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Chapter I

INTRODUCTION

1.1 String Theory Overview

James Clerk Maxwell’s contributions to electromagnetism indeed played a
crucial role in shaping our understanding of light as an electromagnetic wave, which
propagates at a constant velocity in a vacuum. This posed a conflict with Newto-
nian mechanics, which assumed that velocity was relative to the observer’s frame

of reference.

In 1905, Albert Einstein published his theory of special relativity based on two
postulates: the constancy of the speed of light in all inertial reference frames and
the equivalence of all inertial reference frames with the same laws of physics. This
theory provided a profound understanding of space and time, introducing concepts
such as time dilation and length contraction resulting from the relative nature of

simultaneity.

To generalize this theory, Einstein extends his ideas to include gravity, lead-
ing to the development of general relativity, which was published between 1907 and
1915. General relativity introduced the revolutionary concept that gravity is not a
force acting at a distance, as described by Newtonian gravity, but rather a conse-
quence of the curvature of spacetime caused by the presence of mass and energy.
The equivalence principle posited that no experiment can distinguish between the

effects of gravity and those of an accelerating reference frame.

General relativity successfully explained various gravitational phenomena, in-
cluding the anomalous perihelion shifts of planets and the bending of light around

massive objects. Moreover, the theory predicted the existence of black holes and



gravitational waves, both of which have been observed in subsequent years, provid-

ing robust confirmation of Einstein’s revolutionary ideas.

On the other hand, in the early 1900s, physicists couldn’t use classical physics
to explain the radiation of metals at high temperatures until Max Planck proposed
the idea that was the beginning of modern physics. Max Planck suggests that matter
can absorb and release only discrete energy, which is carried on to the photoelec-
tric effect by Albert Einstein, published in 1905. In the photoelectric effect, light
consists of tiny packets of energy known as photons or light quanta. The idea of a
quantum implies that light or electromagnetic wave can behave as a particle, which
was used to construct the spectrum of the hydrogen model by Niels Bohr in 1913.
After that, Louis de Broglie studies special relativity together with the idea of quan-
tum, leading to a complementary idea, which says that matter can also behave as a
wave called a matter wave. The wave-particle duality means that we can’t specify

the wave state or particle of the physical system at the level of subatomic particles.

In 1926, Erwin Schrodinger made an effort to construct an equation for de-
scribing the de Broglie wave in a situation where an electron has high speed. By
combining special relativity and quantum theory, the equation is created with the

form

1 0%y m2c?

2 =)
S~ Vit =0, (L.

In the above equation, v corresponds to the wave function, and m represents the
mass of a particle. The equation, also known as the Klein-Gordon equation, predicts
the fine structure of the hydrogen atom incorrectly because the spin of the electron
is not taken into account. Although this equation is unsuccessful in describing an
electron in the hydrogen atom, Schrodinger found that the non-relativistic limit of
this equation predicts the correct spectrum of hydrogen atom correctly. This limit

provides the Schrodinger equation that is used at present, written as

O [ oo
thar @) == 55

at +V(z,t)| (2, t) = Hy(a,1), (1.2)



where V(z, t) is a function of potential and H represents Hamiltonian’s system. After
the proposing of Schrodinger equation, Max Born interprets the wave function as
a probability amplitude, proposing that the probability of finding a particle at each

position depends on |y(z,t)|%.

In the same period (1925-1926), Werner Heisenberg, Max Born, and Pascual
Jordan developed the concept of matrix mechanics, which is a formulation of quan-
tum mechanics called the Heisenberg picture. This formalism is in contrast to the
wave formalism of Schrodinger, called the Schrodinger picture, which implies that
states of a particle or physical system are described by time-dependent wave func-
tions, but the physical operators are invariant in time. In the case of the Heisenberg
picture, the states of a system are invariant in time, but the physical operators depend

on time.

In 1927, Paul Dirac introduced the transformation theory, which provided a
powerful and elegant framework for understanding quantum mechanics. The key
idea was to combine two different representations of physical states, and show their
equivalence. In Dirac’s formalism, a physical state in quantum mechanics is repre-
sented by a vector in a mathematical space called a Hilbert space. The ket notation,
represented by the symbol |¥), represents the state vector in this space. For exam-
ple, if |¥) represents a particle’s position, then the value of |¥) at a particular point
would give the probability amplitude of finding the particle at that position. On the
other hand, the bra notation, represented by the symbol (¥|, in dual space of the
ket space, representing the adjoint vector. It corresponds to the complex conjugate
transpose of the ket vector. If |¥) represents the state vector, then (¥| represents
the corresponding dual vector, or ”bra” vector. The inner product of a ket and a bra
vector is represented as (¥|¢), where |¢) is another state vector. The inner product is
a complex number that represents the probability amplitude for transitioning from
state |¢) to state |¥). Dirac’s transformation theory demonstrated the equivalence
between Heisenberg and Schrodinger representations. This equivalence allowed

for the formulation of quantum mechanics in a more compact and elegant manner.



It facilitated the development of various mathematical techniques in quantum me-
chanics, including the development of quantum operators, wave functions, and the

Schrodinger equation.

In 1928, Paul Dirac indeed made a significant contribution to theoretical

physics with the formulation of the Dirac equation:
W0, ¥ —m¥ =0, (1.3)
where 1# is 4 x 4 gamma matrix that satisfy the property:

{777 =" 9" = 20 Taxa, (1.4)

where n* is Minkowski’s metric. The Dirac equation is a relativistic wave equa-
tion that describes the behavior of fermions, such as electrons, in a relativistic
quantum mechanical framework. It was developed as a relativistic extension of
the Schrodinger equation, which was inadequate for describing particles moving
at speeds close to the speed of light. The Dirac equation predicted the existence
of antiparticles, which are particles with the same mass but opposite charge to their
corresponding particles. In the case of the electron, the Dirac equation predicted the
existence of the positron, which was later discovered in 1932 by Carl D. Anderson,
confirming Dirac’s prediction. The discovery of antiparticles and the success of the
Dirac equation in describing their behavior provided strong basis for the concept
of quantum field theory. In quantum field theory, particles are not considered as
separate entities but rather as excitations of underlying fields that permeate space-
time. These fields are described by mathematical functions that depend on both time
and 3D space coordinates. Particles are then interpreted as quantized excitations or

disturbances in these fields.

Quantum field theory has become a fundamental framework for understanding
particle physics and quantum interactions in a relativistic context. It has been suc-
cessfully applied to describe the behavior of elementary particles and their interac-

tions, providing a consistent and powerful theory for understanding the subatomic



world. The Standard Model of particle physics, which describes the electromag-
netic, weak, and strong nuclear forces and the particles that mediate these forces,
is based on quantum field theory and has been extensively tested and confirmed

through experiments.

However, when it comes to the effect of gravity, the standard model fails to
explain gravity as it does with other forces. Gravity remains outside the scope of
the standard model, and the theory of gravity lacks of normalization, leading to
infinite and uncontrollable results. This issue arises from the fundamental mismatch
between the smooth spacetime concept of general relativity and the discrete nature
of quantum concepts. In other words, the smooth continuum of spacetime in general
relativity does not align with the discrete nature of quantum mechanics, causing a
fundamental incompatibility between the two theories. This discrepancy has been
a central challenge in theoretical physics and is one of the reasons why developing

a complete theory of quantum gravity remains an open and active area of research.

One of the popular theories of quantum gravity is string theory, which was
originally developed to explain the spectrum of interactions among hadronic parti-
cles. It all began when Gabriele Veneziano made a significant discovery in 1968.
He found that the scattering of hadrons could be explained using the beta function
of Euler. Subsequently, in 1969-1970, Holger Bech Nielsen and Leonard Susskind
proposed that the spectrum of hadronic scattering is not due to point particles, but
rather arises from one-dimensional objects known as strings. In this model, all
hadron particles are considered to be the same type of string, but their properties,
such as mass, spin, and charge, differ based on the frequency of vibration of the
string. However, the string theory faced some challenges. One such problem was
the requirement for 26 dimensions of spacetime to preserve Lorentz symmetry. Ad-
ditionally, the spectrum of the theory predicted the existence of a particle known as
the tachyon, which has an imaginary mass, posing difficulties for the theory’s con-
sistency. Furthermore, another issue arose with the appearance of massless particles

in the spectrum that have a spin of 2. Such particles were not found in the list of



known hadrons, which presented a discrepancy between the theory and experimen-

tal observations.

The early version of string theory was referred to as the Bosonic string theory
since it only incorporated bosonic particles (particles with integer spin). Subsequent
developments, such as superstring theory and its various versions, aimed to address
some of these issues by introducing fermions (particles with half-integer spin) and

additional dimensions of spacetime.

Superstring theory is a type of string theory that goes beyond the original
Bosonic string theory. It includes fermionic particles in its spectrum and addresses
some of the issues faced by the Bosonic version. One of the problems solved in
superstring theory is the tachyon, which is removed through the implementation
of supersymmetry. Supersymmetry introduces a symmetry between bosons and
fermions, which helps stabilize the theory. In the context of superstring theory,
the spacetime dimensions that preserve Lorentz symmetry are reduced to ten di-
mensions, which is a significant development from the initial requirement of 26
dimensions in Bosonic string theory. Moreover, in superstring theory, the massless
particle with spin 2 is believed to be the graviton, which is the hypothetical force
carrier particle of gravity. This graviton is responsible for mediating gravitational
interactions between particles. Superstring theory is considered a promising candi-
date for a unified theory of elementary particles and their interactions. However, it
can be formulated in multiple ways, resulting in five different versions: type I, type

ITA, type IIB, and two versions of heterotic string theory.

Interestingly, the five versions of superstring theory are considered special
limiting cases of a more comprehensive theory known as M-theory. M-theory was
proposed by Edward Witten and exists in eleven dimensions. At low energy levels,
M-theory effectively describes a theory called supergravity in eleven dimensions.
This supergravity theory involves the existence of extended objects known as branes,

specifically the M2 and M5 branes, which play crucial roles in understanding certain



11D M -Theory

U-Duality
T-Duality
T-Duality
S-Duality
10D /_Eype IIA| |E; x E; Heterotic/ [S0(32) Heterotic|
Type IIB Type I
S-Duality

Figure 1.1: The relationship between five-string version and M-theory

aspects of M-theory and its connections to other physical phenomena.

1.2 Problem Statement

Quantum field theory (QFT) is a framework that combines quantum mechan-
ics and special relativity to describe the behavior of elementary particles and their
interactions. It is one of the fundamental theories in modern physics and provides
a mathematical description of fields and particles at the quantum level. The calcu-
lation in QFT base on perturbation in terms Feynman diagrams. However, when
performing these calculations, divergent quantities may appear, leading to infinite

results.

To remove these infinite results, physicists use the essential concept called
renormalization, which provides a systematic approach to address these infinities
and obtain meaningful and finite predictions. When performing renormalization,
the parameters of the theory are adjusted to absorb infinities and make the calcula-
tions finite. These parameters, such as masses m and coupling constants g, depend

on the energy scale ; at which they are measured. The dependence of these param-



eters is described by RG equations of the form

_ pom

Bg)=p22, and (m) (1.5)

= M(?Tﬂ m EVR
which govern the change of these parameters as the energy scale changes. The
RG equations describe how the values of the parameters "flow” as we move from
a high-energy scale (UV) to a low-energy scale (IR). In some situations, the cou-
pling constants are invariant under scale transformation (5 = pg—z = 0), which is
known as the conformal fixed point. The quantum field theory (QFT) that is in-
variant under scale transformation is a conformal field theory or CFT (a quantum
field theory that possesses conformal symmetry). Studying renormalization group
flows is crucial for understanding the universality of physical theories, as well as
their critical behavior and phase transitions. However, in the case of strong cou-
pling (¢ > 1), calculating RG flows in QFT becomes challenging as it involves a

non-perturbative computation. To address this difficulty, a powerful tool called the

AdS/CFT correspondence, or holography, can be employed.

The AdS/CFT correspondence, also known as the gauge/gravity duality or
holographic duality, was first proposed by Juan Maldacena in a landmark paper
(Maldacena, 1999). Itis a powerful theoretical framework that establishes an equiv-
alence between certain gravitational theories in Anti-de Sitter (AdS) spacetimes and
quantum field theories (QFTs) with conformal symmetry living on the boundary of
that spacetime. The central idea of the AdS/CFT correspondence is that the gravita-
tional theory in the bulk, often described by supergravity, is dual to the QFT on the
boundary. This duality implies that the two theories provide different descriptions
of the same physics and are equivalent in a profound sense. It allows us to translate
computations and phenomena in one theory to the other, opening up new avenues
for studying strongly coupled field theory systems in terms of weakly coupled grav-
itational theories. For example, quantities of interest in the QFT, such as correlation
functions or the study of renormalization group (RG) flows, can be mapped to com-
putations in the gravitational theory. This mapping provides valuable insights into

the behavior of strongly coupled systems that are difficult to access using traditional



QFT methods. The AdS/CFT correspondence has found applications in various ar-
eas of theoretical physics, including quantum gravity, string theory, and condensed
matter physics. By employing consistent truncations, lower-dimensional gauged su-
pergravity solutions can be uplifted to higher-dimensional theories, in ten or eleven
dimensions, within the framework of string/M-theory. This process leads to the es-
tablishment of complete AdS/CFT dualities, providing a deeper understanding of

the connections between gravity and quantum field theory.

In the context of the AdS/CFT correspondence, holographic RG flows refer
to the description of renormalization group flows in the strong coupling limit of
a quantum field theory (QFT) using the dual gravitational theory in Anti-de Sitter
(AdS) space. The scalar potential V(¢) of the gauged supergravity in AdS space
contains important information about the conformal fixed points and dynamics of
the corresponding QFT at strong coupling. The solution of gauged supergravity
that corresponds to an RG flow from one conformal fixed point to another conformal
fixed point, or to a non-conformal fixed point, is given by the domain wall solution in
the form of AAdS, (asymptotically anti-de Sitter space) space-time. The concept of
AAdS implies that QFT exhibit a conformal fixed point precisely when AAdS is in
the AdS form, with the theory being non-conformal at other positions. The domain
wall solution provides a geometric description of the RG flow in the dual QFT, where
the radial direction corresponds to the energy scale of the theory. By studying the
properties of the domain wall solutions and the behavior of the scalar potential in
the gauged supergravity, one can gain insights into the dynamics and phase structure

of the corresponding QFT, particularly in the strong coupling regime.

1.3 Thesis Objective

1. To understand gauged supergravity.

2. To find solution of domain wall asymptotic to 4-dimension anti-de sitter space.
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3. To study holographic RG flows in 3-dimensional conformal field theory.

1.4 Scope of Work

* Focus on the study of holographic RG flows originating from N = 2 gauged
supergravity with an SO(2) x SO(6) gauge group.

* Explore the utilization of SO(2) x SO(4) and U(3) scalar singlets within the

context of holographic RG flows.

» Explore the behavior, implications, and mechanisms of RG flows that drive
transitions from a N = 2 Conformal Field Theory (CFT) to non-conformal

field theories in three dimensions.

1.5 Research Implication

In recent times, a number of physicists are beginning to posit that M theory
could potentially serve as the elusive “theory of everything.” The pursuit of un-
derstanding M theory holds the promise of providing insights into the fundamental

nature of the universe.

The AdS/CFT correspondence, often referred to as the holographic principle,
has emerged as an invaluable tool in comprehending M theory. This correspondence
links certain gravitational theories (in Anti-de Sitter space) with certain conformal
field theories (CFTs), thus allowing us to extract insights from one domain to un-
derstand the other. Holographic RG flow solutions, which describe the changes in
a theory as it’s examined at different energy scales, offer a particularly enlightening
perspective on strong coupling phenomena in QFT. This is advantageous because

it’s often more feasible to calculate RG flow in these solutions than in traditional



11

quantum field theory settings.

Notably, this holographic approach not only aids in the understanding of strong
coupling within QFT but also extends its benefits to the realm of condensed matter
physics. This is essential for accurately describing and modeling complex physical

systems in condensed matter physics.

Nowadays, physicist believe that M-theory is a theoretical framework that has
been proposed as a candidate for a unified theory encompassing all four fundamental
forces of the universe, including gravity. It extends the ideas of string theory and in-
troduces various extended objects, such as M2-branes and M5-branes. M2-branes
are two-dimensional objects, and MS5-branes are five-dimensional objects. These
branes play a crucial role in the dynamics of M-theory. The low-energy dynam-
ics of M2-branes are effectively described by a three-dimensional supersymmetric
quantum field theory known as ABJM theory. The holographic duality, expressed
as AdS, x S7 /CFT3, establishes a correspondence between eleven-dimensional su-
pergravity in an AdS, x S” spacetime and a conformal field theory (CFT) in three
dimensions. This duality provides a powerful tool for studying the strongly coupled
regime of M-theory using the techniques of a dual quantum field theory. In this
thesis, the direction appears to focus on delving into the dynamics of M2-branes
using four-dimensional supergravity and holographic tools. This could involve ex-
ploring the properties and behavior of M2-branes in the context of the holographic
dual ABJM theory. Moreover, Conformal field theory in three dimensions, which
arises in the holographic dual, has applications beyond fundamental physics. It is
also used to understand concepts such as phase transitions and mass deformations

in the context of condensed matter physics.



Chapter 11

SUPERSYMMETRY

The symmetry that connected all the different types of particles in our uni-
verse, from electrons to photons and everything in between, was discovered by
physicists in the 1970s. This relationship, known as supersymmetry, depends on
the strange quantum feature of spin and may hold the key to a fresh perspective on

physics.

2.1 Symmetry

Symmetry is a transformation that preserves the physics properties of a sys-
tem. The symmetry transformation comprises both continuous transformations, in-
cluding translation and rotation, as well as discrete transformations, such as time
reversal and parity. These symmetries are known as discrete and continuous sym-

metry, respectively.

Two general classes of symmetry can be classified. A global symmetry is one
that preserves a feature for a transformation that is equally applied at all points in
spacetime. A local symmetry is one that preserves a property’s invariance when a
potentially different symmetry transformation is applied at each point in spacetime.
In contrast, a global symmetry is not parameterized by the spacetime coordinates.
Since it serves as the foundation for gauge theories, local symmetries have a signif-

icant impact on physics.
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Noether’s theorem

Consider a set of fields such as the ¢‘(z) , i = 1,...,n that belong in any repre-
sentation (scalars, vector, and spinor). The equation of motion can be constructed

from the action

5[] = / 2.2 (6 (x), 0,6 (). 2.1)

A mapping of the configuration space, ¢'(x) — ¢’ (2'), that contains the property
that if the original field configuration, ¢(z), is a solution of the equations of motion,
then the transformed configuration, ¢'(z’), is likewise a solution. This mapping

represents a general symmetry that satisfies

Slgl = S[¢']. (2.2)

The variation of the action (2.1), with respect to ¢, becomes

0% R \ 0L . .
o fou 2 (o [ () o

In the above equation, it shows that the Lagrangian density .# (¢, §,,¢") transforms as

a total derivative, which has no effect on the equation of motion. In equation (2.3),

the surface term, 0, (%5&), can be neclected to obtain the equation of motion,
written as
0L 0L
— | —-——=—=0. 24
0 (55057) =5 =0 e

The Euler-Lagrange equations of motion are named for this equation, which is gen-

erated by the condition, 6,:S = 0, for all configurations St

We now consider a general field variation with infinitesimal symmetry by
0¢'(z) = 6" (2) — ¢'(x) = " Dad'(2), (2.5)

in which €* are constant on spacetime, d,c* = 0. As special cases, this property
includes the various internal and spacetime symmetries discussed in the following

section. Where A, are the symmetry generator associated with the Lie algebra

[Aa, Ay = fap Ac, (2.6)
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leaving the action invariant, and f_° are the structure constant of a symmetry group.

The action is invariant when the transformation is a symmetry, and the varia-

tion in the Lagrangian density is expressed as total derivative K/, denoted by

0. . 0Z ,
= K =€ | o 0N + oo Ay
0.2 = €0, Kl =e [88/1(1’18“ a¢+8¢)’ agb}

. 0.7 0.2\ 0% .
o (G- [o (5) 53] 2] @7

We can rewrite the above equation as

0L W / 0L\ 0% ;
% [Kgé’@mi“gb}_[a“(@@mJ w]A“qﬁ' 28

Using equation (2.4) we can rewrite (2.7) in the form 9,J) = 0, where J/ is the

Noether current

gt 4. 9%

L g et (2.9)

This current is conserved, which means that 9,,J;" = 0 for all solutions of the system’s

equations of motion.

For each conserved current one can define an integrated Noether charge, which

is a constant of the motion, i.e. independent of time

Qo = / d3xn,, JE. (2.10)

Every point on a space-like surface %, has a time-like normal vector n,,. The conser-
vation of @, can be shown directly by choosing ¥, at constant time, n* = 9;, which

provides

Qa = /d%JéB, (2.11)

and

dc?ta - / dP20yJ0 = — / AP0, JL = — / d*xii; J} (2.12)

To obtain the above equation, we use 9, J;° = 0 and Stoke’s theorem to change vol-

ume integration into surface integration that contains the orthogonal vector ;. The
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boundary condition imposed that the fields at boundary vanish, J; — 0, so that

dQq
dt

—0. (2.13)

We can determine the Noether current in an efficient way if we assume that
the symmetry parameters depend on spacetime, 9,¢%(x) # 0. The variation of the

action becomes

(0% . 0%,

d4
[ 0% X7 ,
4 a A a 7
_/d v | 33, g n("Bat) + e Am}

[ 0L ;
_ 4 a 7 a "
/d x -8M6 88Md>iAa¢ Fe 8MK(1:|

08 =

=— /d4xauea {Kf; — %@LAGW] —|—/d4xaﬂ(6aKg‘) (2.14)
I

The second term in the previous equation can be neglected by applying the boundary

condition. The first term can be written in the form of (2.9), so that (2.14) becomes:
59 == / d*x0,e J*, (2.15)

which the Noether current is a negative of the coefficient of 9,,¢%.

Internal symmetry

An internal symmetry is a transformation that only affects the fields, not the
spacetime, and preserves the action or lagrangian invariant. The form of symmetry

transformation is

¢'(z) = ¢ (x) = U,¢ (), (2.16)

which spacetime coordinates remain unchanged = = 2#. The matrix U ' is arepre-
sentation of the group element G, which explains the symmetry in theory. For the
internal symmetry that is continuous, the matrix U*; can be written in the form of

an exponential as

U(6) = 't (2.17)
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in which ¢ are constant parameters, and (t,)’; are generators that correspond to Lie

algebra
[tasts] = fop'te- (2.18)

From equation (2.5), we can write an infinitesimal transformation (]¢*| << 1) for an

internal symmetry transformation as
59" (x) = 0“(ta)' ;¢ (x) (2.19)

In the case of an invariant Largrangian density and spacetime-independence trans-
formation of U?;, yielding K/ = 0, and the Neother current of this symmetry shows
as

7y OE

a —W(ta)@ww)- (2.20)

To give some example, we focus on systems of scalar fields with typical kinetic
terms. The action is

S = —% /d4m [0,0:0"0" + m>¢; '] . (2.21)

So that, the Neother current is written as

TE = 0 i(ta)i). (222)

Spacetime symmetries

The Poincare group, which consists of rotational transformation and transla-
tion in four-dimensional spacetime, is the symmetry group that describes spacetime

symmetry . In accordance with this symmetry, the coordinates transform as
M = AR ¥ + o, (2.23)

where A, is a Lorentz group element with no parity and time reversal, and a* is
the translation parameters. The elements of the Lorentz group must correspond to

conditions

det{A} = +1 (2.24)
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and
A“pnw,A”U = Npo- (2.25)
We now introduce the Lie algebra of the Lorentz group, expanding A%, to infinites-
imal transformation. It follows that
AF, =68 4+ wh. (2.26)
w'y, is parameter of Lorentz transformation, and it must be an anti-symmetric matrix
in order to satisfy equation (2.25), which is as follows:
(65 + W“y)ﬁuo(53 + U-)ap) = MNvp
(6565 + 0Lw , =+ 6o wh, ) Mue = Mup
Nup + Wrp + Wpr = Typ
Wyp = —Wpy- 2.27)
Only the first order in «/}, is taken into consideration in the second line, and w with
two lower indices is given by w,,, = n,,w",. It has six independent parameters and
can be conveniently parametrized in the from w,, ~*” by using six anti-symmetric
matrices as
Sipol"t, = Shhe = O5np = =S5, (2.28)

The matrices X are the generators of the Lorentz group SO(1,3), which satisfy Lie

algebra

i) Sipol] = Funlioe ™ Stag (2.29)
with structure constant following as

« acf
Fuaoo) @ = Snipp00 0L (2.30)

v] Vo]

Depending on the kind of field ®(z), there are several ways to represent generators

¥, The generators for scalar, vector, and spinor can be represented as

scalar: X, =0 (2.31)
vector :  Yppp)" = 000 — Shnp (2.32)
spinor: X, = 1[7“,7”] (2.33)

4
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Consider the field that transforms under the Poincare group in the form of
' (') = U(N)®(z), (2.34)

where U(A) are elements of the Lorentz group in the representation of ®(z). For
infinitesimal transformations z* = w2 + ¢*, we can expand the transformations

in the above equation as follows:
O +w) =1+ %wij"”. (2.35)

Consider the left-hand side of equation (2.34) and expand the field ¢'(2’) around

2* =z, which shows as

'(2') = ' (2" + wh, ¥ + ")
= &' (z) + (W' z” + )9, (z)

= &' (z) + w1,0,0(x) + €0,P(z). (2.36)

Because the coefficient of 9,®(x) corresponds to the first order of parameters

(why, "), we substituted ®'(z) by ®(z) in the second term in the previous procedure.

