BIOTRANSFORMATION OF BIOACTIVE COMPOUNDS FROM Sonchus arvensis L. AND Pterocarpus macrocarpus Kurz. BY Aspergillus niger

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Botany Department of Botany FACULTY OF SCIENCE Chulalongkorn University Academic Year 2021 Copyright of Chulalongkorn University การเปลี่ยนแปลงโครงสร้างสารออกฤทธิ์ทางชีวภาพจาก Sonchus arvensis L. และ Pterocarpus macrocarpus Kurz. โดย Aspergillus niger

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาพฤกษศาสตร์ ภาควิชาพฤกษศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2564 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	BIOTRANSFORMATION OF BIOACTIVE COMPOUNDS
	FROM Sonchus arvensis L. AND Pterocarpus
	macrocarpus Kurz. BY Aspergillus niger
Ву	Mrs. Dwi Kusuma Wahyuni
Field of Study	Botany
Thesis Advisor	Associate Professor SEHANAT PRASONGSUK, Ph.D.
Thesis Co Advisor	Professor SUMRIT WACHARASINDHU, Ph.D.
	WICHANEE BANKEEREE, Ph.D.

Accepted by the FACULTY OF SCIENCE, Chulalongkorn University in Partial Fulfillment of the Requirement for the Doctor of Philosophy

Dean of the FACULTY OF SCIENCE

(Professor POLKIT SANGVANICH, Ph.D.)

DISSERTATION COMMITTEE

Chairman

(Professor HUNSA PUNNAPAYAK, Ph.D.)

(Professor SUMRIT WACHARASINDHU, Ph.D.)

...... Thesis Co-Advisor

(WICHANEE BANKEEREE, Ph.D.)

Examiner

(Assistant Professor KANOGWAN SERAYPHEAP, Ph.D.)

..... Examiner

(Assistant Professor JITTRA PIAPUKIEW, Ph.D.)

..... Examiner

(Associate Professor RACHANEEKORN TAMMACHOTE,

Ph.D.)

ดวี กุสุมา วาห์ยุนี : การเปลี่ยนแปลงโครงสร้างสารออกฤทธิ์ทางชีวภาพจาก *Sonchus arvensis* L. และ *Pterocarpus macrocarpus* Kurz. โดย *Aspergillus niger*. (BIOTRANSFORMATION OF BIOACTIVE COMPOUNDS FROM *Sonchus arvensis* L. AND *Pterocarpus macrocarpus* Kurz. BY *Aspergillus niger*) อ.ที่ปรึกษาหลัก : สีหนาท ประสงค์สุข, อ.ที่ปรึกษาร่วม : สัมฤทธิ์ วัชรสินธุ์,วิชาณี แบนคีรี

การดัดแปรโครงสร้างของสารสำคัญด้วยจุลินทรีย์เป็นกระบวนการที่มีความสำคัญในเชิงบวกต่อสิ่งแวดล้อมจึงมีการพัฒนาขึ้นสำหรับเตรียมสารประกอบที่มีฤ ทธิ์ทางเภสัชกรรมในช่วงระยะเวลาหลายปีที่ผ่านมา ซึ่งจากการนำกระบวนการนี้มาประยุกย์ใช้พบว่าสามารถดัดแปรโครงส ร้างของสารสำคัญได้หลายชนิด รวมทั้งมีผลในการเพิ่มฤทธิ์ทางยาของสารที่เป็นผลผลิตจากกระบว นการได้ ดังนั้นวัตถุประสงค์ของวิทยานิพนธ์นี้เพื่อ (1) คัดแยกและระบุชนิดของสารสกัดที่มีฤทธิ์ทางชีวภาพจาก *Sonchus arvensis* L. แล*ะ Pterocarpus macrocarpus* Kurz. (2) ดัดแปรโครงสร้างของสารสกัดที่มีฤทธิ์ทางชีวภาพที่คัดเลือกด้วยรา Aspergillus niger และ (3) ตรวจสอบฤทธิ์ทางชีวภาพของสารสกัดทั้งก่อนและหลังการดัดแปรโครงสร้างของสารด้วยวิธีทางชีวภาพ สารสกัดของ S. arvensis L. leaf และ P. macrocarpus Kurz. เตรียมได้จากการหมักตัวอย่างร่วมกับเฮกเซน เอทิลอะซิเตท หรือเอทานอล จากนั้นวิเคราะห์ปริมาณของสารสกัดโดยใช้วิธีมาตรฐาน คัดแยกสารประกอบและตรวจสอบโครงสร้างของสารด้วยโครมาโตกราพีแบบชั้นบาง (TLC) แก๊สโครมาโตกราพี-แมสสเปกโตรโฟโตเมตรี (GC-MS) ฟูเรียร์ทรานส์ฟอร์มอินฟราเรด (FITR) สเปกโทรสโกปี และนิวเคลียร์แมกเนติกเรโซแนนซ์ (NMR) ทำการดัดแปรโครงสร้างของสาร Taraxasterol ที่สกัดจากใบของ S. arvensis L. และสาร homopterocarpin จากแก่นของ *P. macrocarpus* Kurz. โดยผสมในอาหารเลี้ยงเชื้อชนิด soy bean meal (SBM) ที่เพาะเลี้ยง A. *niger* จากนั้นนำสารสกัดจากเอทิลอะซิเตตของ S. arvensis L. ที่ผ่านการดัดแปรโครงสร้างมาทดสอบฤทธิ์ด้านพลาสโมเดียม ฤทธิ์ป้องกันดับ ฤทธิ์ป้องกันไต และฤทธิ์กระตุ้นภูมิคุ้มกันกับหนูที่ติดเชื้อ *P. berehei* ซึ่งออกแบบการทดลองตาม Peter's 4-day suppressive test สำหรับสารสกัดที่ไม่ดัดแปรโครงสร้างจะตรวจสอบฤทธิ์ทางชีวภาพในหลอดทดลอง ได้แก่ ฤทธิ์ต้านมาลาเรียกับเชื้อ Plasmodium falciparum สายพันธุ์ 3D7 ทดสอบฤทธิ์ต้าน SARS-CoV-2 โดยสร้างแบบจำลอง (*In silico*) ฤทธิ์ต้านอนุมูลอิสระร่วมกับสาร 1,1-diphenyl-2-picrylhydrazyl (DPPH) และ 2,2-azino -bis (3ethylbenzothiazoline-6-sulfonic acid (ABTS) และตรวจสอบฤทธิ์ต้านจุลซีพกับ Candida albicans, Bacillus subtilis, Escherichia coli และ Staphylococcus aureus สำหรับการทดสอบฤทธิ์ความเป็นพิษต่อเซลล์และฤทธิ์ยับยั้งการเจริญของเซลล์มะเร็งจะตรวจสอบร่วมกับเซลล์ที่ได้มาจากตับ (Huh7it-1cells) ร่วมกับ 3(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide โดยเทคนิค MTT Assay สารสกัดเฮกเซน เอทิลอะซิเตท และเอทานอลจากใบของ *S. arvensis* L. แสดงฤทธิ์ต้านพลาสโมเดียมที่ดี โดยมีค่า IC₅₀ เท่ากับ 5.119±3.27, 2.916±2.34 และ 8.026±1.23 ไมโครกรัมต่อมิลลิลิตรตามลำดับ สารสกัดแต่ละขนิดมีฤทธิ์ด้านอนุมูลอิสระสูงโดยมีผลเป็นพิษต่อเซลล์ต่ำ นอกจากนี้สารสกัดเอทิลอะซิเตทยังแสดงให้เห็นฤทธิ์ด้านพลาสโมเดียมในร่างกายที่ค่า ED₅₀ เท่ากับ 46.31±9.36 มิลลิกรัมต่อกิโลกรัมน้ำหนักตัว ตลอดจนมีฤทธิ์ป้องกันตับ ได และกระตุ้นภูมิคุ้มกันในหนูที่ดิดเชื้อ P. berghei สารสกัดเอทิลอะชิเตท เอทานอล และเฮกเซนของ *P. macrocarpus* Kurz. และสาร hom opterocarpin บริสุทธิ์มีฤทธิ์ต้านพลาสโมเดียม *P. falciparum* 3D7 ที่ 1.78, 2.21, 7.11 และ 0.52 ไมโครกรัมต่อมิลลิลิตรตามลำดับและมีความเป็นพิษต่ำ จากการศึกษาแบบจำลองโครงสร้างของสารพบว่าสารประกอบที่ระบโดย GC-MS สามารถจับ stiemasterol และ helicase ได้ โดยมีค่าสัมพรรคภาพในการจับที่ –8.2 กิโลแคลอรีต่อโมลจึงมีผลในการต้าน SARS-CoV-2 นอกจากนี้สารสกัดทั้งหมดมีฤทธิ์ต้านอนุมูลอิสระต่อ DPPH และ ABTS รวมทั้งมีฤทธิ์ต้านการเจริญของ B. subtilis ในขณะที่สารสกัดเอทานอลและเอทิลอะซิเตตทสามารถต้านการเจริญของ E. coli และ C. albicans และสารสกัดเอทานอลสามารถต้านการเจริญของ *S. aureus* จากการวิเคราะห์ชนิดและโครงสร้างของสารสกัดเฮกเซนจาก *S. arvensis* L. ด้วยวิธี GC-MS พบว่าสารที่สกัดได้ประกอบด้วย β-amyrin, lupeol, **α**-amyrin, betulin และ taraxasterol เมื่อนำสารเหล่านี้มาทดสอบฤทธิ์ต้าน SARS-Cov-2 ด้วยแบบจำลองพบว่าสารทั้งหมดมีความสามารถในการจับและยับยั้งกิจกรรมของโปรตีนจาก SARS-Cov-2 จึงคาดการณ์ว่าจะเป็นสารต้านไวรัสที่มีประสิทธิผลจากการดัดแปรโครงสร้างของ homopterocar pin ด้วย Aspergillus niger พบว่ามีสารประกอบ 2 ชนิดที่คัดแยกได้ ได้แก่ 6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalene-2-ol ซึ่งเป็นสารปร ะกอบหลัก และ medicarpin ที่เกิดจากการกำจัดหมู่เมทิลของ homopterocarpin ซึ่งสารนี้มีฤทธิ์ด้านการออกซิเดชั่นของ DPPH และ ABTS ที่ค่า IC50 เท่ากับ 7.49±1.7 และ 0.61±0.4 ไมโครกรัมต่อมิลลิสิตรตามลำดับ รวมทั้งสามารถต้านพลาสโมเดียลในหลอดทดลองได้ที่ความเข้มข้น 0.414 ไมโครกรัมต่อมิลลิลิตร และยับยั้งการเจริญของเซลล์มะเร็งที่มีค่า IC₅₀ เท่ากับ 34.96 ไมโครกรัมต่อมิลลิลิตรจากการศึกษานี้มีผลในการค้นพบข้อมูลของสารที่มีฤทธิ์ทางยาจากผลิตภัณ ท์ธรรมชาติ ร่วมกับการเพื่อประสิทธิภาพทางยาจากการดัดแปรโครงสร้างของสารสกัดจากพืชที่มีสรรพคุณทางยาจากไทยและอินโดนีเซีย รวมทั้งพื้นที่อื่น ๆ ในโลก

สาขาวิชา ปีการศึกษา พฤกษศาสตร์ 2564

ลายมือชื่อ	นิสิต
ลายมือชื่อ	อ.ที่ปรึกษาหลัก
ลายมือชื่อ	อ.ที่ปรึกษาร่วม
ลายมือชื่อ	อ.ที่ปรึกษาร่วม

6172815823 : MAJOR BOTANY

KEYWORD.

biotransformation, Sonchus arvensis L., Pterocarpus macrocarpus Kurz., Aspergillus niger, Malaria

Dwi Kusuma Wahyuni : BIOTRANSFORMATION OF BIOACTIVE COMPOUNDS FROM Sonchus arvensis L. AND Pterocarpus macrocarpus Kurz. BY Aspergillus niger. Advisor: Assoc. Prof. SEHANAT PRASONGSUK, Ph.D. Co-advisor: Prof. SUMRIT WACHARASINDHU, Ph.D., WICHANEE BANKEEREE, Ph.D.

In recent years, microbial transformation is progressing significantly from a limited interest in the highly active area in green chemistry, including the preparation of pharmaceutical compounds. Many biotransformation studies have been found in a variety of analogous compounds and exhibited more potent pharmacological activities. The objectives of this study are (i) to isolate and identify bioactive compounds from Sonchus arvensis L. and Pterocarpus macrocarpus Kurz., (ii) to transform selected bioactive compounds from S. arvensis L. and P. macrocarpus Kurz. by Aspergillus niger, (iii) to determine bioactivities of selected bioactive compounds from Sonchus arvensis L. and Pterocarpus macrocarpus Kurz. before and after biotransformation. The extracts from S. arvensis L. leaf and P. macrocarpus Kurz. heartwood prepared by successive maceration with n-hexane, ethyl acetate, and ethanol and then subjected to quantitative phytochemical analysis using standard methods. Isolated compound was evaluated by thin-layer chromatography (TLC), gas chromatography-mass spectrophotometry (GC-MS), Fourier transform infrared (FITR) spectroscopy, and nuclear magnetic resonance (NMR). Taraxasterol (S. arvensis L. leaf) and homopterocarbin (P. macrocarbus Kurz. heartwood) were transformed in soy bean meal (SBM) medium by Aspergillus niger. The Peter's 4-day suppressive test model with P. berghei-infected mice was used to evaluate the in vivo antiplasmodial activities, hepatoprotective, nephroprotective, and immunomodulatory (ethyl acetate extract of S. arvensis L.). For all natural products were conducted the in vitro antimalarial activity assay against Plasmodium falciparum 3D7 strain, in silico anti-SARS-CoV-2, in vitro antioxidant against 1,1diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and antimicrobial disc diffusion method against Candida albicans, Bacillus subtilis, Escherichia coli, and Staphylococcus aureus) activities were established. Hepatocyte-derived cellular carcinoma cell line (Huh7it-1cells) was used for an in vitro cytotoxicity and anticancer assay [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; MTT]. The n-hexane, ethyl acetate, and ethanolic extract exhibited a good activity on in vitro antiplasmodial activity of S. arvensis L, leaf, with C50 values were 5.119±3.27, 2.916±2.34, and 8.026±1.23 µg/mL, respectively. Each extract also exhibited high antioxidants with low cytotoxic effects. Furthermore, the ethyl acetate extract showed in vivo antiplasmodial activity with ED₅₀ = 46.31±9.36 mg/kg, body weight, as well as hepatoprotective, nephroprotective, and immunomodulatory activities in mice infected with P. berghei. The ethyl acetate, ethanol, and n-hexane extracts of P. macrocarpus Kurz., as well as homopterocarpin, exhibited antiplasmodial activity at 1.78, 2.21, 7.11, and 0.52 µg/ml, respectively, against P. falciparum 3D7 with low toxicity. A compound identified by GC-MS showed in silico anti-SARS-CoV-2 binding affinity with stigmasterol and SARS-CoV-2 helicase of -8.2 kcal/mol. All extracts exhibited antioxidant activity against DPPH and ABTS. They also demonstrated antimicrobial activity against B. subtilis, the ethanol and ethyl acetate extracts against E. coli and C. albicans, and the ethanol extract against S. aureus. GC-MS analysis of fraction of S. arvensis L. n-hexane extract revealed β-amyrin, lupeol, α-amyrin, betulin, and taraxasterol. The in silico anti-SARS-CoV-2 assay showed that they were predicted as effective antiviral candidates by having the ability to act as inhibitors of SARS-CoV-2 protein activity. Therefore, the molecular dynamic analysis data strengthen the notion that the interactions resulting from the five compounds of n-hexane fractions of S. arvensis L. leaves were stable and predicted to be effective antiviral candidates by having the ability to act as inhibitors of SARS-CoV-2 protein activity. Biotransformation of homopterocarpin was succeed by Aspergillus niger. Two compounds have been isolated from biotransformation culture extract. They are 6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalene-2-ol (major compound) and medicarpin. Medicarpin could be predicted transformed from homopterocarpin by demethylation. It showed in vitro antioxidant activity against DPPH (IC₅₀ = 7.49±1.7 µg/mL) and 2,2-azino-bis ABTS (ICs0 = 0.61±0.4 µg/mL), in vitro antiplasmodial (0.414 µg/mL), and in vitro anticancer (ICs0 = 34.96 µg/mL). Overall, this study collectively advances our knowledge of important drug discovery from natural products with a major impact in improving of natural product isolation and biotransformation from Thai and Indonesian medicinal plant and elsewhere around the world.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn Universit

Field of Study: Academic Year: Botany 2021

Student's Signature
Advisor's Signature
Co-advisor's Signature
Co-advisor's Signature

iv

ACKNOWLEDGEMENTS

I would to express my profound gratitude to advisor, Associate Professor Sehanat Prasongsuk, Ph.D. whose expertise was helpful in establishing the study objectives and methodology. Your informative criticism encouraged me to improve my thoughts and raise the quality of my work. Your input in perusing my reports and manuscripts is highly appreciated. Professor Sumrit Wacharasindhu, Ph.D. and Wichanee Bankeeree, Ph.D., my co-advisors, your patience and sacrifices in educating me, particularly in the subject of Biotransformation, are really appreciated. Even when my spirit was down, you believed in me. I would not be where I am now if it weren't for your criticism.

I would like to appreciate my doctoral dissertation committee members; Professor Dr. Hunsa Punapayak (Chairman/the external examiner), Assistant Professor Dr. Kanogwan Seraypheap, Assistant Professor Dr. Jittra Piapukiew, and Associate Professor Dr. Rachaneekorn Tammachote, for their suggestions and contributions.

I would also like to appreciate the Universitas Airlangga Scholarship and the Human Resources Division of the Universitas Airlangga, Surabaya, Indonesia for supporting me for my Ph.D program and research funding.

To my wonderful husband, Mr. Rosyid Anwar, and my four amazing daughters, Raissa, Alisha, Alana, and Adelia, thank you for being supportive, encouraging, and sacrificing your happiness for my cause. Thank you very much. Your prayers and counsel, my parents, kept me going even when I felt like giving up. You will be richly rewarded by Allah SWT. Special thanks to brother and sister. I appreciate your prayers and support.

I will never forget my wonderful friends and colleagues at the Department of Botany's Center of Plant Biomass Utilization Research Unit (PBURU). Thank you for your support. You all worked diligently to guarantee my success, and I appreciate the out pouring of love. To my friends, Max, Taufik, Indah, Budi, Alvi, Evi, Rahmi, Namtan, Pla, Sai, Hang, Bet, Ploi, Tedtee, Susinya, Pipob, Wikrom, Gam, Oat, Triono, Widya, Putu, aand Noinha,

Dwi Kusuma Wahyuni

TABLE OF CONTENTS

Page
ABSTRACT (THAI)iii
iv
ABSTRACT (ENGLISH)iv
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
CHAPTER ONE
1.1 General Introduction
1.2 The objectives
1.3 The expected benefits
CHAPTER TWOาณาลงกรณ์มหาวิทยาลัย1
In vitro and in vivo antiplasmodial activities of leaf extracts from Sonchus arvensis L.1
Abstract1
2.1 Background
2.2 Materials and Methods
2.2.1 Plant collection and identification
2.2.2 Plant extraction
2.2.3 Phytochemical screening
2.2.4 Thin Layer Chromatography (TLC) Analysis

2.2.5 Antioxidant assay	4
2.2.6 In vitro antiplasmodial activity assay	5
2.2.7 Cytotoxicity test	6
2.2.8 <i>In vivo</i> antiplasmodial activity assay	7
2.2.9 Biochemical analysis	8
2.2.10 Data analysis	9
2.2.12 Ethics approval	9
2.3 Results	9
2.3.1 The extract yields and phytochemical screening	9
2.3.2 Terpenoid screening of the extracts of Sonchus arvensis L. by thin-laye	٢
chromatography (TLC)	. 10
2.3.3 Antioxidant activities	. 11
2.3.4 <i>In vitro</i> antiplasmodial activity	. 12
2.3.5 Toxicity and selectivity index (SI)	. 12
2.3.6 <i>In vivo</i> antiplasmodial activity	. 13
2.3.7 Whole blood analysis of <i>P. berghei</i> infected mice	. 14
SGOT and SGPT levels	. 14
BUN and creatinine levels	. 15
Cytokine production	. 15
2.4 Discussion	. 16
2.5 Conclusion	. 21
CHAPTER THREE	. 29
Anti-SARS-CoV-2, antiplasmodial, antioxidant, and antimicrobial activities of crude	
extracts and homopterocarpin from heartwood of Pterocarpus macrocarpus Kurz.	. 29

Abstract	29
3.1 Introduction	
3.2 Materials and methods	
3.2.1 Plant material collection and identification	
3.2.2. Extraction and phytochemical screening	
3.2.3 Isolation and structural analysis of bioactive compounds	
3.2.4 In silico anti-SARS-Cov-2	
3.2.4.1 Protein and ligand sample preparation	
3.2.4.2 Molecular docking simulation	
3.2.4.3 Molecular interaction analysis	
3.2.5 In Vitro antioxidant activity	
3.2.5.1 The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) inł	nibition assay.
A Constant	
3.2.5.2 The 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic	acid) (ABTS)
inhibition assay	
3.2.6 In vitro antimalarial Assay	
3.2.7 In vitro cytotoxicity assay	
3.2.8 Selectivity index (SI)	
3.2.9 Antimicrobial assay	
3.2.10 Data analysis	
3.3 Results and discussion	
3.3.1 The yield of extracts and phytochemical screening	
3.3.2 Isolation and structural analysis of bioactive compounds	
3.3.3 In silico anti-SARS-CoV-2 activity	

3.3.4 Antioxidant activity
3.3.5 <i>In vitro</i> antimalarial activity
3.3.6 <i>In vitro</i> toxicity and selectivity index
3.3.7 Antimicrobial activity
3.4 Conclusion
CHAPTER FOUR
<i>In silico</i> anti-SARS-CoV-2 and <i>in vitro</i> antiplasmodial activities of compounds from <i>n</i> -hexane fractions of <i>Sonchus arvensis</i> L. leaves
Abstract
4.1 Introduction
4.2 Methods
4.2.1 Plant Material Collection and Identification62
4.2.2 Extraction
4.2.3 Thin Layer Chromatography (TLC)62
4.2.4 Purification and Isolation
4.2.5 Gas Chromatography-Mass Spectrophotometry (GC-MS)
4.2.6 Sample Preparation of <i>in silico</i> anti-SARS-CoV-2 activity
4.2.7 Drug-likeness Identification64
4.2.8 Bioactivity Prediction
4.2.9 Molecular Docking Simulation65
4.2.10 Ligand-Protein Interactions and 3D Visualization
4.2.11 Molecular Dynamic Analysis65
4.2.12 In Vitro antiplasmodial Assay
4.2.13 Cytotoxicity Assay and Selectivity index (SI)66

4.3 Result and Discussion	7
4.3.1 Terpenoid Screening of the <i>n</i> -hexane extract of <i>Sonchus arvensis</i> L. by TLC	7
4.3.2 Isolation and Purification	7
4.3.3 GC-MS Analysis	3
4.3.4 Anti-SARS-CoV-2 activity	1
4.3.6 In vitro toxicity and selectivity index (SI)	9
4.4 Conclusion)
CHAPTER FIVE	9
Biotransformation of homopterocarpin from Pterocarpus macrocarpus Kurz.	
heartwood by Aspergillus niger	9
Abstract	9
5.1 Methods)
5.1.2 Chemicals and Aspergillus niger strain90)
5.1.2 Microbial transformation)
5.1.3 Separation of bio-transformed compound92	1
5.1.4 Metabolite extraction	1
5.1.5 Metabolomic analysis using GC-MS/MS of <i>Aspergillus niger</i> -transformation culture	1
5.1.6 Spectrophotometric analysis of biotransformation derivative compound92	2
5.1.7 In Vitro Antioxidant Activity	3
5.1.7.1 The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) inhibition assay.	3
5.1.7.2 The 2,2-azino-bis (3 ethylbenzothiazoline-6-sulfonic acid)	
diammonium salt (ABTS) inhibition assay	3

5.1.8 <i>In vitro</i> antimalarial assay	94
5.1.9 In vitro anticancer assay	95
5.1.10 Selectivity index (SI)	
5.1.11 Data analysis	95
5.2 Result	
5.2.1 The number of Aspergillus niger spores during transformation cultu	ire of
homopterocarpin from Pterocarpus macrocarpus Kurz. heartwood	96
5.2.2 Metabolite profiles by GC-MS during biotransformation	96
5.2.3 Biotransformation Compound	
Demethylhomopterocarpin/ 3-Hydroxy-9-methoxycarpan/Medicarp	oin99
6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalen	e-2-ol
	102
5.2.4 Antioxidant activities	103
5.2.5 In vitro antimalarial activity	103
5.2.6 Selectivity index (SI)	103
5.2.7 In vitro anticancer	103
CHAPTER SIX	105
Conclusion	105
APPENDIXES	107
	107
REFERENCES	165
VITA	

LIST OF TABLES

P	'age
Table 1. Experimental design of in vivo study for antiplasmodial activity and	
biochemical analysis	. 8
Table 2. Extraction yield of Sonchus arvensis L. leaf	10
Table 3. Phytochemical screening of Sonchus arvensis L. leaf extract 1	10
Table 4. In vitro antioxidant activity of Sonchus arvensis L. leaf extract	12
Table 5. In vitro antiplasmodial activity of Sonchus arvensis L. leaf extracts against P).
falciparum strain 3D71	12
Table 6. In vitro toxicity and selectivity index (SI) of Sonchus arvensis L. leaf extract	
	13
Table 7. Parasitemia, growth, and inhibition percentage of Sonchus arvensis L. ethyl	
acetate extract against Plasmodium berghei1	14
Table 8. Serum IL-10, TNF- $oldsymbol{lpha}$, SGOT, SGPT, BUN, and creatinine levels of mice	
infected with P. berghei strain ANKA after treatment with S. arvesis L. leaf ethyl	
acetate extract	16
Table 9. Phytochemical screening of Pterocarpus macrocarpus Kurz. heartwood	
extracts	38
Table 10. The yield of crystals at each step of crystallization of the n-hexane extrac	ct
of Pterocarpus macrocarpus Kurz. heartwood	39
Table 11. Phytochemical components identified from GC/MS analysis of Pterocarpu	IS
macrocarpus Kurz. heartwood n-hexane extract at each crystallization cycle4	11
Table 12. The observed 1 H and 13 C-NMR homopterocarpin (3,9-dimethoxy-	
pterocarpan) compound in CDCl ₃	13
Table 13. Prediction results of target compound activity	14

Table 14. Simulation results of molecular docking with SARS-CoV-2 proteins
Table 15. In vitro antioxidant activity of Pterocarpus macrocarpus Kurz. heartwood
extract
Table 16. In vitro antimalarial activity, in vitro toxicity, and selectivity index (SI) of
Pterocarpus macrocapus Kurz. heartwood extracts against P. falciparum strain 3D7 . 50
Table 17. Diameter of inhibition zone and percentage of inhibition of heartwood
extract of Pterocarpus macrocarpus Kurz51
Table 18. Column chromatographic separation of Sonchus arvensis L. n-hexane
extract
Table 19. Phytochemical components from GC-MS analysis of fractions 2-12 of
Sonchus arvensis L. n-hexane extract
Table 20. Phytochemical components from GC-MS analysis of fractions 15–28 of
Sonchus arvensis L. n-hexane extract
Table 21. Drug-likeness analysis of compounds from n-hexane fractions of Sonchus
arvensis L. leaves
Table 22. Prediction of inhibitory activities of n-hexane fractions of Sonchus arvensis
L. compounds
Table 23. Docking results of compounds contained by Sonchus arvensis L. n-hexane
fraction with SARS-CoV-2 proteins74
Table 24. Results of identification of molecular interactions of n-hexane fractions of
Sonchus arvensis L. leaves
Table 25. The percent parasitemia, growth percentage, and inhibition percentage of
fractions 5–12 of Sonchus arvensis L of n-hexane extract against P. falciparum strain
Table 26. The percent parasitemia, growth percentage, and inhibition percentage of fractions 15–28 of Sonchus anyensis L of n-beyane extract against P. falcinary strain
3D7

Table 27. In vitro toxicity and selectivity index (SI) of Sonchus arvensis L. extract80
Table 28. Phytochemical components from GC/MS analysis of Pterocarpus
macrocarpus Kurz. heartwood n-hexane extract in every crystallization
Table 29. 1 H-(400MHz, CDCl ₃) chemical shift assignments of homopterocarpin and
(500MHz, CDCl ₃) medicarpin100
Table 30. 13 C-(400MHz, CDCl ₃) chemical shift assignments of homopterocarpin and
(125MHz, CDCl ₃) medicarpin101
Table 31. In vitro antioxidant activity of Pterocarpus macrocarpus Kurz. heartwood
extract
Table 32. In vitro antimalarial activity of bioactive compound from homopterocarpin
transformation by Aspergillus niger against P. falciparum strain 3D7
Table 33. In vitro anticancer activity of bioactive compound from homopterocarpin
transformation by Aspergillus niger against hepatocyte-derived cellular carcinoma cell
line (Huh7it-1cellls)

xiv

LIST OF FIGURES

Figure 1. Chromatogram of Sonchus arvensis L. extracts TLC. A. Day light, B. UV
254nm, C. UV366nm, D. After sprayed by p-anisaldehyde sulfuric acid (the purple
spot is terpenoid), I. n-Hexane extract, II. Ethyl acetate extract, III. Ethanol extract11
Figure 2. Chromatogram of n-hexane extracts of Pterocarpus macrocarpus Kurz.
heartwood at each crystallization cycle. A. n-hexane extract, B. first crystallization, C.
second crystallization, D. third crystallization, E. fourth crystallization. black arrow: 2-
naphthalenemethanol; green arrow: homopterocarpin; blue arrow: pterocarpin;
yellow arrow: stigmasterol; red arrow: γ -sitosterol
Figure 3. The structure of homopterocarpin
Figure 4. The 3D visualization of the molecular docking results. Ligands are indicated
by black circles (A) Stigmasterol_Helicase (B) Stigmasterol_RdRp (C)
Stigmasterol_Mpro (D) Stigmasterol_RBD-Spike
Figure 5. The 2D visualization of the molecular interactions. (A)
Stigmasterol_Helicase, (B) Stigmasterol_RdRp, (C) Stigmasterol_Mpro, (D)
Stigmasterol_RBD-Spike
Figure 6. Chromatogram of Sonchus arvensis L. extract. (A) Solvent only (n-
hexane : ethyl acetate at 4:1). (B) UV light at 254 nm. (C) UV light at 366 nm. (D)
Anisaldehyde sulfuric acid (the purple spot at 0.35 is a terpenoid)
Figure 7. Representative chromatogram of fractions 5–12 of Sonchus arvensis L. n-
hexane extract. Red arrow, octadecyl ester exadecenoic acid; green arrow, hexadecyl
ester tetradecanoic acid
Figure 8. Representative chromatogram of fractions 15-28 of Sonchus arvensis L. n-
hexane extract. Red arrow, hexacosanol; blue arrow, β-amyrin; green arrow, lupeol;
yellow arrow, $lpha$ -amyrin; brown arrow, botulin; black arrow, taraxasterol70

Figure 9. The 3D visualizations of molecular docking results. (A) $lpha$ -Amyrin-Helicase,
(B) α -Amyrin-Spike-RBD, (C) β -Amyrin-RdRp, and (D) β -Amyrin-M ^{pro}
Figure 10. RMSF values of protein-ligand complexes. (A) $lpha$ -Amyrin_Helicase, (B) $lpha$ -
Amyrin_Spike-RBD, (C) β-Amyrin_RdRp, and (D) β-Amyrin_M ^{pro} 76
Figure 11. Protein 3D structures determined by molecular dynamic simulation. (A) $lpha$ -
Amyrin-Helicase, (B) $lpha$ -Amyrin-Spike-RBD, (C) ß-Amyrin-RdRp, and (D) ß-Amyrin-M ^{pro} . 76
Figure 12. Spores number of Aspergillus niger during biotransformation culture of
homopterocarpin from Pterocarpus macrocarpus Kurz. heartwood
Figure 13. Chromatogram profile of biotransformation culture of homopterocarpin
from Pterocarpus macrocarpus Kurz. heartwood by Aspergillus niger. A. First day of
culture, B. Third day of culture, C. Fifth day of culture, D. Seventh day of culture. 1.
Glycerine, 2. 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl-, 3. 6-Isopropenyl-
4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahy-dronaphthalen-2-ol, 4. 9-Octadecenamide, (Z)-,
5. medicarpin
Figure 14. The structure of homopterocarpin (1) and medicarpin (2)
Figure 15. Chromatogram profile of 6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-
octahydro-naphthalene-2-ol by GC-MS. A. GC-MS spectra with retention time, B. 6-
isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalene-2-ol of spectra 102
Chulalongkorn University

CHAPTER ONE

1.1 General Introduction

WHO estimates that around 80% of the world population use natural compounds from medicinal plant (Kumar et al.). Because the phenomena, it is needed a specific effort to explore the natural material well, not only for inhibiting but also for providing effective cures without causing excessive side effect (A. Younis et al., 2016). Natural products are structurally and biologically interesting metabolites, but they may be isolated in a small amount (Hegazy et al., 2015). Some bioactive compounds have very bioavailability but low solubility and structural instability (An et al., 2017). A lot of efforts are being made to improve the quality of natural compound, such as biotransformation (Kang et al., 2019; Parshikov & Sutherland, 2014).

Biotransformation is a biocatalytic process for the conversion or modification of organic chemicals to potential products using an enzyme or whole cells (Anwar et al., 2019) or structural modification in chemical compound by organism / enzyme that lead to the formation of molecules with greater polarity (Singh, 2017). In recent years, microbial transformation is progressing significantly from limited interest into the highly active area in green chemistry including preparation of pharmaceutical products (A. M. Younis et al., 2016), chemical and food industries because of numerous advantages compared to chemical synthesis (Parshikov & Sutherland, 2014).

Microbial-transformation have been extensively employed in drug discovery and development, mainly due to their ability to produce regio- and stereo-selective products. In many cases, the use of toxic and expensive chemical catalyst has been substituted by biotransformation, which is eco-friendly and cost-effective, and based on readily available biological catalysts. Diverse classes of organic compound have been successfully transformed into their structurally novel and biologically active metabolites by applying biotransformation methods (Hussain et al., 2016). In the field of pharmaceutical research and development, biotransformation investigated found many analogous compounds. They exhibited more potent pharmacological activities (Asakawa et al., 2018; Wu et al., 2015). The resulting products of biotransformation may have more useful pharmacological or other biochemical activity. It may be less toxic than the starting material (Singh, 2017).

Aspergillus niger, described as a species by van Tieghem in 1867, is a widespread aerobic fungus that grows on a large variety of substrates (Chen et al., 2017). *A. niger* strains produce enzymes such as hydrolases, amylases, pectinases, and chitinases (Parshikov & Sutherland, 2014; Yang et al., 2017). Some previous studies have shown that *A. niger* transform a lot of substrates, but never been any report about biotransformation natural products from *Sonchus. arvensis* L. and *Pterocarpus macrocarpus* Kurz., therefore *A. niger* will be applied to transform bioactive compound from *S. arvensis* L. and *P. macrocarpus* Kurz. in this study.

S. arvensis L. belongs to Asteraceae. It is spreading throughout the world and highly invasive. Morpho-anatomical characters of S. arvensis L. in Indonesia has herbaceous habitus and erect, annual herb, but there is perennial one in Pakistan, reaches 64 cm tall (Suharyanto et al., 2019). S. arvensis L. has chemical compounds such as flavonoids (Khan & Omoloso, 2003; Rohaeti et al., 2011; Seal, 2016), coumarin, taraxasterol, phenolic acids, ascorbic acid (Seal, 2016) and terpenoids (Rumondang, 2013). Many studies show that S. arvensis L. possess antioxidant activity (Khan & Omoloso, 2003), anti-uric acid (Hendriani et al., 2016), anti-inflammatory activity and inhibitory effect in locomotion and gastro intestinal motility (Hendriani et al., 2016; Poudel et al., 2015), immunomodulatory activity and antibacterial activity (Rumondang, 2013). Evaluation of teratogenic effect of S. arvensis L. extract did not show teratogenic effect (Sukandar & Safitri, 2016). Several compounds have been successfully isolated from *S. arvensis* L., including sesquiterpene lactones which have antimicrobial activity (Xia et al., 2009), sesquiterpenes and quinic acid esters which have antioxidant activity, kumoric acid, and a flavonoid class of chalcone (Putra et al., 2013).

P. macrocarpus Kurz., is valued globally for its beauty, wood quality, medicinal properties and valuable bioactive compound content (Jiao, 2018). *P. macrocarpus* Kurz. belongs to Fabaceae. It mainly grows in Laos, Thailand, Myanmar, and Vietnam. The application value of *P. macrocarpus* Kurz. lies in heartwood that

can give people visual enjoyment and psychological pleasure regarding to a unique woody flavour, promoting human blood circulation and enhancing the body's immune function (K.C.A et al., 2017), antimicrobial activity (Chen et al., 2017), treating cough and phlegm, detoxification and diuretic (Gao et al., 2017), anti-Alzheimer's disease antispasmodic properties, anticancer (Chen and et al., 2017). immunomodulator activity (Mohd Ataa et al., 2017), and insect antifeedants (Morimoto et al.). Macrocarposide, (-)-homopterocarpin, (-)-hydroxy-homopterocarpin, (+)-pterocarpol have been isolated from *P. macrocarpus* Kurz. (Abdelhamid & Maa, 2019).

In this research, natural product from *S. arvensis* L. and *P. macrocarpus* Kurz. was used for antioxidant, atiplasmodial, antimicrobial and anti-SAR-CoV-2 assay (Chapter 2-4). Bioactive compound from *P. macrocarpus* Kurz., homopterocarpin has been transformed by *A. niger* to medicarpin with anticancer activity (Chapter 5). This report provides remarkable information about anti-SAR-CoV-2, antimalarial, antimicrobial, antioxidant and anticancer activities with low toxicity of natural products from *S. arvensis* L. and *P. macrocarpus* Kurz.. Moreover, it could be expected to provide data for the further use of these natural products as drug candidates for infectious diseases therapy with positive complementary effects and safety.

1.2 The objectives จุฬาลงกรณมหาวิทยาลัย

The specific objectives of this study include: (i) to isolate and identify bioactive compound from *S. arvensis* L. and *P. macrocarpus* Kurz. (Chapter 2-4), (ii) to transform selected bioactive compounds by *Aspergillus niger* (Chapter 5), (iii) to determine bioactivities of selected bioactive compounds before and after biotransformation (Chapter 2-5).

1.3 The expected benefits

The result of the study will contribute to the basic and applied knowledge of bioactive compounds from *S. arvensis* L., and *P. macrocarpus* Kurz., including their pharmaceutical potential to be used as a drug in the future.

CHAPTER TWO

In vitro and *in vivo* antiplasmodial activities of leaf extracts from *Sonchus arvensis* L.

Dwi Kusuma Wahyuni^{1,2**}, Sumrit Wacharasindhu³, Wichanee Bankeeree¹, Sri Puji Astuti Wahyuningsih², Wiwied Ekasari⁴, Hery Purnobasuki², Hunsa Punnapayak¹, and Sehanat Prasongsuk^{1,2*}

¹Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand.

²Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, East Java, 60115, Indonesia.

³Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand.

⁴Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia.

^{#a}Address: Department of Botany, Faculty of Science, Chulalongkorn University,Bangkok, 10330 Thailand. Tel: +662185485; Fax: +6622528979

^{#b}Address: Department of Biology, Faculty of Science and Technology, Airlangga
 University Surabaya, East Java, 60115, Indonesia. Tel: +6231 5936501. Fax:
 +62315936502.

จุฬาลงกรณมหาวทยาลย

*Corresponding author:

Email: Sehanat.p@chula.ac.th.

**Co-corresponding author:

Email: dwi-k-w@fst.ac.id

Abstract

Background: Malaria continues to be a global problem due to the limited efficacy of current drugs and the natural product is a potential source for discovering the new antimalarial agents. Therefore, the aims of this study were to investigate phytochemical properties, cytotoxic effect, antioxidant, and antiplasmodial activities of *Sonchus arvensis* L. leaf extracts both *in vitro* and *in vivo*.

Methods: The extracts from *S. arvensis* L. leaf were prepared by successive maceration with *n*-hexane, ethyl acetate, and ethanol, and then subjected to quantitative phytochemical analysis using standard methods. The antimalarial activities of crude extracts were tested *in vitro* against *Plasmodium falciparum* 3D7 strain while the Peter's 4-day suppressive test model with *P. berghei*-infected mice was used to evaluate the *in vivo* antiplasmodial activities, hepatoprotective, nephroprotective, and immunomodulatory. The cytotoxic tests were also carried out using human hepatic cell lines in [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay.

Result: The *n*-hexane, ethyl acetate, and ethanolic extract *in vitro* antiplasmodial activity of *S. arvensis* L. leaf exhibited a good activity, with IC_{50} values were 5.119±3.27, 2.916±2.34, and 8.026±1.23 µg/mL, respectively. Each of the extracts also exhibited high antioxidants with low cytotoxic effects. Furthermore, the ethyl acetate extract showed *in vivo* antiplasmodial activity with $ED_{50} = 46.31\pm9.36$ mg/kg, body weight, as well as hepatoprotective, nephroprotective, and immunomodulatory activities in mice infected with *P. berghei*.

Conclusion: This study highlighted the antiplasmodial activities of *S. arvensis* L. leaf ethyl acetate extract against *P. falciparum* and *P. berghei* as well as the antioxidant, nephroprotective, hepatoprotective, and immunomodulatory activities with low toxicity. These results have the potential to be developed into a new antimalarial drug candidate. However, the compounds and transmission-blocking strategies for malaria control of *S. arvensis* L. extracts are essential for further study.

Keywords: Antioxidant, Antiplasmodial, Hepatoprotective, Immunomodulator, Nephroprotective, Malaria, *Plasmodium berghei, Plasmodium falciparum, Sonchus arvensis* L.

2.1 Background

Malaria is an endemic disease in tropical areas of Asia, Africa, and Central and South America, and is known to spread even in vaccinated populations [1]. In 2020, malaria accounted for 241 million new infections and 627 thousand deaths worldwide in 87 endemic countries. There were 14 million more malaria cases and 47,000 more deaths compared to 2019 [2]. Therefore, one of the United Nations Millennium Development Goals (MDGs) is to reduce the incidence and subsequent morbidity and mortality associated with malaria [2]. The malaria elimination target in Indonesia is 75% of the country, with no high-endemic district by the end of 2024 [3]. However, the significant obstacles to the treatment and prognosis of malaria are its resistance to chloroquine [4,5] and artemisinin-based combination therapy [2]. There is an urgent need to develop new antimalarial drugs and many researchers are currently exploring the efficacy of synthetic and natural products [6].

An estimated 80% of the global population uses natural products to treat various illnesses and diseases [7,8]. In the case of malaria, 75% of patients have been reported to treat with traditional medicines derived from various plant sources, including *Cinchona succirubra* L., as well as relatively newer medicines, such as artemisinin, which is produced from *Artemisia annua* L. [9]. In Indonesia, *Sonchus arvensis* L., a highly invasive species of the family Asteraceae, is used as a traditional medicinal plant for malaria treatment [10]. This plant contains various active compounds including flavonoids, saponins, and polyphenols [11], which have been reported for moderate to high antioxidant [12], hepatoprotective [13], nephroprotective [14], anti-inflammatory [15], and antibacterial activities [16-18]. Although *S. arvensis* L. has pharmaceutical benefits, it has never been evaluated for *in vivo* treatment of malaria.

The aim of the present study was to determine the *in vitro* and *in vivo* antiplasmodial activities of crude extracts from *S. arvensis* L. leaf, as well as the *in vitro* toxicity, *in vitro* antioxidant activities, and whole blood analysis of mice infected with *Plasmodium berghei*. The study results provide useful information regarding the antiplasmodial activity of a *S. arvensis* L. crude extract.

2.2 Materials and Methods

2.2.1 Plant collection and identification

S. arvensis L. was from Taman Husada Graha Famili (Medicinal Plant Graden of Graha Famili) Surabaya, East Java, Indonesia. The plant was cultivated in private field and harvested at 2–3 months before the generative stage. The leaves were green and

healthy, with no indications of damage due to insects or microbes. The plant material used was confirmed by botanist researcher at Purwodadi Botanical Garden, Indonesian Institute of Sciences, Purwodadi, East Java, Indonesia (number of determination 1020/IPH.3.04/HM/X/2019). The voucher specimen was deposited in the Plant Systematics Laboratory, Department of Biology, Faculty of Science and Technology, Universitas Airlangga (No. SA.0110292021).

2.2.2 Plant extraction

The leaf of *S. arvensis* L. was air-dried and then ground into a powder (60-mesh size sieves). Each 1 kg of powder was separately macerated with different solvents including *n*-hexane, ethyl acetate, and ethanol for 24 h at room temperature ($28\pm2^{\circ}$ C) three times, filtered with filter paper (pore diameter 110 mm; Merck KGaA, Darmstadt, Germany), and then evaporated in a rotary evaporator at 60°C to acquire crude extracts. The yields of the extracts (w/w) were measured prior to storage at 4°C.

2.2.3 Phytochemical screening

The crude extracts of *S. arvensis* L. leaf was screened for phytochemical content by standard methods including the Wilstatter "cyanidin" test for flavonoids, Mayer's test for alkaloids, the ferric chloride test for polyphenols, the Liebermann–Burchard test for terpenoids, and the foam test for saponins [19].

2.2.4 Thin Layer Chromatography (TLC) Analysis

Five mg of each crude extract of *S. arvensis L* leaf were dissolved in 100 μ l of *n*-hexane, ethyl acetate, and ethanol, respectively. Aliquots of samples (5 μ L) were spotted and allowed to dry on a TLC plate (Silica gel GF254). The plate was developed with *n*-hexane: ethyl acetate (4:1) as the mobile phase. Detection of compounds was achieved by spraying with ρ -anisaldehyde sulfuric acid reagent [18], then heating at 105°C for 10 min or until the colored bands appeared.

