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CHAPTER 1
Introduction

Let K be a compact, connected Lie group, with Lie algebra £. Let (,) denote a
fixed Ad-K-invariant inner product on £, the existence of which is guaranteed by
the compactness of K. Let X,... . X, be an orthonormal basis of €, where we
view the X;’s as left-invariant vector fields on K. Define the Casimir operator on

K to be .
i

i=1
If 7 is a representation of K aeting on some space V;, and if 7 is irreducible,
then
A(A) = w(Xi)* = =\ 1.

Let p, be the heat kernel for A, that is, the fundamental solution at the identity
of the heat equation

Stein proved the existence of such a fundamental solution, and that p, is a C™
function, which is real and strictly positive.

In addition, Using the Peter-Weyl theorem, we can derive a series expansion
for p; in terms of the character of K, namely

p(@).= ) dim VeeT ! x (a). (1.1)
rek

Here K refers to the set of isomorphism elasses of irreducible representation
of K, and x,(x) = tr(x(z)) is the character of .

There is another formula for the heat kernel in terms of Poisson’s summation
formula.

In this work, we illustrate how to find explicit formulas for the heat kernel on
S' and SU(2) and give another formula using Poisson’s summation formula. Using
structure theory of semisimple Lie algebra, we can give an analogous formulas for

a general simply-connected compact semisimple Lie group. The main reference of
this work is the paper [6].



CHAPTER 2
Lie group and Lie algebra

In this chapter, we give definitions of matrix Lie groups, Lie algebras, representa-
tions and their relevant concepts. Details can be found in [2].

Definition 2.1. The general linear group over the real numbers, denoted
GL(n,R), is the group of all n x n invertible matrices with real entries. The
general linear group over the complex numbers, denoted GL(n,C), is the group
of all n x n invertible matrices with complex entries.

Definition 2.2, Let M, (C) denote the space of all n x n matrices with complex
entries.

Definition 2.3. Let {A,,} be a sequence of complex matrices in M,(C). We say
that {A,,} converges to a matrix A if each entry of A, converges (as m — 00)
to the corresponding eatry of A

Definition 2.4. A matrix Lie group is any subgroup G of GL(n, C) with the
following property: If {A,,} is any sequence of matrices in G, and {A,, } converges
to some matrix A then either A € G, or A is not invertible.

Example 2.5. The following group are matrix Lie groups.

GE(n,C) = {X € M,(C)| det X # 0}
GL(n,R).= {X-€ M,(R) | det-X # 0}
SL(ny €) = {X & My(C) | det X =1}
SL(n,R) = {X € M,(R)| det X.= 1}
O(n) ={X € M. (R) [ X1 X713
SO(n) = {X € Mn(R)| X* = X" and det X = 1}
U(n) = {X € My(C)| X" = X"} ;X" =X
SU(n) = {X € My(C) | X* = X" and det X = 1}

Definition 2.6. Let G and H be matrix Lie groups. A map @ from G to H is
called a Lie group homomorphism if ® is a group homomorphism and & is
continuous. If, in addition, ® is one-to-one and onto and the inverse map ®~! is
continuous, then @ is called a Lie group isomorphism



Definition 2.7. A finite-dimensional real or complex Lie algebra is a finite-
dimensional real or complex vector space g, together with a map [-,-] from g x g
into g, with the following properties:

L. [-,] is bilinear;
2. [X,Y]=-[Y,X] forall X,Y € g;
3. [X,IY.Z]] +[V.[Z2, X))+ [2,[X,Y]] =0forall X,Y,Z € g.

Condition 2 is called “skew symmetry”. Condition 3 is called the Jacobi’s
identity. Note also that Condition 2 implies that [X,X] = 0 for all X € g. We
will deal only with finite-dimensional Lie algebras and will from now on interpret
“Lie algebra” as “finite-dimensional Lie algebra”.

Example 2.8. The space M,(R) of all n x n real matrices is a real Lie algebra if
the bracket operation [X, Y] is defined by

X, ¥]=XY-—YX

This Lie algebra is denoted by gl(n, R).

Similarly, the space M,(C) of all n x n complex matrices is a complex Lie
algebra with respect to the same bracket operation and denoted by gl(n, C).

Let V be a finite-dimensional real or complex vector space, and let gl(V')
denote the space of linear maps of V into itself. The, gl{(V') becomes a real or
complex Lie algebra with the bracket operation [X ¥] = XY - Y X.

Definition 2.9. A subalgebra of a real or complex Lie algebra g is a subspace
b of g such that [H,, H,| € b for all H, and H; € . If g is a complex Lie algebra
and b is a real subspace of g which is closed under brackets, then b is said to be
a real subalgebra of g.

Theorem 2.10. Let G be a matriz Lie group, then the set
g = {X € gl(n,C) | € G for all t € R}
15 a Lie subalgebra of M,,(C). We call g the Lie algebra of a matriz Lie group G.

Example 2.11. By Theorem 2.10, we have the following sets are Lie algebras (of



a Lie group in Example 2.5 respectively).

gl(n, C) = M,(C)
gl(n, R) = M,(R)
sl(n,C) = {X € M,(C)| tr(X) = 0}
sl(n,R) = {X € M,(R)| tr(X) = 0}
o(n) = {X € M,y(R) | X* = —X}
so(n) = {X € M,(R) | X' = —X}
u(n) = {X € My (@X* = -X)
su(n) ={X € My(C)JX"= =X and tr(X) = 0}

Definition 2.12. If g and § are Lie algebras, then a linear map ¢ : g = b
is called a Lie algebra homomorphism if ¢([X,Y]) = [¢(X),¢(Y)] for all
X,Y € g. If, in addition, ¢ is one-to-one and onto, then ¢ is called a Lie algebra
isomorphism. A Lie algebra isomorphism of a Lie algebra with itself is called a
Lie algebra automorphism.

Definition 2.13. If V' is a finite-dimensional real vector space, then the com-
plexification of V', denoted Vi, is the space of formal linear combinations

Uy + ivg,

with vy, vo € V. This becomes a real vector space inthe obvious way and becomes
a complex vector space if we define

'E{‘t.ﬂ -+ H}z} = —up + ity.

Proposition 2.14. Let g be o finite-dimensional real Lie algebra and g¢ its com-
plezification (as a real vector space). Then, the bracket operation on g has a
unique extension to ge which makes ge into a complez Lie algebra. The complex
Lie algebra go -is called the complezification of the real Lie algebra g.

