂		
	vs. Ag/AgCl)	CO	H ₂	formate	n-	rate ratio
			11100	-	Propanol	
1	-1.4	1.08	0.48	-	0.02	2.3
2	-1.6	3.61	0.77	0.09	0.06	4.7
3	-1.8	6.98	2.95	0.10	0.06	2.4
4	-2.0	7.97	10.18	0.19	0.06	0.8

Table 13 The catalytic performances of Zn/Cu-Na200 at various potentials

Reaction (Electrolyte: 0.1 M KHCO₃) in 70 minutes

Zn/Cu-Na200 is further tested at potential -1.4, -1.8 and -2.0 V vs. Ag/AgCl. The results are shown in Table 13. At potential -1.4 V vs. Ag/AgCl, CO₂ reduction products (CO and n-propanol) is relatively low and formate is not found. Owing to the relatively low potential, the transfer of proton/electron pair also is slow. Increasing negative potential to -1.6, -1.8, and -2.0 V vs. Ag/AgCl, formate is found as a liquid product and the molar flow rate of CO H₂ and formate increase with increasing negative potential. However, as the potential increases, the CO/H₂ rate ratio decreases. It is suggested that at higher negative potential, the transfer of proton/electron pair will be faster while the mass transfer of CO₂ is still unchanged, resulting in mass transport limitations at higher overpotentials [12] which causes H₂ formation. At potential -1.6, -1.8, -2.0 V vs. Ag/AgCl, the molar flow rate of n-propanol are similar. This is probable because n-propanol formation requires 18 electron reduction [50], which is very high when compared with CO and formate. CO and formate require only 2 electron reduction [50]. The CO/H₂ rate ratio is found to be

highest at potential -1.6 V vs. Ag/AgCl. So, potential -1.6 V vs. Ag/AgCl is chosen as the condition for stability test.

4.4 Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) of Zn/Cu-Na200 before and after stability test

Entry	Zn/Cu-Na200	Percent by weight	
		Zn (%)	Cu (%)
1	before reaction	92.9	7.1
2	after reaction (4 h)	93.3	6.7

Table 14 Percent by weight of Zn/Cu-Na200 before and after stability test

Zn/Cu-Na200 is further tested at potential -1.6 V vs. Ag/AgCl for 4 h. Table 14 shows the percent by weight of Zn/Cu-Na200 before and after stability test. The Zn/Cu-Na200 before and after stability test have similar percent by weight of Zn and Cu.

The scanning electron microscopic images of Zn/Cu-Na200 before and after stability test are shown in Figure 10. Figure 10a corresponds to Zn/Cu-Na200 before stability test. It has dendritic structures with a particle size of 0.2-0.5 μ m. Figure 10b corresponds to Zn/Cu-Na200 after stability test. It has dendritic structures with a particle size of 0.5-1.2 μ m. Particle size of Zn/Cu-Na200 after stability test is bigger than Zn/Cu-Na200 before stability test. The increase of Zn particle size may be the result of dissolution of Zn particles that are deposited on Cu foil and redeposition under CO₂ electrolysis conditions. Redeposition of Zn ion may result in larger particles. In 2015, Rosen, J. et al. also reported the redeposition of electrocatalyst under CO₂ electrolysis conditions [6].

Figure 10 SEM images of Zn/Cu-Na200: (a) before and (b) after stability test

4.5 Stability test of Zn/Cu-Na200 in the electrochemical CO_2 reduction at

potential -1.6 V vs Ag/AgCl

Entry	Reaction time (h)	Rate (µ r	nol/min)
		CO	H ₂
1	1	3.55	1.25
2	2	3.66	1.32
3	3	3.53	1.32
4	4	3.47	1.58

Table 15 The catalytic performances of Zn/Cu-Na200 in 4 hour

Reaction (Electrolyte: 0.1 M KHCO₃) at potential -1.6 V vs. Ag/AgCl in 4 hour

Zn/Cu-Na200 is further tested at potential -1.6 V vs. Ag/AgCl for 4 h. The result is shown in Table 15. The molar flow rate of CO is relatively stable with an average value of about 3.55 μ mol/min. In case of H₂, the molar flow rate of H₂ slightly increases at reaction time 4 h due probably to the result of dissolution of Zn particles that are deposited on Cu foil [6], causing more exposure of Cu substrate on the surface. The Cu substrate can produce higher H₂ because theoretical limiting potentials of Cu metal for H₂ production is lower than Zn metal [54].