2.2.5 Antioxidant assay

Antioxidant activity was evaluated by a method of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay [20]. In brief, 100 μ L of methanolic DPPH reagent (0.2 mM) was mixed with 100 μ L of each sample in methanol at different concentrations (1.75, 3.15, 6.25, 10, 12.5, 15, 25, 35, 50, 75, 100, 150, and 200 μ g/mL) and methanol as the

control. The mixtures were incubated for 30 min in the dark at room temperature and the absorbance was measured at 517 nm. The assay was conducted in twofold wells for each sample and control for calculating the IC_{50} value and replicated three times.

The inhibition of DPPH was calculated using the following equation:

DPPH inhibition (%) = $(A_{control}-A_{samplel})/A_{control} \times 100\%$. (1)

where A_{sample} is the absorbance of the sample and $A_{control}$ is the absorbance of the DPPH reagent at the wavelength of 517 nm. The percentage of inhibition results at different concentrations were then plotted and regressed linearly to obtain the IC₅₀ values of DPPH. The IC₅₀ value was calculated as the mean and standard deviation from three replication.

2.2.6 In vitro antiplasmodial activity assay

In this study, the antiplasmodial activity of leaf extracts was investigated against the chloroquine-sensitive strain of P. falciparum (3D7). The parasite was cultured in human O^{Rh+} red blood cells according to the method of Trager and Jensen [21] using Roswell Park Memorial Institute 1640 (RPMI-1640) medium supplemented with 50µg/mL hypoxanthine, 2 mg/mL sodium bicarbonate (NaHCO₃), 5.94 g/L of N-2-hydroxyethyl piperazine-N-2-ethane sulfonic acid (HEPES) and 10% serum blood group O^{Rh+}. The parasitized culture suspension containing 1% parasitemia was prepared in complete RPMI-1640 and 150- μ L volume of this was dispensed in a 24-well microplate (5% hematocrit). The extracts were dissolved in dimethyl sulfoxide (DMSO), diluted with medium to obtain the required concentrations (0.01, 0.1, 1, 10, and 100 µg/mL), and aliquoted (50 µL) into each well of parasitized culture suspension. The parasitized cultures without plant extract (DMSO) served as negative controls whereas cultures with chloroquine diphosphate served as positive controls. The plates containing parasite cultures were incubated in an incubator (at 37°C, 5% CO₂, 95% humidity) for 48 h. The treatments were carried out in three times (n=3). Afterward, the suspensions were collected, thinly smeared on glass slides, fixed with methanol, and stained with 10% Giemsa. The number of parasites was counted under a microscope and compared with the negative control to determine the extent of parasite growth inhibition. The equation for calculating parasitemia, inhibition, and growth percentage used the equation method as described in a previous study [18].

The percentage of parasitemia was calculated using the formula:

% Parasitemia = $\frac{\sum \text{ infected eritrocyte}}{5000 \text{ of total eritrocyte}} \times 100\%$ (2)

The percentage of inhibition was counted using the equation:

% Inhibition = 100% -
$$\left[\frac{Xp}{Xk} \times 100\%\right]$$
 (3)

The percentage of growth was calculated using the formula:

% Growth= % parasitemia Un-% parasitemia Do (4)

Where:

Xp = Treatment parasitemia

Xk = Negative control parasitemia

Un = % parasitemia in each concentration

Do = % parasitemia at the start

The probit analysis was conducted to calculate the IC_{50} values.

2.2.7 Cytotoxicity test

Cytotoxicity of extracts was assessed by the method of 3-[4, 5-dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide (MTT) assay as described by Fosenca et al. [22]. Dimethyl sulfoxide (DMSO) was used to dissolve the extracts, then they were diluted with medium to obtain the required concentrations (6.25, 12.5, 25, 50, 100, 200, 400, 600, 800, and 1000 μ g/mL). hepatocyte-derived cellular carcinoma cells (Huh7it-1 cells) line were cultured in complete Dulbecco's modified Eagle's medium (DMEM) supplemented with 1% (v/v) glutamine (200 mM) at 37°C under an atmosphere of 5% of carbon dioxide atmosphere and 95% humidity. The culture was conducted three times. The cell numbers were determined by measuring the absorbance at 560 nm and 750 nm using multiplate reader and the viability were assessed.

The viability of cells was calculated using the equation:

% of viability = $(A_{sample}/A_{control}) \times 100\%$ (5)

where A_{sample} was the absorbance sample at 560 nm-Absorbance sample at 750 nm and $A_{control}$ was the absorbance DMEM medium. The percentage of cell viability was

then plotted and regressed linearly to obtain the CC_{50} values. The selectivity index (SI) values were calculated based on the ratio between the CC_{50} value of cytotoxicity and antiplasmodial activity *P. falciparum* 3D7 from each extract (IC₅₀).

2.2.8 In vivo antiplasmodial activity assay

The extract with the highest antiplasmodial activity against P. falciparum 3D7 was selected to subsequently analyze the antiplasmodial activity against P. berghei (the mice-infected Plasmodium) with Peter's method [23]. The strain of P. berghei ANKA was obtained from the Eijkman Institute of Molecular Biology (Jakarta, Indonesia). Blood infected with P. berghei ANKA was taken from mice with 20% parasitemia and diluted with phosphate-buffered saline. Swiss mice Mus musculus of BALB/c strain (male; body weight 25±3 g; 6-8 weeks old) were intraperitoneally injected with 0.2 mL blood (1×10^{6} ANKA parasitized erythrocytes) and randomly divided (n = 7 per group) into four experimental groups and three control groups (normal, negative, and positive control). The experimental groups were orally treated with 0.25 mL single dose of 1, 10, 100, or 200 mg/kg BW of leaf extract (in 0.5% sodium carboxymethyl cellulose (Na-CMC)) two times per day for four days for antiplasmodial assay and continued seven days for biochemical analysis. The negative and positive control groups were treated with 0.5% Na-CMC suspension and 10 mg/kg BW of chloroquine diphosphate, respectively. The normal control group was the uninfected and untreated mice group (Table 1). On each day, blood was collected from the tail vein of each mouse, thinly smeared on a glass slide, fixed with methanol, and then stained with Giemsa. The slides were then observed under a microscope to calculate the percentage of parasitemia, inhibition, and growth. The formula of them used as described in in vitro antiplasmodial activity against P. falciparum 3D7. The median effective dose or effective dose for 50% of the population (ED_{50}) was calculated with Probit analysis. The ED₅₀ was calculated from each replication, and then averaged getting the mean and deviation standard.

Table 1. Experimental design of *in vivo* study for antiplasmodial activity and biochemical analysis

Exporiment	Plasmodium	Plasmodium		Replication
Croup	berghei- infected	Treatment		
Group	mice			
Normal Control	-	Na-CMC	7	7
Positive Control		Chloroquine-	7	7
	Ť	phosphate		
Negative Control	+	Na-CMC	7	7
P1	+	1 mg/kg BW	7	7
P2	+	10 mg/kg BW	7	7
P3	+	100 mg/kg BW	7	7
P4	+	200 mg/kg BW	7	7

Note: Mice blood sample was analyzed for the percentage of parasitemia for 4 days except for the normal control and biochemical analysis on the seventh day for all treatment and control.

2.2.9 Biochemical analysis

After seven-day treatments, blood samples (0.5-0.75 mL) were collected from the left ventricle of each mouse into 1.5-mL microtubes and left standing at room temperature for 2 h. Then, serum was isolated by centrifugation at 3000 rpm for 20 min. The levels of serum glutamic-oxaloacetic transaminase (SGOT) and serum glutamic-pyruvic transaminase (SGPT) in obtained serum were measured using commercial enzyme-linked immunosorbent assay (ELISA) kits (DiaSys Diagnotic System, Holzheim, Germany) to assess the hepatoprotective effects of the selected extract on infected mice. For analyzing nephroprotective effects, blood urea nitrogen (BUN) and creatinine levels were measured using commercial ELISA kits (DiaSys Diagnotic System, Holzheim, Germany). The level of tumor necrosis factor-alpha (TNF- α) and interleukin 10 (IL-10) in serum was also analyzed to investigate the

immune response of treated/control mice using commercial ELISA kits (BioLegend, San Diego, CA, USA). The replication of samples was four to seven times (Table 1).

2.2.10 Data analysis

Data are expressed as the mean \pm standard deviation (SD). The IC₅₀ of antioxidant and CC₅₀ of cytotoxicity were counted using regression linearly (Microsoft Excel). The Probit analysis was conducted to calculate the IC₅₀ and ED₅₀ values. Statistical significance was determined with the one-way analysis of variance (ANOVA) continued with Duncan Multiple Range Test (DMRT) for IL-10 and TNF- α , with a nonparametric independent *t*-test for SGOT and SGPT, and Kruskal–Wallis continued with Mann Whitney test for BUN and creatinine data. The level of significance was set at 0.05. All statistical analyses were conducted using IBM SPSS Statistics for Windows, version 20.0. (IBM Corporation, Armonk, NY, USA).

2.2.12 Ethics approval

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The study protocol was approved by the Institutional Animal Care and Use Committee of the Faculty of Veterinary Medicine of Universitas Airlangga (Surabaya, East Java, Indonesia) (approval no. 499/HRECC.FODM/XI/2020). All surgery was performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering.

Chulalongkorn University

2.3 Results

2.3.1 The extract yields and phytochemical screening

The dried leaf was successively macerated and each kilogram of dried leaf yielded 59.26 ± 2.04 g of ethanol extract, 10 ± 1.1 g of ethyl acetate extract, and 25.9 ± 5.5 g of *n*-hexane extract (Table 2).

 No.
 Extract
 Yield (g/kg)

 1
 n-Hexane
 25.9±5.5

 2
 Ethyl acetate
 10±1.1

 3
 Ethanol
 59.26±2.04

Table 2. Extraction yield of Sonchus arvensis L. leaf

Note: The data were represented as mean ± standard deviation (SD), n=3.

Secondary metabolites including terpenoids, flavonoids, and alkaloids were present in all extracts. However, saponins were only present in the ethanol extract, and polyphenols were present in ethanol and ethyl acetate extracts (Table 3).

Table 3. Phytochemical screening of Sonchus arvensis L. leaf extract

No	Phytochemical	Marker	n-Hexane	Ethyl	Ethanol
				acetate	
1	Terpenoids	Deep green color	++	+++	+
2	Flavonoids	Pink orange or violet	+	++	++
3	Alkaloids	White precipitated	+	+	+
4	Saponin	Foam	-	-	++
5	Polyphenol	Blackish green	1221	+	++

Note: + +, Strongly positive; +, Weakly positive; -, Not determined

2.3.2 Terpenoid screening of the extracts of *Sonchus arvensis* L. by thin-layer chromatography (TLC)

The *n*-hexane, ethyl acetate, and ethanol extracts of *Sonchus arvensis* L. were observed by TLC and there were two visible spots in daylight and under 254-nm UV light (R_f value = 0.12 and 0.18). Under 366-nm UV light, there were five separate stains with R_f values of 0.14, 0.24, 0.19, 0.35, and 0.53. After staining using *p*-anisaldehyde sulfuric acid, three separate purple stains were seen, with R_f values of 0.31, 0.59, and 0.71 (Fig. 1).

Figure 1. Chromatogram of *Sonchus arvensis* L. extracts TLC. A. Day light, B. UV 254nm, C. UV366nm, D. After sprayed by p-anisaldehyde sulfuric acid (the purple spot is terpenoid), I. n-Hexane extract, II. Ethyl acetate extract, III. Ethanol extract

2.3.3 Antioxidant activities

The DPPH assay was conducted to assess antioxidant activities. The IC₅₀ value of all extracts was shown in Table 4. All extracts possessed antioxidant activities. From lowest to highest, the IC₅₀ values were 8.27 ± 4.93 , 12.36 ± 10.40 , 31.35 ± 3.27 , and $108.59\pm11.24 \mu$ g/mL for the ethyl acetate, ethanol, methanol, and *n*-hexane extracts, respectively. Furthermore, the IC₅₀ of ascorbic acid as standard was $22.63\pm1.40 \mu$ g/mL (Appendix 1: Supplementary Data I).

Table 4. In vitro antioxidant activity of Sonchus arvensis L. leaf extract

No.	Extract Antioxidant activity (IC ₅₀ , µg/mL)			
1. <i>n</i> -Hexane		108.59±11.24		
2.	Ethyl acetate	8.27±4.93		
3.	Ethanol	12.36±10.40		
4.	Methanol	31.35±3.27		
5.	Ascorbic acid	22.63±1.40		

Note: The data were represented as mean ± standard deviation (SD), n=3.

2.3.4 In vitro antiplasmodial activity

The IC₅₀ values of all extracts of *Sonchus arvensis* L. leaf at various doses were shown in Table 4. As determined by the IC₅₀ values, the ethyl acetate extract had the highest *in vitro* antimalarial activity, followed by the *n*-hexane and ethanol extracts (2.916±2.34, 5.119±3.27, and 8.026±1.23 μ g/mL, respectively) (Table 5) (Appendix 1: Supplementary data II).

Table5. In vitro antiplasmodial activity of Sonchus arvensisL. leaf extractsagainst P. falciparum strain 3D7

No.	Extract	% Inhibition at each concentration (µg/mL)				IC ₅₀		
		100	10		0.1	0.01	0.001	(µg/mL)
1	<i>n</i> -Hexane	100±0	53.81±0.65	45.21±1.94	35.79±3.9	31.73±3.73	-	5.119±2.34
2	Ethyl acetate	100±0	75.82±1.93	65.68±3.09	44.89±9.73	34.84±1.49	-	2.916±3.27
3	Ethanol	93.6±0.53	27.54±2.51	23.50±1.11	13.09±1.49	6.94±0.36	-	8.026±1.23
4	Chloroquine	100±0	100±0	100±0	79.76±4.51	40.49±5.29	17.17±2.31	0.014±0.0021
	diphosphate							

Note: The data were represented as mean ± standard deviation (SD), n=3.

2.3.5 Toxicity and selectivity index (SI)

The toxicity of all *Sonchus arvensis* L. extracts to hepatocytes was determined. From highest to lowest, the IC₅₀ values of the extracts were 1420.88±20.88, 437.39±7.46, and 778.77±10.53 μ g/mL for *n*-hexane, ethanol, and ethyl acetate extract,

respectively (Table 6). Then, the SI was calculated by comparing the toxicity and in vitro antimalarial activity. From highest to lowest, the SI values were 277.57 \pm 5.77, 150 \pm 3.62, and 97.03 \pm 13.13 for *n*-hexane, ethanol, and ethyl acetate extract, respectively (Table 6) (Appendix 1: Supplementary Data III).

No.	Extract	In Vitro Toxicity,	Selectivity Index
		IC ₅₀ (µg/mL)	(SI)
1	<i>n</i> -Hexane	1420.88±20.88	277.57±5.77
2	Ethyl Acetate	437.39±7.46	> 150±3.62
3	Ethanol	778.77±10.53	97.03±13.13

Table 6. In vitro toxicity and selectivity index (SI) of *Sonchus arvensis* L. leaf extract

Note: The data were represented as mean \pm standard deviation (SD), n=3.

2.3.6 In vivo antiplasmodial activity

The *in vivo* antimalarial activity of the ethyl acetate extract was also determined. As shown in Table 7, the parasitemia rates decreased with increasing doses. The inhibition rates of doses at 1, 10, 100, and 200 mg/kg BW were 0%, $32.86\pm7.5\%$, $56.32\pm2.64\%$ and $77.48\pm2.93\%$, respectively. Probit analysis determined that the ED₅₀ value of the ethyl acetate extract was 46.31 ± 9.36 mg/kg BW. This result was significant as compared to the negative control (Na-CMC) (Appendix 1: Supplementary data IV).

Sample Dose Mean % Parasitemia Mean % Mean % ED₅₀ (mg/kg) (mg/kg) inhibition growth Day 0 Day 4 Ethyl acetate extract of S. 1 1.51± 0.07 7.44± 0.21 5.93± 0.17 46.31±9.36 arvensis L. 10 1.42± 0.07 5.39± 0.43 3.97± 0.44 32.86± 7.50 100 1.51 ± 0.07 5.09± 0.56 2.57± 0.12 56.32± 2.64 200 1.46± 0.09 3.96± 0.68 1.36± 0.12 77.48± 2.93 Na-CMC 1.44 ± 0.12 7.36± 0.24 5.91± 0.31 1.48+ 0.09 0.02± 0.01 Chloroguine diphosphate 10

Table7. Parasitemia, growth, and inhibition percentage of Sonchus arvensis L.ethyl acetate extract against Plasmodium berghei

Noted: The data were represented as mean ± standard deviation (SD), n=7. The Na-CMC: sodium carboxymethyl cellulose.

2.3.7 Whole blood analysis of P. berghei infected mice

Mice infected with *P. berghei* were orally administered ethyl acetate extract of *S. arvensis* L. two times per day for 7 days. Afterward, blood samples were collected to determine the hepatoprotective (SGOT and SGPT), nephroprotective (BUN and creatinine), and immunomodulatory (IL-10 and TNF- α) effects (Table 8).

SGOT and SGPT levels

SGOT and SGPT are produced in response to liver injury. Higher serum levels of SGOT and SGPT indicate more significant liver injury. As compared to the negative control (201.87 U/L), serum SGOT levels of mice infected with *P. berghei* were significantly decreased by treatment with ethyl acetate extract at 1, 10, 100, and 200 mg/kg BW (100.68, 73.85, 69.82, and 33.11 U/L, respectively, p<0.05). However, there was no different significant between normal control (40.76 U/L), positif (32.92 U/L), and treatment groups (200 mg/kg BW),

Furthermore, as compared to negative control (24.13 U/L) and treatment with ethyl acetate extract at 1 mg/kg BW (32.36 U/L) and 10 mg/kg BW (22.74 U/L), serum SGPT levels were significantly decreased in the groups treated with 100 and 200 mg/kg BW (13.45 and 2.75 U/L, respectively) as well as the positive and normal control groups (5.4 and 12.4 U/L, respectively). Overall, the SGOT and SGPT levels

significantly decreased in the treatment groups compared with the negative control group (p<0.05).

BUN and creatinine levels

Relatively higher serum levels of BUN and creatinine are indicative of severe renal injury. As compared to the negative control group (7.00 mg/dL), the serum BUN levels of the infected mice were significantly decreased by treatment with the ethyl acetate extract at 1, 10 100, and 200 mg/kg BW (2.61, 2.95, 4.75, and 2.01 mg/dL, respectively), p<0.05. In addition, as compared to the negative control group (1.99 mg/dL), serum creatinine levels were significantly decreased by treatment with the ethyl acetate extract at 1, 10, 100, and 200 mg/kg BW (0.14, 0.37, 0.27, and 0.23 mg/dL, respectively), p<0.05.

Cytokine production

Serum IL-10 and TNF- α levels were significantly increased in the treatment groups as compared to the normal and negative control groups. As compared to the negative control group (88.00 pg/mL), serum IL-10 levels were significantly increased in the positive control group (131.09 pg/mL) and slightly increased in the groups treated with the ethyl acetate extract at 1, 10, 100, and 200 mg/kg BW (113.27, 106.36, 116.55, and 119.64 pg/mL, respectively, p<0.05), while there was no significant difference as compared to the normal control group.

Moreover, as compared to treatment with the ethyl acetate extract at 1 mg/kg BW (287.93 ng/mL), serum levels of TNF- α were significantly increased by treatment with 10, 100, and 200 mg/kg BW (794.93, 848.07, and 729.64 ng/mL, respectively, *p*<0.05). There were also significant differences among the negative, normal control, and positive control groups (237.64, 249.64, and 257.93 g/mL, respectively, *p*<0.05). Collectively, these results suggested that ethyl acetate extract of *S. arvensis* L. enhances the immune response of mice against *P. berghei* infection.

Table 8. Serum IL-10, TNF-α, SGOT, SGPT, BUN, and creatinine levels of mice infected with *P. berghei* strain ANKA after treatment with *S. arvesis* L. leaf ethyl acetate extract

Treatment	IL-10	TNF-α	SGOT	SGPT	BUN	Creatinine
	(pg/mL)	(ng/mL)	(U/mL)	(U/mL)	(mg/mL)	(mg/mL)
Normal Control	105.27±10.25 ^b	249.64±99.97 ^a	40.76±9.59 ^a	12.4±0.84 ^b	3.42±0.08 ^c	0.23±0.06 ^b
Positive control	131.09±8.13 ^c	257.93±160.33 ^a	32.92±6.07 ^a	5.4±2.73 ^a	0.75±0.36 ^a	0.39±0.01 ^c
(chloroquine						
diphosphate)						
Negative control (Na-	88.06±22.96 ^a	237.64±113.82 ^a	201.87±91.73 ^d	24.13±2.45 ^c	7.00±0.255 ^d	1.99±0.29 ^d
CMC)			123			
Ethyl acetate extract						
(mg/kg BW)	1					
1	113.27±13.21 ^b	387.93±123.59 ^a	100.68±2.98°	32.37±13.61 ^c	2.61±1.62 ^b	0.14±0.02 ^a
10	106.36±11.32 ^b	794.93±427.89 ^b	73.85±10.41 ^b	22.74±2.08 ^c	2.95±1.19 ^b	0.37±0.04 ^c
100	116.55±6.95 ^{bc}	848.07±216.86 ^b	69.82±7.1 ^b	13.45±3.4 ^b	4.75±097 ^c	0.27±0.04 ^b
200	119.64±2.84 ^{bc}	729.64±126.89 ^b	33.11±13.16 ^a	2.75±0.59 ^a	2.01±1.33 ^b	0.23±0.09 ^b

Note: The experiment was conducted in 4-7 replications. Normal control is uninfected and untreated mice group. The values followed by the same letter show no significant difference in the one-way analysis of variance (ANOVA) continued with Duncan Multiple Range Test (DMRT) for IL-10 and TNF- α , with a nonparametric independent *t*-test for SGOT and SGPT, and Kruskal–Wallis continued with Mann Whitney test for BUN and creatinine data. The significant level was set 0.05 (Appendix 1: Supplementary data V).

Chulalongkorn University

2.4 Discussion

Management and accessibility of healthcare are important problems in Eastern Indonesia. Hence, home treatment with traditional medicines is the most common method for the treatment of malaria. The use of traditional medicine is safe, cost-effective, and efficient to ensure access to healthcare services. According to the World Health Organization (WHO), the use of traditional medicines continues to increase worldwide. Traditional medicines are rooted in Indonesian culture and history, although many traditional treatments have not been scientifically validated. Among the strategic objectives proposed by the WHO, the safety and effectiveness of
traditional medicines are primary goals before integrating traditional drugs in modern healthcare [2].

S. arvensis L. is the seventh most popular medicinal plant for treating various diseases in Indonesia, especially in Java and Bali [12]. Although the extract of *S. arvensis* L. callus is reported to possess antiplasmodial activities [17,18], the efficiency and safety for malaria treatment have not been registered. Hence, the aim of this study was to evaluate the antiplasmodial, toxicity, and antioxidant activity of crude extracts of *S. arvensis* L. leaf.

One kilogram of dried *S. arvensis* L. leaf was extracted by successive maceration with *n*-hexane, ethyl acetate, and ethanol. From each solvent, different extract weights were obtained. Each of the *S. arvensis* L. extracts was screened for the presence of phytochemicals. The ethanol extract contained flavonoids, alkaloids, terpenoids, saponins, and polyphenols, while the ethyl acetate extract included flavonoids, alkaloids, terpenoids, and polyphenols, and the *n*-hexane extract contained flavonoids, alkaloids, and terpenoids.

The Wilstatter "cyanidin" test confirmed the presence of flavonoids, while testing of the extract showed the presence of alkaloids, as indicated by the formation of a white precipitate after the addition of Mayer reagent. The Liebermann–Burchard test results confirmed the presence of terpenoids, as indicated by the yellow color of the solution. After adding a few drops of 10% FeCl₃, the color of the solution changed to dark green, indicating the presence of tannins. Meanwhile, the presence of saponins was confirmed if the foam extract did not disappear after the addition of distilled water and shaking [11].

Polyphenols were present in the ethanol extract, whereas relatively large amounts of terpenoids were confirmed in the ethyl acetate and *n*-hexane extracts. These findings are consistent with similar studies conducted by Khan [24] and Seal [25]. Many triterpenoids have been isolated from the *n*-hexane extract of *S. arvensis* L. [16]. Additionally, some phytochemicals may be responsible for the various activities of *S. arvensis* L. For example, flavonoid and phenolic compounds possess antioxidant activities [24], saponins have anti-inflammatory activities [26], and terpenoids exhibit antimicrobial activities [16].

17

Furthermore, *S. arvensis* L extract showed antioxidant activities. The ethyl acetate and ethanol extracts exhibited potent antioxidant activities (IC₅₀ < 50 µg/mL), with IC₅₀ value 8.27±4.93µg/mL and 12.36±10.40 µg/mL respectively. While *n*-hexane extract had moderate antioxidant activity (101 > IC₅₀ < 250 µg/mL) [27]. The IC₅₀ value (the antioxidant activity) of ethyl acetate extract was lower than ascorbic acid as standard (22.63±1.40 µg/mL) (Table 3). Moreover, compared to the other studies, the leaf extract from *S. arvensis* L was lower than those of plants and callus *Trifolium pratense* L. [28], *Callisia fragrance* leaf juice [29], and *Centella asiatica* L. leaf [30] that have been previously reported as high antioxidant compound. The potent antioxidant activity of the *S. arvensis* L. extract was probably due to the presence of active ingredients with antioxidant activities, such as polyphenols and flavonoids. These findings are similar to those of previous studies of different plant sources [15,24,25,31].

The antioxidant activity of the ethyl acetate extract was as good as the *in vitro* antimalarial effect. In general, an IC₅₀ value less than 10 µg/mL is considered to indicate the high activity, while $10 < IC_{50} \le 25$ µg/mL can be regarded as moderately active and values >25 µg/mL are deemed inactive [32,33]. All plant extracts in this study presented the IC₅₀ values less than 10 µg/mL; therefore, they were primarily considered as the new candidates for antimalarial-drug development. The IC₅₀ values of the ethyl acetate extract, n-hexane, and ethanol extracts were 2.916, 5.119, and 8.026 µg/mL, respectively. The IC₅₀ value criteria for antiplasmodial activity is currently still being debated. Therefore, the industry standardizes the IC₅₀ value, a pure compound is said to be active as antiplasmodial activity if the IC₅₀ value is below 10 µg/mL [6].

The toxicity of *S. arvensis* L. extracts were evaluated by calculating the ratio of cytotoxicity with human hepatic cell lines to *in vitro* antiplasmodial activity (SI=selectivity index). A higher SI, theoretically, indicates greater drug effectiveness and safety for the treatment of plasmodial infections. An ideal drug would be cytotoxic only at very high concentrations and have antiplasmodial activities at low concentrations, thus yielding a high SI value and eliminating the plasmodial target at concentrations well below the cytotoxic concentration [34]. The IC₅₀ values of

extracts toxicity were 1420.88±20.88, 778.77±10.53, and 437.39±7.46, µg/mL, and then the SI value were 277.57±5.77, 97.03±13.13, and 150±3.62 for *n*-hexane, ethanol, and ethyl acetate extract respectively. de Souza et al. [35] mentioned that "the natural product has been suggested that the SI>10 indicate a favorable safety window between the effective concentration against the parasite and the toxic concentration to human cell". Aryanti et al. [36] reported that the extract or fraction has high selectivity if the value of SI ≥3, and less selectivity if the value of SI≤313. So, all *S. arvensis* L. leaf extracts exhibited low toxicity. Nurianti et al. [37] found that an ethyl acetate extract of *S. arvensis* L had no toxic effects, and Harun et al. [38] revealed that an ethanol extract of *S. arvensis* L. was not toxic to healthy male albino rats. The antioxidant activities suggest that these extracts are relatively non-toxic because oxidative stress represents an imbalance between the production of free radicals and the ability of a biological system to readily detoxify reactive intermediates or repair the resulting damage [39].

Moreover, the ethyl acetate extract of S. arvensis L. was chosen for the assessment of in vivo antiplasmodial activity because it exhibited the highest antioxidant and in vitro antiplasmodial activities, with IC₅₀₌8.27 and 2.916 µg/mL respectively. In vivo antiplasmodial activity can normally be classified as moderate, good, and very good if an extract displayed percentage inhibition equal to or greater than 50% at a dose of 500, 250, and 100 mg/kg BW per day, respectively [40]. Method and criteria are varied among the treatment groups examining antimalarial potency of plants by using the rodent animal model. *P. berghei*-infected mice given orally 50-250 mg/kg/day of extract exhibiting inhibition percentage >60% are considered to be active or very active, and those exhibiting inhibition percentage >30% are considered to be moderately active [32,33]. Based on this classification, the ethyl acetate extract of S. arvensis L. showed excellent in vivo antiplasmodial activity below 100 mg/kg/day with an ED50 of 46.31±9.36 mg/kg. The ED50 of ethyl acetate extract of S. arvensis L. was higher than the ethanolic extract of H. annuus root has an ED50 value of 10.6±0.2 mg/kg [41] but lower than the Tagetes erecta L. and Synedrella nodiflora (L.) Gaertn. extract can significantly suppress parasitemia in

malaria-infected mice by 50.82% and 57.67% respectively at 400 mg/kg BW dose [40]. Compared to another Asteraceae member, the ethyl acetate extract of *S. arvensis* L. could be developed as an antiplasmodial agent.

Furthermore, blood was collected from the experimental mice to determine the nephroprotective, hepatoprotective, and immunomodulatory activities after 7 days of treatment with ethyl acetate extract of *S. arvensis* L. Many studies have reported that *S. arvensis* L. extracts exhibited antioxidant [24], hepatoprotective [13], nephroprotective [42], and immunomodulatory [43] activities. The present study was conducted to assess the effect of an ethyl acetate extract of *S. arvensis* L. against *P. berghei* infection in mice.

An increase in SGPT and SGOT serum levels indicates liver damage [15], and a rise in BUN and creatinine levels suggests a failure of the kidneys or their possible malfunction [39]. The results showed that the ethyl acetate extract protected the liver and kidneys by reducing SGOT, SGPT, creatinine, and BUN levels.

Overall, the serum levels suggested that the ethyl acetate extract of S. arvensis L showed nephroprotective, hepatoprotective, and immunomodulatory activities in mice infected with P. berghei. The result is very interesting because the pathogenesis caused by P. berghei is multifactorial and has not been well characterized. There were several hypotheses suggesting that erythrocyte cytoadherence, proinflammatory response, nephrotoxicity, and oxidative stress are involved in the pathogenesis of P. berghei [44,45]. Free heme-mediated oxidative stress, in which free heme is produced by parasites that consume hemoglobin during the intra-erythrocytic phase, has been implicated in lipoprotein oxidation [46] and serious kidney damage [46]. In addition, malaria infection is caused by parasites and host factors, where there will be microvascular disturbances in the host's body. P. berghei parasites will infect erythrocytes and activate cytokines of phagocytic cells and endothelial cells to produce TNF- α , IL-10, IFN- γ , and free radicals (ROI, ROS, and NO). Free radicals are molecules with one unpaired electron in their outer orbit which makes the molecule unstable [42]. Free radicals can cause oxidative stress. It has implications for various pathological conditions [48]. The involvement of oxidative stress can cause the amount of antioxidant status to decrease [42].

Oxidative stress condition is defined as in-balance condition between antioxidants and free radicals, where the state of free radicals is higher than antioxidants [14]. The number of antioxidants decreases because the body used to balance the high free radicals due to the presence of parasites. The more severe the infection from *P. berghei*, the use of antioxidants in the body will increase, causing the number of antioxidants in the body to decrease [42]. The biochemical data of serum of mice infected *P. berghei* supported that the *S. arvensis* L. ethyl acetate extract is active as antiplasmodial. Particularly, the *S. arvensis* L. leaf ethyl acetate extract increases the mice immune response to *P. berghei* infections. It is very valuable for the further investigation of efficacious the *S. arvensis* L. leaf as antiplasmodial drug candidate,

The comprehensive tests and discussions in this study confirmed that ethyl acetate extract possessed antimalarial both *in vitro* and *in vivo* with nephroprotective, hepatoprotective, and immunomodulatory activities in mice infected with *P. berghei*. This study highlighted that *S. arvensis* L. crude extract had antimalarial activity. Completely, these results suggested that ethyl acetate extract of *S. arvensis* L. could be used to develop new antimalarial drugs in the future from a natural resource.

2.5 Conclusion

The results of this study confirmed the antiplasmodial activity of ethyl acetate extract of *S. arvensis* L. both *in vitro* and *in vivo* as well as the antioxidant, nephroprotective, hepatoprotective, and immunomodulatory activities with low toxicity. It was strongly suggesting the potential as an antimalarial drug. These findings lay a foundation for further investigations of new antimalarial compounds for future pharmaceutical applications. Further research, including bioassay-guided fractionation, was also recommended to identify new antimalarial drug candidates.

Abbreviations

BUN	blood urea nitrogen
SGOT	serum glutamic oxaloacetic transaminase
SGPT	serum glutamic pyruvic transaminase
TNF- $lpha$	tumor necrosis factor alpha

IL-10 interleukin 10

IC₅₀ half maximal inhibitory concentration

ED₅₀ median effective dose

DPPH 2,2-diphenyl-1-picryl-hydrazyl-hydrate

Ethical approval and consent to participate

Applicable. Experimental research and field studies on plants was complied with relevant institutional, national, and international guidelines and legislation. The permission was obtained from Taman Husada Graha Famili (Medicinal Plant Garden of Graha Famili) Surabaya, East Java, Indonesia, managed by Universitas Airlangga and PT. Intiland Development Tbk., Surabaya, East Java, Indonesia, with the Memorandum of Understanding number 3001/UN3.1.8/2014 and the Memorandum of Activity number 142/GFV-PM HSG/SRT/HH/VIII/2021. The study was reported in accordance with ARRIVE guidelines (https://arriveguidelines.org).

Consent for publication

Not applicable

Data Availability and material

The datasets generated and analyzed during the current study are not online available due to **funding policy** however they are available from the corresponding author or first authors on reasonable request.

Competing interests จุฬาลงกรณ์มหาวิทยาลัย

The authors declare that they have no competing interests

Funding

This work was supported by the Universitas Airlangga, Contract No. 405 /UN3.14/PT/2020

Authors' contributions

DKW: concepted and conducted the experiments, analysed the data, and wrote the manuscript, SW: assisted the plant extractions and screened the phytochemicals, WB: assisted the experiments and interpreted the results, SPAW: analysed the biochemical blood and interpretated the results reviewed. WE: helped with in vitro and in vivo antimalarial assay design. HP: assisted the collection, identification, and classification of plant material, HP: assisted with conception and material preparation,

and SP was the primary author of the manuscript. All authors read and approved the final manuscript.

Acknowledgments

The authors would like to acknowledge Universitas Airlangga Rector Scholarship. The authors also would like to thank Nindy Tresiana Putri, Rizal Adistya Putra Pradana, and Manikya Pramudya for their support in the *in vivo* antimalarial assays, Shilfiana Rahayu, Hikma, and Talita for coordinating the preparation of the raw plant extracts studied and whole blood analysis of mice.

2.6 References

- World Health Organization. Guidelines for the Treatment of Malaria. 3rd ed. Italy: WHO Press, World Health Organization; 2015.
- World Health Organization. World Malaria Report 2021. Geneva, Switzerland: WHO Press, World Health Organization; 2021.
- 3. APMEN. The Asia pacific malaria elimination network (APMEN). 2020. https://www.apmen.org/. Accessed January 25, 2021.
- Aguiar ACC, Santos RdM, Figueiredo FJB, Cortopassi WA, Pimentel AS, França TCC. Antimalarial Activity and Mechanisms of Action of Two Novel 4-Aminoquinolines against Chloroquine-Resistant Parasites. PLoS ONE. 2012; 7(5): e37259. doi: 10.1371/journal.pone.0037259
- Davanco MG, Aguiar ACC, Dos Santos LA, Padilha EC, Campos ML. Evaluation of antimalarial activity and toxicity of a new primaquine prodrug. PLoS ONE. 2014; 9(8): e105217. doi: 10.1371/journal.pone.0105217
- 6. Tajuddeen N, Van Heerden FR. Antiplasmodial natural products: an update. Malar J. 2019; 18(404):1-62. doi:10.1186/s12936-019-3026-1
- 7. Katiyar D, Singh K, Ali M. Phytochemical and pharmacological profile of Pterocarpus marsupium: a review. J Pharm Innov. 2016; 5:31-9.
- 8. Waiganjo B, Moriasi G, Onyancha J, Elias N, Muregi F. Antiplasmodial and cytotoxic activities of extract of selected medicinal plants used to treat malaria in Embu County, Kenya. J Parasitol Res. 2020; 2020:1-12.

- Haidara M, Haddad M, Denou A, Marti G, Bourgeade-Delmas S, Sanogo R. In vivo validation of antimalarial activity of crude extracts of Terminalia macroptera, a Malian medicinal plant. Malar J. 2018; 17:68. doi: 10.1186/s12936-018-2223-7.
- Wahyuni DK, Shilfiana Rahayu, Putut Rakhmad Purnama, Triono Bagus Saputro, Suharyanto, Nastiti Wijayanti et al. Morpho-anatomical structure and DNA barcode of Sonchus arvensis L. Biodiversitas. 2019; 20:2417-26. doi: 10.13057/biodiv/d200841.
- 11. Delyan E. Analysis of composition of volatile compounds of field sow thistle (Sonchus arvensis L.) leaf using the method of gas chromatography with massdetection. J Pharm Innov. 2016; 5:118-21.
- Yuliarti W, Kusrini D, Isolasi FE. Identification and antioxidant activity of phenolic acid from tempuyung (Sonchus arvensis L.) leaf with 1,1difenil-2-pikrilhidrasil (DPPH) method. Chem Inform. 2013; 1:294-304.
- Hendriani R, Sukandara EY, Anggadiredja K. Sukrasno. In vitro evaluation of xanthine oxidase inhibitory activity of Sonchus arvensis leaf. Int J Pharm Pharm. 2014; 6:501-3.
- Imelda I, Azaria C, Lucretia T. Protective effect of ethanol extract tempuyung leaf (Sonchus arvensis L.) against gentamicin induced renal injury viewed from blood ureum level. Med Health. 2017; 1:575-82. doi: 10.28932/jmh.v1i6.555.
- Hendriani R, Sukandar EY, Anggadiredja K. Sukrasno. In vitro evaluation of xanthine oxidase inhibitory activity of selected medicinal plants. Int J Pharm Clin. 2015; 8:235-8.
- 16. Rumondang M, Kusrini D, Fachriyah E. Isolation, identification and antibacterial test of triterpenoid compounds from n-hexane extract of tempuyung leaf (Sonchus arvensis L.). Pharm Sci. 2013; 05:506-7.
- Wahyuni DK, Purnobasuki H, Kuncoro EP, Ekasari W. Callus induction of Sonchus arvensis L. and its antiplasmodial activity. Afr J Infect Dis. 2020; 14:1-7. doi: 10.21010/ajid.v14i1.1.
- 18. Wahyuni DK, Rahayu S, Zaidan AH, Ekasari W, Prasongsuk S, Purnobasuki H. Growth, secondary metabolite production, and in vitro antiplasmodial activity of

Sonchus arvensis L. callus under dolomite [CaMg(CO3)2] treatment. PLoS ONE. 2021; 16(8): e0254804. doi: 10.1371/journal.pone.0254804.

- 19. Hanoon LK, Joshi SDSD, Yasir AK, Prasad AM, Alapati KS. Phytochemical screening and antioxidant activity of Pseuderanthemum malabaricum. J Pharmacogn Phytochem. 2019; 8:972-7.
- Lin J, Li X, Chen L, Lu W, Chen X, Han L et al. Protective effect against hydroxyl radical-induced DNA damage and antioxidant mechanism of [6]-gingerol: A Chemical Study. Bull Korean Chem Soc. 2014; 35:1633-8. doi: 10.5012/bkcs.2014.35.6.1633.
- 21. Trager W, Jensen JB. Human malarial parasites in continuous culture. Science. 1976; 193:673-5.
- 22. Fonseca AG, Dantas LLSFR, Fernandes JM, Zucolotto SM, Lima AAN, Soares LAL et al. In vivo and in vitro toxicity evaluation of hydroethanolic extract of Kalanchoe brasiliensis (Crassulaceae) leaf. J Toxicol. 2018; 6849765:1-8. doi: 10.1155/2018/6849765
- 23. Peters W, Portus JH, Robinson BL. The chemotherapy of rodent malaria. XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann Trop Med Parasitol. 1975; 69(2): 155–171.
- 24. Khan RA. Evaluation of flavonoids and diverse antioxidant activities of Sonchus arvensis L. Chem Cent J. 2012; 6:1-7.
- 25. Seal T. Quantitative HPLC analysis of phenolic acids, flavonoids, and ascorbic acid in four different solvent extracts of two wild edible leaf, Sonchus arvensis and Oenanthe linearis of North-Eastern region in India. J App Pharm Sci. 2016; 6:157-66. doi: 10.7324/JAPS.2016.60225.
- Poudel BK, Sah JP, Subedi SR, Amatya MP, Amatya S, Shrestha TM. Pharmacological studies of methanolic extracts of Sonchus arvensis from Kathmandu. J Pharmacognosy Phytother. 2015; 7:263-7. doi: 10.5897/JPP2015.0359.
- Prieto JM. Procedure: Preparation of DPPH radical, and antioxidant scavenging assay. Prieto's DPPH Microplate Protocol. 2012. Available: https://www.researchgate.net/file.PostFileLoader.html?id=503cd1c9e39d5ead110

00043&assetKey=AS%3A271744332435456%401441800305338. Accessed 30 March, 2021.

- 28. Esmaeili AK, Taha RM, Mohajer S, Banisalam B. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). BioMed Res Int. 2015; 643285:1-11. doi: 10.1155/2015/643285.
- 29. Olennikov DN, Zilfikarov IN, Toropova AA, Ibragimov TA. Chemical composition of Callisia fragrans wood juice and its antioxidative activity (in vitro). Chem Plant Raw Mater. 2008; 4:95–100.
- 30. Yahya MA, Nurrosyidah IH. Antioxidant activity ethanol extract of gotu kola (Centella asiatica L.) with DPPH method (2,2-diphenyl-1-pikrilhidrazil). Journal Halal Product and Research. 2020; 3:106-112. doi: 10.20473/jhpr.vol.3issue.2.106-112.
- Putra BRS, Kusrini D, Fachriyah E. Antioxidant compound isolation from tempuyung (Sonchus arvensis L) leaf ethyl acetate fraction. J Kim Sains Apl. 2013; 16:69-72.
- Upadhya HC, Sisodia BS, Cheema HS, Agrawal J, Pal A, Darokar MP. Novel antiplasmodial agents from Christia vespertilionis. Nat Prod Commun. 2013; 8:1591-4. doi: 10.1016/j.jep.2012.11.034.
- Lima RB, Rocha e Silva LF, Melo MR, Costa JS, Picanço NS, Lima ES. In vitro and in vivo antimalarial activity of plants from the Brazilian Amazon. Malar J. 2015; 14:508. doi: 10.1186/s12936-015-0999-2.
- 34. Mellado-García P, Maisanaba S, Puerto M, Prieto AI, Marcos R, Pichardov S, Cameán AM. In vitro toxicological assessment of an organosulfur compound from Allium extract: cytotoxicity, mutagenicity and genotoxicity studies. Food Chem Toxicol. 2017; 99:231-240. doi: 10.1016/j.fct.2016.12.007.
- 35. De Souza GE, Bueno RV, de Souza JO, Zanini CL, Cruz FC, Oliva G, Guido RC, Caroline ACA. Antiplasmodial profile of selected compounds from Malaria Box: In vitroevaluation, speed of action and drug combination studies. Malar J. 2019; 18(404:)447–459.

- 36. Aryanti TME, Kartika IP, Rita MD. Antimalarial activity assay of Artemisia spp. against Plasmodium falciparum. Majalah Farmasi Indonesia. 2006; 17:81-4.
- 37. Nurianti Y, Hendriani R, Sukandar EY, Anggadiredja K. Acute and subchronic oral toxicity studies of ethyl acetate extract of Sonchus arvensis L. leaf. Int J Pharm Pharm. 2014; 6:343-7.
- Harun N, Fitria V, Karningsih D. Effect of ethanol extract Sonchus arvensis Linn. Leaf on acute toxicity in healthy male albino rat (Rattus norvegicus). J Phys Conf S. IOP Conference Series. 2019; 1179:012163 IOP Publishing. doi: 10.1088/1742-6596/1179/1/012163.
- 39. Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 2012; 5:47-58. doi: 10.2478/v10102-012-0009-2
- Chaniad P, Techarang T, Phuwajaroanpong A, Na-ek P, Viriyavejakul P, Punsawad C. In vivo antimalarial activity and toxicity study of extracts of Tagetes erecta L. and Synedrella nodiflora (L.) Gaertn. from the Asteraceae family. Evid Based Complement Alternat Med. 2021; 1270902:1-9. doi : 10.1155/2021/1270902.
- 41. Ekasari W, Pratiwi DW, Amanda Z, Suciati WA, Arwati H. Various parts of Helianthus annus plants as new source of antimalarial drugs. Evid Based Complement Alternat Med. 2019; 2019:7390385. doi: 10.1155/2019/7390385.
- Imelda A, Sekarwana N. Protective Effect of ethanolic extract of Sonchus arvensis
 L. in gentamicin-Induced acute tubular necrosis on wistar rats. Indonesian J
 Pharm. 2018; 29:86-93. doi: 10.14499/indonesianjpharm29iss2pp86.
- 43. Sukmayadi AE, Sumuwi SA, Aryanti AD. Immunomodulatory activity of tempuyung (Sonchus arvensis Linn.) leaf ethanolic extract. Int J Biosci Technol. 2014; 1:1-8.
- 44. Somsak V, Chachiyo S, Jaihan U, Nakinchat S. Protective effect of aqueous crude extract of neem (Azadirachta indica) leaf on Plasmodium berghei-induced renal damage in mice. J Trop Med. 2015; 961205. doi: 10.1155/2015/961205
- 45. Elias RM, Costa MC, Barreto CR, Silva RC, Hayashida C, Castoldi A, Camara NS. Oxidative stress and modification of renal vascular permeability are associated with acute kidney injury during P. berghei ANKA infection. In F. Costa (Ed.). 2012; 7(8):1-11.

- 46. Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett. 2005; 157:175–188.
- 47. Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM. Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002; 100:879–887.
- 48. Valko M, Leibritz D, Moncol J, Cronin MTD, Mazur, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Inter J Biochem Cell Biol. 2007; 39:44-84.