Proposition 2.15. The Lie algebras gl(n, R), sl(n, R), u(n) and su(n) are real Lie
algebras and the complezifications are the following:

gl(n,R)c = gl(n,C)
sl(n, R)¢c = sl(n, C)
u(n)c = gl(n, C)

su(n)c = sl(n, C)



Definition 2.16. Let G be a matrix Lie group. Then a finite-dimensional
complex representation of G is a Lie group homomorphism

I1:G— GL(n,C)
(n > 1) or more generally a Lie group homomorphism
I1:G — Aut(V)

where V is a finite-dimensional complex vector space (with dim V' > 1). A finite
dimensional real representation of G is a Lie group homomorphism II of G into
GL(n,R) or into GL(V), where V is a finite-dimensional real vector space.

If g is a real or complex Lie algebra, then a finite-dimensional complex
representation of g is a Lie algebra homomerphism 7 of g into gl(n, C) or into
gl(V), where V' is a finite-dimensional complex vector space. If g is a real Lie
algebra, then a finite-dimensional real representation of g is a Lie algebra
homomorphism 7 of g into gi{n, R) or into gi(V).

Example 2.17. Let & be a matrix Lie group, with Lie algebra g. For A € G,
define a linear map Ady : G — GL(g) by the formula

Ad‘q{}:} - AXA-_I.
Then Ad, is a representation of G, acting on the space g.

Example 2.18. Let g be a Lie algebra. For X € g, define a linear map ad : g =
gl(g) by

adx(Y) =[X,Y]
Note that adjxy|(Z) = |ady,ady](Z). Thus ad : g — gl(g) is a Lie algebra
homomorphism and hence ad is a representation of g, acting on the space g.

Definition 2.19. Let Il be a finite-dimensional real or complex representation
of a matrix Lie group G, acting on a space V. A subspace W of V is called
invariant if I[1(A)w € W for allw € W and all A € G. An invariant subspace W
is called non-trivial if W' # {0} and W # V| ‘A representation with no non-trivial
invariant subspaces is called irreducible.

The terms invariant, non-trivial, and irreducible are defined analogously
for a representation of a Lie algebra.

Definition 2.20. Let G be a matrix Lie group, let IT be a representation of G
acting on the space V', and let £ be a representation of G acting on the space W.
A linear map ¢ : V' — W is called an intertwining map of representations if

¢(II(A)v) = E(A)¢(v)



for all A € G and all v € V. The analogous property defines intertwining maps
of representations of a Lie algebra.

If ¢ is an intertwining map of representations and, in addition, ¢ is invertible,
the ¢ is said to be an equivalence of representations. If there exists an isomor-
phism between V' and W, then the representations are said to be equivalent.

Proposition 2.21. Let G' be a matriz Lie group with Lie algebra g and let I1 be
a (finite-dimensional real or complex) representation of G, acting on the space V.
Then, there is a unique representation m of g acting on the same space such that

MM{eX) =€)
for all X € g. The representation m can be computed as
d
m(X) = Eﬂiﬂtx}lca

and satisfies

T(AX A1) = [I(A)x(X)II(A)™
Jorall X egandall Ac G.
Proposition 2.22.

1. Let G be a connected matriz Lie group with Lie algebra g. Let I1 be a
representation of G and 7 the associated representation of g. Then, I1 is
irreducible if and only if © 18 irreducible.

2. Let G be a connected matriz Lie group. Let Iy and I1; be representations of
G, and let my and wy be the associated Lie algebra representations. Then m
and my are equivalent if and only if I1; and Il are equivalent.

Proposition 2.23. Let g be a real Lie algebra and gc its complezification. Then
every finite-dimensional compler representation m of g has a unique extension to
a complez-linear representation of gc, also denoted m and given by

(X +2Y) = n(X) 4 in(Y)

for all X,Y € g. Furthermore, 7 is irreducible as a representation of g¢ if and
only if it is irreducible as a representation of g.

Theorem 2.24 (Schur’s Lemma).

1. Let V and W be irreducible real or complex representations of a group or
Lie algebra and let ¢ : V — W be an intertwining map. Then either ¢ =0
or ¢ is an isomorphism.



2. Let V be an irreducible complex representation of a group or Lie algebra and
let ¢ : V = V be an intertwining map of V' with itself. Then ¢ = A, for
some A € C.

3. LetV and W be irreducible complex representations of a group or Lie algebra
and let ¢y, 2 : V. — W be nonzero intertwining maps. Then ¢, = A, for
some A € C.

Corollary 2.25. Let Il be an irreducible complez representation of a matriz Lie
group G. If A is in the center of G, then II(A) = AI. Similarly, if © is an
irreducible complex representation of o Lie algebra g and if X is in the center of
g (i.e., [X,Y]=0 forallY € g), then #(X)=Al.

Corollary 2.26. An drreducible complex representation of a commutative group

or Lie algebra is one dimensional.

Definition 2.27. Let g be the Lie algebra over a field K. Denote T is the tensor
algebra of g. Then T, as a vector space, is the direct sum

o0
T = @ gR e
m=0

and the product in 7' is defined from the tensor product. Let I be the two-sided
ideal of T' generated by the set

(XeY=veX—[X,Y]| XY € g).
The associative algebra (g} = 7'/ is called the universal enveloping algebra
of p.
Let 4 be the canonical projection of T" onto i(g) and ¢ the restriction of ¥ to
g. Now ¢ is a linear map of g into U(g) satisfying
e([X, YL = o(X)e(Y) — p(Y)@(X) = [p(X), o(Y)].

The map ¢ is called the canonical map of g into U(g). Its universal mapping
property is described in the following Proposition.

Proposition 2.28. Let g be a Lie algebra over a field K, A an associative algebra
over K and o a Lie algebra homomorphism of g into A. Then there erists an

algebra homomorphism o' of U(g) into A such that ¢’ o ¢ = 0. That is, the
following diagram commutes:




Proof. The linear map ¢ of g into A is extended to a homomorphism og of T into
A by defining
oo(X1® - ® Xy) = 0(Xy) - 0(Xn)

The extended homomorphism oy sends the ideal I to 0 because
o X®Y -Y®X - [X,Y]) =a(X)o(Y) — a(Y)o(X) — o([X,Y]) = 0.