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER V CONCLUSIONS

5.1 Conclusions

Electrochemical reduction of CO_2 (ERC) using Zn/Cu-foil and ZnCu/Cu-foil electrocatalysts was investigated at ambient conditions in an H-cell type reactor. Electrodeposition of Zn on Cu foil at low Zn concentration (0.05 M) resulted in Zn dendritic structure. In case of Zn bulky structure, It was formed that may be due to high Zn concentration (0.2 M). However, when Cu ions were added simultaneously with Zn at high Zn concentration (0.2 M), dendritic structure of CuZn particles deposited on Cu-foil was observed. Adding Cu ions led to an increase of CO and H₂ products from the ERC.

Deposition time does not affect the morphology of dendritic structure. However, for the catalysts prepared using low deposition time (60 s), Zn particles may not be sufficiently covered on Cu substrate, and the exposure of Cu substrate resulted in an increase of H₂ production. Among the catalysts studied, Zn/Cu-Na200 is the best electrocatalyst that produces high CO gaseous product with low H₂ because dendritic structure of Zn/Cu-Na200 has a higher density of stepped sites that suppress hydrogen evolution. In contrast, increasing deposition time resulted in larger size of the bulky structure. The Zn bulky structure, however, produces outstanding liquid formate products. It is possible that the bulky structure may possess more hexagonal close pack (0001) facet that promotes formate production via reduction of HCOO* intermediate.

The optimized over potential was determined to be at -1.6 V vs. Ag/AgCl as the best condition for the formation of high CO while keeping low H_2 production. The activity of Zn/Cu-Na200 is quite stable during 4 h reaction test, the rate of CO production did not significantly change while H_2 production rate slightly increased. As revealed by SEM images of the catalysts after reaction, the particle size of dendritic stricture increased. It is suggested that redeposition of Zn ion occurred under CO₂ electrochemical reduction conditions.

5.2 Recommendation

1. The increase of surface area of deposited electrocatalysts may have to be confirmed by electrochemical technique.

2. The stability of the electrocatalysts should be investigated at longer reaction times.

REFERENCES

- Chen, Y., C.W. Li, and M.W. Kanan, Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc, 2012. 134(49): p. 19969-72.
- Choi, J., et al., Electrochemical CO 2 reduction to CO on dendritic Ag–Cu electrocatalysts prepared by electrodeposition. Chemical Engineering Journal, 2016. 299: p. 37-44.
- Hori, Y., Electrochemical CO2 Reduction on Metal Electrodes, in Modern Aspects of Electrochemistry, C.G. Vayenas, R.E. White, and M.E. Gamboa-Aldeco, Editors. 2008, Springer New York: New York, NY. p. 89-189.
- Nguyen, D.L.T., et al., Selective CO2 Reduction on Zinc Electrocatalyst: The Effect of Zinc Oxidation State Induced by Pretreatment Environment. ACS Sustainable Chemistry & Engineering, 2017. 5(12): p. 11377-11386.
- Quan, F., et al., A highly efficient zinc catalyst for selective electroreduction of carbon dioxide in aqueous NaCl solution. Journal of Materials Chemistry A, 2015. 3(32): p. 16409-16413.
- 6. Rosen, J., et al., *Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2Reduction*. ACS Catalysis, 2015. **5**(8): p. 4586-4591.
- Won da, H., et al., *Highly Efficient, Selective, and Stable CO2 Electroreduction* on a Hexagonal Zn Catalyst. Angew Chem Int Ed Engl, 2016. 55(32): p. 9297-300.
- Moreno-Garcia, P., et al., Selective Electrochemical Reduction of CO2 to CO on Zn-Based Foams Produced by Cu(2+) and Template-Assisted Electrodeposition.
 ACS Appl Mater Interfaces, 2018. 10(37): p. 31355-31365.
- Keerthiga, G. and R. Chetty, *Electrochemical Reduction of Carbon Dioxide on Zinc-Modified Copper Electrodes.* Journal of The Electrochemical Society, 2017.
 164(4): p. H164-H169.
- 10. Scibioh, M.A. and B. Viswanathan, *Electrochemical Reduction of CO 2*, in *Carbon Dioxide to Chemicals and Fuels*. 2018. p. 307-371.