CHAPTER THREE

Anti-SARS-CoV-2, antiplasmodial, antioxidant, and antimicrobial activities of crude extracts and homopterocarpin from heartwood of *Pterocarpus macrocarpus* Kurz.

Dwi Kusuma Wahyuni^{1,2}, Sumrit Wacharasindhu³, Wichanee Bankeeree¹, Hunsa Punapayak¹, and Sehanat Prasongsuk^{1,2*}

¹Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science,

Chulalongkorn University, Bangkok, 10330 Thailand

²Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, East Java, 60115, Indonesia

³Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

*Corresponding author: Sehanat Prasongsuk

Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand

Department of Biology, Faculty of Science and Technology, Universitas Airlangga

Surabaya, East Java, 60115, Indonesia

e-mail: sehanat.p@chula.ac.th.

Abstract

จุหาลงกรณ์มหาวิทยาลัย

Background: Natural products play an essential role in the process of new drug discovery. In the present study, we determined the *in silico* anti-SARS-CoV-2, *in vitro* antioxidant, *in vitro* antiplasmodial, and antimicrobial activities of *Pterocarpus macrocarpus* Kurz. heartwood and structurally characterized the bioactive compounds.

Methods: *P. macrocarpus* Kurz. heartwood was macerated with *n*-hexane, ethyl acetate, and ethanol, respectively, for 7 days. This was repeated three times. The compounds were isolated by recrystallization with *n*-hexane and evaluated by thin-layer chromatography (TLC), gas chromatography-mass spectrophotometry (GC-MS), Fourier transform infrared (FITR) spectroscopy, and nuclear magnetic resonance

(NMR). The *in silico* anti-SARS-CoV-2, *in vitro* antioxidant against 1,1-diphenyl-2picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), *in vitro* antiplasmodial against *Plasmodium falciparum* strain 3D7, and antimicrobial (disk diffusion method) against *Candida albicans*, *Bacillus subtilis*, *Escherichia coli*, *and Staphylococcus aureus*) activities were established. Hepatocyte-derived cellular carcinoma cell line (Huh7it-1cellls) were used for an *in vitro* cytotoxicity assay [3(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; MTT].

Results:

The ethyl acetate, ethanol, and *n*-hexane extracts, as well as homopterocarpin, exhibited antiplasmodial activity at 1.78, 2.21, 7.11, and 0.52 μ g/ml, respectively, against *P. falciparum* 3D7 with low toxicity. A compound identified by GC-MS showed *in silico* anti-SARS-CoV-2 binding affinity with stigmasterol and SARS-CoV-2 helicase of -8.2 kcal/mol. All extracts exhibited antioxidant activity against DPPH and ABTS. They also demonstrated antimicrobial activity against *B. subtilis*, the ethanol and ethyl acetate extracts against *E. coli* and *C. albicans*, and the ethanol extract against *S. aureus*.

Conclusion: The results highlighted antiplasmodial activity of a crude extract and homopterocarpin from *P. macrocarpus* Kurz. heartwood and its potent binding *in silico* to anti-SARS-CoV-2 proteins with low toxicity. This study also confirmed that all extracts exhibited antioxidant and antimicrobial activity. Further studies are needed to assess the safety and bioactivity of *P. macrocarpus* Kurz. for development as a new drug candidate.

Keywords: anti-SARS-CoV-2, antimicrobe, antioxidant, antiplasmodial, homopterocarpin, malaria, *Pterocarpus macrocarpus* Kurz.

3.1 Introduction

Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is currently a serious worldwide health problem, with more than 205 million people afflicted with this virus and the occurrence of more than 4 million deaths. To reduce the harmful sequelae of this infection, efforts are underway to identify agents for preventive, supportive, and therapeutic care against SARS-CoV-2^[1]. Moreover, the emergence and spread of drug- or antimicrobial-resistant pathogens is another major threat that has increased the morbidity and mortality of infectious diseases, especially for chloroquine- or artemisinin-resistant *Plasmodium falciparum* malaria^[2]. These strains are resistant to nearly all available antimalarial drugs, which reinforces the need to identify new antimalarial and antimicrobial agents. Researchers are currently exploring the efficacy of phytochemicals from medicinal plants as a source of active compounds to reduce the time and cost of developing new synthetic drugs^[3].

Herbal medicine and therapy were the best options according to traditional folklore. WHO estimates that around 80% of the world's population uses herbal medicines to treat health problems because they have many benefits, such as low costs, positive complementary effects, and negligible side effects^[4]. Many plants that have been used in traditional medicine exhibit antiviral properties. The anti-SARS-CoV-2 activity of plant extracts and their components has been evaluated, such as bioactive compounds from *Centella asiatica*^[5], *Vitis amurensis*^[6], and *Boesenbergia rotunda*^[7]. They have been explored in many bioactivities studies, including antioxidant and antimicrobial activity^[8-12].

Pterocarpus macrocarpus Kurz. belongs to Fabaceae, which primarily grows in Laos, Thailand, Myanmar, and Vietnam. The benefits of *P. macrocarpus* Kurz. is associated with its heartwood, which provides visual enjoyment and psychological pleasure because of its unique woody flavor^[13]. In addition, medicinal properties are associated with the extracts from this plant including human blood circulatory, antimicrobial^[14], detoxification^[15], Alzheimer's disease, antispasmodic, anticancer^[16], immunomodulatory^[17], and insecticide activities^[18].

In this report, we evaluated the effects of *P. macrocarpus* extracts including the antioxidant, antimicrobial, and antimalarial activities, and used computational analysis to determine the potency of these extracts against SARS-CoV-2 proteins; then we compared them with bioactive commercial compounds. MTT assay was also conducted to evaluate the cytotoxicity level. This report provides remarkable information about anti-SAR-CoV-2, antimalarial, antimicrobial, and antioxidant activities with low toxicity of natural products from *P. macrocarpus* Kurz.. Moreover, it could be

expected to provide data for the further use of these extracts as drug candidates for infectious diseases therapy with positive complementary effects and safety.

3.2 Materials and methods

3.2.1 Plant material collection and identification

Pterocarpus macrocarpus Kurz. was obtained from a traditional market in Bangkok, Thailand, and authenticated in the Plant Systematic Laboratory, Department of Biology, Faculty of Science and Technology, Universitas Airlangga. A voucher specimen was deposited in the Plant Systematic Laboratory, Department of Biology, Faculty of Science and Technology Universitas Airlangga (No. PM.0210292021).

3.2.2. Extraction and phytochemical screening

The heartwood (1 kg) was air-dried, ground into powder (80 mesh size) and macerated sequentially in polar organic solvents including *n*-hexane, ethyl acetate, and ethanol. Each maceration was done for 7 days, 3 times at room temperature (28 \pm 2°C). The resulting extracts were filtered through filter paper, evaporated with a rotary evaporator at 60°C to acquire a dry residue, weighed to calculate the yield of each extract, and stored at 4°C. The crude extracts were screened for phytochemical content by standard methods including the Wilstatter "cyanidin" test for flavonoids, Mayer's test for alkaloids, the ferric chloride test for tannins, the Liebermann-Burchard test for terpenoids, and the foam test for saponins^[19].

3.2.3 Isolation and structural analysis of bioactive compounds

The *n*-hexane extract was crystallized by dissolving 1 g of sample into 20 ml of *n*-hexane, shaking for 10 min, and incubating at 4°C for 24 hours. The crystals were separated by filtration through filter paper, weighed to calculate yield, and recrystallized. The process was repeated until the color of the crystals had become white. The thin-layer chromatography (TLC) with a mixture of *n*-hexane: ethyl acetate (4:1 v/v) as a mobile phase was used to separate the chemical constituents of the *n*-hexane extract before and after crystallization. The samples were dissolved in *n*-hexane and spotted (5 μ L, equivalent to crude extract weight of 250 μ g of sample) on a silica gel precoated plate. The plate was developed in vanillin sulfuric acid and heated until purple-blue nodes were revealed on the plate as terpenoids^[20]. Gas

chromatography-mass spectrophotometry (GC-MS) was used to establish compound profiles from the *n*-hexane extract during the recrystallization steps. GC-MS analysis was performed using an Agilent GC-MSD (Agilent 19091S-433UI) equipped with a capillary column (30 m × 250 μ m × 0.25 μ m) and a mass detector was operated in electron impact (EI) mode with full scan (50550 amu). Helium was used as the carrier gas at a flow rate of 3 ml/min with a total flow rate of 14 ml/min. The injector was operated at 280°C and the oven temperature was programmed at an initial temperature of 60°C and increased 3°C per minute to obtain a final temperature at 250°C. The peaks in the chromatogram were identified based on their mass spectra. The ¹H, ¹³C, HMBC, and HMQC NMR spectra of the compounds were analyzed using a JEOL JNM-ECS instrument at 400 MHz in chloroform solvent. The melting point was analyzed using a melting point tester (Stuart SMP30) and confirmed by Fourier transform infrared spectroscopy (FITR, Shimadzu IRTracer 100).

3.2.4 In silico anti-SARS-Cov-2

3.2.4.1 Protein and ligand sample preparation

The proteins involved in, entry, replication, and assembly of the SARS-CoV-2 virus in humans, such as helicase (PDB ID 6ZSL), receptor binding domain of spike glycoprotein (RBD-spike; PDB ID 6LZG), RNA dependant RNA polymerase (RdRp; PDB ID 6M71), and main protease (Mpro; PDB ID 7ALH) were identified as potential drug targets in this study. The crystal structures of these proteins were obtained from the PDB (https://www.rcsb. org). Molnupiravir (control 1; CID 145996610) and PF-07321332 (control 2; CID 155903259) were used as control COVID-19 drugs. To evaluate anti-SARS-CoV-2 activity, the three-dimensional structures of the identified compounds from the *n*-hexane extracts of *P. macrocarpus*, including butylated hydroxytoluene (CID 31404), 2-naphthalene methanol (CID 74128), homopterocarpin (CID 101795), pterocarpan (CID 1715306), campesterol (CID 173183), γ -sitosterol (CID 133082557), and stigmasterol (CID 5280794), were downloaded from PubChem database (https://pubchem. ncbi.nlm.nih.gov). The compounds (or ligands) were subjected to energy minimization using the PyRx 0.9.9 tool to increase the flexibility and to optimize binding. The native ligands were then removed through sterilization by PyMol version 2.5^[21]. The drug-likeness of these compounds was analyzed using Lipinski's rule of five on the SCFBIO web server (http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp). The compounds that were identified as drug candidates with drug-like molecule properties were selected for further analysis^[22].

3.2.4.2 Molecular docking simulation

The docking of selected compounds to target proteins was performed using PyRx version 0.9.9 software. The docking type was screened with a control molecule to ignore the functional side of the target protein, while the analysis focused on the binding energy. The binding energy was expressed as binding affinity (kcal/mol), which is the energy formed when a molecule interacts with another molecule. This energy indicates the level of bonding activity and the interaction pattern with a ligand^[23].

3.2.4.3 Molecular interaction analysis

BIOVIA Discovery Studio 2017 software was used to analyze the interactions and positions of chemical bonds in the docked molecular complex. Weak bonds consisting of hydrophobic, Van der Waals, hydrogen, electrostatic, and -alkyl are shown by the software. Weak bonds are formed when ligands and proteins interact to initiate specific biological responses, such as activation and inhibition. Pocket binding domains on target proteins have a key role in this regard, because they consist of specific amino acids^[24]. The results of the molecular docking simulation in this study were displayed by PyMol software (https://pymol.org/2/), the structure of the ligand-protein molecules consisted of cartoons, surfaces, and sticks that underwent staining selection^[25].

3.2.5 In Vitro antioxidant activity

3.2.5.1 The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) inhibition assay.

The DPPH inhibition assay was done according to Prieto^[26] with modifications. Sample (100 μ l) at different concentrations from 1.075 to 200 μ g/ml in methanol were mixed with 100 μ l DPPH reagent (0.2 mM) and incubated for 30 min in the at room temperature. Ascorbic acid and Trolox were used as positive controls. The inhibition of DPPH was measured at 517 nm.

The percentage of DPPH inhibition was calculated by the equation:

 $(A_{control} - A_{sample}) / A_{control} \times 100\%$

(1)

Where A_{sample} is the absorbance from the mixture of DPPH reagent and the sample, whereas $A_{control}$ is the absorbance from the DPPH reagent. The percentage of inhibition at each concentration was plotted and regressed linearly to obtain the half-maximal inhibitory concentration (IC₅₀) value.

3.2.5.2 The 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) inhibition assay

The ABTS inhibition assay was conducted according to the method of Fu et al.^[27]. The ABTS reagent was prepared by mixing 7 mM ABTS solution with 2.4 mM potassium persulphate solution and storing at room temperature for 12–16 hours in the dark. Then, the absorbance of the solution at 734 nm was measured (0.7–0.72). The sample (100 μ l) at different concentrations from 1.075 to 200 μ g/ml in methanol was mixed with 100 μ l ABTS reagent and the absorbance was measured at 734 nm after incubating for 5 mins in the dark at room temperature. The percent inhibition and IC₅₀ value were calculated as described for the DPPH inhibition assay.

3.2.6 *In vitro* antimalarial Assay

An *in vitro* antimalarial assay using cultures of *Plasmodium falciparum* strain 3D7 (Trager and Jensen 1972) was carried out, which was adapted from Wahyuni et al.^[28]. The composition of the medium included human O red blood cells, 5% hematocrit in Roswell Park Memorial Institute 1640 (RPMI 1640) (Gibco BRL, USA), 22.3 mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES) (Sigma), hypoxanthine, sodium bicarbonate (NaHCO₃), and 10% human O⁺ plasma. Chloroquine diphosphate was used as a positive control. Sample (1 mg) was dissolved in 100 µl of DMSO (10,000 mg/ml) and used as a stock solution from which serial dilutions were prepared. The parasites used in this test were synchronous (ring stage) with ±1% parasitemia (5% hematocrit). Test solution (2 µl) at various concentrations were placed into each wheel (96 wheels) and 198 µl of the parasite was added (the final concentration of the test material was 100 µg/ml, 10 µg/ml, 1 µg/ml, 0.1µg/ml, and 0.01 µg /ml). The test well was placed into the chamber and exposed to a gas mixture (O₂ 5%, CO₂ 5%, and N₂ 90%). The chamber containing the test wells was incubated for 48 h at 37°C. The cultures were then harvested, and a thin blood film was prepared by 20%

Giemsa staining. The number of infected erythrocytes per 1000 normal erythrocytes was counted under a microscope (1000X).

The data was used to calculate the percent growth and percent inhibition using the following formulas:

% Growth = % Parasitemia - D0 (2)
Percent inhibition =
$$100\% - [(Xu/Xk) \times 100\%]$$
 (3)

Where D0 is the percentage of growth at the 0-hour, whereas Xu and Xk are the percentage of growth in the test solution and negative control, respectively. Based on the percent inhibition data, statistical analysis was carried out using probit of the SPSS version 20 program to determine the IC_{50} value or the concentration of the test material that inhibits parasitic growth by 50%.

3.2.7 In vitro cytotoxicity assay

An MTT cytotoxicity assay was carried out *in vitro* on hepatocyte-derived cellular carcinoma cell line (Huh7it-1 cells) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide as described by Fonseca et al.^[29]. Passage (P) 18 human hepatocyte cells were cultured in Dulbecco's modified Eagle's medium (DMEM) medium supplemented with 3.7 g of sodium bicarbonate (NaHCO₃), and adjusted to a pH of 7-7.2. A complete medium was made from 500 ml of DMEM media containing 50 ml of fetal bovine serum (FBS), 5 ml of nonessential amino acid (NEAA), and 6 ml of penstrep (penicillin-streptomycin). The samples were dissolved in DMSO and then diluted to various concentrations (0.1, 0.5, 1, 5, 10, 50, 100, 500, and 1000 μ g/ml). The cells were incubated at 37°C under an atmosphere of 5% of carbon dioxide and 95% humidity for 48 h. The assay was done in duplicate wells. The viability of the cells was determined by measuring the absorbance at 560 nm and 750 nm with a multiplate reader. The percentage of cell viability was calculated using the formula:

% viability:
$$(A_{sample}/A_{control}) \times 100\%$$
 (4)

where A_{sample} was absorbance at 560 nm–750 nm and $A_{control}$ is the absorbance of DMEM medium. The half cytotoxic concentration (CC₅₀) was determined by plotting the percent cell viability and regressing linearly using Microsoft Excel version 20.0 (IBM Corporation, Armonk, NY, USA).

3.2.8 Selectivity index (SI)

The SI was determined to describe the selective activity of an extract against *Plasmodium falciparum* strain 3D7 compared with the results of its cytotoxicity against human hepatocyte cells. The SI value was calculated by comparing the IC_{50} value of the extract with that of *P. falciparum* strain 3D7. The SI was used to describe the selective activity of the extract against *P. falciparum* strain 3D7 compared with the results of its cytotoxicity on human hepatocyte cells^[30].

3.2.9 Antimicrobial assay

The disc diffusion method was performed to analyze antimicrobial activity against *Bacillus substilis, Escherichia coli, Staphylococcus aureus*, and *Candida albicans*^[31]. Nutrient agar media was used to culture the bacteria, whereas potato dextrose agar was used for cultivating yeast. The sterilized medium was poured into sterile petri plates and the inoculate from each strain was spread onto the agar plates after solidification. A stock solution of extract was prepared and serially diluted. The sterile disks, 6 mm in diameter, were impregnated into the extract solution at each concentration. Distilled water and chloramphenicol were used as negative and positive controls, respectively. All disks were fully dried before applying to the bacterial or yeast plates. Antibacterial activity was evaluated by measuring the diameter of the inhibition zone around the disks. The percentage of inhibition (PI) was calculated as follows:

PI = the inhibition zone of the sample (cm) / the zone of positive control (cm) × 100% (5)

3.2.10 Data analysis

Data are expressed as the mean \pm standard deviation. Probit analysis was used to calculate the IC₅₀ values for *in vitro* antimalarial activity using IBM SPSS Statistics for Windows, version 20.0. (IBM Corporation, Armonk, NY, USA). The IC₅₀ values for *in vitro*

antioxidant and cytotoxicity were calculated by linear regression using Microsoft Excel version 20.0 (IBM Corporation, Armonk, NY, USA).

3.3 Results and discussion

3.3.1 The yield of extracts and phytochemical screening

Dried heartwood from *P. macrocarpus* Kurz. was sequentially extracted with different polar organic solvents. One kilogram of sample yielded 2.5 ± 0.3 , 10.2 ± 0.2 , and 42.9 ± 0.3 g of extract from the *n*-hexane, ethyl acetate, and ethanol fractions, respectively. According to phytochemical analysis, each fraction contained flavonoid, alkaloid, terpenoid, saponin, and polyphenol as secondary metabolites at different amounts, whereas saponins were only found in the ethanolic fraction (Table 9). Different phytochemicals have generally been considered to exhibit different activities. The *n*-hexane extract revealed an abundance of terpenoids. Therefore, crude extracts from the *n*-hexane fraction were selected for the isolation of bioactive compounds.

 Table 9. Phytochemical screening of Pterocarpus macrocarpus Kurz. heartwood

 extracts

No	Phytochemicals	<i>n</i> -Hexane	Ethyl acetate	Ethanol
1	Terpenoids	+++	++	+
2	Flavonoids	+	++	+++
3	Alkaloids	1 สุดโมหาวิท	++~ 112	++
4	Saponin		<u>-</u> ומט	+
5	Polyphenol ULALO	hgkorn Uni	V F RSITY	+++

Note: + +, Strongly positive; +, Weakly positive; -, Not detected

3.3.2 Isolation and structural analysis of bioactive compounds

Recrystallization was performed to isolate the bioactive compounds. The yield, color, and number of spots on TLC plates from each cycle of recrystallization are listed in Table 10. The effectiveness of this isolation technique may be observed by the reduction of spots on the TLC from 6 (1st cycle) to 3 spots (2nd cycle). The different Rf values for every stain indicate the diversity of the compounds^[32]. The white crystals that yielded 596 mg/g of crude extract were obtained at the fifth cycle and the single

spot with an Rf value of 0.69 was also identified by TLC (Appendix 2: Supplementary Data I).

Cycle	Number	Number Rf value		Color	
	of spots	for major	(mg/g)		
		spot			
1	6	0.125,	290 ± 5	orange	
	Land	0.375,			
		0.563,			
		0.625,			
		0.688,			
		0.938			
2	3	0.125,	80 ± 2	orange	
	A	0.688,			
	CA.	0.938	10		
3	3	0.125,	12 ±10	orange	
	จุหาลงเ	0.688,			
		GK0.938	IVERSITY		
4	3	0.125,	10 ± 10	orange	
		0.688,			
		0.938			
5	1	0.688	592 ± 30	white	

Table 10. The yield of crystals at each step of crystallization of the n-hexaneextract of Pterocarpus macrocarpus Kurz. heartwood

Note: The data were represented as mean \pm SD, n=3.

Figure 2. Chromatogram of n-hexane extracts of *Pterocarpus macrocarpus* Kurz. heartwood at each crystallization cycle. A. n-hexane extract, B. first crystallization, C. second crystallization, D. third crystallization, E. fourth crystallization. black arrow: 2-naphthalenemethanol; green arrow: homopterocarpin; blue arrow: pterocarpin; yellow arrow: stigmasterol; red arrow: γ-sitosterol

A GC-MS chemical analysis was used to identify the diverse compounds in the *n*-hexane extract from the four cycles of recrystallization. A total of 7 compounds were identified from the first crystallization, 3 from the second, and only 2 compounds were identified from the third cycle. Of these, homopterocarpin and pterocarpin were found at each cycle as major components (Table 11, Fig. 2, Appendix 2: Supplementary data II). These compounds have been reported as bioactive molecules in previous studies^[33-36].

Table 11. Phytochemical components identified from GC/MS analysis of *Pterocarpus macrocarpus* Kurz. heartwood n-hexane extract at each crystallization cycle

No.	Identified compound	Retention Time (min)	Relative area percentage (peak area relative to the total peak an (%) n-hexane Crystallization			area)	
			extract	1 st	2 nd	3 rd	4 th
1	Butylated hydroxytoluene	44.04	3.81	9.04			
2	2-Naphthalenemethanol	51.53	32.17	57.85	4.03		
3	Homopterocarpin	90.40	100.00	100.00	100.00	100.00	100.00
4	Pterocarpin	94.14	23.34	20.64	13.34	31.17	23.42
5	Campesterol	113.64	7.93	9 19.7			
6	Stigmasterol	114.64	21.24	43.03			
7	γ-sitosterol	116.50	27.87	55.97			

GHULALONGKORN UNIVERSITY

The FTIR spectrum of the isolated products from the fifth recrystallization revealed absorption bands (cm⁻¹) for C-H alkane at 2949.16, 2908.65, and 2841.15; the C-H bending aromatic compound at 1876.74; C=C conjugated alkene at 1618.28; C=C cyclic alkene at 1587.42, O-H phenol at 1381.03 and 1344.38; C-O stretching alkyl aryl ether/aromatic ester/at tertiary alcohol 1197.79 and 1271.09; C=C stretching aliphatic ether at 1149.57 and 1130.29; and the C=C alkene at 973.40, 794.67, 723.31, and 682.80 (Appendix 2: Supplementary data III). The integration of the ¹H NMR spectrum (Table 12) showed the presence of two aromatic ring in the benzene skeleton at $\delta_{\rm H}$ 7.43 (1H, *d*, 8.6Hz), 6.64 (2H, *dd*, 8.6Hz; 2.5Hz), 6.47 (1H, *d*, 2.5Hz) and 7.13 (1H, *d*, 8.5Hz), 6.46 (2H, *dd*, 8.5Hz; 2.3Hz), 6.44 (1H, *d*, 2.3). The two ether cyclic

groups were at $\delta_{\rm H}$ 3.64 (3H, t, 11.0Hz), 4.25 (2H, dd, 11.0Hz; 5.3Hz), 3.53 (m). The appearance of singlets at $\delta_{\rm H}$ 3.77 (s) and 3.79 (s) confirmed the presence of two OCH₃ groups on the aromatic ring (Appendix 2: Supplementary data IV). There were 17 carbon signals in the ¹³C NMR spectrum (125 MHz, CDCl₃, based on HMQC and HMBC experiments; Table 12). Signals at $\delta_{\rm C}$ 156.7 and 60.8 resulted from benzene carbons bonded to the ether group. The signals at $\delta_{\rm C}$ 131.9, 109.3, 101.7, 39.6, 124.8, 106.4, 97.1, and 78.7 indicated an aromatic CH, whereas signals at $\delta_{\rm C}$ 112.4 and 119.2 were assigned to aromatic carbons. The other two signals at $\delta_{\rm C}$ 161.2 and 161.1 belong to a benzene carbon with methoxy groups. Two signals at $\delta_{\rm C}$ 55.6 and C₉ 55.5 were confirmed as methoxy carbons. The signal at δ_{C} 66,7 was a carbon ether cyclic with two hydrogen atoms (Appendix 2: Supplementary V). The data from the characterization of the compounds were compared with that reported in the literature^[37]. Homopterocarpin exhibited white crystals and yielded 0.592 \pm 0.003 g (0.059%w/w). The melting point of this compound was at 83.6°C. Furthermore, a mass spectra analysis showed that the compound had an m/z of 284.1 and the molecular formula was C₁₇H₁₆O₄ (Fig. 3)

3.3.3 In silico anti-SARS-CoV-2 activity

The identified compounds include butylated homopterocarpin, pterocarpin, hydroxytoluene, 2-naphthalenemethanol, campesterol, γ -sitosterol, and stigmasterol from *P. macrocarpus n*-hexane extract were used as the ligands to analyze their potential activity as drug-like molecules according to the Lipinski Rule of Five. The rule requires a molecular mass > 500 Da, high lipophilicity < 5 Da, hydrogen bond donor < 5 Da, and a hydrogen bond acceptor < 10 Da^[38]. All compounds that act as drug candidates may trigger the activity of the target protein if they satisfy more than two of the Lipinski rules (Table 13).

No. C	Homopteroo	carpin of Pterocarpus macroca	rpus Kurz.
	Туре	$\delta_{ extsf{H}}$ (mult, J Hz)	δ _c
1	СН	7.43 (<i>d</i> , 8,6)	131.9
2	СН	6.64 (<i>dd</i> , 8,6; 2,5)	109.3
3	С	-	161.2
4	СН	6.47 (<i>d</i> , 2,5)	101.7
4a	С	- 5 M 1 1 2 2	156.7
6	CH2	3.64 (<i>t</i> , 11,0)	66.7
		4.25 (dd, 11,0; 5,3)	
6а	СН	3.53 (m)	39.6
6b	С		119.2
7	СН	7.13 (d, 8,5)	124.8
8	СН	6.46 (dd,8,5; 2,3)	106.4
9	С		161.1
10	C C	6.44 (d, 2,3)	97.1
10a	c 🐪		160.8
11a	CH	5.51 (<i>d</i> , 6,8)	78.7
11b	C		112.4
3-OCH ₃	C-OCH3	3.77 (s)	55.6
9-0CH ₃	C-OCH3	3.79 (<i>s</i>)	55.5

Table 12. The observed ${}^{1}H$ and ${}^{13}C$ -NMR homopterocarpin (3,9-dimethoxy-pterocarpan) compound in CDCl₃

Figure 3. The structure of homopterocarpin

Compound	MW	LOGP	HBD	HBA	MR	Probability
	(Dalton)					
Butylated	220.000	4.295	1	1	70.243	Drug-like molecule
hydroxytoluene						
2-Naphthalenemethanol	158.000	2.332	1	1	49.870	Drug-like molecule
Homopterocarpin	284.000	3.313	0	4	77.592	Drug-like molecule
Pterocarpin	298.000	3.033	0	5	77.163	Drug-like molecule
Campesterol	400.000	7.634	1	1	123.599	Drug-like molecule
γ -sitosterol	414.000	8.024	1	1	128.216	Drug-like molecule
Stigmasterol	412.000	7.800	1 1	1	128.122	Drug-like molecule
		C POINTER MIL	11/11/13			

Table 13. Prediction results of target compound activity

MW: Molecular Weight; LOGP: High Lipophilicity; HBD: Hydrogen Bond Donor; HBA: Hydrogen Bond Acceptor; MR: Molar Refractivity

The results of a molecular docking simulation indicated that all of the selected compounds had a higher negative binding affinity for each SARS-CoV-2 protein compared with that of molnupiravir (Control 1) and PF-07321332 (Control 2) (Table 14). Stigmasterol was the most effective compound predicted to bind with all SARS-CoV-2 proteins including helicase, RBD-spike, RdRp, and Mpro with negative binding affinities of -8.2, -7.8, -7.8 and -7.3 kcal/mol, respectively. Campesterol is another active compound that exhibited a more negative binding affinity with all target SARS-CoV-2 proteins compared with the two control drugs. The molecular docking simulation results were displayed in 3D with transparent surfaces, cartoon structures with the target proteins, and a ligand with stick views (Fig. 4). The weak bonds in the molecular complex from the docking simulation consisted of hydrogen, alkyl, Van der Waals, hydrophobic, and electrostatic interactions. The presence of weak binding interactions can activate specific biological responses in proteins, such as inhibition through specific domains^[39]. The seven bioactive compounds in this study could theoretically bind to specific protein domains through weak binding, such as alkyl, hydrogen, pi sigma, and Van der Waals interactions (Fig. 5). The results suggest that each bioactive compound may inhibit SARS-CoV-2 protein activity.

indicated by black circles (A) Stigmasterol_Helicase (B) Stigmasterol_RdRp (C) Stigmasterol_Mpro (D) Stigmasterol_RBD-Spike.

Torgot	Lizand	Binding Affinity	AutoGrid	
Target Helicase RdRp M ^{pro} RBD-Spike	Ligaria	(kcal/mol)	(Å)	
	Butylated hydroxytoluene	-6.3		
	2-Naphthalenemethanol	-6.2	_	
	Homopterocarpin	-7.2	Center	
	Pterocarpin	-7.7	X:-14.723 Y:30.321 Z:-66.631	
Helicase	Campesterol	-7.7	_	
	γ-sitosterol	-7.4	– Dimensions	
	Stigmasterol	-8.2	- X:91.761 Y:98.670 Z:106.327	
	Molnupiravir (Control 1)	-7.1	_	
	PF-07321332 (Control 2)	-7.1	_	
	Butylated hydroxytoluene	-5.9		
	2-Naphthalenemethanol	-5.8	_	
RdRp	Homopterocarpin	-6.5	Center	
	Pterocarpin	-7.2	X:119.72 Y:117.282 Z:117.111	
	Campesterol -7.6		_	
	γ-sitosterol	-7.1	- Dimension	
	Stigmasterol –7.8		- X:102.037 Y:108.952 Z:117.175	
	Molnupiravir (Control 1)	_		
	PF-07321332 (Control 2)	_		
	Butylated hydroxytoluene	-5.8		
	2-Naphthalenemethanol	-5.9	_	
	Homopterocarpin	มห_ _{6.3} ทยาลย	Center	
	Pterocarpin	ORN-7.1 NIVERSITY	X:-26.283 Y:12.599 Z:63.866	
M ^{pro}	Campesterol	-7.7	_	
	γ-sitosterol	-7.6	- Dimension	
	Stigmasterol	-7.8	– X:66.125 Y:72.942 Z:61.258	
	Molnupiravir (Control 1)	-6.7	_	
	PF-07321332 (Control 2)	-6.5	_	
	Butylated hydroxytoluene	-5.6		
	2-Naphthalenemethanol	-5.6	Center	
	Homopterocarpin	-6.4	X-32 325 V-27 803 7-21 076	
	Pterocarpin	-7.1	- ^52.525 1.21.075 2.21.070	
квр-зріке	Campesterol	-6.9		
	γ-sitosterol	-6.7		
	Stigmasterol	-7.3	- X:48.156 Y:59.612 Z:56.346	
	Molnupiravir (Control 1)			

Table 14. Simulation results of molecular docking with SARS-CoV-2 proteins

3.3.4 Antioxidant activity

DPPH and ABTS assays were done to assess the antioxidant activities of the extracts. The IC₅₀ values of the crude extracts prepared with each solvent are shown in Table 15 (Appendix 2: Supplementary data VI). From lowest to highest, the IC₅₀ values for ABTS were 0.61 \pm 0.46, 0.75 \pm 0.42, and 68.93 \pm 4.34 µg/ml for the ethanol, ethyl acetate extract, and *n*-hexane extract, respectively, whereas the IC₅₀ values for DPPH were 0.76 \pm 0.92, 2.12 \pm 0.97, and 27.70 \pm 4.29 µg/ml for the ethanol, ethyl acetate extract, and *n*-hexane extracts, respectively. In addition, the IC₅₀ of homopterocarpin was 194.90 \pm 34.96 µg/ml for DDPH assay and 30.94 \pm 8.00

µg/ml for the ABTS assay. Compared with the control, the IC₅₀ for ethyl acetate and ethanol extracts were lower compared with that of Trolox and ascorbic acid for both assays. The potent antioxidant activity of the crude extract of *P. macrocarpus* Kurz. was likely due to the presence of active ingredients with antioxidant activities, such as polyphenols and flavonoids, especially in the ethanolic and ethyl acetate crude extracts (Table 9)^[40]. In previous study showed homopterocarpin from *Pterocarpus erinaceus* as antioxidant^[36]. Compared to the other studies that have been previously reported as high antioxidant compounds, the leaf extract from *P. macrocarpus Kurz*. was lower than *Centella asiatica* L. leaf ^[41], plants and callus of *Trifolium pratense* L.^[42], and *Callisia fragrance* leaf juice^[43].

Table 15. In vitro antioxidant activity of Pterocarpus macrocarpus Kurz. heartwood extract

No.	Extract	Antioxidant IC ₅₀ (μg/	activity, 'ml)
		DPPH	ABTS
1	<i>n</i> -Hexane	27.70 ± 4.29	68.93 ± 4.34
2	Ethyl acetate	2.12 ± 0.97	0.75 ± 0.42
3	Ethanol	0.76 ± 0.92	0.61 ± 0.46
4	Homopterocarpin	194.90 ± 34.96	30.94 ± 8.00
5	Ascorbic acid	5.12 ± 2.43	2.77 ± 1.30
6	Trolox CHULALON	GKO 0.97 ± 0.30	0.86 ± 0.97

Note: The data were represented as mean±SD, n=3.

3.3.5 In vitro antimalarial activity

The IC₅₀ values of the crude extracts and homopterocarpin from *P. macrocapus* Kurz. at different doses are shown in Table 16 (Appendix 2: Supplementary data VII). All natural products are considered to have antimalarial activity at IC₅₀ values less than 10 μ g/ml. The compounds with IC₅₀ values less than 5 μ g/ml are classified as exhibiting very active antimalarial activity, whereas IC₅₀ values between 5 and 10 μ g/ml are identified as active antimalarial agents^[44]. The results indicated that the ethyl acetate extract exhibited the highest *in vitro* antimalarial activity with an IC₅₀ value of 1.78 µg/ml, followed by the ethanol (2.21 µg/ml) and *n*-hexane extracts (7.11 µg/ml), whereas the IC₅₀ of homopterocarpin was 0.52 µg/ml. Compared with other studies, the IC₅₀ values for the *S. arvensis* L. ethyl acetate extract was lower compared with that of the DCM extracts from *Commiphora africana* (A. Rich.) Engl. stem bark and *Dychrostachys cinerea* (L.) Wight & Arn. whole stem, which showed promising antiplasmodial activity with IC₅₀ values of 4.54 ± 1.80 and 11.47 ± 2.17 µg/ml, respectively^[3]. These results were lower compared with that of the ethanolic extracts from *Mussaenda erythrophylla*, including stem (29.6± 0.7µg/ml) and leaves (3.7±2.6µg/ml), and *Mussaenda philippica* Dona Luz x *Mussaenda flava* leaves ethanolic extract (5.9±0.4 µg/ml^[45]. In addition, they were lower than *Pterocarpus erinaceus* Poir. leaf methanolic extract (IC₅₀ = 14.63µg/ml)^[46]. Tajuddeen and Heerden^[47] concluded that a bioactive compound is considered interesting and worthy of further investigation as an antimalarial agent if the IC₅₀ is 3.0 µg/ml.

3.3.6 In vitro toxicity and selectivity index

In vitro toxicity was evaluated by the MTT assay using Huh7it-1 cells and the SI was calculated by comparing the cytotoxicity concentration at 50% (CC_{50}) and the IC₅₀ of the antiplasmodial activity of the natural product. The CC₅₀ of the crude *n*-hexane, ethyl acetate, and ethanol extracts, and homopterocarpin were 202.38, 67.237, 512.48, and 49.93 µg/ml, respectively. Moreover, the selectivity indices for the *n*-hexane, ethyl acetate, ethanol extracts of *P. macrocarpus* Kurz. heartwood and homopterocarpin were 28.46, 37.77, 231.89, and 96.02 µg/ml respectively (Table 16) (Appendix 2: Supplementary data VIII).

Table 16. *In vitro* antimalarial activity, in vitro toxicity, and selectivity index (SI) of *Pterocarpus* macrocapus Kurz. heartwood extracts against *P. falciparum* strain 3D7

		Percentage of inhibition						In Vitro	Soloctivity	
No	Extract		at each concentration (µg/ml)						Toxicity,	Index
		100	10	1	0.1	0.01	0.001	(µg/ml)	CC ₅₀ (µg/ml)	(SI)
1	<i>n</i> -Hexane	84.21	55.20	23.21	9.11	1.75	ND*	7.11	202.38	28.46
2	Ethyl acetate	88.26	65.99	38.12	23.28	11.54	ND	1.78	67.237	37.77
3	Ethanol	81.78	67.00	43.05	23.55	5.33	ND	2.21	512.48	231.89
4	Homopterocarpin	-	97.98	78.68	52.16	30.30	15.39	0.52	49.93	96.02
5.	Chloroquine diphosphate	100	100	100	79.76	40.49	17.17	0.014		

*ND = not detectable

The drug's effectiveness and safety for treating the diseases were indicated by the SI value. The extract or fraction with SI values ranging from 10 to 313 was considered safe, regarding the effective concentration against a parasite and the toxic concentration toward human cells^[30,48]. Therefore, all natural products in this study were considered non-toxic.

3.3.7 Antimicrobial activity

Antimicrobial tests were carried out with all crude extracts against bacteria and yeast (Table 17). All extracts showed active antibacterial activity against *Bacillus substilis* with a percentage of inhibition (PI) of $39.5 \pm 2.08\%$, $37.9 \pm 0.29\%$, and $38.7 \pm$ 3.27% for the *n*-hexane, ethyl acetate, and ethanol extracts, respectively. The ethyl acetate and ethanol extracts showed active antimicrobial activity against *C. albicans* (29.75 ± 1.53% and 27.40 ± 6.13% of inhibition, respectively) and *E. coli* (48.82 ± 7.48% and 57.76 ± 7.48%, respectively). Furthermore, only the ethanol extract exhibited active antimicrobial activity against *S. aureus* with a percentage inhibition of 44.78 ± 0.42%. Compared to other study, diameter of inhibition zone of *P. macrocarpus* extract was wider than *P. indicus* bark ethanolic extract against to *Candinda albicans, E coli,* and *S. aereus*^[49]. The antimicrobial activity of the *P. macrocarpus* extracts were seem related to the presence of active ingredients with antimicrobial activities (Table 9 and Table 3). Jime[']nez-Gonza[']lez et al.^[50] study reported that pterocarpans have antifungal activity. However, in the present study, the antimicrobial activity of homopterocarpin was not determined because it did not show a significant inhibition zone against the tested microbes. These results are consistent with that of Cuellar et al.^[51] in which homopterocarpin exhibited weak antimicrobial activity against *E. coli, S. aureus, B. cereus,* and *E. faecalis*.

Table17. Diameter of inhibition zone and percentage of inhibition of
heartwood extract of *Pterocarpus macrocarpus* Kurz.

No.	Natural	Bacillus substilis		Candida	Candida albicans		Escherichia coli		Staphylococcus aureus	
	Products	DIZ (cm)	PI (%)	DIZ (cm)	PI (%)	DIZ (cm)	PI (%)	DIZ (cm)	PI (%)	
1	N-hexane	1.1 ± 0.1	39.5 ± 2,08	ND	ND	ND	ND	ND	ND	
	extract			///////////////////////////////////////						
2	Ethyl Acetate	1.31 ± 0.29	37.9 ± 0,29	1.20 ± 0.08	29.75 ± 1.53	1.03 ± 0.17	48.82 ± 7.48	ND	ND	
	extract									
3	Ethanol	1.17 ± 0.17	38.7 ± 3,27	1.03 ± 0.12	27.40 ± 6.13	1.06 ± 0.17	57.76 ± 7.48	1.2 ± 0.11	44.78 ± 0.42	
	extract			Strangers	-					
4	Chlorampheni	3.07 ± 0.39	ND	3.65 ± 0.71	ND	1.59 ± 0.27	ND	2.39 ± 0.81	ND	
	col			LE COLOR	All and					

Note: The data are represented as mean±SD, n=3. DIZ: diameter inhibition zone (cm); DIZ: Diameter of Inhibition Zone (cm); PI: percentage of inhibition (%); positive control: Chloramphenicol.

จุหาลงกรณ์มหาวิทยาลัย

3.4 Conclusion

This study highlighted homopterocarpin isolation from a *P. macrocarpus* Kurz. *n*-hexane extract by crystallization. Based on the result we conclude that several crude extracts and homopterocarpin isolated from *P. macrocarpus* Kurz. heartwood indicated a strong potential for antiplasmodial agents and with low toxicity. Seven bioactive compounds from the *n*-hexane fraction of this plant showed theirs potent binding *in silico* to anti-SARS-Cov-2 proteins. All of the extracts also exhibited antioxidant and antimicrobial activity. These findings provide a foundation for further investigations of natural product for infectious diseases treatment and various pharmaceutical applications. In future studies, bioassay-guided fractionation is recommended to identify new compound drug candidates from *P. macrocarpus* Kurz.

Declaration

Author contributions

DKW: conception, design, implementation, conducting experiments, analysis, interpretation of results, and writing the manuscript, SW: phytochemical screening and spectral analysis, WB: conducting experiments, analysis, and interpretation of results, HP: collection, identification, and classification of plant material. SP was the primary author of the manuscript. All authors read and approved the final manuscript.

Acknowledgments

The authors would like to thank Viol Dhea Kharisma and Arif Muhammad Nur Ansori for their support of the *in silico* anti-SARS-CoV-2 assays. The authors also would like to thanks to Natural Product Medicine Research and Development (NPMRD) laboratory, Institute of Tropical Disease (ITD), Universitas Airlangga for antiplasmodial and cytotoxixcity assay.

Competing interests

The authors declare that they have no competing interests

Data availability statement

Additional data that support the findings of this study are available from the corresponding author upon reasonable request.

Consent for publication

Not applicable

Funding

This work was supported by the Universitas Airlangga, Contract No. 405 /UN3.14/PT/2020

3.5 References

- WHO. Coronavirus (Covid-19) outbreak. <u>https://www</u>.who.int. July, 10th 2021, 03.40. Western Indonesian Time, 2020. October, 11th 2021, 03.40. Western Indonesian Time, (2021).
- [2] WHO. *World Malaria Report 2020*, Geneva, Switzerland: WHO Press, World Health Organization, (2020).
- [3] Kweyamba, P. A., Zofou, D., Efange, N., Assob, J. N. & Kitau, J. In vitro and in vivo studies on antimalarial activity of *Commiphora 53exadece* and *Dichrostahys cinerea* used by the Maasai in Arusha region, Tanzania. Malar. J. 18, 119-125 (2019).
- [4] Katiyar, D., Singh, K., & Ali, M. Phytochemical and pharmacologicalprofile of *Pterocarpus marsupium*: A review. *Pharm Innov J.* **5(4)**, 31-39.
- [5] Latha, D., Hrishikesh, D., Shiban, G., Chandrashekar, C., & Bharath, B. R. In silico, in vitro screening of plant extracts for anti-SARS-CoV-2 activity and evaluation of their acute and sub-acute toxicity. *Phytomedicine Plus*, **2**,100233. (2022).
- [6] Gurung, B. A., Ajmal Ali, M., Al-Hemaid, F., El-Zaidy, M., & Lee, J. In silico analyses of major active constituents of fingerroot (*Boesenbergia rotunda*) unveils inhibitory activities against SARS-CoV-2 main protease enzyme. *Saudi J. Biol. Sci.* 29, 65-74. (2022).
- [7] Souid, I., Korchef, A., & Souid, S. In silico evaluation of *Vitis amurensis* Rupr. Polyphenol compounds for their inhibition potency against COVID-19 main enzymes Mpro and RdRp. *Saudi Pharm. J.* In Press. (2022).
- [8] Idris, FN., & Nadzir, MM. Comparative studies on different extraction methods of *Centella asiatica* and extracts bioactive compounds effects on antimicrobial activities. *Antibiotics*. **10**, 457. (2021).
- [9] Kumari, S., Deori, M., Elancheran, R., Kotoky, J., & Devi, R. *In vitro* and *in vivo* antioxidant, anti-hyperlipidemic properties and chemical characterization of *Centella asiatica* (L.) extract. *Front. Pharmacol.* 7, 400. (2016).
- [10] Kabir, F., Sultana, MS., & Kurnianta, H. Antimicrobial activities of grape (*Vitis vinifera* L.) pomace polyphenols as a source of naturally occurring bioactive components. *Afr. J. Biotechnol.* 4(26), 2157-2161. (2015).
- [11] Lee, HR., Bak, MJ., Jeong, WS., Kim, YC., & Chung, SK. Antioxidant properties of proanthocyanidin fraction isolated from wild Grape (*Vitis amurensis*) seed. J. Korean Soc. Appl. Biol. Chem. 52(5), 539-544. (2009).
- [12] Jitvaropasa, R., Saenthaweesuka, S., Somparna, N., Thuppiaa, A., Sireeratawonga,
 S. & Phoolcharoen, W. Antioxidant, antimicrobial and wound healing activities of *Boesenbergia rotunda*. *Nat. Prod. Commun.* 7(7), 909 912. (2012).

