VEGETATION DYNAMICS AND SEA-LEVEL CHANGES IN THE UPPER GULF OF THAILAND

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Earth Sciences Department of Geology Faculty Of Science Chulalongkorn University Academic Year 2023 พลวัตของพืชพรรณและการเปลี่ยนแปลงของระดับน้ำทะเลบริเวณอ่าวไทยตอนบน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาโลกศาสตร์ ภาควิชาธรณีวิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2566

Thesis Title	VEGETATION DYNAMICS AND SEA-LEVEL CHANGES IN THE	
	UPPER GULF OF THAILAND	
Ву	Miss Dissaya Sukaudom	
Field of Study	Earth Sciences	
Thesis Advisor	Assistant Professor AKKANEEWUT JIRAPINYAKUL, Ph.D.	
Thesis Co Advisor	Assistant Professor Paramita Punwong, Ph.D.	

Accepted by the FACULTY OF SCIENCE, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

	- 4 N M M M M M M M M M M M M M M M M M M	
		Dean of the FACULTY OF SCIENCE
	(Professor PRANUT POTIYARAJ, Ph.D.)
THESIS COMMITT	EE	Chairman
	(Professor SRILERT CHOTPANTARAT,	
	<u></u>	Thesis Advisor
	(Assistant Professor AKKANEEWUT JIF	RAPINYAKUL, Ph.D.)
	6	Thesis Co-Advisor
	(Assistant Professor Paramita Punwong	g, Ph.D.)
	จุฬาลงกรณ์มหาวิท	Examiner
	(Professor SANTI PAILOPLEE, Ph.D.)	VERSITY
		External Examiner
	(Trongjai Hutangkura, Ph.D.)	

ดิษยา สุขอุดม : พลวัตของพืชพรรณและการเปลี่ยนแปลงของระดับน้ำทะเลบริเวณอ่าวไทย ตอนบน. (VEGETATION DYNAMICS AND SEA-LEVEL CHANGES IN THE UPPER GULF OF THAILAND) อ.ที่ปรึกษาหลัก : ผศ. ดร.อัคนีวุธ จิรภิญญากุล, อ.ที่ปรึกษาร่วม : ผศ. ดร.ปรมิ ตา พันธ์วงศ์

การเปลี่ยนแปลงสภาพภูมิอากาศมีบทบาทสำคัญต่อการรุกเข้าและถดถอยของระดับน้ำทะเลซึ่ง สามารถนำไปสู่วิวัฒนาการของแนวชายฝั่ง จากการที่จังหวัดสมุทรสาครตั้งอยู่ในเขตชายฝั่งทะเลในพื้นที่อ่าว ไทยตอนบน ดังนั้นการศึกษาการเปลี่ยนแปลงของระดับน้ำทะเลในอดีตบริเวณนี้จึงสามารถเพิ่มความเข้าใจ เกี่ยวกับพลวัตของตะกอนและพัฒนาการของแนวชายฝั่งทะเลได้ จากพื้นที่ศึกษาสามารถแบ่งลำดับตะกอน ออกเป็น 9 หน่วยจากความลึก 25.5-7.2 เมตรจากผิวดิน การวิเคราะห์ค่าที่หายไปจากการเผา อัตราส่วน ไทเทเนียมต่อแคลเซียม อัตราส่วนเซอร์โคเนียมต่อรูบิเดียม ขนาดของตะกอน และเรณูวิทยา ถูกนำมาตีความ ร่วมกับการหาอายุของเรดิโอคาร์บอน โดยสามารถจำลองสภาพแวดล้อมในอดีตออกเป็น 2 ช่วง ได้แก่ ช่วงยุค ไพลสโตชีนตอนปลาย (26,500-22,700 ปีมาแล้ว) โดยที่ช่วงเวลานี้พื้นที่ของสมุทรสาครอยู่เหนือ ระดับน้ำทะเล และช่วงยุคโฮโลชีนตอนกลางถึงตอนปลาย (5,400-1,100 ปีมาแล้ว) สภาพแวดล้อมในพื้นที่ ศึกษามีลักษณะเป็นป่าชายเลนเนื่องจากเพิ่มขึ้นของระดับน้ำทะเลในช่วง 5,400-4,400 ปีมาแล้ว หลังจากนั้น ระดับน้ำทะเลลดลงทำให้สภาพแวดล้อมเปลี่ยนจากป่าชายเลนเป็นแบบหลังป่าชายเลนในช่วง 4,400-4,200 ปีมาแล้ว และพื้นที่ชุ่มน้ำในช่วง 4,200-2,300 ปีมาแล้ว ก่อนที่ระยะต่อมาระดับน้ำทะเลจะเพิ่มสูงขึ้นอีกครั้ง ทำให้สภาพแวดล้อมในพื้นที่สมุทรสาครเปลี่ยนนึนพื้นที่น้ำกร่อยในช่วง 2,300-1,100 ปีมาแล้ว สำหรับ งานวิจัยในอนาคต ควรมีการบูรณาการร่วมกันของระดับที่ได้จากเครื่องวัดระดับอัตโนมัติและระบบบอก ตำแหน่งโดยใช้พิกัดอ้างอิงเพื่อลดความคลาดเคลื่อนของข้อมูลและระดับที่ได้จามด่าม่าเรื่อถืมตร์จากติ้น

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

สาขาวิชา โลกศาสตร์ ปีการศึกษา 2566

ลายมือชื่อนิสิต
ลายมือชื่อ อ.ที่ปรึกษาหลัก
ลายมือชื่อ อ.ที่ปรึกษาร่วม

6470095223 : MAJOR EARTH SCIENCES

KEYWORD:

Dissaya Sukaudom : VEGETATION DYNAMICS AND SEA-LEVEL CHANGES IN THE UPPER GULF OF THAILAND. Advisor: Asst. Prof. AKKANEEWUT JIRAPINYAKUL, Ph.D. Co-advisor: Asst. Prof. Paramita Punwong, Ph.D.

Climate change plays a role in sea level fluctuation, either transgression or regression leads to coastline evolution. Samut Sakhon province is located on the coast in the upper Gulf of Thailand therefore past sea-level studies in this area can contribute information to a better understanding of sediment dynamics and assess future coastline development. The study site provides sedimentary sequences consisting of 9 sediment units from 25.5-7.2 m. DBS, results of LOI, Ti/Ca, and Zr/Rb ratio, grain size, and pollen analysis were interpreted together with radiocarbon dating to reconstruct past environments in the study site. The past environment in Samut Sakhon site can divided into two parts in the late Pleistocene (26.5-22.7 cal ka BP), Samut Sakhon was temporal exposure during dry conditions, and in the mid/late Holocene (5.4-1.1 cal ka BP), mangrove forests grew due to sea level transgression at 5.4-4.4 cal ka BP before being transferred into the back-mangrove forest at 4.4-4.2 cal ka BP and wetland during sea level regression at 4.2-2.3 cal ka BP, respectively. Samut Sakhon site was likely to be a brackish area thereafter at 2.3-1.1 cal ka BP. To improve the level accuracy and decrease data discrepancies, autonomous level monitoring, and differential global positioning systems should be used in combination with future research.

Chulalongkorn University

Field of Study: Academic Year: Earth Sciences 2023

Student's Signature Advisor's Signature Co-advisor's Signature

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my thesis advisor, Assistant Professor Akkaneewut Jirapinyakul, Ph.D. for his invaluable help and constant encouragement throughout the course of this research. I am most grateful for his advice and guidelines not only research methodologies but also many other methodologies in life. I would not have achieved this far without all the support that I have always received from him.

Moreover, I am grateful for the advice and knowledge of palynological study and laboratory techniques that I received from my co-advisor, Assistant Professor Paramita Punwong, Ph.D. from the Faculty of Environment and Resource Studies, Mahidol University.

Finally, I am most grateful for the support from my family and friends who assisted me throughout the period of this research.

Dissaya Sukaudom

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

TABLE OF CONTENTS

	Page
	iii
ABSTRACT (THAI)	iii
	iv
ABSTRACT (ENGLISH)	iv
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	
LIST OF TABLES	ix
LIST OF FIGURES	х
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Research objectives	2
1.3 Scope of the study	2
CHULALONGKORN UNIVERSITY 2.1 Mangrove response	
2.2 History of sea level changes in the Gulf of Thailand	5
2.3 Study area	13
CHAPTER 3 METHODOLOGY	
3.1 Sample collection	18
3.2 Laboratory works	20
3.2.1 X-Ray fluorescence	
3.2.2 Loss on ignition (LOI)	

3.2.3 Grain Size Analysis	29
3.2.4 Pollen analysis	32
3.2.5 Radiocarbon dating	
CHAPTER 4 RESULTS	37
4.1 Stratigraphic Description of Samut Sakhon Site	37
4.2 Loss on ignition (LOI)	47
4.3 Grain size analysis	
4.4 X-ray Fluorescence (XRF)	51
4.5 Palynology	58
4.6 Chronology	
CHAPTER 5 DISCUSSION	67
5.1 Environmental reconstruction during the late Pleistocene	67
5.2 Environmental Reconstruction during the mid/late Holocene	68
5.3 Unconformity of the sedimentary sequence	70
5.4 Recommendation	70
CHAPTER 6 CONCLUSION AND RECOMENDATION	74
REFERENCES	76
APPENDICES	
APPENDIX A LOSS ON IGNITION	81
APPENDIX C X-RAY FLUORESCENCE DATA	
APPENDIX D RATIOS OF Ti/Ca AND Zr/Rb DATA	100
APPENDIX E PALYNOLOGY	103
VITA	110

LIST OF TABLES

Page
Table 1 Tidal inundation class from Watson (1928) 3
Table 2 Mangrove tree and shrub distribution in Thailand based on Watson's (1928) 4
Table 3 Summary table of samples analyzed in the laboratory 21
Table 4 Lithostratigraphic description of sediment sequence of the open pit at Samut
Sakhorn consist of 9 unit and 14 layers
Table 5 Total Variance Explained from PCA Analysis
Table 6 Rotated Component Matrix from PCA analysis. 56
Table 7 Pollen assemblage of the sediment sequence of the open pit at Samut Sakhon.
Table 8 14C dated from bulk sediment and shell samples for Samut Sakhon site 64

ix

LIST OF FIGURES

Figure 1 A relative sea-level curve (a) based on sea-level index points compiled from
the Bonaparte Gulf, north Australia (Yokoyama et al., 2000), the Sunda Shelf (Hanebuth
et al., 2000), and the Strait of Malacca (Geyh et al., 1979). A new record (b) from
Singapore (Bird et al., 2010) shows that sea-level rise slowed down around 8000 years
BP and accelerated around 7500 years BP (Zong, 2013)
Figure 2 Reconstruction of sea level history for the past 21 ka showing all data recently
available from the Sunda core region. Data compiled from Geyh et al. (1979) (orange;
Strait of Malacca), Hesp et al. (1998) (purple; Singapore), and Hanebuth et al. (2009)
(black; Sunda Shelf) (Hanebuth et al., 2011)
Figure 3 Paleogeographic map shows the old coastal in the Chao Phraya delta,
Thailand (Somboon & Thiramongkol, 1992) 10
Figure 4 Paleogeography map at 8.0-7.0 cal ka BP and at 2.0-1.0 cal ka BP of the
Lower Central Plain in Thailand (Hutangkura, 2012) 11
Figure 5 Comparison of sea-level curves from Southeast Asia and the South China Sea
with the levels of sea notch (left), the white dash line show the proposed sea-level curve
from Sam Roi Yot National Park, Thailand (Surakiatchai et al., 2018)
Figure 6 Holocene sea-level curve for Thailand using mean local sea level (Sinsakul
1992)
Figure 7 (a) Location map of the study site on Samut Sakhon province in the upper Gulf
of Thailand, (b) study site is an open pit in Samut Sakhon province
Figure 8 The open pit and the environment surrounding in Samut Sakhon (a) facing
southwest, (b) facing south
Figure 9 Geological map shows the Quaternary deposits in the Lower Central Plain, the
Gulf of Thailand (Sinsakul, 2000)

Figure 10 Satellite image from Google Earth showing 4 sampling size zones in the
yellow dot in the open pit
Figure 11 Sampling method using PVC tube hammering into sediment every 10 cm
interval
Figure 12 (a) Sediment sample in plastic crucible for XRF measurement, (b) handheld
X-ray fluorescence analyzer model Olympus Vanta XRF series
Figure 13 Crucible in a furnace for Loss on ignition analysis
Figure 14 (a) The process of pretreating sediment sample with H_2O_2 to eliminate
organic content, (b) Horiba model Partica LA-960V2 Laser Scattering Particle Size
Distribution Analyzer
Figure 15 The process of preparing the sample for pollen sample analysis, (a)
sediment samples digestion by KOH and heat with a hot plate, (b) sample sieving
sample through 0.2 mm mesh, (c) pollen samples mouthed on glass slides using
Paraffin
Figure 16 (a) Shell sample for radiocarbon dating after being cleaned by deionized
water and dry, (b) bulk sediment sample in foil package prepared for sent to dating 36
Figure 17 The well compaction light grey clay of unit A
Figure 18 The brown silty clay of Unit B
Figure 18 The brown silty clay of Unit B. 38 Figure 19 The grey clayey silt with purple oxidized surface of unit C. 39
Figure 19 The grey clayey silt with purple oxidized surface of unit C
Figure 19 The grey clayey silt with purple oxidized surface of unit C
Figure 19 The grey clayey silt with purple oxidized surface of unit C
Figure 19 The grey clayey silt with purple oxidized surface of unit C

Figure 25 The shell layer presence in units G to I
Figure 26 Lithostratigraphic column of sediment sequence of the open pit at Samut
Sakhon
Figure 27 Comparison of lithostratigraphy (left), and profile of LOI550 (middle) and
LOI950 (right) of sediment sequence of the open pit at Samut Sakhon
Figure 28 The lithostratigraphic column and percentage of sand, silt, and clay
components, and volume metric mean grain size of the sediment sequence of the open
pit at Samut Sakhon
Figure 29 The lithostratigraphic column and concentration of selected elements of the
sediment sequence of the open pit at Samut Sakhon
Figure 30 Component plot of elements in rotated space from PCA analysis
Figure 31 The lithostratigraphic column and variations of Zr/Rb and Ti/Ca ratios of the
sediment sequence of the open pit at Samut Sakhon
Figure 32 Percentage of pollen assemblage in the sediment sequence of the open pit
at Samut Sakhon, red dash shows the boundary of pollen zone
Figure 33 Age-depth relationship curve of sedimentary sequences below the hiatus in
the late-Pleistocene, yellow dot show dating result from 25.50, 22.06, and 18.47 m DBS.
GHULALONGKORN UNIVERSITY 65
Figure 34 Age-depth relationship curve of sedimentary sequences upper the hiatus in
the mid/late Holocene, yellow dot show dating result from 14.89, 13.78, 11.66, and 7.54
m DBS
Figure 35 Samut Sakhon evolution in the late Pleistocene according to LOI, Ti/Ca,
Zr/Rb, percentage of sand, silt, clay, and grain size
Figure 36 Samut Sakhon evolution 4 stage in the mid/late Holocene according to LOI,
Ti/Ca, Zr/Rb, grain size, and mangrove, back-mangrove, and non-mangrove pollen
accumulation rate (PAR)

Figure	42 Bruguiera	103
Figure	43 Rhizophora	103
Figure	44 Sonneratia	104
Figure	45 Stenochlaena	104
Figure	46 Acrostichum	105
Figure	47 Acanthus	105
Figure	48 Suaeda	106
Figure	49 Xylocarpus	106
Figure	50 Poaceae	107
	51 Cyperaceae	
Figure	52 Ceratopteris	108
Figure	53 Gleicheniaceae	108
Figure	54 Pinus	109
Figure	55 Quercus	109
	จุหาลงกรณ์มหาวิทยาลัย	

xiii

CHAPTER 1 INTRODUCTION

1.1 Background

Climate change plays a role in sea level fluctuation. Either transgression or regression may subsequently change coastal sediment dynamics, leading to coastline development (Surakiatchai et al., 2018; Zhang et al., 2022; Zhang et al., 2023). Furthermore, coastal erosion rates and saltwater intrusion caused by rising sea levels alter the vegetation dynamics along the coastline (Choowong et al., 2004; Surakiatchai et al., 2018). These influences of sea level changes will dramatically impact the livelihoods, including humans, animals, and plants, along the coastline. The study of past sea level changes can contribute information to a better understanding of sediment dynamics and assess future coastline development for sustainability management in the coastal area.

The Gulf of Thailand has been considered to be a crucial area for sea level change studies (Hanebuth et al., 2000; Horton et al., 2005; Chabangborn et al., 2020). It is located in a tropical climate and is unaffected by isostatic movement. Moreover, the evidence of tectonic activities is indeterminable in the Gulf of Thailand (Horton et al., 2005; Oliver & Terry, 2019). Therefore, the sea level changes in the Gulf of Thailand are possibly caused by the eustatic changes (Horton et al., 2005).

Samut Sakhon province is located on the coast in the lower central plain that considered to be a potential area for hydrocarbon accumulation, 5 km north of the upper Gulf of Thailand (Sinsakul, 2000). Moreover, the neighborhood area at the coast in Samut Sakhon is mostly shrimp farms and open pits where topsoil was dug out and shows a clear sediment profile that is suitable for paleoenvironmental study.

The sea level changes along the Gulf of Thailand have been reconstructed by various proxies, i.e., the radiocarbon dating of peat layer or shell attached to sea notch (Somboon, 1990; Tjia, 1996; Hutangkura, 2014; Surakiatchai et al., 2018), geomorphology (Bird et al., 2007; Tamura et al., 2009; Li et al., 2012; Surakiatchai et al., 2018), sedimentology, and palynology (Nudnara, 2019; Chabangborn et al., 2020; Sainakum et al., 2021). Although many studies have been done to date, more information is necessitated to constrain the uncertainty of environmental reconstruction.

1.2 Research objectives

To investigate the temporal variabilities of sea level, vegetation dynamics, and coastal evolution in the upper Gulf of Thailand.