The transformation on the right-hand side of equation (2.34) can be written as
O+ 0)0(r) = B(a) + S S (a) (2.37)
Equations (2.36) and (2.37) enable us to rewrite equation (2.34) as
@' (2) + w0, 0, 0(r) + D B(x) = Bx) + S DV B(). (2.38)
Consequently, the fields’ variation becomes
5(x) = e, B(x) + 5 (B + 2D — 2,0, 0() (2.39)
The Lagrangian density is invariant under Lorentz group and translation in the
form £ (x +a) = £'(z) — "0,Z"(x) = Z(x), so that the variation becomes

0L (x) = -0, L () = —e'P,.ZL (2), (2.40)
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where P, is a generator of translation whose meaning is four-momentum.

Noether current of Poincare symmetry can be considered separately under

translation and Lorentz transfromation. For w,,, = 0 equation (2.39) becomes
0@(x) = —e1'0,®(z) — AP (2) = 0,P(x), (2.41)

and equation (2.40) provides K, = ¢;,.. It is important to note that the symmetry
parameters are —e*, and the indices « in equation (2.5) are changed into spacetime

indices .

By using the definition of the Noether current in equation (2.9), we have

0%
[ H
T, aa”q)&,d) +0b.Z. (2.42)

This conserved current is called the energy-momentum tensor, which corresponds

to the conservation equation:

9,T", = 0 (2.43)

In the case of Lorentz symmetry, where e# = 0, utilizing equation (2.5) results

in €* being represented as w*”. This leads to the following expression:

5B(r) = S DB (z). (2.44)
By using equation (2.39), we have
A®(z) = %w“”ZWCD(x) + 2,0,®(x) — 2,0,P(z). (2.45)

Lagrangian density is invariant under transformation in the form of z# = 2#+w", ",

which provides

_ —%wwap((sgxﬂz — 602,.2). (2.46)
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From the above equation, we can define K} as
K}, = 00w, L — 60w, L. (2.47)

So that the Noether current can be written as

. 0¥

= —m(&w@ + 2505 — 2,0,®) + 0bx,L — W, L, (2.48)
i

and using the energy-momentum tensor in equitation (2.42) the above equation be-
comes

0L
Mﬁo‘ = _mzapq) + xpTMo - xoTup- (249)

For example, in the case of scalar fields (X,, = 0), the above equation becomes
MY =gy T » <o, (2.50)
and under conservation conditions, we have
M, = e THo = nusT, = 0. (2.51)
This condition imposes that the energy-momentum tensor be a symmetric tensor
(Tpa = Tap)-
In the event that X, # 0, the conservation equation 9,, M}, becomes
0.7
0 [2 @} =T — Top, (2.52)
P 90, 2% v vp

which means that the anti-symmetric part of energy-momentum tensor (7)) de-

pendson X, .

Consider equation 9,J5 = 0: we can introduce new alternative currents that
satisfy the conservation law, as shown below

Jh = Jr 1 9, A", (2.53)

which satisfy 8,.J* = 0 for anti-symmetric A*. As a result of this, the new current

corresponds to the conservation law and provides the same charge because

/ P, A = / i A% = 0. (2.54)
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We apply the constraint that all fields vanish at the boundary in the last step.

If we define the new energy-momentum tensor as
QM =TH + §,APHY, (2.55)

Arrv — — Arpv then TH and ©# correspond to conservation law and also provide
the same Noether charge. We can infer that both tensors are physically equivalent

because of 9,0 = 0, and

/ Pr — / BT & / P, A0 — / PaT" (2.56)

From the above result, we can construct the symmetric tensor ©#* by replacing

O in equation (2.52) and using relation ©#” = ©¥#. We have

0%
_ h | PV _ APV,
9, [88@ zu,@] 9,(A APV, (2.57)

If we neglect the constant of integration, the above equation becomes

APHY APV — _ oy, (2.58)
where
0<
P — ¥ .. 2.
00, " (2:39)

In terms of F7#, the equation (2.58) can be written as
1
APHY — _i(FWW 4 FHVP _ FVPRY, (2.60)

When we substitute the previous equation in (2.55) , the energy-momentum tensor

becomes

1. [0g 0.7 0.4
W _ ey - SR P TPV —
© 2% | 90,0 00, 00, ®

PG| . 2.61)

The tensor ©# is also known as the Belinfante-Rosenfeld tensor. Generally, when

we consider the energy-momentum tensor, we also refer to it as /7.
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Additionally, we should note that a scalar field, which is explained by a general

action of the form

S= / iz [—;amaw _ v<¢>] 7 (2.62)
provides energy-momentum tensor in the form
0L
o 2= u
T, = 88#¢8V¢+ o0,Z
— 00— o (;apw% + V(¢)> | (2.63)

The charges for 7+, and M}, can be calculated as

P, = / 32T, and A, = / >z M

s (2.64)
which are four-momentum and Lorentz generators, respectively. The conservation
of M;; means that the angular momentum is preserved, and the conservation of M,

means that the centers of relativistic mass of the systems have constant velocity.

2.2 Supersymmetry

The symmetry that was discussed in the previous section was compiled under
a no-go theorem provided by Coleman and Mandula. This theorem indicates that,
in addition to CPT (charge conjugation, parity transformation, and time reversal),
Poincare symmetries and an internal symmetry group G are the only possible sym-
metries of the S-matrix. In other words, the most general symmetry in field theory,
is a direct product of Poincare symmetries and an internal symmetry group, that is

1S0(1,3) x G.

The supersymmetry algebra

The Coleman-Mandula theorem is crucial to the symmetry that corresponds

to Lie algebra. To extend the boundary of Lie algebra, Haag, Lopuszanski, and
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Sohnius generalized the notion of Lie algebra to include anti-commutators by im-

posing graded Lie algebra
[TayTb} - TaTb - (_1)naanbT = fabcTc- (265)

Bosonic (T, = B) and fermionic (7, = F) generators are the two categories that
form the Lie algebra in supersymmetry. The number of graded 7, = 0 imposes the
bosonic generators, while the graded 7, = 1 imposes the fermionic generators. The
graded algebra, equation (2.65) states that the general structure of supersymmetry

algebra becomes

’ 1" ”

[B,B1=B", [B,F]=F, {FF}=B. (2.66)

Consider the product of F, i = 1,...,N in representation (j,j + 3) and F'f
in conjugate representation (j + 3,). The anti-commutator between F’ and F'f

provides maximal spin representation as

{F*, P9t} 2+ 2,25 + 1)
2 2
{FF} (24,25 + 1)
{Fi, Fit} (27 +1,27). (2.67)

According to anti-commutator in (2.66), the above result must be a bosonic gener-
ator in Poincare symmetries or an internal symmetry (J**, P* t,) that belongs in
representation (1,0) & (0, 1), (3, 3) and (0,0), respectively. If j > 0, then 2j + 3 > 1,

25+ 1> 1, and 25 > 0, which mean that
(F!, FITy = {F* FI} = {FT, FIT} = 0. (2.68)

The above equations imply that the fermion generator (j,j + ) @ (j + 3,;) that
contains j > 0 vanishes in supersymmetry algebra. As a result, all possible fermion
generators must be spinor belonging to representation (3,0)&(0, 5) of Lorentz group.

As generators in representations (3,0) and (0, 1), define Qq;, a,b = 1,2 and @2,

a,b = 1,2, respectively, which are also known as supercharges. As we will see in
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the following section, supersymmetry is generated by the supercharge and used to
identify the spin number of the particles. The supercharge number is represented

by the indices i = 1, 2,3, ..., N, so that the number of all supercharge is 4.

The supercharges are spinors in the Lorentz group, so that the commutator

between Q;, @2 and J#* can be written as
[Qaia JMV] = i(auy>abei and [@27 J,ul/] = i(a,uu)dbéza (269)

where (0,,)," and (&,W)ai’ are Lorentz generator in (3, 0) and (0, 5) representation, re-
spectively. The other commutator can be found by using the super-Jacobian identity

that is defined

(=)™ ([To, Ty}, Te} + (=1)"™([Ty, Te}, Ta} + (=1)"™[[T¢, Tu}, Ty} = 0. (2.70)
Consider the anti-commutator {Qq;, @} that the product [(1,0) ® (0,1)], = (3,1)
only gives the bosonic generator, P, as a possible generator. As a result, this anti-

commutator can be Written as
{Qui @2} = —CY,0,00P", (2.71)

where the minus sign corresponds to the convention of o, = (-1, 0%).

The matrix C7; can be found by considering the property of the commuta-
tor. Since the anti-commutator is hermitian, C?; must also be hermitian and can be
turned into a diagonal matrix. In terms of eigenvalues, matrix C7; can be defined as

CJ; = ciéf . and the anti-commutator can be rewritten follow
. 1
{Qaiv Q(Jz} = _i(nguaizPMa (272)

where C?; are eigenvalues and absorbed in the supercharge.

Take into account the commutator between Q,; and P*, where the result of an
anti-symmetric product provides [(3,0) ® (3, 3)]a = (0,3). This result implies that
the generator on the right-hand side of the commutator must be @i Therefore, the

commutator can be written as

[Qai, P!] = —%Cijgﬁfd@aj, (2.73)
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and the conjugate hermitian of this commutator becomes
[Q, P"] = —(cij)[5""" Qu;. (2.74)
Using the super-Jacobian identity, the algebra becomes
[P*, [PY, Qail] + [P [Qais PM]] + [Qui, [P¥, P¥]] = 0. (2.75)

Using [P*, P¥] = 0, the previous equation provides cc! = 0 because o*5” # 0. Equa-

tion (2.75) becomes

[P*, Qai] = [P*, Q] = 0. (2.76)

The anti-commutator {Q.:, Qy;} can be found by considering the representa-

tion (1,0) ® (3,0) = (0,0) & (1,0), which indicates that the right-hand side of the

anti-commutator must be a scalar Z% and anti-symmetric tensor Y, = Y/, = —Y,7.

The form of the anti-commutator can be written as

— AV
{Quis Qs = —5emZ¥ + S0l Vi, @.77)

where the form of the tensor Y7, is considered by using equation (2.71), [P*, Qui] =

[P, P"] = 0, and super-Jacobian identity

[P, {Qai, Qv;}] = {Qbj, [P*, Qail} +{Quai, [Quj, P*]} = 0. (2.78)

The above equation provides [P, {Qui, Q»;}] = 0, which implies that Y,/ = 0 because
of [PH, 5"?] # 0.

The generator Z;; is a scalar in the Lorentz group, which means that Z;; can

be written in the form of an internal symmetry generator 74, denoted by
Where T4 corresponds to Lie algebra

[Ta,T5] = fas“Tc. (2.80)
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Let Q.; and QZ transform under internal symmetry, denoted by
[Qais Ta) = (S4)7Qaj  and [T, Q3] = (S, (2.81)
where (S4); is generator T, in representation of supercharge.

Using the equation (2.71) and [P*, T4] = 0 the super-Jacobian identity becomes
(Ta {Qui, @i} + {Quis (@ Tal} — (@ [T, Quil} = 0. (2.82)
As aresult, S4T = §4, and the super-Jacobian identity is written as
(T4, {Quai> Qb; }] + {Qai, [Qvs, Tal} = {Quj, [Ta; Quil} = 0, (2.83)
which provides the commutator between T4 and Z;;, denoted by
[Ta, Zij] = (Sa)i’ Zjr, — (Sa);" Zig. (2.84)

The equation (2.84) implies that Z;; is an invariant subalgebra. When using the

equation (2.72) and (2.76) in super-Jacobian identity

[Quis {Qujs Q1] + [Quj {QF, Quitl + Q% {Quir Q1Y) = 0, (2.85)
the result provides [@2, Z;j] = 0, and [Qux, Zi;] = 0. Additionally, combining super-
Jacobian identity with a generator (Q, @, Z) and [P*, Z;;] = 0 can provide the solution

as

(Zijs Zra) = € {Qui, Quj }» Zra) = 0. (2.86)

In other words, the above equation can be written as af;[Z;;, T4] = 0, which implies
that [Qux, Zi;] = 0 for a} # 0. As a consequence, the generator Z;; commutes with

all generators, which are called “central charges.”
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All supersymmetry algebra can be summarized as follows:

(PP, J"] = i(yP¥ — 3 PP1), PP, P} =0
[TV, JP7) = —i(JHEonPP — JVO JnP + JVPyhe — JHPpPe)

i . 1 .
[Pu7Qai] = [PM7QC'L] = 07 {Qaia Qi} = —§5§UuaaP“

bi

Qi i) = i(00)a"Quis (@™ Ju) = i(F)%Q
{Quai, Quj} = —éﬁabzm‘v Q5. Q) = —%Eabzij
[Qui Tal = (S4)7Quje [Q4,Tal = (53),Q5
Zij = afiTa, (T4, T5) = fas“Tc, (2.87)

and ZV = (Z;;)1, which commute with all generator.

R symmetry

R symmetries, which are arranged as an automorphism group of supersym-
metry, are symmetries that do not commute with supercharge Q.;. Let T4 represent

the generators of R symmetry, which corresponds to Lie algebra
(T4, Ts) = fap“To. (2.88)
The commutator between T4 and Q,; can be written as
T4, Qail = (Ua)i’Qa; and  [T4, Q4] = (Ua)'; Q1 (2.89)
where (U,)" ; is complex conjugate of (U )i
The super-Jacobian identity follows as
(T4, T8, Qas] + [T, Qai), Ta] + [[Qai, Ta], Ts] = 0, (2.90)
which provides the commutator

[Ua,Us) = — fas“Uc. (2.91)
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The previous equation implies that the matrix —(U,); is a representation of R sym-

metry. Using the super-Jacobian identity

(T4, Quil, @1} + {[T4, @), Qui} + [{Quir @1}, Ta] = 0, (2.92)

and [P*,T4] = 0, which provide

S PP+ (Ua) ) = 0 (2.93)
or
(UA) = ~(Ua)y = —(U))" (2.94)

As a result, the matrix (U4); is anti-hermitian, and the R symmetry of supersym-
metry that consists of 4N supercharge is the U(NN) group. As we will see in the
following section, R symmetries are crucial in gauged supergravity and supercon-

formal theory.

2.3 Supersymmetry representation

In the event that supersymmetry is a symmetry of spacetime, particles must
belong in the supersymmetry representation. Because of [P*, Q] = 0, Casimir’s
operator P? = P*P,, suggests that all particles in any supersymmetry representa-
tion have the same mass. However, in the case of [Q;,, J**] # 0, the operator W2
(W* is Pauli-Lubanski vector) is not a Casimir operator of supersymmetry, yielding

differing spin numbers for the particles.
Consider the anti-commutator
— 1.
{Qui Qj} = = 5670, " (2.95)
and find the trace of indices a and b that give

Tr(Q:Q" + Q' Qi) = 8 P° (2.96)
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for Tr(cy) = —2, and Tr(o;) = 0. If there are any physical states |¢)) in Hilbert space

where all states have a positive norm, then

@[ (QQ+QQ) |¥) = (¥|QQ"|¥) + (¥| QTQ |¢) > 0. (2.97)

Because of (1| QQ! [v) = [|QT¢|[2 > 0 and (¢ Q'Q|v) = [|Q¥|I> > 0, the equation
(2.96) provides (| PV |1)) > 0, which implies that the energy (P = F) in supersym-

metry theory is always positive.

Assuming that ¢ and v are the respective boson and fermion states, the

supersymmetry generator will take ¢)5 and ¢ into

Qai [¥B) ~ |Yr) and  Quilvr) ~ |¥B) . (2.98)

These states are classified by defining the fermion number operator, which has two

properties:

()T lwsy =ls) ()T |¥r) =~ lvr). (2.99)

The anti-commutator between (—)f and Q,; can be derived by following

{97, Quit ¥B) = (-)" Qui + Qui(—)") [¥5)
= ()" Qui [¥8) + Qui(—)" |¥'B)
= —[YF) + [¢F)
= ()" QuilvB) — (=) Qui lvn)
= (=) Qui = (=) Qui) [¥5)
{(—)F,Qui} =0. (2.100)

Multiply equation (2.95) with (—)¥, and find an expected value (in the meaning

of TrO = ¥, (n] O |n) for any operator O). The equation (2.95) becomes

5] T[T P = T ()F (Quis @ (2.101)

By using equation (2.100) and trace cyclic, so that

Tr|(—)F Qu@) + (—)F@‘ZQai] :Tr[—Qm(—)F@ﬂ +Tr[Qai(—)F@ﬂ =0 (2.102)
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equation (2.101) becomes
Tr(-)" =0
= (nl(=)"|n)

=3 wal (O ey + > (Wrl () [r)

Boson Fermion
= > Wslvs)— > (Yrlvr)
Boson Fermion
=np—np
ng =ng (2.103)

for P* # 0, which implies that any representation of supersymmetry have the same

number of bosonic states and fermionic states .

Massless representation

In this case, the momentum square P? = 0, which the standard momentum can

be chosen as traveling in z-direction denoted by k* = (E,0,0, F).

Replace the standard momentum %* in the algebra (2.95), so that

Nf '
[Quis Ql} = = 50H(~0,4E + 7% E)

oo
— 5\ , (2.104)
01

For the massless representation, the central charge vanishes in supersymmetry al-

gebra. The anti-commutators of supercharges are transformed into
{Quir Quj} = {Q0. @) =0, (2.105)
and equation (2.104) becomes

{Q2:,QL} = 1 E. (2.106)
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Equation (2.87) gives the commutator between J** and Q.;
- 1,

7. Quil = 554w (2.107)
where the generator J, and & can be fined by using the relation J; = eijxJ7% and
olod = ie; 0", respectively. The conjugation of commutator (2.107) is

o 1

[T, Q4) = —5@"’@2. (2.108)

In massless representation, the particle states are defined by the component of

spin in the direction of momentum, also known as helicity” (h = %). The states

are defined as |k, k), where the helicity & corresponds to eigenvalue of J;. From

equation (2.107) and (2.108), the commutators turn into
1 —i 1~
[J3, Qai] = _§Q2i and [J5,Q5] = §Q2, (2.109)

so that @; and @; increases and decreases the helicity by 1, respectively.

We can define a; = Q—\/% and aj. s %, resulting in anti-commutator

{&i,&; = Jij. (2.110)

The previous equation is in the form of a fermionic harmonic oscillator, and its
representation can be found by defining the Clifford vacuum, which is the state
that corresponds to the lowest possible helicity |k, i = ho) for the system. The

conditions necessary to define representation are
dl|k,h0> =0 and J3|]€, h0> = h0|k‘,h0> (2111)

for i = 1,...,N. All states within the representation can be found by applying a
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specific operator &ZT to a known state |k, hg), so that all states can be written as

|k7h0>

1
k, ho + 2;7;> =a |k, ho)

oo+ Dsiv-in) = ] -, b, o

N
k‘,h()"i‘2;il"'iN>:dil"'&ZN|k7h0>' (2.112)

The states &' --

A

-&Zn |k, ho) occupy ho + & helicity, and the number of all possible

states are written as

N N!
e 2.113
<n> n!(N —n)! ( )
Because {d},d}} = 0, the state d;fl ~-djn |k, ho) has anti-symmetric indices in

{i1---in}, and the states created from N + 1 operators @ are equal to zero. The
dimension or number of states in massless representation is equal to

N

DN =Y @) (141N =2V, 2.114)

n=0
Since the number of boson states and fermion states are equal, the number of bo-
son or fermion states is % = 2N=1 A set of multiple particles in supersymmetric
theories known as a supermultiplet serves as a visual representation of the super-

symmetry algebra.

Notice that all states resulting from equation (2.112) consist of helicity (hg, ho+

1.
27

-+ ho + &). To correspond to CTP symmetry, which shifts the helicity & to
the negative —h, the opposite states (—hg,—ho — 3,--,—ho — &) known as CPT
conjugation must be added. In the event that the maximum helicity is equals to
the opposite of minimum helicity, we can write the relation as ho + § = —hg or

N = —4hy = 4]ho|. According to quantum field theories that are invariant under
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Lorentz symmetry, helicity of particles in physics are —2 < h < 2. As a result, we
can impose the maximum number of N as
himaz — himin < 4
ho + g —ho <4
N <8. (2.115)

Theoretical physics in four-dimensional space-time has a maximum supersymmetry

at N = 8 or 32 supercharge.

Consider the most basic case where N = 1 supersymmetry.

1

e  Chiral multiplet or scalar multiplet: g = —3,

1
k7_2>) |k70>:dT

1
k:,—2> (2.116)

The previous state consisted of helicity (—1,0) with no CPT symmetry. When we
add CPT symmetry, chiral multiplets become

)

For its simplicity, momentum &* is disregarded. States |+1) are combined into one

Weyl fermion, and |0) provide two scalars.

e Vector (or gauge) multiplet: hg = —1,

{!—1>, —;>}@{‘;>,\1>}. (2.118)

This multiplet consists of one vector |+1) and one Weyl fermion |+1). Vector mul-

tiplet is the necessary representation to explain gauge fields in a supersymmetric
theory.
e Supergravity (or gravity) multiplet: hy = —2,

{!—2>, —2>}@{B>,\2>}. (2.119)

The degrees of freedom are given by a graviton |+2), and the gravitino |+3), which

is the graviton’s supersymmetric partner.

e gravitino multiplet: hg = —%,

[Drfelnf)) e



34

The degrees of freedom are those of a gravitino |+3) and one vector |+1).

All supermultiplets for 1 < N < 8 are shown in Table 2.1. It is noteworthy
that for N > 4, only supermultiplets with s > 2 exist. Furthermore, the supergravity

theory of N = 7 is physically equivalent to N = 8 due to identical field contents.

In the case of N = 2, supermultiplets constructed from (2.112) become

1 1 1 1 ..
i\ atat Ltk
] _2>7 ‘2;Z7]> - aiaj _> = fez]akaf

2
which consist of states with helicity (—3,0+0, 1) and have CPT symmetry automat-

_;> 2.121)

ically. To let the state with helicity » = 0 that provides two scalars correspond to the
2 representation of SU(2) (subgroup of R symmetry U(2) that consists of four real
components), the multiplets are combined with two sets of (2.121). Therefore, the
new multiplets have four scalars with two spinors and are named hypermultiplets.
In addition, notice that the last state in equation (2.121) transforms as a singlet under

SU(2), since ¢;; is invariant tensor and a}a™* = e"alal is a singlet of SU(2).

Supersymmetry plays an important role in constructing supergravity, which

we will discuss in the next chapter.

N = 1 supersymmetric field theory

In this section, we only discuss chiral multiplets in N = 1 supersymmetry to
demonstrate supersymmetry transformation and the action. The field content of the
chiral multiplet consists of two complex scalars and a Weyl or Majerana spinor field,

see in Table 2.1.