- [13] Wisittipanich, S., Khadee, C., & Jintana, P. Shoot production of plus tree branch log and it's cutting test of *Tectona grandis* Linn and *Pterocarpus macrocarpus* Kurz. *Kasetsart University Conference*, 2580, (2012).
- [14] Hongxia, C., Xiutang, K., Longjie, Y., Chengzhang, W., & Jianzhong, Y. Chemical component and antibacterial activity of essential oil from Myanmar Pterocarpus macrocarpus, Chem. Ind. For. Prod. 37, 65-72. (2017).
- [15] Gao, W., Wang, Y., Basavanagoud, B., & Jamil, M.K. Characteristics studies of molecular structures in drugs. *Saudi Pharm. J.* 25, 580–586. (2017).
- [16] Chen, J., Ge, S., Liu, Z., & Peng, W. GC-MS explores health care components in the extract of *Pterocarpus macrocarpus* Kurz.," *Saudi J. Biol. Sci.* 25, 1196-1201. (2018).
- [17] Ataa, S., Hazmi, I. R., & Samsudin, S. F. Insect's visitation on *Melastoma malabathricum* in UKM Bangi forest reserve. *EES.* 1, 20–22. (2017).
- [18] Morimoto, M., Fukumoto, H., Hiratani, M., Chavasiri, W., & Komai, K. Insect aantifeedants, pterocarpans, and pterocarpol, in heartwood of *Pterocarpus macrocarpus* Kurz.. *Biosci. Biotechnol. Biochem.* **70**, 1864-1868. (2014).
- [19] Hanoon, L. K., Joshi, S. D. S. D., Yasir, A. K., Prasad, A. M., & Alapati, K. S. Phytochemical screening and antioxidant activity of *Pseuderanthemum* malabaricum. J. Pharmacogn. Phytochem. 8, 972-977 (2019).
- [20] Wahyuni, D. K., Rahayu, S., Zaidan, A. H., Ekasari, W., Prasongsuk, S., & Purnobasuki, H. Growth, secondary metabolite production, and *in vitro* antiplasmodial activity of *Sonchus arvensis* L. callus under dolomite [CaMg(CO₃)₂] treatment. *PloS ONE*. **16**, e0254804. (2021).
- [21] Kharisma, V. D., Ansori, A. N. M., & Nugraha, A. P. Computational study of ginger (*Zingiber officinale*) as E6 inhibitor in human papillomavirus type 16 (HPV-16) infection. *Biochem. Cell. Arch.* 20. 3155-3159. (2020).
- [22] Putra, W.E., Kharisma, V. D., & Susanto, H. Potential of *Zingiber officinale* bioactive compounds as inhibitory agent against the IKK-B. *AIP Conference Proceedings.* 2231. 040048. (2020).
- [23] Prahasanti, C., Nugraha, A. P., Kharisma, V. D., Ansori, A. N. M., Devijanti, R., Ridwan, T. P. S. P., Ramadhani, N. F., Narmada, I. B., Ardani, I. G. A. W., & Noor, T.

N. E. B. A. A bioinformatic approach of hydroxyapatite and polymethylmethacrylate composite exploration as dental implant biomaterial. *J. Pharm. Pharmacogn. Res.* **9**, 746-754. (2021).

- [24] Wijaya, R. M., Hafidzhah, M. A., Kharisma, V. D., Ansori, A. N. M., & Parikesit, A. A. COVID-19 in silico drug with *Zingiber officinale* natural product compound library targeting the Mpro protein. *Makara J. Sci.* 25, 162-171. (2021).
- [25] Vania, L., Widyananda, M. H., Kharisma, V. D., Ansori, A. N. M., Naw, S. W., Maksimiuk, N., Derkho, M., Denisenko, A., Sumantri, N. I., & Nugraha A. P. Anticancer activity prediction of *Garcinia mangostana* L. 55exadec her2-positive breast cancer through Inhibiting EGFR, HER2 and IGF1R protein: a bioinformatics study. Biochem. *Cell. Arch.* **21**, 3313-3321. (2021).
- [26] Prieto, J. M. Procedure: Preparation of DPPH Radical, and antioxidant scavenging assay. Prieto's DPPH Microplate Protocol. https://www.researchgate.net/file.PostFileoader.html?id=503cd1c9e39d5ead11000043&assetKey=AS%3A27174 4332435456%401441800305338, March, 30th, 17.30 Western Indonesian Time, 2021. (2012).
- [27] Fu, R., Zhang, Y., Guo, Y., Liu, F., & Chen, F. Determination of phenolic contents and antioxidant activities of extracts of *Jatropha curcas* L. seed shell, a byproduct, a new source of natural antioxidant. *Ind. Crops. Prod.* 58, 265-270. (2014).
- [28] Wahyuni, D. K., Purnobasuki, H., Kuncoro, E. P., & Ekasari, W. Callus induction of *Sonchus arvensis* L. and its antiplasmodial activity. *Afr. J. Infect.* **14**, 1-7. (2020).
- [29] Fonseca, A. G., Dantas, L. L. S. F. R., Fernandes, J. M., Zucolotto, S. M., Lima, A. A. N., Soares, L. A. L., Rocha, H. A. O., & Lemos, T. M. A. M. *In vivo* and *in vitro* toxicity evaluation of hydroethanolic extract of *Kalanchoe brasiliensis* (Crassulaceae) Leaves. *J. Toxicol.* 6849765. 1-8. (2018).
- [30] de Souza, G. E. D., Bueno, R. V., de Souza, J. O., Zanini, C. L., Cruz, F. C., Oliva, G., Guido, R. C., & Caroline, A. C. A. Antiplasmodial profile of selected compounds from Malaria Box: *In vitro* evaluation, speed of action and drug combination studies. *Malar. J.* 18, 447–459. (2019).

- [31] Yadav, A., Yadav, M., Kumar, S., & Yadav J. P. Bactericidal effect of Acacia nilotica: in vitro antibacterial and time-kill kinetic studies. Int. J. Curr. Res. 7, 22289-22294. (2015).
- [32] Ahamed, T., Rahman, S. K. M., & Shohae, A. M. Thin-layer chromatographic profiling and phytochemical screening of six medicinal plants in Bangladesh. *Int. J. Biosci.* 11, 131-140. (2017).
- [33] Yehye, W. A., Rahman, N. A., Alhadi, A. A., Khaledi, H., Ng, S. W., & Ariffin, A. Butylated hydroxytoluene analogs: synthesis and evaluation of their multipotent antioxidant activities. *Molecules*. **17**, 7645-7665. (2012).
- [34] Zeb, M. A., Khan, S. U., Rahman, T. U., Sajid, M., & Seloni, S. Isolation and biological activity of β-sitosterol and stigmasterol from the roots of *Indigofera heterantha*. *PPU*. **5**, 204–207. (2017).
- [35] Sirikhansaeng, P., Tanee, T., Sudmoon, R., & Chaveerach, A. Major phytochemical as γ -sitosterol disclosing and toxicity testing in Lagerstroemia species. *Evid. -based Complement. Altern.* 7209851. (2017).
- [36] Akinmoladun, A. C., Olaleye, T. M., Komolafe, K., & Adetuyi, A. O. Effect of homopterocarpin, an isoflavonoid from *Pterocarpus erinaceus*, on indices of liver injury and oxidative stress in acetaminophen-provoked hepatotoxicity. *JBCPP*. 26, 555-562. (2015).
- [37] National Institutes of Health. National Library of Medicine. National Center for Biotechnology Information., *Homopterocarpin*, https://pubchem.ncbi.nlm.nih.gov/compound/-Homopterocarpin. 12.28 Western Indonesain Time. August, 9th, (2021).
- [38] Choy, Y. B., & Prausnitz, M. R. The rule of five for non-oral routes of drug delivery: ophthalmic, inhalation and transdermal. *Pharm. Res.* 28, 943–948. (2011).
- [39] Abdelli, I., Hassani, F., Brikci, S. B., & Ghalem, S. In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by *Ammoides 56exadecenoic* components harvested from Western Algeria. J Biomol Struct Dyn. 1–14. (2020).

- [40] Hassan, A., Akmal, Z., & Khan, N. The phytochemical screening and antioxidants potential of *Schoenoplectus triqueter* L. Palla. *Journal of Chemistry*. 3865139. (2020).
- [41] Yahya, M. A., & Nurrosyidah, I. H. Antioxidant activity ethanol extract of gotu kola (Centella asiatica L.) with DPPH method (2,2-diphenyl-1-pikrilhidrazil). Journal Halal Product and Research. 3,106-112. (2020).
- [42] Esmaeili, A. K., Taha, R. M., Mohajer, S., & Banisalam, B. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from *in vivo* and *in vitro* grown *Trifolium pratense* L. (Red Clover). *BioMed Res Int*. 643285:1-11. (2015).
- [43] Olennikov, D. N., Zilfikarov, I. N., Toropova, A. A., & Ibragimov, T. A. Chemical composition of *Callisia fragrans* wood juice and its antioxidative activity (*in vitro*). *Chem. Plant Raw Mater.* 4, 95–100. (2008)
- [44] Upadhyaya, H. C., Sisodia, B. S., Cheema, H. S., Agrawal, J., Pal, A., Darokar, M.
 P., & Srivastava, S. K. Novel antiplasmodial agents from *Christia vespertilionis*.
 Nat. Prod. Commun. 8, 1591–1594. (2013).
- [45] Chaniad, P., Phuwajaroanpong, A., Techarang, T., Viriyavejakul, P., Chukaew, A. & Punsawad, C. Antiplasmodial activity and cytotoxicity of plant extracts from the Asteraceae and Rubiaceae families. *Heliyon.* 8(1), e08848. (2022).
- [46] Noufou, O., André, T., Richard, S. W., Yerbanga, S., Maminata, T., Ouédraogo, S., Anne, E. H., Irène, G. & Pierre, G. I. Anti-inflammatory and anti-plasmodial activities of methanol extract of *Pterocarpus erinaceus* Poir. (Fabaceae) leaves. *Int. J. Pharmacol.* 89, 291-294. (2016).
- [47] Tajuddeen, N., & van Heerden, N. Antiplasmodial natural products: An update. *Malar J.* **18**. 1-62. (2019).
- [48] Safitri, R. A., Saptarini, O., & Sunarni, T. Cytotoxic activity, expression of p53, and Bcl-2 extract fraction of Kelakai Herbs (*Stenochleana palustris* (Burm.F.) Bedd.) to breast cancer T47D cells. *Jurnal Biotek Medisiana Indonesia*. 9. 113-127. (2020).
- [49] Saivaraj, S., & Chandramohan, G. Antimicrobial activity of natural dyes obtained from *Pterocarpus indicus* Willd. Bark. *Asian J. Pharm. Res. Dev.* **6**, 6-8. (2018).

- [50] Jime nez-Gonza lez, L., lvarez-Corral, M. A., Mun oz-Dorado, M., & Rodri guez-Garci a, I. Pterocarpans: interesting natural products with antifungal activity and other biological properties. *Phytochem. Rev.* 7. 125–154. (2008).
- [51] Cuellar, J. E., Martínez, J., Rojano, B, Gil, J. H., & Durango, D. Chemical composition and antioxidant and antibacterial activity of *Platymiscium gracile* Benth.: A species threatened by extinction. *J. King Saud Univ. Sci.* **32**. 702–708. (2020).

Chulalongkorn University

CHAPTER FOUR

In silico anti-SARS-CoV-2 and *in vitro* antiplasmodial activities of compounds from *n*-hexane fractions of *Sonchus arvensis* L. leaves

Dwi Kusuma Wahyuni^{1,2}, Sumrit Wacharasindu³, Wichanee Bankeeree², Hunsa

Punapayak², Hery Purnobasuki¹, Junairiah¹, Arif Nur Muhammad Ansori⁴, Viol Dhea

Kharisma⁵, Arli Aditya Parikesit⁶, Listyani Suhargo¹, and Sehanat Prasongsuk^{1,2*}

¹Department of Biology, Faculty of Science and Technology, Universitas Airlangga

Surabaya, East Java, 60115, Indonesia

²Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

³Department of Chemistry, Faculty of Science, Chulalongkorn University,

Bangkok,10330, Thailand

⁴Professor Nidom Foundation, Surabaya, East Java, 60115, Indonesia

⁵Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, East Java, 65145, Indonesia

⁶Department of Bioinformatics, School of Life Science, Indonesia International

Institute for Life Sciences, Jakarta, 13210, Indonesia

*Corresponding author: Sehanat Prasongsuk

sehanat.p@chula.ac.th.

Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

Abstract

Infectious diseases, especially SARS-CoV-2 and malaria, are global health concerns. This is the first report of *in silico* anti-SARS-CoV-2 and *in vitro* antiplasmodial activities of *n*-hexane fractions of *Sonchus arvensis* L. leaves. The leaves were harvested before the generative phase, then dried and extracted with *n*-hexane. The *n*-hexane extract was fractionated by column chromatography. The secondary metabolites of the selected fractions were identified by gas chromatography-mass spectrometry (GC-MS) and thin layer chromatography. The in silico anti-SARS-CoV-2 and in vitro antiplasmodial activities of the selected fractions (5–12 and 15–28) were determined. In silico anti-SARS-CoV-2 analysis was conducted for compounds identified by GC-MS with the target proteins, consisting of the helicase (PDB ID 6ZSL), RdRp (PDB ID 6M71), Mpro (PDB ID), and RBD-Spike (PDB ID 6LZG) proteins of SARS-CoV-2. The in silico assay was performed using software. PyRx software ver. 0.9.9 was used for docking simulation, Lipinski's Rule of Five (http://www.scfbioiitd.-res.in/software/drugdesign/lipinski.jsp) was used to predict drug-like molecules, the Molinspiration v2018.03 server (https://www.molinspiration.-com/cgibin/properties) was used to predict inhibitor activity, PyMol software ver. 2.5 (https://pymol.org/2/) was used to display the three-dimensional structures of the molecular complexes predicted by docking simulation. and molecular CABS-flex 2.0 ver. (http://biocomp.chem.uw.edu.pl/-CABSflex2/index) was used to generate molecular dynamic simulations. Antiplasmodial testing was performed on blood cultures infected with Plasmodium falciparum strain D317 using the Rieckmann method. GC-MS analysis identified hexacosanol, β -amyrin, lupeol, α -amyrin, 60exadec, and taraxasterol as the major bioactive molecules of fractions 15-28. The in silico anti-SARS-CoV-2 assay showed that β -amyrin, lupeol, α -amyrin, 60exadec, and taraxasterol were predicted as effective antiviral candidates by having the ability to act as inhibitors of SARS-CoV-2 protein activity. Moreover, fractions 5-12 and 15-28 had in vitro antiplasmodial activities with IC₅₀ values of 2.38 and 5.03 µg/mL, respectively. Therefore, the molecular dynamic analysis data strengthen the notion that the interactions resulting from the five compounds of *n*-hexane fractions of *S*. arvensis L. leaves were stable and predicted to be effective antiviral candidates by having the ability to act as inhibitors of SARS-CoV-2 protein activity. The *in vitro* results showed that the *n*-hexane fractions of *S. arvensis* L. leaves had antiplasmodial activities.

Keywords: *Sonchus arvensis* L., antiplasmodial, *Plasmodium falciparum*, SARS-CoV-2, *n*-hexane fractions

4.1 Introduction

Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) remains a serious health concern that impacts all aspects of human life worldwide and efforts to develop new drugs are ongoing. All scientific activities have been mobilized to discover alternative drugs against SARS-CoV-2^[1]. Moreover, the emergence of drug-resistant parasites is a major threat to the control of infectious diseases, including malaria, thereby increasing the risks of morbidity and mortality. Resistance to artemisinin-based combination therapy has been a significant obstacle to the treatment and prognosis of malaria^[2], thus the development of new antimalarial drugs is particularly urgent.

Recent studies have explored the efficacy of synthetic and natural products as antimalarial drugs^[3]. According to estimates by the World Health Organization, about 80% of the world population use natural compounds derived from medicinal plants as herbal drug preparations^[4]. However, the requirement for new and useful compounds has been growing each year^[5,6].

Sonchus arvensis L., a highly invasive species of the family Asteraceae, is used as a traditional medicinal plant for the treatment of malaria in Indonesia^[7]. This plant contains various active compounds, including flavonoids, saponins, and polyphenols^[8], which reportedly have moderate to high antioxidant^[9], hepatoprotective^[10], nephroprotective^[11], anti-inflammatory^[12], and antibacterial^[13] activities. In spite of these pharmaceutical benefits, the active compounds of *S. arvensis* L. have not been evaluated *in vivo* for treatment of malaria. A previous study reported that methanol extracts of *S. arvensis* L. calluses had antiplasmodial activities a half-maximal inhibitory concentration (IC₅₀) of 0.343 µg/mL at 1 mg/L of 2,4-dichlorophenoxyacetic acid and 0.5 mg/L of benzyl amino purine incubated without light^[14].

The aim of the present study was to determine the *in silico* anti-SARS-CoV-2 and *in vitro* antiplasmodial activities of compound *n*-hexane fractions of *S. arvensis* L. leaves. The results showed that compound *n*-hexane fractions of *Sonchus arvensis* L. had *in silico* anti-SARS-CoV-2 and *in vitro* antiplasmodial activities.

4.2 Methods

4.2.1 Plant Material Collection and Identification

S. arvensis L. was collected from Mount Merapi, Daerah Istimewa Yogyakarta, Indonesia, by local people. The plants were 2–3 months old (pre-generative stage) an the leaves were green and apparently healthy with no signs of destruction by insects or microbes. The plant material was confirmed as *S. arvensis* L. by the staff of the Purwodadi Botanical Garden (Pasuruan, East Java, Indonesia) operated by the Indonesian Institute of Sciences (Jakarta, Indonesia). A voucher specimen was deposited in the Plant Systematics Laboratory, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya City, East Java, Indonesia (no. SA.0110292021).

4.2.2 Extraction

The leaves of S. *arvensis* L. were air-dried, ground into powder at room temperature, and macerated three times with *n*-hexane for 24 h each at room temperature. The liquid extract was filtered through Whatman no. 1 filter paper (pore diameter, 11 μ m; Cytiva, Marlborough, MA, USA), then evaporated in a rotary evaporator at 60°C to acquire crude extracts, which were stored at 4°C for later use. 4.2.3 Thin Layer Chromatography (TLC)

n-Hexane-extracted *S. arvensis* L. leaves (5 mg) were dissolved in *n*-hexane (100 μ L) and 5- μ L aliquots were spotted on a TLC plate (silica gel GF254; Sigma-Aldrich Corporation, St. Louis, MO, USA). Once dried, the TLC plate was developed with *n*-hexane an ethyl acetate (4:1), dried, sprayed with ρ -anisaldehyde sulfuric acid, and heated. Terpenoids on the TLC plate appeared as a purplish / blue nodes^[15].

4.2.4 Purification and Isolation

n-Hexane-extracted *S. arvensis* L. leaves were subjected to chromatography using a column (length, 80 cm length; cross-section, 2.5 cm) containing silica gel 60

(particle size, 0.063–0.200 mm; Merck KgaA, Darmstadt, Germany). The silica gel was weighed using a ratio of the adsorbent to extract of 80:10. A slurry of silica gel (80 g) was prepared with 100% *n*-hexane and poured into the column. The crude extract (10 g) was dissolved in dichloromethane (10 mL) in a beaker and adsorbed in the silica gel (10 g). The mixture was stirred at room temperature until all the dichloromethane had evaporated and placed on top of a previously packed column. Initially, elution was conducted with 80% *n*-hexane and 20% ethyl acetate (Table 1). Fractions were collected in 10-mL Falcon[™] bottles (Corning Inc., Corning, NY, USA) until the compounds were eluted entirely from the column. TLC fractions with the same Rf values were combined (Table 1).

4.2.5 Gas Chromatography-Mass Spectrophotometry (GC-MS)

GC-MS analysis was used to determine the phytochemical profiles of S. arvensis L. n-hexane fractions 5-12 and 15-28. Each fraction (15 mL) was dissolved in chloroform (1 mL), then passed through a 45-µm filter. Triple quadrupole GC-MS/MS was performed with an Agilent 7890B GC system and Agilent 7633 ALS detector (Agilent Technologies, Inc., Santa Clara, CA, USA) with an Agilent J&W HP-5ms column (5% phenyl-methylpolysiloxane; inner diameter, 0.25 mm; length, 30 m; film thickness, 0.25 µm). The following settings were used for GC-MS analysis: flow rate of the mobile phase, 1 mL/min; average velocity, 36.445 cm/min; oven temperature, 40-320°C at 15°C/min and held for 3-20 min; post-run temperature, 320°C (2 mL/min) for 5 min; carrier gas, helium; flow rate of carrier gas, 29.75 mL/min; carrier flow rate, 1 mL/min (constant mode); sample volume, 10 µL; total running time, 24 min; injector temperature, 50°C; injection volume, 0.3 µL (fractions 15–28) or 1.8 µL (fractions, 5–12); split ratio, 20:1 (fractions 15–28) or 10:1 (fractions, 2–12); and inlet temperature, 280°C. The interface and mass spectra ion source were maintained at 320°C and 250°C, respectively. The mass spectra were collected at 70 eV with a mass scan range of 30–5550 amu, solvent delay of 3 min, and transfer line temperature of 320°C. The identification of compounds was based on comparing the mass spectra with those of the Standard Reference Database (version 02.L; National Institute of Standards and Technology, Gaithersburg, MD, USA). The relative percentage of each

component was calculated as the relative percentage of the total peak area of the chromatograph.

4.2.6 Sample Preparation of in silico anti-SARS-CoV-2 activity

GC-MS analysis of *n*-hexane fractions 15–28 revealed the presence of α amyrin (compound identification [CID] 73170), ß-amyrin (CID 73145), 64exadec (CID 72326), lupeol (CID 259846), and taraxasterol (CID 441686). The covid-19 drugs EIDD-2801 or molnupiravir (CID 145996610 or Control 1) and PF-07321332 or paxlovid (CID 155903259 or Control 2) were used as positive controls (ligands) in this study. Samples of the selected chemical compounds were prepared by reference to the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). The information obtained from the PubChem database consisted of the CID, three-dimensional (3D) structure, and canonical simplified molecular-input line-entry. The target proteins in this study consisted of helicase (Protein Data Bank identification [PDB ID] 6ZSL), RNA-dependent RNA polymerase (RdRp) (PDB ID 6M71), main protease (Mpro) (PDB ID 7ALH), and receptor-binding domain (RBD)-spike (PDB ID 6LZG) of SARS-CoV-2. The 3D structures of the proteins were obtained from the US Research Collaboratory for Structural Bioinformatics Protein Data Bank (https://www.rcsb.org/). The 3D structures of sterilized native ligands and water were obtained using PyMol software ver. 2.5^[16]. 4.2.7 Drug-likeness Identification

Prediction of drug-like molecules of the *n*-hexane fractions of *S. arvensis* L. leaves was conducted in accordance with Lipinski's Rule of Five (http://www.scfbioiitd.res.in/software/drug-design/lipinski.jsp). The parameters of the chemical compounds as drug candidates included molecular weight, high lipophilicity (logP > 5), hydrogen donor bonds, acceptors, and molar refractivity. Natural drug-based candidates with drug-like molecular properties were predicted to show a high success rate in triggering target protein activity^[17].

4.2.8 Bioactivity Prediction

Potential inhibitor activity of the *n*-hexane fractions compounds of *S. arvensis* L. leaves was investigated using the Molinspiration property engine v.2018.03 (https://www.molinspiration.-com/cgi-bin/properties). Predictions were made by referencing the bioactivity score as an indicator for targeting of drug-binding sites via GPCR ligands, ion channel modulators, inhibitors, modulators, and nuclear receptors. Positive predictive scores indicated specific activities, such as inhibitory effects, of the tested compounds^[18].

4.2.9 Molecular Docking Simulation

A molecular docking simulation method was used to predict the inhibitory ability of a ligand to a target protein^[19]. With a blind docking method, the functional side of the target protein is ignored, as the binding energy formed is a better indicator to screen ligand activity against a target protein^[20]. In this study, the mechanisms of action of the *S. arvensis* L. compounds are predicted to involve binding to and inhibiting the activities of the helicase, RdRp, M^{pro}, RBD-Spike proteins of SARS-CoV-2. The docking simulation was conducted using PyRx software ver. 0.9.9 (https://pyrx.sourceforge.io/) with academic license.

4.2.10 Ligand-Protein Interactions and 3D Visualization

The molecular complex resulting from the molecular docking simulation was analyzed for the positions and types of formed chemical bonds with BIOVIA Discovery Studio 2017 software (https://discover.3ds.com/discovery-studio-visualizer-download). The software was used to predict the types of weak bond interactions (i.e., hydrophobic, Van der Waals, hydrogen, electrostatic, and -alkyl) and display the results in two-dimensional images. The 3D structures of the molecular complexes predicted by molecular docking simulation were displayed using PyMol software. The protein-ligand molecular complexes are presented as cartoons, surface models, stick models, and selective staining^[21].

4.2.11 Molecular Dynamic Analysis

The stability of the binding interactions formed between ligands and specific proteins domains was identified by molecular dynamic simulation with the CABS-flex web server ver. 2.0 (http://biocomp.chem.uw.edu.pl/CABSflex2/index). The parameters used in this simulation consisted of protein rigidity (1.0), protein restrants (ss2 3 3.8 8.0), global c-alpha restraints weight (1.0), global side-chain restraints weight (1.0), number of cycles (50), cycles between trajectory (50), temperature range (1.40), and RNG seed (227). The final result of the simulation is shown as a fluctuating graph or root mean square fluctuation (RMSF) with a maximum distance of $1-3^{[22]}$.

4.2.12 In Vitro antiplasmodial Assay

Cultures of *Plasmodium falciparum* strain 3D7 were cultivated using the Trager and Jensen method^[23], as adapted by Ekasari *et al.* ^[24], in Roswell Park Memorial Institute 1640 medium (Gibco, Carlsbad, CA, USA) supplemented with human O-type red blood cells, 5% hematocrit, 22.3 mM HEPES buffer (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; Sigma-Aldrich Corporation, St. Louis, MO, USA), 50µg/mL hypoxanthine, 2 mg/mL sodium bicarbonate, and 10% human O⁺ plasma. Chloroquine diphosphate was used as a positive control. An antiplasmodial assay was conducted using a 24-well microplate and incubation at 37°C for 48 h. The incubated materials were then collected, thinly smeared on a glass slide, fixed with methanol, and stained with Giemsa to assess the number of parasites under a microscope as compared with the negative control to determine the IC₅₀ value to achieve inhibition of parasitic growth. All IC₅₀ values were calculated using Probit analysis.

4.2.13 Cytotoxicity Assay and Selectivity index (SI)

Cytotoxicity assay was conducted using the micro tetra zolium MTT assay against human hepatic cells (Passage/P 18). The Dulbecco's modified Eagle's medium (DMEM) medium was used by adding 3.7 g of sodium bicarbonate (NaHCO₃), and pH adjustment of 7-7.2. The 500 ml of DMEM media, 50 ml of fetal bovine serum (FBS), 5 ml of nonessential amino acid (NEAA), and 6 ml of phenstrep (penicillin-streptomycin) were used as a complete medium. The complete medium was used culturing the cells during assay^[25].

The selectivity index (SI) was calculated to describe the selective activity of the extract against *Plasmodium falciparum* strain 3D7compared with the results of its toxicity test on human hepatocyte cells. Here, the SI value was calculated by comparing the IC_{50} value of the extract cytotoxicity and the IC_{50} value of *P. falciparum* strain 3D7. The selectivity index (SI) was calculated to describe the selective activity of the extract against *P. Falciparum* strain 3D7 compared with the results of its toxicity test on human hepatocyte cells^[26].

4.3 Result and Discussion

4.3.1 Terpenoid Screening of the *n*-hexane extract of Sonchus arvensis L. by TLC

The *n*-hexane extract of *S. Arvensis* L. Was analyzed by TLC using silica gel GF 254 as the stationary phase and *n*-hexane:ethyl acetate (4:1) as the mobile phase. There were two visible spots in daylight and under ultraviolet (UV) light at 254 nm (Rf value = 0.12 and 0.18). Under UV light at 366 nm, there were seven separate spots with Rf values of 0.14, 0.24, 0.29, 0.35, and 0.53. After staining with ρ -anisaldehyde sulfuric acid, three separate purple spots appeared, with Rf values of 0.31, 0.59, and 0.71 (Figure 6). TLC is an established method for separation of extracts of secondary metabolites of plant materials^[27]. The Rf value is an indicator of the diversity of terpenoid compounds separated from various extracts^[28].

4.3.2 Isolation and Purification

Sixteen fractions were collected (Table 18). The TLC results of fractions 5–12 were notable and yellow crystals formed at the bottom of the falcon tubes of these

samples. Further crystallization was induced using *n*-hexane at 4°C for 24 h. White crystals of the mother liquor had also formed at the bottom of the flasks. The light-yellow crystals were further purified by crystallization with *n*-hexane (white crystal, 198 mg). The yield of the final product was 1.98% (w/w).

Furthermore, the TLC results of fractions 15–28 were also significant. Brown crystals had formed at the bottom of the falcon tubes of these samples. Further crystallization was induced using n-hexane at 4°C for 24 h. Finally, 379 mg of white crystal was produced at a yield of 3.79%. The purity of each isolated compound was determined by TLC before spectral analysis.

-		1/1/1				
Fractions	Solvent	Volume	Combined	Rf	Number	TLC solvent
		collected	fractions	values	of spots	(<i>n</i> -hexane:
		(mL)	SASA C	of major		ethyl acetate)
		// / 92		spots		
1–4	n-Hexane	40	1-4	0	0	4:1
5–12	n-Hexane	80	5–12	0.71	1	4:1
13–14	n-Hexane	20	13-14	0.71,	3	4:1
		×.		0.59, 0.31		
15–28	n-Hexane	140	15–28	0.59, 0.31	2	4:1
29–35	<i>n</i> -Hexane	70	29-35	0.31, 0.24	2	4:1
36-60	<i>n</i> -Hexane	250	36-60	0.24, 1.8	1	4:1

Table	18. Column	chromatographi	ic separation c	of Sonchus	arvensis L.	n-hexane
	extract			2		

Note: Conditions for GC-MS are indicated in italics

4.3.3 GC-MS Analysis

GC-MS was used to determine the metabolite profile of two groups of *n*-hexane fractions of *S. arvensis* L. leaves: 5–12 and 15–28. Fractions 5–12 contained two compounds (stearyl palmitate and cetyl myristate) (Table 19, Figure 7) (Appendix 3: Supplementary data I), while fractions 15–28 contained six (hexacosanol, β -amyrin, Lupeol, α -amyrin, 68exadec, and taraxasterol) (Table 20, Figure 8) (Appendix 3: Supplementary data II). Octadecyl ester stearyl palmitate (fractions 5–12) and taraxasterol (fractions 15–28) were the major compounds among the eight detected.

Many phytochemicals have bioactivities. Stearyl palmitate and cetyl myristate have antimicrobial activities^[29,30]. Hexacosanol has a beneficial effect against detrusor overactivity in diabetic patients by ameliorating overexpression of muscarinic M₂ and M₃ receptor mRNAs^[31], neurotrophic activity^[32], and acetylcholinesterase inhibition activity in insects^[33]. β-Amyrin has antimicrobial^[34], antioxidant^[35], and anti-inflammatory^[36] activities. Lupeol has antimicrobial^[36], anti-inflammatory, and anti-arthritic^[37] activities. A-Amyrin has antimicrobial activities^[38] and stimulates human keratinocytes^[39]. Betulin has anticancer activities^[40] and has been used as a drug delivery system^[41] and as antiviral and antitumor agents^[42]. Taraxasterol has anticancer^[43] and anti-edematous activities and is reported to lower serum cholesterol levels^[44].

Figure 7. Representative chromatogram of fractions 5–12 of *Sonchus arvensis* L. n-hexane extract. Red arrow, octadecyl ester 69exadecenoic acid; green arrow, hexadecyl ester tetradecanoic acid.

Table	19. Phytochemical	components	from	GC-MS	analysis	of f	ractions	2-12 of
Sonchi	<i>us arvensis</i> L. <i>n</i> -hex	ane extract						

No	Compound	Retention	Percentage	Bioactivity
		Time (minutes)	of Area (%)	
1	Stearyl	15.234	100	Antimicrobial
	palmitate			activities ^[29,30]
2	Cetyl myristate	23.944	17	Antimicrobial and
				antifeedant activities ^[31]

Table20. Phytochemical components from GC-MS analysis of fractions 15–28of Sonchus arvensis L. n-hexane extract

No	Compound	Retention Time	Percentage of	Bioactivities
		(minutes)	Area (%)	
1	Hexacosanol	11.234	27.37	Neurotrophic
			5 11 1 11	activities ^[32]
2	ß-Amyrin	13.911	43.41	Antimicrobial ^[34] ,
		A second some		antioxidant ^[35] , and
		Zaaaranaa		anti-inflamantory ^[30]
	6			activities
3	Lupeol	14.207	31.26	Antimicrobial ^[34] ,
			15	anti-inflammatory,
				and anti-arthritic
	จ ห	าลงกรณ์มหา	วิทยาลัย	activities
4	α-Amyrin	14.255	25.91	Antimicrobial
	GHU	ALONGKORN	JNIVERSITY	activities ¹³⁰¹ ,
				stimulation of
				human
				keratinocytes
5	Betulin	14.965	59.51	Anticancer
				activities ¹⁴² , drug
				delivery system ¹⁴¹ ,
				antiviral and
		15.050	100	antitumor agents
6	Taraxasterol	15.052	100	Anticancer ¹⁴³¹ and
				anti-edematous
				activities, lowers
				serum cholesterol
				levels,

4.3.4 Anti-SARS-CoV-2 activity

The main compounds identified by GC-MS analysis of the *n*-hexane fractions of *S. arvensis* L. leaves were α -amyrin, β -amyrin, lupeol, taraxasterol, and betulin (fractions 15–28) (Table 20). All five compounds were identified as drug-like in accordance with the Lipinski Rule of Five parameters. According to Benet *et al.*^[16], the Lipinski Rule of Five consists of molecular mass >500 D, high lipophilicity <5, hydrogen bond donor <5, and hydrogen bond acceptor <10. The Lipinski Rule of Five is also predictive of the ability to penetrate cell membranes and an early indicator of the effectiveness of query compounds^[45]. Molecular weight in Lipinski's rule can be used to predict the mechanism of action of a compound, as compounds with smaller weights move more quickly and are easily absorbed by target cells. All five compounds are potential drug-like molecules or candidate drug molecules because all met more than two of the Lipinski Rules of Five (Table 21). Hence, these five compounds were categorized as drug-like molecules and probable to trigger specific activity when forming complexes with target proteins.

50/1	chus urvensi.		5.	13		
Compound	MW (Dalton)	LogP	HBD	НВА	MR	Probability
lpha-Amyrin	426.000	8.024	1	1	130.649	Drug-like molecule
ß-Amyrin	426.000	8.168	1	1 1	130.719	Drug-like molecule
Lupeol	426.000	8.025	1	1	130.670	Drug-like molecule
Taraxasterol	426.000	8.024	1	1	130.649	Drug-like molecule
Betulin	442.000	6.997	2	2	132.061	Drug-like molecule

 Table
 21. Drug-likeness analysis of compounds from n-hexane fractions of

 Sonchus orvensis L
 leaves

Abbreviations: HBA, hydrogen bond acceptor; HBD, hydrogen bond donor; LogP, high lipophilicity; MR: molar refractivity; MW, molecular weight

The potential inhibitor activity of the five compounds derived from *n*-hexane fractions of *S. arvensis* L. leaves classified as drug-like molecules in *Homo sapiens*^[46] was investigated. The focus of this study was inhibition activities against kinases, proteases, and other enzymes. The potential inhibitory activity of a query compound

is indicated by a more positive value^[47]. The results showed that all five compounds extracted from *S. arvensis* L. were probable inhibitors of enzyme actives (Table 22).

Compound	CDCP ligand	Ini	hibitory activ	Drobability	
compound	Grentiganu	Kinase	Protease	Enzyme	FIODADICIty
α -Amyrin	0.22	0.19	-0.41	0.60	Probable Inhibitor
ß-Amyrin	0.22	0.11	-0.31	0.56	Probable Inhibitor
Lupeol	0.27	0.15	-0.42	0.52	Probable Inhibitor
Taraxasterol	0.17	0.08	-0.23	0.50	Probable Inhibitor
Betulin	0.21	0.09	-0.41	0.51	Probable Inhibitor
		112.			

Table	22. Prediction	of inhibitory	activities	of <i>n</i> -hexane	fractions	of Sonchi	IS
	arvensis L.	compounds					

The molecular docking simulation with PyRx software ver. 0.9.9 showed that the bioactive compounds from *n*-hexane fractions of *S. arvensis* L. leaves had the most negative binding affinity for each SARS-CoV-2 protein as compared to the drug controls. α -Amyrin had the lowest binding affinity for the helicase and RBD-spike proteins (-9.8 and -8.3 kcal/mol, respectively), while ß-amyrin had the lowest binding affinity for the RdRp and M^{pro} proteins (-9.0 and -8.3 kcal/mol, respectively) (Table 23). The activity level of a candidate compound against a target protein is influenced by the binding affinity to the molecular complex, where a more negative value indicates greater potential for target activity. Two of the test compounds were predicted to produce inhibitory effects against four of the test target proteins because each produced a more negative binding affinity than other compounds and the drug control. The two compounds were also potential dual inhibitors because each had the potential to inhibit two of the four target proteins of SARS-CoV-2 (Table 23). PyMol software ver. 2.5 was used to visualization the docking simulation results and produce transparent surfaces, cartoons, stick structures, and colorations of the protein-ligand molecular complex structure (Figure 9).

The weak bond interactions formed in the docking complex consisted of alkyl, hydrogen, hydrophobic, Van der Waals, and electrostatic interactions. The existence of weak binding interactions supports the existence of biological activities of proteins by binding of ligands to specific domains. All of the tested bioactive compounds bound to the target protein domains with weak binding interactions, consisting of alkyl, hydrogen, pi, sigma, and Van der Waals interactions (Table 23), which support the prediction that each bioactive compound inhibited the activity of the target protein. The stability of binding to the molecular complex could be analyzed with molecular dynamic simulation by calculating the RMSF value of each complex, as an indicator of the movement of interacting atoms on the residues that made up peptides and proteins within a certain distance. A distance of 4 Å indicates complex stability^[46]. The results showed that a stable complex was formed at the most negative lowest energy value with the highest RMSF value of 4 Å. The results of this study indicated that the RMSF values of α -amyrin, β -amyrin, lupeol, taraxasterol, and betulin at the pocket-binding domain of each target protein were 4 Å, indicating stability (Figures 12 and 13). So, the molecular dynamic analysis data strengthen the notion that the interactions of the five tested compounds were stable and predicted as effective antiviral candidates by having the ability to act as inhibitors of SARS-CoV-2 protein activity.

Chulalongkorn University

Target	Ligand	Binding Affinity		
Target	Liganu	Center	Dimensions	(kcal/mol)
	α -Amyrin			-9.8
	ß-Amyrin			-9.4
	Lupeol	X: -17,182	X:76,703	-8.9
Helicase	Taraxasterol	Y:30,909	Y:96,531	-9.3
	Betulin	Z: -74,684	Z:76,610	-8.8
	EIDD-2801 (Control 1)			-6.8
	PF-07321332 (Control 2)	SI PARA		-7.7
	α-Amyrin			-8.6
	ß-Amyrin	1 T	>	-9.0
	Lupeol	X:119,717	×:79,274	-7.9
RdRp	Taraxasterol	Y:123,605	Y:84,541	-8.6
	Betulin	Z:115,595	Z:95,129	-7.7
	EIDD-2801 (Control 1)	-6.8		
	PF-07321332 (Control 2)			-7.0
	α-Amyrin	(\$1000) V		-8.0
	β-Amyrin	CARE -		-8.3
	Lupeol	X: -26,256	X:57,450	-7.3
M^{pro}	Taraxasterol	Y:11,525	Y:69,117	-8.0
	Betulin	Z:58,967	Z:59,607	-7.3
	EIDD-2801 (Control 1)	-6.7		
	PF-07321332 (Control 2)		RSITY	-6.9
	α -Amyrin			-8.3
	ß-Amyrin			-8.2
	Lupeol	X:212,130	X:102,969	-8.0
RBD-Spike	Taraxasterol	Y:184,834	Y:99,563	-8.1
	Betulin	Z:203,765	Z:190,569	-7.0
	EIDD-2801 (Control 1)	D-2801 (Control 1)		
	PF-07321332 (Control 2)			-6.6

Table 23. Docking results of compounds contained by Sonchus arvensis L. n-

hexane fraction with SARS-CoV-2 proteins

Molecular Complex	Molecular Interaction				
	Alkyl: Pro175, Tyr180, His554, Pro408, Pro406,				
$lpha$ -Amyrin_Helicase	Leu412				
	Hydrogen: Leu117, Asn557				
	Alkyl:Tyr789, Pro792				
$lpha$ -Amyrin_RBD-Spike	Van der Waals: Ile794, Asp796, Lys790, Gln895,				
	Thr883, Phe797				
	Alkyl: Met380, His381, Leu371, Ala375, His381				
ß-Amyrin_RdRp	Pi Sigma: Trp509				
	Van der Waals: Phe340, Tyr374, Leu514, Tyr515				
	Van der Waals: Leu271, Gly275, Met276, Asn238,				
Q Approving MAPro	Thr199, Asp197, Arg131, Thr198				
js-Amynn _m	Alkyl: Tyr239, Tyr237, Leu272, Leu287				
	Hydrogen: Lys137				
No and Contraction					

Table 24. Results of identification of molecular interactions of *n*-hexane fractions of *Sonchus arvensis* L. leaves

Figure 9. The 3D visualizations of molecular docking results. (A) α -Amyrin-Helicase, (B) α -Amyrin-Spike-RBD, (C) β -Amyrin-RdRp, and (D) β -Amyrin-M^{pro}

Figure 10. RMSF values of protein-ligand complexes. (A) α-Amyrin_Helicase, (B) α-Amyrin_Spike-RBD, (C) β-Amyrin_RdRp, and (D) β-Amyrin_M^{pro}.

Figure 11. Protein 3D structures determined by molecular dynamic simulation.
(A) α-Amyrin-Helicase, (B) α-Amyrin-Spike-RBD, (C) β-Amyrin-RdRp, and (D) β-Amyrin-M^{pro}.

4.3.5 Antimalaria activity of fraction of *n*-hexane extract of Sonchus arvensis L. against

P. falciparum strain 3D7

The IC₅₀ values of *n*-hexane fractions of *S. arvesis* L. at various doses are shown in Tables 25 and 26. As determined by the IC_{50} values, fractions 12–28 had the highest in vitro antiplasmodial activities, followed by fractions 2-5 extracted with ethanol and *n*-hexane (2.38 and 5.03 µg/mL, respectively). Many studies concluded that extracts with IC₅₀ values of 1–10 μ g/mL are potential antiplasmodial agents^[48,49]. A study conducted in China reported an extract with an IC₅₀ of 0.008–15.38 µg/mL as a potential antimalarial drug^[50]. According to the criteria proposed by Kayano *et* al.^[51], an extract is very active as an antimalarial at IC₅₀ < 5 µg/mL, active at 10 µg/mL > IC_{50} > 5 µg/mL, and inactive at IC_{50} > 10 µg/mL. Also, according to the criteria proposed by Lima et al.^[52] a plant extract with an IC₅₀ value of 10 μ g/mL can be considered active, 10 μ g/mL < IC₅₀ < 25 μ g/mL as quite active, and IC₅₀ > 25 μ g/ml as inactive as an antimalarial agent. Kigondu et al.^[53] classified the antiplasmodial potential of the crude extracts and fractions of plants as (a) highly active ($IC_{50} = 1-5$ μ g/mL), (b) promisingly active (IC₅₀ = 5.1–10 mg/mL), (c) good activity (IC₅₀ = 10.1–20 μ g/mL), (d) moderate activity (IC₅₀ 20.1–40 μ g/mL), (e) marginal potency (IC₅₀ 40.1–70 μ g/mL), and (f) poor or inactive (IC₅₀ 70.1–4100 μ g/mL).

As compared to previous research, the IC₅₀ values of the *S. arvensis* L. fractions were lower than those of dichloromethane extracts of *Commiphora africana* (A. Rich.) Engl. stem bark and *Dychrostachys cinerea* (L.) Wight & Arn. whole stem, which showed promising antiplasmodial activities (IC₅₀ = 4.54 ± 1.80 and 11.47 ± 2.17 µg/mL, respectively)^[3], and lower than those of *Phyllanthus emblica* L. leaf with IC₅₀ gainst *P. falciparum* strain 3D7 of 7.25 µg/mL (ethyl acetate extract) and 3.125 µg/mL (methanol extract), and *Syzygium aromaticum* L. flower bud with IC₅₀ of 13 µg/mL (ethyl acetate extract) and 6.25 µg/mL (methanol extract)^[54], and that of *Pterocarpus erinaceus* Benth. ex Walp. (IC₅₀ = 16–30 µg/mL)^[55].

Table 25. The percent parasitemia, growth percentage, and inhibition percentage of fractions 5–12 of *Sonchus arvensis* L of *n*-hexane extract against *P. falciparum* strain 3D7

Concentration	Replication	% Para	sitemia	Growth	Inhibition	
(µg/ml)	nepucation	0 h	48 h	Percentage (%)	Percentage (%)	1C ₅₀ (µg/111)
	1	0.93	6.61			
Negative control	2	1.10	6.30	5.43	-	
	Average	1.02	6.45			
	1	0.93	3.34			
10	2	1.10	3.45	2.38	56.17	
	Average	1.02	3.40			
	1	0.93	4.27			
1	2	1.10	4.62	3.43	36.83	
	Average	1.02	4.45			5 0 2 0
	1	0.93	5.26			5.029
0.1	2	1.10	5.00	4.11	24.31	
	Average	1.02	5.13			
	1	093	5.60	S.		
0,01	2	1.10	5.75	4.66	14.18	
	Average	1.02	5.68			
	1	0.93	7.01	- 6		
0,001	2	1.10	6.39	5.68	0.00	
	Average	1.02	6.70	1 N B 17 B		

CHULALONGKORN UNIVERSITY

Table 26. The percent parasitemia, growth percentage, and inhibition percentage of fractions 15–28 of *Sonchus* arvensis L of *n*-hexane extract against *P. falciparum* strain 3D7

Concentration	Replication	% Para	sitemia	Growth	Inhibition	IC ₅₀
(µg/ml)	nepication	0 h	48 h	Percentage (%)	Percentage (%)	(µg/ml)
	1	0.93	6.05			
Negative control	2	1.10	6.34	5.18	-	
	Average	1.02	6.20			
	1	0.93	3.21			
10	2	1.10	3.10	2.13	58.88	
	Average	1.02	3.15			
	1	0.93	3.48			
1	2	1.10	3.64	2.54	50.96	
	Average	1.02	3.56			2.38
	1	0.93	4.83			2.30
0.1	2	1.10	5.70	4.24	18.15	
	Average	1.02	5.26			
	1	0.93	6.56	No. 1		
0.01	2	1.10	6.20	5.36	0.00	
	Average	1.02	6.38			
	1	0.93	6.63	-18		
0.001	2	1.10	6.85	5.72	0.00	
	Average	1.02	6.74	เยเยย		

CHULALONGKORN UNIVERSITY

4.3.6 In vitro toxicity and selectivity index (SI)

In vitro toxicity was carried out by the MTT assay method against human hepatic cells. Then, calculating the selectivity index (SI), by comparing the CC_{50} of toxicity and the IC_{50} of antiplasmodial activity of the natural product. The 50% toxicity concentration (CC_{50}) of fraction no. 5-12 and 15-28 of *Sonchus arvensis* L. n-hexane extract were 253.83 and 121.45 µg/ml respectively (Appendix 3: Supplementary data III). Moreover, the selectivity index was 50.47 and 51.03 respectively (Table 27).