1.3 Scope of the study

This study focuses on investigating vegetation dynamics associated with the sea level changes at an open pit in Samut Sakorn province (13° 32.145'N to13° 32.155'N and 100° 21.684'E to 100° 21.725'E). The open pit covering an area of approximately 0.42 km², located approximately 5 km north of the upper Gulf of Thailand. Sediment samples were collected from the bottom to the top of the open pit (25.48-7.20 mDBS). A total of 145 samples were further studied at the Department of Geology, Faculty of Science, Chulalongkorn University. For laboratory analysis, 145 samples from consecutive 10 cm were used for Loss on ignition (LOI) and X-ray Fluorescence Spectroscopy (XRF), 11 samples were used for radiocarbon dating (C14), 60 samples were used for pollen analysis, and 73 samples were used for grain size analysis.

CHAPTER 2 LITERATURE REVIEW

2.1 Mangrove response

Mangrove environments are dominant assemblages of trees and shrubs that developed special physiological and morphological adaptations in saline tidal wetlands fringing the sheltered tropical shores (Santisuk, 1983; Ellison, 2008; Li et al., 2012; Englong et al., 2019). The development of a mangrove community depends on several environmental factors, including tidal flooding, maximum wave height or inundation, soil type, and salinity (Santisuk, 1983; Li et al., 2012).

Watson (1928) classified the total water level that occurs on normally dry ground as a result of the storm tide as tidal inundation into 5 classes associated with the distribution of mangrove trees and shrubs in Malaya (Table 1).

Class	Flood type	Frequency (times per month)
1	All high tides	56 - 62
2	Medium high tides	45 - 59
3	Normal high tides	20 - 45
4	Spring tides	2 - 20
5	Abnormal of equinoctial tides	0 - 2

 Table 1 Tidal inundation class from Watson (1928)

According to Watson's inundation classes, mangroves can be divided into 2 subdivisions, swampy mangroves or mangroves and back mangroves from inundation classes 1-3 and 4-5, respectively (Watson, 1928; Santisuk, 1983). Swampy mangroves or mangroves are normally submerged and covered by sea water during high tide, while back mangroves are only submerged during very high tides (Santisuk, 1983).

Santisuk (1983) developed Watson's inundation classes associated with mangrove distribution in Thailand (Table 2).

		Ecological appearance	
Scientific name	Family	Mangroves	Back
			mangroves
Acrostichum aureum	Pteridaceae		V
Acrostichum speciosum	Pteridaceae		\checkmark
Avicennia alba	Avicenniaceae	V	
Avicennia marina	Avicenniaceae	V	
Avicennia officinalis	Avicenniaceae	~	
Baringtonia asiatica	Baringtoniaceae		\checkmark
Baringtonia racemosa	Baringtoniaceae		\checkmark
Brownlowia tersa	Tiliaceae		\checkmark
Bruguiera cylindrica	Rhizophoraceae	~	
Bruguiera gymnorrhiza	Rhizophoraceae	✓	
Bruguiera parviflora	Rhizophoraceae	Т	
Bruguiera sexangula	Rhizophoraceae		~
Ceriops decandra	Rhizophoraceae	~	
Ceriops tagal	Rhizophoraceae	~	
Lumnitzera littorea	Combretaceae		\checkmark
Lumnitzera racemosa	Combretaceae		\checkmark
Melaleuca leucadendron	Myrtaceae		\checkmark
Nypa fructicans	Arecaeae		\checkmark
Oncosperma tigillaria	Arecaeae		✓

 Table 2 Mangrove tree and shrub distribution in Thailand based on Watson's (1928)

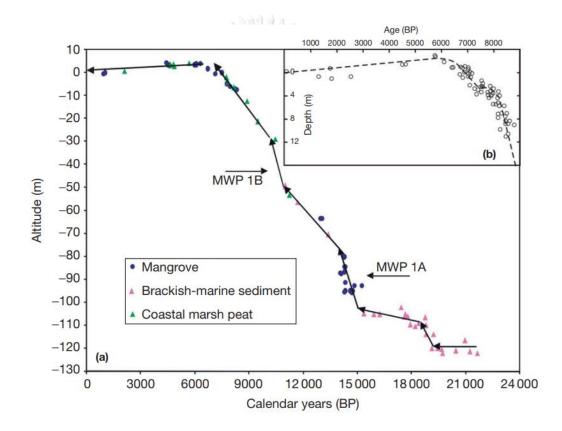
Pluchea indica	Asteraceae		\checkmark
Rhizophora apiculata	Rhizophoraceae	\checkmark	
Rhizophora mucronata	Rhizophoraceae	\checkmark	
Sonneratia alba	Sonneratiaceae	\checkmark	
Sonneratia caseolaris	Sonneratiaceae		v
Sonneratia griffithii	Sonneratiaceae		√
Sonneratia ovata	Sonneratiaceae		\checkmark
Suaeda maritima	Chenopodiaceae		\checkmark
Xylocarpus gangeticus	Miliaceae		\checkmark
Xylocarpus granatum	Miliaceae		\checkmark
Xylocarpus moluccensis	Miliaceae		\checkmark

Mangrove trees and shrubs can be interpreted by palynology which is the study of pollen and spores of plants. Pollen and spores contain sporopollenin which is a special structure of the durable outer (exine) walls of spores and pollen grains that can protect itself from external factors such as temperature, acidity, and alkalinity. This property together with their high productivity made pollen and spores are well preserved in sediment and a suitable tool for the reconstruction of the past environments (Punwong, 2007).

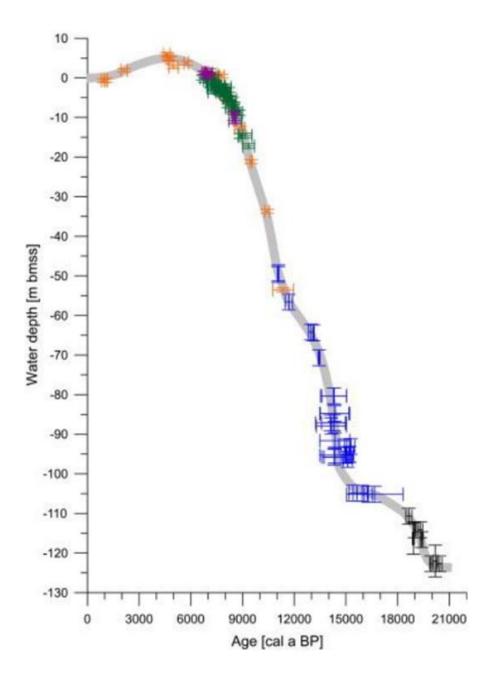
2.2 History of sea level changes in the Gulf of Thailand

Sea level changes have been considered to be possibly caused by isostatic rebound, tectonic adjustment, and eustatic changes. Since the Gulf of Thailand is in a tropical climate and far from ice sheet margins (Long et al., 2001), it is not impacted by the isostatic adjustment (Horton et al., 2005; Zhang et al., 2022). Moreover, the evidence of tectonic movement is indeterminable in the Gulf of Thailand. Therefore, it has been considered to be stable, and tectonic movement can be neglectable (Tjia, 1996; Horton

et al., 2005; Jirapinyakul et al., 2023). Consequently, the Gulf of Thailand is a crucial area for eustatic changes (Sainakum et al., 2021). The sea level changes along the Gulf of Thailand and surrounding areas have been reconstructed based on various methods, i.e., geomorphology (Choowong, 2002; Dusitapirom et al., 2008; Surakiatchai et al., 2018; Oliver & Terry, 2019), Diatom (Zhang et al., 2023), radiocarbon dating of peat layers (Hesp et al., 1998; Bird et al., 2007), X-Ray Fluorescence, sedimentology and palynology (Somboon, 1988, 1990; Somboon & Thiramongkol, 1992; Nudnara, 2019; Chabangborn et al., 2020).


The global sea level was approximately 120 meters below the present mean sea level (MSL) during the Last Glacial Maximum (23.0 to 19.0 cal ka BP) when glaciers and ice sheets in the high latitudes reached their maximum (Hanebuth et al., 2000b; Tanabe et al., 2003; Zong, 2013) (Figures 1 and 2). The sea level low stand can be explained by the transformation of ocean water to deposit on the continental ice sheets caused by the changing Earth's orbit (Bowen, 2009). The sea level in the Gulf of Thailand was also lowering, exposing the Sunda shelf, connecting the Southeast Asian mainland and Indonesian archipelagos (Hanebuth et al., 2000a; Bird et al., 2007). The exposure of Sundaland was a land bridge for the migration of animals and humans to the Indonesian archipelagos and Australia (Zhang et al., 2022).

Sea levels rapidly increased during the early Holocene (approximately 11.7 to 8.2 ka BP) (Geyh et al., 1979; Hanebuth et al., 2000a; Horton et al., 2005; Hutangkura, 2014). Reconstruction of the sea level based on pollen and sediments from the Malay-Thai peninsula reveals the sea level rise at 9,700 cal years BP and reaches its highstand at 4.8 –4.4 cal ka BP (Horton et al., 2005). The reconstructed transgression in the Malay-Thai peninsula has a slight lead or lag in time regarding the other studies from the vicinity areas, e.g., records of *Sonneratia alba* and *Sonneratia caseolaris*, mangrove pollen taxa, that appeared in the sediment at 8.3 ka cal year BP, Mekong River Delta, Cambodia (Li


et al., 2012), and radiocarbon dating of peat layer in Singapore (Bird et al., 2007). Pollen records of Chao Phraya delta suggest a submerge most of the Chao Phraya delta up to the north of Ayutthaya, Thailand, at 7.3–6.5 ka BP (Somboon & Thiramongkol, 1992) (Figure 3). In addition, the recent studies based on multi-proxies obtained from Thale Noi, Thailand, suggested that the sea level fluctuation at 8.2 ka during the early Holocene (Chabangborn et al., 2020). However, all these studies agree on the rapid rise of sea levels during the early Holocene.

Several studies suggest that the sea level reached its high stand of c. 2-4 m during the mid-Holocene (8.0-4.0 cal ka BP) (Somboon & Thiramongkol, 1992; Horton et al., 2005; Bird et al., 2010; Li et al., 2012; Hutangkura, 2014; Surakiatchai et al., 2018) (Figure 3, 4 and 5). However, the timing of the mid-Holocene high stand has been under-debated. Hutangkura (2014), for example, reconstructed the sea level in Chao Phraya Plain, Thailand, regarding pollen records and suggested the highstand at 8.4 cal ka BP. However, the dating of the peat layer by Somboon and Thiramongkol (1992) indicated a highstand of around 7.3–6.0 ka BP, which is consistent with those from Singapore by Tjia (1996) and Bird et al. (2010). Meanwhile, Horton et al. (2005) suggest that the sea level high stand was at 4.8–4.4 cal ka BP. The discrepancies can be explained by the lack of high-resolution radiocarbon dating (Chabangborn et al., 2020). Alternatively, the inconsistencies are possibly caused by the different responding times of proxies on the environmental shift (Wohlfarth et al., 2012). Otherwise, the sea levels in the Gulf of Thailand were not straightforward, with either gradual rise or fall, but they are punctuated by several time intervals of abrupt changes.

In the late Holocene, the sea level has been gradually fallen from the mid-Holocene high stand (Horton et al., 2005; Zong, 2013; Surakiatchai et al., 2018) (Figure 5). However, the record of the Malay-Thai Peninsular (Tjia, 1996) and evidence of the coastal area of Thailand (Sinsakul, 1992) suggest a fluctuating sea level after mid Holocene high stand at 5.0-6.0 ka BP (Figure 6). Moreover, a recent study of pollen records from Sam Roi Yot wetland on the west coast of the Gulf of Thailand also suggests sea level fluctuation after high stand, significant regression occurred at 2.9 and 1.8-1.4 cal ka BP, sea level again raised at 1.4-1.0 cal ka BP before declining hereafter (Jirapinyakul et al., 2023). These arguments of the Late Holocene sea level are still under debate therefore further studies in detail are needed.

Figure 1 A relative sea-level curve (a) based on sea-level index points compiled from the Bonaparte Gulf, north Australia (Yokoyama et al., 2000), the Sunda Shelf (Hanebuth et al., 2000), and the Strait of Malacca (Geyh et al., 1979). A new record (b) from Singapore (Bird et al., 2010) shows that sea-level rise slowed down around 8000 years BP and accelerated around 7500 years BP (Zong, 2013).

Figure 2 Reconstruction of sea level history for the past 21 ka showing all data recently available from the Sunda core region. Data compiled from Geyh et al. (1979) (orange; Strait of Malacca), Hesp et al. (1998) (purple; Singapore), and Hanebuth et al. (2009) (black; Sunda Shelf) (Hanebuth et al., 2011).

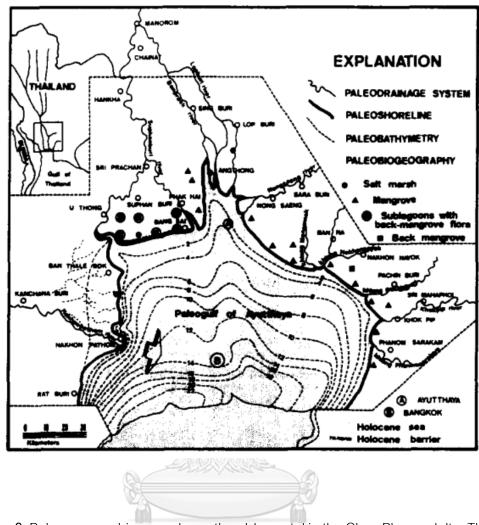
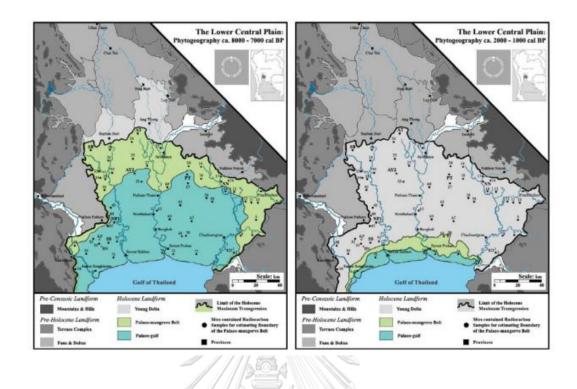
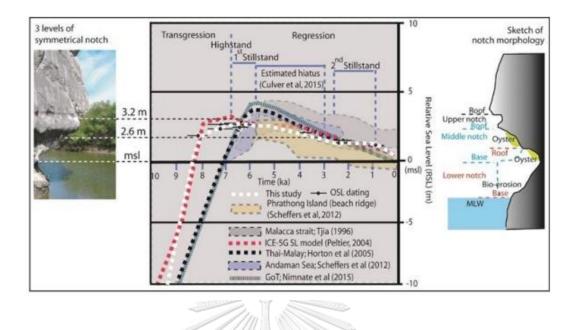




Figure 3 Paleogeographic map shows the old coastal in the Chao Phraya delta, Thailand (Somboon & Thiramongkol, 1992).

Figure 4 Paleogeography map at 8.0-7.0 cal ka BP and at 2.0-1.0 cal ka BP of the Lower Central Plain in Thailand (Hutangkura, 2012).

Figure 5 Comparison of sea-level curves from Southeast Asia and the South China Sea with the levels of sea notch (left), the white dash line show the proposed sea-level curve from Sam Roi Yot National Park, Thailand (Surakiatchai et al., 2018).

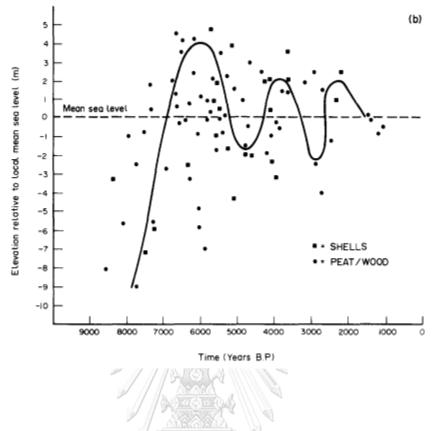
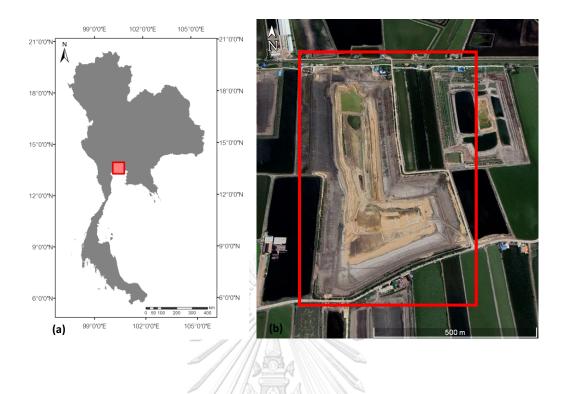


 Figure 6
 Holocene sea-level curve for Thailand using mean local sea level (Sinsakul 1992).


2.3 Study area

The study area is an open pit (13° 32.145'N to 13° 32.155'N and 100° 21.684'E to 100° 21.725'E) located 5 km west of the Phanthai Norasing subdistrict administrative organization office, Samut Sakhon Province, Thailand, and approximately 4.8 km north of the upper Gulf of Thailand (Figure 7). The open pit is approximately 25.48 m depth below the surface, covering approximately 0.42 km². Sediment samples were taken from 25.48 – 7.2 m depth below the surface. The profile above 7.2 m below the surface was not here including because of soil slump and possible disturbed by the pit construction. The environment surrounding the open pit was mostly occupied by community and shrimp farms (Figure 8). *Suaeda maritima* was a plant that was mostly found near the open pit.

Whereas *Rhizophora sp.* and *Nypa fruticans* were found in a tidal creek surrounding the study site.

Samut Sakhon Province is located in the lower central plain of Thailand, north of the upper Gulf of Thailand. The average elevation of this area is 2 m above the present mean sea level (Sinsakul, 2000). The lower central plain deposits were a complex sequence of alluvial, fluvial, and deltaic sediments of Mae Klong, Tha Chin, Chao Phraya, and Bank Pakong rivers (Tanabe et al., 2003). According to the general geological information, the lower central plain is overlaid on more than 2000 m thick of Tertiary and Quaternary sediments. The western and eastern plain margins are associated with alluvial fans and terraces (Sinsakul, 2000) (Figure 9). The geomorphology of the lower central plain system consists of delta plain, tidal flat (mud flat), river mouth flat, delta front, and delta (Tanabe et al., 2003).