Therefore, the image oy of an element ¢t € T' depends only on the coset ¢ + I and
hence there exists a homomorphism ¢’ of U(g) into A satisfying e’ ocp=0. O

Definition 2.29. The bilinear form B on g % g defined by
B(X,Y) = tr(ady ady)
is called the Killing form of g.
Proposition 2.30. The Killing form has the following properties:
1. B(X,Y) =B(¥XJ;
2. B([X,Y),Z)= B(X,[Y, Z]).
Proof. Since tr(AB) = tr(BA), we have

B(X, Yy =tr(adxady)
= tl‘{&dy aﬂx}
= B, X)

and

B([X,¥], Z) =tr(ad|x v, adz)
= tr([ady,ady], adz)
= tr{ady ady adg) — tr(ady adx'adz)
= tr(ady ady adz) — tr(ady adz ady)
= tr(adx[ady, adz])
= tr(ady ady,z)
= B(X,[Y, Z])

forany X, Y, Z € g. O

Definition 2.31. A symmetric bilinear form B : V x V — K is said to be
non-degenerate if B(v,w) = 0 for all w € V implies v = 0.



Definition 2.32. A finite-dimensional Lie algebra g over a field of characteristic
0 is called semisimple if its Killing form is non-degenerate.

A connected matrix Lie group is called semisimple if its Lie algebra is semi-
simple.

Example 2.33. The Lie algebra su(2) is semisimple.
Put
1 /0 % 10 -1 1 (1 0
Xi==- Ko == Xon ==
! 2(:' u)’ \ 2(1 u)‘ : z(u —:')

0
0 P ad};._, =
1

(=

&

Therefore we have
B(X;, X;) ==205 (1<4,j<3),

and dﬁt[B{Xﬁ Xj)} ?E 0.

Definition 2.34. Let (Xi)i<;<, be a basis of a semisimple Lie algebra. Write
95 = B(X; X))

and
(97) = (gi) ™"

Then the element

Q = i g‘jA’;X i
=1

of the universal enveloping algebra il(g) is called the Casimir element.

Example 2.35. The Casimir element €2 for su(2) is given by
Q= —%(x;* + X2+ X2).
Since B(X;, X;) = d;; for for 1 < 4,5 < 3; , we have

-2 0 0
(g5)=]10 -2 0
0 0 -2
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Hence
12 ' 0

(¢)=]| 0 -1/2 0
0 0 -1/2

Thus gi.f = —%.‘5,']: and 01 = E:’i.j*—"l .quX:'Xj —_ h%E?:l Xf

Proposition 2.36. The Casimir element Q0 of U(g) is independent of the choice
of the basis (X;). Moreover, Q1 belongs to the center of LU(g).

Proof. Let (Yi)i<i<n be another basis of g. Then Y; can be written as
1’: = Zﬂﬂxj‘
7
Let
hi; =B(Ye Y5); (b)) = (hi)™ and (a”) = (a;;)~".
Then we have
X’.‘ = Eah}fia
i

hig = Z aikguag and kY = 2 a*iglal,
kd k.l

So we have

Zhﬁyi“ A, Z akigﬂaﬁy;}/j
&7 L

=Y Mxex..
kJ

We have proved that §2is independent of the choice of (X;).
Let X' =37, §.X;. Then we have

B(X', X;) =Y B(¢* X, X5Y =Y g™ g; =7
A k

and 1= EI.X.-X".
Let

(X, X =) ¢ X; and [X,X') =" dyX.
j j
Then we have

dij = B([X, X'], X;) = -B(X',[X, X;]) = —c;i. (2.1)



11

In any associative algebra A, the identity
[a, be] = [a, ble + bla, c] (2.2)

holds for any a, b and ¢ in A. By (2.1) and (2.2), we have

X, 9] =[x, g9X:X;)

for any X in g. g), we have proved that the
Casimir element 0

la.n 4
,.\ a«(“)' ¥
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CHAPTER 3
Heat kernel on S' and SU(2)

In this chapter, we establish formulas for heat kernel on S* and SU(2).

3.1 Heat kernel of the circle

Definition 3.1. The circle group is the set of all complex number z such that
|z| = 1 and denoted by S'.

Theorem 3.2. Let x be an irreducible representation of the group R of real num-
bers. Then x is equivalent to xq(t) = e™ for some real number . Moreover, x,
15 equivalent to x. if and only if 0 = ¢.

Proof. Since the group R is commutative, an irreducible representation y is one-
dimensional. By replacing x with an equivalent one, we can assume that the
representation space of y is C and that y is a eontinuous homomorphism of R
into the multiplicative group U(1) of complex numbers with absolute value 1.
First we show that x is a differentiable function. The homomorphic property of
X is expressed by

x(s +t) = x(s)x(t) (3.1)
for all s and ¢ in R. Integrating (3.1) with respect tof from 0 to h, we obtain
h h
[ x(s+t)dt = x[s)[ x(t) dt (3.2)
0 0
Since x(0) =1 .and x is contimous;
h
] x(t) dt #0 (3.3)
0
for all h # 0 with sufficiently small absolute value. On the other hand
h s+h
f x(s +1) dt = [ x(u) du. (3.4)
0 ES

Since y is continuous, the right-hand-side of the last equality (3.4) is a differ-
entiable function of s. So by (3.2), (3.3) and (3.4), we have proved that X is
differentiable. Let ¥'(0) = ¢. Then (3.1) yields

74.){3) e x(s+1t) — x(s) = x(s) lim M = ex(s).

t—=0 i t=+0

(3.5)
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The function x also satisfies
x(0) = 1.

The function x.(t) = e also satisfies the differential equation x'(s) = ex(s) and
the initial condition x(0) = 1. So x coincides with x., because the function
@(s) = e *x(s) has the derivative ©'(s) = —ece®x(s) + ce™*x(s) = 0 for all
s € R and is thus equal to the constant ¢(0) = 1. Moreover since y is a unitary
representation, x(s)x(s) = 1 for all s € R. Differentiating the last equation at
s=0, we get c+ ¢ = 0. Thus ¢ is a purely imaginary number. Thus there is a
real number 6 such that yu(t) = €%, Since GL(1,C) = C* is commutative, x;
is equivalent to x, if and only if x5 = ¥4. If xo = x4, then we get # = ¢ by
differentiating xs = ¥4 at t = 0. O

Theorem 3.3. Any irreducible representation Il of the circle is equivalent to
I, (t) = ™ for some integer n. Moreover Il,, = I, if and only if n = m

Proof. Since the group S’ is commutative, an irreducible representation IT is one-
dimensional. Then Il : S' = GL(1,C) is a homomorphism. Let ¢ : R — S! be
defined by ¢(z) = €. Since ¢ is a homomorphism , [To ¢ : R — GL(1,C) is a
homomorphism and hence [leg(2r) = 1. By Theorem 3.2, we have [lo¢(z) = ¥*
for some real number #. By substituting = = 27, we have [To ¢(2r) = €™ Thus
1 = e, Therefore @ is an integer. 0O

Theorem 3.4. Heat kernel of the circle is given by the following formula

prl)=) e ie™
nek
Proof. From Theorem 3.3, we can conclude that the set of isomorphism classes of
1rredu{:1ble representations of S is {II, = e™ | n € Z}. Hence, we can identify
ST with Z, the set of integers. Since the group S* is commutative, the irreducible
representation [I1,, is one-dimensional. Thus

dim(Vy, ) =1 /for each n € Z.