The extract or fraction was said to have high selectivity if the value of $SI \ge 3$, and to be less selective if the value of $SI \le 313$ (Safitri et al., 2020). de Souza et al.

(2019) categorized that natural product has been suggested that the SI > 10 indicated a favorable safety window between the effective concentration against the parasite and the toxic concentration to the human cell. All of the natural products in this study were found to be non-toxic.

No.	Extract	In vitro toxicity,	Selectivity index
	100 an	CC ₅₀ (µg/ml)	(SI)
1	Fractions no. 5-12	253.83	50.47
2	Fractions no 15-28	121.45	51.03

Table 27. In vitro toxicity and selectivity index (SI) of Sonchus arvensis L. extract

4.4 Conclusion

The results of this study highlight the *in silico* anti-SARS-CoV-2 and *in vitro* antiplasmodial activities of *n*-hexane fractions of *Sonchus arvensis* L leaves. These findings lay a foundation for further investigations of anti-SARS-CoV-2 and antiplasmodial compounds for future pharmaceutical applications. Additionally, the development of anti-SARS-CoV-2 and antiplasmodial assays is recommended to assess the bioactivities of compounds for treatment of SARS-CoV-2 and malaria.

List of Abbreviations

GC-MS, gas chromatography-mass spectrophotometry; IC_{50} , half maximal inhibitory concentration; RMSF, root mean square fluctuation; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TLC, thin layer chromatography

Authors' contributions

DKW: conception, design, implementation, conducting experiments, analysis, interpretation of results, and writing of the manuscript; SW: preparation of extraction, GC-MS analysis, and manuscript review; WB: conducting experiments, analysis, interpretation of results, and manuscript review; HP: collection, identification, and classification of plant material; HP: assisted with conception and material preparation; J: sample collection and preparation; VDK, ANMA, and AAP: *in silico* anti-SARS-CoV-2

analysis, and SP: primary author. All authors read and approved the final version of the manuscript.

Author details

¹Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia, 60115; ²Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 10330; ³Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 10330; ⁴Professor Nidom Foundation, Surabaya, East Java, Indonesia, 60115; ⁵Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, East Java, Indonesia, 65145; ⁶Department of Bioinformatics, School of Life Science, Indonesia International Institute for Life Sciences, Jakarta, 13210.

^{*}Corresponding author: Sehanat Prasongsuk, sehanat.p@chula.ac.th., Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.

Acknowledgments

The authors would like to thank Taman Husada Graha Famili Surabaya Indonesia for supplying the plant material.

Competing interests

The authors have no competing interests to declare.

Availability of data and materials.

The data and results obtained in the present study are available from the corresponding author upon request.

Consent for publication

Not applicable.

Funding.

This work was funded by Universitas Airlangga Surabaya, Indonesia (grant no. RC.1056/UN3.15/PT/2021).

4.5 References

- WHO, Coronavirus (Covid-19) outbreak. https://www.who.int. July, 10th 2021, 03.40. Western Indonesian Time, 2020. October, 11th 2021, 03.40. Western Indonesian Time, 2021.
- [2] WHO, *World Malaria Report 2020*, Geneva, Switzerland: WHO Press, World Health Organization, 2020.
- [3] Kweyamba PA, Zofou D, Efange N, Assob JN, Kitau J. In vitro and in vivo studies on antimalarial activity of *Commiphora africana* and *Dichrostahys cinerea* used by the Maasai in Arusha region, Tanzania. Malaria J. 2019;18 (1):119-125.
- [4] Katiyar D, Singh K, Ali M. Phytochemical and pharmacological profile of *Pterocarpus marsupium:* A review. The Pharma Innovation Journal. 2016;5(4):31-39.
- [5] Hegazy MF, Mohamed TA, Elshamy AI, Mohamed AH, Mahale UA, Reda EH, Shaheen AM, Tawfik WA, Shahat AA, Shams KA, Abdel-Azim NS, Hammouda FM. Microbial transformation as a tool for drug development based on natural products from mevalonic acid pathway: A review. Journal of Advanced Research. 2015;6:17-33.
- [6] Kang X, Csetenyl L, Gadd GM. Biotransformation of lanthanum by Aspergillus niger. Applied Microbiology and Biotechnology. 2019;103:981-993.
- [7] Wahyuni DK, Rahayu S, Purnama PR, Saputro TB, Suharyanto, Wijayanti N. Morpho-anatomical structure and DNA barcode of Sonchus arvensis L.. Biodiversitas, 2019;20(24):17-26.
- [8] Delyan E. Analysis of composition of volatile compounds of field sow thistle (Sonchus arvensis L.) leaves using the method of gas chromatography with mass-detection. Journal of Pharmaceutical Innovation. 2016;5:118-21.
- [9] Yuliarti W, Kusrini D, Isolasi FE. identifikasi dan uji antioksidan asam fenolat dalam daun tempuyung (Sonchus arvensis L.) dengan metode 1,1difenil-2pikrilhidrasil (DPPH). Chemical Informatics. 2013;1:294-304.

- [10] Hendriani R, Sukandara EY, Anggadiredja K. Sukrasno. In vitro evaluation of xanthine oxidase inhibitory activity of Sonchus arvensis leaves. International Journal of Pharmaceutical and Clinical Research. 2014;6:501-3.
- [11] Imelda I, Azaria C, Lucretia T. Protective Effect of ethanol Extract Tempuyung Leaf (Sonchus arvensis L.) against gentamicin induced renal injury viewed from blood ureum level. Journal of Medicine and Health. 2017;1:575-82.
- [12] Hendriani R, Sukandar EY, Anggadiredja K. Sukrasno. In vitro evaluation of xanthine oxidase inhibitory activity of selected medicinal plants. International Journal of Pharmaceutical and Clinical Research. 2015;8:235-238.
- [13] Rumondang M, Kusrini D, Fachriyah E. Isolation, identification and antibacterial test of triterpenoid compounds from n-hexane extract of tempuyung leaves (Sonchus arvensis L.). PharmSci. 2013;05:506-507.
- [14] Wahyuni DK, Purnobasuki H, Kuncoro EP, Ekasari W. Callus induction of Sonchus arvensis L. and its antiplasmodial activity. African Journal of Infectious Diseases. 2020;14:1-7.
- [15] Wahyuni DK, Rahayu S, Zaidan AH, Ekasari W, Prasongsuk S, Purnobasuki H. Growth, secondary metabolite production, and in vitro antiplasmodial activity of Sonchus arvensis L. callus under dolomite [CaMg(CO3)2] treatment. PLOS ONE, 2021;6(8): e0254804.
- [16] Putra WE, Kharisma VD, Susanto H. Potential of Zingiber officinale bioactive compounds as inhibitory agent against the IKK-B. AIP Conference Proceedings, 2020;2231(1):040048.
- [17] Kharisma VD, Agatha A, Ansori ANM, Widyananda MH, Rizky WC, Dings TGA, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R (2022) Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. Journal of Pharmacy and Pharmacognosy Research. 2022;10(1):138–146.
- [18] Shaheen U, Akka J, Hinore JS, Girdhar A, Bandaru S, Sumithnath TG, Nayarisseri A, Munshi A. Computer aided identification of sodium channel blockers in the clinical treatment of epilepsy using molecular docking tools. Bioinformation. 2015;11(3):131-137.

- [19] Hassan NM, Alhossary AA, Mu Y, Kwoh CK. Protein-ligand blind docking using quickvina-w with inter-process spatio-temporal integration. Scientific Reports. 2017;7(1):15451.
- [20] Kharisma VD, Ansori ANM, Nugraha AP. Computational study of ginger (Zingiber officinale) as E6 inhibitor in human papillomavirus type 16 (HPV-16) infection.
 Biochemical and Cellular Archives 2020;20 (Suppl 1):3155-3159.
- [21] Prahasanti C, Nugraha AP, Kharisma VD, Ansori ANM, Devijanti R, Ridwan TPSP, Ramadhani NF, Narmada IB, Ardani IGAW, Noor TNEBA. A bioinformatic approach of hydroxyapatite and polymethylmethacrylate composite exploration as dental implant biomaterial. Journal of Pharmacy and Pharmacognosy Research, 2021;9(5):746-754.
- [22] Wijaya RM, Hafidzhah MA, Kharisma VD, Ansori ANM, Parikesit AA. COVID-19 in silico drug with Zingiber officinale natural product compound library targeting the Mpro protein. Makara Journal of Science, 2021;25(3):162-171.
- [23] Trager W, Jensen JB, Human malarial parasites in continuous culture. Science 1976;193:673-676,
- [24] Ekasari W, Widyawaruyanti A, Zaini NC, Syafruddin A, Honda T, Morita H. Antimalarial activity of cassiarin a from the leaves of Cassia siamea. Heterocycles. 2009;78:1831-6.
- [25] de Souza GED, Bueno RV, de Souza JO, Zanini CL, Cruz FC, Oliva G, Guido RC, Caroline ACA. Antiplasmodial profile of selected compounds from Malaria Box: In vitro evaluation, speed of action and drug combination studies. Malaria Journal. 2019;18:404, pp. 447–459, 2019.
- [26] Fonseca AG, Dantas LLSFR, Fernandes JM, Zucolotto SM, Lima AAN, Soares LAL, Rocha HAO, Lemos TMAM. In vivo and in vitro toxicity evaluation of hydroethanolic extract of Kalanchoe brasiliensis (Crassulaceae) Leaves. Journal Toxicology, 2018;6849765:1-8.
- [26] Ali KS, Mohammed ASA, Munayem RT. Phytochemical Screening and thin layer chromatography of Acacia etbaica ssp. Uncinata leaves. World Journal of Pharmaceutical Research. 2017;6(12):1278-1283.

- [27] Ahamed T, Rahman SKM, Shohae AM. Thin layer chromatographic profiling and phytochemical Screening of six medicinal plants in Bangladesh. International Journal of Biosciences. 2017; 11(1):131-140.
- [28] Aldakheel RK, Rehman S, Almessiere MA, Khan FA, Gondal MA, Mostafa A, and Abdulhadi Baykal A. Bactericidal and in vitro cytotoxicity of Moringa oleifera seed extract and its elemental analysis using laser-induced breakdown spectroscopy, Pharmaceuticals. 2020;13(8):193.
- [29] Duke JA, Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants, CRC Press, Boca Raton, FL, USA 1992.
- [30] Saito M, Kinoshita Y, Satoh I, Bex A, Bertaccini A. Ability of cyclohexenonic long-chain fatty alcohol to reverse diabetes-induced cystopathy in the rat. European Urology. 2006;51(2): pp 479-488.
- [31] Borg J, Toazara J, Hietter H, Henry M, Schmitt G, and Luu B. Neurotrophic effect of naturally occurring long-chain fatty alcohols on cultured CNS. Neurons. 1987;213(2): 406-410.
- [32] Gade S, Rajamanikyam M, Vadlapudi V, Nukala MK, Aluvala R, Giddigari C, Karanam NJ, Barua NC, Pandey R, Upadhayayula VSV, Srpadi P, Amanchy R, Upadhyayula SM. Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata, Biochimica et Biophysica Acta. 2017;1861(3):541-550.
- [33] Ogwuche CE, Amupitan JO, Ayo RG. Isolation and biological activity of the triterpene β-amyrin from the aerial plant parts of Maesobotrya barteri (Baill). Medicinal Chemistry. 2014;4:729–733.
- [34]

Sunil C, Irudayaraj SS, Duraipandiyan V, AlDhabi NA, Agastian P, Ignacimuthu S. Antioxidant and free radical scavenging effects of β-amyrin isolated from S. cochinchinensis Moore. leaves. Industrial Crops and Products. 2014;61:510– 516.

[35] Okoye NN, Ajaghaku DL, Okeke HN, Ilodigwe EE, Nworu CS, Okoye FBC. Betaamyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharmaceutical Biology. 2014;52:1478–1486.

- [36] Wal A, Rai A, Wal P, Sharma G. Biological activities of lupeol, in Systematic Reviews in Pharmacy, 2011.
- [37] Ekalu A, Ayo RGO, Habila JD, Hamisu. Bioactivities of Phaeophytin a, α -Amyrin, and lupeol from Brachystelma togoense Schltr, JOTCSA. 2019; 6(3):411-418.
- [38] Biskup E, Golebiowski R, Stepnowski P, and Lojkowska E.Triterpenoid α-amyrin stimulates proliferation of human keratinocytes but does not protect them against UVB damage, Acta Biochimica Polonica, 2012;59(2):255–260.
- [39] So HM, Eom HJ, Lee D, Kim S, Kang KS, Lee IK, Baek KH, Park JY, Kim KH. Bioactivity evaluations of betulin identified from the bark of Betula platyphylla var. japonica for cancer therapy, Archives of Pharmacal Research. 2018;41(8:815-822.
- [40] Niewolik D, Bednarczyk-Cwynar B, Ruszkowsk P, Sosnowski TR, Jaszcz K. Bioactive botulin and PEG based polyanhydrides for use in drug delivery systems. International Journal of Molecular Sciences. 2021;22:1090.
- [41] Tolstikov GA, Flekhter OB, Shultz EE, Baltina LA, Tolstikov AG. Betulin and its derivatives. Chemistry and biological activity. Chemistry for Sustainable Development. 2005;2005(13):129-135.
- [42] Sharma K, Zafar R. Occurrence of taraxerol and taraxasterol in medicinal plants. Pharmacognosy Reviews. 2015;9(17):19-23.
- [43] Elnakady YA, Rushdi AI, Franke R, Abutaha N, Ebaid H, Baabbad M, Omar MOM, Al Ghamdi, AA. Characteristics, chemical compositions and biological activities of propolis from honey bee. Scientific Reports. 7:41453.
- [44] Widyananda MH, Pratama SK, Samoedra RS, Sari FN, Kharisma VD, Ansori ANM, Antonius Y (2021) Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. Journal of Pharmacy and Pharmacognosy Research. 9(4): 484-496.

- [45] Susanto H, Kharisma VD, Listyorini D. Effectivity of black tea polyphenol in adipogenesis related IGF-1 and its receptor pathway through in silico based study. Journal of Physics: Conference Series. 2018; 1093: 012037.
- [46] Mousavi SS, Karami A, Haghighi TM, Tumilaar SG, Fatimawali, Idroes R, Mahmud S, Celik I, Ağagündüz D, Tallei TE, Emran TB, Capasso R. In silico evaluation of iranian medicinal plant phytoconstituents as inhibitors against main protease and the receptor-binding domain of SARS-CoV-2. Molecules. 2021; 26(18): 5724.
- [47] Weenen H, Nkunya MH, Bray DH, Mwasumbi LB, Kinabo LS, Kilimali VA.
 Antimalarial activity of Tanzanian medicinal plants. Planta Medica.
 1990;56(4):368-370.
- [48] Upadhyaya HC, Sisodia BS, Cheema HS, Agrawal J, Pal A, Darokar MP, Srivastava SK. Novel antiplasmodial agents from Christia vespertilionis. Natural Product Communication. 2013; 8: 1591–1594.
- [49] Aryanti TM, Ermayanti IP, Kartika MD. Rita, Uji daya antimalarial Artemisia spp. terhadap Plasmodium falciparum Indonesia. Majalah Farmasi Indonesia. 2006;17(2): 81-84.
- [50] Kayano CAV, Lopes SCP, Bueno FG, Cabral EC, Souza-Neiras WC, Yamauchi LM, Foglio MA, M.N., Eberlin CJP, Mello FTM Costa, In vitro and in vivo assessment of the anti-malarial activity of Caesalpini pluviosa. Malaria Journal, 2011;10(112):1-12.
- [51] Lima RB, Rocha e Silva LF, Melo MR, Costa JS, Picanço NS, Lima ES, Vasconcellos MC, Boleti AP, Santos JM, Amorim RC, Chaves FC, Coutinho JP, Tadei WP, Krettli AU, Pohlit AM. In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon. Malaria Journal. 2015;14(508):508.
- [52] Kigondu EVM, Rukunga GM, Gathirwa JW, Irungu BN, Mwikwabe NM, Amalemba GM, Omar SA, Kirira PG. Antiplasmodial and cytotoxicity activities of some selected plants used by the Maasai community. South African Journal of Botany. 2011;77(3):725–729.

- [53] Bagavan, A. A. Rahuman, N. K. Kaushik, D. Sahal, In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum.
 Parasitology Research. 2011;108(1):15-22.
- [54] Karou D, Dicko MH, Sanon S, Simpore J, Traore AS. Antimalarial activity of Sida acuta Burm.f (Malvaceae) and Pterocarpus erinaceus Poir (Fabaceae). Journal of Ethnopharmacology. 2003;89(2-3):291-294.

Chulalongkorn University
CHAPTER FIVE

Biotransformation of homopterocarpin from *Pterocarpus macrocarpus* Kurz. heartwood by *Aspergillus niger*

Dwi Kusuma Wahyuni^{1,2}, Sumrit Wacharasindhu³, Wichanee Bankeeree¹, Hunsa Punapayak¹, and Sehanat Prasongsuk^{1,2*}

¹Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok,10330 Thailand

²Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, East Java, 60115, Indonesia

³Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

*Corresponding author: Sehanat Prasongsuk

sehanat.p@chula.ac.th.

Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

Abstract

The requirement for new and useful compounds are growing. Some bioactive compounds have very bioavailability but low solubility and structural instability. Because of the phenomena, it is needed a specific effort to explore the natural material well, such as biotransformation. Therefore, the aims of this study were to transform homopterocarpin from Pterocarpus macrocarpus Kurz. heartwood and evaluate the bioactivity (antioxidant, antiplasmodial and anticancer) of biotransformation derived compound. Biotransformation of homopterocarpin isolated from *P. macrocarpus* Kurz. heartwood was performed by *Aspergillus niger* (UI X-172) in soi bean meal medium (SBM) for a week. Biotransformation derived compound was identified as medicarpin. Medicarpin exhibited in vitro antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC₅₀ = 7.49 ± 1.7 µg/mL) and 2,2-azino-bis (3ethylbenzothiazoline-6-sulfonic acid (ABTS) ($IC_{50} = 0.61 \pm 0.4 \mu g/mL$), in vitro antiplasmodial against *Plasmodium falciparum* strain 3D7 with $IC_{50} = 0.414 \mu g/mL$, and anticancer against hepatocyte-derived cellular carcinoma cell line (Huh7it-1 cells) with $IC_{50} = 34.96 \ \mu g/mL$. This study highlighted the biotransformation of homopterocapin to medicarpin. It showed the good antioxidant, antiplasmodial and anticancer activities These results have the potential to be developed into a new drug candidate. However, the compounds and transmission-blocking strategies for diseases control of medicarpin is essential for further study.

5.1 Methods

5.1.2 Chemicals and Aspergillus niger strain

Homopterocarpin was isolated from *n*-hexane extract of *Pterocarpus macrocarpus* Kurz. heartwood. The heartwood was air-dried until the dry weight obtained. One kg dried wood was then grounded into powder at room temperature and macerated three times with *n*-hexane for seven days at room temperature. The *n*-hexane extract was crystallized by *n*-hexane solvent five times or until the crystals were white.

Aspergillus niger (UI X-172) was used from Plant Utilization Research Unit Laboratory, Department of Botany, Chulalongkorn University. The spore bank was maintained at -20 °C in cryovials in plate count broth medium (1 mL) mixed with glycerol (0.5 mL) as a cryoprotectant agent. The working spore bank was conserved at 4 °C in plate count agar (PCA) slants for 6 months and used for seed cultures.

5.1.2 Microbial transformation OVGKORN UNIVERSITY

The culture medium for biotransformation was prepared by dissolving glucose (20 g), yeast extract (5g), NaCl (5g), KH₂PO₄ (5g), and soy bean meal (5g) in distillated water (1L), namely soy bean meal medium (SBM medium) (Hoffmann and Punnapayak, 1988). The medium solution was adjusted to pH 7 and sterilized by autoclaving at 121°C for 15 min, 1.2 atm pressure. One ml of *Aspergillus niger* spores $(1\times10^{6} \text{ in } 1\% \text{ tween } 80)$ from agar slant will be added into 50 mL of SBM medium and incubated at 27± 2°C on a rotary shaker (150 rpm). After incubated 2 days, 5 mL of culture added to 50 mL new SBM brought medium and incubated at 27± 2°C on a rotary shaker (150 rpm) will be added into the 50 mL of culture medium after 24 h of incubation. After seven days of incubation, the

culture will be pooled, filtered and extracted with an equal volume of dichloromethane (DCM) in 24-h intervals, three times. The extracts will be collected together and then evaporated in rotary evaporator under reduced pressure, and the residue will be dissolved in DCM for TLC analysis. The extracts will be fractionated and purified to isolate the compound.

5.1.3 Separation of bio-transformed compound

The combined DCM extract of bio-transformed compound of homopterocarpin were chromatographed on silica gel column using *n*-hexane/ethyl acetate gradient system. Compound were isolated from the fraction 25-29 and 49-69. Further separation and purification were done using preparative TLC plate for compound 1 and 3. The system used was *n*-hexane/ethyl acetate 7:3 for compound 1 and 2:8 for compound 2. Moreover, purification of compound 2 used crystallization. One hundred milligram of fraction 49-69 were dissolved in DCM and boiled at 100°C, added a little *n*-hexane and stored at refrigerator (9±4°C) with open cap condition for 24h. Colorless crystal was formed in the bottom of tube.

5.1.4 Metabolite extraction

For metabolite characterization, 50 mL of microbial culture were collected from 0,3,5, and 7 days culture. They were simultaneously extracted from three different culture from each day culture. Each culture was dried in freeze drier and macerated with 10 mL of a 9:1 methanol:water solution followed by incubation at room temperature for 24 h three times. A total of crude extract was collected and stored at refrigerator. The solution (1 μ L) was then injected into a GC-MS.

5.1.5 Metabolomic analysis using GC-MS/MS of *Aspergillus niger*-transformation culture

GC-MS analysis was used to determine the phytochemical profiles of homopterocarpin transformation culture for a week. Culture extract was dissolved in methanol (40 mg/mL), then passed through a 45-µm filter. Triple quadrupole GC-MS/MS was performed with an Agilent 7890B GC system and Agilent 7633 ALS detector (Agilent Technologies, Inc., Santa Clara, CA, USA) with an Agilent J&W HP-5ms column (5% phenyl-methylpolysiloxane; inner diameter, 0.25 mm; length, 30 m; film thickness, 0.25 µm, part no. 19091S-433UI). The following settings were used for GC-MS analysis: flow rate of the mobile phase, 1 mL/min; average velocity, 36.966 cm/min; oven temperature, 80–320°C at 7°C/min and held for 2-5 min; post-run temperature, 310°C (2 mL/min) for 5 min; carrier gas, helium; flow rate of carrier gas, 29.75 mL/min; carrier flow rate, 1 mL/min (constant mode); sample volume, 10 µL; total running time, 24 min; injector temperature, 50°C; injection volume, 1 µL. The interface and mass spectra ion source were maintained at 250°C. The mass spectra were collected at 70 eV with a mass scan range of 30–500 amu, solvent delay of 3 min, and transfer line temperature of 300°C. The identification of compounds was based on comparing the mass spectra with those of the Standard Reference Database (version 02.L; National Institute of Standards and Technology, Gaithersburg, MD, USA). The relative percentage of each component was calculated as the relative percentage of the total peak area of the chromatograph.

5.1.6 Spectrophotometric analysis of biotransformation derivative compound

Gas chromatography-mass spectrophotometry (GC-MS) was conducted to identify biotransformation derivative compound. The compound was dissolved in Chloroform (CHCl3). The GC-MS analysis was carried out using an Agilent GC-MSD (Agilent 19091S-433UI) equipped with a capillary column (30 m x 250 μ m x 0.25 μ m), and a mass detector was operated in electron impact (EI) mode with full scan (50550 amu). Helium was the carrier gas at a flow rate of 3 ml/min with a total flow of 14 ml/min, the injector was operated at 280°C, and the oven temperature was programmed as follows: 60°C, at 3°C/min to 250°C. The peaks in the chromatogram were identified based on their mass spectra. Interpretation of the mass spectrum of GC-MS was made using the National Institute Standard and Technology (NIST). The mass spectrum of phytochemicals was compared with the spectrum of known compounds stored in the NIST library. The quality of compounds above 85% was shown in this study. Each component's relative percentage was calculated by the relative percentage of the chromatogram's total peak area. The ¹H, and ¹³C, NMR spectra of the compound were analyzed using the JEOL JNM-ECS instrument at 400MHz in chloroform solvent.

5.1.7 In Vitro Antioxidant Activity

5.1.7.1 The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) inhibition assay.

The DPPH inhibition assay was modified from Prieto (2012). One hundred microliters of sample were mixed with 100 μ l DPPH reagent in methanol (0.2mM), then incubated for 30 mins in dark conditions at room temperature. The concentration of samples and positive control (ascorbic acid and trolox) were made from 1.075, 3.15, 6.25, 10, 15, 25, 35, 50, 75, 100, 150, and 200 μ g/ml in methanol. The inhibition of DPPH was measured at 517 nm using a SpectraMax M3 reader. The percentage of DPPH inhibition was calculated by an equation adapted from

Prieto (2012):

(A_{control-}A_{sample})/A_{control} x 100%

Where A_{sample} was the absorbance from the reaction of DPPH reagent and the sample, while $A_{control}$ was the absorbance from DPPH reagent. The percent inhibition results from the varying concentration were then plotted and regressed linearly to get the half-maximal inhibitory concentration (IC₅₀) value. IC₅₀ means the concentration of the samples when inhibiting 50% of DPPH.

5.1.7.2 The 2,2-azino-bis (3 ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) inhibition assay

The ABTS inhibition assay was from Fu et al. (2014). The 86.02mg of 2,2-azinobis (3 ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) was solved in 25ml acetic buffer (solution A). The 66.24mg of potassium persulphate was solved in 100 acetic buffer (solution B). Then, 5ml of solution A and B were combined and stored at room temperature for 12-16 hours in dark condition (solution C). The 2.8 ml of solution C was solved in 65 ml of acetic buffer, and then incubated for 30 min in room temperature ($26\pm2^{\circ}$ C). The absorbance of solution C was measured immediately (0.7-0.72, at 734nm). One hundred microliters of sample were mixed with 100 µl ABTS reagent (solution C), then incubated for 6 mins in dark conditions at room temperature. The concentration of samples and positive control (ascorbic acid and trolox) were made from 1.075, 3.15, 6.25, 10, 15, 25, 35, 50, 75, 100, 150, and 200 μ g/ml in methanol. The inhibition of DPPH was measured at 734 nm using a SpectraMax M3 reader. The calculation of percent inhibition and IC₅₀ value was similar to DPPH inhibition assay.

5.1.8 In vitro antimalarial assay

In this research, in vitro antimalarial assay used cultures of Plasmodium falciparum strain 3D7 (Trager and Jensen 1972). The composition of the medium was human O red blood cells, 5% hematocrit in Roswell Park Memorial Institute 1640 (RPMI 1640) (Gibco BRL, USA), 22.3 mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES) (Sigma), hypoxanthine, sodium bicarbonate (NaHCO₃), and 10% human O^+ plasma. Chloroquine diphosphate was used as a positive control. A total of 1 mg of sample was dissolved in 100µl of Dimethyl sulfoxide (DMSO, stock solution, concentration 10,000 mg/ml). Furthermore, from the stock solution, serial dilutions were made. The parasites used in this test was synchronous (ring stage) with ±1% parasitemia (5% hematocrit). A total of 2µl of test solutions with various concentrations were taken and put into each wheel (96 wells), then 198µl of the parasite was added (the final concentration of the test material was 100 µg/ml, 10 μ g/ml, 1 μ g/ml, 0.1 μ g/ml, 0.01 μ g /ml). The test well was then put into the chamber and given mixed gas (O_2 5%, CO_2 5%, and N_2 90%). The chamber containing the test wells was incubated for 48 hours at 37°C. The cultures were then harvested and a thin blood film was prepared with 20% Giemsa staining. The blood smear that has been made was calculated by counting the number of infected erythrocytes per 1000 normal erythrocytes under a microscope (1000X). The data was used to determine the percent growth and percent inhibition.

Percentage of growth was obtained by the following formula: % Growth = % Parasitemia - % growth at 0 hour The formula for calculating the % Inhibition is as follows: Percent inhibition = $100\% - ((Xu/Xk) \times 100\%)$ Information: Xu = % growth in the test solution Xk = % growth in negative control Based on the percent inhibition data, statistical analysis was carried out with probit analysis of the SPSS version 20 program to determine the IC_{50} value or the concentration of the test material that could inhibit the growth of the parasite by 50%.

5.1.9 In vitro anticancer assay

In vitro anticancer assay was carried out on hepatocyte-derived cellular carcinoma cell line (Huh7it-1cellls) by the micro tetra zolium (MTT) assay method as described by Fonseca et al. (2018). Passage (P) 18 human hepatocyte cells were cultured in Dulbecco's modified Eagle's medium (DMEM) medium added with 3.7 g of sodium bicarbonate (NaHCO₃), with a pH adjustment of 7-7.2. Then a complete medium was made from 500 ml of DMEM media, 50 ml of fetal bovine serum (FBS), 5 ml of nonessential amino acid (NEAA), and 6 ml of phenstrep (penicillin-streptomycin).

5.1.10 Selectivity index (SI)

The selectivity index (SI) was calculated to describe the selective activity of the extract against *Plasmodium falciparum* strain 3D7 compared with the results of its toxicity test on human hepatocyte cells. Here, the SI value was calculated by comparing the IC₅₀ value of the extract cytotoxicity and the IC₅₀ value of *P. falciparum* strain 3D7. The selectivity index (SI) was calculated to describe the selective activity of the extract against *P. falciparum* strain 3D7 compared with the results of its *in vitro* anticancer test on hepatocyte-derived cellular carcinoma cell line (Huh7it-1cellls). In here, the *in vitro* anticancer activity was perceived as in cytotoxicity activity compared to antiplasmodial activity.

5.1.11 Data analysis

Data were expressed as the mean \pm standard deviation. Probit analysis was conducted to calculate the IC₅₀ values of *in vitro* antimalarial activity using IBM SPSS Statistics for Windows, version 20.0. (IBM Corporation, Armonk, NY, USA). IC₅₀ values of *in vitro* antioxidant and cytotoxicity were calculated using linear regression Microsoft Excel version 20.0 (IBM Corporation, Armonk, NY, USA).

5.2 Result

5.2.1 The number of *Aspergillus niger* spores during transformation culture of homopterocarpin from *Pterocarpus macrocarpus* Kurz. heartwood

After added homopterocarpin to the culture, total number of *Aspergillus niger* spores was calculated during biotransformation. Figure 12 showed that the total number of *A. niger* slightly increase day by day.

GHULALONGKORN UNIVERSITY

5.2.2 Metabolite profiles by GC-MS during biotransformation

Chemical analysis by GC-MS was used to determine the metabolite profile of biotransformed-culture of homopterocarpin from *Pterocarpus macrocarpus* Kurz. heartwood by *Aspergillus niger*. (Table 28 and Figure 13) (Appendix 4: Supplementary data I).

Table28. Phytochemical components from GC/MS analysis of PterocarpusmacrocarpusKurz.Kurz.heartwoodn-hexaneextractcrystallization

		Potostio-	Relative area percentage (peak area relative to the total peak area (%)				
NI-	Commence	Time					
INO.	Compound	(min)					
		((()))	I	Ш	V	VII	
1	2,5-Furandione, 3-methyl-	3.81				36.76	
2	Glycerin	3.983	41.67	100	55.15	79.86	
3	2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan- 3-one	4.296	35.34				
4	Maltol	5.868	100	44.39			
5	5-Hydroxymethylfurfural	8.688	34.21		35.97		
6	1,2,3-Propanetriol, 1-acetate	8.965	82.22	31.87			
7	4H-Pyran-4-one, 2,3-dihydro-3,5- dihydroxy-6-methyl-	9.724	93.17	40.34	37.27		
8	2,4-Hexadienedioic acid	11.468			41.84	57.11	
9	4,4-Dimethyl-3-(3-methylbut-3- enylidene)-2- methylenebicyclo[4.1.0]heptane	16.692			20.69		
10	6-Isopropenyl-4,8a-dimethyl- 1,2,3,5,6,7,8,8a-octahydro-naphthalen-2- ol	17.134	E		21.31		
11	7-Hydroxymethylbicyclo{2.2.1}heptane- 1-carboxylic acid, methyl ester	18.339	ITY	24.6			
12	3.beta.,9.betaDihydroxy-3,5.alpha.,8- trimethyltricyclo[6.3.1.0(1,5)]dodecane	19.561				8.98	
13	6-Isopropenyl-4,8a-dimethyl- 1,2,3,5,6,7,8,8a-octahydro-naphthalen-2- ol	19.729		37.92	100	100	
14	Perhydrocyclopropa[e]azulene-4,5,6- triol, 1,1,4,6-tetramethyl	21.099			12.84	14.6	
15	9-Octadecenamide, (Z)-	25.998	85.32	55.85	11.54	54.58	
16	Medicarpin	28.465			9.84	12.6	

Figure 13. Chromatogram profile biotransformation culture of of homopterocarpin from Pterocarpus macrocarpus Kurz. heartwood by Aspergillus niger. A. First day of culture, B. Third day of culture, C. Fifth day of culture, D. Seventh day of culture. 1. Glycerine, 2. 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl-, 3. 6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahy-dronaphthalen-2-ol, 4. 9-Octadecenamide, (Z)-, 5. medicarpin

5.2.3 Biotransformation Compound

The compound was isolated from biotransformation of homopterocarpin with *Aspergillus niger* for seven days. The structure was given in Figure 13.

Demethylhomopterocarpin/ 3-Hydroxy-9-methoxycarpan/Medicarpin

Colorless amorphous solid. Mol. formula: C₁₆H₁₄O₄, molecular weight 270.27 g/mol, GC-MS m/z (molecular formula): 270.3g/mol (C₁₆H₁₄O₄), ¹H-(500MHz, CDCl₃): Table 29 and ¹³CNMR (125MHz, CDCl₃): Table 30 (Appendix 4: Supplementary data II). Compound (2) had elemental composition C₁₆H₁₄O₄, deduced through GC-MS (mz 270.3 g/mol). Mass spectra indicated that the mass of this compound is 270.3 g/mol, which is 13.8 mass less than substrate (284.1) and also showed the removal of CH₂ (14 mass units). The net 13.8 mass unit were less than the substrate. Based on the and reference, the compound spectra analysis was identified as 3-hydroxy-9-methoxycar-pan/medicarpin (32 mg/5L demethylhomopterocarpin culture). Hopterocarpin was losing the methyl moiety and adding hydroxyl moiety in the medicarpin.

Figure 14. The structure of homopterocarpin (1) and medicarpin (2)

Carbon no.	Туре	Compound (1)	Compound (2)
		$\delta_{ extsf{H}}$ (mult, J Hz)	$oldsymbol{\delta}_{ extsf{H}}$ (mult, J Hz)
1	СН	7.43 (<i>d</i> , 8.6)	7.43 (d, 92)
2	СН	6.64 (<i>dd</i> , 8.6; 2.5)	6.64 (<i>dd</i> , 8.6; 2.5)
3	С	-	-
4	СН	6.47 (<i>d</i> , 2.5)	6.47 (<i>d</i> , 2.5)
4a	С	111100	-
6	CH2	3.64 (<i>t</i> , 11.0)	3.64 (<i>t</i> , 11.0)
	- Antonia	4.25 (<i>dd</i> , 11.0; 5.3)	4.25 (<i>ddd</i> , 11.20; 5.3;
			1.0)
6а	СН	3.53 (m)	3.53 (m)
6b	C		-
7	СН	7.13 (d, 8.5)	7.08 (<i>d</i> , 8.6)
8	СН	6.46 (<i>dd</i> ,8.5; 2.3)	6.47 (<i>dd</i> ,8.5; 2.6)
9	C	ATTACK BURNER	-
10	C	6.44 (<i>d</i> , 2.3)	6.44 (<i>d</i> , 2.3)
10a	C	ຮດໂນນາວິທຍາລັຍ	_
11a	СН	5.51 (<i>d</i> , 6.8)	5.51 (<i>d</i> , 6.9)
11b	C	GRUNN UNIVENSI	-
3-0CH ₃	C-OCH3	3.77 (<i>s</i>)	-
9-OCH ₃	C-OCH3	3.79 (<i>s</i>)	3.79 (s)

Table 29. ¹H-(400MHz, CDCl₃) chemical shift assignments of homopterocarpin and (500MHz, CDCl₃) medicarpin

Carbon no.	Туре	Compound (1) δc	Compound (2) δc
1	СН	131.9	131.9
2	СН	109.3	109.3
3	С	161.2	161.2
4	СН	101.7	101.7
4a	С	156.7	156.7
6	CH2	66.7	66.7
6а	СН	39.6	39.6
6b	C	119.2	119.2
7	СН	124.8	125.2
8	СН	106.4	107.7
9	C /	161.1	161.1
10	С	97.1	97.1
10a	С	160.8	160.8
11a	СН	78.7	78.7
11b	6	112.4	112.4
9-OCH ₃	C-OCH3	55.5	55.5

Table 30. ¹³C-(400MHz, CDCl₃) chemical shift assignments of homopterocarpin and (125MHz, CDCl₃) medicarpin

Chulalongkorn University

6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalene-2-ol

White star crystal (solid) was isolated from homopterocarpin transformation culture as major compound. Mol. formula: $C_{15}H_{24}O$, molecular weight 220.35g/mol. Based on the GC-MS spectra and reference, the compound was identified as 6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalene-2-ol (Retention time 15.866; 73mg / 5L culture) (Figure 15) (Appendix 4: Supplementary data III).

Figure15. Chromatogram profile of 6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-
octahydro-naphthalene-2-ol by GC-MS. A. GC-MS spectra with retention
time,time,B.6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-
naphthalene-2-ol of spectra

5.2.4 Antioxidant activities

The DPPH and ABTS assay were conducted to assess antioxidant activities. The IC_{50} value of biotransformation derived compound were shown in Table 31, (Appendix 4: Supplementary data IV).

Table	31. <i>Ir</i>	n vitro	antioxidant	activity	of	Pterocarpus	macrocarpus	Kurz.
	hea	artwood	extract					

No.	Extract	Antioxidant activity,		
		IC ₅₀ (μ	g/ml)	
	5 A A A	DPPH	ABTS	
1	Medicarpin	7.49±1.7	0.61±0.4	
2	6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-	26.17±0.91	2.12±0.97	
	octahydro-naphthalene-2-ol			
3	Homopterocarpin	94.90±34.96	30.94±8.00	
4	Ascorbic acid	5.12±2.43	2.77±1.30	
5	Trolox	0.97±0.30	0.86±0.97	

5.2.5 In vitro antimalarial activity

The IC_{50} values of biotransformation derived compound were shown in Table 32 (Appendix 4: Supplementary data V).

5.2.6 Selectivity index (SI)

The selectivity index (SI), by comparing the CC_{50} of toxicity (IC_{50} of anticancer activity) and the IC_{50} of antiplasmodial activity of the biotransformation derived compound (Table 32).

5.2.7 In vitro anticancer

In vitro toxicity was carried out by the MTT assay method against Huh7it-1cellls. The 50% Inhibition concentration (IC_{50}) of (Table 33) (Appendix 4: Supplementary data VI).

Table32. In vitro antimalarial activity of bioactive compound from
homopterocarpin transformation by Aspergillus niger against P.
falciparum strain 3D7

No.	Extract	% of ir	hibition a	ration	IC ₅₀	Selectivity		
			(µg/ml)			(µg/ml)	Index
								(SI)
		10	1	0.1	0.01	0.001		
1	Medicarpin	100	84.62	57.88	34.92	12.50	0.414	84.44
2	6-isopropenyl-4,8a-	100	75.05	52.36	15.69	6.99	1.179	38.32
	dimethyl-1,2,3,5,6,7,8,8a-							
	octahydro-naphthalene-2-ol	Nilaz.	11122					
3	Homopterocarpin	97.98	78.68	52.16	30.30	15.39	0.52	495.85
4.	Chloroquine diphosphate	100	100	79.76	40.49	17.17	0.014	-

Table33. In vitro anticancer activity of bioactive compound from
homopterocarpin transformation by Aspergillus niger against
hepatocyte-derived cellular carcinoma cell line (Huh7it-1cellls)

Extract	In vitro anticancer
	activity, IC ₅₀ (µg/ml)
Homopterocarpin	257.84
Medicarpin	34.96
6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-	45.18
octahydro-naphthalene-2-ol	
	Extract Homopterocarpin Medicarpin 6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a- octahydro-naphthalene-2-ol

CHAPTER SIX

Conclusion

Infectious diseases, especially SARS-CoV-2, malaria, and microbial infection are global health concerns. The requirement for new and useful compounds are growing for treating all aspects human condition, such as infectious drug resistant. Some bioactive compounds have very bioavailability but low solubility and structural instability. Because of the phenomena, it is needed a specific effort to explore the natural material well, such as biotransformation. The aims of the study are (i) to isolate and identify bioactive compound from *S. arvensis* L. and *P. macrocarpus* Kurz., (ii) to transform selected bioactive compounds by *Aspergillus niger*, and (iii) to determine bioactivities of selected bioactive compounds before and after biotransformation. In this study, natural product (extract, fraction dan compound) has been isolated from *S. arvensis* L. leaf and *P. macrocarpus* Kurz. heartwood.

The *n*-hexane, ethyl acetate, and ethanolic extract *in vitro* antiplasmodial activity of *S. arvensis* L. leaf exhibited a good activity, with IC_{50} values were 5.119±3.27, 2.916±2.34, and 8.026±1.23 µg/mL, respectively. Each of the extracts also exhibited high antioxidants with low cytotoxic effects. Furthermore, the ethyl acetate extract showed *in vivo* antiplasmodial activity with $ED_{50} = 46.31\pm9.36$ mg/kg, body weight, as well as hepatoprotective, nephroprotective, and immunomodulatory activities in mice infected with *P. berghei*.

Furthermore, the *n*-hexane extract of *Sonchus arvensis* L. was fractionated by column chromatography. *n*-Hexane fraction was analysed as *In vitro* antiplasmodial and *in silico* anti-SARS-CoV-2 activity. Moreover, fractions 5–12 and 15–28 had *in vitro* antiplasmodial activities with IC₅₀ values of 2.38 and 5.03 μ g/mL, respectively. The *in silico* anti-SARS-CoV-2 assay showed that β -amyrin, lupeol, α -amyrin, betulin, and taraxasterol were predicted as effective antiviral candidates by having the ability to act as inhibitors of SARS-CoV-2 protein activity.

This study also highlighted homopterocarpin isolation from a *P. macrocarpus* Kurz. *n*-hexane extract by crystallization. The ethyl acetate, ethanol, and *n*-hexane extracts, as well as homopterocarpin, exhibited antiplasmodial activity at 1.78, 2.21, 7.11, and 0.52 μ g/ml, respectively, against *P. falciparum* 3D7 with low toxicity. A

compound identified by GC-MS showed *in silico* anti-SARS-CoV-2 binding affinity with stigmasterol and SARS-CoV-2 helicase of –8.2 kcal/mol. All extracts exhibited antioxidant activity against DPPH and ABTS. They also demonstrated antimicrobial activity against *B. subtilis*, the ethanol and ethyl acetate extracts against *E. coli* and *C. albicans*, and the ethanol extract against *S. aureus*.

Moreover, homopterocarpin was bio-transformed by *Aspergillus niger* (UI X-172) in soi bean meal medium (SBM) for a week. Biotransformation derived compound was identified as medicarpin by demethylation mechanism. Medicarpin exhibited in vitro antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC₅₀ = 7.49±1.7 µg/mL) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) (IC₅₀ = 0.61±0.4 µg/mL), *in vitro* antiplasmodial against *Plasmodium falciparum* strain 3D7 with IC₅₀ = 0.414 µg/mL, and anticancer against hepatocyte-derived cellular carcinoma cell line (Huh7it-1 cells) with IC₅₀ = 34.96 µg/mL.

This study highlighted natural product and biotransformed-derived compound from *Sonchus arvensis* L. and *Pterocarpus macrocarpus* Kurz. as antioxidant, anti SARS-Cov-2, antiplasmodial, and anticancer with low toxicity. These findings provide a foundation for further investigations of natural product for infectious diseases treatment and natural products production by biotransfomation as well. These findings also lay a foundation for further investigations of natural product for future pharmaceutical applications.

