
การจํ าลองแบบเชงิตวัเลขส ําหรับการเคลื่อนไหวของพลาสมามิติเดียวในสนามแมเหล็กไฟฟา

นาย ชวิศนัช อิงชาติเจริญ

วทิยานิพนธนีเ้ปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชานิวเคลียรเทคโนโลยี ภาควชิานิวเคลียรเทคโนโลยี

คณะวิศวกรรมศาสตร จฬุาลงกรณมหาวิทยาลัย
ปการศึกษา 2543

ISBN 974-13-0274-6
ลิขสทิธิข์องจุฬาลงกรณมหาวิทยาลัย

NUMERICAL SIMULATION FOR MOTION OF ONE DIMENSIONAL

PLASMA IN AN ELECTROMAGNETIC FIELD

MR CHAWISNACH ENGCHATCHAROEN

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Nuclear Technology

Department of Nuclear Technology

Faculty of Engineering

Chulalongkorn University

Academic Year 2000

ISBN 974-13-0274-6

Thesis Title Numerical simulation for motion of one dimensional

 plasma in an electromagnetic field.

By Mr. Chawisnach Engchatcharoen

Field of Study Nuclear Technology

Thesis Advisor Dr. Sunchai Nilsuwankosit

 Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master’s Degree

 …………...………………..……. Dean of Faculty of Engineering

 (Professor Somsak Punyakaew, D.Eng)

THESIS COMMITTEE

 ….…………………………... Chairman

 (Associate Professor Somyot Srisatit)

 ……………………………… Thesis Advisor

 (Dr. Sunchai Nilsuwankosit)

 ……………………………… Member

 (Associate Professor Nares Chankow)

 ……………………………… Member

 (Assistant Professor Dr. Supitcha Chanyotha)

 ชวิศนัช อิงชาติเจริญ : การจํ าลองแบบเชงิตวัเลขสํ าหรับการเคลื่อนไหวของพลาสมามิติ
 เดียวในสนามแมเหล็กไฟฟา. (NUMERICAL SIMULATION FOR MOTION OF
 ONE DIMENSIONAL PLASMA IN AN ELECTROMAGNETIC FIELD)
 อ. ที่ปรึกษา : อ.ดร. สัญชัย นิลสุวรรณโฆษิต, 86 หนา. ISBN 974-13-0274-6

 วตัถปุระสงคหลักของวิทยานิพนธคือ เพื่อพฒันาแบบจ ําลองทางคอมพิวเตอรของพลาสมา
แบบมิติเดียวบนเครื่องคอมพิวเตอรสวนบุคคล พลาสมาคือสถานะที่สี่ของสสารซึ่งสสารในระบบ
สุริยะจกัรวาลสวนใหญอยูในสถานะของพลาสมา พลาสมามปีระโยชนหลายดานโดยเฉพาะอยาง
ยิง่ในดานนวิเคลียรฟวชันในแงของแหลงกํ าเนิดพลังงาน ดงันัน้การศกึษาพลาสมาจึงเปนพื้นฐาน
ทีสํ่ าคญัในการท ําความเขาใจและศึกษาขบวนการ การเกิดฟวสชันแตเนื่องจากการทํ าการทดลอง
กับระบบจริง ตองใชงบประมาณทีสู่ง กอใหเกิดการสิ้นเปลือง ดังนั้นการสรางแบบจํ าลองในทาง
คอมพวิเตอรข้ึนกอน จึงนาจะเปนทางเลือกหนึ่งที่เหมาะสม