Next, we find the character of the representation. Since yy, (z) = tr(ll,(z)) =
tr(e™*) = " for all x € S1,
xm, (z) = ™

To determine )., we find eigenvalues of A. Note that

d'ﬂ ine __

ﬁ{ei"'z] — Ee — E{

iﬂ]ﬂmz — _nﬂeﬁi:_
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Thus

—Ant/2

Since pi(z) = ), dim Ve xn(z), we have

pe(z) = Z:E—n’tein::_

nel
a
Theorem 3.5. The formulas for p, on S' can be given by
_ /T —(z+27n)? f4t
) = () oSt )14, (3.6)

ned

Proof. Let Ky(z) =% oy e #+2™/%  The m-th Fourier coefficients is deter-
mined by the integral for m € Z,

ﬂﬂ 2’,
Kfz)e ™ dz=Y" f e—(z2mn)? [at —imz
’ neZ /0

2={n+1)
2

=Ef

neZ ¥ 4T0

ew-y'*ffue-t'my dy,

where we substitute § = x + 27n and use the fact that ¢™?™ = 1. The last
expression is

oo % y
zf = ,Mte-tmy dy.
—ca

We make the substitution y = (2¢)"/%u, dy = (2t)"/* du and use a standard identity
from calculus, namely

fm Eﬂu*‘e—iuudu - (zﬂjlﬂe-u’ﬂ'

o0

We then obtain 2
" t

Kt(a:)e‘{""d:c : | ( ;) lfie-mﬂt_

Hence

—n3t i m w 2
ZE nit inz _ {?}1;2 ZE (z+27n)% /4t

nek nel
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3.2 Heat kernel of the group SU(2)

The group SU(2) consists of all 2 x 2 matrices X satisfying
X*=X"1 and detX=1.

Consider the space V;, of homogeneous polynomials in two complex variables
with total degree m (m > 0); that is, V}, is the space of functions of the form

f(z1,2) = ao?" + @zl Y2y + @22 %25 + -+ + QP (3.7)
with z;, 22 € C and g;'s arbitrary complex constants. The space V,, is an (m+1)-
dimensional complex vector space.

Now, by definition, an element I/ of SU(2) is a linear map on C?. Let z denote
the pair z = (2,23) in €. Then, we may define a linear map I, (/) on the space
Vin by the formula

Mn(U)f)(2) = f(U'2). (3.8)

Explicitly, if f is as in (3.7), then

M (U) f)(21 22) = 3= ae (U4 + Uteo)™* (Ui 21 + Uzl )",
k=0
By expanding out the right-hand side of this formula, we see that I1,,,(U) f is again
a homogeneous polynomial of degree m. Thus, I1,,(U) actually maps V;, into V.
Now compute

M (U1) (M (U2) £](2) = [ (U2) £1(U7* 2)
= f(U7U'2)
= [ (U1 U2) f(2).

Thus, I1,, is a (finite-dimensional complex) representation of SU(2).
Let us now compute the corresponding Lie algebra representation m,,. Then

T can be computed as

A (X)L E1 (%))

Hence,
(n(X)1)() = /€52

Now, let z(t) be the curve in C? defined as z(t) = e™*¥z, so that 2(0) = 2. Of
course, z(t) can be written as z(t) = (2 (t), z2(t)), with z(t) € C. By the chain
rule,

Bf dzl

Tm(X)f = a_zlﬁltﬂ *

01 dn
3272 d’f t=0-
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However, dz/dt|;—g = —Xz, so we obtain the following formula for m,,(X):

Tm(X)f = —g—ifxnﬁl + X1222) — %[X‘lel + Xaaz3). (3.9)

Now, according to Proposition 2.23, every finite-dimensional complex repre-
sentation of Lie algebra su(2) extends uniquely to a complex-linear representation
of the complexification of su(2). However, the complexification of su(2) is si(2; C).
The representation m,, of su(2) given by (3.9) thus extends to representation of
sl(2,C), which we will also call m, and which is also given by (3.9).

So, for example, consider the element

=6 %)

in the Lie algebra si(2, C). Applying formula (3.9) gives

. af af
(7 H).f)(2) 922 *5,,
Thus, we see that
{H) == ...a_ - _a.. (3 ]_{].}
Tm = 313 % 32322. &

Applying 7 (H) to a basis element 2525 *, we get

Tl H)Z 25" = =ketzf=k 4 (m — k)2F 2t
={m =0k} 0k,

Thus, zf25""* is an eigenvector for m(H ) with eigenvalue m — 2k. In particular,
Tm(H) is diagonalizable. Let X and ¥ be the elements

30900

in-sl(2; C). Then, (3.9) tells us that

d d
Tm(X) = —Zzgggﬂm(y} = _zla_zg
80 that
Tl X )ap 2l % = <kpb-1 -k (3.11)
Tm(Y )22k = (k - m}zf"”z;"-’”‘. (3.12)

Theorem 3.6. The representation ., is an irreducible representation of s(2, C).
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Proof. It suffices to show that every nonzero invariant subspace of V,, is, in fact,
equal to Vp,. So, let W be such a space. Since W is assumed nonzero, there is at
least one nonzero element w in W. Then, w can be written uniquely in the form

w = agzy + alz{“'lzg + agz{""ﬂzg + ot G2y

with at least one of the a.’s nonzero. Let ky be the smallest value of k for which
ar # 0 and consider

(X ) koqy,

Since each application of m,(X) lowers the power of z; by 1, m,,(X)™ % will kill
all the terms in w except ag,z]" **2*. On the other hand, we compute easily that