The Asian monsoon plays a key role in the climate in Thailand (Chabangborn et al., 2020). The southwest monsoon brings humid air masses from the Indian Ocean and increased precipitation from mid-May to October. The northeast monsoon prevails, leading to cool and dry conditions between October and February. In February and early May, Thailand is under the influence of southerly and southeasterly winds, increasing temperature. The mean annual precipitation in Samut Sakhom is 1200-1400 mm (Thai Meteorological Department, 2022). The highest rainfall is in September, which is 200-300 mm. The mean annual temperature is 28-30 °C (Thai Meteorological Department, 2022).

Figure 7 (a) Location map of the study site on Samut Sakhon province in the upper Gulf of Thailand, (b) study site is an open pit in Samut Sakhon province.

Figure 8 The open pit and the environment surrounding in Samut Sakhon (a) facing southwest, (b) facing south

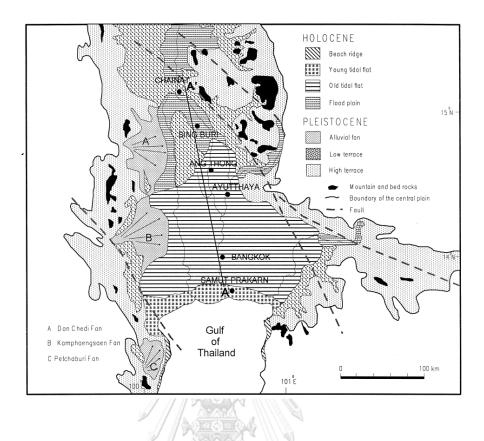


Figure 9Geological map shows the Quaternary deposits in the Lower Central Plain,the Gulf of Thailand (Sinsakul, 2000).

CHAPTER 3 METHODOLOGY

3.1 Sample collection

Sediment samples were collected from an open pit in Samut Sakhon Province by hammering the 2 cm diameter and 5 cm long PVC tubes in the sediment layers (Figure 10). Sediment samples were taken every 10 centimeters from each soil layer at the bottom of the pond until the top of the site (Figure 11). Discontinuity of soil profile in the pond was insufficient therefore collecting samples must to taken from 4 zones including zones 1, 2, 3, and 4 around the pond to complete all soil profiles. Where zone 1 (Z1) includes sediment from 25.48-19.74 m DBS in unit A-D, zone 2 (Z2) includes sediment from 19.67-17.37 m DBS in the top of unit D to unit E, zone 3 (Z3) includes sediment from 14.93-14.29 in unit F-G, and zone 4 (Z4) includes sediment from 14.26-7.20 in unit H-I. The sediment samples were placed in PVC tubes, transported to the Department of Geology, Chulalongkorn University, and kept for further analysis. The laboratory work included a detailed lithostratigraphic description of the sediment sequences, X-ray fluorescence, pollen analysis, loss on ignition, and radiocarbon dating.

Level measurement was measured by using an Automatic level where the reference level was approximately the same level as Samut Sakhon Rural Road 2004. The open pit is around 18.28 m thick with the level of the bottom 25.48 and the top 7.20 m. The unit of m depth below the surface (m DBS) was used in this study where the surface means the Samut Sakhon Rural Road 2004 level.

Figure 10 Satellite image from Google Earth showing 4 sampling size zones in the yellow dot in the open pit.

Chulalongkorn University

Figure 11 Sampling method using PVC tube hammering into sediment every 10 cm interval.

3.2 Laboratory works

One hundred forty-five samples were divided and analyzed in the laboratory including X-ray fluorescence, loss on ignition, grain size analysis, pollen analysis, and radiocarbon dating detailed in Table 3.

Sample		VDE		Grain size	Pollen
no.	m DBS	XRF	LOI	analysis	analysis
1	25.48	\checkmark	\checkmark	\checkmark	\checkmark
2	25.38	\checkmark	\checkmark		
3	25.28	\checkmark	\checkmark	\checkmark	
4	24.98	\checkmark	\checkmark		\checkmark
5	24.88	\checkmark	\checkmark	\checkmark	
6	24.79	\checkmark	~	SI PPP	
7	24.70	1	~	8	\checkmark
8	24.41	~	1/1		\checkmark
9	24.32	~	14/16		\checkmark
10	24.23	1	1455	JA N	\checkmark
11	24.13	~	1		
12	24.04	~	1 stand		
13	23.94	1	1		√
14	23.85	4	✓	33	
15	23.76	1	~	v 10	
16	23.66	ุฬุวล	งกุรณ	เมหาวิทยาลัย	\checkmark
17	23.57	U 🖌 L	0I √ aK(ORN UNIVERSITY	√
18	23.47	\checkmark	\checkmark		
19	23.38	\checkmark	\checkmark	\checkmark	✓
20	23.19	\checkmark	\checkmark		✓
21	23.10	\checkmark	\checkmark	\checkmark	
22	23.00	\checkmark	\checkmark		√
23	22.91	\checkmark	\checkmark	\checkmark	
24	22.82	\checkmark	\checkmark		✓
25	22.72	\checkmark	\checkmark	\checkmark	✓
26	22.63	\checkmark	\checkmark		

 Table 3
 Summary table of samples analyzed in the laboratory

27	22.53	✓	\checkmark	\checkmark	
28	22.44	\checkmark	\checkmark		✓
29	22.35	\checkmark	\checkmark	\checkmark	\checkmark
30	22.25	\checkmark	\checkmark		
31	22.16	\checkmark	\checkmark	\checkmark	
32	22.06	\checkmark	\checkmark		
33	21.64	\checkmark	\checkmark	\checkmark	
34	21.54	\checkmark	✓	1. A. A.	
35	21.44	\checkmark	\checkmark	MI I I I I I I I I I I I I I I I I I I	
36	21.34	~	~	9	√
37	21.24	1			
38	21.14	~	11/2		
39	21.04	-	1		
40	20.94	1			
41	20.84	\checkmark	1 A		
42	20.74	1	-	Contraction of the second	
43	20.64	~	~	1	\checkmark
44	20.54	~	~		
45	20.44	✓	✓		
46	20.34	✓		JKN UNIVERSITY	
47	20.24	✓	\checkmark	\checkmark	
48	20.14	✓	\checkmark		
49	20.04	✓	\checkmark	\checkmark	
50	19.94	\checkmark	\checkmark		
51	19.84	✓	\checkmark	\checkmark	
52	19.74	✓	\checkmark		\checkmark
53	19.67	\checkmark	\checkmark	\checkmark	
54	19.57	\checkmark	\checkmark		✓
55	19.47	\checkmark	\checkmark	\checkmark	\checkmark

56	19.37	\checkmark	\checkmark		✓
57	19.27	\checkmark	\checkmark	\checkmark	
58	19.17	\checkmark	\checkmark		✓
59	19.07	\checkmark	\checkmark	\checkmark	
60	18.97	✓	✓		\checkmark
61	18.57	✓	\checkmark	\checkmark	\checkmark
62	18.47	✓	✓		
63	18.37	\checkmark	✓	✓	
64	18.27	\checkmark	\checkmark	MILLE	
65	18.17	1	~		
66	18.07	1			
67	17.97	-	1		✓
68	17.87	-	/		
69	17.77	1			
70	17.67	\checkmark	1		
71	17.57	1	-		
72	17.47	4	~		
73	17.37	4	~		\checkmark
74	14.93	✓	 ✓ 		\checkmark
75	14.90	✓		JAN UNIVERSITY	
76	14.87	✓	\checkmark		\checkmark
77	14.84	✓	\checkmark	\checkmark	
78	14.81	✓	\checkmark		\checkmark
79	14.74	✓	\checkmark	\checkmark	\checkmark
80	14.71	\checkmark	\checkmark		
81	14.68	\checkmark	\checkmark	\checkmark	
82	14.64	✓	\checkmark		
83	14.61	\checkmark	\checkmark	\checkmark	
84	14.58	✓	\checkmark		

85	14.55	\checkmark	\checkmark	\checkmark	
86	14.52	✓	\checkmark		√
87	14.48	\checkmark	\checkmark	\checkmark	
88	14.45	\checkmark	\checkmark		
89	14.42	✓	✓	\checkmark	
90	14.39	✓	\checkmark		
91	14.35	✓	√	\checkmark	
92	14.32	✓	~	13 3 a	
93	14.29	✓	\checkmark		\checkmark
94	14.23	1	~		\checkmark
95	14.09	1		× ·	
96	13.96	~	14/6		√
97	13.83	-	14		
98	13.70	1			√
99	13.56	✓	1		\checkmark
100	13.43	1	-	Contraction of the second	
101	13.30	4	~	1	\checkmark
102	13.17	~	1		
103	13.03	✓	√ 		\checkmark
104	12.90	1	UNGKU	JKN UNIVERSITY	
105	12.77	✓	\checkmark	\checkmark	\checkmark
106	12.64	\checkmark	\checkmark		
107	12.50	✓	\checkmark	\checkmark	\checkmark
108	12.37	✓	\checkmark		
109	12.24	✓	\checkmark	\checkmark	\checkmark
110	12.11	\checkmark	\checkmark		
111	11.97	✓	✓	✓	\checkmark
112	11.84	✓	\checkmark		
113	11.71	✓	✓	✓	\checkmark
_					

114	11.58	✓	✓		
115	11.44	✓	\checkmark	\checkmark	\checkmark
116	11.31	\checkmark	\checkmark		
117	11.18	\checkmark	\checkmark	\checkmark	\checkmark
118	11.05	\checkmark	\checkmark		
119	10.91	\checkmark	\checkmark	\checkmark	\checkmark
120	10.78	\checkmark	\checkmark		
121	10.65	\checkmark	✓	~	\checkmark
122	10.52	\checkmark	\checkmark	MILLIN	
123	10.38	v	~		\checkmark
124	10.25	1	~//		
125	10.12	-	1		\checkmark
126	9.72	-	14		\checkmark
127	9.59	1			
128	9.46	1	1	N Constant	\checkmark
129	9.32	1	1		
130	9.19	4	~	A CONTRACTOR	\checkmark
131	9.06	1	~	× *	
132	8.93	₩ 6	√	เมพาวทยาลย	\checkmark
133	8.79	✓	UN GKU	JRN UNIVERSITY	
134	8.66	✓	\checkmark		\checkmark
135	8.53	✓	\checkmark	\checkmark	
136	8.40	✓	\checkmark		\checkmark
137	8.26	✓	\checkmark	\checkmark	
138	8.13	\checkmark	\checkmark		\checkmark
139	8.00	✓	\checkmark	\checkmark	
140	7.87	✓	\checkmark		\checkmark
141	7.73	✓	\checkmark	\checkmark	
142	7.60	\checkmark	✓		\checkmark

143	7.47	✓	\checkmark	\checkmark	
144	7.34	✓	✓		\checkmark
145	7.20	✓	✓	\checkmark	

3.2.1 X-Ray fluorescence

The consecutive 10 cm sediment samples were dried at 105°c for 12 hours for XRF analysis. The dried samples were ground in order to be homogeneous. Subsequently, sediment samples were put into a plastic crucible (Figure 12), and measured chemical compositions by using the handheld X-ray Fluorescence (XRF) model Olympus Vanta XRF series to assess the relative variabilities of each element (Figure 13). The concentrations of 39 elements (i.e., P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Ba, La, Ce, Pr, Nd, Ta, W, Au, Hg, Pb, Bi, Th, and U) were detected by the handheld XRF. However, the concentrations of P, Cr, Co, Se, Mo, Ag, Cd, Sn, Sb, La, Ce, Pr, Nd, Ta, W, Au, Hg, Bi, Th, and U did not reach the instrumental detection limit and excluded for the further analysis.

Figure 12 (a) Sediment sample in plastic crucible for XRF measurement, (b) handheld X-ray fluorescence analyzer model Olympus Vanta XRF series.

3.2.2 Loss on ignition (LOI)

The consecutive 10 cm samples were prepared for the LOI followed the procedure of Heiri et al., (2001). Crucibles and approximately 3 cm³ of sediment samples were weighed and then dried at 105°C for 12 hours. Subsequently, the dried samples were combusted at 550°C for 6 hours (Figure 14).

Calculation of the relative organic carbon content can be estimated by the percentage of weight loss at 550°C following the equation (1).

$$LOI_{550} = \frac{DW_{105} - DW_{550}}{DW_{105}} \times 100$$

(1)

Where LOI_t = weight loss on ignition at t °C (g)

 $DW_t = dry$ weight of samples at t °C (g)

Then, the samples were combusted at 950°C for 3 hours in order to eliminate carbonate content in the form of CO2. The weight loss at 950°C can be calculated following equation (2).

(2)Combustion at 950°C (3), in order to transfer $CaCO_3$ in the sample into CO_2 and CaO. CO₂ is the weight loss. Consequently, the weight loss at 950°C was multiplied by 2.27 in order to assess the carbonate content $(CaCO_3)$ (3).

 $CaCO_3 \rightarrow CaO + CO_2$

$$\frac{CaCO_3}{CO_2} = \frac{MW_{CaCO_3}}{MW_{CO_2}} = \frac{100.086 \ g/mol}{44.009 \ g/mol} = 2.27$$
(3)

MW = Molecular weight (g/mol) Where

$$LOI_{950} = \frac{DW_{550} - DW_{950}}{DW_{105}} \times 100$$

Figure 13 Crucible in a furnace for Loss on ignition analysis.

3.2.3 Grain Size Analysis

Seventy-three samples for the grain size analysis were prepared for each consecutive 10 cm depth following Rowell (2014).

3.2.3.1 Pretreated samples

Each subsample was treated by 20 ml of 10% (v/v) HCl, 20 ml of 10 %, and 30% H_2O_2 in order to eliminate carbonate and organic contents, respectively (Figure 14). The prepared samples were cleaned by deionized water 3 times and dried in an oven for 12 hours. Dried sediment samples were ground to break up the sediment into a smaller size.

The samples were eventually analyzed for the grain size distribution by laser diffraction technique by Horiba model Partica LA-960V2 Laser Scattering Particle Size Distribution Analyzer at the Department of Marine, Faculty of Science, Chulalongkorn University (Figure 14).

The grain size distribution was calculated to mean size particle by the following equation (5).

$$D[4,3] = \frac{\sum_{i}^{n} D_{i}^{4} v_{i}}{\sum_{i}^{n} D_{i}^{3} v_{i}}$$
Where D [4,3] = the mean diameter over volume
D_{i} = mean of dacile i
v_{i} = dacile i
CHULALONGKORN UNIVERSITY

(5)

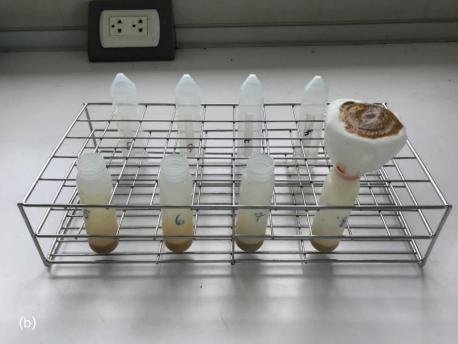
Figure 14 (a) The process of pretreating sediment sample with H_2O_2 to eliminate organic content, (b) Horiba model Partica LA-960V2 Laser Scattering Particle Size Distribution Analyzer.

3.2.4 Pollen analysis

Sixty sediment samples were prepared based on Ellison (2008). Subsamples from the bottom, middle, and top of each sediment layer were selected for pollen analysis.

3.2.4.1 Samples digestion

Subsamples were taken about 1 cm³, treated by 10 ml of 10% KOH, and heated on a hotplate to disperse the sediment (Figure 15). Subsamples were subsequently sieved with a mesh size of 0.2 mm (Figure 15). The sieve remains were washed by deionized water multiple times


For the Acetolysis method, subsamples were treated by glacial acetic (CH₃COOH), and mixed acetic anhydride (CH₃CO₂O) and 96% sulfuric acid (H₂SO₄).

3.2.4.2 Heavy Liquid

Heavy liquid, Sodium polytungstate $(3Na_2WO_4 \cdot 9WO_3 \cdot H_2O)$ which density is 2.0 g/cm³, was added into subsamples, and water was added, respectively. The prepared samples were centrifuged at the speed of 2000 rpm for 2 minutes. Consequently, the heavy liquid with pollen was separated from the solvent by using a dropper. The samples were washed by 95% alcohol, added silicone oil then dried at 60 °C for 12 hours to eliminate alcohol.

Eventually, the samples were mouth on glass slides using Paraffin and pollens were identified under stereomicroscope based on their morphology including aperture, sculpture, and size (Figure 15). Pollens were identified in regard to Punwong (2007).

Figure 15 The process of preparing the sample for pollen sample analysis, (a) sediment samples digestion by KOH and heat with a hot plate, (b) sample sieving sample through 0.2 mm mesh, (c) pollen samples mouthed on glass slides using Paraffin.

3.2.5 Radiocarbon dating

Radiocarbon dating in this study has focused on bulk sediment and shells. Bulk sediment samples were dried at 110°c for 12 hours and then let it cool down. Dried bulk sediment was ground into a smaller size, pack into aluminum foil. Shell samples were picked up by forceps and cleaned with deionized water multiple times. Shell samples were dried at 60°c for 12 hours (Figure 16). The dating samples were packed into aluminum foil and then prepared samples were sent to analyze by using the Accelerated Mass Spectrometer (AMS) at direct AMS, the USA (Figure 16).

The radiocarbon dating results from bulk sediment were calibrated by using a calibration curve of InCal20 (Plicht et al., 2020) while shells were calibrated by MARINE20

with -174 Marine error and 70 uncertainty (Southorn et al., 2002). The age-depth model was constructed for CP-4 by interpolation between the adjacent dating results.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Figure 16 (a) Shell sample for radiocarbon dating after being cleaned by deionized water and dry, (b) bulk sediment sample in foil package prepared for sent to dating.