Chulalongkorn University

APPENDIXES

APPENDIX 1

1.1 Supplementary data I: Antioxidant assay

DPPH

DPPH assay	of Sonchus arvensis L n-he	exane extract 1			DPPH assay	of Sonchus arvensis Ln-hexa	ne extract 2		
Sample A					Sample A				
Sample B					Sample B				
Wavelengh	it 517				Wavelengh	nt 517			
No	Sample concentration	Abs sample A	Abs sample B	Average	No	Sample concentration	Abs sample A	Abs sample B	Averag
NO	control/Blank	0,582	0,583	0,5825	1	control/Blank	0,637	0,632	0,634
1	1,075	0,368	0,399	0,3835	2	1,075	0,338	0,344	0,34
2	3,125	0,356	0,389	0,3725	3	3,125	0,335	0,342	0,338
3	6.25	0.353	0.379	0.366	4	6,25	0,327	0,336	0,331
4	10	0.345	0.366	0.3555	5	10	0,331	0,331	0,333
5	15	0.342	0.342	0.342	6	12,5	0.330	0,33	0,33
6	25	0,336	0 3395	0 33775	7	15	0,329	0,326	0,327
7	35	0.325	0.323	0.324	8	25	0,328	0,326	0,32
, o	50	0,323	0,325	0,324	9	35	0,325	0,326	0,325
0	30	0,314	0,310	0,515	10	50	0,322	0,325	0,323
9	/5	0,293	0,292	0,2925	11	75	0,318	0,319	0,318
10	100	0,283	0,282	0,2825	12	100	0,317	0,317	0,31
11	150	0,274	0,279	0,2765	13	150	0,314	0,314	0,31
12	200	0,277	0,275	0,276	14	200	0,3	0,302	0,301
12 DPPH assau	200	0,277	0,275	0,276	14	200	0,3	0,302	0,301
12 DPPH assay	200 of Sonchus arvensis L n-he	0,277 exane extract 3	0,275	0,276	14 DPPH assay	200 y of Sonchus arvensis L. ethyl a	0,3 cetate extract 1	0,302	0,30
12 DPPH assay Sample A	200 of Sonchus arvensis L n-he	0,277 exane extract 3	0,275	0,276	14 DPPH assay Sample A	200 y of Sonchus arvensis L. ethyl a	0,3 Icetate extract 1	0,302	[0,30:
12 DPPH assay Sample A Sample B	200 of Sonchus arvensis L n-he	0,277 exane extract 3	0,275	0,276	14 DPPH assay Sample A Sample B	200 y of Sonchus arvensis L. ethyl a	0,3	0,302	[0,30:
12 DPPH assay Sample A Sample B Wavelengh	200 of Sonchus arvensis L n-he t 517	0,277 exane extract 3	0,275	0,276	14 DPPH assay Sample A Sample B Waveleght	200 y of Sonchus arvensis L. ethyl a 517	0,3	0,302	0,301
12 DPPH assay Sample A Sample B Wavelengh	200 of Sonchus arvensis L n-he t 517	0,277 exane extract 3	0,275	0,276	14 DPPH assay Sample A Sample B Waveleght	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration	0,3 Incetate extract 1 Abs sample A	0,302	
12 DPPH assay Sample A Sample B Wavelengh No	200 of Sonchus arvensis L n-he t 517 Sample concentration	0,277 exane extract 3 Abs sample A	0,275	Average	14 DPPH assay Sample A Sample B Waveleght No	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration control/Blank	0,3 Incetate extract 1 Abs sample A 0,516	0,302	
12 DPPH assay Sample A Sample B Wavelengh No	200 of Sonchus arvensis L n-he t 517 Sample concentration control/Blanko	0,277 exane extract 3 Abs sample A 0,637	0,275	0,276 Average 0,6345	14 DPPH assay Sample A Sample B Waveleght No	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration control/Blank 1,075	0,3 cetate extract 1 Abs sample A 0,516 0,261	0,302	Ave 0,5
12 DPPH assay Sample A Sample B Wavelengh No 1	200 of Sonchus arvensis L n-he t 517 Sample concentration control/Blanko 1,075	0,277 exane extract 3 Abs sample A 0,637 0,338	0,275	0,276 Average 0,6345 0,341	14 DPPH assay Sample A Sample B Waveleght No 1 2	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration control/Blank 1,075 3,125	0,3 cetate extract 1 Abs sample A 0,516 0,261 0,255	0,302 Abs sample B 0,519 0,261 0,262	Ave 0,5 0, 0,2
12 DPPH assay Sample A Sample B Wavelengh No 1 2	200 of Sonchus arvensis L n-he t 517 Sample concentration control/Blanko 1,075 3,125	0,277 exane extract 3 Abs sample A 0,637 0,338 0,338	0,275 Abs sample 8 0,632 0,344 0,342	Average 0,6345 0,341 0,34	14 DPPH assay Sample A Sample B Waveleght No 1 2 3	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration control/Blank 1,075 3,125 6,25	0,3 cetate extract 1 Abs sample A 0,516 0,261 0,255 0,266	0,302 Abs sample B 0,519 0,261 0,262 0,262	Ave 0,5 0,2 0,2 0,2
12 DPPH assay Sample A Sample B Wavelengh No 1 2 3	200 of Sonchus arvensis L n-he t 517 Sample concentration control/Blanko 1,075 3,125 6,25	0,277 exane extract 3 Abs sample A 0,637 0,338 0,338 0,337	0,275 Abs sample 8 0,632 0,344 0,342 0,336	0,276 Average 0,6345 0,341 0,34 0,3365	14 DPPH assay Sample A Sample B Waveleght No 1 2 3 4	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration control/Blank 1,075 3,125 6,25 10	0,3 Abs sample A 0,516 0,261 0,265 0,266 0,262	0,302 Abs sample B 0,519 0,261 0,262 0,262 0,257	Ave 0,5 0,2 0,2 0,2 0,2
12 12 DPPH assay Sample A Sample B Wavelengh No 1 2 3 4	200 of Sonchus arvensis L n-he t 517 Sample concentration control/Blanko 1,075 3,125 6,25 10	0,277 exane extract 3 Abs sample A 0,637 0,338 0,338 0,337 0,331	0,275 Abs sample 8 0,632 0,344 0,336 0,331	Average 0,6345 0,341 0,346 0,3365 0,331	14 DPPH assay Sample A Sample B Waveleght No 1 2 3 4 5	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration control/Blank 1,075 3,125 6,25 10 15	0,3 cetate extract 1 Abs sample A 0,516 0,255 0,266 0,266 0,254	0,302 Abs sample B 0,519 0,261 0,262 0,262 0,262 0,257 0,254	Ave 0,50 0, 0,2 0, 0,2 0,2 0,2 0,2 0,2 0,2 0,2
12 12 DPPH assay Sample A Sample B Wavelengh No 1 2 3 4 5	200 of Sonchus arvensis L n-he t 517 Sample concentration control/Blanko 1,075 3,125 6,25 10 15	0,277 exane extract 3 Abs sample A 0,637 0,338 0,338 0,337 0,331 0,331	0,275 Abs sample B 0,632 0,344 0,342 0,344 0,342 0,331 0,328	0,276 Average 0,6345 0,341 0,3465 0,341 0,3365 0,331 0,3295	14 DPPH assay Sample A Sample B Waveleght 1 2 3 4 5 6	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration control/Blank 1,075 3,125 6,25 10 15 25	0,3 cetate extract 1 Abs sample A 0,516 0,261 0,265 0,265 0,262 0,254 0,254 0,254	0,302 Abs sample B 0,519 0,261 0,262 0,262 0,257 0,254 0,224	Ave 0,5 0, 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2
12 DPPH assay Sample A Sample B Wavelengh No 1 2 3 4 5 6	200 of Sonchus arvensis L n-he t517 Sample concentration control/Blanko 1,075 3,125 6,25 10 15 25	0,277 exane extract 3 0,637 0,338 0,338 0,337 0,331 0,331 0,328	0,275 Abs sample 8 0,632 0,344 0,342 0,336 0,331 0,328 0,327	0,276 Average 0,6345 0,341 0,3465 0,331 0,3295 0,3275	14 DPPH assay Sample A Sample B Waveleght 1 2 3 4 5 6 7	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration control/Blank 1,075 3,125 6,25 10 15 25 35	0,3 cetate extract 1 Abs sample A 0,516 0,261 0,265 0,266 0,266 0,264 0,254 0,254 0,243 0,23	0,302 Abs sample B 0,519 0,261 0,262 0,262 0,262 0,262 0,262 0,262 0,262 0,262 0,262 0,262 0,262 0,264 0,262	Ave 0,5 0, 0,2 0,2 0, 0,2 0,2 0,2 0,2 0,2 0,2 0
12 12 DPPH assay Sample A Sample B Wavelengh No 1 2 3 4 5 6 7	200 of Sonchus arvensis L n-he t 517 Sample concentration control/Blanko 1,075 3,125 6,25 10 15 25 35	0,277 exane extract 3 Abs sample A 0,637 0,338 0,338 0,337 0,331 0,331 0,325	0,275 Abs sample 8 0,632 0,344 0,336 0,331 0,328 0,327 0,326	Average 0,6345 0,341 0,342 0,3365 0,3275 0,3275	14 DPPH assa Sample A Sample B Waveleght No 1 2 3 4 5 5 6 6 7 7 8	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration control/Blank 1,075 3,125 6,25 10 15 25 35 50	0,3 cetate extract 1 Abs sample A 0,261 0,262 0,262 0,255 0,262 0,254 0,254 0,243 0,23 0,23 0,22	0,302 Abs sample B 0,519 0,261 0,262 0,262 0,262 0,262 0,262 0,262 0,262 0,262 0,262 0,262 0,264	Ave 0,301 0,5 0,5 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2
12 DPPH assay Sample A Sample B Wavelengh No 1 2 3 4 5 6 6 7 7 8	200 of Sonchus arvensis L n-he t 517 Sample concentration control/Blanko 1,075 3,125 6,25 10 15 25 35 50	0,277 exane extract 3 Abs sample A 0,637 0,338 0,338 0,337 0,331 0,331 0,328 0,322 0,322	0,275 Abs sample 8 0,632 0,344 0,342 0,344 0,342 0,344 0,342 0,331 0,328 0,327 0,326 0,325	Average 0,276 Average 0,6345 0,341 0,346 0,3475 0,3275 0,3225 0,3235 0,3235	14 DPPH assay Sample A Sample B Waveleght 1 2 3 4 4 5 6 6 7 7 8 9 9 9	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration control/Blank 1,075 3,125 6,25 10 15 25 35 50 75 10	0,3 cetate extract 1 Abs sample A 0,516 0,255 0,266 0,255 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,222 0,224 0,23 0,22 0,222	0,302 Abs sample B 0,519 0,261 0,262 0,262 0,262 0,254 0,242 0,242 0,242 0,242 0,216 0,216 0,194 0,216	Ave 0,30: 0, 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2
12 12 DPPH assay Sample A Sample B Wavelengh No 1 2 3 4 5 6 7 8 9	200 of Sonchus arvensis L n-he t 517 Sample concentration control/Blanko 1,075 3,125 6,25 10 15 25 35 50 75	0,277 exane extract 3 Abs sample A 0,637 0,338 0,338 0,337 0,331 0,331 0,331 0,328 0,322 0,322 0,318	0,275 Abs sample 8 0,632 0,344 0,342 0,336 0,336 0,338 0,328 0,327 0,326 0,325 0,319	Average 0,6345 0,341 0,34 0,3365 0,3275 0,3225 0,3225 0,3225 0,3235 0,3185	14 DPPH assay Sample A Sample B Waveleght No 1 2 3 4 4 5 5 6 6 7 7 8 8 9 10	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration control/Blank 1,075 3,125 6,25 10 15 25 35 50 75 100 150	0,3 cetate extract 1 Abs sample A 0,516 0,261 0,265 0,266 0,262 0,243 0,23 0,23 0,23 0,23 0,23 0,29 0,195 0,181 0,30	0,302 Abs sample B 0,519 0,261 0,262 0,263 0,262 0,263 0,263 0,263 0,275 0,264 0,275 0,264 0,275 0,264 0,275 0,274 0,274 0,274 0,274 0,275 0,274 0,275 0,274 0,275 0,274 0,275 0,274 0,275 0,274 0,275 0,274 0,275 0,274 0,275 0,274 0,275 0,274 0,275 0,275 0,274 0,275 0,	Ave 0,30 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
12 DPPH assay Sample A Sample B Wavelengh 1 2 3 4 5 6 7 8 9 10	200 of Sonchus arvensis L n-he 517 Sample concentration control/Blanko 1,075 3,125 6,25 10 15 25 35 50 75 100	0,277 exane extract 3 Abs sample A 0,637 0,338 0,337 0,331 0,331 0,331 0,325 0,325 0,325 0,322 0,317	0,275 Abs sample 8 0,632 0,344 0,336 0,331 0,328 0,327 0,326 0,327 0,326 0,325 0,319 0,317	0,276 Average 0,6345 0,341 0,34 0,3295 0,3275 0,3225 0,3235 0,3185 0,317	14 DPPH assay Sample A Sample B Waveleght 1 2 3 3 4 4 5 6 6 7 7 8 9 9 10 11	200 y of Sonchus arvensis L. ethyl a 517 Sample concentration control/Blank 1,075 3,125 6,25 10 15 25 35 50 75 100 150 200	0,3 cetate extract 1 Abs sample A 0,516 0,261 0,262 0,262 0,264 0,254 0,263 0,254 0,243 0,23 0,225 0,195 0,181 0,208 0,195 0,181	0,302 Abs sample B 0,519 0,261 0,262 0,262 0,262 0,277 0,254 0,242 0,231 0,216 0,194 0,179 0,187	0,30: Ave 0,5 0, 0,2 0,3
12 DPPH assay Sample A Sample B Wavelengh 1 2 3 4 5 6 7 7 8 9 10 11	200 of Sonchus arvensis L n-he t517 Sample concentration control/Blanko 1,075 3,125 6,25 10 15 25 35 50 75 100 150	0,277 exane extract 3 Abs sample A 0,637 0,338 0,338 0,338 0,331 0,331 0,331 0,322 0,322 0,312 0,318 0,317 0,314	0,275 Abs sample 8 0,632 0,344 0,342 0,344 0,342 0,344 0,342 0,342 0,325 0,325 0,325 0,310 0,317 0,314	0,276 Average 0,6345 0,341 0,34 0,345 0,3275 0,3275 0,3225 0,3225 0,3225 0,3225 0,3185 0,317 0,314	14 DPPH assay Sample A Sample B Waveleght 1 2 3 4 4 5 5 6 7 7 8 9 10 11 11 12	200 y of Sonchus anvensis L. ethyl a 517 Sample concentration control/Blank 1,075 3,125 6,25 10 15 25 35 50 75 100 150 200	0,3 cetate extract 1 Abs sample A 0,516 0,261 0,262 0,264 0,243 0,223 0,223 0,223 0,223 0,195 0,181 0,208 0,137	0,302 Abs sample B 0,519 0,261 0,262 0,262 0,257 0,254 0,242 0,242 0,216 0,137	0,30: Ave 0,5 0,5 0,2 0,1 0,1

		1	95	
DPPH assay of	Sonchus arvensis L. ethyl	acetate extrac	t 2	
Sample A			1011	
Sample B				
Waveleght 51	7			
		9 V		
No	Sample concentration	Abs sample A	Abs sample B	Average
NO	control/Blank	0,248	0,278	0,263
1	1,075	0,139	0,137	0,138
2	3,125	0,136	0,138	0,137
3	6,25	0,129	0,133	0,131
4	10	0,13	0,125	0,1275
5	15	0,13	0,128	0,129
6	25	0,12	0,117	0,1185
7	35	0,113	0,108	0,1105
8	50	0,096	0,096	0,096
9	75	0,074	0,074	0,074
10	100	0,057	0,059	0,058
11	150	0,073	0,07	0,0715
12	200	0,075	0,078	0,0765

DPPH assay o	f Sonchus arvensis L. ethyl acet	ate extract 3		
Sample A				
Sample B				
Waveleght 51	19139			
No	Sample concentration	Abs sample A	Abs sample B	Aver
1	control/blanko	0,922		0,9
2	1,075	0,496	0,489	0,4
3	3,125	0,495	0,475	0,4
4	6,25	0,486	0,464	0,4
5	10	0,477	0,458	0,4
6	12,5	0,462	0,456	0,4
7	15	0,421	0,451	0,4
8	25	0,424	0,441	0,43
9	35	0,421	0,433	0,4
10	50	0,394	0,413	0,4
11	75	0,342	0,38	0,3
12	100	0,333	0,343	0,3
13	150	0,323	0,332	0,3
14	200	0,321	0,322	0,32

DPPH ass	av of Ethanol extract of S	onchus arvensis L.	1		DPPH assa	y of Ethanol extract of Sonchu	s arvensis L. 2		
Sample A					Sample A				
Sample R					Sample B				
Wavelengt	nt 517				Wavelengh	it 517			
	Sample concentration	Ahs sample A	Ahs sample B	Average	No	sample concentration	Abs sample A	Abs sample B	Average
No	control/Plank	0 202	0 209	0.205	140	control/Blank	0,516	0,519	0,5175
1	1.075	0,302	0,308	0,305	1	1,075	0,271	0,271	0,271
1	1,0/5	0,16/	0,171	0,179	2	3,125	0,269	0,268	0,2685
2	3,125	0,16	0,164	0,162	3	6.25	0.266	0.262	0.264
3	6,25	0,159	0,163	0,161	4	10	0.262	0.257	0 2595
4	10	0,154	0,156	0,155	5	15	0.261	0.254	0.2575
5	15	0,154	0,156	0,155	6	15	0,201	0,254	0,2575
6	25	0,144	0,145	0,1445	6	25	0,253	0,252	0,2525
7	35	0,127	0,119	0,123		35	0,243	0,231	0,237
8	50	0,117	0,1171	0,11705	8	50	0,22	0,216	0,218
9	75	0.107	0.1067	0.10685	9	75	0,195	0,194	0,1945
10	100	0.097	0.092	0.0945	10	100	0,181	0,179	0,18
11	150	0.088	0.0898	0.0889	11	150	0,178	0,168	0,173
12	200	0,083	0,0859	0,08445	12	200	0,137	0,137	0,137

DPPH assay of Sonchus arvensis L. methanolic extract 1 Sample A Sample B Waveleght 517 Sample concentration Abs sample A Abs sample B Average No control/Blank 0,591 0,606 0,5985 1 1,075 0,305 0,308 0,3065 2 3,125 0,309 0,31 0,3095 3 6,25 0,314 0,314 0,314 4 10 0,314 0,317 0,3155 0,299 0,302 15 0,305 5

0,3

0,294

0,285

0,271

0,302

0,277

0,219

0,297

0,29

0,289

0,264 0,296

0,27

0,218

0,2985

0,292

0,287

0,2675 0,299

0,2735

0,2185

6

7

8

9

10

11

12

25

35

50

75 100

150

200

DPPH assay of Sonchus arvensis L. methanolic extract 2 Sample A Sample B Waveleght 517 No Sample concentration Abs sample A 1 control/Blank 1,043 2 1,075 0,566 3 3,125 0,549 4 6,25 0,541 5 10 0.534 12,5 6 0,528 7 15 0,519 25 8 0,512 9 35 0,51 50 10 0,505 75 11 0,492 100 12 0,487 13 150 0,479 14 200 0,442

DPPH assay	of Sonchus arvensis L. metha	nolic extract 3		
Sample A			///PA/(9)	
Sample B		1	11 1 100	32
Waveleght	517		1	A
No	Sample concentration	Abs sample A	Abs sample B	Average
NU	control/Blank	0,591	0,606	0,5985
1	1,075	0,307	0,308	0,3075
2	3,125	0,312	0,31	0,311
3	6,25	0,312	0,314	0,313
4	10	0,314	0,315	0,3145
5	15	0,306	0,305	0,3055
6	25	0,28	0,297	0,2885
7	35	0,295	0,297	0,296
8	50	0,282	0,284	0,283
9	75	0,282	0,268	0,275
10	100	0,271	0,294	0,2825
11	150	0,27	0,269 🥣	0,2695
12	200	0,206	0,214	0,21

DPPH ass	ay of ascorbic acid 1			
Ascobic a	cid 1			
Ascorbic a	acid 2			
waveleng	ht 517			
	Sample concentration	Abs sample A	Abs sample P	Average
No	control/Plank		AUS Sample B	Average
1	1.075	0,455	0.261	0.258
2	3,125	0,251	0,257	0,254
3	6,25	0,253	0,259	0,256
4	10	0,256	0,254	0,255
5	15	0,25	0,254	0,252
6	25	0,246	0,209	0,2275
7	35	0,236	0,231	0,2335
8	50	0,217	0,214	0,2155
9	75	0,196	0,193	0,1945
10	100	0,187	0,186	0,1865
11	150	0,11	0,105	0,1075
2 12	200	0.107	0.102	0.1045

DPPH assav	of ascorbic acid 2								
Ascobic acid		HULALU	NGKU		DPPH assa	y of ascorbic acid 3			
According acid	10				Ascobic ac	id 1			
ASCOIDIC ACIO	12				Ascorbic a	cid 2			
wavelengnu	51/				wavelengh	t 517			
No	Sample concentration	Abs sample A	Abs sample B	Average]	Sample concentration	Abs sample A	Abs sample P	Average
NO	control/Blank	0,591	0,606	0,5985	No	control/Blank	0.400	Abs sample b	0 4945
1	1,075	0,318	0,31	0,314		1.075	0,455	0,47	0.2645
2	3,125	0,309	0,325	0,317		2,075	0,205	0,200	0,2045
3	6,25	0,306	0,323	0,3145		5,125	0,239	0,203	0,202
4	10	0.313	0.317	0.315		6,25	0,261	0,246	0,2535
5	15	0.297	0.303	0.3	4	10	0,253	0,261	0,257
6	25	0,202	0,305	0,04	5	15	0,249	0,252	0,2505
0	23	0,295	0,295	0,294	6	25	0,238	0,242	0,24
/	35	0,284	0,29	0,287	7	35	0,227	0,224	0,2255
8	50	0,276	0,278	0,277	8	50	0,211	0,213	0,212
9	75	0,259	0,262	0,2605	9	75	0,202	0,201	0,2015
10	100	0,247	0,26	0,2535	10	100	0,189	0,188	0,1885
11	150	0,263	0,266	0,2645	11	150	0,1	0,095	0,0975
12	200	0,216	0,219	0,2175	12	200	0,097	0,103	0,1

1.2. Supplementary Data II

A. Ethyl Acetate

Concentrati	Replication			% Growth	% Inhibition	
on		% Paras	itemia	Average	Average	(ug (mal.)
(µg/mL)		0 h	48 h			(µg/mL)
Negative	1	1.23	4.07	2.41	-	2.916
Control	2	1.03	4.80			
	3	0.76	4.38			
	Average	1.01	4.41			
100	1	1.23	0.80	0	100	
	2	1.03	0.74	1 a		
	3	0.76	0,26	12		
	Average	1.01	0.60			
10	1	1.23	1.07	0.71	70.54	
	2	1.03	1.08			
	3	0.76	1.07			
	Average	1.01	1.72	M// 10 - 0		
1	1	1.23	1.54	1.75	27.39	
	2	1.03	1.03			
	3	0.76				
	Average	1.01	1.43			
0.1	1	1.23	2.77	2.03	15.77	
	2	1.03	2.45			
	3	0.76	2.90			
	Average	จุฬ1.01 งก	2.71	เวิทยาลัย		
0.01	1	1.23	3.84	2.27	0	
	2	1.03	4.65			
	3	0.76	4.04			
	Average	1.01	4.18			

Confidence Limits											
		95%	6 Confidence Limits f	or dosis	95% Cc	onfidence Limits for l	og(dosis) ^b				
	Probability	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound				
PROBIT ^a	.010	.003			-2.465						
	.020	.008			-2.121						
	.030	.012			-1.904						
	.040	.018			-1.740						
	.050	.025			-1.606						
	.060	.032			-1.493						
	.070	.040			-1.394						
	.080	.050			-1.304						
	.090	.060			-1.223						
	.100	.071			-1.149	•					
	.150	.144			840	•					
	.200	.254			595						
	.250	.413			385						
	.300	.637			196						
	.350	.954			020						
	.400	1.399			.146						
	.450	2.026			.307						
	.500	2.916			.465						
	.550	4.198			.623						
	.600	6.079			.784						
	.650	8.913			.950						
	.700	13.340			1.125						
	.750	20.614			1.314						
	.800	33.466			1.525						
	.850	58.874			1.770						
	.900	119.834			2.079						
	.910	142.276			2.153						
	.920	171.443			2.234						
	.930	210.461			2.323						
	.940	264.623			2.423						
	.950	343.605			2.536						
	.960	467.010			2.669						
	.970	681.021			2.833						
	.980	1124.476			3.051						
	.990	2478.642			3.394						

a. A heterogeneity factor is used.

B. N-Hexane

	Replicatio			% Growth	% Inhibition	
	n	% Paras	sitemia	Average	Average	(v, σ)
on(µg/mL)		0 h	48 h			(µg/mL)
Negative	1	1.23	4.38	2.58	-	5.119
Control	2	1.03	3.90			
	3	0.76	4.48			
	Average	1.01	4.25			
100	1	1.23	0.80	0	100	
	2	1.03	0.78			
	3	0.76	0.74			
	Average	1.01	0.77			
10	1	1.23	2.38	1.22	52.71	
	2	1.03	2.22			
	3	0.76	2.04			
	Average	1.01	2.21			
1	1	1.23	2.54	1.45	43.80	
	2	1.03	2.45			
	3	0.76	2.78	โทยาลัย		
	Average	1.01	2.59			
0.1	1	1.23	2.71	1.64	36.43	
	2	1.03	2.68			
	3	0.76	2.57			
	Average	1.01	2.65			
0.01	1	1.23	2.88	1.82	29.46	
	2	1.03	2.83			
	3	0.76	2.98			
	Average	1.01	2.90			

•

.

		95% Confidence Lim	its for dosis		95% Confidence Limits for log(dosis) ^a			
	Probability	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	
PROBIT	.010	.000	.000	.000	-10.826	-24.010	-7.074	
	.020	.000	.000	.000	-9.474	-20.949	-6.202	
	.030	.000	.000	.000	-8.616	-19.008	-5.648	
	.040	.000	.000	.000	-7.971	-17.548	-5.230	
	.050	.000	.000	.000	-7.447	-16.361	-4.890	
	.060	.000	.000	.000	-7.000	-15.351	-4.601	
	.070	.000	.000	.000	-6.608	-14.466	-4.346	
	.080	.000	.000	.000	-6.258	-13.674	-4.118	
	.090	.000	.000	.000	-5.939	-12.954	-3.910	
	.100	.000	.000	.000	-5.645	-12.292	-3.718	
	.150	.000	.000	.001	-4.430	-9.555	-2.919	
	.200	.000	.000	.005	-3.464	-7.391	-2.273	
	.250	.002	.000	.020	-2.635	-5.551	-1.702	
	.300	.013	.000	.070	-1.891	-3.931	-1.157	
	.350	.063	.003	.265	-1.201	-2.504	577	
	.400	.284	.046	1.460	547	-1.341	.164	
	.450	1.219	.291	15.922	.086	537	1.202	
	.500	5.119	1.074	280.053	.709	.031	2.447	
	.550	21.493	3.232	6049.799	1.332	.509	3.782	
	.600	92.342	9.107	149222.517	1.965	.959	5.174	
	.650	416.646	25.527	4267363.199	2.620	1.407	6.630	
	.700	2038.790	73.923	149573023.588	3.309	1.869	8.175	
	.750	11312.662	229.438	7051100855.053	4.054	2.361	9.848	
	.800	76253.242	801.212	520389327261.014	4.882	2.904	11.716	
	.850	705020.586	3412.000	78988004874200.270	5.848	3.533	13.898	
	.900	11576553.152	20953.836	44212991861498176.000	7.064	4.321	16.646	
	.910	22757773.107	32452.517	204021059892008896.000	7.357	4.511	17.310	
	.920	47427747.761	52179.866	1074718836645834750.000	7.676	4.718	18.031	
	.930	106336693.699	87931.296	6681931496179899400.000	8.027	4.944	18.825	
	.940	262002234.946	157436.142	51451479017822680000.000	8.418	5.197	19.711	
	.950	732743150.782	305792.324	527997911218362700000.000	8.865	5.485	20.723	
	.960	2453037790.362	666737.928	8145452807075246000000.000	9.390	5.824	21.911	
	.970	10834794929.582	1737264.980	235518547016771250000000.000	10.035	6.240	23.372	
	.980	78053185263.180	6199721.316	20639117471816380000000000000000	10.892	6.792	25.315	
	.990	1753989502964.271	45974326.713	238368020572237360000000000000.000	12.244	7.663	28.377	

C. Ethanot

Concentrati	Replicatio			% Growth	% Inhibition	IC
on	n	% Paras	itemia	Average	Average	(ug/pol)
(µg/mL)		0 h	48 h			(µg/mL)
Negative	1	0.66	2.94	2.76	-	8.026
Control	2	0.90	2.98			
	3	1.00	4.92			
	Average	0.85	3.61			
100	1	0.66	0.78	0.10	96.38	
	2	0.90	0.80	2		
	3	1.00	1.27			
	Average	0.85	0.95			
10	1	0.66	2.22	2.00	27.54	
	2	0.90	2.38			
	3	1.00	3.96			
	Average	0.85	2.85			
1	1	0.66	2.45	2.17	21.38	
	2	0.90	2.54			
	3	1.00	4.08	ายาลัย		
	Average	0.85	3.02			
0.1	1	0.66	2.68	2.40	13.04	
	2	0.90	2.71			
	3	1.00	4.36			
	Average	0.85	3.25			
0.01	1	0.66	2.83	2.57	6.88	
	2	0.90	2.88			
	3	1.00	4.54			
	Average	0.85	3.42			

		1	Confi	Confidence Limits							
		95%	Confidence Limits fo	r dosis	95% Co	onfidence Limits for l	og(dosis) ⁰				
	Probability	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound				
PROBIT ^a	.010	.003			-2.554						
	.020	.007			-2.149						
	.030	.013			-1.892						
	.040	.020			-1.698	•					
	.050	.029			-1.541						
	.060	.039			-1.407						
	.070	.051			-1.290						
	.080	.065			-1.184						
	.090	.081			-1.089						
	.100	.100			-1.001						
	.150	.231			636						
	.200	.450			347						
	.250	.797			098						
	.300	1.333			.125						
	.350	2.146			.332						
	.400	3.372			.528						
	.450	5.220			.718						
	.500	8.026			.904						
	.550	12.340			1.091						
	.600	19.105			1.281						
	.650	30.017			1.477						
	.700	48.321			1.684						
	.750	80.776			1.907						
	.800	143.141			2.156						
	.850	278.869			2.445						
	.900	645.399			2.810						
	.910	790.404			2.898						
	.920	985.080			2.993						
	.930	1254.912			3.099						
	.940	1644.524			3.216						
	.950	2238.548			3.350						
	.960	3215.972			3.507						
	.970	5020.525			3.701						
	.980	9075.899			3.958						
	990	23076 770			1 363						

a. A hetgeneity factor is used.

1.3. Supplementary data III

Toxicity as	say of Sonchu	us arvensis	L. extract	Antiplasmo	odial activit	ty of Sonch	us arvensis	L. Sample	: H, EA, E				
Abs 560nm													
Sampel	4000	2000	1000	500	250	100	50	25	12	6	3	1.5	DMEM
	0,189	0,257	0,856	0,974	0,960	0,990	0,991	0,983	0,989	0,993	0,983	0,987	0,993
н	0,187	0,261	0,903	0,971	0,989	0,983	0,990	0,979	0,986	0,988	0,989	0,983	0,985
	0,188	0,259	0,880	0,973	0,975	0,987	0,991	0,981	0,988	0,991	0,986	0,985	0,989
	0,195	0,187	0,190	0,281	0,982	0,984	0,985	0,989	0,983	0,993	0,986	0,989	0,959
EA	0,182	0,193	0,192	0,263	0,907	0,976	0,987	0,986	0,995	0,997	0,983	0,946	0,977
	0,189	0,190	0,191	0,272	0,945	0,980	0,986	0,988	0,989	0,995	0,985	0,968	0,968
	0,185	0,189	0,236	0,958	0,987	0,991	0,985	0,995	0,988	0,994	0,989	0,981	0,977
E	0,186	0,187	0,426	0,892	0,980	0,989	0,984	0,991	0,987	0,988	0,984	0,987	0,980
	0,186	0,188	0,331	0,925	0,984	0,990	0,985	0,993	0,987	0,991	0,987	0,984	0,979
Abs 750nm													
Conc (ug/ml)	4000	2000	1000	500	250	100	50	25	12	6	3	1,5	DMEM
	0,190	0,192	0,194	0,199	0,202	0,211	0,213	0,211	0,210	0,216	0,205	0,203	0,203
н	0,189	0,192	0,198	0,201	0,207	0,208	0,208	0,207	0,210	0,209	0,207	0,201	0,203
	0,190	0,192	0,196	0,200	0,205	0,210	0,211	0,209	0,210	0,213	0,206	0,202	0,203
	0,188	0,189	0,188	0,190	0,205	0,208	0,207	0,210	0,207	0,209	0,208	0,210	0,206
EA	0,188	0,190	0,190	0,181	0,200	0,199	0,205	0,210	0,213	0,214	0,209	0,200	0,209
	0,188	0,190	0,189	0,186	0,203	0,204	0,206	0,210	0,210	0,212	0,209	0,205	0,208
	0,189	0,189	0,185	0,210	0,203	0,207	0,208	0,208	0,215	0,211	0,208	0,200	0,204
E	0,188	0,188	0,189	0,195	0,201	0,207	0,205	0,207	0,211	0,208	0,205	0,206	0,203
	0,189	0,189	0,187	0,203	0,202	0,207	0,207	0,208	0,213	0,210	0,207	0,203	0,204

1.4. Supplementary data IV

Table of percentage results of parasitaemia treatment of positive control, negative control, and ethyl

acetate extract of the leaves of Sonchus arvensis L.

No.	Group	Replication	D0	D1	D2	D3	D4	Percentage of	Percetage
			(%)	(%)	(%)	(%)	(%)	Parasitemia	of Inhibition
				6166				(D4-D0) (%)	(%)
1	Negative	1	1.32	2.29	3.67	5.65	7.86	6.54	
	control	0		9338	Children and and and and and and and and and an	6)		
		2	1.65	2.87	4.34	5.01	7.26	5.61	
		3	1.45	2.00	3.68	5.81	7.19	5.74	
		4 จุฬ	1.46	2.58	4.35	5.89	7.32	5.86	
		⁵ Cum	1.53	2.98	4.45	5.21	7.37	5.84	
		6	1.34	2.32	3.89	5.02	7.40	6.06	
		7	1.35	2.12	3.92	5.11	7.10	5.75	
	Average								
2	Positive	1	1.43	0.99	0.58	0.19	0.01	-1.42	
	Control								
		2	1.45	0.99	0.65	0.18	0.03	-1.42	
		3	1.53	1.23	0.54	0.23	0	-1.53	
		4	1.32	1.14	0.62	0.32	0.04	-1.28	
		5	1.54	1.34	0.61	0.44	0.02	-1.52	
		6	1.53	1.04	0.63	0.18	0	-1.53	
		7	1.54	0.98	0.54	0.34	0.02	-1.52.	
	Average							-1.46	

3	P1	1	1.56	3.08	4.38	5.64	7.47	5.91	9.63
		2	1.46	3.10	4.36	5.71	7.38	5.92	0
		3	1.62	3.45	4.62	5.43	7.79	6.17	0
		4	1.53	3.67	3.90	5.34	7.56	6.03	0
		5	1.45	3.25	4.32	5.26	7.10	5.65	3.25
		6	1.43	3.45	4.43	5.49	7.43	6.00	0.99
		7	1.57	3	4.32	5.10	7.38	5.81	0
	Average							4.72	
4	P2	1	1.45	2.01	2.34	3.32	5.76	4.31	34.097
		2	1.34	2.21	2.87	3.15	5.43	4.09	27.09
		3	1.35	2.32	2.49	3.32	5.52	4.17	27.35
		4	1.54	2.19	2.67	3.32	5.45	3.91	33.28
		5	1.46	2.16	2.56	2.90	4.45	2.99	48.80
		6	1.37	2.13	2.78	3.12	5.56	4.19	30.85
		7	1.45	2.15	2.89	2.98	5.56	4.11	28.52
	Average				2	NO.		2.11	
5	P3	1	1.56	1.97	2.34	3.01	5.11	2.55	61.01
		2	1.54	1.90	2.45	2.79	5.06	2.50	55.43
		3	1.57	1.67	2.67	2.98	4.09	2.52	56.10
		4	1.45	2.03	2.45	2.92	4.99	2.54	56.66
		5	1.53	1.94	2.41	3.02	5.98	2.45	58.05
		6	1.52	1.98	2.54	3.09	5.32	2.8	53.80
		7	1.39	2.05	2.45	2.82	5.08	2.69	53.22
	Average	, en	เสงเ	3 2 19 41		ານເຄ	2	1.57	
6	P4	1 CHUI	1.45	145	1.92	2.21	2.89	1.44	77.98
		2	1.53	1.56	1.98	2.32	3.71	1.18	78.97
		3	1.34	1.72	2.03	2.34	3.89	1.55	73.00
		4	1.56	1.45	1.99	2.24	3.69	1.13	80.72
		5	1.36	1.35	2.02	231	3.91	1.55	73.46
		6	1.45	1.37	1.03	2.34	4.89	1.44	76.24
		7	1.56	1.45	2.01	2.44	4.77	1.21	78.966
	Average							1.49	

PROBIT ANALYSIS OF IN VIVO ANTIPLASMODIAL OF Sonchus arvensis L.

	Probability	95% Confidence Limits for concentration			95% Confidence Limits for log (concentration) ^a		
		Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
Ē	.010	.066	.000	1.116	-1.178	-4.982	.048
	.020	.138	.000	1.815	860	-4.328	.259
	.030	.219	.000	2.472	659	-3.912	.393
	.040	.311	.000	3.120	507	-3.600	.494
	.050	.413	.000	3.770	384	-3.346	.576
	.060	.526	.001	4.430	279	-3.130	.646
	.070	.650	.001	5.104	187	-2.941	.708
	.080	.786	.002	5.795	105	-2.771	.763
	.090	.934	.002	6.505	030	-2.617	.813
	.100	1.095	.003	7.235	.039	-2.476	.859
	.150	2.113	.013	11.254	.325	-1.889	1.051
	.200	3.564	.038	16.016	.552	-1.423	1.205
	.250	5.580	.094	21.716	.747	-1.025	1.337
	.300	8.347	.215	28.598	.922	668	1.456
	.350	12.122	.460	36.989	1.084	338	1.568
PROBIT	.400	17.273	.943	47.346	1.237	026	1.675
	.450	24.330	1.882	60.331	1.386	.275	1.781
	.500	34.084	3.699	76.961	1.533	.568	1.886
	.550	47.750	7.215	98.895	1.679	.858	1.995
	.600	67.259	14.062	129.103	1.828	1.148	2.111
	.650	95.835	27.454	173.601	1.982	1.439	2.240
	.700	139.180	53.409	246.764	2.144	1.728	2.392
	.750	208.190	101.284	389.996	2.318	2.006	2.591
	.800	325.986	180.928	741.194	2.513	2.258	2.870
	.850	549.782	305.586	1824.138	2.740	2.485	3.261
	.900	1061.201	524.607	6381.045	3.026	2.720	3.805
	.910	1243.886	591.945	8719.365	3.095	2.772	3.940
	.920	1478.159	673.180	12271.964	3.170	2.828	4.089
	.930	1786.990	773.511	17914.128	3.252	2.888	4.253
	.940	2208.774	901.159	27398.169	3.344	2.955	4.438
	.950	2812.619	1070.054	44588.814	3.449	3.029	4.649
	.960	3736.156	1306.051	79215.878	3.572	3.116	4.899
	.970	5296.928	1664.011	161012.127	3.724	3.221	5.207
	.980	8424.587	2288.295	414797.959	3.926	3.360	5.618
	.990	17505.569	3760.973	1852961.269	4.243	3.575	6.268

A. Replicaton 1 of *in vivo* antilplasmodial of *Sonchus arvensis* L Confidence Limits

B. Replication 2 of *in vivo* antiplasmodial activity of *Sonchus arvensis* L

	Probability	95% Confidence Limits for konsentrasi			95% Confidence Limits for log(konsentrasi) ^b		
		Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
	.010	.549			260		
	.020	.935			029		
	.030	1.311			.118		
	.040	1.690			.228		
	.050	2.078			.318		
	.060	2.478			.394		
	.070	2.891			.461		
	.080	3.319			.521		
	.090	3.763			.576		
	.100	4.224			.626		
	.150	6.817			.834		
	.200	9.971			.999		
	.250	13.819			1.140		
	.300	18.524			1.268		
	.350	24.303			1.386		
	.400	31.446			1.498		
	.450	40.349			1.606		
DDODIT ^a	.500	51.568			1.712		
PROBIT	.550	65.907			1.819		
	.600	84.567			1.927		
	.650	109.422			2.039		
	.700	143.560			2.157		
	.750	192.442			2.284		
	.800	266.694			2.426		
	.850	390.121			2.591		
	.900	629.566			2.799		
	.910	706.711			2.849		
	.920	801.267			2.904		
	.930	919.903			2.964		
	.940	1073.281			3.031		
	.950	1279.659			3.107		
	.960	1573.375			3.197		
	.970	2028.401			3.307		
	.980	2843.196			3.454		
	.990	4841.169			3.685		

Confidence Limits

a. A heterogeneity factor is used.

C. Replication 3 of *In vivo* antiplasmodial activity of *Sonchus arvensis* L.

	Probability	95% Confidence Limits for konsentrasi		95% Confidence Limits for log(konsentrasi) ^b			
		Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
	.010	.449			348		
	.020	.792			101		
	.030	1.136			.056		
	.040	1.490			.173		
	.050	1.858			.269		
	.060	2.242			.351		
	.070	2.643			.422	-	
	.080	3.063			.486		
	.090	3.502			.544		
	.100	3.962			.598		
	.150	6.605			.820		
	.200	9.913			.996		
	.250	14.044			1.147		
	.300	19.202			1.283		
	.350	25.659			1.409		
	.400	33.784			1.529		
	.450	44.085			1.644		
PROBIT	.500	57.285			1.758		
	.550	74.438			1.872		
	.600	97.135			1.987		
	.650	127.891			2.107	-	
	.700	170.897			2.233	-	
	.750	233.667			2.369		
	.800	331.045			2.520		
	.850	496.859			2.696		
	.900	828.164			2.918		
	.910	936.932			2.972		
	.920	1071.342			3.030		
	.930	1241.493			3.094		
	.940	1463.659			3.165		
	.950	1765.962			3.247		
	.960	2201.822			3.343		
	.970	2887.732			3.461		
	.980	4141.121			3.617		
	.990	7309.328			3.864		

Confidence Limits

a. A heterogeneity factor is used.

	Probability	95% Confidence Limits for konsentrasi			95% Confidence Limits for log(konsentrasi) ^b		
		Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
	.010	.449			348		
	.020	.792			101		
	.030	1.136			.056		
	.040	1.490			.173		
	.050	1.858			.269		
	.060	2.242			.351		
	.070	2.643			.422		
	.080	3.063			.486		
	.090	3.502			.544		
	.100	3.962			.598		
	.150	6.605			.820		
	.200	9.913			.996		
	.250	14.044			1.147		
	.300	19.202			1.283		
	.350	25.659			1.409		
	.400	33.784			1.529		
	.450	44.085			1.644		
PROBIT ^a	.500	57.285			1.758		
	.550	74.438			1.872		
	.600	97.135			1.987		
	.650	127.891			2.107		
	.700	170.897			2.233		
	.750	233.667			2.369		
	.800	331.045			2.520		
	.850	496.859			2.696		
	.900	828.164			2.918		
	.910	936.932			2.972		
	.920	1071.342			3.030		
	.930	1241.493			3.094		
	.940	1463.659			3.165		
	.950	1765.962			3.247		
	.960	2201.822			3.343		
	.970	2887.732			3.461		
	.980	4141.121			3.617		
	.990	7309.328			3.864		

D. Replication 4 of *in vivo* antiplasmodial activity of *Sonchus arvensis* L.

Confidence Limits

a. A heterogeneity factor is used.

	Probability	95% Confidence Limits for dose			95% Confidence Limits for log(dose) ^b		
		Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
_	.010	.056			-1.250		
	.020	.119			924		
	.030	.192			717		
	.040	.274			562		
	.050	.367			436		
	.060	.470			328	-	
	.070	.584			234	-	
	.080	.709			149		
	.090	.847			072	-	
	.100	.997			001	-	
	.150	1.956			.291	-	
	.200	3.342			.524	-	
	.250	5.293			.724	-	
	.300	7.999			.903		
	.350	11.727			1.069	-	
	.400	16.859			1.227	-	
	.450	23.954			1.379	-	
PROBIT ^a	.500	33.845			1.529		
	.550	47.821			1.680	-	
	.600	67.945			1.832		
	.650	97.683			1.990		
	.700	143.208			2.156		
	.750	216.407			2.335		
	.800	342.715			2.535		
	.850	585.684			2.768		
	.900	1149.452			3.060		
	.910	1352.751			3.131		
	.920	1614.555			3.208		
	.930	1961.269			3.293		
	.940	2437.209			3.387	-	
	.950	3122.525			3.495		
	.960	4177.703			3.621		
	.970	5975.429			3.776		
	.980	9615.865			3.983		
	.990	20353.815			4.309		

E. Replication 5 of *in vivo* antiplasmodial activity of *Sonchus arvensis* L

Confidence Limits

a. A heterogeneity factor is used.

	Probability	95% Confidence Limits for dose			95% Confidence Limits for log(dose) ^b		
		Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
	.010	.307			513		
	.020	.560			252		
	.030	.819			087		
	.040	1.091			.038		
	.050	1.377			.139		
	.060	1.679			.225		
	.070	1.998			.301		
	.080	2.335			.368		
	.090	2.691			.430		
	.100	3.065			.486		
	.150	5.259			.721		
	.200	8.077			.907		
	.250	11.671			1.067		
	.300	16.242			1.211		
	.350	22.063			1.344		
	.400	29.505			1.470		
	.450	39.086			1.592		
PROBIT ^a	.500	51.548			1.712		
	.550	67.983			1.832		
	.600	90.059			1.955		
	.650	120.435			2.081		
	.700	163.598			2.214		
	.750	227.683			2.357		
	.800	328.992			2.517		
	.850	505.259			2.704		
	.900	866.879			2.938		
	.910	987.607			2.995		
	.920	1137.889			3.056		
	.930	1329.658			3.124		
	.940	1582.280			3.199		
	.950	1929.483			3.285		
	.960	2435.931			3.387		
	.970	3244.195			3.511		
	.980	4748.222			3.677		
	.990	8654.855			3.937		

F. Replication 6 of *in vivo* antiplasmodial activity of *Sonchus arvensis* L

Confidence Limits

a. A heterogeneity factor is used.

b. Logarithm base = 10.