T L ey 1 125 = =1 ™ (1 — k)2,

We see, then, that 7 (X)™ *w is a nonzero multiple of 2. Since W is assumed
invariant, W must contain z5". Furthermore, it follows from (3.12) that 7, (V) 23"

is nonzero multiple of z72)"™*. Therefore, W must also contain z¥20** for all
0 € k £ m. Since these elements form a basis of V,,, we see that, in fact,
W = Vj,, as desired. O

Theorem 3.7. For each integer m = 0, there is an irreducible representation of
sl(2, C) with dimension m+ 1. Any twe irreducible representation of sl(2, C) with
the same dimension are equivalent. If m ts an irreducible representation of sl(2, C)

with dimension-m + 1, then 7 is equivalent to the representation m,, described in
(3.9)

Proof. See [2] pp. 102-106. O

Proposition 3.8. Any element X in SU(2) is conjugate to an element

. e'? 0 _
H(8) = ( 0 emit ) for some 6 € [0, 27].
Proof. A unitary matrix X is transformed to a diagonal matrix H by a unitary
matrix U : X = UHU™'. If X belongs to SU(2) then H also belongs to SU(2)
and is equal to H(f) for some # € [0,2r]. The unitary matrix X can be taken
from SU(2) because we can replace U by AU(\ € U(1)) O

Any function f on a group G satisfying f(zyz™') = f(y) for all 2,y in G is
called a class function. The reason of this terminology is that the set of group
elements of the form zyz~!, with y € G fixed and z ranging over G, is called the
conjugacy class of 3. A class function is then a function that is constant on
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each conjugacy class.

A character of a representation I1 of SU(2) is a class function. To determine
xn(z) we can identify = in SU(2) with # € [0, 2] in Proposition 3.8 for each
conjugacy class of 6.

Proposition 3.9. The character of representation Il, which is constructed in
(8.8) is given by

_ sin(n+ 10
Proof. For 0 < k < n, let vs(z1, ) = 2h#h
a 0

For a € U(1), let H{a) = 5 o3 ) Then

I, H(a)vi(z1,22) = v (E; E) (Z))

= ve(a™' 21, 820)
= (a"'21)"(az)"*
= ﬂ“‘ﬁl’k{zl, )

Thus
Xn, (H{#)) = t?(ﬂu(H(ﬁ'ﬂ]

k=0
4 ﬂ"[l i a-hu?}
e a2

g™t — g—(n+1) _
T a—e 0T e
[ sin(n + 1)6
A sinf

O

Proposition 3.10. Let IT,, be the'irreducible representation of SU(2) constructed
in (3.8) and (X;)1<i<n the basis of su(2) given in Ezample 2.33. Then the differ-
ential representation of I1,, is given by

Ma (X )u = %t{-'w.tq + (n = k)vgar },
1
[0, (Xa)ve = i{kﬂk—l — (n = k)vks1 },

n—2k.
TV

[In{.X:i}vk —
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where
ve(z1,22) = 2285 (0< k < n).

Proof. Use (3.9), we obtain
Owe i\ _Ov i
Bz {232] 322[251}

i i
s _Esz—lzg—k+1 ., _z_(n - kJZf+]3;_k_
= —1[1‘61?:;._1 + (n — k)vgs1).
a‘”!: ﬂ'ﬂg 1
6:1 (5) &zzi"iz 1)

_kzk--lz;—k-#l [ﬂ k} k+1 n —k—1

Hn(Xl)vk ==

I (Xa)ug =

= E[kﬂk—z — (n = F)ugq]

Qe i Bug i

=21) + ﬂ'z (532]

I, (X3)v = —'E{z

= £ ket ke 5 (n ~ k)22

y L ka

O

Proposition 3.11. In the representation Il,,, I1,(S2) is a scalar transformation
given by

() = %n[ﬁ- +2)1

Proof. The Casimir element {2 of su(2) is given by Example 2.35. By Proposition
3.10, we have for any k € {0,...,n}.

Ma(@)ri = 1 [ O {5 et + (= W)
I (X0){ 5 (kver = (0~ Kaen)} + 5 2 (X

= %{2.&;(“ = kD)2 - k) (k1) +(n = Ekli‘}”k

= én{n + 2)ug.

Theorem 3.12. The heat kernel of SU(2) is given by

21 'ﬂ'
pulz) = 2151113 Z RE '




20

Proof. By Theorem 3.7, we have the set of isomorphism classes of lrredumble
representations of SU(2) is {IT,|n > 0}. Hence, we can identify SU{E] with
NU{0}. Moreover dim V;, = n+ 1. From Proposition 3.11, we have A, = —2%F2),
For each z € SU(2), we can identify z with @ in Proposition 3.8. Hence x,(z) =
XI[H (E)) = P%EFIE*

Now, the formula (1.1) for SU(2) can be written as follows. For any z € SU(2).
z can be conjugated to an element of the form H(#), 8 € [0,2n]. Since p, is a

class function, we have

ﬁt[I} = ﬁ:{H[E}j —. i(ﬂ + l) —ML Sin{ﬂ-l' l]ﬂ

n=f Sln E
o
in_;u_ sin nf
=
sinf
n=]

I = i’ nf=1) g e
y Eisinﬁzm )

(’im ST fua.,,z{ e s_m-Lea)

=1 n=1
o

y (a2l g,
_Ea'sin.ﬂ 2 fie e

fi=—00

Etsmﬂ'

O

Theorem 3.13. The heat kernel on SU{2) can be given by the following formula

—4v2 t/8 - -2 )2
pifz) = thsmﬂﬁ& “_Z_:m{ﬂ+2?m}a = il

Proof. Recall the Poisson summation formula. ~Let ¢(z) be a complex-valued
smooth function with rapid decay on R; if A, # are real parameter, then

i é(ln)e"“”_—}- i (E+2vrn)

n=—=00
where

d(w) = f_ " 697 4(2)da

oo

is the Fourier transform of ¢(z).
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Let ¢(z) = ze~* *. Then ¢(w) = —Liet\/mwe %", Thus

- —tntat ing 1 = (042
£ oo LA
1
T

oo

Z ne—{n —1]! ind __

n=—o0 —o

Therefore

1 imnﬂ_;ﬁl-*_-gehﬂ: 1 W$(5+2wn)

2isinf 2itsinf &= Vi
7 —~ 1., —r8+27n ~j(et3may
" itsing Z - "E( 7 )
= Vi Y (04 e

n==oo

Replacing ¢ with t/8, we have

_:Il ,-_.l,p _4\/_ \.-'{_ /8 i E+2TTR]E_2[£:I§IJEF.