CHAPTER 4 RESULTS

4.1 Stratigraphic Description of Samut Sakhon Site

The sedimentary sequence from the open pit is approximately 18.3 m thick, extending from 25.48 to 7.20 m DBS. According to the sedimentary description during the field survey, this sequence can be divided into 9 units, i.e., units A to I from the bottom to top, consisting of 14 layers (Table 4).

Unit A

Unit A is well-compacted light grey clay with a paucity of organic matter. This unit is laid down at the lowermost part of the sedimentary sequences. It extends below approximately 24.70 m DBS. The obvious high silt fraction can be observed in the upper part of this unit before gradual transfers to unit B (Table 4 and Figure 17).

Figure 17 The well compaction light grey clay of unit A.

Unit B

Unit B is a relatively thin layer of brown clayey silt intervened between the light grey clay of unit A and the oxidized grey clayey silt of unit C. It is approximately 0.38 m thick and extends between 24.70 and 24.32 m DBS (Table 4 and Figure 28).

GHULALUNGKUKN UNIVEKSII

Figure 18 The brown silty clay of Unit B.

Unit C

Unit C consists of oxidized grey clayey silt (layer 3) and grey clayey silt with more clay content layer (layer 4). The purple color of these sediments is possibly caused by oxidation. This unit is approximately 1 m thick and can be found at 24.32-23.38 m DBS (Table 4 and Figure 19).

Figure 19 The grey clayey silt with purple oxidized surface of unit C.

Unit D

Unit C is overlaid by unit D, which is interbedded between the brown clayey silt layers (Table 4 and Figure 20). Unit D can be divided into 5 layers, i.e., layers 5-9 from the bottom to top. This unit is approximately 4.4 m thick and extends from 23.38-19.00 m DBS. It is punctuated by a layer of clayey silt with gravel (approximately 10-15%) at 19.70-19.50 m DBS. Regarding the XRD analysis at the Department of Geology, Chulalongkorn University, the gravel is entirely composed of Sio₂, and CaCO₃, indicating the caliche layer

(Alptekin & Hatipoglu, 2018) (Figure 21). The limestone mountain is not available in the study area and vicinity area. In addition, $CaCO_3$ is a low concentration in the sediments from Tha Chin and Chao Phraya Rivers (Hassain et al., 2017). Since shells and shell fragments are abundant in the upper part of the sediment sequence, the precipitated $CaCO_3$ gravel is possibly caused by infiltration of hardwater dissolved from the upper shell layer.

Figure 20 The interbedded between the brown clayey silt of unit D.

Figure 21 Sediment in unit D and a presence Caliche layer.

Unit E

Sediment in Unit E is laminated light grey clay, which is approximately 19.00–17.37 m DBS. The sediments in this layer are characterized by hard and well compaction, making it difficult to mound by PVC pipe (Table 4 and Figure 22).

The upper part of unit E is a road for transportation in the open pit close to the slump sediments. To avoid contamination by younger sediments, the sampling site was moved to approximately 500 m to the west, making the loss of information approximately 2.5 m thick.

Figure 22 The laminated light grey clay of unit E.

Unit F

The sediments in unit F are purple clay, which is possibly oxidized. This unit can be found at approximately 14.70 m DBS (Table 4 and Figure 23).

Unit G GHULALONGKORN UNIVERSITY

The purple clay in unit F gradually transfers to the greenish-dark grey clay of unit G. It is approximately 0.22 m thick at 14.70–13.33 m DBS. In unit G, shells and shell fragments can be found in the sediments (Figure 23). The shells and shell fragments increase by 5-10% from the bottom to the top of this unit (Table 4).

Unit H

Unit G is gradually changed to the dark grey clay of unit H. The shells and shell fragments are approximately 5% in this unit (Figure 24 and 25). Unit H is 0.67 m thick, approximately 13.33–12.66 m DBS (Table 4).

จุหาลงกรณ์มหาวิทยาลัย

Figure 23 The boundary between the greenish-dark grey clay of unit G and the dark grey clay of unit H.

Unit I

Unit I is the uppermost unit of the sedimentary sequences. This unit is relatively thicker than the other units, which is at least 5.46 m thick. It is composed of dark brown clayey silt. Shells and shell fragments are abundant in the middle of unit I, approximately more than 15%. Unit I extends from 12.66 to 7.20 m DBS (Table 4 and Figure 24, 25). Summary of the sedimentary sequence in Samut Sakhon show in Figure. 26.

Figure 24 The dark brown clayey silt in unit I.

Figure 25 The shell layer presence in units G to I.

m DBS	Lithostratigraphy description	Unit	Layer
7.20 - 12.66	Dark brown clayey silt		14
12.66 - 13.33	Dark grey clay	Н	13
13.33 - 14.67	Greenish-dark grey clay	G	12
14.67 - 14.89	Purple clay (oxidized)	F	11
	hiatus		
17.37 - 18.97	Laminate light grey clay	Е	10
18.97 - 19.47	Brown clayey silt		9
19.47 - 19.74	Brown clayey silt with gravel and Caliche layer		8
19.74 - 22.44	Brown clayey silt (more clay)	D	7
22.44 - 22.82	Brown clayey silt		6
22.82 - 23.38	Brown clayey silt (oxidized)		5
23.38 - 23.66	Grey clayey silt (more clay and oxidized)	С	4
23.66 - 24.32	Grey clayey silt (oxidized)	0	3
24.32 - 24.70	Brown clayey silt	В	2
24.70 - 25.48	Light grey clay	А	1

Table 4Lithostratigraphic description of sediment sequence of the open pit at SamutSakhorn consist of 9 unit and 14 layers.

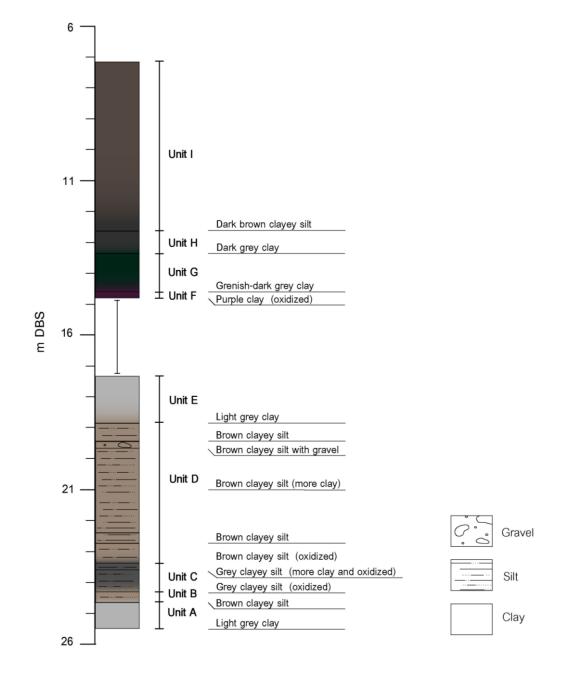
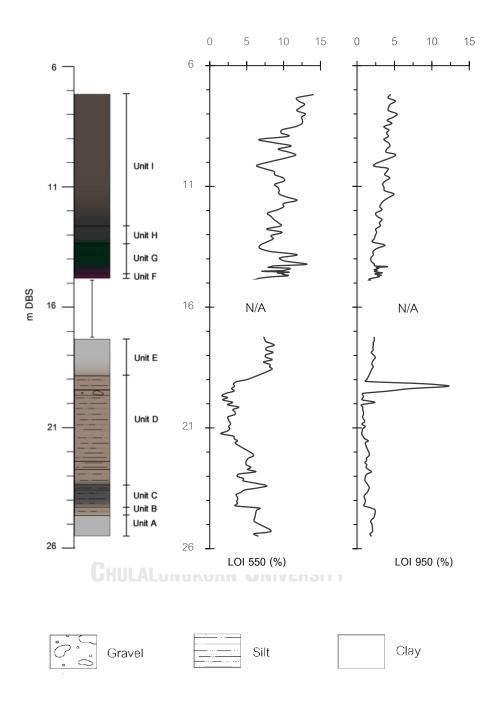


Figure 26 Lithostratigraphic column of sediment sequence of the open pit at Samut Sakhon.


4.2 Loss on ignition (LOI)

The consecutive 10 cm depth of sediment samples were combusted at 550°C (LOI550) and 950°C (LOI950) to achieve the qualitative changes in organic and carbonate content.

The LOI550 is approximately 7.5% in units A and B (Figure 27). It abruptly decreases to 5% at the boundary between units B and C before gradually increasing to 7.5% at 22.00 m DBS (the lower part of unit D) (Figure 27). The LOI550 suddenly declines and reaches 2.5% at 22.00-21.00 m DBS (Figure 27). It is a slight change of 2.5% from 21.00 m DBS to the upper part of unit D (Figure 27). The LOI550 abruptly increases to 10% in unit E. In units F to I, the LOI550 generally increases from 10 to 20% (Figure 27).

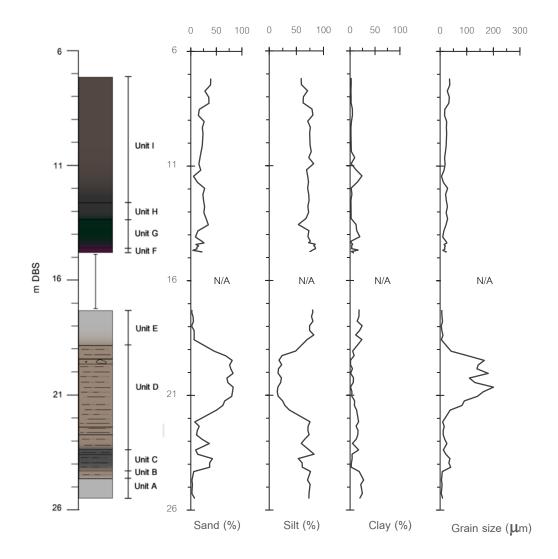
The LOI950 varies from 2.5% to 5% (Figure 27). The variation of the LOI950 is approximately analogous to that of the LOI550, except for units B to D (Figure 27). The LOI950 gradually decreases from 2.5% to 1% in units B to D (Figure 27). In addition, the LOI950 significantly increases and reaches its maximum of 12.5% in the caliche layer (Figure 27).

CHULALONGKORN UNIVERSITY

Figure 27 Comparison of lithostratigraphy (left), and profile of LOI550 (middle) and LOI950 (right) of sediment sequence of the open pit at Samut Sakhon.

4.3 Grain size analysis

The sediment sequence of the open pit at Samut Sakhon is generally composed of a silt fraction of 75%, 20% sand, and 5% clay (Figure 28).


In units A to the lower part of unit D (24.70-22.16 m DBS), the silt fraction is approximately 75% and the most predominant constitution. Sand component is 5% in units A and B, suddenly increases and reaches 40% in unit C, and varies from 20% to 40% in the lower part of unit D (24.13-22.16 m DBS) (Figure 28). In contrast, the clay fraction is 25% in units A and B, abruptly declines to less than 5% in the boundary between units B and C, and slightly increases to 15% in units B and the lower part of unit D (25.28-22.16 m DBS) (Figure 28).

The sand fraction suddenly increases and reaches 80%, while silt and clay components decrease by 75-20% and 20-5%, respectively, from 22.10 to 20.84 m DBS (Figure 28). The sedimentary components are a slight change of 80% sand, 20% silt, and less than 5% clay from 20.74 to 18.97 m DBS. The decrease in sand fraction consists of an increase in silt and clay components at 18.57-17.37 m DBS, before slight changes of 5% sand, 70% silt, and 25% clay in unit E (Figure 28).

Sand fraction increases from 10% to 20% in unit F, reaches 40% in unit G, decreases to 5% in units G and H, and gradually enhances by 5 to 40% in unit I. In units F to I, the silt component is generally 80%, except for 8.50 m DBS, which declines to 60%. The clay constituent is generally less than 5%, except for 14.00 and 11.50 m DBS, where it abruptly increases to 25% (Figure 28).

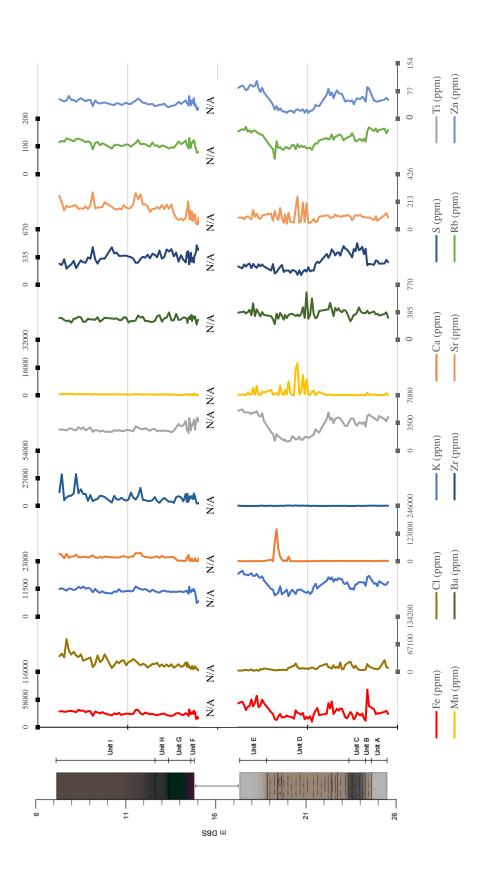
The volumetric mean diameter (D[4,3]) is less than 5 μ m in units A and B. It slightly increases to 50 μ m in unit C before declining to 10 μ m in the lower part of unit D (23.50-22.16 m DBS) (Figure 28). In unit D, the volumetric mean diameter significantly increases and reaches its maximum of 200 μ m at 20.74-18.97 m DBS (Figure 28). The volumetric

mean diameter suddenly declines to resemble those in units A and B. In units F to I, the volumetric mean diameter gradually increases from 20 to 40 μ m (Figure 28).

Figure 28 The lithostratigraphic column and percentage of sand, silt, and clay components, and volume metric mean grain size of the sediment sequence of the open pit at Samut Sakhon.

4.4 X-ray Fluorescence (XRF)

According to the XRF analysis, 39 elements of P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Ba, La, Ce, Pr, Nd, Ta, W, Au, Hg, Pb, Bi, Th, and U can be detected by the handheld XRF. However, the continuous detectable elements consisting of Fe, Cl, K, Ca, S, Ti, Mn, Ba, Zr, Sr, Rb, and Zn are included in the further analysis (Figure 29).


The Fe, K, Ti, Zr, Rb, and Zn concentrations demonstrate the analogous pattern of variation. There are high concentrations of 26000, 13000, 3800, 400, 130, and 50 ppm (Figure 29) of Fe, K, Ti, Zr, Rb, and Zn, respectively, in units A to the lower part of unit D (23.50-22.16 m DBS). Fe, K, Ti, Zr, Rb, and Zn decreased to approximately 21000, 9000, 1200, 130, 90, and 20 ppm, respectively, at 20.74-18.97 m DBS (Figure 29). In unit E, they increase and approximately resemble those of unit A to the lower part of unit D. Fe, K, Ti, Zr, Rb, and Zn concentrations are insignificant changes of 27000, 10000, 2900, 350, 100, and 40 ppm, respectively, in units F to I (Figure 29).

Cl, Ca, and S concentrations in units A to E are 8000, 1200, and 200 ppm, respectively (Figure 29). They are significantly lower than those in units F to I, which are approximately 8000- 80000 ppm of Cl, 2900-30000 ppm of Ca, and 2200-30000 ppm of S (Figure 29). The exception is in the caliche layer, in which the Ca concentration significantly increases and reaches 140000 ppm (Figure 29).

Ba concentration is insignificant changes and varies from 200 ppm to 600 ppm. Mn concentration is relatively low, except at 20.74-18.97 m DBS, where it varies from 40 ppm to 18000 ppm (Figure 29). Sr concentration significantly changes from 90-200 ppm at 20.74-18.97 m DBS, and relatively increased 40-250 ppm from unit F-I (Figure 29).

The Principle Component Analysis (PCA) was used to assess the relationship between each element. The Kauser Meyer Olkin test (KMO) was 0.623, indicating an adequacy of PCA analysis. The eigenvalues were 4.5 and 2.3 on components 1 and 2, respectively, and the cumulative variance was 57.5% (Table 5). Therefore, the components 1 and 2 are selected in this study. The first principal component was ~37.9% of the total variance (Figure 30). It consists of K, Ti, Fe, Rb, and Zn (Table 6). The second principal component is ~19.6% of the total variance, consisting of S, Cl, Sr and Ca, opposing to Ba (Table 6 and Figure 30).

The elemental ratios are often applied for paleoclimatic and paleoceanographic reconstructions (e.g., Clift et al., 2014; Kylander et al., 2011). Among these ratios, Ti/Ca and Zr/Rb were proxies to assess terrigenous input and its intensity (Kylander et al., 2011; Hou et al., 2020; Mesa-Fernández et al., 2022). Titanium is normally delivered by terrigenous input, i.e., fluvial and eolian transportation (Hou et al., 2020), while calcium is originated by marine biogenic carbonate (Mesa-Fernández et al., 2022). Rubidium is common in mica and clay minerals (Kylander et al., 2011). Their strong absorption to clay minerals of Rubidium makes it immobile in the environment. Zirconium is generally found as zircon and enriched in silt (Kylander et al., 2011)

		1				l	l		I	l	
	ared Loadings	Cumulative	%	34.70	57.20	71.80					
	Rotation Sums of Squared Loadings	% of	Variance	34.70	22.50	14.59					
	Rotation		Total	4.16	2.70	1.75					
q	red Loadings	Cumulative	%	37.93	57.54	71.80					
Total Variance Explained	Extraction Sums of Squared Loadings	% of	Variance	37.93	19.61	14.25					
Total Va	Extraction		Total	4.55	2.35	1.7.1					
		Cumulative	%	37.93	57.54	71.80	79.23	85.68	90.34	93.55	96.08
	alues	Ō		LONG	KORN	UN	VERS	ITY			
	Initial Eigenvalues	% of	Variance	37.93	19.61	14.25	7.43	6.45	4.67	3.20	2.54
			Total	4.55	2.35	1.71	.89	.77	.56	.38	.30
		Com	ponent	~	2	ю	4	2	9	7	8

54

Table 5 Total Variance Explained from PCA Analysis.