In the theory of quantum fields, vacuum |0) is mapped into particles via a field

operator ®(x). Particles with momentum p* and spin ; are created as

p,j) = ®(x)0) . (2.122)
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In the case of a vacuum that has supersymmetry, supercharges annihilate the vacuum

as
Qai|0) and Q@ [0). (2.123)

Take into consideration the scalar field operator Z(x), which produces zero spin

particles from vacuum |0, p), denoted as
p.0) = Z(2)|0). (2.124)

In addition, supercharge @, is used to annihilate states in the same way that Q,

annihilated the Clifford vacuum. We can write that

Qi lp,0) = Q4 Z(2) [0) = 0. (2.125)

From equation (2.123), we found that Z(x)Q, |[0) = 0, so that Z(z) commute with

Qu:
[Z(x), Q) = 0, (2.126)

and Z(z) uncommute with Q,, since super-Jacobian identity
{1Z(2),Qu], Qa} = {[Qa, Z(2)], Qa} + {Qa, Qu}, Z(2)] = 0, (2.127)

provide that
Qe Qa}. Z(@)] = —30t0,2(x) = 0. (2.128)

In the event that [Z(X),Q.] = [Z(z),Q,] = 0, Z(x) must be constant in space-time.

The action of @, on |p,0), in the case [Z(X), Q] # 0 provide that

Qa|p,0) = QaZ(2)[0) =

2 ;> ; (2.129)

which increase spin number  and momentum p# from vacuum. Similarly to the

1

scalar, the particle |p, ) can be obtained from the spinor field x(z), in the form

Ip, 3) = Xa(x) |0), so that

QaZ(2)0) = [Qa, Z(2)]|0) = Xa() [0) . (2.130)
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From previous equation, we can write the commutator between @, and y,(x) as
Xa(2) = [Qa, Z(z)]. (2.131)
Using the relation [Z(z),Q;] = 0 and super-Jacobian identity
{Qar Qu}, Z(2)] +{[Z(2), Qul, Qo } — {[@b, Z(2)], @} = 0, (2.132)

we can show that

(@ xsl0)} = — 5007 (), (2.133)

and consider an action of (), on state ] p. ) written in the term of field operator as

{Qa, xp(2)} = {Qu, [Qn, Z(2)]}- (2.134)

When using super-Jacobian identity

{Qa, [@Qp, Z(2)]} ={Qu, [Z(2), Qul} + [2(2),{Qa, Qp}] = 0 (2.135)

and the relation {Q,, @} = 0 together with (2.131), we can show that

{Qas xo(2)} = {Q, [2(2), Qul} = —{Qb, xa(@)}- (2.136)

This finding implies that {Q,, x5(x)} is anti-symmetric in « and b, so that the result
of {Qa, x»(z)} must be scalar F(z), Lorentz tensor that has anti-symmetric spinor

indices

{Qa: xo(2)} = € F(). (2.137)

Similarly, we can find a commutator between @, and F(z) by following:

€ab|Qc, F(2)] = [Qe, {Qa, Xa(T)}]
= —[Qa, {x6(), Qc}] — [Xa(2){Qc; Qa}]
 —en[Qu F @), (2.138)

Contracting previous equation with €?*, we obtain

[Qc, F(z)] = 0. (2.139)
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Finally, we consider the commutator [Q,, F(z)], which can be shown as

€ab[Qa> F'(7)] = Q4 {Qa xo}]
= —[Qa, {xp(2), Qa}] — [xe(x), {Qs> Qa}]

1 1
= §Uga[Qa>8uZ(x)] + ioga[Xb, P,
1 1
= 50%8#)(@@) - 505(.15)#)(1)(9:). (2.140)

Contracting previous equation with ¢??, we obtain

1

[Qa F(@)] = ~59uX" ()05, (2.141)

According to Noether’s theorem, a continuous symmetry results in a corre-
sponding conserved current. In the case of supersymmetry, it possesses a super-
current J with both vector and spinor indices. The supercharge @, is then defined

as

= / d*zJY. (2.142)

The action of the supercharge transforms the field operator under supersym-

metry, resulting in the form
69 (z) = [eaQ" + €*Qu, B(2)), (2.143)

where ®(z) represents any field and ¢, is a constant spinor (global symmetry) that

serves as the transformation parameter. Additionally, ¢, possesses the property

{€a, Qo} = {ea, Vo } =0, (2.144)

for any spinor fields ¥,(z). These relations express that

[EaQay \I/b(x)] = 6CLQa\I/b(«T) - \Ilb(x)faQa
= e"(Qa¥s(z) + ¥p(2)Qua)

= {Qu, Uy ()} (2.145)
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Therefore, the transformation rule of the field can be expressed as a commutator in

the form (2.143) for both fermions and bosons.

Based on the results derived previously, the transformation of the field content

in a chiral multiplet (Z, x,,, F)) under supersymmetry can be written as

57 = [€Qu + €1, 7] = €(@ar 7) = "x (2.146)
0Xa = ec{ch Xa} - Ed{@{m Xa} = Fe, + %Ugdgaauz (2147)
5F = (@, F] = 500l (2.148)

The invariant action for a chiral multiplet can be expressed as:

S:/d4x

— 0,20"Z — X", Px + FF

1
+FW'(Z) — §W”(Z)YPLX

YEW(2) - %W”(Z)yPRX (2.149)

where Z, x, Z, I, F represent the scalar field, the fermionic field, the com-
plex conjugate of the scalar field, the auxiliary field, and the complex conjugate
of the auxiliary field, respectively. P, and Py are the chirality projection operators,
W (Z) is a holomorphic superpotential, and W’(Z) and W”(Z) are its first and second

derivatives, respectively.

It should be noted that the kinetic term for the auxiliary field F' in the ac-
tion (2.149) does not have its own dynamics, making it an auxiliary field rather
than a physical propagating field. Adding the kinetic term 9,Fo*F to the action
will give this term six dimensions, meaning that it can not renormalization (non-

renormalization term is the term that have dimension more than 4).
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N Stmaz §=2 SZ% s=1 s:% s=0
1 2 1 1
3 1 1
1 1 1
3 1 1+1
2 2 1 2 1
3 1 2 1
1 1 2 141
3 2 242
3 2 1 3 3 1
2 1 3 3 1+1
1 1 3+1 3+3
4 2 1 4 6 4 1+1
3 1 4 6+ 1 444
1 1 4 6
5 2 1 5 10 10 4 1 545
3 1 5+1 10+5 10 +10
6 2 1 6 1541 20 4 6 15+ 15
2 1 6 15 20
7 2 1 T+1 21 47 35+ 21 35+ 35
8 2 1 8 28 56 70

Table 2.1: Supermultiplets for 1 < N < 8 in 4-dimenional space-time



Chapter 111

SUPERGRAVITY

Supergravity is a theoretical framework that combines supersymmetry and
general relativity principles. It is a kind of quantum field theory that describes the
interactions between gravity and matter fields by using both quantum mechanics
and general relativity principles. Supergravity is crucial in attempts to combine
all of nature’s fundamental forces, including the strong, weak, and electromagnetic

forces, into a single theory known as a theory of everything.

3.1 Gravitino

In the previous section, the supersymmetry transformation parameter was a
constant spinor, e. However, in supergravity, it becomes a spacetime-dependent

function, ¢(x). The corresponding gauged field in this case is the gravitino ¥ ,(x).

In this section, the gravitino field, also known as the Rarita-Schwinger field,
will be introduced in a flat spacetime context. The gravitino is a vector-spinor field

that has both vector and spinor indices and belongs to the representation
11 1 1 1 1 1 1

By utilizing the gamma-traceless condition in the form of v#¥,,, the spinor repre-
sentation (3,0) & (0, 1) is truncated, yielding the representation (3,1) & (1,1). This

represents a spin 3/2 field.

The gauge transformation of ¥, can be written as

U (x) — W), = U, (x) + Iyue(x). (3.2)
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Its gauge-invariant action can be represented as
S—— / 42T AP0, . (3.3)

It is important to note that although the action is gauge invariant, the Lagrangian
density is not. The variation of the Lagrangian density results in a total derivative
6L = —09,(ey"Pd,¥,). This is because the fermionic gauge symmetry is a remnant

of supersymmetry.

The variation of the previous action with ¥, results in the field equation writ-

ten as
VP, ¥, = 0. (3.4)

The off-shell degree of freedom of gravitino can be counted by considering the
components of the vector-spinor field and subtracting the number of gauge trans-
formations (4 x 22 — 22 = 12). The on-shell degree of freedom of the gravitino can
be counted as (4 x 2 —4). The (4 x 2 — 4) comes from the number of degrees of
freedom of the vector and spinor components subtracted by the condition v*¥; = 0,
and the value of J comes from the field equation of ¥, that is first order and has a

projection like that of a spinor field.

3.2 N =1 pure supergravity in four dimenions

The core concept of supergravity is to promote supersymmetry from being
global to local. The action is invariant under supersymmetry transformations with
the spinor parameter ¢(x) being a function of spacetime. As a result, the supersym-
metry algebra will include the local translation parameter & ~*¢;, which must be

considered as a diffeomorphism
ot — 2+ %Eg(x)v“q(m), (3.5)

which graviton is gauge field. In other words, local supersymmetry necessitates the

presence of gravity.
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A supergravity theory is a field theory that contains the gravity multiplet as
well as, potentially, other matter multiplets of the global supersymmetry algebra. It
is nonlinear and involves interactions between its various components. The grav-
ity multiplet in a supergravity theory contains the frame field e, that describes the
graviton, and also a certain number N of gravitino filed ¢/, where i = 1,..., N. In
this case, the number of gravitinos is N = 1, and the theory is referred to as N =1
supergravity in D = 4 dimensions. The gravity multiplet includes only the graviton

e, and a single Majorana spinor gravitino ¢,,. The action can be written as

S = SZ 9 53/2
1
Sy = 5.2 d4xee““eb”RWab(w)
1 N
S/ = 753 / d*zed, 4P Dby, (3.6)

The action S, describes the dynamics of gravitons in second order formalism, where
e represents the determinant of e, and S5/, describes the dynamics of the gravitino.

The gravitino covariant derivative is defined as:

1
Dz/‘l’p — &/wp == Zwuab')/abwp- (37)

The supersymmetry transformation corresponding to a graviton and gravitino

fields can be written as

1
ey = 5%7“@0“ (3.8)
1
othy = Dye = Oye + Zwuabvabe. (3.9)

The transformation of e results in the transformation of its inverse and determinant,

which can be written as

1 1
delt = —§E'y“¢a and de = 56(?7”1/),0). (3.10)
Noted that the action (3.6) is not invariant under supersymmetry transformation.
This is because the variation of S5/, with respect to e results in e}*, which cannot

make the variation of the action equal to zero. However, the action (3.6) remains
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invariant at the first order of v, which can be verified from the following variation

08 d*ze [(266““61"’ + e_léeea“eb”)RWab + ea”eb”(SRwab

T 22

- 6E;L7NVPDV1/}p - EMVMVPDV(Swp

d*ze [(RW - 1gWR)(—E’y”i/)") - 2E%M7“”prwp : 3.11)

ok 2

The second term in the variation of the action (3.11) can be simplified by using

integration by parts and the Ricci identity [D,,, D,]¥ = 1R, 7,7, resulting in
/d%cee%uDywp = /d4xee*y“””D#Dy

< / d26er" AP R . (3.12)

Using the relation of gamma matrix

Vg = A+ 6780+ 67687, (3.13)
so that
,yuup,yab Ryyab = fyuupab Ronet 76 RW[Pb,YW] »+ 67[“ RWpu]
= YHPOR ab + 2RP M 4+ AR AP
+ 49 R, + 29P R, (3.14)

In four-dimensional spacetime, the first term vanishes due to the property v#*7% = 0.
The second term also vanishes because of symmetry of Riemann tensor (R, =
0), while the third term is equal to zero as R,,*, = R,; is symmetric in v and b, but
yveb is antisymmetric. The final second term gives rise to the Ricci tensor R,” and
the Ricci scalar R,,"* = —R, respectively. Equation (2.160) becomes
1 4 1 T T

65 = 5 [ d'e [(RW - 2g,WR> (—ey"y” +ey'y”)| =0, (3.15)

which implies that the action (3.11) is invariant under supersymmetry transforma-

tions to first order in v,,.

The construction of an action that is invariant under supersymmetry at all order

can be achieved by adding ¢* to the action. The simplest method for adding +* is
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to use a first-order formalism, in which the gravitino field and the spin connection

are varied separately. This action can be rewritten as
S = 1 d4 R " 222)) 1 — v TH_p
= 27%2 xe - d};ﬂ’ V@Z)p + Z(¢p7 wv)(d} Y Tzz)p)
1 — — _
—16 @) @ty + 20,000 |- (3.16)

The action (3.16) is invariant under supersymmetry transformation (3.8) and (3.9).

3.3 N =2 pure supergravity in four dimenions

Extended supergravity refers to supergravity with N > 1 supersymmetry. The
first extended supergravity is N = 2 supergravity, which field contents shown in
Table 2.1. This section focuses on presenting N = 2 supergravity without matter
multiplets, i.e., fields beyond the supergravity multiplet. The discussion of N > 2

supergravity will be addressed in the next chapter.

The N = 2 supergravity multiplet consists of a graviton field ef,, two gravitinos

!,i=1,2, and a vector field A*. The action for this multiplet can be written as

— v i 1 v 1 —1 v oo
S = /d4xe [R — 1, "Dy, — ZFWFu + geij@buv[“vpgy }Fpan , (3.17)
where k% = % and field strength tensor F,, is defined as
F., =0,A, — 0,A,. (3.18)

For tensor F, it can be written as

FMV = ij - fij%w£7 (319)
which is called supercovariant form of F),,. This supercovariant form means that
the transformation of 7, does not contain any derivatives of the supersymmetry

parameter €', i.€., ,¢€'.
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The action (3.17) invariant under supersymmetry transformation

1.
dey, = 56’ “, (3.20)
(5./4” = Eijgiwi (3.21)
(WJL = D,€" — éeij’ym’mejﬁpg (3.22)

It should be noted that if we set ¢, = A, = ¢ = 0, the action (3.17) and its transfor-
mation rules reduce to N = 1 supergravity, which consists of ¢, = ¢, and € = ¢'.
This observation implies that any N supergravity theory can be constructed by trun-
cating some fields from a higher-supersymmetric N’ > N supergravity theory. This
method is called truncation. The truncation must satisfy the field equations, mean-
ing that if the truncated fields are set to zero, their field equations provide solutions

that are consistent with zero fields.
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GAUGED SUPERGRAVITY

Gauged supergravity is a type of field theory that combines the features of
gauge symmetry, gravity, and supersymmetry, and has been the subject of much

study in the field of theoretical physics.

In this section, we discuss N supergravity coupled to matter multiplets by
dividing the Lagrangian density into two parts, one for bosonic fields and one for
fermionic fields. Furthermore, we upgrade the ungauged theory to a gauge theory

by using the embedding tensor formalism.

4.1 The action for gauge field and scalar

In gauged supergravity, the vector (gauge) and scalar fields are coupled in
a complex form. To understand this coupling, we start by considering the action
between the gauge field A#(x) and complex scalar Z(x), which can be written as:

1 1
S Gt / d*z [Im ZEuwF" + SR 2 FyuFpg | - 4.1)

When Z(z) is constant, the second term in the action is a total derivative,
MPOF,, Foy = 2e"P?70, (AL F,y), due to OuFpe) = 0. As a result, this term does not

affect the field equation of the free vector field.

The field equation of A, can be found by taking the variation of the action

with respect to A,,, which is given as
O,Im ZF™ +iRe ZF"] =0, 4.2)

where F* is dual tensor of F**, see Appendix A.1. If we define tensor

G — eﬂ”f"’% — —ilm ZF" 4+ Re ZF", (4.3)
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then
Gt — 7t and G — ZF M 4.4)

The notation ”+” and ” — " denote the self-dual and anti-self-dual parts of the tensor

G, respectively. Bianchi identity and field equation can be reexpressed as
O ImF™" = and 0,ImG™* =0. 4.5)

The Bianchi identity and field equation are invariant under transformation in the

(6) =s(6): (4.6)

where S is a matrix with determinant equal to 1 (element of SL(2,R) group), which

d c
S( ). 4.7)
b a

The Bianchi identity and field equation are invariant under this transformation,

form

can be written as

which ensures that the theory remains self-consistent under duality rotations.

Let the relationship (4.4) invariant under the transformation (4.6), this will

result in
G/MV 1) Z/ FIMV

bE™H 4 aG™H = Z'(¢cG™M + dF~H). (4.8)

The transformation of the scalar Z under the matrix S can be expressed as

,aZ+b
Z = J+d 4.9)

using the relationship between F~#” and G~*" in equation (4.4).

The action of the scalar, which is invariant under the previous equation, can

be expressed as:

[ L ADZOT [, 0,20VZ
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The momentum-energy tensor of vector field defined from action (4.1) can be writ-

ten as
1
O = ImZ | FIOFY ) — ™y F| | 4.11)
which constraint that Im Z > 0 for positive ©%.

The extension of the theory into various vector and scalar fields can be per-
formed in a manner similar to previous processes. Let us consider m vector fields
Af, where a ranges from 1 to m, and n scalar fields ¢, where i ranges from 1 to n.

The dynamics can be described by the action
§=-3 / d'x [Re fup 7, F — iTm f 5, E) (4.12)
where f.,(¢) = fra(¢) is symmetric tensor and Re f,;, > 0.

When expressed in the form of the dual tensor F, the action takes the form

1 —a = 4 * a 14
s=-1 [ daltabuertr + pyE5E], (4.13)
and field equations become
O ImF™ ™ =0 and 0,ImG" =0, (4.14)

where G** and GE* are defined as

58
s Fapo

G =ifaF ™", G = —ify FTH. (4.16)

GH = o =—Im fabe“V —iRe fabﬁ’b'w (4.15)

A duality transformation, which is a symmetry of the field equations, arises from a

2m x 2m matrix and transforms as

D)) e

where A, B, C, and D are m x m real matrix.
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In a manner similar to the case of a single vector field, we can impose a trans-
formation on the functions f,;(¢) in order to make the relation between F' and G

invariant under the duality transformation. This transformation can be written as
if =(C+iDf)(A+iBf)L. (4.18)
To impose that this transformation provide f T f', the condition is written as
ATo =" A, BTD = DTB, ATD - "B =1 (4.19)
This result indicate that S is element of Sp(2m,R), which satisfy the poperty

STQS =Q, (4.20)

k)
0= . 4.21)
10

4.2 The action for bosonic field

for 2m x 2m symplectic form

In extended supergravity with matter multiplets, the bosonic part of the action
consists of the graviton g,,, n, scalar fields ¢*, s = 1,...,n,, and n, vector fields
AN, A =1,...,n,. The interaction between the scalar fields and vectors is expressed
through the action (4.12), while the kinetic term for the graviton is given by the
Ricci scalar R(g,,). Taking into account all possible configurations, the Lagrangian

density that describes the dynamics of the bosonic sector can be written as:

1 1 1 1

-1 S A Xuv -1 wwpo A X

e 1 g = i iastam ot + ZIAg(gb)FWF s 3¢ Ras(¢)e"" P F Fov.
(4.22)

The matrix Iy, represents the imaginary part of the complex matrix /4y, while the
matrix R,y represents its real part. The matrix ./ is related to the matrix f,, in

equation (4.12) through the equation f = i.#", which provide Re f = —Im .4 and
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Im f = Re.#". The indices a, b, ... for f,, are used to represent only the vector fields
in the gauged multiplet, while the indices A, 3, ... are used to specify all of the vector

fields in the theory.

Given the complex and various field content of supergravity theory, a deep
understanding of group theory is necessary to fully comprehend its properties and
behaviors. The set of scalar fields in supergravity theory is described as a homoge-
neous symmetric space, known as the target manifold or scalar manifold, which is

often denoted, in the context of group theory, as
M =G/H, (4.23)

where H is subgroup of G that is the isometry group of scalar manifold, and scalar
¢* is coordinate with n, dimension, see Appendix. Mathematically, the group G/H

is defined as the set of left cosets of H in G:
g =gh~y, (4.24)

where g € Gand h € H.

The isometry of the scalar manifold .# is given by the elements of the group
G, which is generally a non-compact group. Under the transformation, scalar field
¢° transform as ¢° — ¢*'(¢) = g o $°, which the metric G; remains invariant under

the isometry, and is written as

S t
_ gj;s/ %Gst(@. (4.25)

Gov(¢)
The homogeneous property of the scalar manifold means that all points on .# are
connected by an isometry, that is, a transformation that preserves the metric of the

scalar manifold.

Group H, which is a subset of G, is called holonomy and it imposes the con-
nection of parallel transport. For example, the coset SO(3)/SO(2) = S?, where
H = SO(2), expresses the angle between the original vector and the final vector af-

ter parallel transport in a closed loop on S2. In supergravity, the compact group H
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is expressed in the form
H = Hp x Hp, (4.26)

where Hp, is the automorphism group of supersymmetry (R symmetry). For N < 8,
the R-symmetry group Hp is a unitary group U(N), and for N = 8, it is the group
SU(8). For N > 4, the compact group H,, that acts on the matter fields is absent.

In cases that the isometry of the scalar manifold does not change the point
in the manifold, the action forms a subgroup H’, called the isotropy group, which
satisfies h/(¢) o ¢° = ¢°. When .# is a symmetric space, the groups H and H’ are
the same locally. It is important to note that G is the global symmetry while H is

the gauge symmetry.

The scalar manifold .# can be represented by the elements of group G in the
form of L(z), where the transformation of L(x) under group G construct by multi-
plying g on the left-hand side. Additionally, in supergravity, the symmetry of group
H imposes the transformation of L(z) by multiplication on the right-hand side. The

transformation of L(z) under the coset .# = G/H is expressed as
L(z) — L'(x) = gL(x)h(x), (4.27)

where ¢ € G, and h(x) € H. We can express the dependence of L(x) on scalar
fields in the form L(¢(x)) by using gauge fixing, and this is referred to as the coset
representative. L(¢) depends on n, = dimG — dimH, which denote the number of

scalar fields. In general, ¢* is called the parameter of L(¢).

Scalars ¢° transform under G in the form of

9L(¢) = L(g © ¢)h(#,9), (4.28)

where g o ¢* mean that the scalar field obtain from transformation, and is nonlinear
in ¢*. The transformation i (¢, g) is referred to as the compensator because the trans-
formation of g takes L(¢) out of the original coset representative. The compensator

h(¢, g) process returns L(go¢) to the original coset representative. It should be noted
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that the definition of the coset manifold makes it clear that L(go¢) and L(go¢)h(¢, g)

are equivalent.

The Lie algebra of group G and H is represented by g and b, respectively. g

can be written in terms of its complement t as
g=bdt (4.29)

where t is a vector space that is the complements of h in g. Lie algebra for homoge-

neous space can be written as

h,plCh, [hgycCt [LChat (4.30)

The coset representative can be parameterized by using the unitary
parametrization, which is a popular method for finding solutions in supergravity.

In this parametrization, the coset representative is expressed as
L=efYe, 4.31)

where Y is basis vector of t that also known as coset generator.

The structure of the scalar manifold, .#, can be described by the left-invariant

1-form, €, defined as
Q=L"1dL (4.32)
which satisfies the Maurer-Cartan equation,
dQ+QAQ=0. (4.33)

Since 2 is in the Lie algebra of the isometry group G of the scalar manifold G/H,

Qe g=hat,itcan be expressed in terms of the vielbein P and connection @ as
Q=P+Q. (4.34)
Additionally, it can be expressed in a coordinate basis as

Q,d¢" = P.dé" + Qrdo". (4.35)
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Consider the transformation of the coset representative under the symmetry

of the scalar manifold, equation (4.28):
Q(go ) =h'L71g7 d(gL(¢)h) = h 1LY (¢)h + h ™ dh. (4.36)

Note that under a global symmetry transformation of G, dg = 0. Furthermore, 2 can

be projected onto the subspace of h and t, giving

P(go¢) =h~'Ph, (4.37)
Q(go ¢) = htdh + h~1Qh. (4.38)

It can be seen that the transformation of P is linear, while ) transforms as a non-
Abelian gauge field. As a result, @ acts as a connection in the same context as
a gauge field. This connection @ is known as a composite connection due to its

composition in terms of scalars.