- 11. Gattrell, M., N. Gupta, and A. Co, *A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper.* Journal of Electroanalytical Chemistry, 2006. **594**(1): p. 1-19.
- 12. Hatsukade, T., et al., *Insights into the electrocatalytic reduction of CO(2) on metallic silver surfaces.* Phys Chem Chem Phys, 2014. **16**(27): p. 13814-9.
- Kuhl, K.P., et al., Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc, 2014. 136(40): p. 14107-13.
- Wu, J., et al., Electrochemical Reduction of Carbon Dioxide I. Effects of the Electrolyte on the Selectivity and Activity with Sn Electrode. Journal of The Electrochemical Society, 2012. 159(7): p. F353-F359.
- Lv, W., et al., Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. Journal of Power Sources, 2014.
 253: p. 276-281.
- Del Castillo, A., et al., Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size. Applied Energy, 2015. 157: p. 165-173.
- Zhang, R., W. Lv, and L. Lei, *Role of the oxide layer on Sn electrode in electrochemical reduction of CO 2 to formate.* Applied Surface Science, 2015.
 356: p. 24-29.
- Zhao, C. and J. Wang, Electrochemical reduction of CO 2 to formate in aqueous solution using electro-deposited Sn catalysts. Chemical Engineering Journal, 2016. 293: p. 161-170.
- Wang, Y., et al., Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam. Applied Surface Science, 2016. 362: p. 394-398.
- 20. Yu, J., et al., Electrochemical reduction of carbon dioxide at nanostructured SnO 2 /carbon aerogels: The effect of tin oxide content on the catalytic activity and formate selectivity. Applied Catalysis A: General, 2017. **545**: p. 159-166.
- 21. Li, F., et al., *Towards a better Sn: Efficient electrocatalytic reduction of CO 2 to formate by Sn/SnS 2 derived from SnS 2 nanosheets.* Nano Energy, 2017. **31**: p.

270-277.

- 22. Jiang, H., et al., *Electrochemical CO2 reduction to formate on Tin cathode: Influence of anode materials.* Journal of CO2 Utilization, 2018. **26**: p. 408-414.
- 23. Ge, H., et al., *Mesoporous tin oxide for electrocatalytic CO2 reduction.* J Colloid Interface Sci, 2018. **531**: p. 564-569.
- 24. Wang, X., et al., *Nanoporous Ag-Sn derived from codeposited AgCl-SnO2 for the electrocatalytic reduction of CO2 with high formate selectivity.* Electrochemistry Communications, 2019. **102**: p. 52-56.
- 25. Rasul, S., et al., *Low cost and efficient alloy electrocatalysts for CO2 reduction to formate.* Journal of CO2 Utilization, 2019. **32**: p. 1-10.
- Kim, Y.E., et al., Leaching-resistant SnO2/Υ-Al2O3 nanocatalyst for stable electrochemical CO2 reduction into formate. Journal of Industrial and Engineering Chemistry, 2019. 78: p. 73-78.
- Yang, H., et al., Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters. Journal of Energy Chemistry, 2019. 37: p. 93-96.
- Sarfraz, S., et al., Cu–Sn Bimetallic Catalyst for Selective Aqueous
 Electroreduction of CO2 to CO. ACS Catalysis, 2016. 6(5): p. 2842-2851.
- 29. Zeng, J., et al., *Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution.* Applied Catalysis B: Environmental, 2018. **236**: p. 475-482.
- 30. Li, Q.-y., et al., Electrochemical reduction of CO 2 into CO in N -methyl pyrrolidone/tetrabutylammonium perchlorate in two-compartment electrolysis cell. Journal of Electroanalytical Chemistry, 2017. **785**: p. 229-234.
- Shi, J., et al., Electrochemical reduction of CO2 into CO in tetrabutylammonium perchlorate/propylene carbonate: Water effects and mechanism. Electrochimica Acta, 2017. 240: p. 114-121.
- 32. Kim, J.-H., et al., *Highly active and selective Au thin layer on Cu polycrystalline surface prepared by galvanic displacement for the electrochemical reduction of CO2 to CO.* Applied Catalysis B: Environmental, 2017. **213**: p. 211-215.
- 33. Chen, C., et al., *Selective electrochemical CO2 reduction over highly porous gold films.* J. Mater. Chem. A, 2017. **5**(41): p. 21955-21964.