	Probability	95% Confidence Limits for dose			95% Confidence Limits for log(dose) $^{ m b}$		
		Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
	.010	.487			313		
	.020	.842			075		
	.030	1.192			.076		
	.040	1.549			.190		
	.050	1.916			.282		
	.060	2.296			.361		
	.070	2.692			.430		
	.080	3.103			.492		
	.090	3.532			.548		
	.100	3.978			.600		
	.150	6.513			.814		
	.200	9.637			.984		
	.250	13.486			1.130		
	.300	18.238			1.261		
	.350	24.125			1.382		
	.400	31.458			1.498		
	.450	40.668			1.609		
PROBIT	.500	52.361			1.719		
	.550	67.416			1.829		
	.600	87.153			1.940		
	.650	113.645			2.056		
	.700	150.323			2.177		
	.750	203.289			2.308		
	.800	284.505			2.454		
	.850	420.960			2.624		
	.900	689.177			2.838		
	.910	776.318			2.890		
	.920	883.516			2.946		
	.930	1018.549			3.008		
	.940	1193.895			3.077		
	.950	1431.012			3.156		
	.960	1770.431			3.248		
	.970	2299.940			3.362		
	.980	3256.702			3.513		
	.990	5634.685			3.751		

G. Replication 7 of *in vivo* antiplasmodial activity of *Sonchus arvensis* L.

Confidence Limits

a. A heterogeneity factor is used.

b. Logarithm base = 10.

1.5 Supplementary data V

A. BUN and CREATININE SERUM LEVEL

1. BUN

Standard concentration solvent= 50 mg/dL

 $\Delta A = A\mathbf{1} - A\mathbf{2}$

Standard: 0,0476

${\sf Urea \ level}: \Delta A \ Sample / \Delta A \ Standard \ x \ standard \ concentration ({\sf mg/dL})$

BUN = Urea (mg/dL) x 0,467

UNIFECTED GROU	JP				
Replication	A1	A2	$\Delta A Smp/\Delta A Std$	Urea Level	BUN Level (mg/dL)
KN-1	0,0918	0,089	0,146359	7,317927	3,41
KN-2	0,001	-0,0062	0,151261	7,563025	3,53
KN-3	0,0777	0,0708	0,144958	7,247899	3,38
KN-4	0,1968	0,19	0,142857	7,142857	3,34
POSITIVE CONTRO	OL GROUP				
Replication	A1	A2	$\Delta A Smp/\Delta A Std$	Urea Level	BUN Level (mg/dL)
K+1	0,0055	0,004	0,032213	1,61064	0,75
K+2	0,0061	0,0056	0,010504	0,52521	0,25
K+3	0,005	0,0028	0,046218	2,310924	1,08
K+4	0,0055	0,0036	0,039916	1,995798	0,93
NEGATIVE CONTR	OL GROUP				
Replication	A1	A2	$\Delta A Smp/\Delta A Std$	Urea Level	BUN Level (mg/dL)
K-1	0,0627	0,0575	0,299719	14,98599	6,99
K-2	0,0674	0,0526	0,310924	15,54622	7,26
K-3	-0,0592	-0,0728	0,285714	14,28571	6,67
K-4	0,0616	0,0472	0,302521	15,12605	7,06
P1					
Replication	A1	A2	∆ <i>A Smp/</i> ∆A Std	Urea Level	BUN Level (mg/dL)
P1-1	0,3551	0,3461	0,189076	9,453782	4,41
P1-2	0,056	0,062	0,12605	6,302521	2,94
P1-3	0,1627	0,162	0,112045	5,602241	2,61
P1-4	-0,0769	-0,0779	0,021008	1,05042	0,49
P2					
Replication	A1	A2	$\Delta A Smp/\Delta A Std$	Urea Level	BUN Level (mg/dL)
P2-1	0,3348	0,3373	0,126284	6,31419	2,95
P2-2	0,3855	0,3901	0,096639	4,831933	2,26
P2-3	0,3492	0,3452	0,084034	4,201681	1,96
P2-4	0,2698	0,2766	0,198179	9,908965	4,63
P3		·		·	·
Replication	A1	A2	$\Delta A Smp/\Delta A Std$	Urea Level	BUN Level (mg/dL)
P3-1	0,3872	0,395	0,163866	8,193277	3,83

P3-2	0,5214	0,5332	0,247899	12,39496	5,79			
P3-3	0,0312	0,0203	0,228992	11,44958	5,35			
P3-4	-0,4989	-0,4907	0,172269	8,613445	4,02			
P4	P4							
Dealtration	A 1	A2	A A Comm / A A Std		BUN Level			
Replication	AI		$\Delta A Smp/\Delta A Stu$	Orea Level	(mg/dL)			
P4-1	0,0948	0,0951	0,006303	0,315126	0,15			
P4-2	0,0624	0,0568	0,117647	5,882353	2,75			
P4-3	0,068	0,0641	0,086135	4,306723	2,01			
P4-4	0,0468	0,0404	0,134454	6,722689	3,14			

BUN LEVEL

ANOVA Test

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	97,932	6	16,322	16,464	,000
Within Groups	20,818	21	,991		
Total	118,750	27			

Post Hoc Duncan Test

Duncan^a

		Subset for alpha = 0.05					
Kelompok	Ν	1	2	3	4		
K+	4	,7525					
P4	4	2,0125	2,0125				
P1	4		2,6125				
P2	4		2,9500				
KN	4		3,4150	3,4150			
Р3	4			4,7475			
К-	4				6,9950		
Sig.		,088	,080	,072	1,000		

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 4,000.

2. CREATININE Standard concentration solvent= 2 mg/dL $\Delta A = A 1 - A 2$

Standard: 0,0192

 $\label{eq:creatinine Level: $\Delta A Sample / \Delta A Standard x tandard concentration (mg/dL) }$

UNIFECTED GROUP				
Poplication	۸1	A2	$\wedge A \operatorname{Smm} / \wedge A \operatorname{Std}$	Level Kreatinin
Replication	AI	A2	$\Delta A Smp / \Delta A Stu$	(mg/dL)
KN-1	0,0247	0,0262	0,092	0,18
KN-2	0,0237	0,0256	0,099	0,20
KN-3	0,0179	0,0175	0,021	0,23
KN-4	0,0324	0,0354	0,156	0,31
POSITIVE CONTROL (GROUP			
Replication	A1	A2	$\Delta A Smp/\Delta A Std$	Level (mg/dL)
K+1	0,0131	0,0168	0,193	0,39
K+2	0,0233	0,0271	0,198	0,40
K+3	0,0515	0,0553	0,198	0,40
K+4	0,0095	0,0131	0,188	0,38
NEGATIVE CONTROL	GROUP			
Replication	A1	A2	$\Delta A Smp / \Delta A Std$	Level (mg/dL)
K-1	-0,0361	-0,0208	0,797	1,59
K-2	-0,0540	-0,0349	0,995	1,99
K-3	-0,045	-0,023	1,146	2,29
K-4	-0,081	-0,061	1,042	2,08
P1				
Replication	A1	A2	∆ <i>A Smp</i> /∆A Std	Level (mg/dL)
P1-1	0,0771	0,0784	0,068	0,14
P1-2	0,0302	0,0287	0,078	0,16
P1-3	0,0646	0,0658	0,062	0,12
P1-4	0,0573	0,0576	0,069	0,14
P2				
Replication	A1	A2	∆ <i>A Smp</i> /∆A Std	Level (mg/dL)
P2-1	0,0106	0,014	0,177	0,35
P2-2	0,0203	0,0241	0,198	0,40
P2-3	0,0034	0,0004	0,156	0,31
P2-4	0,0039	0,0077	0,198	0,40
P3				
Replication	A1	A2	∆ <i>A Smp</i> /∆A Std	Level (mg/dL)
P3-1	0,0095	0,0125	0,156	0,31
P3-2	0,0413	0,0436	0,120	0,24
P3-3	0,0326	0,0354	0,146	0,29
P3-4	0,0153	0,0176	0,120	0,24
P4				
Replication	A1	A2	$\Delta A Smp / \Delta A Std$	Level (mg/dL)
P4-1	0,0481	0,0505	0,125	0,25
P3-2	-0,0363	-0,0394	0,161	0,32
P4-3	-0,0258	-0,0257	0,114	0,23
P4-4	-0,0893	-0,0882	0,057	0,11

Sigficancy Table

_	KN	K+	K-	P1	P2	P3	P4
KN		S	S	S	S	TS	TS
K+			S	S	TS	S	S
K-				S	S	S	S
P1					S	S	TS
P2						S	S
P3							TS
P4							

SERUM SGOT AND SGPT LEVEL В.

1. SGOT

SGOT Level : $\Delta A ((A1 - A2) + (A2 - A3) + (A3 - A4))x 2143 x 1$ UNIFECTED GROUP

Replication	A1	A2	A3	A4	Level (U/L)		
KN-1	0,084	0,0838	0,0836	0,064	42,00		
KN-2	0,5415	0,5364	0,4042	0,3792	53,71		
KN-3	0,2784	0,2604	0,2475	0,2326	31,96		
KN-4	0,4366	0,4317	0,4116	0,3951	35,38		
POSITIVE CONTROL O	GROUP						
Replication	A1	A2	A3	A4	Level (U/L)		
K+1	0,3461	0,3319	0,3127	0,297	33,68		
K+2	0,2384	0,2021	0,2012	0,1899	24,25		
K+3	0,34	0,3377	0,3373	0,3207	35,58		
K+4	0,407	0,3821	0,3655	0,3477	38,19		
NEGATIVE CONTROL	GROUP						
Replication	A1	A2	A3	A4	Level (U/L)		
K-1	0,4897	0,3548	0,2211	0,0981	263,86		
K-2	0,7893	0,7552	0,7053	0,6448	129,73		
K-3	0,4973	0,4009	0,2853	0,1469	296,80		
K-4	0,2098	0,1806	0,1327	0,0781	117,08		
P1							
Replication	A1	A2	A3	A4	Level (U/L)		
P1-1	0,3545	0,302	0,2179	0,1258	102,14		
P1-2	0,2837	0,2652	0,2333	0,1941	100,68		
P1-3	0,0339	0,0208	-0,0418	-0,09	103,37		
P1-4	0,0357	0,0003	-0,0368	-0,0923	96,52		
P2							
Replication	A1	A2	A3	A4	Level U/L)		
P2-1	0,1285	0,1155	0,0719	0,0417	64,77		
P2-2	-0,2133	-0,3117	-0,3134	-0,3126	68,36		
P2-3	-0,1002	-0,1716	-0,2633	-0,3249	73,85		
P2-4	-0,3189	-0,3106	-0,3127	-0,3165	88,43		
P3							
Replication	A1	A2	A3	A4	Level (U/L)		
P3-1	0,0328	0,0048	-0,0619	-0,1071	76,63		

P3-2	0,2443	0,2445	0,2175	0,1895	60,03		
P3-3	-0,3957	-0,3905	-0,3917	-0,3929	73,79		
P3-4	0,0094	-0,0123	-0,0676	-0,1177	69,82		
P4							
Replication	A1	A2	A3	A4	Level (U/L)		
P4-1	0,1418	0,0621	0,0781	0,0903	26,08		
P4-2	0,0874	0,0851	0,0538	0,0376	34,75		
P4-3	0,0875	0,1043	0,0575	0,0338	50,85		
P4-4	-0,01979	-0,2582	-0,2684	-0,2586	20,75		

DATA ANALISYS OF SGOT

Significancy Table

	K+	К-	P1	P2	P3	P4
KN	TS	S	s	S	S	TS
K+		S	S	S	S	TS
K-			S	S	S	S
P1	,	///3	4	S	S	S
P2		1/28			TS	S
P3		A Street				S
P4	0	- AL				
	8			1	I	

2. SGPT

SGPT LEVEL

SGPT Level: $\Delta A ((A1 - A2) + (A2 - A3) + (A3 - A4))x 2143 x 1$

Replication	A1	A2	A3	A4	Level (U/L)			
KN-1	0,1088	0,1157	0,1045	0,0926	13,41			
KN-2	0,119	0,127	0,1207	0,1154	11,36			
KN-3	0,2057	0,2154	0,2044	0,1986	12,43			
KN-4	-0,0449	-0,0466	-0,0477	-0,0503	12,4			
POSITIVE CONTROL GROUP								
Replication	A1	A2	A3	A4	Level (U/L)			
K+1	-0,3624	-0,3579	-0,3553	-0,3511	9,00			
K+2	0,0162	0,0221	0,0234	0,0214	4,28			
K+3	0,1225	0,1275	0,129	0,1278	2,56			
K+4	0,0892	0,0952	0,0923	0,095	5,79			
NEGATIVE CONTROL	NEGATIVE CONTROL GROUP							
Replication	A1	A2	A3	A4	Level (U/L)			
K-1	-0,0139	-0,0157	-0,0262	-0,0327	24,13			

К-2	0,1363	0,1274	0,1099	0,099	23,38
K-3	-0,0284	-0,042	-0,0653	-0,0916	21,58
K-4	0,057	0,0624	0,0551	0,0423	27,43
P1					
Replication	A1	A2	A3	A4	Level (U/L)
P1-1	0,0234	0,0517	-0,0064	-0,027	44,17
P1-2	-0,1246	-0,0273	-0,1166	-0,1229	13,49
P1-3	-0,0221	-0,0183	-0,0277	-0,0464	40,08
P1-4	-0,0559	-0,0566	-0,0745	-0,0893	31,73
P2					
Replication	A1	A2	A3	A4	Level (U/L)
P2-1	-0,0523	-0,0723	-0,0959	-0,0898	22,74
P2-2	-0,1579	-0,2059	-0,2516	-0,2871	20,31
P2-3	-0,1335	-0,1455	-0,155	-0,1655	22,52
P2-4	-0,1766	-0,253	-0,2884	-0,3002	25,39
P3					
Replication	A1	A2	A3	A4	Level (U/L)
P3-1	-0,0715	-0,0672	-0,0803	-0,0873	15,01
P3-2	-0,0278	-0,0298	-0,0341	-0,0383	9,00
P3-3	-0,0479	-0,0497	-0,0599	-0,0659	12,87
P3-4	-0,094	-0,0927	-0,1001	-0,108	16,93
P4					
Replication	A1	A2	A3	A4	Level (U/L)
P4-1	0,01645	0,1737	0,1737	0,1751	3,16
P4-2	0,1503	0,1592	-0,1479	-0,1462	3,34
P4-3	-0,1675	-0,1621	-0,1633	-0,1622	2,36
P4-4	0,0403	0,0447	0,0403	0,0393	2,14
	-33				
C:: F:					

Significancy Table

หาลงกรณ์มหาวิทยาลัย

	KN	K+	K-	P1	P2	P3	P4
KN		Us_ALUN	L SKUKN	s NIVER	S	TS	S
K+			S	S	S	S	TS
K-				TS	TS	S	S
P1					TS	S	S
P2						S	S
P3							S
P4							

- C. SERUM TNF ALPHA AND IL10 LEVELS
- 1. TNF Alpha

Kadar (ng/mL)	OD
40	0,094
80	0,117
160	0,203
320	0,51
640	0,873

The Standard Curve

y = 0,0014x + 0,0241, R²=0,9887

y = kadar TNF-alpha

x = OD TNF-alpha

Uninfected Group						
Replication	OD	Level (ng/ml)				
KN-1	0,304	199,93				
9 KN-4 8 1	ารถไม่0,62 าวิท	8168425,64				
KN-5	0,279	182,07				
KN-6	GKO 0,348	231,36				
KN-7	0,317	209,21				
	Positive Control Gro	bup				
Replication	OD	Level (ng/ml)				
K+1	0,33	218,50				
K+2	0,332	219,93				
K+3	0,212	134,21				
K+4	0,275	179,21				
K+6	0,777	537,79				
	Negative Control Gr	oup				
Replication	OD	Level (ng/ml)				
K-1	0,279	182,07				
K-2	0,337	223,50				
K-3	0,523	356,36				
K-4	0,142	84,21				
K-5	0,063	27,79				

K-7	0,503	342,07					
K-8	0,061	26,36					
К-9	1,668	1174,21					
P1							
Replication	OD	Level (ng/ml)					
P1-2	0,759	524,93					
P1-3	0,673	463,50					
P1-5	0,399	267,79					
P1-7	0,635	436,36					
P1-8	0,37	247,07					
	P2						
Replikasi	OD	Level (ng/ml)					
P2-1	2,172	1534,21					
P2-3	0,775	536,36					
P2-4	0,766	529,93					
P2-5	1,144	799,93					
P2-7	0,828	574,21					
P3							
Replication	OD	Level (ng/ml)					
P3-1	0,831	576,36					
P3-2	1,127	787,79					
P3-3	1,056	737,07					
P3-4	1,536	1079,93					
P3-5	1,507	1059,21					
P3-7	0,827	573,50					
P3-8	0,702	484,21					
	P4						
Replication	OD	Level (ng/ml)					
P4-1	1,069	746,36					
P4-2	0,721	497,79					
9 P4-3	1,16	811,36					
P4-4	G 1,208	845,64 845,64					
P4-6	1,039	724,93					
P4-7	0,752	519,93					
D4 0	0.731	504 93					

ANOVA

TFN ALPHA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	2317688.065	6	386281.344	8.718	.000
Within Groups	1240629.624	28	44308.201		
Total	3558317.688	34			

Duncan Test (POST HOC TEST)

Duncan^a

		Subset for alph	Subset for alpha = 0.05	
Group	Ν	1	2	
K-	5	237.6420		
KN	5	249.6420		
K+	5	257.9280		
P1	5	387.9300		
P4	5		729.6440	
P2	5		794.9280	
P3	5		848.0720	
Sig.		.313	.409	

Means for groups in homogeneous subsets are displayed.

Uses Harmonic Mean Sample Size = 5.000.

1. IL 10 Level

a.

_evel (pg/mL)	OD
40	0,094
80/////00/00/	0,117
160	0,203
320	0,51
640	0,873

Standard Curve

- $y = 0,0011x + 0,0428, R^2 = 0,99$
- y = IL-10 level
- x = OD IL-10

Uninfected Group						
Replication	OD	Level (pg/ml)				
KN-1	0,157	103,82				
KN-4	0,141	89,27				
KN-5	0,169	114,73				
KN-6	0,168	113,82				
KN-7	0,158	104,73				
Positive Control Group						
Replication	OD	Level (pg/ml)				
K+1	0,181	125,64				
K+2	0,188	132,00				
K+3	0,184	128,36				
K+4	0,202	144,73				
K+6	0,309	242,00				
K+7	0,18	124,73				
Negative Control Gr	oup					
Replication	OD	Level (pg/ml)				
К-1	0,133	82,00				
К-2	0,104	55,64				
К-3	0,172	117,45				
K-4	0,136	84,73				
К-5	0,153	100,18				
K-7	0,173	118,36				
К-9	0,225	165,64				
К-10	0,196	139,27				
P1						
Replication	OD	Level (pg/ml)				
^{P1-2} จ หาลงก	0,175	120,18				
P1-3	0,161	107,45				
P1-5	0,188	132,00				
P1-7	0,15	97,45				
P1-8	0,163	109,27				
P2						
Replication	OD	Level (pg/ml)				
P2-1	0,161	107,45				
P2-3	0,175	120,18				
P2-4	0,141	89,27				
P2-5	0,157	103,82				
P2-7	0,165	111,09				
P3						
Replication	OD	Level (pg/ml)				
P3-1	0,135	83,82				
P3-2	0,165	111,09				
P3-3	0,167	112,91				
P3-4	0,165	111,09				

P3-5	0,176	121,09
P3-7	0,182	126,55
P3-8	0,135	83,82
P4		
Replication	OD	Level (pg/ml)
P4-1	0,176	121,09
P4-2	0,177	122,00
P4-3	0,163	109,27
P4-4	0,171	116,55
P4-6	0,14	88,36
P4-7	0,177	122,00
P4-8	0,171	116,55

Anova Test

ANOVA

IL10

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	5480.331	6	913.388	6.042	.000
Within Groups	4232.589	28	151.164		
Total	9712.920	34			
Duncan Test (POST HOC TEST)					

Duncan Test (POST HOC TEST)

IL10 Duncan^a

		Subset for alpha = 0.05			
KELOMPOK	Ν	1	2	3	
K-	5	88.0000			
KN	5		105.2740		
P2	5		106.3620		
P1	5		113.2700		
P3	5		116.5460	116.5460	
P4	5		119.6380	119.6380	
K+	5			131.0920	
Sig.		1.000	.108	.087	

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 5.000.

2. APPENDIX 2

2.1 Supplementary data I

TLC chromatogram profile of n-hexane extract of Pterocarpus macrocarpus

Kurz. crystallization

- Fig. TLC analysis chromatogram profile of *Pterocarpus macrocarpus* Kurz. heartwood *n*-hexane extract purification during crystallization. Stationary phase: Silica gel GF254, mobile phase: *n*-hexane: ethyl acetate (1:1) 1. *n*-Hexane crude extract, 2. Fifth crystallization, 3. Fourth crystallization, 4. Third crystallization, 5, Second crystallization, 6. First crystallization.
- 2.2 Supplementary data II

GC-MS Chromatogram profile of n-hexane extract of Pterocarpus macrocarpus

Kurz. crystallization (available in Author)

จุหาลงกรณ์มหาวิทยาลัย

CHULALONGKORN UNIVERSITY

2.3 Supplementary data III

FTIR spectra of homopterocarpin

() SHIMADZU

Item	Value
Acquired Date&Time	21/10/2021 9:24:23 AM
Acquired by	System Administrator
Filename	H:\DATA FTIR\20211021\HP bu Dwi Biologi1.ispd
Spectrum name	HP bu Dwi Biologi
Sample name	
Sample ID	
Option	
Comment	

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area	Comment
1	435.91	33.91	2.53	443.63	418.55	1612.992	39.483	
2	451.34	34.45	2.35	497.63	443.63	3244.596	51.011	
3	555.50	38.39	6.63	580.57	530.42	2918.640	161.544	
4	590.22	45.76	1.64	603.72	580.57	1235.812	21.558	
5	634.58	31.04	19.06	667.37	603.72	3719.066	545.908	
6	682.80	49.28	2.87	704.02	667.37	1811.719	60.073	
7	723.31	45.59	7.19	754.17	704.02	2559.138	195.640	
8	794.67	29.97	16.77	815.89	754.17	3662.699	471.434	
9	842.89	24.41	21.25	873.75	815.89	3712.936	578.268	
10	894.97	38.24	7.75	914.26	873.75	2366.603	183.197	
11	937.40	24.63	24.61	972.12	914.26	3524.570	665.583	
12	1033.85	18.97	33.62	1064.71	985.62	4778.360	1096.563	
13	1130.29	14.56	5.06	1138.00	1064.71	5149.724	226.860	
14	1149.57	10.00	9.91	1184.29	1138.00	3726.746	196.124	
		1	1			1		
15	1197.79	26.86	9.59	1234.44	1184.29	3195.615	227.858	
16	1271.09	26.23	22.98	1321.24	1234.44	5380.519	955.331	
17	1344.38	31.30	15.85	1375.25	1321.24	3297.011	437.011	
18	1381.03	45.37	2.73	1404.18	1375.25	1482.127	57.302	
19	1475.54	23.82	3.93	1483.26	1404.18	5131.468	384.617	
20	1492.90	22.16	8.74	1533.41	1483.26	3219.485	244.865	
21	1587.42	36.10	3.22	1595.13	1533.41	3310.715	22.380	
22	1618.28	23.43	17.65	1772.58	1595.13	8043.700	-281.166	
23	1876.74	65.11	7.02	1934.60	1816.94	3592.977	312.514	
24	2050.33	69.99	4.12	2088.91	1992.47	2665.152	164.836	
25	2841.15	63.33	9.82	2864.29	2791.00	2120.334	256.452	
26	2908.65	62.63	2.24	2920.23	2864.29	1926.005	81.981	
27	2949.16	56.05	6.66	2974.23	2920.23	2212.776	201.370	

2.4 Supplementary data 4: HNMR of homopterocarpin

2.5 Supplementary data V: CNMR of homopterocarpin

2.6 Supplementary data VI: Antioxidant activity of homopterocarpin and

Pterocarpus macrocarpus Kurz. extract

ABTS

-Hexane c	of P. macrocarp	us 1												
										Comple				
										Sample				
							44							
							4							
lo (Concentration Sam	Abs sample A	Abs sample B		% aktivity		4		-		0.6945x +	38.786		
c	Control/Blank	0.723	0.728	0.7255	1.075	42.17781	4.				R = 0.34	313		
1	1.075	0.408	0.431	0.4195	3.125	43.34941	4	and the second						
2	3.125	0.401	0.421	0.411	6.25	43.48725	34	0 2	4	6 8	10	12	1	4
4	10	0.394	0.419	0.404	10	44.31427								
5	15	0.387	0.413	0.4	25	45.41695								
6	25	0.385	0.407	0.396	35	46.65748								
7	35	0.383	0.391	0.387	50	47.24328		10/ (4)	70 6004	-				
9	75	0.361	0.381	0.38275	100	50.03446		NX (1)	68.0792	7				
10	100	0.352	0.373	0.3625	150	51.75741		NX(3)	65.0748	3				
11	150	0.337	0.363	0.35	200	52.8601		Average	68.9254	1				
12	200	0.333	0.351	0.342				SD	4.33601	8				
				55°		110	~							-
			2000	1										
	of P macrocar	2016 2			500									
I-nexarie	or P. macrocar	JUS Z												
										Sample				
							60							
							50							
							40			v =	0.6875x + 3	39.246		
NO	Concentration Sam	Abs sample A	Abs sample B	0 7255	% aktivity	47 39456	20			~	R ² = 0.890)2		
1	1.075	0.408	0.428	0.418	3.125	44.03859	10							
2	3.125	0.409	0.403	0.406	6.25	44.24535	0							
3	6.25	0.408	0.401	0.4045	10	44.79669		0 2	4	6 8	10	12	14	
4	10	0.395	0.406	0.4005	15	45.14128								
5	25	0.393	0.403	0.398	35	45.14128								
7	35	0.373	0.402	0.3875	50	48.38043							-	
8	50	0.375	0.374	0.3745	75	49.82771		NX (1)	73.62213					
9	75	0.334	0.394	0.364	100	50.31013		NX (2)	68.07927					
10	100	0.350	0.365	0.3605	200	52.37767		Average	68,92541					
12	200	0.305	0.386	0.3455	200	52.57707		SD	4.336018				-	
							N/KI							
			SC											
-	-(0		5											0
n-nexanel	or P. macrocarp	Jus 5												
										Sample				
							50							
							49							
							47			W = (14939x + 4	2 356		
No	Concentration Sam	Abs sample A	Abs sample B	0 7355	% aktivity	45 55 470	45				R ² = 0.852	6		
1	1.075	0.396	0.394	0.395	3.125	45.2102	44		and the second se					
2	3.125	0.397	0.398	0.3975	6.25	45.27912	42							
3	6.25	0.397	0.397	0.397	10	46.10613		0 2	4	6 8	10	12	14	
4	10	0.396	0.386	0.391	15	46.65748		_				_		
5	25	0.389	0.383	0.3825	35	47.27774							-	
7	35	0.387	0.378	0.3825	50	49.06961								
8	50	0.375	0.364	0.3695	75	50.31013		NX (1)	73.62213					
9	75	0.375	0.346	0.3605	100	53.41144		NX (2)	68.07927			_	-	
10	100	0.345	0.321	0.338	200	55.47898		Average	68.92541					
12	200	0.326	0.32	0.323				SD	4.336018					
Ethyl Ace	etate of P. macr	ocarpus1												
									S	ample				
					% aktivity	10.00	100							
					1.075	48.31461	80							
					6.25	58.35206	60					-		
No	Concentration San	m Abs sample A	Abs sample B		10	63.59551	40	•		y = 1.311 R ² =	0.9652	5		
	Control/Blank	0.663	0.672	0.6675	15	71.83521	20							
	1.07	0.35	0.339	0.345	25	79.40075	0							
	3 6.2	5 0.272	0.284	0.278				0 5	10	15	20	25	30	
4	4 10	0.243	0.243	0.243										
5	5 1	0.179	0.197	0.188										
6	5 2 7 9	0.131	0.144	0.1375				-					-	
5	, 3: 8 5/	0.059	0.059	0.0575				EA (1)	0.697781				-	
9	9 7	5 0.047	0.05	0.0485	IC50	0.697781		EA (2)	1.194315					
10	0 10	0.047	0.05	0.0485				EA(3)	0.353949				-	
11	2 20	0.04	0.048	0.047				SD	0.422489				-	
14	20	5.04	0.0-3	0.044					0					

									S	Sample			
					% aktivity		100						
					1.075	48.98876							
					3.125	51.23596	80						
					6.25	57.30337	60			V =	1.4142x + 48	311	
No	Convcentration Sa	Abs sample A	Abs sample B		10	63.29588	40			,	R ² = 0.971		
	Control/Blank	0.663	0.672	0.6675	15	73.25843							
1	1.075	0.339	0.342	0.3405	25	81.27341	20						
2	3.125	0.332	0.319	0.3255			0						
3	6.25	0.286	0.284	0.285) 5	10	15	20	25	30
4	10	0.241	0.249	0.245									
5	15	0.183	0.174	0.1785									
6	25	0.123	0.127	0.125									
7	35	0.095	0.102	0.0985									
8	50	0.06	0.045	0.0525				EA (1)	0.697781				
9	75	0.044	0.043	0.0435	IC50	1.194315		EA (2)	1.194315				
10	100	0.046	0.044	0.045				EA(3)	0.353949				
11	150	0.045	0.044	0.0445				Average	0.748682				
12	200	0.044	0.045	0.0445				SD	0.422489				

No Concentration Control/Blank 1 1. 2 3. 3 0	Sam Abs sample A 0.66 075 0.33 125 0.33	Abs sample B 3 0.672 4 0.34 7 0.324	0.6675	% aktivity 1.075 3.125 6.25 10 15 25	49.51311 51.98502 59.55056 64.49438 71.53558	100 80 60 40	****	د 	απριε 	= 1.342x + 49 R ² = 0.9761	525	
No Concentration Control/Blank 1 1. 2 3. 3 0	Sam Abs sample A 0.66 075 0.33 125 0.31	Abs sample B 3 0.672 4 0.34 7 0.324	0.6675	26 aktivity 1.075 3.125 6.25 10 15 25	49.51311 51.98502 59.55056 64.49438 71.53558	100 80 60 40	e		9	= 1.342x + 49 R ² = 0.9761	525	
No Concentration Control/Blank 1 1. 2 3. 3 0	Sam Abs sample A 0.66 075 0.33 125 0.31	Abs sample B 3 0.672 4 0.34 7 0.324	0.6675	3.125 6.25 10 15 25	49.31311 51.98502 59.55056 64.49438 71.53558	80 60 40	e		у :	= 1.342x + 49 R ² = 0.9761	525	
No Concentration Control/Blank 1 1. 2 3. 3 0	Sam Abs sample A 0.66 075 0.33 125 0.31	Abs sample B 3 0.672 4 0.34 7 0.324	0.6675	6.25 10 15 25	59.55056 64.49438 71.53558	60 40	e		y :	= 1.342x + 49 R ² = 0.9761	525	
No Concentration Control/Blank 1 1. 2 3. 3 0	Sam Abs sample A 0.66 075 0.33 125 0.31	Abs sample B 3 0.672 4 0.34 7 0.324	0.6675	10 15 25	64.49438 71.53558	40	e		у :	1.342x + 49 R ² = 0.9761	525	
Control/Blank 1 1. 2 3. 3 0	0.66 075 0.33 125 0.31	3 0.672 4 0.34 7 0.324	0.6675 0.337	15	71.53558	40				R = 0.9701		
1 1. 2 3. 3 0	075 0.33	4 0.34 7 0.324	0.337	25	01 1005	20						
2 3. 3	125 0.31	7 0.324			81.1985	20						
3	25 0.25		0.3205			0						
	.25 0.23	9 0.281	0.27				0 5	10	15	20	25	30
4	10 0.23	3 0.241	0.237									
5	15 0.19	1 0.189	0.19									
6	25 0.11	5 0.136	0.1255									
7	35 0.08	9 0.09	0.0895									
8	50 0.04	7 0.051	0.049				EA (1)	0.697781				
9	75 0.04	4 0.044	0.044	IC50	0.353949		EA (2)	1.194315				
10	100 0.04	4 0.047	0.0455				EA(3)	0.353949				
11	150 0.04	6 0.046	0.046				Average	0.748682				
12	200 0.04	3 0.043	0.043				SD	0.422489				

							_				Sample					
					% aktivity		_				Sample					
					1 075	47 99491		80								
					3 125	54 42393	_	60							·	
					6.25	59.51623										
No	Concentration Sar	Abs sample A	Abs sample B		10	64.16295	-	40				y =	$1.4521x + R^2 = 0.9$	· 48.762		
	Control/Blank	0.797	0.774	0.7855	15	69.1916		20								
	1 1.075	0.405	0.412	0.4085	25	75.49332		20								
	2 3.125	0.378	0.338	0.358	35	76.76639		0								
	3 6.25	0.297	0.339	0.318	50	87.26926		0	2	4 6	8	10	12	14	16	
	4 10	0.28	0.283	0.2815	75	94.20751										
	5 15	0.251	0.233	0.242	100	94.52578										
	6 25	0.193	0.192	0.1925	150	89.17887										
	7 35	0.19	0.175	0.1825	200	87.52387										
	8 50	0.11	0.09	0.1				E	TA (1)	0.852558						
	9 75	0.047	0.044	0.0455	IC50	0.852558		E	TA (2)	0.902646						
1	.0 100	0.043	0.043	0.043				E	TA (3)	0.075727						
1	1 150	0.11	0.06	0.085				A	verage	0.61031						
1	2 200	0.042	0.154	0.098				S	D	0.46364						

~		~		-		~				-				~
Ethanol	of P. macrocarp	us 2												
										Sample				
					% aktivity		100							
					1.075	46.53087								
					3.125	52.19605	80			•				
					6.25	56.20624	60 -							
No	Conceentration Sa	r Abs sample A	Abs sample B		10	64.41757	40			¥ =	1.1566x + 48. R ² = 0.9042	956		
	Kontrol/Blank	0.797	0.774	0.7855	15	70.0191								
1	1.075	0.422	0.418	0.42	25	74.2839	20 -							
2	3.125	0.381	0.37	0.3755	35	80.90388	0							
3	6.25	0.35	0.338	0.344	50	88.8606	0) 5	10	15	20	25	30	
4	10	0.272	0.287	0.2795	75	93.82559								
5	15	0.221	0.25	0.2355	100	94.46213								
6	25	0.215	0.189	0.202	150	92.36155								
7	35	0.164	0.136	0.15	200	94.46213								
8	50	0.083	0.092	0.0875				ETA (1)	0.852558					
9	75	0.05	0.047	0.0485	IC50	0.902646		ETA (2)	0.902646					
10	100	0.044	0.043	0.0435				ETA (3)	0.075727					
11	150	0.072	0.048	0.06				Average	0.61031					
12	200	0.045	0.042	0.0435				SD	0.46364					

Ethanol	of P. macrocarpus 3												
							90						
							80						
					% aktivity	A	70						
					1.075	47.48568	60			y =	1.2413x + 49.90	06	
					3.125	51.87778	50				R ² = 0.9225		
					6.25	61.42584	40						
No	Concentration Sample	Abs sample A	Abs sample B		10	65.43603	30						
	Control/Blank	0.797	0.774	0.7855	15	69.95544	20						
	1.075	0.416	0.409	0.4125	25	78,29408	10						
	3,125	0.37	0.386	0.378	35	84,91407	 0						
	6 25	0 341	0.265	0 303	50	89 56079	 0	5	10	15	20	25	30
	1 10	0.272	0.27	0.305	75	04 20847							
	10	0.2/3	0.27	0.2715	100	94.33847							
	25	0.247	0.173	0.230	100	94.03303							
	23	0.100	0.1/3	0.1705	150	90.32403							
-	35	0.121	0.116	0.1185	200	85.48695		FT 4 (4)	0.053550				
2	3 50	0.078	0.086	0.082				EIA (1)	0.852558				
	75	0.045	0.043	0.044	IC50	0.075727		ETA (2)	0.902646				
10	100	0.042	0.042	0.042				ETA (3)	0.075727				
11	150	0.1	0.052	0.076				Average	0.61031				
12	2 200	0.184	0.044	0.114				SD	0.46364				

Irolox 1														
										4	Sample			
					% aktivity			100						
					1.075	45.70042								
					3.125	50.76283		80						
					6.25	52.56588		60		•	y = 0	.3906x + 48.25	2	
No	Concentration Sample	Abs sample A	Abs sample B		10	50.83218		40				$R^2 = 0.9842$		
	Control/Blank	0.725	0.717	0.721	15	53.46741								
1	1.075	0.418	0.365	0.3915	25	57.62829		20						
2	3.125	0.355	0.355	0.355	35	63.24549		0			1			-
3	6.25	0.337	0.347	0.342	50	69.76422			0 20	40	60	80	100	120
4	10	0.351	0.358	0.3545	75	78.01664								
5	15	0.335	0.336	0.3355	100	85.71429								
6	25	0.302	0.309	0.3055										
7	35	0.267	0.263	0.265										
8	50	0.21	0.226	0.218					TRX(1)	4.475166				
9	75	0.156	0.161	0.1585	IC50	4.475166			TRX(2)	3.961089				
10	100	0.092	0.114	0.103					TRX(3)	7.042853				
11	150	0.187	0.207	0.197					Average	5.159703				
12	200	0.044	0.044	0.044					SD	1.650988				
			IN 11 11											
			~ // //x	10 1000		a	1111 -							

Trolox 2													
										Sample			
										Sample			
					% aktivity		100 -						
					1.075	49.37587	00						
					3.125	51.17892	80 .						
					6.25	52.08044	60 -		·····	v = 0	.3855x + 48.4	73	
No	Concentration Sample	Abs sample A	Abs sample B		10	51.17892	40 -				R ² = 0.9905		
	Control/Blank	0.725	0.717	0.721	15	52.91262							
1	1.075	0.37	0.36	0.365	25	55.75589	20 -						
	3.125	0.357	0.347	0.352	35	63.17614	0 -						_
1	6.25	0.344	0.347	0.3455	50	67.68377		0 20	40	60	80	100	120
4	10	0.356	0.348	0.352	75	77.87795							
	5 15	0.337	0.342	0.3395	100	87.0319							
6	5 25	0.332	0.306	0.319									
7	35	0.263	0.268	0.2655									
8	\$ 50	0.232	0.234	0.233									
9	75	0.16	0.159	0.1595	IC50	3.961089							
10	100	0.095	0.092	0.0935									
11	150	0.181	0.204	0.1925									
12	200	0.042	0.041	0.0415									

Trolox 2															
											Sample				
					% aktivity		100								
					1.075	49.23717									
					3.125	50.69348	80 -								
							60				v = ().3757x + 47	.354		
No	Concentration Sar	n Abs sample A	Abs sample B		10	50.34674	40 -					$R^2 = 0.984$			
	Control/Blank	0.725	0.717	0.721	15	50.1387									
1	1.075	0.369	0.363	0.366	25	54.99307	20 -								
2	3.125	0.351	0.36	0.3555	35	60.81831	0 -			1		1	-		
3	6.25	0.346	0.469	0.4075	50	66.78225	()	20	40	60	80	100	120	
4	10	0.361	0.355	0.358	75	76.90707									
5	15	0.361	0.358	0.3595	100	84.32732									
6	25	0.325	0.324	0.3245											
7	35	0.284	0.281	0.2825											
8	50	0.242	0.237	0.2395											
9	75	0.171	0.162	0.1665	IC50	7.042853									
10	100	0.107	0.119	0.113											
11	150	0.211	0.218	0.2145											
12	200	0.043	0.044	0.0435											

										Samplo				
					01-1-1-1					Sample				
					% activity	A	12	0						
					1.075	46.91011	10	D -						
					3.125	49.7191	8							
					6.25	50.42135				v =	0.4831x + 47	939		
lo Co	oncentration San	Abs sample A	Abs sample B		10	50.8427	6				R ² = 0.981			
Co	ontrol/Blank	0.72	0.704	0.712	15	55.89888	4	0						
1	1.075	0.387	0.369	0.378	25	60.46348	2	D -						
2	3.125	0.363	0.353	0.358	35	65.66011		,						5
3	6.25	0.353	0.353	0.353	50	74.22753		0 20	40	60	80	100) 1	120
4	10	0.348	0.352	0.35	75	88.0618								
5	15	0.311	0.317	0.314	100	91.99438								
6	25	0.285	0.278	0.2815										
7	35	0.237	0.252	0.2445										
8	50	0.193	0.174	0.1835				VITC (1)	4.266197					
9	75	0.082	0.088	0.085	IC50	4.266197		VITC (2)	2.134715					
10	100	0.063	0.051	0.057				VITC (3)	1.902637					
11	150	0.051	0.049	0.05				Average	2.76785					
12	200	0.048	0.048	0.048				SD	1 302785		-	-		\pm

o Conce Contro 1 2	intration Sample ol/Blank	Abs sample A	Abs cample B		% aktivity 1.075 3.125	47.68258	120 -		S	ample			
o Conce Contro 1 2	ntration Sample ol/Blank	Abs sample A	Abs sample B		% aktivity 1.075 3.125	47.68258	120						
o Conce Contro 1 2	entration Sample ol/Blank	Abs sample A	Abs cample B		1.075 3.125	47.68258							
o Conce Contro 1 2	entration Sample ol/Blank	Abs sample A	Abs cample B		3.125		100 -						
o Conce Contro 1 2	ntration Sample ol/Blank	Abs sample A	Abs sample B			49.92978	80						
conce Contro 1 2	ntration Sample ol/Blank	Abs sample A	Abs sample B		6.25	51.05337	00			v =	0.4825x + 48	1.97	
2	ol/Blank		Abs sample b		10	54.21348	60			,	$R^2 = 0.987$		
1 2		0.72	0.704	0.712	15	55.89888	40 -						
2	1.075	0.381	0.364	0.3725	25	62.5	20 -						
	3.125	0.359	0.354	0.3565	35	66.15169	0 -						_
3	6.25	0.348	0.349	0.3485	50	75.35112		20	40	60	80	100	120
4	10	0.325	0.327	0.326	75	87.7809							
5	15	0.315	0.313	0.314	100	93.75							
6	25	0.27	0.264	0.267									
7	35	0.232	0.25	0.241									
8	50	0.178	0.173	0.1755				VITC (1)	4.266197				
9	75	0.091	0.083	0.087	IC50	2.134715		VITC (2)	2.134715				
10	100	0.046	0.043	0.0445				VITC (3)	1.902637				
11	150	0.101	0.045	0.073				Average	2.76785				
12	200	0.043	0.042	0.0425				SD	1.302785				

Vitamin C 3														
									5	Sample				
					% aktivity		120							
					1.075	48.24438	100							
					3.125	48.73596	80							
					6.25	51.47472	60			V =	0.493x + 49.	.062		
No	Concentration Sar	Abs sample A	Abs sample B		10	53.65169	60				R ² = 0.9811			
	Control/Blanko	0.72	0.704	0.712	15	56.60112	40							
1	1.075	0.373	0.364	0.3685	25	63.13202	20	-						
2	3.125	0.365	0.365	0.365	35	67.9073	0							
3	6.25	0.348	0.343	0.3455	50	75		0 20	40	60	80	100	120	
4	10	0.332	0.328	0.33	75	89.88764								
5	15	0.309	0.309	0.309	100	93.96067								
6	25	0.267	0.258	0.2625										
7	35	0.218	0.239	0.2285				VITC (1)	4.266197					
8	50	0.189	0.167	0.178				VITC (2)	2.134715					
9	75	0.073	0.071	0.072	IC50	1.902637		VITC (3)	1.902637					
10	100	0.044	0.042	0.043				Average	2.76785					
11	150	0.043	0.041	0.042				SD	1.302785					
12	200	0.042	0.041	0.0415										

DPPH

									Sa	Impele		
					% aktivity		70 -					
					1.075	47.535505	60					
					3.125	47.034252	50			•		
					6.25	47.451963	40			y = 0.0755x + 4	8.237	
lo	Concentration Sam	Abs sample A	Abs sample B		10	47.368421	30			R ² = 0.877	1	
	Control/Blank	0.591	0.606	0.5985	15	49.874687	20					
1	1.075	0.318	0.31	0.314	25	50.877193	10					
2	3.125	0.309	0.325	0.317	35	52.046784	0					
3	6.25	0.306	0.323	0.3145	50	53.717627	0	50	100	150	200	250
4	10	0.313	0.317	0.315	75	56.47452						
5	15	0.297	0.303	0.3	100	57.64411						
6	25	0.293	0.295	0.294	150	55.806182						
7	35	0.284	0.29	0.287	200	63.659148						
8	50	0.276	0.278	0.277				NH (1)	23.351			
9	75	0.259	0.262	0.2605	IC50	23.350993		NH (2)	27.8279			
	100	0.247	0.26	0.2535				NH (3)	31.9231			
10		0.000	0.266	0.2645				Average	27.700667			
10 11	150	0.263	0.200					-				

n-Hexane o	f P. macrocarpus 2											
							_			Sample		
					% aktivity		70					
							60					
							50			•		
					6.25	47.70259	40			v = 0.073	2x + 47.963	
No	Concentration Sam	Abs sample A	Abs sample B		10	47.45196	30			R ² =	0.8739	
	Control/Blank	0.591	0.606	0.5985	15	48.95572	20					
1	1.075	0.307	0.308	0.3075	25	51.79616	10					
2	3.125	0.312	0.31	0.311	35	50.54302	0					
3	6.25	0.312	0.314	0.313	50	52.71512		D 50	100	150	200	250
4	10	0.314	0.315	0.3145	75	54.0518						
5	15	0.306	0.305	0.3055								
6	25	0.28	0.297	0.2885	150	54.97076						
7	35	0.295	0.297	0.296	200	64.91228						
8	50	0.282	0.284	0.283				NH (1)	23.351			
9	75	0.282	0.268	0.275	IC50	27.82787		NH (2)	27.8279			
10	100	0.271	0.294	0.2825				NH (3)	31.9231			
11	150	0.27	0.269	0.2695				Average	27.70067			

n-Hexane o	n-Hexane of P. ma	crocarpus 2											
										Sample			
					% aktivity		70						
					1.075	48.78864	50						
					3.125	48.28739	50			•			
					6.25	47.53551	40						
No	Concentration Sam	Abs sample A	Abs sample B		10	47.28488	30			y = 0.062 R ² =	0.7846		
	Control/Blank	0.591	0.606	0.5985	15	49.54052	20						
1	1.075	0.305	0.308	0.3065	25	50.12531	10						
2	3.125	0.309	0.31	0.3095	35	51.21136	0						
3	6.25	0.314	0.314	0.314	50	52.04678		0 50	100	150	0 20	00 2	250
4	10	0.314	0.317	0.3155	75	55.30493							
5	15	0.305	0.299	0.302	100	50.04177							
6	25	0.3	0.297	0.2985	150	54.30242							
7	35	0.294	0.29	0.292	200	63.49206							
8	50	0.285	0.289	0.287				NH (1)	23.351				
9	75	0.271	0.264	0.2675	IC50	31.92308		NH (2)	27.8279				
10	100	0.302	0.296	0.299				NH (3)	31.9231				
11	150	0.277	0.27	0.2735				Average	27.70067				
12	200	0.219	0.218	0.2185				SD	4.287466				