If we impose that 3, 7, ... represent the tangent space index of .#, we can express

P in terms of the basis {Y;} of t as
P = P, (4.39)
Furthermore, we can write P° in terms of the coordinate basis as
P% = P3dg¢?. (4.40)
From equation (4.37), vielbein 1-form P* transform under group G in the form of
PS(go¢) = h;*P'. (4.41)

If we combine the covariant derivative of L with the connection @, the result can be

expressed as
DL =dL—LQ =LP, orequivalently L 'DL=L"'dL—-Q=P. (4.42)
The vielbein P satisfies the condition

DP=dP+QANP+PAQ=0, (4.43)
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and we can also define the curvature 2-form of the scalar manifold .# in the form
R(Q)=dQ+QNQ=—-PAP, (4.44)
where its components are given by
R(Q) = 5 Resdd” A d6? (4.45)
with R, = [P, P5] € b.

For any field ®(x) on the scalar manifold .# that transforms under group H,

its covariant derivative can be expressed as
D,® =09+ Qo P, (4.46)

where @Q o ® represents the action of @ on the representation of ®. The derivative

D, satisfies the Ricci identity, which is given by
[D,, D,]® = R, 0 ®. (4.47)
The basis vector Y; can be used to define an invariant metric under H trans-
formations in the form
g = kTr(Ys, Yp), (4.48)

where k is a positive constant that depends on the representation of Y;. Conse-

quently, the metric on the scalar manifold .# can be expressed as
ds? = Gudp®det = PSPln;de*de! = k Tr(PP). (4.49)
From equation (4.37), the metric is invariant
ds*(g o ¢) = ds*(9). (4.50)
Furthermore, the Lagraingian density can be reexpressed as

Frctor = 560’ 06! = Lk Tr{P,P"}. 451)
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where P, = P,0,¢° that is invariant under G obviously.

The generators of the group G form a Lie algebra with structure constants f,;°,
[tasto] = fapte- (4.52)
Under a transformation of G of the form
g=1I+¢€%,, (4.53)
the scalar field transforms as
0¥ = ¢° + kS, (4.54)
where k¢ is the killing vector of the symmetry of G.
The transformation under the compensator i~ € H can be expressed as
h=T+ "W, 7, (4.55)

where J; is the generator of group H. As a result, the transformation of L(¢) be-

comes
(L+ €0)L(¢) = L(¢p + €“ka) (L + *W,%). (4.56)

By expanding L(¢ + €*k,) to the first order of ¢* and multiplying the left-hand side
by L~1(¢), we obtain

L7 L(p) = €kSLTIOL 4 W, T, (4.57)

Using the definition of © in (4.32), and the relation (4.34), the previous equation

becomes
L7'aL = k3 P{Ys + (k5Q% + W) Ja, (4.58)
where

Qs = Qia- (4.59)
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The equation (4.58) can be used to construct killing vector in terms of coset repre-

sentative and generator of G by projecting L~1¢,L onto subspace t.

The generator J; can be separated into Jz,a = 1,...,dim(Hg) and Jz,a =
1,...,dim(H,,), which correspond to the groups Hy and H,,, respectively, forming

the direct product (4.26). The equation (4.58) is rewritten as
L Y%, L = kiPSY, + P2 Tz + P Ja, (4.60)
where
PE=EQ +W,* and P =EkQY+ W, (4.61)

Generally, the momentum map £24 = (22, 29) is used to express the killing vector

as a derivative of 224, Specifically, we can write
R DL, (4.62)

where R%, = (R%,, R%,) represents the curvature 2-form on the basis of .J;, given by

R(Q) = % @ Jado® A de'. (4.63)

In order to extend the isometry of the scalar manifold to cover the on-shell
symmetry of the action, it is necessary to find a correspondence between isometries
of the scalar manifold and electric-magnetic duality transformations of the vector

fields.

Given an electric field strength tensor F, on a spacetime manifold, we can

define its magnetic dual tensor

0¥
GA;,LV = _E'uypa'aTa{\p = RAEFE - IAZ*FEV (464)
via the Hodge star operator, such that
A 1 Apo
*F, = —e€upe F 77, (4.65)

Ty
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where ¢, is the Levi-Civita symbol. The Bianchi identity, which expresses the
conservation of electric and magnetic fluxes, can then be written in terms of F and

@G, shown as
VH(xGaw) =0 and  VA(xF)) = 0. (4.66)

We can write the previous equation in differential form as dG, = 0 and dF* = 0,

respectively.

To write «F* in the form of F* and G*, we can use equation (4.64), and obtain
A = IAE(RZFFF — Gy), (4.67)
wherer 7% is inverse of Ixs.

For G, taking duality of equation (4.64) and using the previous equation, so

that
+Gp = (RI"'R+DasF” — (RT 1) G (4.68)

Combine FA and G, together, we can write the 2n, vector as

A
gM — (F ) (4.69)
Ga,

where the index M = (,, ). Field equation and Bianchi identity can be written as
dg™ = o, (4.70)
and equation (4.67) together with (4.68) becomes
*¢ = —CM(¢)9. 4.71)

The matrix C represents symplectic form expressed as

0 I,
CMN — ( ) 0“), 4.72)
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where L, is n, x n, identity matrix. The matrix M is symmetrical matrix that is

constructed from scalar fields in the form

_ r
— ((RI IR+ Iax —(RIY)s ) | 473
—(I_IR)AE IAF

In addition, the matrix M also satisfy symlectic property expressed as

MCM = C. (4.74)

Similary, we can derive field equation of scalar ¢* and Einstein equation from
the action (4.1) in the form of duality transformation, which can be written as
1
D ¢* = S G, MG (4.75)

1
Ry = GrsOud' 0,6 + 591, MY,. (4.76)

4.3 Global symmetry

In the context of supergravity, the isometry group G that is a symmetry of the
scalar field can be extended to become a symmetry of the field equation, known
as an on-shell symmetry. This extension is achieved by connecting the nonlinear
transformations of the scalar field with the duality transformations of ¥ = (F*,G,.
In other words, any transformation that occurs from an element g of G acting on
the scalar field, ¢ — g o ¢ will have a corresponding 2n, x 2n, matrix, R,[g], that

transforms as
gM = R,[gM 9V, 4.77)
where R, is element of ¢ € G in vector and Hodge duality representation. The

symplectic representation of group G is defined by this matrix.

The explicit from of R, [g]" is

A A
RojgM , = (A[g] < Blg] E>. 478)
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As FA and »F* are dependent and related through duality transformations, the trans-
formation matrix R,[g] that provides symmetry of the field equation must satisfy two

properties:

1. The matrix R,[g| is symplectic matrix

R,[g]"CR,[g] = C (4.79)

2. The matrix R,[g] provide transformatin of M in the form

M(g o ¢) = (Rulg) ™) M(¢)Rolg] . (4.80)

To ensure invariance of the equation (4.71) under this extended symmetry, the matrix

Ny = Rax + ilpx must transform under R,[g] as

_ Clgl + Dlgl-¥ ()
Alg] + Blg]-/ (¢)

N (g6 o) 4.81)

Additionally, a dual representation of R,, denoted as R,- = (R;!)7, satisfy equation:
(Ry)T = —CR,[g]C  or Ry [glu™ = CrpRylg" ,CNO. (4.82)

In supergravity, since supersymmetry connects the vector field and scalar field and
imposes transformations on these fields, the conditions of matrix symplecticity
(4.79)and the transformation property (4.80) must hold for all extended supergravi-

ties.

In supergravity, the actions are constrained within a certian symplectic frame,
which includes different actions and their corresponding symmetries. The symplec-
tic frame is determined by the basis of the matrix M, which imposes the embedding
of G into Sp(2n,,R). Any matrices M in different symplectic frames are connected

by a matrix E that belongs to the group Sp(2n,,R) and has the form
M’ = EMET. (4.83)
The matrix E that maps one symplectic frame to another belongs to the coset

E € GL(ny,R)\ Sp(2ny,R)/ R, [G], (4.84)
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where GL(n,,R) is the group of invertible n, x n, matrices and R,-[G] is the element
of G in the R,- representation. This coset means that two matrices E are equivalent
if they differ by multiplying an element of GL(n,,R) on the left and an element of
R,-[G] on the right.

In general, duality symmetry is not a symmetry of the action but rather a sym-
metry of the field equations and Bianchi identities, on-shell symmetry. In the case

of B[g] # 0, the transformation (4.77) becomes

’

FN = Alg]* o F* + Blg)"*Gs, (4.85)

indicating that the Bianchi identity for F' is not satisfied unless dGy, = 0. Therefore,
the symmetry of the action (the off-shell symmetry) must come from the subgroup
G. C G of R,[g] where B[g]** = 0. G, is referred to as the electric subgroup of the
global symmetry group G, as the vector fields that appear in the action are known
as electric vector fields, while the fields obtained from duality transformations are

known as magnetic vector fields.

In the previous discussion, it was established that the matrix transformation
R,[g] for g in the electric subgroup G, of the global symmetry group G, must be

written in the general form:

A 0
Ru[g]" y = (A[g] - 2) : (4.86)
Clglas  (AlgI™HT,

where D = (A=1)T due to the symplectic condition. The transformation involving
Clg]as is known as the Peccei-Quinn symmetry, which transforms the scalar field
called the axion. In this thesis, we only consider the transformations for which

Clg]ax = 0.

For a scalar manifold described by a symmetric space G/H, we can represent
it by a set of elements L(¢) € G in the R, representation. This set generates the
elements of Sp(2n,,R) in the same representation as R, [L(¢)] € Sp(2n,, R). We can

also use R, to map the maximal compact subgroup H of G to U(n,) C Sp(2n,,R),
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but R,[H] is not necessarily unitary. To connect R,[h] with an orthogonal matrix,
we can use SV € Sp(2n,, R)/U(n,) to perform a similarity transformation of the

form R,[H] = S~'R,S. The orthogonal condition for R,[h] can be expressed as

for h € H, and RR, is reducible representation.

Define coset representative in R, as
Mg =R LM SV 5, (4.88)

the transformation of L(¢) in (4.28) becomes

Ry[g]L(¢) = L(g 0 ¢)Ry[h] (4.89)
for g € G and h € H. The indices M, N, ... = 1, ..., 2n,, of L transform under G while
the indices M, N, ... =1, ..., 2n,, transform under H.

In the form of I, the matrix M can be written as
Muyn = CMPEPZiRZCRN. (490)

By using the symplectic condition of R,[¢] and orthogonal of R,[h], we can write

the transformation of M as

M(g o ¢) = (Rulg]™")"M(¢)Rulg] ", (4.91)

which imply that M is invariant under H, and also write the Lagrangian density of

scalar field in the form of M as

Lycalar = éek Tr[(M™'9,M)(M™'6"M)]. (4.92)

From all result, we can write the transformation of bosonic field under G as
8¢° = Ak} (4.93)
M = A%kSOM = A%(Ryu[ta]M + MR, [ta]") (4.94)

SN = —A(ta) NG (4.95)
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N M =GJH ne =dim(G/H) | n, R,

s SU(3)§Z§(’Z)) <U(0) Gr 3n+3 | (3+m)+(3+n)
4 || e X somxsom bn + 2 n+6 (2,6 +n)

5 S 10 10 20

6 S 30 16 32,

8 ] 70 28 56

Table 4.1: The scalar manifold, n, scalar, n, vector, and R, representation of
supergravity N > 2. The number of n in supergravity N = 3,4 represent the
number of vector multiplets, and subscription ¢ refer to conjugate spinor

In supergravity, the structure of scalar manifold and vector that have been
previously discussed applies to cases with N > 2, expressed in the table 4.1. Specif-
ically, in N > 2 supergravity, the noncompact group Er(7) represents the group E7,
where the compact subgroup is SU(8). The number 7 indicates the difference be-
tween the number of noncompact generators and compact generators. Additionally,
the group SO*(12) represents the special noncompact form of SO(12), where the

compact subgroup is U(6) ~ SU(6) x U(1).

4.4 Fermionic sectors

In the context of N > 2 supergravity, it is observed that the spinor field is
restricted to only supergravity and vector multiplets. The fermion fields, on the
other hand, do not transform under the group G, but rather under the holonomy
group H, where the symmetry of H is imposed by the direct product Hr x H,,.
The fermion fields are dependent on the number of supersymmetries, which are

expressed in the Table 4.2.

The indices A,B = 1,...,N correspond to the representation of the group
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N || Supergravity multiplet vector multiplet
3 Yua, XABC A i, AABCi

4 Yua, XABC A i

Z VYuas XABC, X -

6 YA, XABC, XA -

8 Yua;s XABC —

Table 4.2: fermion fields in supergravity N > 2

Hr = UN) for 3 < N < 6, and Hp = SU(8) for N = 8. On the other hand,
i,j = 1,..,n denote the group H,, = SU(n) for N = 3 and H,, = SO(n) for
N = 4. The spinor without indices represents the singlet, whereas the field with
anti-symmetry in index ABC = [ABC] belongs to the tensor representation of Hp.

Fermion fields (v,,4, xaBc, Aai) have positive chirality:

Ys¥pua = YuA,  YEXABC = XABC, V5MAi = i, (4.96)

whereas the field (7}, x*7¢, A{!) belong to the conjugate representation of Hp, and

have negative chirality:

s =i, ysx B =—xABY At = A (4.97)

From the Table 2.3, supergravity N = 3,5,6 consist of special spinor field
MBci = Mieac, X, X, respectively. These spinor have negative chirality:
YA = =N, X=X wxt =—x (4.98)
In addition, we can write all spinors, except Aapc: = \ieasc, X, X, in the form
Ar = (xaBc, Aai), YA = Ar, (4.99)

where the index I = (ABC, Ai).

Bosonic fields transform under group G but are invariant under group H,

whereas fermionic fields transform under group H and are invariant under group
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G. The coupling between fermionic and bosonic fields must use a quantity that has
a transformation under both G and H. This quantity is the coset representative L,
which implies that the scalar field is the connection of interaction between fermions
and bosons. Note that the transformations under group G and H have the same form
as GCT and LLT, respectively. In other words, bosonic fields (tensors) transform

under GCT while fermionic fields (spinors) transform under LLT.

The Lagrangian density that is invariant under group H must be in the form of
a covariant derivative with connection @, because H symmetry is a gauge symmetry.

For any fermion field, the covariant derivative can be written as

Dy = Dyb +Qu ot (4.100)

where D, represents the spacetime covariant derivative, Q, = Q,0,¢° and Q, o ¢
is the action of connection @ in the representation of . From this definition, the

Lagrangian can be written as

. pwpo (7, = L < 3
gf—kzinetic = el (w;?%/-@pwfla ] wA;L’YV-@pw?> - 56()\[')’“@#)\] + )\IfY'ug,u)\I)-

(4.101)

The second term of the previous equation can be written explicitly in the form

1 - 3 1
—5eWY DA+ A" ZuN) = — S e Duxase + Xaper" Zux )
1 _,. _ .
— 563(%”7“@#)\ A+ At DA, (4.102)

The fermion fields (Aapci = eapci, x, x*) for N = 3,5, 6 can be written similarly.

The complete Lagrangian density for N > 2 supergravity

The fermion fields belong to the complex representation of group H. There-
fore, the interaction between bosonic and fermionic fields can be conveniently ex-

plained via the representation R,[H] ¢ SO(2n,) in complex form. The transforma-
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tion mentioned previously is constructed using the Cayley matrix

— 1 (I I
A= L . 4.103
2 (1 iI) 10

It’s important to note that the Cayley matrix A used to construct the transformation
is unitary AT = A1, and it can effectively convert a real symplectic vector V™ =
(VA V4) into a complex vector VM = (VA V). The transformation can be shown
as

1 (VA+ivy

VM _ gAM_yN . . 4.104
& V2 \yA vy (3109

Let R,[G] represent the matrix representation of G in a complex basis obtained
from the transformation R,[g] = AR,A'. Since H = Hy x H,,, we can separate the

index A,Y, ... into AB and i. The component in the symplectic form can be written

as VA = (V4B Vi) and its conjugation is V; = (VA)* = (Vap, Vi).

In the reorientation on complex basis, group H is block diagonal because

group U(n,) C Sp(2n,,R) is block diagonal expressed as

u 0
( ) ) (4.105)
0 u

where U represent matrix in U(n,). Notice that the fundamental representation of

Sp(2n,,R) can be separated into ny! and n; ! that shown as
2n,—n! + 0yl (4.106)
where nj1 and n; ! are representation in U(n,) ~ SU(n,) x U(1).

The connection in complex representation Q = AR, [Q]AT is in block diagonal

expressed as

Q5 = , (4.107)
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where the n, x n, sub-matrix are in the form

B CD 0
and Q" — Qas . (4.108)

0 Q' 0 Qi

A QP ep

Qs =
In the previous equation, connection Q4”., and Q’; are in the group of Hp and
H,,, respectively. In addition, the connection Q45 ., can be written in the terms

of fundamental representation Q45 as Q48 = 45[[2623] p)- This form provide the

properties with the contraction of two indices:
Q"“po= (N -2)Q"5 +05Q%, (4.109)

where connection Q. is in U(1) ¢ U(N) = Hpg. Notice that N = 8 theory gives
Q€ = 0 because of Hp = SU(8).

As all of results, we can construct covariant derivative of 1 4,, xapc, and A 4;,

which are expressed as

1
@M¢AV :8M¢AV - ’YﬁuwAp + Zwuab7ab¢Au + QﬂAB¢BV (4110)
1
DuxaBc =0uxABC + Zwuab’YabXABC +3Qua"XBciD 4.111)
1 .
DM ai :6@,4@%“1’%@& + QuaPApi + Quif A aj. (4.112)

In the complex basis, compact generators in coset manifold are oftf-diagonal,

therefore vielbein of scalar manifold P = AR,[P]A can be written as

0 Pf\i
pPMy = : (4.113)

where n, x n, sub-matrix are in the form
PABCD PABj

PAS = ' N and PAE =
PZCD P PiCD PZ

Papcp Pagj

(4.114)

The component of vielbein PABCP = pABCD] belong to anti-symmetrical tensor of

Hp, which invanish for N < 4 supergravity theory.
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e N = 8 supergravity with n = 0: The vielbein is expressed as

.1
PABCD _ (PABCD) _ ﬂEABCDEFGHPEFGH, (4115)
which provide the Lagrangian density as
_ 1
e ' Lrcatar = @P;‘BCDPQLBCD. (4.116)

e N = 5,6 supergravity: N = 6 supergravity consists of vielbein PAB¢P and

PAB that the relation can be written as

1
PABCD _ 5 (ABCDEFp_ (4.117)

while N = 5 only consist of PAB¢P_ Largrangian density of N = 5 and N = 6 is the

same that can be written as

BT PAPCDRY (4.118)

e N = 4 supergravity: In this case, the vielbein PABCD = (ABCDp which P is
vielbein on coset manifold SL(2, R)/SO(2) that describe scalar fields in supergravity
multiplet. The coset manifold SO(6,n)/SO(6) x SO(n) is explained by vielbein P45

that corresponds to the condition:
. 1 Ui
RUGIELIRN L 5ef“BC’:UD,-CD. (4.119)

The component P;; depend on P as P;; = Pd;;. The Largangian density of N = 4

supergravity can be written as

_ 1 1,
e 1$scalar = ﬂPfBCDPZBCD + ZP,LLAB‘RZAB‘ (4120)

e N = 3 supergravity: In this case, PAP¢P = 0 because N = 3 theory has no
scalar field in supergravity multiplet and P;; = 0. The Lagrangian density of scalar

fields in the form of PZAB can be written as

e Lt = %p;ABgf;B. 4.121)
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In the similar way, we can define the coset representative in complex basis by

defining L(¢) = L(¢)A'. The component of L are defined in the form

A A FAAB  FAi
]L(f ap A MEf ) @)

haap hai BB B
In this form, the transformation of IL under group G and H is expressed as
Ry[glL(¢) = L(g o ¢)Ry A, (4.123)
and the symmpletic condition is
LiCcL = C, (4.124)
where C = ACA'.
The left invariant 1-from can be defined on complex basis in the form Q¢ =
AR,[Q)AT, which explicitly express as
QC=LY4L=2+ 2, (4.125)
the matrix M can be written as

M = CLL'C. (4.126)

The matrix M can be written in the form of matrix f = (f 5, f*,) and h =

(haaB, haq) as

—2hht  2hff 4 I
M = : (4.127)
2fh’ — I —2ffT
From previous equation, we can define the matrix 7 and R in the from of f and h as
[= —é(l—l)Tf—l and %(2h +iEHHEL (4.128)

The interaction term between vector fields and fermion fields are constructed

from anti-symmetric tensor O% = (02

i OR,,) that belong to bileinear of fermion.

The duality relation (4.71) coupled to fermion field can be reexpressed as

«4 = —CM(¥ +LO). (4.129)
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This equation is covariant under G if O™ transform by compensator of H in the form

0., = Ry[h]Ou. (4.130)

To write supersymetry transformation conveniently, we define composite field

strength tensor by multiplying ¢, with scalar matrix in the form
F,, = -LiCY, (4.131)
which in component is

F47 only transform under group H because of sympletic property of R, [g].

Self-dual tensor and anti-self-dual tensor are defined in the from
P =SBy £ishy). where i = £FZ, (4.133)

From previous definition, the component of self-dual and anti-self-dual of F can be

written as
FE, = -Licg:. (4.134)
By using symplectic property of L, we can find that

07 =0t =0, (4.135)

Apv

therefore the component of F3;, becomes

i i B i ap i B
FZZ/ = (F;/AB El iO:gBuinﬂ_ )’ and F,u,u = (_70 B7_7O y FAB,LW’Fi;w)'

P Nz 9w 9
(4.136)
In addition, we also write the component of G as
Gt = MsF™ + il 7105 (4.137)

Gy =ManF > —ilyn f7O". (4.138)
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When we use the definition of tensor GJAEW in the form

2i 0%
+ _
Clw = £ gpzamw (4.139)
we found that the Lagrangian density of vector field becomes
i
6_1$vector :Z(‘/VAEFM_VAF_ENV _ ’/‘/AZFJ;/AF—"_EMV)
1 T T —

+ S (FM Iy 2 Oy, + F Y Inn 710, (4.140)

The second term of previous equation also known as Pauli term, which describe

interaction between fermion fields and tensor ij‘.

In the form of fermion field )\;, O; can be written as

OAB,uzz ZQT;Z_)Ap’V[p’VMV'YJ} ¢Ba + CAB,CIU_JS’VMV'YpAI + CAB,IJS\I'VAW)\J (4141)

Oipr =Ci, ¢ 57" A1 + Cipg Ny X, (4.142)

where C4 B,CI , Cap 17, and C; 1 are coeflicient tensor that depend on the number of

supersymmetry.

The complete N > 2 Lagrangian density can be constructed by using all results

discussed, as (without the forth power term of fermion fields)

1 1 ;o
e™'% == R — Sek Te(PuP") 4 Z(H anF i 75 = Mo FL A=)
- —1 _pvpo (7 A 7 A 1 NI Y A 1
+1e e (% VV@prU - wAu'YV@pwg) - 5()‘ i gu)\f + )"Y @;A)‘ )
1 - _
+ §(F+A‘“’IAZ 1 0p,, + F- M Izs f710},,)

+ Moyt B, ¢° Parp + Ay p,0,6° PIB. (4.143)
The last term is the interaction term between scalar field and fermion fields. For

N = 3,5,6 supergravity, terms of fermion fields \;, x, and xy* will be added as we

discussed previously.
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The action obtained from the equation (4.143) is invariant under supersymme-

try transformations:

ot = ey hay + ey Py (4.144)

SAY = LAGON = L 4pOf? 4 0]+ he. (4.145)
PABCDggs _ T ABCD | piABgys _ 53iAD (4.146)
San = Tueat S Fooapt™ uc” (4.147)
SxXane = Puancpdud' P + SF e (4.148)
i = Piapdu¢°y'e” + ziF;;/ﬂWEA- (4.149)

For extra fermion fields in N = 3,5, 6 supergravity, the supersymmetry transforma-

tions can be written as

1
N=3: o\=;Py AB0, 0 Y ecePC (4.150)
1
N=5: dx= 2—46ABCDEPSABCD8#¢S’)/”6E (4.151)
1 i =
N=6= J{xr= QGFABCDEPSABCDau(Z)S’}/“GE + 1 ;V’)/HVEF. (4.152)

Tensor ¥ 4pcp and ¥;45 are the component of coset generator X € t on com-

plex basis R,[X], where X are defined in the form of transformation
¥ = (L7 0sL)|40¢° = Pid¢® (4.153)
or
6L = 0;Lé¢° = LY. (4.154)
The variation of vielbein P = (L~'dL)|; can be written as
§P = dY + QX = D, (4.155)

by using the relation L' = —L='§LL~!, and [h, 1] C t.