- Cave, E.R., et al., Electrochemical CO2 reduction on Au surfaces: mechanistic aspects regarding the formation of major and minor products. Phys Chem Chem Phys, 2017. 19(24): p. 15856-15863.
- Shen, F.-x., et al., Electrochemical reduction of CO2 to CO over Zn in propylene carbonate/tetrabutylammonium perchlorate. Journal of Power Sources, 2018.
 378: p. 555-561.
- 36. Park, G., et al., Au on highly hydrophobic carbon substrate for improved selective CO production from CO2 in gas-phase electrolytic cell. Catalysis Today, 2019.
- 37. Ahangari, H.T., T. Portail, and A.T. Marshall, *Comparing the electrocatalytic reduction of CO2 to CO on gold cathodes in batch and continuous flow electrochemical cells.* Electrochemistry Communications, 2019. **101**: p. 78-81.
- 38. Lee, H., S.-K. Kim, and S.H. Ahn, *Electrochemical preparation of Ag/Cu and Au/Cu foams for electrochemical conversion of CO2 to CO.* Journal of Industrial and Engineering Chemistry, 2017. **54**: p. 218-225.
- Ma, L., et al., Polyvinyl alcohol-modified gold nanoparticles with record-high activity for electrochemical reduction of CO2 to CO. Journal of CO2 Utilization, 2019. 34: p. 108-114.
- 40. Kim, B., et al., Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer. Electrochimica Acta, 2015.
 166: p. 271-276.
- 41. Park, H., et al., *Agin dendrite catalysts for electrochemical reduction of CO2 to CO.* Applied Catalysis B: Environmental, 2017. **219**: p. 123-131.
- Ham, Y.S., et al., *Electrodeposited Ag catalysts for the electrochemical reduction of CO 2 to CO.* Applied Catalysis B: Environmental, 2017. 208: p. 35-43.
- 43. Ham, Y.S., et al., *Direct formation of dendritic Ag catalyst on a gas diffusion layer for electrochemical CO2 reduction to CO and H2.* International Journal of Hydrogen Energy, 2018. **43**(24): p. 11315-11325.
- 44. Lee, H., et al., *Nanostructured Ag/In/Cu foam catalyst for electrochemical reduction of CO2 to CO.* Electrochimica Acta, 2019. **323**.

- 45. Rudnev, A.V., et al., Enhanced electrocatalytic CO formation from CO2 on nanostructured silver foam electrodes in ionic liquid/water mixtures.
 Electrochimica Acta, 2019. 306: p. 245-253.
- 46. Lu, Y., et al., Efficient electrocatalytic reduction of CO2 to CO on an electrodeposited Zn porous network. Electrochemistry Communications, 2018.
 97: p. 87-90.
- 47. Zhang, T., et al., *Multilayered Zn nanosheets as an electrocatalyst for efficient electrochemical reduction of CO2.* Journal of Catalysis, 2018. **357**: p. 154-162.
- 48. Morimoto, M., et al., *Visualization of catalytic edge reactivity in electrochemical CO2 reduction on porous Zn electrode.* Electrochimica Acta, 2018. 290: p. 255-261.
- 49. Zhen, J.-Z., et al., *Fabrication of ZnS/Zn electrode using sulphur infiltration method for CO2 reduction into CO in organic media.* Journal of Alloys and Compounds, 2019. **771**: p. 994-999.
- Kuhl, K.P., et al., New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy & Environmental Science, 2012.
 5(5).
- 51. Xie, J., Y. Huang, and H. Yu, *Tuning the catalytic selectivity in electrochemical CO2 reduction on copper oxide-derived nanomaterials.* Frontiers of Environmental Science & Engineering, 2014. **9**(5): p. 861-866.
- 52. Sobha Jayakrishnan, D., Electrodeposition: the versatile technique for nanomaterials, in Corrosion Protection and Control Using Nanomaterials. 2012.
 p. 86-125.
- 53. Katoh, A., *Design of Electrocatalyst for CO[sub 2] Reduction.* Journal of The Electrochemical Society, 1994. **141**(8): p. 2054.
- 54. Yoo, J.S., et al., Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid. ChemSusChem, 2016. 9(4): p. 358-63.
- 55. Zhong, H., K. Fujii, and Y. Nakano, *Effect of KHCO3Concentration on Electrochemical Reduction of CO2on Copper Electrode.* Journal of The

Electrochemical Society, 2017. **164**(9): p. F923-F927.

APPENDIX A

SCANNING ELECTRON MICROSCOPY

Zn/Cu-H is further deposited by deposition time 500 s and 1000 s. Scanning electron microscopic images of Zn/Cu-H500 and Zn/Cu-H1000 are shown in Figure A.1.

Figure A.1 SEM images of (a) Zn/Cu-H500 and (b) Zn/Cu-H1000

APPENDIX B

THE CALIBRATION CURVE OF GAS PRODUCT

Figure B.2 The calibration curve of hydrogen

APPENDIX C

THE LIQUID PRODUCT IDENTIFICATION FOR NMR ANALYSIS

Table C.1 The liquid product identification for NMR analysis [50].

Product name	¹ H splitting	Chemical Shift
Formate	S	8.33
DMSO (Internal Standard)	S	2.6
n-Propanol	t	0.77

Chulalongkorn University

VITA

NAME	Phongsathon Klongklaew
DATE OF BIRTH	18 September 1995
PLACE OF BIRTH	Songkhla, Thailand
INSTITUTIONS ATTENDED	B.Eng Chemical Engineering Faculty of Engineering, Prince
	of Songkla University
HOME ADDRESS	25/18 Tesapattana Road, Hatyai Subdistrict, Hatyai District,
	Songkhla Province, 90110