 ในเบือ้งตนนีจ้ะท ําการสรางแบบจํ าลองพลาสมาในระบบหนึ่งมิติ ภาษาคอมพิวเตอรที่ใช
ในการพัฒนาแบบจํ าลองคือ จาวา โปรแกรมที่พัฒนา ใชวิธีทางการประมาณเชิงตัวเลข ผลตางสืบ
เนือ่ง มข้ัีนตอนหลักอยูสองข้ันตอน คือ ขั้นตอนแรก หาคาสนามไฟฟา และสนามแมเหล็ก ดวยสม
การแมก็ซเวลล และขั้นตอนที่สอง หาการเคลื่อนที่ของอนุภาคดวย สมการการเคลื่อนที่ของลอ
เร็นซ การจ ําลองการเคลื่อนไหวของพลาสมาถูกกระทํ าภายใตเงื่อนไขโดยกํ าหนดศักยไฟฟาคา
ศนูยทีข่อบทั้งสองของระบบ ซึ่งผลที่ได ความยาวเดอรบาย และความถี่ของพลาสมา จะถูกตรวจ
สอบและเปรยีบเทยีบกับคาทางทฤษฎี ความแตกตางที่เกิดขึ้นเนื่องจากความไมแมนยํ าของการ
ประมาณตลอดจนความผิดพลาดซึ่งเกิดขึ้นเองจากเทคนิคการคํ านวณที่ใชโดยอาศัยการประมาล
ผลเหลานี ้ จงึสรุปไดวารูปแบบจํ าลองที่ใชสามารถจํ าลองลักษณะการเคลื่อนไหวของพลาสมา
แบบมติเิดียวไดในระดับหนึ่งสํ าหรับทรัพยากรการคํ านวณที่มีจํ ากัด

ภาควิชา..…..นวิเคลียรเทคโนโลยี….........ลายมือช่ือนิสิต…………..
สาขาวิชา......นวิเคลียรเทคโนโลยี….....….ลายมอืช่ืออาจารยที่ปรึกษา……….............................
ปการศึกษา 2543 ลายมือช่ืออาจารยที่ปรึกษารวม.................................

4070246721 : MAJOR NUCLEAR TECHNOLOGY

KEY WORD: PLASMA / PLASMA SIMULATION / NUCLEAR / FUSION / SIMULATION

 CHAWISNACH ENGCHATCHAREON : NUMERICAL SIMULATION

 FOR MOTION OF ONE DIMENSIONAL PLASMA IN AN ELECTRO-

 MAGNETIC FIELD. THESIS ADVISOR : SUNCHAI NILSUWANKOSIT,

 Ph.D. , 86 pp. ISBN 974-13-0274-6

 The purposes of this research are to develop a computer model to simulate

the motion of the one dimensional plasma on microcomputer. Plasma is the fourth

state of matter. Most of matter in the universe is in the plasma state. Plasma plays the

important role in many applications. One of the most challenging is to develop the

controlled thermonuclear fusion as an economical energy source. In order to achieve

these conditions, an understanding of how the plasma behaves is essential. Because

of some technical and economical difficulties, the experimental method may be

impossible or difficult. Therefore, the computer simulation technique is an alternative.

 We restrict the scope on one dimensional plasma. The model is developed

with JAVA language with calculating Finite difference technique. The study consists

of two main parts; the fields produced by particles which are solved by Maxwell’s

equations and the motion of the particles caused by the forces that resulted from

the fields which are computed based on Lorentz equation. The motion of a one

dimensional plasma is analyzed and simulated under zero potential that is applied at

the boundary condition. The characteristic time and characteristic size are estimated

to compare with the theoretical value. The results show the discrepancy which might

have been due to the lack of accuracy of estimation and the inherent error caused by

the technique used for the simulation. Based on these assessments, it is concluded that

the model as proposed is capable to simulate the motion of the one dimensional

plasma up to a level of certainty and with the limited computing resources.

Department…Nuclear Technology…… Student’s signature…………………………..

Field of study…Nuclear Technology… Advisor’s signature…………………………..

Academic year…2000……………..… Co-advisor’s signature..…..…………………..

vi

Acknowledgment

 I would like to thank all the great people at the department of Nuclear

Technology at Chulalongkorn University, especially Assistant Professor Attaporn

Pattarasumunt for the help and advice. Specifically, I thank Dr. Sunchai

Nilsuwankosit, my thesis advisor, who gave me the opportunity to do this thesis and

who encouraged me every step of the way to ensure its success.

 On a personal note, thanks to all of my friends who encouraged and prayed for

me during the writing of this thesis. I would like to sincerely thank Dr. Kevin Bowers

at Plasma Theory and Simulation Group, Electrical Engineering and Computer

Science Department at University of California, Berkeley for the help and more useful

suggestions. I also appreciate Dr. Vinai Pruksawan, a former advisor at Electrical

Engineering, Kasetsart University, for useful guidance. Most importantly and finally,

I thank my parents who highly supported, encouraged and truly impacted my

personal life.