.24 2.02 98.10	.11 .93 99.03	.09 .73 99.76	.03 .24 .100.00	\triangleleft	S S S S S S S S S S S S S S S S S S S
.24	.11	60.	.03	Method: Pr	
6	10	11	12	Extraction	

	C	omponent		
	1	2	3	
S	06	.81	19	
CI	.04	.82	04	
К	.90	25	.10	
Са	27	.58	.05	1222
Ti	.81	23	39	
Mn	10	01	.86	
Fe	.85	.07	.17	
Rb	.90	13	03	
Sr	01	.79	.23	
Zr	02	01	75	
Ba	.38	50	.41	
Zn	.96	.001	11	

 Table 6
 Rotated Component Matrix from PCA analysis.

Rotation Method: Varimax with Kaiser

Normalization.

^a a. Rotation converged in 4 iterations.

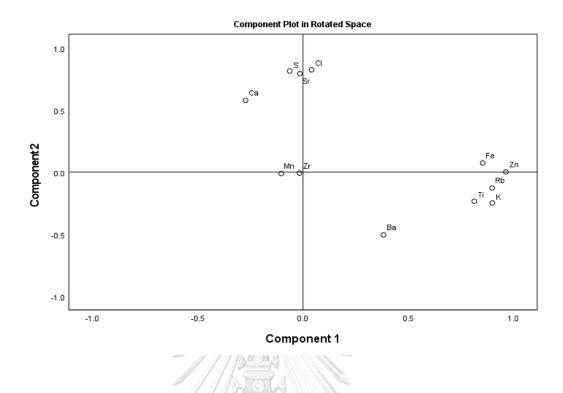
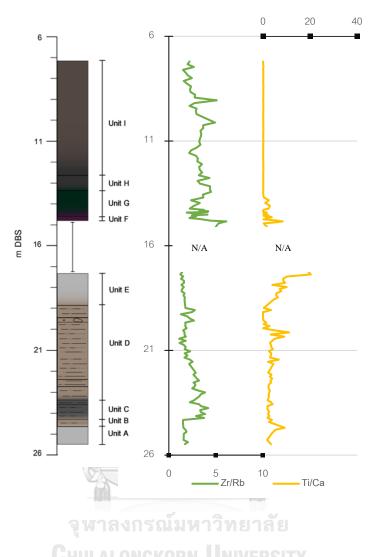
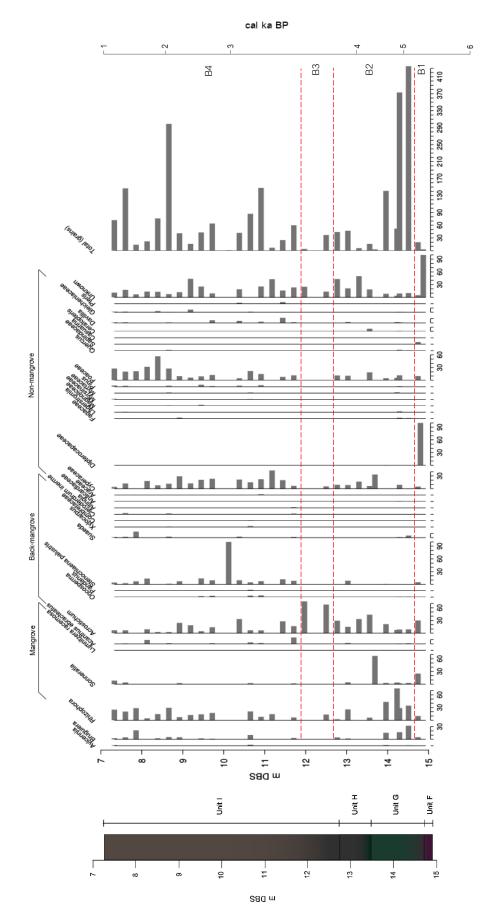



Figure 30 Component plot of elements in rotated space from PCA analysis.

Zr/Rb ratio value is abruptly increased from 3 to 4.5 at the boundary between units B and C (approximately 24.32 m DBS) (Figure 31). The ratio gradually declines to 3 at the top of unit E, from 24.32 to 17.37 m DBS. Zr/Rb ratio is approximately 5 and varies from 3 to 5 in units F to the lower part of unit I (14.70–12.66 m DBS). It gradually decreases from 4 to 2.5 in the upper part of unit I (11.80–7.20 m DBS) (Figure 31).

Ti/Ca is a slight change of 16 at 24.32 m DBS before abruptly declining to 0.5 between 24.50 and 21.00 m DBS (Figure 31). The ratio gradually increases and reaches its maximum of 20 at 19.00-17.37 m DBS. The Ti/Ca is an insignificant change in units F to I (Figure 31).


Figure 31 The lithostratigraphic column and variations of Zr/Rb and Ti/Ca ratios of the sediment sequence of the open pit at Samut Sakhon.

4.5 Palynology

Thirty-four pollen taxa can be found in the sediment samples obtained from the pit, divided into 4 assemblages: mangroves, back mangroves, non-mangroves taxa, and unidentified taxa following Santisuk (1983) and Punwong (2007) (Table 7). According to the pollen analysis, the sedimentary sequence can be divided into two main pollen zones, i.e., A and B from the bottom to the top.

Assemblage	Assemblage name	Plant assemblage
1		Avicennia, Bruguiera, Lumnitzera,
1	mangroves	Rhizophora, and Sonneratia
		Acanthus, Acrostichum, Combretaceae,
2	Back mangroves	Oncosperma, Pandanus, Suaeda,
		Stenochlaena, and Xylocarpus
		Altingia, Amaranthaceae, Anacardiaceae,
		Araceae, Clerodendrum, Casuarina,
		Cyperaceae, Dipterocapaceae, Fagaceae,
3	Non-mangrove taxa	Lagerstroemia, Magnoliaceae,
		Myrsinaceae, Myrtaceae, Pinus, Poaceae,
		Quercus, Sapindaceae, Ceratopteris,
	A Land	Davillia, Gleicheniaceae, and Pteris
4	Unidentified	And the Co
		้มหาวิทยาลัย
		RN UNIVERSITY

 Table
 7 Pollen assemblage of the sediment sequence of the open pit at Samut Sakhon.

4.5.1 Pollen zone A (25.48-17.37 m DBS)

The pollen is meager in the pollen zone A, which varies between 2 to 17 pollen grains. Pollens of non-mangrove herb, Amaranthaceae and Poaceae were found in unit A. In unit C, Amaranthaceae pollen significantly increased and reached its maximum of 17 pollen grains. In the middle of unit D, pollen grains are hardly found (< 2 grains and 1 pollen taxon) therefore this interval is defined as the barren zones of pollen. The pollens of *Bruguiera* -landward mangrove plant- and Poaceae are found in unit D. In unit E, two Poaceae pollens are present.

4.5.2 Pollen zone B (14.89 – 7.20 m DBS)

Pollen zone B can be further divided into 4 pollen zones (Figure 32).

4.5.2.1 Pollen zone B1 (14.89-14.70 m DBS)

Pollen zone B1 corresponds to sedimentary unit F. Pollen is abundant in the upper part of pollen zone B1, especially *Acrostichum*, back mangrove pollen taxa, which found 6 grains and reaches 30% (Figure 32). In addition, mangrove pollen taxa, including *Bruguiera*, *Stenochlaena*, *Rhizophora*, and *Sonneratia*, are found in 1, 1, 2, and 5 grains which are 5%, 5%, 10%, and 25%, respectively (Figure 32). Cyperaceae, Poaceae, and Monolete, the non-mangrove pollen taxa, are presented 1-2 grains which are around 5-10% (Figure 32).

4.5.2.2 Pollen zone B2 (14.70-12.66 m DBS)

Pollen zone B2 corresponds to sedimentary units G and H. The mangrove pollen taxa, especially *Bruguiera* and *Rhizophora*, *Sonneratia* are more abundant than those of the previous pollen zone. However, the percentages of *Bruguiera* and *Rhizophora* decreased by 30-2% and 70-2% from pollen grains of 140 to 1 and 150 to 1, respectively, from the bottom to the top of pollen zone B2. (Figure 32). In contrast, the back-mangrove pollen taxa of *Acrostichum* increased by 2-

39 grains which is 10-40% from the bottom to the top of this pollen zone (Figure 32). Cyperaceae and Poaceae are around 20% at 13.56-13.3 m DBS (Figure 32).

4.5.2.3 Pollen zone B3 (12.60-11.90 m DBS)

Pollen zone B3 corresponds to the lower part of sediment in unit I. *Rhizophora*, mangrove pollen taxa, decreases to 15% which is 5 grains (Figure 32). The back-mangrove pollen taxa of *Acrostichum* became predominant, which is 3-25 grains, around 70-75%. Cyperaceae pollen taxa are found in 5 grains which is 5% at the boundary between pollen zone B2 and B3 (Figure 32).

4.5.2.4 Pollen zone B4 (11.90-7.20 m DBS)

Pollen zone B4 corresponds to sedimentary units I above 11.90 m DBS. This pollen zone found a variety of pollen taxa. Mangrove pollen taxa of *Bruguiera* and *Rhizophora* have been found in 1-16, and 1-88 grains which are around 10-20% and 20-30%, respectively (Figure 32). Back-mangrove pollen taxon of *Acrostichum* significantly decreases compared to the previous zone and continuously declines from 15 to 10% in the pollen zone B4. The non-mangrove pollen taxa have become prevailing (Figure 32). Cyperaceae pollen varies from 3-35 which decreases by 40-20 %, while Poaceae pollen increases 7-83 grains by 15-60% from the bottom to the top of pollen zone B4 (Figure 32).

4.6 Chronology

The chronology of sedimentary succession is based on sequential radiocarbon dating of bulk sediment and marine shells (Table 8). The dating results obtained from the samples in sedimentary units A to E are constrained to the late Pleistocene (Table 8). However, the results derived from the samples in sedimentary units F to I are limited to the mid/late Holocene (Table 8). This abrupt change in dating results indicates a possible

unconformity between 18.47 and 14.89 m DBS. Therefore, further analysis is separated into the sections from 25.48 to 18.47 m DBS and from 14.89 to 7.54 m DBS.

The chronology of the lower part of the sedimentary succession (from 25.48 to 18.47 m DBS) relied on the sequential radiocarbon dates of bulk sediments. The dating results obtained from sample no. #10, #9, and #7 are significantly inconsistent with those from the adjacent depth (Table 8). They are excluded from further analysis since the contamination of older or younger origins of organic material in the bulk sediment frequently exceeds the depositional timeframe (Grimm et al., 2009). Consequently, the age-depth model for section 25.48-18.47 m DBS is based on interpolating the dating results from sample no. #11, #8, and #6, extending from 26500 to 22650 cal years BP (Figure 33). The sedimentation rate is c. 0.1 cm/year at c. 25.48-22.06 m DBS, and significant increases to 1.5 cm/yr at c. 22.06-18.47 m DBS (Figure 33).

In the upper part of the sedimentary succession (from 14.89 to 7.54 cm DBS), the chronology extends from 5400 to 1064 cal years BP. In addition, since it was shell samples the calibration will be used of the MARINE20 curve instead. However, the dating results obtained from sample no. #2 does not fit this general pattern and resulted in an older age than expected. This older age is possibly caused by reworking and excluded from the age-depth model constructed by Bacon. The deposition rate is approximately 0.11 cm/year from 13.77 to 14.88 m DBS, 0.92 cm/year from 13.76-11.66 m DBS, and 0.14 cm/year from 11.65-7.20 m DBS hereafter (Figure 34).

Sample no.	m DBS	Material	14C age (BP ± σ)	Cal year BP	Unit
#1	7.54	Shell	1672 ± 24	1,239	I
#2	9.88	Shell	4565 ± 30	4,791	I
#3	11.66	Shell	4070 ± 28	4,156	I
#4	13.78	Shell	4245 ± 29	4,385	G
#5	14.89	Shell	5056 ± 26	5,400	F
#6	18.47	Bulk sediment	18805 ± 75	22,732	E
#7	21.34	Bulk sediment	22415 ± 144	26,384	D
#8	22.06	Bulk sediment	19054 ± 95	22,985	D
#9	23.12	Bulk sediment	29720 ± 172	33,927	D
#10	25.48	Bulk sediment	14305 ± 62	17,116	А
#11	25.50	Bulk sediment	22220 ± 102	26,507	А

 Table
 8
 14C dated from bulk sediment and shell samples for Samut Sakhon site.

Grey stripe represent excluded samples from this study

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

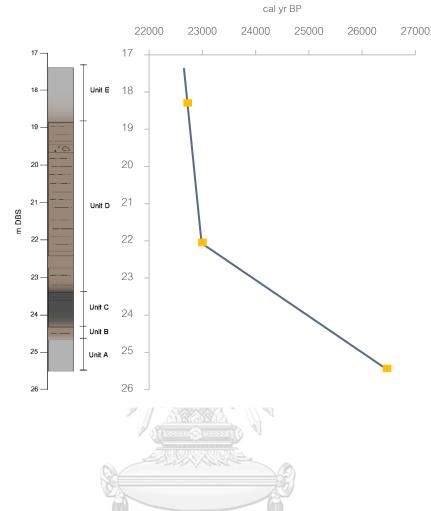


Figure 33 Age-depth relationship curve of sedimentary sequences below the hiatus in the late-Pleistocene, yellow dot show dating result from 25.50, 22.06, and 18.47 m DBS.

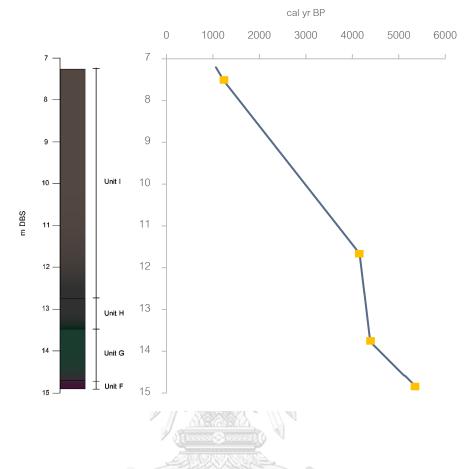


Figure 34 Age-depth relationship curve of sedimentary sequences upper the hiatus in the mid/late Holocene, yellow dot show dating result from 14.89, 13.78, 11.66, and 7.54 m DBS.

CHAPTER 5 DISCUSSION

Regarding sequential radiocarbon dating, the sedimentary sequence at the open pit at Samut Sakhon can be divided into the late Pleistocene approximately 26.5-22.6 cal ka BP and the mid/late Holocene deposits approximately 5.4-1.1 cal ka BP.

5.1 Environmental reconstruction during the late Pleistocene

The radiocarbon dating obtained from sample no. #11, #8, and #6 demonstrated that the sedimentary section was deposited at 26.5-22.7 cal ka BP, which was contemporary with the Last Glacial Maximum (LGM: 25-19 cal ka BP) (e.g., Negri, 2012; Puchala et al., 2011; Gorbarenko et al., 2022) (Table 8). The sea level lowstand during the LGM exposed the Sunda shelf connected the Southeast Asian Mainland to the Indonesian archipelago (e.g., Sathiamurthy & Voris, 2006; Puchala et al., 2011; Rugmai & Grote, 2023). Since, Samut Sakhon was a part of the Sundaland, the sedimentary deposit was potentially controlled by the Tha Chin and Chao Phraya Rivers (Sinsakul, 2000; Tanabe et al., 2003). The reconstructions of the LGM climate generally revealed the strengthening of winter monsoon, making the persistent cooler and drier conditions than present of the Savanna (tropical wet and dry) climate (e.g. van Campo et al., 1982; Huang et al., 1997; Hodell et al., 1998; von Rad et al., 1999; Hope, 2001; Naidu, 2004; Prabhu et al. 2004; White et al., 2004; Tiwari et al., 2006; Ansari and Vink, 2007; Cosford et al., 2010; Fleitmann et al. 2011).

Sedimentary characteristics of this stage include sediment from units A to E that mixed light grey clay and brown/grey clayey silt layer. The paucity of pollen that identifies as a barren zone of pollen is possibly caused by the oxidizing of the study area that agrees with the color of the sediment. These results possibly indicate the temporal exposure of the study area, which was the floodplain of Tha Chin and Chao Phraya Rivers during the LGM at 26.5-23.0 cal ka BP.

Noticeably, the significant increases in sand fraction and volume metric diameter were consistent with relatively low organic matter, regard to LOI550, and high Ti/Ca value in sedimentary unit D at 21.6-19.1 m DBS. These results obviously suggested an abruptly increased runoff intensity in the study area at 23.0-22.8 cal ka BP (Figure 35).

5.2 Environmental Reconstruction during the mid/late Holocene

In the mid-Holocene, sea level increased and reached its highstand at around 8-4 cal year BP (Somboon & Thiramongkol, 1992; Horton et al., 2005; Bird et al., 2010; Li et al., 2012; Hutangkura, 2014; Surakiatchai et al., 2018). However, the timing of the mid-Holocene highstand has been under debate. For example, the reconstruction of the sea level regarding pollen records in Chao Phraya Plain, Thailand, suggested the highstand at 8.4 cal yr BP (Hutangkura, 2014). However, the dating of the peat layer obtained from the same area indicated a highstand of around 7.3-6 year BP (Somboon & Thiramongkol, 1992) that was contemporary with the dating of peat layer at Singapore by Tjia (1996) and Bird et al. (2010). Whereas, Horton et al. (2005) suggest that the sea level high stand was at 4.85 – 4.45 cal year BP. In the late Holocene, the sea level has been generally considered to be a gradual fall based on various studies associated with the glacial isostatic adjustment (GIA) model (Horton et al., 2005; Zong, 2013; Surakiatchai et al., 2018). However, some records suggest that sea levels have been fluctuating after the mid-Holocene highstand (Sinsakul, 1992; Tjia, 1996; Jirapinyakul et al., 2023). Therefore, the low central plain, including the study area, was directly influenced by the marine processes during the mid/late Holocene.