23 sin H = 323ing

n==D0



CHAPTER 4
Structure Theory

In the next chapter, we will establish formulas for the heat kernel on a general
compact Lie group. To do this, we need to know some structure theory of a
semisimple Lie algebra. We recall relevant definitions and theorems that will be
used in the next chapter.

4.1 Root space decomposition

Definition 4.1. If g is a complex semisimple Lie algebra, then a Cartan subal-
gebra of g is a complex subspace h of g with the following properties:

1. for all H; and H in b, [H1,H2] =0,
2. for all X in g, if [H,X] =0 for all H in b, then X is in b;
3. for all H in b, adg is diagonalizable.

Definition 4.2. If g is a complex semisimple Lie algebra, then a compact real
form of g is a real subalgebra £ of g with the property that every X in g can be
written uniquely as X = X + iX, with X, and X, in ¢ and such that there is
a compact simply-connected matrix Lie group K, such that the Lie algebra ¢, of
K, is isomorphic to E.

It can be shown that a compact real form of a semisimple complex Lie algebra
always exists. "

Proposition 4.3. Let g be a compler semisimple Lie algebra, t a compact real
form of g, and t a mammal commutative subalgebra of ¢. Define h C g to be
h=t+it. Then b is a Cartan subalgebra of g.

Definition 4.4. A root of g (relative to the Cartan subalgebra b) is a nonzero
linear functional & on h such that there exists a nonzero element X of g with

[H, X] = a(H)X

for all H in h. The set of all roots is denoted by R.
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Theorem 4.5. If a is a root, a(H) is imaginary for all H in t.

Definition 4.6. If « is a root, then the root space g, is the space of all X in
g for which [H, X| = a(H)X for all H in h. An element of g, is called a root
vector (for the root o).

More generally, if e is any element of h*, we define g, to be the space of all X
in g for which [H, X] = a(H)X for all H in h (but we do not call g, a root space
unless a is actually a root).

Theorem 4.7. The Lie algebra g can be decomposed as a direct sum as follows:

ﬂzha@ﬂg

acl

Theorem 4.8. For any aand 3 in §°, [ga, 98] C gass-
Theorem 4.9. Let o be a root of g relative to the Cartan subalgebra b.
1. If a € b* is a root, then so is —a.
8. The roots span h*.
Theorem 4.10. Let o be a root of g relative to the Cartan subalgebra b.
1. If « is a root, then the only multiples of e that are roots are o and —c.
2. If @ is a root, then the root space g, is one dimensional.

3. For each root o we can find nonzero-elements X, in go, Yo in g_o and H,
in b such that

[Hay Xo] = 2X,
[Hy, Ya] £2-2Y,
[Xn: Yn] =d7k.

The element H, is unique and i5 colled the eo-roots.

Theorem 4.11. Suppose a and 3 are roots and H, is the co-root associated to
root ««. Then 3(H,) is an integer.

Theorem 4.12. Given any linear functional o € h* (not necessarily a root), there
erists a unique element H® in b such that

a(H) = (H", H)

for all H in b.
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From now on, we identify each root with the corresponding element of h given
by the previous theorem. Thus, we now regard a root a as a nonzero element of

b (not h*).

Theorem 4.13. Let & be a root and let H, be the corresponding co-root. Then a
and H, are related by the formulas

X
Hu E{a.cx}
H.
o= 2_(Hm Hﬁ}'

Let g be a complex semisimple Lie algebra given to us as a subalgebra of
some gl(n,C). We have chosen a compact real form ¢ of g and we let K be
the compact subgroup of GL(n,C) whose Lie algebra is &. We have chosen a
maximal commutative subalgebra t of £, and we work with the associated Cartan
subalgebra h = t +4t. We have chosen an inner product on g that is invariant
under the adjoint action of K and that takes real values on €.

Consider the following two subgroups of K

Z(t) = {A € K | Ads(H) = H for all H in t}
N(t) ={A € K| Adu(H) C tfor all H in t}

Clearly, Z(t) is a subgroup of N(t), and it is easily seen that Z(t) is a normal
subgroup of N(t).

Definition 4.14. The Weyl group for g is the quotient group W = N(t)/Z(t).
Theorem 4.15. Under the above notation, we have

1. The inner product (-,-) on b is invariant under the action of W.
2. The set R C b of roots is invariant under the action of W.

3. The set of co-raots-is invarient under the actionof W, and w- H, = Hy.a
for allwe W and € R.
4. The Weyl group-is a finite group.
Theorem 4.16. For each root o, there ezists an elements w, of W such that
Wo O = —C
and such that
we-H=H
for all H in b with (o, H) = 0.

Theorem 4.17. The Weyl group W is generated by the elements w, as a ranges
over all roots.
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4.2 Root system

Theorem 4.18. The roots form a finite set of nonzero elements of a real inner-
product space E = it C b and have the following properties:

1. The roots span E.

2. If & is a root, then —a is a root and the only multiples of a that are roots
are o and —o.

3. If @ is a rool, let w, denote the linear transformation of E given by

waﬁ:ﬁ—ﬂmm

(@, a)

Then for all roots & and 3, w, - B is also a root.

4. If & and 3 arevoots, the the guantity
(o, 8)

*(@a)

s an integer.

Any collection of yectors in a finite-dimensional real inner product space having
these properties is called a root system.

Definition 4.19. Suppose that E is a finite-dimensional real inner product space
and that R C F is a root system. Then a base for R is a subset A = {ay,...,0,}
of R such that A forms a basis for E as a vector space and such that for each
a € R, we have

=m0y + Ntz + - -+ + My 0y,

where the n;’s are integers and either all greater than or equal to zero or all less
than or equal to zero,

Once a base A has been chosen, the a's for which n; > 0 are called the
positive root (with respect to-the given cheice of A) and theé a’s with n; < 0
are called the negative roots. The set of all positive roots is denoted by R*.
The elements of A are called the positive simple roots.

Theorem 4.20. For any root system, a base exists.

Definition 4.21. For each a € R, let P, denote the hyperplane perpendicular
to @. The hyperplane P, partition F into finitely many regions. An open Weyl
chamber in E (relative to R) is a connected component of the set

E-|JP..

aER
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The set P = UaE r Pa is called the walls of all Weyl chambers. An element in P
is called singular, otherwise it is called regular.