By using these relations, we can write the variation of scalar term as

0Lcalar = ek Tr(P,0P") = ek Tr(P,D"'Y). (4.156)
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Tensor X 4pcp and X, 45 for all supergravity are expressed as

N =3: X8 = ABCe ), — 2eAN\Bl (4.157)
N=4: xABCD _ _4gA, BOD] (4.158)

5B = e ANBlE _ eABCDg oAy (4.159)
N—=5: XNABCD _ _4E[AXBC’D] + 6ABC’DEEEX (4.160)
N=¢6: XNABCD _ 74€[AXBC’D} _ EABC’DEFgEXF (4.161)
N —=8: NABCD _ _4€[AXBCD} _ éeABCDEFGHEEXFGH. (4.162)

Tensor O;j‘B and O}, in equation (2.316) are defined as

OI’jB S —€07HXABC H 4E[A¢5] and OL — —EAfyH)\Ai. (4.163)

In N = 6 supergravity, 16 vector fields consist of A/® and A,,, which belong in
representation 15 and 1 of group U(6), respectively. The tensor O;!” still obtain

from equation (2.334). while tensor O can be obtainde from

O, = —€arux™ (4.164)

4.5 Gauged supergravity

Based on previous considerations, it has been determined that the symmetry
of N > 2 supergravity corresponds to the isometry of a scalar manifold, which re-
sults in the occurrence of duality transformations of vector fields. This symmetry
is global and independent of spacetime. In this section, we shall discuss the gaug-
ing of supergravity, namely, the process of elevating a subgroup G, of the global

symmetry G to a gauge symmetry.
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Gauging and minimal coupling

The symmetry group G is an on-shell symmetry, while G. is an off-shell sym-
metry that is only a subgroup of G. As such, each action has a different G., which
results in a different gauging of subgroup Gy € G.. G, is considered to be the electric
subgroup of G, and the vector fields that appear in ungauged supergravity action are
referred to as electric vectors. In the context of supergravity, the gauging process
that is both general and universal is the embedding tensor formalism. Furthermore,
the embedding tensor formalism can accommodate the use of a gauge symmetry Gy

that is a subset of G, even if G is not a subset of G..

The first condition for gauging any G is that the number of dimensions of Gy
must be less than or equal to the number of vector fields that will become the gauge

field, that is,
dimGy < n,. (4.165)

Here, A7 represents the electric gauge fields that become the gauge field of G and
belong to the adjoint representation of Go. By letting Q, represent the gauge con-

nection, we obtain
Q= g AL X, (4.166)

where g is the coupling constant and X; represents the generator of group Gy that

corresponds to the Lie algebra
(X5, Xg] = f[\ngf- (4.167)

In order for Gy to be a subgroup with a closure property, the structure constant

f Aif must satisfy the Jacobi identity

fas! fap =0. (4.168)
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The generator X; can be written in symplectic form of R, representation,

! ! X0
XM g =RX M= "7 NE (4.169)
—Xisr Xis
X ¢p correspond to C[g]ax in the transformation (4.86) and we set X ;¢ = 0 through-

out this thesis.

The symplectic form of (X ;)™ o XA " Chx = Xi57Cy pr provides the rela-

M

tion between the components of (X ;)" , as

X~ Xip”. (4.170)

AT T

Upon comparing the gauge transformation of FA in the form §FA = ¢F ffi‘iFi (eh
represent transformation parameter) to the transformation obtained from sgM =

fA(X A)M N%N , we can obtain SFA — §fX AifFi, which leads to the relation
fee™ = —Xpsh (4.171)
According to this result, the algebra (2.338) becomes
(X3, X5) = —Xpe' (X (4.172)

This equation shown that the generator X is invariant under gauge transformation
03Xy, and the equation (4.172) is called the quadratic constraint. In addition, the
relation (4.171) also impose that
A
X(ri) =0, (4.173)

because of fqg™ = —fep™.

In the case of X4 ;4 # 0, the condition of symmetry under Peccei—Quinn trans-

formation requires that
Xisp) =0 (4.174)

The condition (4.173) and (4.174) are called linear constraint.
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Under gauge transformation g(z) € Gy C G, the connection transforms in the

form
Q, = g()Qg " (x) + dg(x)g~ " (2). (4.175)

Upon writing Q, = gAN X 4> and consideration of infinitesimal transformation

g(x) =1+ gCA(x)XA, we obtain
Ay = Ay — Al =V, ¢", (4.176)
where the covariant derivative V, is defined as
Vil = 0.8 + gXxgphalch, (4.177)

In the following, the covariant derivative V, will serve as the covariant derivative

under GCT and LLT, as well as the symmetry group H and the gauge group Go.

Field strength tensor can be found from 2-form curvature R(§,) = FAX A

From definition

R(Qy) g(dﬂg = QA Qy), (4.178)
we obtain the component of F;{\u as
FA = 9,48 — 8,48 4 gx7 A Al AS. 4.179)

It should be notice that R(Q,) transform in covariant form R(Q,) = g(x)R(,)g (),

and Flf\y satisfies Bianchi identity
VFAN = dFM 4 gXe A a® a Al =0, (4.180)

It can be summarized that when we gauge the symmetry G, as a subgroup of G,
the abelian field strength tensor A = qahis replaced by a non-abelian tensor, and
the derivative ,, is replaced by the covariant derivative V,, = 2, — gA*X i~ The

derivative V, lead to identity

[V, Vil = —gF 5 X3 + .o, (4.181)
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where ... is the term of curvature tensor of space-time and curvature tensor on scalar

manifold.

Since fermion fields do not transform under the group G, they do not transform
directly under the group G,. However, the derivative of the coset representative
L(¢), which is used to define the connection @, must be changed to the covariant

derivative

V.0 = 00" — gALKS (¢). (4.182)

This results in the connection @, where the term involving gauge fields is added

from the definition Q,, = P, + Q, in the form
0, = L7V, L= L9, — gALX})L. (4.183)

Thus, the inclusion of gauge fields in the covariant derivative of fermion fields re-
lated to the connection @, corresponds to the idea that these fermion fields transform
under the group H, which serves as a compensator for transformations from G, C G,

and note that 9, L = 9L, ¢°.

Using the relation L7'dL = Q + P and equation (4.182), we obtain

P, =P, —gAMP, and Q,=Q, - gAlQ;, (4.184)

where P; and Q; represent projection of L~'X; L on subspace t and b, respectively:
Py =L"'X;Ll; and Q;=L"'X;Lly. (4.185)

From definition of 2, we can find gauge transformation of P and Q as

P(g(z)o¢) =h™'Ph and Q(g(z)o¢) = h*Qh+ h~'dh. (4.186)

In addition, we also obtain Maurer-Cartan equation in gauge form expressed as

A+ QA Q= —gL7'R(Q,)L. (4.187)
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The projection on subspace t and b provides

ooR

GP=dP+QANP+PAQ=—gF P, (4.188)

R(Q)=d

O

+QNQ=—-PAP—gF\Q;. (4.189)

Based on the results discussed, we can write covaraint derivative of any fermion

fields as
V, U =D, ¥ +QoWU, (4.190)

which requires replacing P and Q with P and Q when gauge symmetry G is con-

sidered.

Gauge symmetry and embedding tensor

This section discusses the significance and properties of the embedding tensor
in order to understand the relationship between gauging in the symplectic frame of
action and general gauging that is covariant under the symmetry of group G and

independent of the symplectic frame.

In symplectic frame of action, embedding tensor is represented by © 7, which
projects Lie algebra g. of group G. with generator ¢, onto Lie algebra g, of gauge

symmetry G,. Therefore, we can write the projection in the form
X =06;%,, (4.191)

where tensor ©;7 belong in representation ny ® adj(G.) with A =1,2,..,n, and

oc=1,2,..,dimG,.
Consider generator in covariant form

Xar = (Xa, X, (4.192)
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the relation between generator in symplectic frame of action X; and matrix X, is

(XA) —E (XA) . (4.193)
0 XA

For any vector AM = (A%, A,), the contraction can be shown as

expressed as

AMX G = AMX ), + Ap XD = AM X, (4.194)
Notice that A* and A, are not independence, since there can be obtained from
AN=E MY and A, = B AN (4.195)
In any symplectic frame, we can write Xj; in the form of embedding tensor
as
Xy = Opnta, (4.196)

where ¢, represent the generator of group G. Tensor 0, belong in representation

R, ® adj(G) and consist of component ©,,% = (6,%, 61%).

Similar to vector A}, the components of ©,,* are related by
0, = E;Mey" and oM = EMe,e — o, (4.197)
The symplectic condition of £, shown that the tensor ©,,* satisfies
CMNE,feN =0, (4.198)

that is called locality constraint. In addition, it is found that the dimension of gauge

symmetry must satisfy

dimGy = rank©* = rank©,* < n,. (4.199)

The generator X, in representation R,. can be written as

Xunt = Ro- [ X vt = Op%an?, (4.200)
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which relate to X, NP in symplectic frame of action as
Xun® = (E Y (B YN X BT (4.201)
In the form of X, p, The linear condition (4.173) and (4.174) takes the form

Xnp) =0. (4.202)

By replacing the generator X, from (4.196) into quadratic equation (4.172) and using

Lie algebra g, the condition becomes
@Ma@]vbfabc + @MataNP@pc =0. (4203)

The previous equation mean that the embedding tensor is invariant under gauge

transformation, §,,0% = 0.

The condition (4.202) corresponds to projection of R,- ® Adj(G) on specific
representation (Rg) of G. From decomposition of R,- ® Adj(G) under group G, we

can write it as
R, ® Adj(G) = Re & ..., (4.204)
Therefore, we can rewrite linear condition in (4.202) as
Pe® = O, (4.205)

where Pg represent projection operator from R,- ® Adj(G) onto Rg. The condition
(4.203) and (4.205) are used to determine whether a given subgroup G, of the global

symmetry group G can be gauged in supergravity by using group theory.

Lagrangian density of gauged supergravity

The minimal coupling procedure for gauging a subgroup of the original sym-
metry group in a supergravity theory involves introducing a gauge field associated

with the subgroup, and replacing ordinary derivatives with covariant derivatives
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that include the gauge field. However, this modification to the action can break su-
persymmetry. In order to restore supersymmetry, additional terms must be added to
the Lagrangian that cancel the unwanted contributions from the gauge fields. This
can be done using the embedding tensor formalism, which allows for a systematic
and gauge-invariant construction of the complete supersymmetric action for gauged

supergravity theories.

Consider kinetic term of gravitino
Lo, = —eUiA"PV 14, + e, (4.206)
and supersymmetry transformation of the form
8thAy = Viuea+ ..., (4.207)
the variation becomes
5Ly, = —2e0 PN pea 4 oo = gedliPEL Qi Bep + .. (4.208)
The kinetic term of M\ is in the form
— —%e[\m“/\l = ) (4.209)
and use supersymmetry transformation
SN = PMateq + ... (4.210)
The variation of (4.209) becomes

_ . 1 .
04, = —e)\['y“vl’VHPlj“eA + .= ige)\m“”Flﬁ\VPf]eA + ... 4.211)

It’s found that the variation of fermion Lagrangian density is modified as

6Ly, ~ g P EN (L X L) a e + 4.212)

5L ~ gAY ED (L' X L] ) e + .. (4.213)
By writing FAL-1X iL in the covariant form of group G

FALUXG L= FAEM L XL = 9M L Xy L, (4.214)
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the previous transformation relate to tensor of group H in the form
T =Lif L' XN, (4.215)

where Ly = (LT)N4;, and the tensor Ty; is called T-tensor. The component of

tensor 75; on complex basis can be written as
N 1y P
T = L L Xun P (L7 (4.216)

The definition (4.185) including the relation Q; = E;MQu and Py = E;M Py are

used to construct T-tensor in the form of Q,; and Py, expressed as
T = L/ (Py + Qur), (4.217)
and in the form of subgroup H generator with coset generator as
T =L On Lty = Lyt (4.218)

The tensor Ly;” is defined as L7 = Ly ©n"Ly?, in which L, is coset represen-
tative in adjoint representation of group G. From definition of T-tensor, we can

explicitly verify that 75" transform under group H only.

For T-tensor, we can write locality, linear and quadratic constraints as

CMNT et — (4.219)
Torwp) =0 (4.220)
[Tsz, Ty) + Ty T = 0. (4.221)

The Yukawa term is added to the Lagrangian density in order to preserve su-
persymmetry. It is a term that couples the scalar fields and the fermion fields, and
it is of order g. The form of the Yukawa term depends on the particular supergrav-
ity theory being considered, and it can be determined using the embedding tensor
formalism. The Yukawa term ensures that the gauging of the symmetry group Gy is
consistent with supersymmetry and that the resulting theory is still a supergravity

theory. The Yukawa term is of form

e Brukawa = 9(—209" W S up + Ny 4, N + MM M) + hec. (4.222)
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In gauged supergravity, the Yukawa term is often referred to as the fermion mass-
like term. The tensors S4z, Ny, and M, can be written in terms of the T-tensor.

The complex conjugate of these tensor are expressed as
SAB = (Sap)t, Nla= (N, MY = (M) (4.223)

When we gauge a supergravity theory, we need to modify the supersymmetry trans-
formation rules of the fermion fields to include the coupling to the gauge fields by

adding the term in first order in g. The modified transformation can be written as

0Yau = Vyuea — gSapvue® + ... (4.224)

oA = pjfﬂ’yueA + gN[AeA + ... (4225)

Sometime, these tensor Sap, N, and M, are called fermion-shift matrix.

The Yukawa term (4.222) gives the variations that consist of second order in
g, which obtain from variation of ¢4, and \;. To cancel this second order term in g,
we need to add the term that consist of second order of S45 and N;* into the action.
The term added into the action is nonlinear in scalar fields, and it’s called scalar
potential. In gauged supergravity, the terms that are added are carefully chosen

such that they preserve the supersymmetry of the ungauged theory.

The representation of embedding tensor Reg can be separated into irreducible

representations of group H as
Ro - Rs®RN O Ry D ..., (4.226)

where Rg, Ry, and R, are representation of tensor S5, N4, and M respectively.
The term ... refers to any representation that are invisible in supersymmetry trans-

formation of the action.

To verify the supersymmetry of the Lagrangian density of gauged supergrav-
ity, only the terms related to the coupling constant are considered. This is because
any term in ungauged supergravity is cancelled by supersymmetry without minimal

coupling, and complex conjugate terms vanish automatically. To illustrate this, we
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can start by considering the kinetic term with the Yukawa term for gravitinos in the

form of
Ly Ky = —ebp N b, — 200040, (4.227)
ba,KY e,y vap — 290, ") Sap. .
When we vary the previous equation respect to 4, we see that

0Ly, KY = — 2e@ﬁ7“”pv,,(vpel4 — gSAB’ypeB)

— 4gpiy (VP — gSP%ec)Sap. (4.228)
By using the identity v**?~, = 24", the previous becomes

0Ly, KY = — 2eYp " PV, pea + degiiiv" 'V € Sap
— degi V"'V €5 Sap + 497 01" 1, SBC S aec

= — 26V, pen + AP0 1S S apee (4229)

Therefore, in order to preserve supersymmetry in the presence of gauge fields, we

need to add terms of order g in the supersymmetry transformations.

The term V, V e 4 is in the same form as (4.212) and (4.213), and it’s canceled

by allowing tensor S5 and N;* depend on T-tensor in the form
Sap =T[Rslag, Ni*=T[Ry]i", (4.230)

which can be written cearly (the index I split into A; and ABC)

T PAB _  MABG, D _ _%NDABC _ 2SD[A(5§] (4.231)
(Tap)“PEE = —LM 450"k PEPEY = —45[[§NDEF}B} (4.232)
(Tap)P = —LM a0k POV = —25 NPV (4.233)
(T1) 4" = LM;00°P2(Ja) A" = Nia®, (4.234)

where T4 PP relate to (T45)CP .. of T-tensor in the form

(TAP)CP o = 40T PP, and  (Tap) P pp = —405T  pap. (4.235)
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The term that relate to V,,Sap from the last term of (4.229) is in the from
4eg1ﬁ/‘?7“”eBVVSAB. (4.236)

The term that is in the same form of the previous equation obtains from the trans-

formation of
Xy B P pr + eghy 4, N1 ™ (4.237)

varying with respect to A’ by using identity A'¢” and M4y P = —pB~4# X!, we can

show that
Ny pld = Mt 4+ 2 )plB = pB (g — )N = op Byt AL (4.238)

As a results of the previous equation, the variation of (4.237) with respect to !

becomes
egN' ap}7" 7 e Pypr — egN' gy € Pyar — eg? NI N pipa,ye?. (4.239)
By using the identity v#~" = +*” 4+ n*¥, the variation term at order g becomes
—2eg15f’y””eBNI(B]5,,A)I - 2egN131/;LA€B]]5§I. (4.240)

The first term is canceled by the term in equation (4.236), if 2V,Sap = N’ (5P, 4y

or
Loor

DsSap = 5]\7 BPsayr, (4.241)

where 2, mean that covariant derivative for connection H.
Consider kinetic term of scalar fields %eGTSVMngV“qSS, the variation with re-

spect to vector field becomes
eGrSV“qbréAﬁ[krf\/[ =— ZegGTSV“quLMAka\/ﬂ/_JfEB + egGTSV“gZ)TLMikf\/[;\Ai'y#eA
1

+ 5€9Gr VIO LY apki P uec. (4.242)

It’s found that the first term of previous equation is cancelled by the second term of

equation (4.240), if we impose the condition

LM spkiy = —GN' (5P, a1 (4.243)



85

It should be noted that if we define

A

M M A M A
L* = 0L ,L" ep

) = (LM03, 3L (5067, (4.244)
the equation (4.242) becomes (without the first term)

egGrsVPSTLM 13 Mye . (4.245)

The variation of kinetic term of A/ and coupling term between scalar fields and

fermion fields together with Yukawa term is written in the form (variation respect

to ¢A;L)

8Ly pun = — eN AV 0N + egN Y N A6t A, + eN Yy Ppro

+ e Py SN B pr + 2eg A My AT (4.246)
At order of g and ¢?

6311(11’5,)3 - BQS‘IVM(NIAVMGA +eaVuNi) + BQS\IVuNIA(VueA — gSapuE”)

— eg\ Y B, p1SP9,88% e + 2695\JM]J(’)/HPZL4[€A9NIAEA), (4.247)

we found that the term related to V¢4 in the first line is cancelled in the same way

as gravitino field.

The term in order g and the term about A ~#e, are cancelled by equation

(4.245), if we impose that

_@TN[A = GTSLM[AIC}SVI + ZPTB[SBA + 2M[JP,’:4J. (4248)

When we consider term at order g from equation (4.228), (4.239) and (4.247)

by using identity v#¥v, = 34", we can see that
egzq/;f'y“ec(12SABSBC — N1 N9 + egzj\IeA(QMUNJA —AN/PSpa).  (4.249)
This tern can be cancelled by adding scalar potential in the form

V(6) = 30 (NN 4~ 125458 15). (4.250)
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In Lagrangian density, this term is added in the form —eV (¢), which provide the

variation that respect to ef} as
—0eV = —eehide,V = ezﬁfv“eAV. (4.251)
This term is cancelled by order g2 term that relate to 1/!y*¢c in (4.249), if we impose
68V = g2 (N1 NP —125,405°P), (4.252)

which obviously reproduces the definition of scalar potential in equation (4.250)

when we contract the indices between A and B.

The term of order ¢? that relates to Me# in equation (4.249) is cancelled by

variation of scalar potential with respect to ¢%, if we use the condition

oV
%Pﬁ; = 2¢°(My N7y —2N;"Sap), (4.253)

by using equation (4.252) and varying with respect to ¢°, relation (4.241), and (4.248)
together with

O LM ANT | + 0 LM NA = 0. (4.254)

This condition can be found from the relation between fermion-shift tensor and the

component of T-tensor in equation (4.231) — (4.234).

The formula that is important for finding vacuum of theory is written in the

form of derivative of scalar potential with respect to scalar field expressed as

2
agg) = QN(QMIJNJAPSIA — 4SNP P 4 c.c., (4.255)

where c.c represent complex conjugate term.

The modification of an ungauged theory into a gauged theory with non-
Abelian symmetry can be achieved by adding the minimal coupling term to the
ungauged theory and modifying the field strength tensor of the gauge field into a
non-Abelian form. To preserve supersymmetry, we must also add the Yukawa term

and scalar potential into the supergravity action, at the first and second order of
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coupling constant, respectively. Additionally, the supersymmetry transformation

of fermions is modified by adding a first-order term of the coupling constant.

Base on all results discussed, the full lagrangian density that is invariant under

gauge non-abelian symmetry is

eilggauge = eilgungaugda — V,dA+ ANA)

+ (=20 0B Sup + Nyt pa, Nt + MM M) +hee. = V(g), (4.256)
where scalar potential V is defined in (4.250).

The action obtained form (4.256) is invariant under supersymmetry transfor-

mation
Sett = ey Py + Eay ;) (4.257)
sAl =12 O (4.258)
PABCD 45 _ 5 ABCD (4.259)
PiAPog® = 5P (4.260)
Spau = Vues — gSaprue” + éF[;,AB’y”"fyueB (4.261)
oxaBc = PaapopOu®ye” + ZiF,;V[ABV“yeq +gNapcep (4.262)
SAai = Pyiapdud*ye” + liFj,iW“”eA + NiaPep (4.263)

Ang M



Chapter V

THE ADS/CFT CORRESPONDENCE

The AdS/CFT correspondence, first suggested by Maldacena , is a duality
between gravity theory in anti de Sitter space (AdS) background and conformal field
theory (CFT). The gravity theory on AdS is a combination of Einstein’s general
theory of relativity and supersymmetry, called supergravity. On the other hand, a
quantum field theory that is invariant under conformal transformations is known
as a conformal field theory (CFT). The term “duality” refers to the relationship
between AdS,,, and CFT,, which can explain quantum systems in d dimension by

calculating in d + 1 dimensional supergravity on AdS, shown as
AdSg x MP=471 « 5 CFTy, (5.1)

where MP~4-1 is compact manifold, and D = 10, 11. In other words, the supergrav-
ity approximation can be used to calculate correlation functions of strongly coupled
conformal field theories by computing the on-shell action of supergravity. This is

known as the AdS/CFT correspondence, or the holographic principle.

5.1 Conformal field theory

Conformal field theory is a type of quantum field theory that possesses con-
formal symmetry, which means that it is invariant under conformal transformations.
Conformal symmetry is a powerful tool in understanding the behavior of quantum
field theories, and C' FT have been used to describe a wide range of physical systems,

including critical phenomena, statistical physics, and string theory.