The radiocarbon dating obtained from sample #5, #4, #3, and #1 indicated that the sedimentary section was deposited at 5.4-1.1 cal ka BP (Table 8). Sedimentary characteristics of the mid/late Holocene stage include sedimentary units F to I. The presence of high mangrove pollen taxa in greenish-dark grey clay and dark grey clay approximately 14.9-13.7 m DBS is consistent with relatively high organic content, indicating the influence of marine processes (Figure 36). The high pollen accumulation rate that obtained by calculating pollen grains with the rate of deposition suggested the thriving of mangrove forests in the study area at 5.4-4.4 cal ka BP.

The transformation of sediment from greenish-dark grey clay and dark grey clay to dark brown clayey silt is consistent with the decrease in pollen number associated with lower organic matters, referred to the regression at 4.4-4.2 cal ka BP. Moreover, this interpretation is supported by the occupation of the back-mangrove pollen taxa at 13.6-11.7 m DBS (Figure 36). The environment at this time is likely to be a back-mangrove forest.

Non-mangrove pollen taxa became predominant at 4.2–2.3 cal ka BP. The pollen accumulation rate of Cyperaceae and Poaceae which is non-mangrove pollen assemblage indicates that freshwater has more influence in this area. The value of the Zr/Rb ratio, sand fraction, and volume metric mean diameter slightly increased during this time interval referring to higher transportation environment energy. These results suggest the gradual sea level lowering at 4.2–2.3 cal ka BP and the environment in Samut Sakhon seems to be a wetland (Figure 36).

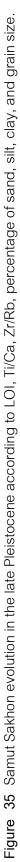
Organic matter and volume metric mean diameter increased at 8.9-7.2 m DBS, demonstrating the higher transportation energy at 2.3-1.1 cal ka BP (Figure 36). Pollen was abundant, especially Poaceae and *Rhizophora*, at this depth. The high pollen accumulation rates of both mangrove and non-mangrove pollen taxa suggested the sea level again increased together with freshwater influence by an occasional increase in runoff at 2.3-1.1 cal ka BP. The environment seems to transfer from a wetland to a brackish water area in this time interval.

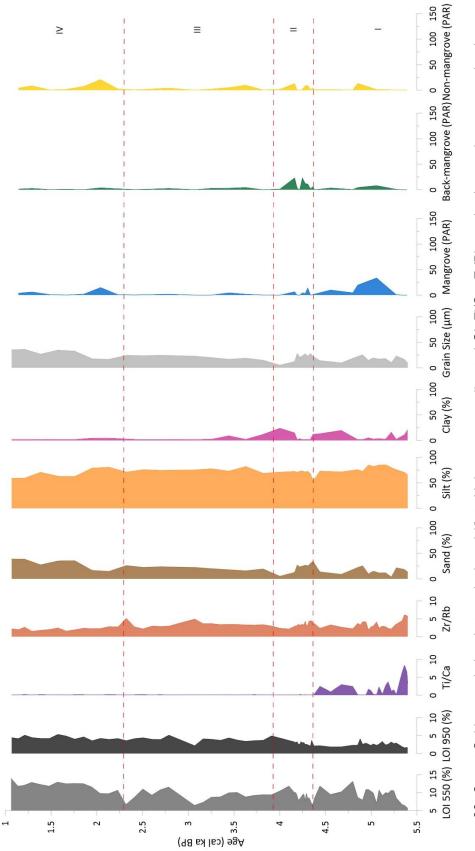
5.3 Unconformity of the sedimentary sequence

The sediment in the Late-Pleistocene to Holocene of Chao Phraya delta is known as Bangkok Clay (Sinsakul, 2000; Tanabe et al., 2003). Bangkok clay consists of soft clay from the Holocene and stiff clay from the Late-Pleistocene that unconformably overlaid (Tanabe et al., 2003). Tanabe et al. (2003) suggested the stratigraphy evolution at Tha Chin and Chao Phraya delta plains that shallow marine and fluvial sediment in the Late Pleistocene unconformably overlaid by basal lag sediment with a sharp erosional surface from the mid-Holocene high stand, this erosional surface may occur due to marine transgression or regression.

The sedimentary sequence data from this study is likely to be consistent with Tanabe et al. (2003). The intervals at 17.3-14.9 m DBS in the open pit in Samut Sakhon are possibly divided by the unconformity. The laminate light grey clay layer in unit E indicates deposition during the Late Pleistocene at approximately 22.7 cal ka BP adjacent to the oxidized purple clay layer in unit F indicates deposition during the mid-Holocene at approximately 5.4 cal ka BP.

5.4 Recommendation


The open pit study site was 4 km distance from Phanom Surin Shipwreck in Samut Sakhon Province. Phanom Surin Shipwreck was 2 m depth of the pond edge and 8 km distance from the Gulf of Thailand, the surrounding area was shrimp farms and mangrove plants (The 1st Regional Office of Fine Arts Department, 2016). The dating result indicates an age of approximately 1.1-1.3 cal ka BP (The 1st Regional Office of Fine Arts Department, 2016).


In this study, shell samples were found at 7.5 m depth below the surface (the surface refers to rural road 2004 level) around the open pit indicating an age of 1.2 cal ka BP which is similar to the age of Phanom Surin Shipwreck. These results possibly show that at around 1.3 cal ka BP when the upper Gulf of Thailand was invaded by marine

water. However, the inconsistency in depth between the open pit and shipwreck need to be further studied by the differential global positioning system.

CHAPTER 6 CONCLUSION AND RECOMENDATION

This study uses LOI, Ti/Ca, and Zr/Rb ratio, grain size, and pollen interpretation together with radiocarbon dating to reconstruct past environments and evolution in Samut Sakhon site, the upper Gulf of Thailand. The past environment in Samut Sakhon site can divided into two separate parts including the late Pleistocene and the mid/late Holocene.

In the late Pleistocene, the paucity of pollen possibly indicates the temporal exposure of the study area during a dry condition at 26.5-23.0 cal ka BP. Followed by abruptly increased runoff intensity at 23.0-22.8 cal ka BP.

In the mid to late Holocene, the thriving of mangrove forest communities due to sea level transgression happened at 5.4-4.4 cal ka BP. The mangrove forest was transferred to the back-mangrove forest during sea level regression at 4.4-4.2 cal ka BP, and then the sea level continuously decreased until 2.3 cal ka BP. Subsequently, sea level increased in the study area by approximately 2.3-1.1 cal ka BP together with freshwater influence by an occasional increase in runoff.

The sedimentary sequence in Samut Sakhon shows an unconformity at 17.3-14.9 m DBS. The unconformity present between the laminate light grey clay at the Late-Pleistocene and the oxidized purple clay layer at the mid-Holocene.

The correlation between the open pit study site and the Phanom Surin Shipwreck indicates a similar age of around 1.2-1.3 cal ka BP, suggesting that the open pit has been at a deep point deeper than the Phanom Surin Shipwreck during the late Holocene.

The measurement of the depth of the open pit was only conducted by using an Automatic level where Samut Sakhon Rural Road 2004 was a reference level. For further study, level measurement of an Automatic level and measurement of a Differential Global Positioning System where Mean Sea Level was a reference level should be combined to represent the actual level and can be correlated with another study.

REFERENCES

Alptekin, A., & Hatipoglu, Z. (2018). ENGINEERING PROPERTIES OF CALICHE.

- Bird, M. I., Austin, W. E., Wurster, C. M., Fifield, L. K., Mojtahid, M., & Sargeant, C. (2010).
 Punctuated eustatic sea-level rise in the early mid-Holocene [Article]. *Geology*, 38(9), 803-806. <u>https://doi.org/10.1130/G31066.1</u>
- Bird, M. I., Fifield, L. K., Teh, T. S., Chang, C. H., Shirlaw, N., & Lambeck, K. (2007). An inflection in the rate of early mid-Holocene eustatic sea-level rise: A new sea-level curve from Singapore [Article]. *Estuarine, Coastal and Shelf Science*, 71(3-4), 523-536. <u>https://doi.org/10.1016/j.ecss.2006.07.004</u>
- Bowen, D. Q. (2009). Last Glacial Maximum. In V. Gornitz (Ed.), *Encyclopedia of Paleoclimatology and Ancient Environments* (pp. 493-495). Springer Netherlands. <u>https://doi.org/10.1007/978-1-4020-4411-3_122</u>
- Chabangborn, A., Punwong, P., Phountong, K., Nudnara, W., Yoojam, N., Sainakum, A.,
 Won-In, K., & Sompongchaiyakul, P. (2020). Environmental changes on the west
 coast of the Gulf of Thailand during the 8.2 ka event. *Quaternary International*, 536, 103-113. <u>https://doi.org/10.1016/j.quaint.2019.12.020</u>
- Choowong, M. (2002). The geomorphology and assessment of indicators of sea-level changes to study coastal evolution from the Gulf of Thailand. *Proceedings of the Symposium on Geology of Thailand*.
- Dusitapirom, U., Choowong, M., & Daorerk, V. (2008). Analysis in genesis and pattern of limestone sea notches from Sam Roi Yot National Park, Phrachuap Kirikhan Province, Southern Thailand. 35 -39.
- Geyh, M., Streif, H., & Kudrass, H. (1979). Sea-level changes during the Late Pleistocene and Holocene in the Strait of Malacca. *Nature*, 278, 441-443. <u>https://doi.org/10.1038/278441a0</u>
- Hanebuth, T., Stattegger, K., & Grootes, P. (2000a). Rapid Flooding of the Sunda Shelf: A Late-Glacial Sea-Level Record. Science (New York, N.Y.), 288, 1033-1035. <u>https://doi.org/10.1126/science.288.5468.1033</u>

- Hanebuth, T., Stattegger, K., & Grootes, P. M. (2000b). Rapid Flooding of the Sunda Shelf:
 A Late-Glacial Sea-Level Record. Science, 288(5468), 1033-1035.
 https://doi.org/10.1126/science.288.5468.1033
- Hesp, A. P., Chang Chew, H., Hilton, M., Chou Loke, M., & Turner, I. M. (1998). A First Tentative Holocene Sea-Level Curve for Singapore. *Journal of Coastal Research*, 14(1), 308-314. <u>http://www.jstor.org/stable/4298779</u>
- Horton, B. P., Gibbard, P. L., Milne, G. M., Morley, R. J., Purintavaragul, C., & Stargardt, J. M. (2005). Holocene sea levels and palaeoenvironments, Malay-Thai Peninsula, southeast Asia [Article]. *Holocene*, *15*(8), 1199-1213.
 https://doi.org/10.1191/0959683605hl891rp
- Hutangkura, T. (2012). Pollen analysis of the Holocene sedimentary sequences from the Lower Central Plain of Thailand and its implications for understanding palaeoenvironmental and phytogeographical changes. [History, University of Nice, France].
- Hutangkura, T. (2014). A New Interpretation of the Boundary of Dvaravati Shoreline on the Lower Central Plain. *Damrong Journal*, *13*, 11-44.
- Jirapinyakul, A., Nudnara, W., Punwong, P., Nohall, R., Englong, A., Phujareanchaiwon, C., Yamoah, K. A., & Choowong, M. (2023). ENSO may have contributed to sea level changes in the Gulf of Thailand during the Late-Holocene. *The Holocene*, 09596836231197745. <u>https://doi.org/10.1177/09596836231197745</u>
- Li, Z., Saito, Y., Mao, L., Tamura, T., Li, Z., Song, B., Zhang, Y., Lu, A., Sieng, S., & Li, J. (2012). Mid-Holocene mangrove succession and its response to sea-level change in the upper Mekong River delta, Cambodia. *Quaternary Research*, 78(2), 386-399. https://doi.org/10.1016/j.yqres.2012.07.001
- Nudnara, W. (2019). Reconstruction of sea level fluctuation and environmental change in Khao Sam Roi Yot National Park, Changwat Prachuap Khiri Khan during the late holocene (Publication Number 6072092223) Chulalongkorn University]. http://cuir.car.chula.ac.th/handle/123456789/65003

- Oliver, G. J. H., & Terry, J. P. (2019). Relative sea-level highstands in Thailand since the Mid-Holocene based on 14C rock oyster chronology. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 517, 30-38.
 https://doi.org/https://doi.org/10.1016/j.palaeo.2018.12.005
- Plicht, J., Ramsey, C., Heaton, T., Scott, E. M., & Talamo, S. (2020). Recent Developments in Calibration for Archaeological and Environmental Samples. *Radiocarbon*, 62, 1-23. <u>https://doi.org/10.1017/RDC.2020.22</u>
- Sainakum, A., Jittangprasert, P., Sompongchaiyakul, P., & Jirapinyakul, A. (2021). Using nalkanes as a proxy to reconstruct sea-level changes in Thale Noi, the west coast of the Gulf of Thailand. *Journal of Asian Earth Sciences*, *213*, 104740. <u>https://doi.org/https://doi.org/10.1016/j.jseaes.2021.104740</u>
- Santisuk, T. (1983). Taxonomy and distribution of terrestrial trees and shrubs in the mangrove formations in Thailand. In (Vol. 31, pp. 63-91).
- Sinsakul, S. (1992). Evidence of quarternary sea level changes in the coastal areas of Thailand: a review. *Journal of Southeast Asian Earth Sciences*, 7(1), 23-37. <u>https://doi.org/https://doi.org/10.1016/0743-9547(92)90012-Z</u>
- Sinsakul, S. (2000). Late Quaternary geology of the Lower Central Plain, Thailand. *Journal* of Asian Earth Sciences, 18(4), 415-426. <u>https://doi.org/https://doi.org/10.1016/S1367-9120(99)00075-9</u>
- Somboon, J. R. P. (1988). Paleontological study of the recent marine sediments in the lower central plain, Thailand. *Journal of Southeast Asian Earth Sciences*, 2(3), 201-210. <u>https://doi.org/https://doi.org/10.1016/0743-9547(88)90031-1</u>
- Somboon, J. R. P. (1990). Palynological study of mangrove and marine sediments of the Gulf of Thailand. *Journal of Southeast Asian Earth Sciences*, *4*(2), 85-97. <u>https://doi.org/https://doi.org/10.1016/0743-9547(90)90008-2</u>
- Somboon, J. R. P., & Thiramongkol, N. (1992). Holocene highstand shoreline of the Chao Phraya delta, Thailand. *Journal of Southeast Asian Earth Sciences*, 7(1), 53-60. <u>https://doi.org/https://doi.org/10.1016/0743-9547(92)90014-3</u>

Southorn, Kashgarian, M., Fontugne, Metivier, & Yim, W. (2002). Marine Reservoir Corrections for the Indian Ocean and Southeast Asia. *Radiocarbon*, *44*, 167-180. <u>https://doi.org/10.1017/S0033822200064778</u>

- Surakiatchai, P., Choowong, M., Charusiri, P., Ch, T., Chawchai, S., Pailoplee, S.,
 Jirapinyakul, A., Phantuwongraj, S., Chutakositkanon, V., Kongsen, S., Nimnate, P.,
 & Bissen, R. (2018). Paleogeographic Reconstruction and History of the Sea Level
 Change at Sam Roi Yot National Park, Gulf of Thailand. *Natural history*, *18*, 112-134.
- Tanabe, S., Saito, Y., Sato, Y., Suzuki, Y., Sinsakul, S., Tiyapairach, S., & Chaimanee, N. (2003). Stratigraphy and Holocene evolution of the mud-dominated Chao Phraya delta, Thailand. *Quaternary Science Reviews*, 22(8), 789-807. <u>https://doi.org/https://doi.org/10.1016/S0277-3791(02)00242-1</u>
- The 1st Regional Office of Fine Arts Department, R. (2016). *Preliminary report on the archaeological study of the Phanom Surin Shipwreck* 2013-2015.
- Tjia, H. D. (1996). Sea-level changes in the tectonically stable Malay-Thai Peninsula. *Quaternary International*, *31*, 95-101. <u>https://doi.org/https://doi.org/10.1016/1040-6182(95)00025-E</u>
- Watson, J. G. (1928). *Mangrove forests of the Malay Peninsula / by J. G. Watson*. Printed by Fraser & Neave.
- Zhang, H., Liu, S., Wu, K., Cao, P., Pan, H.-J., Wang, H., Cui, J., Li, J., Khokiattiwong, S., Kornkanitnan, N., & Shi, X. (2022). Evolution of sedimentary environment in the Gulf of Thailand since the last deglaciation. *Quaternary International*, 629, 36-43. <u>https://doi.org/https://doi.org/10.1016/j.quaint.2021.02.018</u>
- Zhang, J., Tomczak, M., Witkowski, A., Zhen, X., & Li, C. (2023). A fossil diatom-based reconstruction of sea-level changes for the Late Pleistocene and Holocene period in the NW South China Sea. *Oceanologia*, 65(1), 211-229. https://doi.org/https://doi.org/10.1016/j.oceano.2022.05.004
- Zong, Y. (2013). SEA-LEVELS, LATE QUATERNARY | Late Quaternary Relative Sea-Level Changes in the Tropics. In S. A. Elias & C. J. Mock (Eds.), *Encyclopedia of*

Quaternary Science (Second Edition) (pp. 495-502). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53643-3.00142-4

Chulalongkorn University

APPENDICES

APPENDIX A

LOSS ON IGNITION

m DBS	DW105	DW550	DW950	LOI550	LOI950
25.48	2.648	2.475	2.425	6.533	1.888
25.38	3.898	3.663	3.595	6.029	1.744
25.28	2.851	2.614	2.555	8.313	2.069
24.98	2.525 ⊿	2.357	2.307	6.653	1.980
24.88	2.697	2.533	2.484	6.081	1.817
24.79	2.302	2.164	2.119	5.995	1.955
24.70	2.465	2.314	2.258	6.126	2.272
24.41	2.796	2.619	2.551	6.330	2.432
24.32	3.250	3.030	2.968	6.769	1.908
24.23	2.760	2.665	2.639 29	3.442	0.942
24.13	3.045	2.931	2.900	3.744	1.018
24.04	2.666	2.569	2.539	3.638	1.125
23.94	2.919	2.808	2.777	3.803	1.062
23.85	2.128	2.049	2.029	3.712	0.940
23.76	2.477	2.388	2.361	3.593	1.090
23.66	3.316	3.175	3.129	4.252	1.387
23.57	2.487	2.369	2.331	4.745	1.528
23.47	2.565	2.393	2.351	6.706	1.637
23.38	2.344	2.165	2.130	7.637	1.493