Definition 4.22. The set of p € E such that (u,a) > 0 for all positive simple
roots a is called the closed fundamental Weyl chamber relative to the given
set of positive simple roots. The set of u € E such that (u,a) > 0 for all positive
simple roots « is called the open fundamental Weyl chamber relative to the
given set of positive simple roots.

4.3 Integral and dominant integral elements

Definition 4.23, An element u of b is called an integral element if (u, H,) is
an integer for each root a.

Theorem 4.24. The set of integral elements 15 invariant under the action of the
Weyl group.

Theorem 4.25. If p is an element of h for which (u, H,) is an integer for all
positive simple roots @, then (ju, H,) is an integer for all roots o, and thus, p is
an integral element.

Theorem 4.26. An element p of b 1s integral if and only if

(m, a)
Haa)

15 an integer for each positive simple root a.
Corollary 4.27. Every root is an integral element.

Definition 4.28. An element. p of b is called a dominant integral element if
(u, Hy) is & non-negative integer for each positive simple root a. Equivalently u
is a dominant integral element if

2 (-’u’ &I}
(o, )
is a non-negative integer for each positive simple root a.
Moreover, we say that p is strictly dominant integral element if (u, H,)
is a positive integer for each positive simple root o.
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4.4 Theorem of the highest weight

Definition 4.29. Suppose 7 is a finite-dimensional representation of g on a vector
space V. Then u € b is called a weight for 7 if there exists a nonzero vector v in
V such that

m(H)v = (u, H)v (4.1)

for all H € h. A nonzero vector v satisfying (4.1) is called a weight vector for
the weight u, and the set of all vectors satisfying (4.1) (zero or nonzero) is called
the weight space with weight . The dimension of the weight space is called the
multiplicity of the weight.

Definition 4.30. Let w, and ps be two elements of h. Then g, is higher than u,
(or, equivalently, p2 is lower than p,) if there exists non-negative real numbers
ay,...,a; such that

My = e = 01 + aatee + . . .+ Gr2y.

where {ay,...,a,} = A is the set of positive simple roots. This relationship is
written as py > ps or pp < py.

If 7 is a representation of g, then a weight g for 7 is said to be a highest weight
if for all weights p for m, = pg.

Theorem 4.31 (Theorem of the Hightest Weight). In a semisimple Lie
algebra, the following statements hold.

1. Every irreducible representation has a highest weight.
2. Two irreducible representations with the same highest weight are equivalent.

3. The hightest weight of every irreducible representation is a dominant integral
element.

4. Every dominant integral element occurs as the highest weight of an irre-
ducible representation.

4.5 Weyl character formula

Theorem 4.32. If K is simply connected and A is a (real) integral element, then
there exists a function f on T satisfying

f(e®) = M) (4.2)

for all H in t, where T is the connected Lie subgroup of K whose Lie algebra is t.
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We note that T is commutative since t is. Also, T is connected and compact.
In fact, T is called a maximal torus of K. We have that the exponential map
exp : t = T is surjective. So every t € T can be written as t = e” for some H € t.
Now we define I" to be the kernel of this map, that is,

={Het|expH =1}

Let H, and H, in t be such that ¢ = ef2. Since t is commutative, ef1-#2 = |
and hence H, — H, € I'. This means every ¢ € T can be written as ¢t = e/ where
H is unique up to adding on an element of I". Now, back to equation (4.2), if we
choose H, and Hj so that e = ef* = ¢, then f(t) = ¢*#1) and concurrently
f(t) = e*H2) We note that Hy = H; + ¢ for some ¢ € I'. So the function is
well-defined if M) = gidHz) = MHD MG This will hold precisely if A(¢) is
an integer multiple of 27, So, the function in (4.2) is well-defined precisely if A
has the property that A(¢) is an integer multiple of 2r for all ¢ € I'. This leads
to the following definition and theorem.

Definition 4.33. Let A = {H € t | e = I}. An element p of t is called an
analytically integral element if (i, A) is an integer for all A € A and denote
by T the set of all analytically integral elements. That is

T ={uet|{uA cZforall A€ A}

Meanwhile, we have another notion of integral element, namely that u € b is an
integral element if (., H,) is an integer for each co-root H,. To distinguish this
condition from the condition for an analytically integral element, we call g an
algebraically integral element if (s, H,) is an integer for each root a.

Theorem 4.34.-If K s simply connected; then the set of algebraically integral
elements and the set of anclytically integral elements are the same.

Definition 4.35; Let Il be a finite dimensional representation of a group G. Then
the function xp on G defined by

xn(z) = tr(Il(z))
is called the character of II.

Definition 4.36. The half sum of positive roots is denoted by

1
£=§Zﬁ

ac Rt
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We summarize some properties that will be used later.
Theorem 4.37. Let D be the set of dominant integral elements.
(i) The set D + § is the set of strictly dominant integral elements.
(1) Uyew s -D=1.
(1ii) U,ew s (D +6) =T — P, which is the set of reqular integral elements.

(iv) For any v € T — P, there egists a unique s € W and ¢ € D such that
¥ = 8- (o + d). In other words, W acts freely on T — P.

Theorem 4.38. For any H € t, there ezists a unique p in the closed fundamental
Weyl chamber and (not necessarily unique) s € W such that H = s - p, i.e.,
s\ H=pu

Theorem 4.39. Let R be a root system in E, consider the functionw : E - R
given by

w(H) = [] (e H).

aE R+

Then w(s - H) = det (s)n(H).

Theorem 4.40 (Weyl Character Formula). If £ is an irreducible representa-

tion of K with highest real weight g, then we have

3 ew det(w)eft(n+0)H)
S ey deE(w) T

for all H in t for which the denominator of the right-hand side of ({.3) is nonzero.
Here, 6 denotes half the sum of the positive real roots.

xg{eﬁ) = (4.3)

The denominator of the above formula is called Weyl denominator and
denoted by j(H). That is

GH). =15 det(w)etaH (4.4)
weW
Theorem 4.41 (Weyl Dimension Formula). Suppose that 7 is an irreducible
representation of g with highest weight p. Then the dimension of 7 is given by

[aens (e +8) _ m(u+ )
nuem (e, 6) w(d)

dim s =

(4.5)



CHAPTER 5
Heat kernel on a compact Lie group

Let K be a compact simply-connected Lie group, with Lie algebra €. Fix a max-
imal commutative subalgebra t of £, and we work with the associated Cartan
subalgebra h = t + it. Choose an inner product (, ) on ¢ that is invariant under
the adjoint action of K. Let R be aroot system of it which has a basis {o,...,a,}
where r = dim t and let B* be the set of positive roots. Let n = dimé¢, [ = dimb
and m the number of elements of R*. Then n = | + 2m. Let W be the Weyl
group and D the set of dominant integral elements. Let {X,,..., X} be an or-
thonormal basis of £, where we view the X,;'s as left-invariant vector fields on K.
Let A =37, X? be a Casimir operator on E.