The conformal transformation consist of scale transformation or dilatation and
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special conformal transformation, which can be expressed as

dilatation :  z# = A" (5.2)

R bt g2
14 2b.x + 222’

special conformal transformation :  «* (5.3)

where \ and b are parameter of dilatation and special conformal transformation, re-
spectively. Generally, the special conformal transformation is commonly expressed

in terms of translations z* = z* + a* and inversions

M

I: M%M:?. (5.4)

In other words, the special conformal transformation can be obtained from transla-
tions and inversions as shown in the following process:

xH xH + at o* + ata?
kT — — T.= ] 5.5
v 22 24+ a?+ 2a.x 1+ 2a.z + a?z2 (53)

In addition, the inversion results in a change in the metric tensor, given by

’

(@) = Vg (2), (5.6)

where w(z) is an arbitrary function of the coordinates. Clearly, scale transformations
are a particular case of conformal transformations with constant e2~. In the case of
an infinitesimal transformation z# = 2 — e*(z) and ¢*©) = 1 4 2w(z) ON gy = Nyu»

we can express the variation of the metric tensor as
dgu = Opey + Opey = 2w(x) M. (5.7)
When we contract the previous equation with 7, it becomes

et = w(z)d. (5.8)

Next, we substitute the parameter w = 19,¢" into the equation (5.7) and take
the second-order derivative in the form 9,0, together with using the relation (5.8)
again. This results in the condition on the parameter that imposes a conformal trans-

formation, which is given by

[100,0° + (d — 2)0,,0,]Ore™ = 0. (5.9)



90

Itis well known that in two dimensions, the above condition yields the Cauchy-
Riemann equations, commonly employed in the analysis of complex functions.
Consequently, there exists an infinite set of solutions for the parameter ¢. This im-

plies that conformal field theories in d = 2 possess an infinite symmetry.

For d > 2, we can expand " in the form of a power series to find a solution to

the condition (5.9), which is given by:
e = at +wh Nt + bra? — 2(b - x)xt, (5.10)

where 2? = z#z,, and w,,, = —w,,. Note that the first and second terms correspond
to the Poincaré transformation, which means that the Poincaré group is a subgroup

of the conformal group.

The operator for a conformal transformation can be expressed as:
1
U(a,w, A\, b) :I+a#P“+§wWJ“V—|—)\D—|—b#K“, (5.11)

where P* and J** represent the Poincaré generators, and D and K* represent the

generators of dilation and special conformal transformations, respectively.

The condition imposed by the direct product between the elements of
Ul(a,w, \,b) expresses that the generators (P*, J*, D, K*) correspond to the confor-

mal algebra given by

s Toa) = Aot [Pus Jupl = 2008
[K"“ JV/’] = QUH[VKP}’ [Pua K, = 2(77;WD + J,ulf)

[D,P,)=P,, [D K,)=-K, (5.12)

The first line of Lie algebra corresponds to the Poincaré subalgebra, while the sec-
ond shows that K, is a vector under the Lorentz group. It should be noted that the
Lie algebra between P, and K, provides J,,, with D that commute with each other.
In the last line of equation (5.12), we find that the generators P, and K, have unit

charges under the generator D but opposite in sign.
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From the Lie algebra [D, J,,] = 0, it is found that the conformal group consists
of subgroups that commute, namely SO(1,1) x SO(1,d — 1), which have generators
D and J,,, respectively. However, other Lie algebra expresses that the conformal
group forms a non-compact group SO(2,d), which can be shown as follows. Let
the indices a = 0,1,...,d + 1,d, and 7 = dia(—1,1,...,1,—1), which the component
0,1,2,..,d + 1 = p represent SO(1,d + 1) and component d represent SO(1,1). We

can write generator .J,;, = —Jj, of SO(2,d) in the form of (P*, J* D, K") as

T =

N

nz Jd,d—l—l =D

1
(KM_PM)a J/J,,d—i—l :i(PU_{—KN) (513)

N

Jud =
When we use Lie algebra of SO(2,d) in the form
[jab7 jcd] T 4ﬁ[a[cjd]b]7 (514)

we obtain the conformal algebra in equation (5.12). This leads us to conclude that
the conformal group in d dimensions is isomorphic to the group SO(2,d). It should
be noted that the conformal group SO(2, d) is a non-compact simple group, whereas

the Poincaré group is a non-semisimple group.

To find the representation of the conformal group, we can consider the trans-
formation of the field at the position 2# = 0 and use the generators P, to translate
it to a different position z#. We consider ®(0) representing the fields that transform

under translation of Lorentz group in the form
[ S, @(0)] = My, ®(0). (5.15)
The transformation of field ®(0) under dilatation is in the form
[D,®(0)] = A®(0) (5.16)

where A is called scaling dimension or only dimension of ®(0). Under dilation of

x* = \z#, the field ®(0) transform as

(') = A\"20(z). (5.17)
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The irreducible representation can be specified by the spin s under the Lorentz
group SO(1,d — 1) and A under dilatation SO(1,1). Since [J,,, D] = 0, we can use
the eigenvalues of .J,, and D to specify a state in the representation. We start from

the state ®(0) with dimension A, which correspond to the condition
K, ®(0)] = 0. (5.18)

From the algebra (5.12), we found that the generator K, decreases the dimension
A of a field, while the generator P, increases it. The fields that correspond to the
lowest possible dimension are called conformal primary fields. Any other state can
be obtained by applying the operator P, to a primary field, and the resulting state is

called a conformal descendant.

The unitarity condition (which requires that all states in the Hilbert space have
a positive norm) imposes a lower bound on the value of A, which is called the

unitarity bound. This bound can be found by considering the norm of the state |A):
(A|K,K,P,P, |A) >0, (5.19)

where |A) represent the primary state that satisfies the condition K,|A) = 0 and
D|A) = A|A). For example, if |A) represent scalar field (J,,, |A) = 0), we can use

algebra (5.12) to express the bound as follows:
A>——. (5.20)
In the similar way, we can express that

Azd%, and A>d+ts—2 (5.21)

for state |A) that contain spin £ and s > 3, respectively.

The Noether theorem can be used to express that the symmetry generated by

D and K, provides conserved currents:

JP) = gvr;

h w, and J,SI:) = 2°T) — 22,27 T}, (5.22)
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which can be verified directly by the following conditions:

rJP) =1H, =0 (5.23)

oHJ ) = 2z, T, =0. (5.24)

It indicates that the conservation law of conformal symmetry implies that the

momentum-energy tensor is traceless 7*, = 0.

5.2 Anti-de Sitter space time

The Anti-de Sitter (AdS) space is a maximally symmetrical space with nega-
tive curvature. In this context, we will discuss the geometrical structure of the space

AdS4.1 in d + 1 dimensions.

The curvature tensor of AdS;.; can be expressed in terms of the metric tensor

as follows:

1
Ryvpe = _ﬁ(g,upgua = g,uagl/p)a (5.25)

where L represent curvature radius of the AdS;.; space. From the tensor (2.459),
we can calculate directly to show that

1

1
Ruyz—ﬁdgu,,, and R = I

(d+1)d. (5.26)

The space AdS;,, can be defined as a surface embedded in R??, where the
signature of R?? is (—, —, +,...,+). This means that AdS;,, has one negative and
d positive dimensions, preserving the signature of the ambient space. Let Y4, A =
0,1, ...,d,d+1represent coordinates of R*<, the space AdSy,, is defined as the surface
that corresponds to

d
YAYBap = —(Y0)? — (Y4+1)2 4 Z(yi)2 — 12 (5.27)
i=1
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The metric on AdS;; can be obtained from the expression:
ds® = napdYAdY ", (5.28)

where Y4 corresponds to the coordinates given in equation (2.461). In this form, it
is easy to see that the AdS,.; space has an isometry group of SO(2, d), which means

it preserves the structure and symmetries under this group.

The coordinates of AdS;,; commonly used in the AAS/CFT context can be
defined by transforming the coordinates Y4 — (20, 2%, u), where i = 1,2,...,d — 1.
The transformation is given by the following expressions:

YO = Lumo, Y = Luxt

yd — i[UQ(LQ ), yHl= %[UQ(L2 +22) + 1], (5.29)

where 22 = —(2°)2+ 3% (2)2 by using the Minkowski metric in d dimensions given
by n.sdz®dz®. These coordinate transformations relate the AdS,; coordinates Y4

to the new coordinates (z°, z¢,u), and L represents the curvature radius of AdSg, ;.

When we substitute Y4 in the equation (5.28), we obtain the metric
d 2
ds® = L? U—UQ + uPnapda®dy® | . (5.30)

If we change the coordinate again by using u = 1, we obtain

L2
N ?(naﬁdx“dmﬁ +dz?), (5.31)

where the coordinates (z“, z) is called Poincare patch coordinates.

Another popular set of coordinates used in AdSy,; is given by (z,r), where
a=0,1,...,d — 1, and r is the radial coordinate. The transformation between these
coordinates and the original AdS,;,, coordinates can be expressed as:

=L (5.32)

z

~s

where z is a parameter related to the radial coordinate. In these new coordinates,

the metric takes the form:

ds? = e%naﬁda:adxﬁ + dr?. (5.33)
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5.3 Holographic renormalization

Feynman diagrams are a powerful tool in quantum field theory for calculating
and visualizing particle interactions. However, when these diagrams are evaluated
in theories with higher order corrections, they often lead to infinite values. To make

sense of these calculations, a process called renormalization is employed.

Renormalization involves introducing counterterms to cancel out the infinities
arising in the calculations. These counterterms are chosen such that the physical
observables remain finite and well-defined. Renormalization also involves adjusting

the values of coupling constants and scale parameters in the theory.

The renormalization group is a concept closely related to renormalization.
After renormalization, the coupling constant will depend on the energy scale or
distance, exhibiting group properties. For example, the transformation from scale j;
to o and then to u3 is equivalent to a direct transformation from p; to us. In certain
cases, the coupling constants in a theory exhibit scale invariance, meaning they
remain unchanged under scale transformations. This is expressed by the condition

o)
PUVCANE (5.34)
o
where § is the beta function and p is the scale parameter. The presence of a scale-
invariant coupling constant is a key feature of theories exhibiting conformal sym-

metry.

In a conformal field theory, certain coupling constants, denoted as g, may sat-
isfy the condition 8(¢*) = 0, where §(g) is the beta function that describes how
the coupling constant changes under scale transformations. This implies the exis-
tence of a conformal fixed point, where the coupling constant does not flow under
scale transformations. At the conformal fixed point, the theory exhibits enhanced

symmetry and is said to be scale invariant.
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However, in most cases, quantum field theories do not possess exact conformal
symmetry, and the coupling constants do not satisfy 3(¢*) = 0 for any value of g.
Nevertheless, it is still possible to have approximate conformal symmetry in the
vicinity of a conformal fixed point. This is where the concept of the renormalization

group flow becomes relevant.

The renormalization group flow describes how coupling constants change as
the energy scale or distance scale is varied. When a conformal field theory is per-
turbed away from the conformal fixed point at high energy scales (UV), the theory
undergoes a renormalization group flow and flows towards a different theory at low
energy scales (IR). This flow breaks the conformal symmetry, and the resulting the-

ory may exhibit new phenomena and different physical properties.

In the context of AAS/CFT, the scalar potential of gauged supergravity on AdS
plays a significant role in understanding conformal field theory (CFT) via the AdS/
CFT correspondence. The scalar potential contains important information about the
conformal fixed points and the renormalization group (RG) flows in the correspond-

ing quantum field theory.

By analyzing the scalar potential in gauged supergravity on AdS, one can gain
insights into the properties and dynamics of the dual field theory. This approach
is known as holographic RG flow, as it allows us to study the RG flows of the field

theory by examining the gravitational solutions in the AdS background.

In the case of RG flows between different conformal phases or non-conformal
fixed points, the corresponding gravitational solution takes the form of a domain
wall solution, often referred to as an "AAdS” (asymptotically Anti-de Sitter) space-

time. The metric of this domain wall solution is given by:

ds? = eQA(T)dJ:“dx”nw, + dr?, (5.35)
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where A(r) is a function that characterizes the RG flow. For RG flows from
one conformal fixed point to another conformal fixed point, the domain wall solution
approaches an AdS, space, and in this case, A(r) takes the form A(r) = &, where L

is the curvature radius of the AdS space.

The relationship between the coordinate r and the coordinate ~ can be ex-
pressed as z = Le™ ¢, where z represents the radial direction in the AdS space. This
relation allows us to map the behavior of the RG flow in the field theory to the

geometric properties of the AdS space.

By studying the domain wall solutions in gauged supergravity, one can extract
valuable information about the RG flows, phase transitions, and other properties of
the dual field theory. This provides a powerful tool for exploring the dynamics of

quantum field theories using the AdS/CFT correspondence.



Chapter VI

REVIEW OF LITERATURE

The gauge/gravity duality, also known as AdS/CFT correspondence, is a pow-
erful tool for understanding the dynamics of certain quantum field theories. The
duality states that there is an equivalence between a gravitational theory in Anti-de
Sitter space (AdS) and a conformal field theory (CFT) living on the boundary of

that space.

The initial suggestion of this duality was made by Juan Maldacena (Malda-
cena, 1999). It proposed a connection between supergravity in AdS and a specific
conformal field theory. In order to apply the AdS/CFT correspondence to describe
N = 2 models, we start with the truncation of N = 8 supergravity. This trunca-
tion involves removing certain fields and retaining only those relevant to the N = 2

sector.

By focusing on the structure of N = 6 supergravity, which shares the same
bosonic sector as our model, we can find solutions that describe RG flows. These

solutions correspond to transitions between different phases of the dual N = 2 SCFT.

In the next subsection, we will provide a brief overview of various approaches
to constructing N = 2 supergravity theories and the process of finding RG flows

solution.
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6.1 The Large N Limit of Superconformal field

theories and supergravity

The paper (Maldacena, 1999) proposes that the large N limit of certain confor-
mal field theories in various dimensions includes a sector describing supergravity
on the product of Anti-deSitter spacetimes with spheres and other compact man-
ifolds. This is shown by taking some branes in the full M/string theory and then
taking a low energy limit where the field theory on the brane decouples from the
bulk. The enhanced supersymmetries of the near horizon geometry correspond to
the extra supersymmetry generators present in the superconformal group. The t
Hooft limit of 3+ 1 N = 4 super-Yang-Mills at the conformal point is shown to
be dual to IIB strings on AdS; x S°. The paper also conjectures that compactifi-
cations of M/string theory on various Anti-de Sitter spacetimes are dual to various

conformal field theories.

6.2 Exceptional N = 6 and N = 2 4D gauged Su-
pergravity

In the domain of supergravity, the theory encompasses different levels of su-
persymmetry, reaching a maximum at N = 8, indicating the existence of eight grav-
itinos. However, for lower levels of supersymmetry, such as N = 2,3, ..., 6, it’s pos-
sible to derive these theories by truncating certain field components from the N = 8
supergravity theory. The paper (Andrianopoli et al., 2009) outlines the methodol-
ogy for deriving N = 2 and N = 6 supergravity theories using concepts from group
theory. Through this truncation process, the outcome includes ungauged N = 6

supergravity and N = 2 supergravity coupled to 15 vector multiplets.
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Furthermore, the paper highlights an interesting finding: N = 6 supergravity
shares the same bosonic fields with N = 2 supergravity coupled to 15 vector multi-
plets. This essentially means that the N = 2 supergravity model can be parameter-
ized by the same scalar manifold that characterizes the N = 6 theory. Specifically,

this scalar manifold is described as SO*(12)/U(6).

6.3 Supersymmetric solutions from N=6 gauged

supergravity

The focus of our interest lies in the N = 2 gauged supergravity model coupled
to 15 vector multiplets. Importantly, the bosonic sector of this N = 2 model is

identical to that of the NV = 6 gauged supergravity model.

Consequently, we can leverage the insights gained from studying the N = 6
gauged supergravity model to construct the N = 2 supergravity model with the
same gauged symmetry, which is SO(2) x SO(6). The approach we are following
to achieve this construction is outlined in the paper (Karndumri and Seeyangnok,

2021).

In addition to the gauge construction process, we are also exploring an under-
standing of the Renormalization Group (RG) flow. This involves comprehending
how physical quantities change as energy scales are modified. The techniques we
are employing encompass explanations of these dynamic changes in the context of

these supergravity models.

By combining the insights from N = 6 gauged supergravity, the gauge con-
struction procedure outlined in the paper, and an exploration of RG flow, we are
working towards a comprehensive understanding of the N = 2 gauged supergravity

model coupled to 15 vector multiplets within the SO(2) x SO(6) gauge symmetry
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framework. This endeavor involves linking different theoretical aspects and math-
ematical techniques to unveil the intricate relationships between these theories and

their underlying principles.



Chapter VII

HOLOGRAPHIC RG FLOWS FROM
4-DIMENSIONAL N=2 GAUGED
SUPERGRAVITIES

In this chapter, we investigate the holographic RG flow of four-dimensional
N = 2 gauged supergravity with the SO(2) x SO(6) gauged group. The structure
of N = 2 supergravity can be obtained from the truncation of the maximal N = 8
supergravity. This truncation provides the N = 2 supergravity coupled to 15 vector

multiplets, and also provides the general N = 6 gauged supergravity.

7.1 Twin N =6 and N = 2 gauged supergravity

The maximal supersymmetry that corresponds to the theory of gravity is the
amount of N = 8 supersymmetry (that is 32 supercharges). The four-dimensional
maximal supergravity, first proposed in (de Wit et al., 2007), is a mathematical
model that describes a single massless graviton with maximal supersymmetry. The
graviton g, (u, v, ... = 0,1,2, 3 that is space-time indices), 8 spin-3/2 gravitini @Z;L (i =
1,...,8) transforming in the fundamental representation of the R-symmetry group
SU(8), 28 vector field A/, 56 spin-1/2 dilatini ;). in the 56 of SU(8), and 70 real
scalar field ¢“* are the field content of N = 8 theory. Group theory allows for
the decomposition of the essential fermionic SU(8) representations with respect to
SU(6) x SU(2) x U(1) in order to produce the N = 6 gauged supergravity, the process
shown in (Andrianopoli et al., 2009).

The theory would be reduced to the N = 2 theory if we truncated the multiplets
of the six gravitini fields ;! in the N = 8 theory instead. The N = 2 theory that
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resulted from truncating out of ;! has the same bosonic content as the N = 6 theory.
This result describes the N = 2 supergravity coupling to 15 vector multiplets. The
field content of the N = 6 theory that resulted from the N = 8 truncation consists
of six gravitini + that belong in (6,1) 11, sixteen vectors AP and Aﬁﬁ in (15,1),
twenty-six spin-12 fields x*#“ and x* in (20,1),s + (6,1)_s, along with complex
scalars p4527 in (15,1)_3+ (15,1) 1, while pA5C, Ade 4 and yAB< are truncated.
Similarly, the bosonic part of the N = 2 theory is the same as the N = 6 theory
(¢pB8, A5 and A%9), and the different in fermionic content consists of two gravitini
Yy in (1, 2)_2 representation, together with thirty spin-1/2 fields x*2< in (15,2)_..

The fields that were truncated in order to obtain the V = 2 theory are ¢p*5°«, Adle,

2, xP% and x* . Therefore, the scalar manifolds of both theories can be shown as

_ 807(12)

M=T00)

(7.1)

The gauging of these N = 6 and N = 2 theories will now be discussed. As
we’ll see, all of these gauged theories can be built as truncations of the N = 8
theory using the necessary gauging. When the N = 8 theory is gauged, the terms of
fermion shifts that define the fermion mass terms and the scalar potential are added
to the Lagrangian. All terms in the fermions’ Lagrangian bilinear theory for N = 8
theory are shown in (de Wit and Nicolai, 1982), where we change the notation of
the fermions shift as S¥ = §J% = —%A? , N, YHEE —\/§A2iljk . So that the terms in

the Lagrangian bilinear (first order of coupling constant g) in the fermions can be

written as
. 1 o
g (451-]-1%7””@0,{ + 6Nlijkxwk’y“¢lu> + h.c. . (7.2)
The supersymmetry variations of the fermion fields are expressed as follows:

51/)L = ... +19S7y,€4, (7.3)

SR = . 4 gN,TEe (7.4)

These fermion shifts correspond to the scalar potential of the N = 8 theory, shown
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as
V() = g7 (g NN - 55,57 ) 1.5)
As follows, supersymmetry transformations of order g can be decomposed as
&pf =..+1ig (SABWEB + SAﬂvqu) , (7.6)
005 = .+ ig (5P uen + S ues) (7.7)
SABC — 4y (NDABCGD + NﬁABCeB> : (7.8)
SABe = 4g (NDAB%D + NBAB%B) , (7.9)
oxt =t g (NP + N (7.10)

The equation (7.2) can be written in the form of all truncated fermion fields as

- 1
(510 T U5 + SN BCD X b (7.11)

1
+ §NABCOC>ZCDO£’7M¢A;L + NO(A;(A'YMwa‘LL> + h.c. .

In the case of the N = 6 and N = 2 theories, the fermion fields that are trun-
cated consist of ¢ (truncated in N = 6 case), e wﬁ‘(truncated in N = 2 case) ,
xAB¢ and x“. To ensure that the N = 6 and N = 2 theories are a consistent trun-
cation, the fermion shift Sxo,N%qp, N %Ca and N¢ must vanish. The following

transformation rules are then included in the N = 6 and N = 2 theories:

51/1;? =..+ igSABW#eB, (7.12)
ABC = 4 gNBCED, (7.13)
oA = ...+ gNgeB, (7.14)

for N = 6 theory, while for the N = 2 theory we have:

oYy =+ igSPeP, (7.15)

oxABe = ...—|—gN5aABe*B. (7.16)

It indicates that S*° and N ﬁaAB vanish for the N = 6 theory, and S48+, N4'P¢ and

N vanish for the N = 2 theory. These fermion shifts produce a scalar potential for
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both theories, which can be formulated from the N = 8 Ward identity:

; — i 1 m nTe
sy = 2 (st + L, ) 7.17)

By decomposing and tracing the above identities, we obtain the scalar potential

written in terms of N = 6 and N = 2 quantities respectively:

_ _ 1

VIN=8) o y(N=6) _ 2 <—28ABSAB + %NABCDN%DE + NBCNAC> : (7.18)
_ _ 1

YIN=8) & y(N=2) _ 2 <_6saﬁsa5 + NN AB) : (7.19)

The scalar potential contains important properties about conformal fixed
points, which are indispensable for describing holographic RG flow. Finding scalar
potential requires using embedding tensor formalism to elevate the ungauged the-
ory into the gauged theory (de Wit et al., 2003, 2005; de Wit and Nicolai, 1982).
We consider the gauging of an extended supergravity with n, vector fields Aﬁ, A=
1,...,n, and a scalar manifold of the form G/H, where G represents the on-shell
(classical) global symmetry group and H is maximal compact subgroup. The gaug-
ing procedure includes promoting a suitable subgroup G, of the Lagrangian’s global
symmetry group to local symmetry, which is gauged by the theory’s electric poten-
tials. The choice of the gauge algebra inside the Lie algebra of G can be mapped
into a subset of the electric group by using an embedding tensor #,;”, where index
M labels the symplectic representation R of G (VM = VA V) and index ¢, belongs
to Adj(G). The embedding tensor expresses the gauge generators X, as a linear
combination of the generators ¢, of G : Xy = 0,/"t,,, where 6,/" belong to the
product R x Adj(G) and we can also define the tensor X,,\f’ = 0,/(t,)," in the
same representation as ¢,;". Consistency of the construction of a gauged extended
supergravity requires 6, to satisfy some G-covariant constraints consisting of a

. e . P'
linear condition on X, "

Xy “QpyL =0, (7.20)
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and the following quadratic conditions
00 ON" il + Xpin 0p" =0, (7.21)
0,70\ QMY =0, (7.22)

where f,,/ are the structure constants of G and Q™" is the symplectic invariant
matrix. In the case of the N = 6 and N = 2 theories, the coset manifold is
SO*(12)/U(6), in which the global symmetry can be identified with the maximal
subgroup SO*(12) x SU(2) of E; ). So that, R = (32,1), Adj(G) = (66,1) + (1,3)
and the decomposition of R x Adj(G) reads

(32,1) x [(66,1) + (1,3)] — (32,1) + (1728,1) + (352,1) + (32,3).  (7.23)

Note that constraint (4.20) states that the representations from the previous decom-

position have a symmetric product of (32,1) , which means that
((32,1) x (32,1) x (32, 1)]sym. — (32,1) + (4224,1) + (1728,1), (7.24)

should vanish. Therefore, we conclude that the generic gaugings in both theories

are defined by an embedding tensor in the following representations:

6,7 € (352, 1)+ (32,3). (7.25)

7.2 N =6 gauged supergravity with SO(2)xSO(6)

gauge group

The only supermultiplet in N = 6 supersymmetry is the gravity multiplet with
the field content

(eft, i, AP AP NABC (A pABed), (7.26)

The components obtained from truncation are described in section 1. The coset

representative in representation 32 of SO*(12) of the form

V1= AteY (7.27)
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can characterize the 30 real scalars in ¢4p,5 as coordinates of the scalar manifold

S0O*(12)/U(6) with the Cayley matrix

1 (T e
A== R (7.28)
2 \Iig —ilhe
and
0 01><15 0 d)CD
v 015%1 0175><15 dap  2eacperd®focp . (7.29)
0 ¢P 0 O1x15
A8 LeABOPEE b 01501 O15x15

We also note that ¢ap = ¢apo is a singlet under SU(2) and ¢4% = (¢45)*. In the
analysis that follows, it is helpful to identify the 16 x 16 submatrices of the VMM by

the identification

Rt h
VM= ( A AA), (7.30)

78
where f, h, f, and h satisfy the relations
(ffH)T = ff,  (hh")” =hh', fhf — fh” = I, (7.31)
ffh —hif = —il,s, f"Th—h7f=0.