23.19	3.220	3.074	3.039	4.534	1.087
23.10	2.527	2.411	2.384	4.590	1.068
23.00	2.401	2.312	2.285	3.707	1.125
22.91	2.246	2.158	2.128	3.918	1.336
22.82	2.745	2.574	2.521	6.230	1.931
22.72	2.024	1.920	1.889	5.138	1.532
22.63	1.996	1.885	1.861	5.561	1.202
22.53	2.267	2.154	2.124	4.985	1.323
22.44	2.248	2.138	2.114	4.893	1.068
22.35	2.099	1.994	1.967	5.002	1.286
22.25	2.172	2.058	2.031	5.249	1.243
22.16	1.703	1.602	1.575	5.931	1.585
22.06	2.365	2.228	2.189	5.793	1.649
21.64	1.809	1.746	1.726	3.483	1.106
21.54	1.862	1.792	1.764	3.759	1.504
21.44	2.635	2.548	2.521	3.302	1.025
21.34	3.337	3.229	13.203 a ย	3.236	0.779
21.24	1.775	1.748	1.737	Y 1.521	0.620
21.14	2.911	2.844	2.824	2.302	0.687
21.04	2.950	2.870	2.848	2.712	0.746
20.94	2.372	2.311	2.285	2.572	1.096
20.84	2.851	2.771	2.752	2.806	0.666
20.74	2.730	2.657	2.629	2.674	1.026
20.64	2.683	2.616	2.592	2.497	0.895
20.54	2.743	2.675	2.655	2.479	0.729
20.44	2.222	2.146	2.127	3.420	0.855

20.34	2.338	2.258	2.238	3.422	0.855
20.24	2.363	2.289	2.271	3.132	0.762
20.14	2.216	2.129	2.112	3.926	0.767
20.04	2.489	2.429	2.414	2.411	0.603
19.94	1.977	1.916	1.869	3.085	2.377
19.84	2.431	2.388	2.371	1.769	0.699
19.74	2.104	2.053	2.036	2.424	0.808
19.67	1.635	1.608	1.594	1.651	0.856
19.57	1.720	1.683	1.670	2.151	0.756
19.47	1.586	1.534	1.467	3.279	4.224
19.37	2.702	2.622	2.431	2.961	7.069
19.27	2.144	2.072	1.809	3.358	12.267
19.17	2.088	2.021	1.832	3.209	9.052
19.07	2.100	2.021	1.997	3.762	1.143
18.97	2.202	2.086	2.056	5.268	1.362
18.57	3.352	3.070	3.004	8.413	1.969
18.47	3.009	2.765	2.700	8.109	2.160
18.37	4.199	3.856	3.772	8.169	2.000
18.27	3.483	3.229	3.158	7.293	2.038
18.17	4.502	4.121	4.020	8.463	2.243
18.07	2.933	2.710	2.638	7.603	2.455
17.97	3.881	3.586	3.501	7.601	2.190
17.87	4.937	4.514	4.420	8.568	1.904
17.77	3.154	2.913	2.845	7.641	2.156
17.67	3.701	3.415	3.337	7.728	2.108
17.57	4.342	3.963	3.868	8.729	2.188

17.47	3.196	2.938	2.869	8.073	2.159
17.37	3.687	3.411	3.326	7.486	2.305
14.93	3.059	2.908	2.851	4.936	1.863
14.90	4.135	3.911	3.849	5.417	1.499
14.87	3.468	3.265	3.204	5.854	1.759
14.84	2.924	2.736	2.689	6.430	1.607
14.81	3.676	3.431	3.359	6.665	1.959
14.74	3.212	2.938	2.843	8.531	2.958
14.71	2.168	1.940	1.880	10.517	2.768
14.68	2.834	2.532	2.440	10.656	3.246
14.64	3.744	3.376	3.279	9.829	2.591
14.61	3.135	2.821	2.745	10.016	2.424
14.58	3.454	3.137	3.020	9.178	3.387
14.55	2.986	2.666	2.587	10.717	2.646
14.52	3.758	3.493	3.406	7.052	2.315
14.48	3.192	2.876	2.790	9.900	2.694
14.45	3.461	ลง 3.101 มห	13 _{3.022} ลัย	10.402	2.283
14.42	1.993	1.776	1.724	IY 10.888	2.609
14.39	4.079	3.637	3.518	10.836	2.917
14.35	3.720	3.425	3.328	7.930	2.608
14.32	3.876	3.555	3.396	8.282	4.102
14.29	3.150	2.877	2.803	8.667	2.349
14.23	2.699	2.344	2.281	13.153	2.334
14.09	3.554	3.191	3.124	10.214	1.885
13.96	3.221	2.916	2.856	9.469	1.863
13.83	4.070	3.588	3.499	11.843	2.187

13.563.2883.0652.976 6.782 2.70713.433.3303.1022.978 6.847 3.724 13.303.0422.8062.743 7.758 2.07113.173.6433.330 3.246 8.592 2.30613.033.010 2.759 2.686 8.339 2.42512.90 3.509 3.165 3.073 9.803 2.62212.77 3.358 3.099 3.015 7.713 2.50112.64 3.698 3.342 3.227 9.627 3.110 12.50 3.210 2.912 2.816 9.283 2.991 12.37 2.758 2.518 2.426 8.702 3.336 12.24 3.979 3.649 3.542 8.294 2.689 12.11 3.832 3.532 3.436 7.829 2.505 11.97 3.043 2.764 2.663 9.169 3.319 11.84 3.644 3.279 3.168 10.016 3.046 11.71 2.436 2.193 2.114 9.975 3.243 11.83 3.942 3.476 3.332 11.821 3.653 11.44 3.024 2.708 2.577 10.450 4.332 11.31 2.537 2.99 2.174 9.361 4.927 11.18 3.708 3.285 3.243 3.618 10.91 3.218 2.935 2.825 8.794 3.418 10.91 3.218	13.70	2.578	2.365	2.310	8.262	2.133
13.30 3.042 2.806 2.743 7.758 2.071 13.17 3.643 3.330 3.246 8.592 2.306 13.03 3.010 2.759 2.686 8.339 2.425 12.90 3.509 3.165 3.073 9.803 2.622 12.77 3.358 3.099 3.015 7.713 2.501 12.64 3.698 3.342 3.227 9.627 3.110 12.50 3.210 2.912 2.816 9.283 2.991 12.37 2.758 2.518 2.426 8.702 3.336 12.24 3.979 3.649 3.542 8.294 2.689 12.11 3.832 3.532 3.436 7.829 2.505 11.97 3.043 2.764 2.663 9.169 3.319 11.84 3.644 3.279 3.168 10.016 3.046 11.71 2.436 2.193 2.114 9.975 3.243 11.58 3.942 3.476 3.332 11.821 3.653 11.44 3.024 2.708 2.577 10.450 4.332 11.18 3.708 3.359 3.222 9.412 3.695 11.05 3.538 3.211 3.083 9.243 3.618 10.91 3.218 2.935 2.825 8.794 3.418 10.78 3.373 3.034 2.907 10.050 3.765 10.65 3.548 <t< td=""><td>13.56</td><td>3.288</td><td>3.065</td><td>2.976</td><td>6.782</td><td>2.707</td></t<>	13.56	3.288	3.065	2.976	6.782	2.707
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.43	3.330	3.102	2.978	6.847	3.724
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13.30	3.042	2.806	2.743	7.758	2.071
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13.17	3.643	3.330	3.246	8.592	2.306
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13.03	3.010	2.759	2.686	8.339	2.425
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.90	3.509	3.165	3.073	9.803	2.622
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.77	3.358	3.099	3.015	7.713	2.501
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.64	3.698	3.342	3.227	9.627	3.110
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.50	3.210	2.912	2.816	9.283	2.991
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.37	2.758	2.518	2.426	8.702	3.336
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.24	3.979	3.649	3.542	8.294	2.689
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.11	3.832	3.532	3.436	7.829	2.505
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.97	3.043	2.764	2.663	9.169	3.319
11.583.9423.4763.33211.8213.65311.443.0242.7082.57710.4504.33211.312.5372.2992.1749.3814.92711.183.7083.3593.2229.4123.69511.053.5383.2113.0839.2433.61810.913.2182.9352.8258.7943.41810.783.3733.0342.90710.0503.76510.653.5483.1953.0409.9494.36910.523.0532.7842.6718.8113.701	11.84	3.644	3.279	3.168	10.016	3.046
11.443.0242.7082.57710.4504.33211.312.5372.2992.1749.3814.92711.183.7083.3593.2229.4123.69511.053.5383.2113.0839.2433.61810.913.2182.9352.8258.7943.41810.783.3733.0342.90710.0503.76510.653.5483.1953.0409.9494.36910.523.0532.7842.6718.8113.701	11.71	2.436	2.193	2.114	9.975	3.243
11.312.5372.2992.1749.3814.92711.183.7083.3593.2229.4123.69511.053.5383.2113.0839.2433.61810.913.2182.9352.8258.7943.41810.783.3733.0342.90710.0503.76510.653.5483.1953.0409.9494.36910.523.0532.7842.6718.8113.701	11.58	3.942	3.476	าวิ _{3.332} ลัย	11.821	3.653
11.183.7083.3593.2229.4123.69511.053.5383.2113.0839.2433.61810.913.2182.9352.8258.7943.41810.783.3733.0342.90710.0503.76510.653.5483.1953.0409.9494.36910.523.0532.7842.6718.8113.701	11.44	3.024	2.708	2.577	Y 10.450	4.332
11.053.5383.2113.0839.2433.61810.913.2182.9352.8258.7943.41810.783.3733.0342.90710.0503.76510.653.5483.1953.0409.9494.36910.523.0532.7842.6718.8113.701	11.31	2.537	2.299	2.174	9.381	4.927
10.913.2182.9352.8258.7943.41810.783.3733.0342.90710.0503.76510.653.5483.1953.0409.9494.36910.523.0532.7842.6718.8113.701	11.18	3.708	3.359	3.222	9.412	3.695
10.783.3733.0342.90710.0503.76510.653.5483.1953.0409.9494.36910.523.0532.7842.6718.8113.701	11.05	3.538	3.211	3.083	9.243	3.618
10.653.5483.1953.0409.9494.36910.523.0532.7842.6718.8113.701	10.91	3.218	2.935	2.825	8.794	3.418
10.52 3.053 2.784 2.671 8.811 3.701	10.78	3.373	3.034	2.907	10.050	3.765
	10.65	3.548	3.195	3.040	9.949	4.369
10.38 3.515 3.209 3.069 8.706 3.983	10.52	3.053	2.784	2.671	8.811	3.701
	10.38	3.515	3.209	3.069	8.706	3.983

10.123.6013.3693.2906.4439.723.2552.8792.71211.5519.593.0912.7582.63710.7739.463.3493.0382.9059.2869.322.7942.4862.36311.0249.193.4223.1242.9818.7089.063.3073.0862.9676.683	2.194 5.131 3.915 3.971 4.402 4.179
9.593.0912.7582.63710.7739.463.3493.0382.9059.2869.322.7942.4862.36311.0249.193.4223.1242.9818.7089.063.3073.0862.9676.683	3.915 3.971 4.402
9.46 3.349 3.038 2.905 9.286 9.32 2.794 2.486 2.363 11.024 9.19 3.422 3.124 2.981 8.708 9.06 3.307 3.086 2.967 6.683	3.971 4.402
9.32 2.794 2.486 2.363 11.024 9.19 3.422 3.124 2.981 8.708 9.06 3.307 3.086 2.967 6.683	4.402
9.19 3.422 3.124 2.981 8.708 9.06 3.307 3.086 2.967 6.683	
9.06 3.307 3.086 2.967 6.683	4.179
9 02 0 CO4 0 407 0 2004 10 CE2	3.598
8.93 2.694 2.407 2.294 10.653	4.195
8.79 2.736 2.471 2.363 9.686	3.947
8.66 2.855 2.576 2.455 9.772	4.238
8.53 3.173 2.806 2.692 11.566	3.593
8.40 2.456 2.149 2.035 12.500	4.642
8.26 3.051 2.668 2.545 12.553	4.031
8.13 3.223 2.821 2.664 12.473	4.871
8.00 3.272 2.849 2.674 12.928	5.348
7.87 2.939 2.592 2.468 11.807	4.219
7.73 3.127 2.743 2.611 12.280	4.221
7.60 2.878 2.508 2.380 12.856	4.448
7.47 2.382 2.095 1.973 12.049	5.122
7.34 2.977 2.626 2.502 11.790	4.165
7.20 2.837 2.440 2.314 13.994	

APPENDIX B

Sample no.	m DBS	Volumetric Mean (µ m)	% sand	% silt	% clay
10_1	25.48	9.27	7.20	73.13	19.67
30_1	25.28	4.49	2.06	73.25	24.69
70_1	24.88	7.45	3.16	75.43	21.41
90_1	24.70	5.08	2.24	70.55	27.21
130_1	24.32	8.14	5.59	76.12	18.29
150_1	24.13	39.71	36.86	60.94	2.20
170_1	23.94	32.91	36.78	60.66	2.56
190_1	23.76	36.89	42.39	53.58	4.03
210_1	23.57	21.76	13.52	82.62	3.86
230_1	23.38	12.29	9.40	73.44	17.16
260_1	23.10	25.41	36.28	59.06	4.66
280_1	22.91	17.25	21.90	65.66	12.44
300_1	22.72	12.00	11.14	73.42	15.44
320_1	22.53	11.69	12.78	71.23	15.99
340_1	22.35	15.46	16.41	71.66	11.93
360_1	22.16	9.57	7.76	75.18	17.06
520_1	21.64	37.65	50.27	36.87	12.86
540_1	21.44	82.22	62.68	28.80	8.52
560_1	21.24	90.91	66.42	24.57	9.01
580_1	21.04	139.93	80.09	16.39	3.52
600_1	20.84	162.31	81.62	14.77	3.60
620_1	20.64	200.52	82.98	16.10	0.92

GRAIN SIZE ANALYSIS DATA

640_1	20.44	131.09	72.56	21.14	6.29
660_1	20.24	109.99	70.68	22.49	6.83
680_1	20.04	180.90	82.73	16.26	1.02
700_1	19.84	138.52	78.21	17.12	4.67
700B_1	19.67	143.04	76.07	23.05	0.88
720_1	19.47	166.25	81.03	18.09	0.88
740_1	19.27	104.14	68.22	23.65	8.12
760_1	19.07	41.34	45.98	48.75	5.27
790_1	18.57	4.79	6.37	69.93	23.70
810_1	18.37	10.65	6.63	82.21	11.15
830_1	18.17	6.38	6.45	74.29	19.26
850_1	17.97	4.38	1.56	74.33	24.10
870_1	17.77	9.22	5.21	80.56	14.24
890_1	17.57	6.94	4.48	77.84	17.68
910_1	17.37	6.28	1.73	80.44	17.83
950_1	14.90	9.22	13.45	65.44	21.11
970_1	14.84	16.48	18.48	70.30	11.22
1000_1	14.74	ALONG _{23.31}	21.81	75.70	2.48
1020_1	14.68	10.27	3.98	79.81	16.21
1040_1	14.61	17.98	11.97	85.29	2.74
1060_1	14.55	17.10	11.72	84.76	3.52
1080_1	14.48	19.37	15.15	81.95	2.89
1100_1	14.42	14.78	9.99	84.81	5.20
1120_1	14.35	25.42	25.66	72.51	1.83
1140_1	14.29	22.33	22.33	75.80	1.87

1190_1	13.83	14.11	13.77	73.03	13.20
1210_1	13.56	22.21	34.28	53.69	12.03
1230_1	13.30	28.20	30.12	67.89	1.98
1250_1	13.03	22.66	25.51	72.53	1.97
1270_1	12.77	27.37	26.95	71.22	1.83
1290_1	12.50	23.45	24.95	73.42	1.63
1310_1	12.24	20.74	23.67	72.73	3.60
1330_1	11.97	28.06	27.07	70.81	2.12
1350_1	11.71	12.31	12.80	72.40	14.80
1370_1	11.44	5.30	5.35	70.82	23.82
1390_1	11.18	14.96	19.48	68.67	11.85
1410_1	10.91	18.83	15.91	81.86	2.23
1430_1	10.65	16.79	17.92	72.93	9.15
1450_1	10.38	20.00	20.06	77.49	2.45
1470_1	10.12	22.81	22.48	75.39	2.12
1510_1	9.59	24.53	23.83	74.45	1.72
1530_1	9.32	เลงกร _{23.73} หาวิท	22.62	75.72	1.66
1550_1	9.06	24.44	26.16	71.02	2.82
1570_1	8.79	16.69	14.80	80.53	4.67
1590_1	8.53	17.67	16.70	78.77	4.53
1610_1	8.26	32.61	35.59	62.40	2.01
1630_1	8.00	34.61	35.09	62.92	1.99
1650_1	7.73	26.82	27.58	70.68	1.74
1670_1	7.47	36.16	38.53	59.28	2.19
1690_1	7.20	35.27	38.98	58.86	2.16

Zn (ppm)	52	58	53	49	47	49	50	83	88	47
Rb (ppm)	159	147	164	159	152	165	155	169	154	116
Sr (ppm)	92	125	109	77	64	101	72	91	91	92
Zr (ppm)	271	300	257	254	286	293	241	252	234	435
Ba (ppm)	308	384	362	340	365	358	397	370	407	374
Mn (mqq)	83	1184	177	111	126	250	406	331	1502	0
iT (ppm)	4256	3728	3961	4381	3805	3980	4085	4566	4378	3040
S (ppm)	163	276	240	175	186	194	268	195	253	0
Ca (ppm)	1255	1412	2307	1197	857	751	442	1813	1140	1545
	14356	13286	13236	14693	12667	13892	13657	16917	16434	12788
CI (ppm)	10149	11341	28594	8036	6732	7618	7820	13157	19135	5587
Fe (ppm)	27670	34561	32432	28847	29577	27531	37705	44142	78983	13828
m DBS	25.48	25.38	25.28	24.98	24.88	24.79	24.70	24.41	24.32	24.23