ALL CONTRACTOR

Ethyl A	ceta	te of P. macrocarpus 1							_			_			
											Sample				
						% aktivit		100							
						1.075	48.7781								
						3.125	47.89834	80							
						6.25	51.90616	60					0.4079-	+ 49 202	
No		Concentration Sample	Abs sample A	Abs sample B		10	52.68817	40	• · · · · · · · · · · · · · · · · · · ·			y - 0	$R^2 = 0.9$	863	
		Control/Blank	0.512	0.511	0.5115	15	56.10948	40							
	1	1.075	0.261	0.263	0.262	25	61.77908	20							
	2	3.125	0.269	0.264	0.2665	35	67.44868	0							
	3	6.25	0.249	0.243	0.246	50	75.17107		0 10	20 30	40	50	60	70	80
	4	10	0.251	0.233	0.242	75	83.47996								
	5	15	0.228	0.221	0.2245										
	6	25	0.207	0.184	0.1955										
	7	35	0.172	0.161	0.1665				EA (1)	3.230213	1				
	8	50	0.128	0.126	0.127				EA (2)	1.435918	1				
	9	75	0.084	0.085	0.0845	IC50	3.230213		EA (3)	1.691499	1				
	10	100	0.081	0.083	0.082				Average	2.11921					
	11	150	0.086	0.083	0.0845				SD	0.970606	i				
	12	200	0.083	0.081	0.082										

Ethyl Aceta	te of P. macrocarpu	s 2													
			[c.	mala				
					% aktivity					30	imple				
					1.075	50.43988	100								
					3.125	49.75562	80								
					6.25	50.43988	60						0 50564	40 274	
No	Concentration Sam	Abs sample A	Abs sample B		10	53.56794	40	00.0.0				y	$R^2 = 0.9$	743	
	Control/Blank	0.512	0.511	0.5115	15	56.69599									
1	1.075	0.254	0.253	0.2535	25	62.9521	20								
2	3.125	0.259	0.255	0.257	35	69.50147	0								
3	6.25	0.243	0.264	0.2535	50	77.61486		0 10	20	30	40	50	60	70	80
4	10	0.236	0.239	0.2375	75	83.96872									
5	15	0.224	0.219	0.2215											
6	25	0.187	0.192	0.1895											
7	35	0.16	0.152	0.156				EA (1)	3.230	213					
8	50	0.119	0.11	0.1145				EA (2)	1.435	918					
9	75	0.083	0.081	0.082	IC50	1.435918		EA (3)	1.691	499					
10	100	0.08	0.082	0.081				Average	2.11	921					
11	150	0.083	0.087	0.085				SD	0.970	606					
12	200	0.082	0.081	0.0815											

Ethyl Aceta	te of P. macrocarpus 3												
										Sample			
					% aktivity		100 -						
					1.075	49.65787	100						
					3.125	50.53763	80 -						
					6.25	52.29717	60 -			•			
No	Concentration Sample	Abs sample A	Abs sample B		10	54.15445	40 -			y = 0	0.5705x + 49.03 R ² = 0.9969	15	
	Control/Blank	0.512	0.511	0.5115	15	58.45552					11 - 0.3303		
1	1.075	0.258	0.257	0.2575	25	63.83187	20 -						
2	3.125	0.257	0.249	0.253	35	69.40371	0 -						
3	6.25	0.242	0.246	0.244	50	76.9306	C	10	20	30	40	50	60
4	10	0.235	0.234	0.2345									
5	15	0.215	0.21	0.2125									
6	25	0.186	0.184	0.185									
7	35	0.161	0.152	0.1565				EA (1)	3.230213				
8	50	0.122	0.114	0.118				EA (2)	1.435918				
9	75	0.08	0.081	0.0805	IC50	1.691499		EA (3)	1.691499				
10	100	0.08	0.082	0.081				Average	2.11921				
11	150	0.081	0.082	0.0815				SD	0.970606				
12	200	0.082	0.083	0.0825									

Etahnol of I	P. macrocarpus 1														
										Sa	mple				
					% aktivity		100								
					1.075	45.7478	100								
					3.125	50.04888	80								
					6.25	52.10166	60						0.4072-	40 112	
No	Concentration Sample	Abs sample A	Abs sample B		10	54.0567	40	6. e. e.				y = 1	$R^2 = 0.9$	672	
	Control/Blank	0.512	0.511	0.5115	15	58.65103	40								
1	1.075	0.286	0.269	0.2775	25	63.24536	20								
2	3.125	0.256	0.255	0.2555	35	68.52395	0								
3	6.25	0.245	0.245	0.245	50	76.05083	1	10	20	30	40	50	60	70	80
4	10	0.238	0.232	0.235	75	83.18671									
5	15	0.217	0.206	0.2115											
6	25	0.19	0.186	0.188											
7	35	0.161	0.161	0.161				ETA (1)	1.7860	02					
8	50	0.124	0.121	0.1225				ETA (2)	0.4586	01					
9	75	0.087	0.085	0.086	IC50	1.786002		ETA (3)	0.0278	91					
10	100	0.088	0.089	0.0885				Average	0.7574	98					
11	150	0.099	0.085	0.092				SD	0.9163	75					
12	200	0.088	0.089	0.0885											

-///жека

tahnol o	f P. macrocarpus 2														
										Sa	mple				
					% aktivity		100								
					1.075	47.99609									
					3.125	49.16911	80								
					6.25	53.079179	60 -						0.48194	4 49 779	
0	Concentration Sample	Abs sample A	Abs sample B		10	54.83871	40	6.8				y -	R ² = 0.9	164	
	Control/Blank	0.512	0.511	0.5115	15	56.989247	40								
	1 1.075	0.269	0.263	0.266	25	64.809384	20								
	2 3.125	0.261	0.259	0.26	35	68.328446	0								
	3 6.25	0.25	0.23	0.24	50	76.735093		0 10	20 3	0	40	50	60	70	80
	4 10	0.232	0.23	0.231	75	82.30694									
	5 15	0.221	0.219	0.22											
	6 25	0.179	0.181	0.18											
	7 35	0.166	0.158	0.162											
	8 50	0.125	0.113	0.119				ETA (1)	1.786001	6					
	9 75	0.09	0.091	0.0905	IC50	0.4586014		ETA (2)	0.458601	.4					
	10 100	0.086	0.091	0.0885				ETA (3)	0.027891	4					
	11 150	0.089	0.085	0.087				RATA2	0.757498	1					
	12 200	0.09	0.092	0.091				SD	0.916374	6					

Chulalongkorn University

Etahnol of P	P. macrocarpus 3														
										1	Sample				
					% aktivity			100							
					1.075	49.26686		100							
					3.125	51.2219		80							
					6.25	52.88368		60			.				
No	Concentration Sample	Abs sample A	Abs sample B		10	57.47801		40			y = 0	.5378x + 49.98	S		
	Control/Blank	0.511	0.512	0.5115	15	58.35777		40				N = 0.3004			
1	1.075	0.261	0.258	0.2595	25	64.32063		20							
2	3.125	0.252	0.247	0.2495	35	67.93744		0							
3	6.25	0.238	0.244	0.241	50	76.63734		0	10	20	30	40	50	60	
4	10	0.229	0.206	0.2175											
5	15	0.215	0.211	0.213											
6	25	0.184	0.181	0.1825											
7	35	0.171	0.157	0.164											
8	50	0.116	0.123	0.1195					ETA (1)	1.786002					
9	75	0.095	0.086	0.0905	IC50	0.027891			ETA (2)	0.458601					
10	100	0.083	0.089	0.086					ETA (3)	0.027891					
11	150	0.089	0.086	0.0875					RATA2	0.757498					
12	200	0.089	0.094	0.0915					SD	0.916375					

Trolox 1							_						
										Sample			
					% aktivity		100						
					1.075	48.50136							
					3.125	51.31698	80						
					6.25	52.86104	60	-		v = (0.4047x + 49.	702	
No	Concentration San	Abs sample A	Abs sample B		10	53.67847	40				$R^2 = 0.9796$		
	Control/Blank	0.545	0.556	0.5505	15	54.22343							
1	1.075	0.297	0.27	0.2835	25	59.85468	20						
2	3.125	0.262	0.274	0.268	35	64.12352	0		1		1		
3	6.25	0.256	0.263	0.2595	50	71.9346		0 20	40	60	80	100	120
4	10	0.254	0.256	0.255	75	83.5604							
5	15	0.257	0.247	0.252	100	86.6485							
6	25	0.222	0.22	0.221									
7	35	0.203	0.192	0.1975									
8	50	0.156	0.153	0.1545				TRX(1)	0.736348				
9	75	0.086	0.095	0.0905	IC50	0.736348		TRX(2)	1.30709				
10	100	0.074	0.073	0.0735				TRX(3)	0.857832				
11	150	0.101	0.084	0.0925				Average	0.96709				
12	200	0.077	0.069	0.073				STDEV	0.300649				

Trolox 2														
									Sa	ample A				
					% aktivity	A	100							
					1.075	50.09311	100							
					3.125	50.65177	80 -				ATT A CONTRACT OF			
					6.25	48.88268	60			¥.	0.4073x+4	9.23		
No	Concentration Sar	Abs sample A	Abs sample B		10	52.32775	40				$R^2 = 0.971$			
	Control/Blank	0.535	0.539	0.537	15	54.7486								
1	1.075	0.266	0.27	0.268	25	60.05587	20							
	3.125	0.264	0.266	0.265	35	64.43203	0		100	×	1.5	120		
3	6.25	0.27	0.279	0.2745	50	72.81192		20	40	60	80	100	120	
	10	0.256	0.256	0.256	75	83.054								
5	5 15	0.24	0.246	0.243	100	85.75419								
(5 25	0.213	0.216	0.2145				TRX(1)	0.736348					
7	35	0.187	0.195	0.191				TRX(2)	1.30709					
1	3 50	0.147	0.145	0.146				TRX(3)	0.857832					
5	75	0.099	0.083	0.091	IC50	1.30709		Average	0.96709					
10	100	0.07	0.083	0.0765										
11	150	0.09	0.085	0.0875										
12	200	0.065	0.067	0.066										

Trolox 3													
										Sample			
					% aktivity					bumpie			
					1 075	51 40781	100						
					3 125	51 31698	80						
					6.25	51.0445	60						
No	Concentration San	Abs sample A	Abs sample B		10	53,95095		6.0-10 ⁻¹⁰ -1110			y = 0.45583 $R^2 = 0.$	9955	
	Control/Blank	0.545	0.556	0.5505	15	56.03996	40						
1	1.075	0.264	0.271	0.2675	25	61.67121	20						
2	3.125	0.27	0.266	0.268	35	65.30427	0						= -
3	6.25	0.275	0.264	0.2695	50	72.20708		0 10	20 30	40	50 60	70	80
4	10	0.256	0.251	0.2535	75	84.01453							
5	15	0.247	0.237	0.242	100	86.19437		TRX(1)	0.736348	3			
6	25	0.212	0.21	0.211				TRX(2)	1.30709	9			
7	35	0.19	0.192	0.191	200	88.0109		TRX(3)	0.857832	2			
8	50	0.15	0.156	0.153				Average	0.96709)			
9	75	0.087	0.089	0.088	IC50	0.857832							
10	100	0.081	0.071	0.076									
11	150	0.079	0.086	0.0825									
12	200	0.067	0.065	0.066									

Vitamin C 1													
										Sample			
					% aktivity		120			bumpie			
					1.075	39.0554	120						
					3.125	42.59764	100					•	
					6.25	45.04995	80		•		v = 0.3421x	+ 49.205	
No	Concentration Sar	Abs sample A	Abs sample B		10	49.77293	60				R ² = 0.	7362	
	control/Blank	0.545	0.556	0.5505	15	53.86013	40						
1	1.075	0.345	0.326	0.3355	25	61.58038	20	-					
2	3.125	0.316	0.316	0.316	35	68.4832	0						ā. 📖
3	6.25	0.304	0.301	0.3025	50	84.10536		0 20	40 60	80	100 120	140 1	160
4	10	0.275	0.278	0.2765	75	85.92189							
5	15	0.253	0.255	0.254	100	86.10354							
6	25	0.217	0.206	0.2115	150	85.64941							
7	35	0.183	0.164	0.1735									
8	50	0.093	0.082	0.0875				VITC (1)	2.323882				
9	75	0.078	0.077	0.0775	IC50	2.323882		VITC (2)	6.729622				
10	100	0.075	0.078	0.0765				VITC (3)	6.308122				
11	150	0.079	0.079	0.079				Average	5.120542				
12	200	0.066	0.064	0.065				SD	2.431131				
12	200	0.066	0.064	0.065				30	2.431131				

Vitamin C 1	L													
									S	ample A				
					% aktivity	A	120		0	ampient				
					1.075	43.1426	120							
					3.125	43.59673	100							
					6.25	46.2307	80				0.503x + 46.6	15		
No	Concentration Sar	Abs sample A	Abs sample B		10	49.22797	60			,	R ² = 0.8696			
	Control/Blank	0.545	0.556	0.5505	15	54.31426	40							
1	1.075	0.311	0.315	0.313	25	62.6703	20	-						
2	3.125	0.307	0.314	0.3105	35	70.93551	0						_	
3	6.25	0.297	0.295	0.296	50	84.46866		0 20	40	60	80	100	120	
4	10	0.283	0.276	0.2795	75	86.10354								
5	15	0.255	0.248	0.2515	100	86.6485								
6	25	0.203	0.208	0.2055										
7	35	0.165	0.155	0.16										
8	50	0.088	0.083	0.0855				VITC (1)	2.323882					
9	75	0.077	0.076	0.0765	IC50	6.729622		VITC (2)	6.729622					
10	100	0.073	0.074	0.0735				VITC (3)	6.308122					
11	150	0.077	0.078	0.0775				Average	5.120542					
12	200	0.065	0.062	0.0635				SD	2.431131					

2.7. Supplementary data VII: *In vitro* antiplasmodial activity of homopterocarpin and *Pterocarpus macrocarpus* Kurz. extract

1) Ethyl acetate

Concentration	_R จุฬา	% Parasit	emia 8 h	Growth	% Inhibition	% Average of
(#3)	CHUL	ALONGKORN	UNIVE	RSITY		Inhibition
Negative	1	0.78	8.18	7.40	-	-
control	2	0.78	8.20	7.42	-	
100	1	0.78	1.64	0.86	88.38	88.26
100	2	0.78	1.66	0.88	88.14	
10	1	0.78	3.29	2.51	66.08	65.99
10	2	0.78	3.31	2.53	65.90	
1	1	0.78	5.38	4.60	37.84	38.12
1	2	0.78	5.35	4.57	38.41	
0.1	1	0.78	6.43	5.65	23.65	23.28
0.1	2	0.78	6.50	5.72	22.91	
0.01	1	0.78	7.31	6.53	11.76	11.54
0.01	2	0.78	7.36	6.58	11.32	

IC₅₀ = 1.78 µg/ml

2) N-hexane

		% Para	sitemia			%
Concentration	P			% Growth	%	Average
(µg/ml)	n	0 h	48 h		Inhibition	of
			Leccord)	N DISCOURSE		Inhibition
Negative	1	0.78	8.18	7.40	-	-
control	2	0.78	8.20	7.42	-	
100	1	0.78	2.19	1.41	80.95	81.24
100	2	0.78	2.15	1.37	81.54	
10	1	0.78	4.12	3.34	54.86	55.20
10	2	0.78	4.08	3.30	55.53	
1	1	0.78	6.46	5.68	23.24	23.21
L	2	0.78	6.48	5.70	23.18	
0.1	1	0.78	7.53	6.75	8.78	9.11
0.1	2	0.78	7.50	6.72	9.43	
0.01	1	0.78	8.05	7.27	1.76	1.75
0.01	2	0.78	8.07	7.29	1.75	

IC₅₀ = 7. 11 µg/ml

3) Ethanol extract

Concontration		% Para	sitemia			%
(ug/ml)	R	0.6	48 h	% Growth	% Inhibition	Average of
(µ3/110)		U H				Inhibition
Negative	1	0.78	8.18	7.40	-	-
control	2	0.78	8.20	7.42	-	
100	1	0.78	2.11	1.33	82.03	81.78
100	2	0.78	2.15	1.37	81.54	
10	1	0.78	3.22	2.44	67.03	67.00
10	2	0.78	3.23	2.45 ^{-2.45}	66.98	
1	1	0.78	4.95	4.17	43.65	43.05
L	2	0.78	5.05	4.27	42.45	
0.1	1	0.78	6.43	5.65	23.65	23.55
0.1	2	0.78	6.46	5.68	23.45	
0.01	1	0.78	7.78	7.00	5.41	5.33
0.01	2	0.78	7.81	7.03	5.26	

IC₅₀ = 2.21 µg/ml

4) Homopterocarpin

Concentration		% Para	sitemia		06	Average
(ug/ml)	R	0.6	48 h	% Growth	70 Inhibition	of
(μς)		Un				Inhibition
Negative	1	0.78	8.18	7.40	-	-
control	2	0.78	8.20	7.42	-	
100	1	0.78	0.87	0.09	98.78	97.98
100	2	0.78	0.99	0.21	97.17	
10	1	0.78	2.35	1.57 ST	78.78	78.68
10	2	0.78	2.37	1.59	78.57	
1	1	0.78	4.31	3.53	52.30	52.16
l	2	0.78	4.34	3.56	52.02	
0.1	1	0.78	5.93	5.15	30.41	30.30
0.1	2	0.78	5.96	5.18	30.19	
0.01	1	0.78	7.00	6.22	15.95	15.39
0.01	2	0.78	7.10	6.32	14.82	

2.8 Supplementary data VIII

Cytotoxicity of homopterocarpin and Pterocarpus macrocarpus Kurz. extract

N-	h	ex	ar	he
			u	10

(xeeeee () among ()

Abs 560 nm						Average A	bs sample										
Dose	Pterocarpus macroc	arpus			DMEM	Dose		DMEM									
1000	0.0933	0.0870	0.090		1.3021	100	0 0.045	1.207	average DM	IEM							
500	0.0912	0.0889	0.090		1.0869	50	0 0.067										
100	0.6635	0.4748	0.569		1.3316	10	0 0.684										
50	0.6814	0.7630	0.722		1.1149	5	0 0.773					0/ Mark	11.4 6	n havana			
10	1.0785	1.1842	1.131		1.2062	1	0 0.770			66.00		% viab	liity of	n-nexane	extract		
5	1.3897	1.6483	1.519		1.0704		5 0.777			00.00							
1	1.3155	1.4077	1.362		1.2831		1 0.780			64.00			•				
0.5	1.2986	1.3736	1.336		1.1100	0.	5 0.772			62.00							
0.1	1.4509	1.3367	1.394		1.3584	0.	1 0.7775			62.00				the second s			
										60.00				and the second second	·		
										58.00							
										58.00						1	
				Average	1.207					56.00						-	
Abs 750 nm						%viability	= Average Abs san	ple/average DM	EM*100	54.00							
1000	0.0451	0.0446	0.045		0.198	Dose				54.00							
500	0.0488	0.0462	0.048		0.203	100	0 3.75			52.00							
100	0.0516	0.0464	0.049		0.203	50	0 5.55			0	2	:0	40	60	80	100	120
50	0.0473	0.0474	0.047		0.206	10	0 56.63										
10	0.0469	0.0476	0.047		0.209	5	64.00						CC50=2	02.38ug/mL			
5	0.0470	0.0479	0.047		0.204	1	63.79										
1	0.0471	0.0480	0.048		0.203		5 64.37										
0.5	0.0469	0.0488	0.048		0.209		1 64.62										
0.1	0.0486	0.0484	0.049		0.208	0.	5 63.96										
						0.	1 64.42										
				Average	0.205												
				Abs 560 nm- Abs													
				750 nm	1.002												

Ethyl acetate

Abs 560 nm						Average Ab	is sample										
Dose	Pterocarpus	macrocarpus			DMEM	Dose		DMEM									
1000	0.1112	0.1002	0.106		1.3021	1000	0.06	0 1.160	average DME	м							
500	0.0996	0.1044	0.102		1.0869	500	0.05	6									
100	0.2526	0.3345	0.294		1.3316	100	0.24	8									
50	0.8010	0.9300	0.866		1.1149	50	0.81	8									
10	1,2219	1 1908	1 205		1,2062	10	1.16	0		122.00		% Via	ibility o	f ethyl a	acetae ex	xtract	
	1 1277	0.9625	1.050		1.0704		1.10	2		120.00							
	0.0000	1.5017	1.030		1.0704		1.00	2		100.00							
1	0.9902	1.5017	1.240		1.2831		1.19	0		100.00	******						
0.5	1.3160	1./130	1.515		1.1100	0.5	1.46	3		80.00	•	******					
0.1	1.3024	1.8132	1.558		1.3584	0.1	1.51	0		00.00			******	•			
										60.00				******			

							_			40.00					Concession in the local division in the loca		
				Average	1.207											And and a state of the state of	
bs 750 nm						%viability :	Average Abs sa	mple/average DN	1EM*100	20.00						•	
1000	0.0462	0.0451	0.046		0.0497	Dose											
500	0.0461	0.0450	0.046		0.0481	1000	5.1	8		0.00							
100	0.0457	0.0450	0.045		0.0474	500	4.8	7			0	20	40	60	80	100	120
50	0.0472	0.0483	0.048		0.0468	100	21.4	0									
10	0.0476	0.0452	0.046		0.0460	50	70.5	0									
5	0.0469	0.0485	0.048		0.0462	10	100.0	0					CC50	=67.237ue/r	nL		
1	0.0473	0.0482	0.048		0.0499	10	85.4	1							-		
0.5	0.0548	0.0485	0.052		0.0469		103.2	9									
0.1	0.0491	0.0480	0.032		0.0470		126.1	1									
0.1	0.0481	0.0480	0.040		0.0470	0.3	120.1	1 r									
						0	130.1	5									
				2018/06/06	010000												
				Average	0.048												
				Abs 560 nm-Abs													
bs 560 nm						Average Abs	sample										
ose	Pterocarpus n	nacrocarpus			DMEM	Dose		DMEM									
1000	0.0822	0.0840	0.083		1.3021	1000	0.039	1.160	average DMEM								
500	0.1569	0.1249	0.141		1.0869	500	0.095										
100	1.4033	1.0213	1.212		1.3316	100	1.165										
50	1.4219	1.6587	1.540		1.1149	50	1.492					% Viab	ilitas of	f Ethano	ol extract	t	
10	1.5323	1.5155	1.524		1.2062	10	1.475			140.00							
5	1.2034	1.3652	1.284		1.0704	5	1.236				•		•				
1	1.3166	1.5549	1.436		1.2831	1	1.387			120.00							
0.5	1.4834	1.3674	1.425		1.1100	0.5	1.377			100.00	•						
0.1	1.8991	1.2357	1.567		1.3584	0.1	1.520										
										80.00							
										60.00							
										00.00							
				Average	1.207					40.00							
bs 750 nm						%viability=	Average Abs sam	ple/average DME	M*100								
1000	0.0441	0.0449	0.045		0.0497	Dose				20.00							
500	0.0450	0.0462	0.045		0.0481	1000	2 3 3			0.00							
100	0.0479	0.0470	0.046		0.0401	1000	3.33			0	2	0	40	60	80	100	120
100	0.0475	0.0470	0.047		0.0474	500	5.18										
50	0.04/5	0.0490	0.048		0.0468	100	100.42					ICEC	P / 2 / -				
10	0.0483	0.0489	0.049		0.0460	50	128.63					1050	512,48	ug/mL			
5	0.0480	0.0490	0.049		0.0462	10	127.18										
1	0.0485	0.0492	0.049		0.0499	5	106.53										
0.5	0.0468	0.0492	0.048		0.0469	1	119.56										
0.1	0.0478	0.0477	0.048		0.0470	0.5	118.74										
						0.1	131.00										
				Average	0.048												
				Abs 560 nm- Abs 750 nm	1,160												

Homopterocarpin

bs 560 nm						Average Ab	sample										
lose	Pterocarpus	nacrocarpus (H	omopterocarp	in)	DMEM	Dose		DMEM									
1000	0.1001	0.0977	0.099		1.2887	1000	0.052	1.323	average DMI	M							
500	0.1064	0.0932	0.100		1.4166	500	0.053	3									
100	0.2106	0.2368	0.224		1.6923	100	0.176	5									
50	0.5577	0.5147	0.536		1.4415	50	0.486	5			0/ 1	Viabili	tas of k	Iomon	teroca	min	
10	1.1492	1.2570	1.203		1.5443	10	1.153	3		100	70	viabili	tas or i	loniop	teroca	pin	
5	1.2236	1.3235	1.274		1.1856	5	1.224	1		90							
1	1.3575	1.4032	1.380		1.6078	1	1.331			80	Para la construcción de la constru						
0.5	1.5404	1.6438	1.592		1.1460	0.5	1.541			70	100 million (1997)						
0.1	1.1381	1.6119	1.375		1.0362	0.1	1.324	1		70		Sec. 1					
										50			-				
										40			1000				
				•	4.070					30			•				
				Average	1.373	Wede billion	Aurona Alexandre		548100	20					and the second		
1000	0.0465	0.0466	0.047		0.0476	Pore	Average Abs sai	mple/average Div	EM-100	10					-	•	
1000	0.0494	0.0460	0.047		0.0478	1000	2.04			0							
100	0.0483	0.0460	0.047		0.0517	1000	3.90			0	20	40		50	80	100	120
100	0.0482	0.0472	0.048		0.0503	100	13.90	>									
50	0.0524	0.0490	0.051		0.0495	100	15.30	,									
10	0.0490	0.0506	0.050		0.0495	50	30.70						CCE0-40.0	2			
5	0.0500	0.0499	0.050		0.0507	10	87.11	,					CC50=49,9	sug/mL			
1	0.0501	0.0489	0.050		0.0543	5	92.45										
0.5	0.0521	0.0507	0.051		0.0486	1	100.55										
0.1	0.0519	0.0502	0.051		0.0474	0.5	116.40										
						0.1	100.07	r									
				Average	0.050												
				Abs 560 nm- Abs 750 nm	1.323												

- 3. APPENDIX 3
- 3.1 Supplementary data

GC-MS chromatogram profil of fraction number 5-12 of *Sonchus arvensis* L. n=hexane extract (available in author)

3.2 Supplementary data III: Fraction of *Sonchus arvensis* L. n-hexane extract cytotoxicity

	Abs 560nm- Abs	0.050											
	rerata	0.050						_					
			0.1	108.17									
0.050		0.0474	0.5	115.70									
0.050		0.0486	_ 1	105.80									
0.050		0.0543	5	94.58									
0.050		0.0507	10	99.42									
0.051		0.0495	50	75.91				CC50	253,83	ug/rhL			
0.051		0.0493	100	82.22									
0.049		0.0503	500	25.60		0	20		40	60	80	100	120
0.048		0.0517	1000	4.48	0.00								
0.045		0.0476	Dosis		20.00								
			%viability = Av	erage Abs sample/a	verage DMEM*1								
	rerata	1.373			40.00								
1.402					60.00								
		2.0302	0.1	1.451	80.00				•				
1.300		1.0362	× 0.1	1 431	80.00								
1 590		1 1460	× 05	1.400	100.00	•	•						
1 449		1.1050	1	1.201									
1.300		1.5445	10	1.315	120.00								
1.055		1.4415	50	1.004		% Viabilitas Ekstrak n-hexane R ² = 0.527							
1.136		1.6923	100	1.088							v = -0.178	9x + 95.41	
4 4 9 6		1.4166	500	0.339									
Fraction number 17-28

Dosis		17P Sonchus arvens	is			DMEM	Dosis			DMEM												
	1000	0.0972	0.0815	0.089		1.2887		1000	0.043	1.355	average D	MEM										
	500	0.1184	0.0988	0.109		1.4166		500	0.067													
	100	0.6200	0.8353	0.728		1.6923		100	0.684													
	50	0.6990	0.6196	0.659		1.4415		50	0.773						0/ 1/2-1-	ilian d	and the lat					
	10	0.9915	1.2501	1.121		1.5443		10	0.770						76 VIAD	ilitas E	SURK	n-nexa	ne			
	5	0.9917	1.2303	1.111		1.1856		5	0.777			59.00							v=-0.067	4x + 58.18	5	
	1	1.0703	1.3061	1.188		1.6078		1	0.780			58.00							R ² = 1	0.8014		
	0.5	1.0270	1.1803	1.104		1.1100		0.5	0.772			57.00	•	Sec. 1								
	0.1	1.3998	1.3023	1.351		1.3584	F (1)	0.1	0.7775			56.00			Concession of the local division of the loca							
												55.00				Section 1						
												55.00					Sec. 1					
												54.00						The second second				
					rerata	1.405						53.00							and the second second			
bs 75	i0nm						%viabi	ility = Ave	erage Abs si	ample/average	DMEM*10	52.00							-	and the second second		
	1000	0.0473	0.0462	0.047		0.0476	Dosis					51.00										
	500	0.0506	0.0487	0.050		0.0517		1000	3.14			50.00								•		
	100	0.0506	0.0472	0.049		0.0503		500	4.94			0)	20		40	60		80	100	1	20
	50	0.0519	0.0515	0.052		0.0493		100	50.44													
	10	0.0493	0.0495	0.049		0.0495		50	57.01							CCS	0=121,4	Sug/mL				
	5	0.0504	0.0488	0.050		0.0507		10	56.83													
	1	0.0483	0.0492	0.049		0.0543		5	57.34													
·	0.5	0.0480	0.0506	0.049		0.0486		1	57.56													
	0.1	0.0500	0.0505	0.050		0.0474		0.5	56.97													
								0.1	57.38													
					rerata	0.050																
					Abs 560nm- Abs																	
					750nm	1.355																
							100															

- 4 APPENDIX 4
- 4.1 Supplementary data I

GC-MS chromatogram profile of homopterocarpin biotransformation-culture

extract (available in author)

4.2 Supplementary data III

GC-MS chromatogram profile of compound 2

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

4.3 Supplementary data IV

Anticancer activity of biotransformation derived compound

bs 560nm									
Sampel	1000	500	250	100	50	25	10	5	DMEM
	0.092	0.081	0.081	0.545	0.746	1.380	0.954	0.913	2.098
5P	0.087	0.079	0.080	0.753	1.576	3.154	2.070	1.189	2.347
	0.085	0.080	0.092	1.139	1.116	1.667	1.565	1.158	1.800
ць	0.395	0.453	1.478	1.813	2.062	2.848	2.2/7	1.628	2,616
	0.330	0.988	1.105	1.493	1 967	2.122	1 595	1.794	2.010
	0.281	0.346	0.371	0.440	0.731	1.621	1.849	1.309	1.999
тз	0.282	0.288	0.334	0.380	0.786	1.375	1.24	0.95	2.40
	0.255	0.391	0.371	0.549	0.819	1.462	1.59	1.43	
be 750pm									
Conc (ug/ml)	1000	500	250	100	50	25	10	5	DMEM
cone (ug/iii)	0.0521	0.0457	0.0471	0.0546	0.0449	0.0484	0.0455	0.0445	0.0535
5P	0.0501	0.0462	0.0458	0.0479	0.0492	0.0544	0.0518	0.0557	0.0576
	0.0489	0.0449	0.0513	0.0495	0.0499	0.0505	0.0498	0.0521	0.0557
	0.0524	0.0457	0.0484	0.0524	0.0693	0.0586	0.0521	0.0554	0.0542
HP	0.0479	0.0478	0.0468	0.0506	0.057	0.0636	0.0542	0.0496	0.0576
1	0.0479	0.0517	0.0474	0.0484	0.0538	0.0641	0.0502	0.049	0.0668
	0.0491	0.0463	0.0507	0.0454	0.0464	0.0534	0.0509	0.0474	0.0531
тз	0.047	0.050	0.046	0.047	0.049	0.050	0.047	0.048	0.053
	0.046	0.047	0.052	0.047	0.048	0.053	0.050	0.057	
bs sample = (Abs	560nm - backgrou	ind) - (Abs 750nm	- background)	100	FO	25	10	-	DMEM
Conc (ug/mi)	1000	500	250	100	50	25	10	5	DIVIEIVI
50	0.040	0.035	0.034	0.490	1 527	2 100	0.909	1 124	2.0
5P	0.037	0.033	0.034	0.705	1.527	3.100	2.018	1.134	2.2
	0.036	0.035	0.041	1.089	1.066	1.617	1.515	1.106	1.74
	0.342	0.408	1.429	1.761	1.993	2.790	2.225	1.572	1.5
HP	0.308	0.770	1.058	1.442	2.100	2.058	2.158	1.744	2.5
	0.363	0.936	1.061	1.046	1.913	2.614	1.544	1.251	2.9
	0.232	0.300	0.320	0.395	0.685	1.568	1.798	1.261	1.9
13	0.236	0.238	0.288	0.333	0.737	1.326	1.192	0.905	2.3
	0.209	0.343	0.319	0.502	0.771	1.408	1.541	1.369	2.19
Viability = Abs sa	mple/average abs	dmem*100							2.10
Conc (ug/ml)	1000	500	250	100	50	25	10	5	
	1.8	1.6	1.6	22.5	32.1	61.1	41.7	39.8	
5P	1.7	1.5	1.6	32.3	70.0	142.2	92.6	52.0	
1	1.7	1.6	1.9	50.0	48.9	74.2	69.5	50.7	
	15.7	18.7	65.6	80.8	91.4	128.0	102.1	72.1	
НР	14.1	35.3	48.5	66.1	96.3	94.4	99.0	80.0	
1	16.7	42.9	48.6	48.0	87.8	119.9	70.8	57.4	
	10.6	13.7	14.7	18.1	31.4	71.9	82.5	57.9	
тз	10.8	10.9	13.2	15.3	33.8	60.8	54.7	41.5	
	10.0	15.9	14.6	22.0	25.0	64.6	70.7	62.8	
	9.6	15.8	14.6	23.0	35.3	64.6	70.7	62.8	

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

REFERENCES

Chulalongkorn University

- Abdelhamid, R., & Maa, O. (2019). Phytochemical Constituents of Plant Species of Pterocarpus (F: Leguminosae): A Review. *International Journal of Pharmacognosy and Phytochemical Research, 11,* 264-281. https://doi.org/10.25258/phyto.11.4.5
- Anwar, Y., Putra, A. M. J., Iftitah, E. D., Simanjuntak, P., & Kumala, S. (2019). Prediction of Geraniol Bond Mode in Aspergillus niger Linalool Dehydratase Isomerase. *Majalah Obat Tradisional; Vol 24, No 2 (2019).* https://doi.org/10.22146/mot.45599
- Asakawa, Y., Sekita, M., & Hashimoto, T. (2018). Biotransformation of Bicyclic Sesquiand Diterpene 1,2-dials and Their Derivatives by the Fungus, Aspergillus niger. *Natural Product Communications, 13*(8), 1934578X1801300802. https://doi.org/10.1177/1934578X1801300802
- Chen, H., Kang, X., You, L., Wang, C., & Ye, J. (2017). Chemical Component and Antibacterial Activity of Essential Oil from Myanmar Pterocarpus macrocarpus. *Chemistry and Industry of Forest Products, 37*, 65-72. https://doi.org/10.3969/j.issn.0253-2417.2017.06.009
- Delyan, E. (2016). Analisys of component composition of volatile compounds of field sow thistle (Sonchus Arvensis L.) leaves using the method of gas chromatography with mass-detection. *The Pharma Innovation Journal*, *5*, 118-121.
- Gao, W., Wang, Y., Basavanagoud, B., & Jamil, M. K. (2017). Characteristics studies of molecular structures in drugs. *Saudi Pharm J, 25*(4), 580-586. https://doi.org/10.1016/j.jsps.2017.04.027
- Hegazy, M.-E. F., Mohamed, T. A., ElShamy, A. I., Mohamed, A.-E.-H. H., Mahalel, U. A., Reda, E. H., Shaheen, A. M., Tawfik, W. A., Shahat, A. A., Shams, K. A., Abdel-Azim, N. S., & Hammouda, F. M. (2015). Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: A review. *Journal of Advanced Research*, 6(1), 17-33. https://doi.org/https://doi.org/10.1016/j.jare.2014.11.009

- Hendriani, R., Sukandar, E., Anggadiredja, K., & Sukrasno, S. (2016). In Vitro evaluation of xanthine oxidase inhibitory activity of selected medicinal plants. *8*, 235-238.
- Jiao, L. (2018). DNA Barcode Authentication and Library Development for the Wood of Six Commercial Pterocarpus Species: The Critical Role of Xylarium Specimens. *Scientific Reports, 8*. https://doi.org/10.1038/s41598-018-20381-6
- K.C.A, J., John, A., Sheikh, H., S, S., & Y.A.A, N. (2017). Study On Physicochemical Parameters And Distribution Of Phytoplankton In Kuantan Estuary, Pahang. *Environment & Ecosystem Science (EES)*, 1, 8-12. https://doi.org/10.26480/ees.01.2017.08.12
- Kang, X., Csetenyi, L., & Gadd, G. M. (2019). Biotransformation of lanthanum by Aspergillus niger. Appl Microbiol Biotechnol, 103(2), 981-993. https://doi.org/10.1007/s00253-018-9489-0
- Khan, M. R., & Omoloso, A. D. (2003). Antibacterial activity of Pterocarpus indicus. *Fitoterapia*, 74(6), 603-605. https://doi.org/10.1016/s0367-326x(03)00149-7
- Kumar, A., Singh Pk Fau Parihar, R., Parihar R Fau Dwivedi, V., Dwivedi V Fau -Lakhotia, S. C., Lakhotia Sc Fau - Ganesh, S., & Ganesh, S. Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment. (1083-351X (Electronic)).
- Mohd Ataa, N., Hazmi, I. R., & Samsudin, S. (2017). Insect's Visitation on Melastoma malabathricum in UKM Bangi Forest Reserve. *Environment & Ecosystem science*, *1*, 20-22. https://doi.org/10.26480/ees.01.2017.20.22
- Morimoto, M., Fukumoto H Fau Hiratani, M., Hiratani M Fau Chavasiri, W., Chavasiri W Fau - Komai, K., & Komai, K. Insect antifeedants, pterocarpans and pterocarpol, in heartwood of Pterocarpus macrocarpus Kruz. (0916-8451 (Print)).
- Parshikov, I. A., & Sutherland, J. B. (2014). The use of Aspergillus niger cultures for biotransformation of terpenoids. *Process Biochemistry*, *49*(12), 2086-2100. https://doi.org/https://doi.org/10.1016/j.procbio.2014.09.005
- Poudel, B., Sah, J., Subedi, S., Amatya, M., Shrestha, T., Bhupendra, C., Poudel, K., & Amatya, S. (2015). Pharmacological studies of methanolic extracts of Sonchus

arvensis from Kathmandu. *Journal of Pharmacognosy and Phytochemistry*, *4*, 272-276. https://doi.org/10.5897/JPP2015.0359

- Putra, B., Kusrini, D., & Fachriyah, E. (2013). Isolasi Senyawa Antioksidan dari Fraksi Etil Asetat Daun Tempuyung (Sonchus arvensis L). *Jurnal Kimia Sains dan Aplikasi*, *16*, 69. https://doi.org/10.14710/jksa.16.3.69-72
- Rohaeti, E., Heryanto, R., Rafi, M., Wahyuningrum, A., & Darusman, L. (2011). Prediksi kadar flavonoid total tempuyung (Sonchus arvensis L.) menggunakan kombinasi spektroskopi IR dengan regresi kuadrat terkecil parsial. *Jurnal Kimia*, *5*, 101-108.
- Rumondang, M. (2013). Isolasi, Identifikasi Dan Uji Antibakteri Senyawa Triterpenoid Dari Ekstrak n-Heksana Daun Tempuyung (Sonchus arvensis L.).
- Seal, T. (2016). Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of North-Eastern region in India. *Journal of Applied Pharmaceutical Science*, 6, 157-166. https://doi.org/10.7324/JAPS.2016.60225
- Singh, R. (2017). Microbial Biotransformation: A Process for Chemical Alterations. *Journal of Bacteriology & Mycology: Open Access, 4.* https://doi.org/10.15406/jbmoa.2017.04.00085
- Suharyanto, E., Rahayu, S., Purnama, P., Bagus Saputro, T., Wijayanti, N., Purnobasuki, H., & Wahyuni, D. (2019). Morpho-anatomical structure and DNA barcode of Sonchus arvensis L. *Biodiversitas Journal of Biological Diversity*, 20, 2417-2426. https://doi.org/10.13057/biodiv/d200841
- Sukandar, E., & Safitri, D. (2016). Evaluation of teratogenic effect of tempuyung (Sonchus arvensis) extract on wistar rats. *8*, 761-766.
- Wu, C., Zacchetti, B., Ram, A., Wezel, G., Claessen, D., & Choi, Y. (2015). Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. *Scientific Reports, 5*. https://doi.org/10.1038/srep10868
- Xia, Z., Qu, W., Lu, H., Fu, J., Ren, Y., & Liang, J. (2009). Sesquiterpene lactones from Sonchus arvensis L. and their antibacterial activity against Streptococcus

mutans ATCC 25175. *Fitoterapia*, *81*, 424-428. https://doi.org/10.1016/j.fitote.2009.12.001

- Yang, S., Wu, Y., Yang, J., Yan, R., Bao, Y., Wang, K., Liu, G., & Wang, W. (2017). Isolation and identification of an extracellular enzyme from Aspergillus Niger with Deoxynivalenol biotransformation capability. *Emirates Journal of Food and Agriculture*, 29, 742. https://doi.org/10.9755/ejfa.2017.v29.i10.1295
- Younis, A., Ibrahim, A. R., Ibrahim, S., Aboelsauod, K., & Kabbash, A. (2016). Microbial Transformation of Curcumin and Evaluation of the Biological Activities of the Isolated Metabolites. *8*.

Chulalongkorn University

VITA

NAME	Dwi Kusuma Wahyuni						
DATE OF BIRTH	15 January 1977						
PLACE OF BIRTH	Jombang						
INSTITUTIONS ATTENDED	Faculty of Biology, Gadjah Mada University (Bachelor and						
	Master)						
HOME ADDRESS	Diana Court, 9 Phetchaburi 6 Road, Thanon Phetchaburi,						
	Ratchathewi, Bangkok 10400						
PUBLICATION	Ilham, M., Mukarromah, S.R., Rakashiwi, G.A., Indriati, D.T.,						
2	Yoku, B.F., Purnama, P.R., Junairiah, Prasongsuk, S.,						
0	Purnobasuki, H., Wahyuni, D.K. (2022) Morpho-anatomical						
	characterization and DNA barcoding of Achillea millefolium L						
غا	Journal of Biological Diversity 23(4).						
	Wahyuni, D.K., Rahayu, S., Zaidan, A.H., Ekasari, W., Prasongsuk,						
	S. and Purnobasuki, H., 2021. Growth, secondary metabolite						
9.	production, and in vitro antiplasmodial activity of Sonchus						
	arvensis L. callus under dolomite [CaMg (CO3) 2] treatment.						
282	Plos one, 16(8), p.e0254804.						
, w 1	Wahyuni, D.K., Huda, A., Faizah, S., Purnobasuki, H. and						
	Wardojo, B.P.E., 2020. Effects of light, sucrose concentration						
	and repetitive subculture on callus growth and medically						
	important production in Justicia gendarussa Burm. f.						
	Biotechnology Reports, 27, p.e00473.						
	Wahyuni, D.K., Rahayu, S., Purnama, P.R., Saputro, T.B.,						
	Wijayanti, N. and Purnobasuki, H., 2019. Morpho-anatomical						
	structure and DNA barcode of Sonchus arvensis L.						
	Biodiversitas Journal of Bioogical Diversity, 20(8).,						
	Wahyunu, D.K., Ansori, A.N.M. and Vidiyanti, F., 2017. GC-MS						
	analysis of phytocomponents in methanolic extracts of leaf-						
	derived callus of Justicia gendarussa Burm. f. Bioscience						

Research, 14(3), pp.668-677.

Wahyuni, D.K., Purnobasuki, H., Kuncoro, E.P. and Ekasari, W., 2020. Callus induction of Sonchus arvensis L. and its antiplasmodial activity. African Journal of Infectious Diseases, 14(1), pp.1-7.

Wahyuni, D.K., Hafida, S.N., Ermayanti, T.M., Wardoyo, B.P.E., Purnobasuki, H. and Utami, E.S.W., 2017. Hairy Root Induction on Justicia gendarussa by Various Density of Agrobacterium rhizogenes strain LB 510. Biosaintifika: Journal of Biology & Biology Education, 9(1), pp.26-32.

Wahyuni, D.K., Vidianti, F., Purnobasuki, H., Ermayanti, T.M., Prajoga, B. and Utami, E.S.W., 2015. Agrobacterium rhizogenes mediated hairy root induction in Justicia gendarussa Burm. f. Journal of Applied Environmental and Biological Sciences, 5(4), pp.87-93.

MUSLIHATIN, W., WAHYUNI, D.K., NURHIDAYATI, T., WARDHANI, F.O. and ROSALIA, E., 2019. Variation induction of Glycine max through low dose gamma irradiation produces genetic and physiological alteration as source of tolerant variants in waterlogging conditions. Biodiversitas Journal of Biological Diversity, 20(11).

hulalongkorn University

AWARD RECEIVED

1. The Best Presenter (Biodiversity Seminar (Solo).

UNS,Indonesia)

- 2. Finalist of Quarry Life Award (PT. Indocement Indonesia)
- 3. Universitas Airlangga Rector Scholarship