We can write the general expression of (VMM)‘1 =1,/ by using the above proper-

ties as

WM = (if ot ) . (7.32)

ifA —ip, 2
The result of the combination of the sixteen electric gauge fields A° and A47 is
AN = (A% A4B). The magnetic dual A, and the gauge fields combine with the

gauge fields into the 32 representation of SO*(12) as
AM = (4% Ay). (7.33)

The relationship between the fermion shift and the embedding tensor is defined via

the T-tensor identity

Ty =V o Xy =V VL VR X T (7.34)
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and we can use the corresponding N = 8 relations and reduce them to the N = 6
theory. The relation between T-tensor and fermion shifts in maximal gauged super-

gravity is written as

Pq _ L(;[qu]

[p
Tz’j,kl = _2\/5 [k 1ij ~ V26 S0

Sy od. (7.35)

J]

Indices i, j, ... are further subdivided into A, B, ... and finally :

8
N = =2v2T,5 5", Nap = *g\/iTC[A,B]E “r, (7.36)
1 V2
A AE A CE
N pop = _2\/§T[CD,B}E [ 15[BNCD]7 Sap = ?TC(A,B)E .

Let us now consider the gauging of G = SO(6) x SO(2). By definition of gauged
generator X, the embedding tensor functions as a mapping of the global symmetry
group into gauged group G. From equation (7.21), we can imply that the gauged

generator forms the algebra:
(X, Xn] = - Xyt Xp. (7.37)

For gauge group G = SO(6) x SO(2) that is embedded electrically in U (6) c SO*(12),
the gauged generator is SO(6) generators. So that the non vanishing components of

P .
tensor X, read:

2 - I J: o J- 2 J-
AXVIlJlJZ‘]?IdJd - 495[[IT6J1“125J§}]’ X11]213J312J2 = _X11J1,I2J215J3' (738)

There are no XA ,," components that couple to magnetic gauge fields, and the in-

dices A, X, ... are split into (0, [1J]).

7.3 N =2 gauged supergravity

In the context of N = 2 supergravity with 15 vector multiplets and gauge group
S0(2)xS50(6), the scalar potential plays a crucial role in understanding the dynamics
of the theory. The scalar potential determines the vacuum structure of the theory

and governs the interactions among the scalar fields.
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The field content in N = 2 gravity multiplet can be shown as
(1% e 2% 0, 1% 437) (7.39)
with 15 vector multiplets

(15 x A8, 30 x x AP, 15 x ¢P). (7.40)

12 )

In N = 2 supergravity with 15 vector multiplets, the scalar fields arise from
the complex scalars in the vector multiplets. These scalar fields parameterize the
scalar manifold .#. In this case, the scalar manifold .# has the same form as in
N = 6 supergravity and is given by

_ 50%(12)

4= 56

(7.41)

The specific form of the scalar manifold reflects the symmetry structure and the

transformation properties of the scalar fields in the theory.

The component of the symplectic section are denoted by

[,A fA )
.U 1. (7.42)
My hoai

where i = 1,2, ..., 15 denote the number of scalar field. In the term of equation (4.30),

1%

we define 16 x 16 matrix as

A hoa;
= (A> , haa = (A ) : (7.43)
L My

the period matrix is now introduced via the relations:

NAE = hAA o (f_l)AZ. (744)

The bosonic Lagrangian of N = 2 gauged supergravity, which shares the same

form as N = 6 supergravity, can be expressed as follows:

1 ) - ; _
e 1L = +oR - VHO'N upi — %(NAZF;;AF*E“” — NasF AR -, (7.45)
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where we define D, = V,, — gA} Xy, as the covariant derivative implementing the
minimal coupling of various fields, and V, is the usual space-time covariant deriva-

tive including the local U(6) composite connection.

For gauging of N = 2 supergravity with gauge group SO(2) x SO(6), we can
write the fermion shift matrix in the form of momentum map P, and killing vector

ki by given

Sap = 3 (0)a ey PA LD (7.46)
Wwieb — (c®), Berape, fhi (7.47)
Wi — %ZAkg = —% FAip,. (7.48)

Here, o, 8 = 1, 2 represents the index of SO(2) group. The complex conjugate of the
fermion shift matrix is denoted by the asterisk *. The scalar potential V' (¢), as given

in equation (7.19), can be expressed in terms of these fermion shift matrices:
_ 1. 4 o
VIV=2) = 65985, 5 + §Ww‘f3W*Za5 + Wi (7.49)

In this expression, the index A, B is mapped to i. The term W W*' represents the
contraction of the complex conjugate of W with W*, and similarly for the other

terms.

In the gauging procedure, we need to find the form of embedding tensor in
equation (7.25), which decompose under compact symmetry group SU(6) x SU(2) x

U(1), given by

(352,1) + (32,3) — (35,1),3 + (21 + 15+ 105, 1),y + (21 + 15 +105,1)_,
+(3757 1)—3 + (173)+3 + (15, 3)+1 + (17 3)—3 + (157 3)—1' (750)

The correspondence of the above representations with the fermion shifts introduced

in (7.12) and ((7.16) is:

N=6:(351)3=Ng" (21+105+15,1)_; = (S48, Np1BY) (7.51)
N=2:(1,3),3=5% (151)_1+ (15,3)_; = N3*15. (7.52)
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From equation (7.52), we write N3®4Z in the term of W4Z and W45 by given
NgaAB = —ClégWAB + CQi(UI)aﬂWABx, (7.53)

where (0%), = (af’f)vﬁemeﬁp. When we substitute equation (7.53) into the scalar

potential (7.19) and map the index [A, B] to i, we obtain the scalar potential (7.49).
Therefore, by using the expressions for the embedding tensor and the correspond-
ing fermion shifts, the scalar potential (7.19) is indeed consistent with the scalar

potential (7.49) when mapping the index [A, B] to i.

The explicit form of momentum map P, and killing vector &% are written as
Pa = fAzA(MAZ + MaLY) (7.54)
kat = ifas®(F Ma + L7ha"), (7.55)
where fyx? is structure constant of SO(6) gauge group.The momentum map P,”

is a constant vector that is related to the embedding tensor P,,*, which map global

symmetry group SU(2) into gauge group. The quadratic conditions impose that
Pru*PnYeqy” = 0. (7.56)

Since the gauge generator of SO(2) is abelian, X3;ny* = 0, the only non-zero mo-

mentum map is Py”, which is given by
Py =07, Pa*=0 for A#0. (7.57)

The gauging of the SU(2)-symmetry by Abelian gauge group (X,;n* = 0) are known
as Fayet-Iliopoulos (FI) gauging.

In the case of a non-Abelian gauge group SO(6), we calculate fermion-shift
matrix using equation (7.54) or (7.55), where the index A,Y,... are mapped into
SO(6) indices [I,J] with I,J = 1,...,6. The structure constants of SO(6) can be

expressed in terms of the gauged generators (7.38) (faz® — X1,7,.5,2,77*), giving us

Proa, =29 [050(F hryg + b g 1) = S00(F by + b g F17)] (7.58)

kro' = —2gi [0r,0(fY7RY, ;4 hy g 170 = S0 0 (FY7 RS + ha g £ (7.59)
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where 17 = f17, = ZU, and hyy = hrjo = M;jy.

Supergravity transformation rules of the Fermi fields can be written as

0P = Dyea + [H™ jweap + iSaptuw] 7€’ (7.60)

Y™ = iDMqﬁify“eo‘ + {(H’iwfy’” + Wi)ea’g + Wmﬁ} €3, (7.61)

where H~,, and H*,, are field strengths associated with the gauge fields, which
will vanish in the BPS equations. The exact expressions for #~,, and H~*,,, depend

on the specific model that can be found in (Trigiante, 2017).

7.4 Holographic RG flows

If conformal fixed points are deformed by the operator Oa, RG flows can oc-
cur, leading to either another conformal fixed point or a field theory that no longer
possesses conformal symmetry. In the context of gauged supergravity, the solutions
that correspond to the conformal field theory (CFT) can be found in the form of do-
main walls, as given by equation (5.35). In this framework, the beta function can be
expressed as

L %, (7.62)
where ¢* are functions of r determined by the conditions that preserve supersym-
metry. These functions describe the RG flow of the scalar fields along the domain
wall solution and play a crucial role in understanding the deformation of conformal

field theories.

To find the domain wall solution in gauged supergravity, we start by consid-
ering the BPS equation. In a vacuum that preserves the Lorentz symmetry of the
supergravity theory, the background fields that do not vanish must be scalas which
are singlets under the Lorentz group. Let ¢§(xz) = (¢°(x)) represent the vacuum

expectation value of the scalar field ¢*(z). The vacuum that preserves Poincare
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symmetry under translations of ¢§ is independent of spacetime coordinates. In this

case, the field equation for ¢*(z) = ¢§ becomes

ov

3753|¢5:¢8 =0, (7.63)
which imposes the condition that the scalar potential V' (¢) has a critical point, cor-
responding to a conformal fixed point by the conjecture of AdS/CFT. The scalar

potential at vacuum V; = V(¢y) is also called as cosmological constant.

In a vacuum state |0) that preserves supersymmetry (¢Q 4 |0) = 0), the super-

symmetry transformation of any field ®(x) is given by
0®(x) = (0] ['Qa, B(2)][0) = 0, (7.64)

where ®(z) represents the field operator associated with @ (). This implies that vac-

uum preserves supersymmetry if supersymmetry transformations of all field vanish.

Indeed, in a supersymmetric vacuum, the fermion fields must vanish, result-
ing in zero supersymmetry transformations for the Bosonic fields. The remaining

condition can be expressed as
d®Pp(x) =0. (7.65)

To verify the preservation of supersymmetry in a vacuum, one can examine the
scalar potential at that vacuum point. For supersymmetry to be preserved, the scalar
potential V' (¢¢) evaluated at the vacuum expectation values ¢, of the scalar potential

should be negative, i.e.,
Vo = V(¢o) < 0. (7.66)

This condition ensures that there is a balance between the bosonic and fermionic

degrees of freedom, indicating the presence of unbroken supersymmetry.

Therefore, at the vacuum, the only non-vanishing bosonic field is the scalar

field. The supersymmetry transformations of the fermionic fields, ¢4, and A;, can
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be written as

5ta = Vyea — gSapue” =0 (7.67)

(5/\[ = gN]AEA = 0, (768)

where S 45 and N, are the matrices that depend on the scalar field ¢°(z) evaluated
at the vacuum expectation values ¢j. These equations represent the supersymmetry

transformations set to zero, and they are known as the BPS equations.

The domain wall metric given by equation (5.35) can be written in terms of

the vielbein as follows:
et = A dpt e = dr, (7.69)

where 4 = 0,1,2 represent the space time indices associated with the three-

dimensional coordinates.

The non-vanishing components of the spin connection can be determined us-

ing the relation

wh” = ¢e¥ (&,ez = Fﬁpez) , (7.70)

where Ty, are the Christoffel symbols associated with the metric. For the domain
wall metric, we find that the non-vanishing component of the spin connection is

given by
Wt = Alelt, (7.71)
where A’ is the derivative of the warp factor A(r) with respect to r.

In the from of Majorana spinor ¢, we can write parameter ¢* and e, as

o= 5 (F ), € = L(1— ), (7.72)

by using Majorna representation that provide all gamma matrices 1 are real, and

75 is imaginary. Therefore, the relation between €* and ¢, is ¢, = (e*)*.
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To satisfy the condition §A* = 0, we introduce the projection condition:
Ae, (7.73)

,YT‘ea — el

where A is a real function. This condition relates the spinor components along the

radial projection. Taking the conjugate of this condition, we have:
Ve = e e (7.74)

These conditions determine the behavior of the spinors along the radial direction

and are used to find the BPS equation for the domain wall.

For convenience, we define superpotential W as eigenvalue of matrix S,z,

given by
4 hm —%W&aﬁ. (7.75)

The superportential depend on scalar field only, which we will show the result in

next chapter.

By using the condition §¢,, = 0 for 4 = 0,1, 2, and employing the expression
for the covariant derivative D,, provided in the Appendix, we obtain the following

equation:
1, 1
§A Vi Vr€a — §W’mea aol (7.76)
Next, we multiply this equation by +# and make use of the projection condition
7'eq = ee®. This yields:
Alett — W =0. (7.77)

This equation provides a constraint on the warp factor A(r) and the superpotential

W, relating them through the phase factor e,

By writing the superpotential W in the form of its absolute value and complex
phase as W = |[W|e™” = We, we can separate the equation (7.77) into its imaginary
and real parts:

e = e = iw, and A =+W. (7.78)
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The previous relation gives the relation between the warp factor and scalar field. The
projection condition 7"¢, = ¢**¢® used in §A** condition determines the dependence
of the scalar fields ¢* on the coordinate r. The explicit forms of the warp factor A(¢)
and the scalar fields ¢'(r) will be determined in the subsequent chapters. These
solutions will provide a complete description of the domain wall configuration in

the theory.



Chapter VIII

DOMAIN WALL SOLUTIONS

In this chapter, we will explore the solutions for the domain wall configura-
tions using the relations derived in the previous chapter. These domain walls serve
as connections between the supersymmetric AdS,; vacuum and either another AdS,
vacuum (if such a vacuum exists) or a singular geometry. These solutions represent
RG flows in the dual UV N = 2 SCFT, indicating transitions either towards another

conformal fixed point or into a non-conformal phase in the IR region.

8.1 Truncation of scalar fields

Truncation of scalar fields in gauged supergravity is a common technique used
to simplify the calculations and focus on specific aspects of the theory. By select-
ing a subset of scalar fields to work with, the complexity of the equations can be
significantly reduced, allowing for more manageable calculations and insights into

the system’s behavior.

The process of truncation involves setting some of the scalar fields to zero or
neglecting their dynamics, effectively reducing the dimensionality of the scalar field
space. This simplification is motivated by the fact that certain scalar fields may be
less relevant to the specific phenomena under investigation or may have negligible

contributions to the observables of interest.

The truncation method based on symmetry considerations allows us to focus
on a specific subset of scalar fields that are singlets under a chosen subgroup of
the gauge symmetry. By selecting these singlet fields and setting the remaining

fields to zero, we simplify the analysis while preserving the self-consistency of the
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truncation.

In this approach, we start by considering a critical point of the scalar potential,
denoted by (¢}, x& = 0), where ¢, represents the scalar fields that are singlets under
the chosen subgroup Hy C SO(2) x SO(6) and x§ are the remaining scalar fields in
arbitrary representations. We then expand the scalar potential V (¢, x) around this
critical point as

ov
99" lo=gi,xe=0

)
& — o)+ 2V e ()

[ (¢)X> i0
OX® | it o
P'=0¢4,x*=0

where Vy = V (¢, xo = 0) is the value of scalar potential at critical point.

The scalar potential for H singlet scalars admits the aforementioned critical

point if the following condition is satisfied:

oV

96 =\, (8.2)

¢>=¢>6,x"=0_
This condition ensures that the potential is stationary at the critical point (¢, x* =
0) with respect to variations in the singlet scalar fields ¢*. Additionally, since y®
are non-singlets of Hy, in order to obtain the scalar potential that is H, invariant,

oV

we must have §%
X

s—sox—o = 0- Therefore, the critical points found within the Hy,
singlet scalars are essentially the critical points of scalar potential on the full scalar

manifold.

In the upcoming sections, we will explore solutions that describe RG flows by
considering the singlet scalar ¢ under SO(2) x SO(4) and U (3), which are subgroup
of SO(2) x SO(4). By focusing on these fields, we can study the transitions between
different phases in the dual UV N = 2 SCFT.
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8.2 SO0O(2)xSO(4) singlet scalars

For SO(2) x SO(4) C SO(6) symmetry, we can express the 15 complex scalars

¢ as pap, of the form
¢an = S(0465 — 0p0%). (8.3)
To further analyze the scalar fields, we write the complex scalars ¢ as:

¢ = g, (8.4)

where ¢ and ¢ are real scalars. The domain wall also imposes that the scalar fields

depend only on the radial coordinate r, such that we can write ¢(r) and ((r).

From equation (7.27) — (7.32), we can define the component of matrices in
equation (7.43) for SO(2) x SO(4) singlet. In this result, the scalar potential can be

written as
V= —%&2[cosh(2cp) +2]. (8.5)

It is noteworthy that the above scalar potential arises solely from the term associated
with the coupling constant ¢ corresponding to the SO(2) gauge group. The term
involving the coupling constant g associated with the SO(6) gauge group vanishes.
This vanishing result is obtained from the calculation of equation (7.58), which is
equal to zero, and from ZAkj\ = 0. Hence, the gauging of SO(6) has no effect on the

scalar potential (8.5) for the SO(2) x SO(4) singlet.

The scalar potential (8.5) has a critical point at ¢ = 0, which corresponds to
a vanishing value for the scalar field. At this critical point, the potential takes the
value Vy(¢ = 0) = —3¢2. This implies that the model, in accordance with the AdS/
CFT correspondence, suggests a dual description in terms of an N = 2 superconfor-
mal field theory (SCFT) in three dimensions. The negative cosmological constant

Vo(p = 0) is a characteristic feature of the AdS geometry.
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The fermions shift matrix S, can be written as,

i& cosh(y)
Spp= -2t o 8.6
5 ol (8.6)
so that the superpotential defined in (7.75) is expressed as
¢cosh(yp)
=" 8.7
4% e (8.7)
Therefore, we can further simplify equation (7.78) to:
A:gf%@ﬁ and =1, (8.8)

We choose the positive value for A’ to ensure that the supersymmetric AdS, critical

point corresponds to r — oco.

The BPS equation corresponding to equation s\, after imposing the projector
(7.73) given by:

e ~ £sinh(p)
\/i )
These equations (8.8) and (8.9) represent the BPS equations that satisfy all the su-

and (' =0. (8.9)

persymmetry conditions. Furthermore, it can be confirmed that these equations also

imply the second-order field equations.

The BPS equations (8.8) and (8.9) can be analytically solved, yielding the fol-

lowing solutions:

ér=v2[In(1+¢%) —In(1 — )] (8.10)
A=p—1In(1-e*) (8.11)

In these equations, we have neglected the constants as they can be absorbed by
shifting the radial coordinate and rescaling the z%!? coordinates, respectively. In
the limit » — oo, we find that

gowe_%rwe_% and A~ \557""’ % (8.12)

where L is the AdS, radius associated with the cosmological constant, given by

_ 3 _ V2
L=y=3- =% (8.13)
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for € > 0.

In the supersymmetric AdS, vacuum, all scalars have masses m2L? = -2,
which corresponds to operators of dimensions A = 1,2 in the dual N = 2 SCFT.
These operators are given by scalar and fermion bilinears (mass terms), respectively.
The mass term for scalars corresponds to an operator with dimension A = 1, while
the mass term for fermions corresponds to an operator with dimension A = 2. These
mass terms play an important role in the dynamics of the dual SCFT and contribute

to the spectrum and correlation functions of the theory.

In the limit » — 0, the solutions in equations (8.10) and (8.11) become:

p~tin(Sr) and A ~1n(Sop), (8.14)

V2 V2
This implies that ¢ diverges as ¢ ~ 4oo near the singularity. The solution then
describes an RG flow from the UV N = 2 SCFT to a non-conformal phase in the
IR. At r — oo, the solution approaches AdS, space, while at » — 0, the solution is
singular. The flow is driven by an operator of dimensions A = 1,2, corresponding to
scalar or fermion mass terms in three dimensions. This non-conformal phase in the
IR reflects the spontaneous breaking of the conformal symmetry and the emergence

of new dynamics in the low-energy regime of the theory.

To ensure that the singularity in the IR of the supergravity solution correctly
corresponds to a sensible RG flow in the quantum field theory (QFT), we can exam-
ine the scalar potential and use the criterion based on (Gubser, 2000). By rewriting
the scalar potential as:

52

V= 1

(72 4 €*% + 4), (8.15)

we observe that at the singularity ¢ — +o0, the scalar potential diverges to negative
infinity (V' — —oo). This indicates that the singularity is physically meaningful in
the context of the dual QFT.
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8.3 U(3) singlet scalars

In this section, we consider scalar fields that are invariant under the U(3) ~

SU(3) x U(1) € SO(6). These scalar can be written in the form:
03% I3
bap = pa Plo = ¢JaB, (8.16)
—@lzxs  O3x3

where I35 is the 3 x 3 identity matrix, and J4p is the Kéhler form of C'P3.

By using the form of scalar (8.4), we obtain the scalar potential as

V= —%8 cosh(2¢p). (8.17)

This potential has a critical point at ¢ = 0 and preserves supersymmetry, with the
vacuum energy Vo = —3¢2. This critical point is dual to an N = 2 SCFT in three

dimensions as in the previous case.

The superpotential, defined as in equation (7.75), can be written as:

W= 4\%@3% [(e2 1) 4 o7 (2 - 1)7] (8.18)

It should be noted that in this case, the superpotential is complex. The condition
§x* = 0 provide
—iN/ N & 3o 9ic [ 4p 3ic\ 20 3iC
e "My £ ') = 8\/§€ (e 1)[<1+6 )e e’ + 11, (8.19)
which imply that ¢’ = 0 for ¢(r) # 0.

The BPS equations for the scalar singlet are given by

(=0 (8.20)
;L e ® (64“’ + 3)

A= (8.21)
SR Cad Gt (8.22)

Y = 2\@
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The solution to these equations is:

£

\ﬁr = tan"'e® — In(1 — e®) 4+ In(1 4 ¢¥) (8.23)
A= 3780 _ %111(1 o), (8.24)

Indeed, the behavior of the solution confirms the presence of singularities at

r = 0. As r approaches 0:

p~InEr) — A~3In(¢r) (8.25)
p~—=InEr) — A~In(r), (8.26)

which leads to the scalar potential

V= 222 (e 4 1) - —co. (8.27)

These singularities are physically meaningful, indicating a breakdown of the confor-
mmal symmetry and suggesting the presence of non-conformal behavior or a phase
transition in the dual field theory. The holographic dual solution describes RG flows
from the UV N = 2 (SCFT) to non-conformal phases in the IR. As in the previous

case, the RG flows are driven by an operator of dimensions A = 1, 2.



Chapter IX

DISCUSSION

9.1 Conclusion

In this work, we have considered a model of N = 2 gauged supergravity with
the gauge group SO(2) x SO(6), which is obtained by truncating N = 8 supergravity
by removing the sixth gravitinos. This model has a holographic dual description to
an N = 2 superconformal field theory (SCFT) in three dimensions. By studying the
scalar fields invariant under SO(2) x SO(4) and U(3), we have found domain wall

solutions that capture the RG flows in the corresponding CFT.

The domain wall solutions exhibit interesting behavior, with the scalar fields
providing the dynamics associated with the SO(2) gauge group. The solutions reveal
RG flows from the UV N = 2 SCFT to non-conformal phases in the IR. The scalar
potentials of both singlet scalars have been shown to be physically sensible based

on criteria established in (Gubser, 2000).

Overall, our work provides insights into the holographic description of RG
flows in N = 2 SCFTs and sheds light on the strongly coupled dynamics of these

theories in the infrared regime.



REFERENCES

Aharony, O., Bergman, O., Jafferis, D. L., and Maldacena, J. 2008. N=6 supercon-
formal Chern-Simons-matter theories, M2-branes and their gravity duals.