APPENDIX C

X-RAY FLUORESCENCE DATA

56	61	55	55	57	50	40	51	48	51	47	58	69	70	71	79
128	119	126	125	120	118	135	148	137	131	128	121	135	142	142	136
95	93	111	106	104	110	06	69	66	111	102	107	96	66	104	100
369	459	428	416	502	404	432	330	367	425	434	467	415	352	391	385
374	376	401	453	389	352	351	300	260	375	413	416	387	401	441	410
49	115	255	123	221	69	28	120	160	66	135	142	267	167	134	185
3636	3349	3542	3572	3169	3316	3970	4104	3958	3133	3116	3411	3771	4035	4186	4126
209	0	0	156	263	0	0	0	0	0	218	0	184	0	204	0
1342	1567	1354	1655	1676	1789	964	1181	2016	1225	1289	1252	1308	1684	1784	1623
14180	14259	14316	14356	13445	13381	11169	11763	11346	14275	13527	13815	15541	15612	16038	15078
4482	5058	4666	5156	9025	15589	9481	15280	24959	20286	17289	7676	5957	23009	9456	11924
18485	28835	25093	26533	30953	21235	16421	27145	31898	18689	20822	30072	38570	39309	34981	38832
24.13	24.04	23.94	23.85	23.76	23.66	23.57	23.47	23.38	23.19	23.10	23.00	22.91	22.82	22.72	22.63

70	57	73	65	83	67	35	36	38	27	22	22	16	25	16	26
135	124	143	129	124	130	121	110	111	102	87	96	93	93	100	97
115	92	92	88	106	107	97	62	54	80	61	49	52	200	56	205
353	398	426	362	324	372	261	278	250	169	173	161	211	157	180	155
446	331	429	515	427	422	403	320	302	361	579	346	295	662	306	455
158	123	519	326	328	74	1939	1264	113	2685	2040	108	520	9149	667	11638
4023	3468	4120	3910	4838	4005	2282	2437	2707	2042	1851	1750	1607	1733	1731	1377
0	152	0	0	171	0		169	0	225	0	0	200	268	175	376
1172	1091	1044	1343	1335	1813	512	1116	403	674	556	489	631	413	488	402
15658	14525	16316	15447	16323	14910	12571	11670	13654	12373	10225	9410	10412	9891	10189	10643
9642	16246	7931	10912	11194	19600	13159	8004	6732	9246	10517	9243	6712	8863	7514	9308
32872	27750	54151	39822	50740	28564	25357	40395	34670	26814	11747	22962	17904	21595	16526	29967
22.53	22.44	22.35	22.25	22.16	22.06	21.64	21.54	21.44	21.34	21.24	21.14	21.04	20.94	20.84	20.74

22	23	26	24	16	21	21	21	16	20	19	22	29	23	35	25
103	96	108	89	104	105	94	91	97	96	88	89	97	94	119	55
63	50	252	165	52	56	59	129	42	114	51	85	164	72	94	140
117	173	119	162	172	176	143	172	169	170	153	238	216	185	152	135
360	331	352	333	349	364	358	351	303	349	283	335	377	296	367	220
1659	363	18522	15249	0	97	1551	8076	505	3037	47	1127	5771	0	1235	891
1377	1767	1447	1418	1644	1817	1218	1202	1151	1389	1295	1437	1653	1786	2095	1235
246	232	308	538	260	266	411	353	311	379	0	184	252	0	187	0
472	452	287	156	507	163	258	20773	412	4831	913	6838	21261	53949	142532	82871
11240	11163	11173	9396	10360	1140 1140	10055	8515	11212	10392	9941	9222	12640	10028	9306	8827
8326	7668	11782	20635	13893	14281	10534	10480	4395	5067	5023	5189	4710	4883	4015	3872
26100	28906	30059	35582	17928	20915	21985	22306	24479	21578	21264	20382	27657	22336	15097	17061
20.64	20.54	20.44	20.34	20.24	20.14	20.04	19.94	19.84	19.74	19.67	19.57	19.47	19.37	19.27	19.17

38	47	73	86	74	84	105	91	89	94	92	82	79	87	92	28
06	97	133	142	143	147	151	157	157	149	158	153	170	159	162	80
66	121	111	105	80	85	120	96	148	76	89	66	94	78	06	06
249	171	221	244	222	247	203	222	251	199	255	245	219	244	198	421
289	331	349	388	329	379	427	333	509	345	420	390	368	395	390	282
321	3147	1556	2101	227	195	5334	346	4165	564	525	1581	92	410	344	192
2111	2346	3755	4733	4266	4463	4990	4806	4819	4635	4769	4870	4826	4859	5205	3653
0	216	0	276	204	0	10	0	100	0	0	0	0	0	0	2960
608	7168	832	746	757	788	641	677	479	1165	506	567	564	477	256	12369
11176	11480	15041	16765	16124	16515	17763	16914	16953	18019	17484	17188	17521	17470	19059	6363
4776	5727	8426	5859	6881	2648	5068	3505	2815	6195	3977	3758	5008	4380	3231	3635
28109	31396	50787	57804	45295	41987	66127	51307	43597	58270	44425	42943	35860	46134	53555	20462
19.07	18.97	18.57	18.47	18.37	18.27	18.17	18.07	17.97	17.87	17.77	17.67	17.57	17.47	17.37	14.93

24	31	26	34	42	36	57	50	43	43	50	37	50	49	63	36
79	77	78	06	102	119	122	120	115	111	114	94	107	116	130	92
37	40	43	42	116	80	109	64	74	136	72	121	143	77	97	180
438	448	477	399	359	348	267	279	321	327	279	386	322	319	246	382
278	259	216	245	328	297	321	326	334	263	348	342	288	294	322	299
49	140	284	158	994	262	912	216	265	513	163	555	504	63	593	497
4006	4186	3967	3832	2643	3596	3931	3474	3462	3123	3309	2566	3271	3711	4121	2226
2441	2248	2568	4211	9527	10335	12186	6512	9563	8899	9519	7433	7330	9365	7461	4776
1201	648	473	603	13746	2380	3371	925	1261	11638	1407	11446	11659	2771	2428	27860
6001	6017	5646	7607	10383	10617	11516	10616	11104	11269	10680	10158	10672	10539	12419	9471
5370	7400	7879	7961	13751	8856	11318	6918	10696	14100	10112	7457	8792	11616	10433	16600
18374	21320	19136	17285	31715	31533	34745	27917	31637	31363	30763	27773	30937	27847	37286	23569
14.90	14.87	14.84	14.81	14.74	14.71	14.68	14.64	14.61	14.58	14.55	14.52	14.48	14.45	14.42	14.39

38	45	43	51	46	41	47	40	36	36	32	34	42	39	39	36
97	102	104	121	113	108	118	105	95	96	92	97	101	103	96	104
215	151	155	93	69	83	73	88	121	192	158	190	156	186	158	172
406	332	389	268	302	356	278	386	343	430	401	426	334	315	415	331
291	236	290	307	313	285	279	362	274	273	383	311	302	256	344	330
542	415	448	649	191	138	308	268	404	467	442	405	523	514	391	443
2534	2454	2618	3740	3202	3078	3354	2950	2514	2300	2473	2455	2573	2492	2534	2449
3966	11959	3891	11606	4530	8496	9539	8695	2956	4376	4072	5872	7841	6016	3039	4756
24510	20164	16501	1529	1076	3233	1335	8052	17781	19893	18061	17057	17373	24319	14503	22268
10704	9959	10716	10635	10204	10409	10508	10196	10357	10210	10466	10411	10799	10643	10001	10171
12777	21807	12706	23070	14056	12217	18666	14111	10122	18350	12978	18011	12634	18135	12937	22317
27359	27073	27520	29660	25411	26801	29810	29113	25326	23791	24282	25557	28568	28063	26622	25623
14.35	14.32	14.29	14.23	14.09	13.96	13.83	13.70	13.56	13.43	13.30	13.17	13.03	12.90	12.77	12.64

35	41	40	40	44	44	51	56	50	46	41	41	45	41	38	42
102	114	66	103	108	109	107	123	112	106	66	105	107	103	101	104
156	158	134	178	194	192	269	233	279	195	168	159	167	186	152	161
361	375	319	363	326	337	311	265	265	315	333	340	352	351	348	349
264	252	253	265	264	323	312	340	273	261	266	243	313	315	274	278
419	468	425	483	573	441	525	639	724	462	493	452	547	546	480	582
2741	2709	2506	2691	2823	2697	2775	2917	3081	2452	2519	2608	2595	2475	2462	2605
8677	5527	4790	4866	5724	5929	17535	9806	6272	8181	13068	6205	5266	6280	7846	6197
18782	16676	15220	19049	18855	23185	38259	34789	36332	20596	21553	16250	20008	22970	20968	16988
10605	11204	10311	10917	11502	1142	11506	11808	12521	10755	10444	10770	10590	10423	10408	11392
19290	19295	14083	10875	17492	19879	15914	20887	26627	31416	26029	24021	16217	28242	27209	21339
26243	28006	27074	29080	30797	26758	28969	36077	36460	28056	27372	28367	28486	27545	25733	30073
12.50	12.37	12.24	12.11	11.97	11.84	11.71	11.58	11.44	11.31	11.18	11.05	10.91	10.78	10.65	10.52

43	38	39	45	44	42	44	51	35	52	52	48	53	57	53	47
106	104	92	107	111	104	116	112	89	114	118	115	121	124	128	126
151	159	173	208	171	169	168	162	284	185	156	176	158	162	157	185
388	378	452	316	318	307	255	305	453	313	330	265	272	294	248	199
301	294	298	309	278	254	316	281	285	286	294	256	252	316	323	298
515	529	521	583	483	577	612	603	422	571	755	628	690	595	749	511
2463	2607	2362	2399	2527	2400	2567	2588	2377	2942	2744	2566	2950	2724	2961	2565
6405	9855	3296	8643	9638	9817	6793	6193	4680	10583	5005	11771	11544	16261	12433	31105
15958	17676	17983	21094	15434	20148	14956	16871	26280	20553	15632	19963	19426	17716	18115	29785
10255	10504	9610	9894	10564	9868	10479	11485	10138	11638	11879	11620	12484	11768	12414	11395
25464	16079	9604	42454	28584	23861	40230	19087	11518	35128	32168	29904	27132	42563	35968	40058
27047	29122	24809	28945	31770	29090	31193	32741	24016	33612	33846	31637	34917	34508	36458	31457
10.38	10.25	10.12	9.72	9.59	9.46	9.32	9.19	9.06	8.93	8.79	8.66	8.53	8.40	8.26	8.13

52	52	63	51	48	51	54	
118	123	125	129	116	120	115	
182	176	171	181	145	206	258	
289	247	224	194	308	238	253	
296	241	272	261	278	303	306	MARROW
764	786	618	859	698	657	671	
2640	2800	2786	2553	2627	2671	2653	
12522	9954	9854	8308	5580	30882	13420	
21178	21480	15578	32808	13210	27805	34336	and a second
11016	11492	11704	10791	11304	11781	11454	น์มหาวิทยาลัย orn Universi
48623	42067	51053	79904	35380	44446	38110	
33266 4	34142 4	34178	32532	32331	33815 4	33038	
8.00	7.87	7.73	7.60	7.47	7.34	7.20	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							

m DBS	Ti/Ca	Zr/Rb	m DBS	Ti/Ca	Zr/Rb
25.48	3.39	1.70	14.93	0.30	5.26
25.38	2.64	2.04	14.90	3.34	5.54
25.28	1.72	1.57	14.87	6.46	5.82
24.98	3.66	1.60	14.84	8.39	6.12
24.88	4.44	1.88	14.81	6.35	4.43
24.79	5.30	1.78	14.74	0.19	3.52
24.70	9.24	1.55	14.71	1.51	2.92
24.41	2.52	1.49	14.68	1.17	2.19
24.32	3.84	1.52	14.64	3.76	2.33
24.23	1.97	3.75	14.61	2.75	2.79
24.13	2.71	2.88	14.58	0.27	2.95
24.04	2.14	3.86	14.55	2.35	2.45
23.94	2.62	3.40	14.52	0.22	4.11
23.85	2.16	3.33	14.48	Y _{0.28}	3.01
23.76	1.89	4.18	14.45	1.34	2.75
23.66	1.85	3.42	14.42	1.70	1.89
23.57	4.12	3.20	14.39	0.08	4.15
23.47	3.48	2.23	14.35	0.10	4.19
23.38	1.96	2.68	14.32	0.12	3.25
23.19	2.56	3.24	14.29	0.16	3.74
23.10	2.42	3.39	14.23	2.45	2.21
23.00	2.72	3.86	14.09	2.98	2.67

22.91	2.88	3.07	13.96	0.95	3.30
22.82	2.40	2.48	13.83	2.51	2.36
22.72	2.35	2.75	13.70	0.37	3.68
22.63	2.54	2.83	13.56	0.14	3.61
22.53	3.43	2.61	13.43	0.12	4.48
22.44	3.18	3.21	13.30	0.14	4.36
22.35	3.95	2.98	13.17	0.14	4.39
22.25	2.91	2.81	13.03	0.15	3.31
22.16	3.62	2.61	9 12.90	0.10	3.06
22.06	2.21	2.86	12.77	0.17	4.32
21.64	4.46	2.16	12.64	0.11	3.18
21.54	2.18	2.53	12.50	0.15	3.54
21.44	6.72	2.25	12.37	0.16	3.29
21.34	3.03	1.66	12.24	0.16	3.22
21.24	3.33	1.99	12.11	0.14	3.52
21.14	3.58	1.68	11.97	0.15	3.02
21.04	2.55	2.27	11.84	0.12	3.09
20.94	4.20	1.69	DRN UNIVERSI 11.71	0.07	2.91
20.84	3.55	1.80	11.58	0.08	2.15
20.74	3.43	1.60	11.44	0.08	2.37
20.64	2.92	1.14	11.31	0.12	2.97
20.54	3.91	1.80	11.18	0.12	3.36
20.44	5.04	1.10	11.05	0.16	3.24
20.34	9.09	1.82	10.91	0.13	3.29
20.24	3.24	1.65	10.78	0.11	3.41
20.14	11.15	1.68	10.65	0.12	3.45

19.84 2	2.79 ).29	1.74	10.38 10.25 10.12	0.15 0.15 0.13	3.66 3.63
	).29	1.77			3.63
19.74 0			10.12	0.13	
	.42	1.74		0.10	4.91
19.67 1			9.72	0.11	2.95
19.57 0	).21	2.67	9.59	0.16	2.86
19.47 0	.08	2.23	9.46	0.12	2.95
19.37 0	).03	1.97	9.32	0.17	2.20
19.27 0	0.01	1.28	9.19	0.15	2.72
19.17 0	0.01	2.45	9.06	0.09	5.09
19.07 3	8.47	2.77	8.93	0.14	2.75
18.97 0	).33	1.76	8.79	0.18	2.80
18.57 4	.51	1.66	8.66	0.13	2.30
18.47 6	6.34	1.72	8.53	0.15	2.25
18.37 5	5.64	1.55	8.40	0.15	2.37
18.27 5	5.66	1.68	8.26	0.16	1.94
18.17 7	.78	1.34 <b>1.34</b>	8.13	0.09	1.58
18.07 ^G 7	.10 <b>ALO</b>	1.41 UNIV	8.00	0.12	2.45
17.97 10	0.06	1.60	7.87	0.13	2.01
17.87 3	8.98	1.34	7.73	0.18	1.79
17.77 9	9.42	1.61	7.60	0.08	1.50
17.67 8	8.59	1.60	7.47	0.20	2.66
17.57 8	3.56	1.29	7.34	0.10	1.98
17.47 10	0.19	1.53	7.20	0.08	2.20
17.37 20	0.33	1.22			

## APPENDIX E PALYNOLOGY

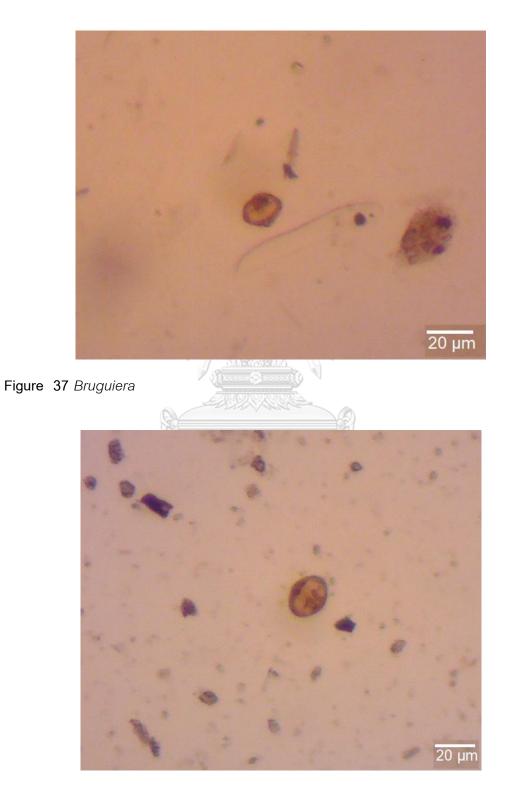



Figure 38 Rhizophora

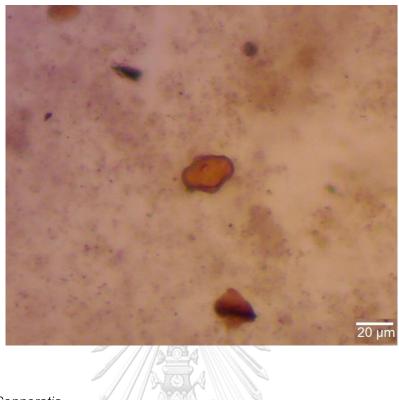



Figure 39 Sonneratia



Figure 40 Stenochlaena



Figure 41 Acrostichum



Figure 42 Acanthus








Figure 44 Xylocarpus







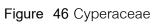





Figure 47 Ceratopteris



Figure 48 Gleicheniaceae



```
Figure 49 Pinus
```





## VITA

NAME

26 Nov 1996

Dissaya Sukaudom

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Mahidol University (B.Sc)

HOME ADDRESS

DATE OF BIRTH

22/5 Moo 4 Kamnoet Nopphakhun, Bang Saphan, Prachuab khiri



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University