Proposition 5.1. Let o be a representation of K acting on some vector space V3.
Then w(A) = (A, A +20)d, where A is a highest weight for w.

Proof. Since the Casimir operator A belongs to the center of il(g), m(A) is a scalar
operator —A;I by Schur’s lemma. The sealar ¢ is determined as follows. We can
choose a Weyl base E, (e € R), H; (1 < i <) of g¢ satisfying (E,, E_,) =
1, {H;, H;) = d;3 and E, + E_,,i(E, — E_5), Hi €/g.) Then we have

! !
A=Y E_ Bo+y Hi="Y (ELE,+H,)+Y H
aEl i=1 acRt i=1
because [Ey E_o] = H, where H, is the element in the space it satisfying
(H,H,) = «(H) for every H in t¢. Let 2 # 0 be the weight vector corresponding
to the highest weight A : m(E,)z = 0 for o € P, n(Hy)xr =A(Hy)z = — (A, a)z.
Then'we have

{
Mr=m(A)z=()_ (\a)- ZA(H,-)E}::

ac R+
= ((A\,26) + (A, A))z
= (A, A+ 26)z.
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Proposition 5.2. The heat kernel of compact connected Lie group is given by

2
eldl’t

) = a(~y)e~ M teitnH)

for all H € t.

Proof. By Theorem 4.31 of the highest weight, we can identify each isomorphism
class of irreducible representations with a dominant integral element. Moreover,
from Proposition 5.1, we have

e = —(A+ 26, \V="={{A+ 6, \ + 6) — (5,0)].

Thus we can rewrite the heat kernel (1.1) by

pulH) =3 daem 200y, (H)
._-\E'D
Next, using the Weyl dimension formula (4.5), the Weyl character formula (4.3)
and the Weyl denominator formula (4.4), we have

Hy = A +0) s vaie fope 2msew det(s)e(e(2+9).H)

PI(E :]' %( ‘;r{ﬁ) e e J{H)
elﬁizf

= j(H)w(6)

o1

= ——— N N det (8)m (ot 5)e= IO gils(A+).H)
o) 2 2

AED seW

. z Zd&t{ﬂ)ﬂ'[)’t ¥ a}e—fk+étjtei{3f-’*+5}-ffﬁ

AED seW

eldl*t 2
= —8F Z ?r(f}.-]e"l"rl Ee‘{TrH},
I n(6) =
where the last equality follows from Theorem 4.37 and the fact that w(y) = 0 for
any 5 €.P. a

Now for every rapidly decreasing function fon t*, we define a Fourier transform

-~

[ as follows:
F) = G [ F)e @, (re )

where the measure dp = dxy---dz; (p = Eizl z;M). For «« € R, we define a
differential operator d{a) as follows:

o)) = [ 170+ sa)|

§=0
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for every differentiable function f on t* and put

@) = ] o).

acit
Lemma 5.3. For every rapidly decreasing function f on t*, we have

@) 7 () = i"r(X) (M)
and
(@) f(\) = (=)™ - F(N)
Jor A€t

Proof. For a € R, using integration by parts, we have
: a(@) f(we " M dp = i(X a) : f(p)e™ P dy,
Applying this repeatedly, we have the first elaim. Differentiating f under the
integral sign and noticing the fact that
(e~ Mdy = (< i) w(p)e ",
the second assertion is obtained. O

Lemma 5.4.
m(@e 1M = (—a)Pr(A)e I

where a is an arbitrary constant

Proof. This is a straight forward calculation. O

Let ey,... € be an orthonormal basis for t* with respect to (, ). We will
indentify t* with R'. Hence t* has a translation-invariant measure defined on the
Borel o-algebra which will be nomalized to coincide with Lebesgue measure on
R'.

Lemma 5.5. For an arbitrary constant a, put h,(X) = e~ 1", Then we have
S c _a?
ha(A) = —e
a2z
Proof. For A= ¥'_, w:é; € t*,we have

P i 2 :
= ={lu*1/2) ,=i{A/a,

1 ‘ 1 . 2
. T - —1/2y; —ifz.ff\-"'a}'lfjd
= 7z H f £ e Yj
al/ e V21 J—eo

L —a?/2a

= —g

atl?



Lemma 5.6. Under the assumption of Lemma 5.5, we have
—a?
- ha(A) = (=i)™a " Fn(N)e "m.

Proof.

7 ha(A) = (—a) "™ 7(8)ha(})

= (=a)™ (@) 7 (Nha(2)
= (-4)"a "/ m(N)e~ W12,

O

Now, we will find another form of p,(H ). Let g be the inverse Fourier transform

of fu(y) = w(y)e "¢, That is,

1 2, 3
QI{H} = Wf W{T)E_lTl -I-Ei'h'pH} dr}-
i

We quote the following Poisson’s summation formula. The standard proof on
R"™ works the same way if we change the sums to be over the lattice and its dual

lattice of a Euclidean space.

Theorem 5.7 (Poisson’s summation formula).

Y iyt = @) N gu(H + p).

el pel

Theorem 5.8, The heat kernel of compact connected Lie group is given by

- Er —qelH+pl?
B | = m(H + ple %
Pt{ J j(H] e { F‘]
Elﬁlzt{gﬂ}!ﬂim
(2¢)n/27(5)
Proof. We have

where ¢ =

i) =gy |y e e dy

= ﬁ f!_(’? - hay) (7)€" d y
=7 hye(—H)
= (=iy™(2t) " 2x(— H)e &

H*

= i™(2t) ™2 (H)e~ 4.

[t




By Theorem 5.7, we obtain

> r()e W = S (om)2im (20) 2w (H 4 )
YET perl

B b
COREP

By Proposition 5.2, we have

AURTO™S ,
p(e”) = crenuing s’!,r/ w(H + p)e~ el +ul’

AOUUINBUINT )
ANRINITNINENAY
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