JHEP 10 (2008): 091.

Anabalén, A., Astefanesei, D., Choque, D., Gallerati, A., and Trigiante, M. 2021.
Exact holographic RG flows in extended SUGRA. JHEP 04 (2021): 053.

Andrianopoli, L., Bertolini, M., Ceresole, A., D’Auria, R., Ferrara, S., Fre, P., and
Magri, T. 1997. N=2 supergravity and N=2 superYang-Mills theory on
general scalar manifolds: Symplectic covariance, gaugings and the mo-

mentum map. J. Geom. Phys. 23 (1997): 111-189.

Andrianopoli, L., D’Auria, R., Ferrara, S., Grassi, P. A., and Trigiante, M. 20009.
Exceptional N=6 and N=2 AdS(4) Supergravity, and Zero-Center Modules.
JHEP 04 (2009): 074.

Azzurli, F., Bobev, N., Crichigno, P. M., Min, V. S., and Zaffaroni, A. 2018. A
universal counting of black hole microstates in AdS,. JHEP 02 (2018): 054.

Benini, F., Khachatryan, H., and Milan, P. 2018. Black hole entropy in massive
type IIA. Classical and Quantum Gravity 35.3 (jan 2018): 035004.

Bobev, N. and Crichigno, P. M. 2017. Universal RG Flows Across Dimensions and
Holography. JHEP 12 (2017): 065.

Bobev, N., Halmagyi, N., Pilch, K., and Warner, N. P. 2009. Holographic, N=1
Supersymmetric RG Flows on M2 Branes. JHEP 09 (2009): 043.

Bobev, N., Cassani, D., and Triendl, H. 2018. Holographic RG Flows for Four-
dimensional A/ = 2 SCFTs. JHEP 06 (2018): 086.

Borghese, A., Dibitetto, G., Guarino, A., Roest, D., and Varela, O. 2013. The
SU(3)-invariant sector of new maximal supergravity. JHEP 03 (2013): 082.



126

Borghese, A., Pang, Y., Pope, C. N., and Sezgin, E. 2015. Correlation functions
in Omega-deformed N = 6 supergravity. Journal of High Energy Physics
2015.2 (feb 2015):

Cacciatori, S. L. and Klemm, D. 2010. Supersymmetric AdS; black holes and
attractors. JHEP 01 (2010): 085.

Castellani, L., D’Auria, R., and Ferrara, S. 1990. Special Kahler Geometry: An
Intrinsic Formulation From N = 2 Space-time Supersymmetry. Phys. Lett.
B 241 (1990): 57-62.

Corrado, R., Gunaydin, M., Warner, N. P., and Zagermann, M. 2002a. Orbifolds
and flows from gauged supergravity. Phys. Rev. D 65 (2002): 125024.

Corrado, R., Pilch, K., and Warner, N. P. 2002b. An N=2 supersymmetric mem-
brane flow. Nucl. Phys. B 629 (2002): 74-96.

Cortes, V., Mayer, C., Mohaupt, T., and Saueressig, F. 2004. Special geometry
of euclidean supersymmetry i: Vector multiplets. Journal of High Energy

Physics 2004.03 (mar 2004): 028-028.

Cortés, V. and Mohaupt, T. 2009. Special geometry of euclidean supersymmetry
III: the local r-map, instantons and black holes. Journal of High Energy
Physics 2009.07 (jul 2009): 066—066.

Cortés, V., Mayer, C., Mohaupt, T., and Saueressig, F. 2005. Special geometry
of Euclidean supersymmetry II: hypermultiplets and the c-map. Journal of

High Energy Physics 2005.06 (jun 2005): 025-025.

Cortés, V., Dempster, P., Mohaupt, T., and Vaughan, O. 2015. Special geometry of

euclidean supersymmetry iv: the local c-map.

Cremmer, E. and Van Proeyen, A. 1985. Classification of Kahler Manifolds in N =
2 Vector Multiplet Supergravity Couplings. Class. Quant. Grav. 2 (1985):
445.




127

Ciceres, E., Vasquez, R. C., Landsteiner, K., and Landea, I. S. 2023. Holographic

a-functions and boomerang rg flows.

Dall’Agata, G., Inverso, G., and Trigiante, M. 2012. Evidence for a family of SO(8)
gauged supergravity theories. Phys. Rev. Lett. 109 (2012): 201301.

Dall’Agata, G. and Gnecchi, A. 2011. Flow equations and attractors for black holes
in N = 2 U(1) gauged supergravity. JHEP 03 (2011): 037.

Dall’Agata, G., Inverso, G., and Marrani, A. 2014. Symplectic Deformations of
Gauged Maximal Supergravity. JHEP 07 (2014): 133.

Dall’Agata, G., Liatsos, N., Noris, R., and Trigiante, M. 2023. Gauged D =4 N =
4 supergravity. JHEP 09 (2023): 071.

David, M., Ezroura, N., and Larsen, F. 2023. The attractor flow for AdS; black
holes in N/ = 2 gauged supergravity. JHEP 08 (2023): 090.

de Wit, B. and Nicolai, H. 1982. N=8 Supergravity. Nucl. Phys. B 208 (1982): 323.

de Wit, B. and Nicolai, H. 1987. The Consistency of the S7 Truncation in D=11
Supergravity. Nucl. Phys. B 281 (1987): 211-240.

de Wit, B. and Van Proeyen, A. 1984. Potentials and Symmetries of General Gauged
N=2 Supergravity: Yang-Mills Models. Nucl. Phys. B 245 (1984): 89-117.

de Wit, B., Lauwers, P. G., Philippe, R., Su, S. Q., and Van Proeyen, A. 1984.
Gauge and Matter Fields Coupled to N=2 Supergravity. Phys. Lett. B 134
(1984): 37-43.

de Wit, B., Lauwers, P. G., and Van Proeyen, A. 1985a. Lagrangians of N=2
Supergravity - Matter Systems. Nucl. Phys. B 255 (1985): 569-608.

de Wit, B., Nicolai, H., and Warner, N. P. 1985b. The Embedding of Gauged N=8
Supergravity Into d=11 Supergravity. Nucl. Phys. B 255 (1985): 29-62.



128

de Wit, B. and Nicolai, H. 2013. Deformations of gauged SO(8) supergravity and
supergravity in eleven dimensions. Journal of High Energy Physics 2013.5

(may 2013):

de Wit, B., Samtleben, H., and Trigiante, M. 2003. On lagrangians and gaugings of
maximal supergravities. Nuclear Physics B 655.1-2 (apr 2003): 93-126.

de Wit, B., Samtleben, H., and Trigiante, M. 2005. Magnetic charges in local field
theory. Journal of High Energy Physics 2005.09 (sep 2005): 016-016.

de Wit, B., Samtleben, H., and Trigiante, M. 2007. The Maximal D=4 supergravi-
ties. JHEP 06 (2007): 049.

Derendinger, J. P., Ferrara, S., Masiero, A., and Van Proeyen, A. 1984. N =1
Formulation of General N = 2 Yang-Mills Supergravity Couplings. Phys.
Lett. B 140 (1984): 307-312.

Duff, M. and Liu, J. T. 1999. Anti-de Sitter black holes in gauged N = 8 supergravity.
Nuclear Physics B 554.1-2 (aug 1999): 237-253.

Fischbacher, T., Pilch, K., and Warner, N. P. 2010. New supersymmetric and stable,

non-supersymmetric phases in supergravity and holographic field theory.

Fré, P., Giambrone, A., Ruggeri, D., Trigiante, M., and Vasko, P. 2022. Gauged
N=3, D=4 supergravity: A new web of marginally connected vacua. Phys.
Rev. D 106.6 (2022): 066012.

Freedman, D. Z., Gubser, S. S., Pilch, K., and Warner, N. P. 1999. Renormalization
group flows from holography supersymmetry and a c theorem. Adv. Theor.

Math. Phys. 3 (1999): 363-417.

Freedman, D. Z. and Van Proeyen, A. 2012. Supergravity. Cambridge Univ. Press,
Cambridge, UK. ISBN 978-1-139-36806-3, 978-0-521-19401-3.

Gall, L. and Mohaupt, T. 2018. Five-dimensional vector multiplets in arbitrary

signature. Journal of High Energy Physics 2018.9 (sep 2018):




129

Gallerati, A., Samtleben, H., and Trigiante, M. 2014. The N > 2 supersymmet-
ric AdS vacua in maximal supergravity. Journal of High Energy Physics

2014.12 (dec 2014):

Gauntlett, J. P., Kim, N., Pakis, S., and Waldram, D. 2002. Membranes wrapped
on holomorphic curves. Phys. Rev. D 65 (2002): 026003.

Godazgar, H., Godazgar, M., and Nicolai, H. 2013. Testing the nonlinear flux ansatz
for maximal supergravity. Physical Review D 87.8 (apr 2013):

Godazgar, H., Godazgar, M., Kriiger, O., and Nicolai, H. 2015. Consistent 4-form
fluxes for maximal supergravity. JHEP 10 (2015): 169.

Gowdigere, C. N. and Warner, N. P. 2003. Flowing with eight supersymmetries in
M theory and F theory. JHEP 12 (2003): 048.

Guarino, A. 2017. BPS black hole horizons from massive IIA. Journal of High
Energy Physics 2017.8 (aug 2017):

Guarino, A. and Sterckx, C. 2021. S-folds and holographic RG flows on the D3-
brane. JHEP 06 (2021): 051.

Guarino, A. and Tarrio, J. 2017. BPS black holes from massive IIA on S6. JHEP
09 (2017): 141.

Guarino, A. and Tarrio, J. 2017. BPS black holes from massive IIA on S°. Journal
of High Energy Physics 2017.9 (sep 2017):

Gubser, S. S., Klebanov, 1. R., and Polyakov, A. M. 1998. Gauge theory correlators
from noncritical string theory. Phys. Lett. B 428 (1998): 105-114.

Gubser, S. S. 2000. Curvature singularities: the good, the bad, and the naked.

Gunaydin, M., Sierra, G., and Townsend, P. K. 1984. The Geometry of N=2
Maxwell-Einstein Supergravity and Jordan Algebras. Nucl. Phys. B 242
(1984): 244-268.




130

Halmagyi, N. 2014. BPS black hole horizons in N=2 gauged supergravity. Journal
of High Energy Physics 2014.2 (feb 2014):

Halmagyi, N., Petrini, M., and Zaffaroni, A. 2013. BPS black holes in AdS, from
M-theory. Journal of High Energy Physics 2013.8 (aug 2013):

Hosseini, S. M., Hristov, K., and Passias, A. 2017. Holographic microstate counting
for AdS, black holes in massive IIA supergravity. Journal of High Energy
Physics 2017.10 (oct 2017):

Hristov, K. and Vandoren, S. 2011. Static supersymmetric black holes in AdS, with

spherical symmetry. Journal of High Energy Physics 2011.4 (apr 2011):

Itoyama, H., McLerran, L. D., Taylor, T. R., and van der Bij, J. J. 1987. N=2 No
Scale Supergravity. Nucl. Phys. B 279 (1987): 380—400.

Karndumri, P. 2016. Holographic RG flows in N=3 Chern-Simons-Matter theory
from N=3 4D gauged supergravity. Physical Review D 94 (01 2016):

Karndumri, P. 2014. N = 250(4) 7D gauged supergravity with topological mass
term from 11 dimensions. JHEP 11 (2014): 063.

Karndumri, P. 2015. Noncompact gauging of N=2 7D supergravity and AdS/CFT
holography. JHEP 02 (2015): 034.

Karndumri, P. 2017. Supersymmetric AdSs x X9 solutions from tri-sasakian trun-

cation. The European Physical Journal C 77.10 (oct 2017):

Karndumri, P. 2018a. Gauged Supergravity and AdS/CFT Correspondence.
DANEX INTERCORPORATION.

Karndumri, P. 2018b. General Relativity. DANEX INTERCORPORATION.

Karndumri, P. and Maneerat, C. 2021. Supersymmetric Janus solutions in w-

deformed N = 8 gauged supergravity. Eur. Phys. J. C 81.9 (2021): 801.

Karndumri, P. and Seeyangnok, J. 2021. Supersymmetric solutions from n = 6

gauged supergravity. Physical Review D 103 (03 2021):




131

Karndumri, P. and Upathambhakul, K. 2018. Holographic RG flows in N=4 SCFTs
from half-maximal gauged supergravity. The European Physical Journal C

78.8 (aug 2018):

Maldacena, J. 1999. International Journal of Theoretical Physics 38.4 (1999):
1113-1133.

Maldacena, J. M. and Nunez, C. 2001. Supergravity description of field theories
on curved manifolds and a no go theorem. Int. J. Mod. Phys. A 16 (2001):
822-855.

Nicolai, H. and Pilch, K. 2012. Consistent Truncation of d = 11 Supergravity on
AdS, x S7. JHEP 03 (2012): 099.

Ortin, T. 2015. Gravity and Strings. Cambridge Monographs on Mathemat-

ical Physics. Cambridge University Press, 2nd ed. edition. ISBN 978-
0-521-76813-9, 978-0-521-76813-9, 978-1-316-23579-9. doi: 10.1017/
CB0O9781139019750.

Pang, Y., Pope, C. N., and Rong, J. 2015a. Holographic RG flow in a new SO(3) x
SO(3) sector of w-deformed SO(8) gauged N' = 8 supergravity. JHEP 08
(2015): 122.

Pang, Y., Pope, C. N., and Rong, J. 2015b. Holographic RG flow in a new SO(3)
x SO(3) sector of omega-deformed SO(8) gauged supergravity. Journal of
High Energy Physics 2015.8 (aug 2015):

Pilch, K., Tyukov, A., and Warner, N. P. 2015. Flowing to Higher Dimensions: A
New Strongly-Coupled Phase on M2 Branes. JHEP 11 (2015): 170.

Pilch, K., Tyukov, A., and Warner, N. P. 2016. N = 2 Supersymmetric Janus
Solutions and Flows: From Gauged Supergravity to M Theory. JHEP 05
(2016): 005.

Roest, D. and Samtleben, H. 2009. Twin Supergravities. Class. Quant. Grav. 26
(2009): 155001.




132

Sabra, W. A. 2017. Special geometry and space—time signature. Phys. Lett. B 773
(2017): 191-195.

Schwarz, J. H. 2004. Superconformal Chern-Simons theories. JHEP 11 (2004):
078.

Seiberg, N. and Witten, E. 1994a. Electric-magnetic duality, monopole condensa-
tion, and confinement in N=2 supersymmetric Yang-Mills theory. Nuclear

Physics B 426.1 (sep 1994): 19-52.

Seiberg, N. and Witten, E. 1994b. Monopoles, duality and chiral symmetry break-
ing in N=2 supersymmetric QCD. Nucl. Phys. B 431 (1994): 484-550.

Suh, M. 2018. Supersymmetric Janus solutions of dyonic 7.50(7)-gauged NV = 8
supergravity. JHEP 04 (2018): 109.

Tarrio, J. and Varela, O. 2013. Electric/magnetic duality and rg flows in ads4/cft3.
Journal of High Energy Physics 2014 (11 2013):

Tarrio, J. and Varela, O. 2014. Electric/magnetic duality and RG flows in AdS,/
CFTs. JHEP 01 (2014): 071.

Trigiante, M. 2017. Gauged supergravities. Physics Reports 680 (mar 2017): 1-
175.

Wagemans, P. 1988. Breaking of N = 4 Supergravity to N =1, N =2 at A = 0.
Phys. Lett. B 206 (1988): 241-246.

Warner, N. P. 1984. Some Properties of the Scalar Potential in Gauged Supergravity
Theories. Nucl. Phys. B 231 (1984): 250-268.

Witten, E. 1998. Anti de sitter space and holography.



Appendix I

ADDITIONAL THEORIES AND NOTATION

A.1 Electromagnetic duality

In a four-dimensional spacetime, the 2-form Hodge duality provides a 2-form.

This allows us to define the dual tensor of the tensor H,, as

Hyy = —i(+H) = _%EWUHPU, (A.1)

where * denotes the Hodge dual x(xH) = +>H = —H and p,v are indices for the

spacetime coordinates.

From the definition of A .w»> We can construct linear combinations

1 -
Hygy = 5 (Hyy &= ), (A.2)
which satisfy (H*)*, = H,, and
BRIVl (A.3)
Tensor H,, and H,, are called self-dual tensor and anti-self-dual tensor, respec-
tively.

Let G, be another anti-symmetric tensor with G, defined as in (A.2). We

have the following relations:

GrLH™ =0 and G"H,, =—-G"H,,. (A.4)
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Duality for one free electromagnetic field
In the simplest case, namely a single free gauge field, the Maxwell and Bianchi
equations become
O, F"™ =0, and 9,F" =0, (A.S)

note that Bianchi equations is in the form 0, F" = —£e#P7 9, F,,) = 0.

In this form, the Maxwell and Bianchi equations take the same form. Further-

more, these equations also transform under
FHY Ly BB — PR (A.6)
In the form of electric and magnetic fields, the previous transformation provides
E,=-B; and B,=E;, (A7)
where E' = F% and B; = Je;;, F*.

Furthermore, this symmetry cannot be elevated to the level of the vector po-

tential, which suggests that the duality symmetry is only an on-shell symmetry.

A.2 Nonlinear sigma model

The nonlinear sigma model is a theory that describes the nonlinear interaction
of n scalar fields ¢‘(x),i = 1,...n, expressed in terms of the action on Minkowski

spacetime
1 . .
S=-3 / 04 5g:7(6) 00 Dy " (A-8)

where g;; is n x n. In the event that g;;(¢) = d;;, the action provides the theory
that explains free scalar fields. The nonlinear sigma model can be used to describe

the behavior of the pions, which are the lightest mesons composed of quarks and
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antiquarks. Pions are not fundamental particles, but are instead composite parti-
cles made up of quarks and gluons, and the nonlinear sigma model can be used to

describe their interactions.

In mathematics, the field ¢‘(z) is a mapping from the spacetime into a target
manifold, which has a metric tensor g;;(¢) and coordinates represented by ¢*. The

variation of the action leads to the field equation, which can be expressed as
00"’ + T30,/ 0"F = 0, (A.9)
where F;ﬁ ., are the Christoffel symbols, defied as
= %Qil(ajgkl + Okgji — 0195k, (A.10)

where ¢% is the inverse metric tensor, and 9; denotes the partial derivative with

respect to the coordinate ¢’ on the target manifold.

The field equation A.9 is covariant under the transformation

= ¢"(¢) (A.11)
if g;; transforms as
Vo B¢k o¢t
01s(0) = 5o 5 a(9) (A12)

This transformation is called a diffeomorphism on the target manifold, which is a
smooth invertible map between two manifolds that preserves differentiable struc-

ture.

If metric tensor g;; is invariant under transformation A.11, wriiten as

/

9:;(8") = gi;(9), (A.13)

this transformation will be isometry of target manifold and symmetry of action.

This symmetry can be written as

' = ¢ + 09k (o). (A.14)
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Using the transformation law of the metric tensor A.12 and expanding A.13 to first

order, we can express the variation of the metric tensor as:
89i(9) = 9i;(0) — 9i () = —0° Lk, 9i5(¢) = 0, (A.15)
where .7}, g;; is Lie derivative in the direction of £, defined as
L, i = KL Ougi; + ikl gii + 0,k gui. (A.16)

Using the relation V;g;; = 0, the condition of isometry transformation can be ex-

preesed as
Vikaj + Vjka; =0, (A.17)
where
kai = Kigij and  Vikaj = Oikaj — Tljkar. (A.18)
The equation A.17 is called killing equation, and the generator k¢ is killing vector.

Notice that equation A.14 is internal symmetry and transformation of ¢ be-

comes
5ot = 0ok (A.19)
The action A.8 is invariant under this transformation, which can be verified by using
relation 6g;; = dxg;;64" and §0,¢' = 629, k%. The variation of A.8 becomes
1 o o o
08 =~ / d*z6" [akgijk’;waw + 9ij 00" (Onki, 0" + Ok 0" ")
1 A A
= —5 /d%&“fkagij@uqﬁ’a“gbj
= —% / d* 20 (Vikaj + V jkai)0pd' 0" ¢
=0 (A.20)

To find Neother current, using relation §¢' = 6V ,¢' = 0%k} shown that

Tt = s Vad = ghi0P 0 = k"6 (A21)
“w
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A.3 Notations in the coset manifolds

SU(2) and Sp(2Kk) metrics

The flat SU(2) and Sp(2k) metrics satisfy:

60"86,37 = —05, P =B 2=y =41 (A.22)

C*Cpy = —02

’y?

C¥=C=-CP* CR2=Cy=+1 (A.23)
For any SU(2) vector V,, we have:

€apV?P = Va, (A.24)

By = v (A.25)

Pauli matrices

The standard Pauli matrices (¢%),”, which z = 1,2, 3 can be written as

(V) = (O 1), (02)a” = (0 Z) (03" = (1 0). (A.26)
1 0 i 0 0 -1

The matrices with two indices at the same level are defined as follows:

(O'x)aﬂ = (am)aﬂyeﬂ'y; (A.27)
(0%)F = (0"), e, (A.28)

(05)" = —(o)*". (A.29)
Finally, we define (¢%) ; as

(0%) 5 = —€7(0%)5. (A.30)



N = 6 supergravity coset manifold
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In the previous review, it was established that the bosonic sector of N = 2

supergravity is equivalent to N = 6 supergravity, which consists of 30 scalar fields

that parametize the coordinates of the coset manifolds SO*(12)/U(6). In this sec-

tion, we will examine additional relations, which were not presented in the previous

chapter.

The complex self-dual and anti-self-dual gauge field strengths are defined by

1 0}
+A A A
F/Ll/ — 5 (F/ﬂ, e iél“,ng p0>
with F, given by

v

F) = 0,A) — 0,A) + X" AL AT

The chiralities of the fermionic fields

VsWua = =Vpayr — Vs Xai = Xoi-

~ ~ *
The tensors F 4 = (F,;,AB ) can be obtained from

p—AB _y, ABA—M
F7=VYu""G,

FA
M _ 124
aM —
GA}LV

and G, = z’eu,,pga%%. Similarly, we have Ff, = (V),G.M)".

pv

with

The covariant derivative of ¢4 is defined by

1 1
Dyea = Ouen + szb'yabeA + iQEAGB'
The connection @47 is given by
29 - _
Qua® = % (haac0u f*% — 2 4c0,hnB9) — g AN Qura®

3

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)
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with Q4 ? obtained from
Quas” = Vap" XnpN VNP (A.38)

by the relation Q45" = 46[[§QMB] D],

A.4 N =2 Momentum Map and Killing Vector

From gauge generator:

Xn0,00,"" = 495[[ff5J1][125§§}]= Xrn" %, = = X0 nn"". (A.39)

we can show that
Prog, =29 [65,0(f" hayg + hr g 7)) = 61,0 (F Ry + B £ (A.40)
krg' = =2gi [6r,1(fY7 R + b 170 = S0 (F1 Y, 5 + b g 179 (A41)

by the following. First, we start with the expanding of (A.39) written as

X1, 10,7 :g 001, (0267 — 67205 ) + 6,0, (0072 — 672672) (A.42)

+ 01,1, (87005, — 85 672) + 01,5, (8557 = 53:57)|
and substitute (A.42) into (4.54):

IsJs (1 I.J. Z12J2
Pra = X010, 2 (hr g, £ + hig, f

)

Prg, = g [5J1[2 (5%65; - 5}]135§2) + 050 (6}]135{2 - 5{35{:)
+ 81, (0728% — 8569 4 67,4, (05 6 — 6 5};)} R, 0, £
8806103 - 61:0%) + 0105201 - o)

—I>Js

+ 01,0, (8705 — 65:67) + 01,1, (87207 — 87 6}z>} higs, f

=29 [65,0(f" hr g+ hr, s ) = 10 (F by + by s f17)] (A.43)
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In the last step we use the property of ant-symmetric tensor f// = — f/!. For killing

vector, we obtain from (4.55) shown as
) . a2 J- *Izjz i *12172* ]
kng' = iXn 560" (F " by, + F R, (A.44)

and follow the calculation as the same as (A.43) to get (A.40)
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