Contents

 page
Abstract (Thai)……………………………………………………………………….iv

Abstract(English)…………………………………………………………….………v

Acknowledgement.…...……………………………………………………………...vi

Contents………………………………...……………………………………………vii

Figures contents………………………………………………………………………ix

CHAPTER I Introduction…………………………………….…………….………..1

1.1 Background………………………………………………………………..1

1.2 Confinement schemes…..…………………………………………………2

1.3 The methods for heating plasma……..……………………………………4

1.4 Plasma simulation…………………………………………………………6

1.5 One dimensional plasma simulation………………………………………6

1.6 Objectives………………....………………………………………………7

1.7 Scope of thesis…………………………………………………………….7

1.8 Methodology………………………………………………………………7

1.9 Potential application……………………………………………………….7

 1.10Relative researches………………………………………………………...8

CHAPTER II Theory of one dimensional plasma…….…….…….……………….10

 2.1 Overview…………………………………………….…………………...10

2.2 Maxwell’s equations……………………………………………………..10

2.3 Debye Length...12

 2.4 Plasma frequency...14

CHAPTER III Numerical model for one dimensional plasma….....................……19

 3.1 Overview..19

 3.2 Simulating of one dimensional plasma with finite difference method…...19

3.3 Initial conditions on the particles...21

viii

Contents(Cont.)

 3.4 Charge density……..23

 3.5 Potential field and electric field.…………..25

3.6 Motion of the particles……...27

 3.7 Computing cycle…..28

 CHAPTER IV Results from the simulation………………………….……………..30

 4.1 Overview..30

 4.2 Results from simulation for the motion……….……….......................…30

 4.3 The various parameters in simulation……..…………..………………...33

 4.4 Results from simulation for the characteristic………..........................…40

CHAPTER V Conclusion and Suggestions……………………………………...43

5.1 Conclusion...….43

 5.2 Simulation in one dimensional plasma.............…..............................….43

 5.3 The result of simulation……...…………………………………………44

 5.4 Suggestions……..……...............…...…45

Reference...…50

Appendix………………………………………………………………….……….…51

Biography...…86

ix

Figure contents

 Page

Figure 2.1 Debye length……….….…………………………………….…….…….12

Figure 3.1 System length…………..………….….…………….…………………...22

Figure 3.2 Grid width………………………….……………………….……….…..23

Figure 3.3 Dividing grid for counting particle…………………………..……….…24

Figure 3.4 Flow chart for plasma simulation in one dimension…………………..…29

Figure 4.1 Plasma simulation program……….…………………….….…………....30

Figure 4.2 Plasma parameters……………….………………………..…………..…31

Figure 4.3 Displacement of the particles…….………………………….….….……31

Figure 4.4 Particle density at each grid …….………………………………..….….32

Figure 4.5 Potential field at each grid……………………………………….………32

Figure 4.6 Electric field at each grid…………………………………….….……….33

Figure 4.7 Potential distribution near a grid in plasma………………….………….34

Figure 4.8 Potential distribution in less number of grid ………………..…………..34

Figure 4.9 Potential distribution when increased number of grid…………………..35

Figure 4.10 Simulation of potential distribution and grid at 10,000 particles………..35

Figure 4.11 Simulation of potential distribution and grid at 1,000 particles……..…..36

Figure 4.12 Simulation of Particle density distribution of 10,000 and grid………….36

Figure 4.13 Displacement of the electrons at time step 10-7 sec .…………..………..37

x

Figure contents (Cont.)

Figure 4.14 Displacement of the electrons at time step 10-4 sec……………………..38

Figure 4.15 Displacement of the electrons at time step 10-3 sec……………………38

Figure 4.16 Displacement of the electrons at time step 10-2 sec……………….……39

Figure 4.17 Simulations of Electric field distribution at 100 Grids………………….40

Figure 4.18 Simulations of Electric field distribution at 50 Grids……………….…..40

Figure 4.19 Simulations of Electric field distribution and Time at time step 3.5×10-9

 second in one grid……………………………………………………...41

Figure 4.20 The measurement of Debye length……………………………………...42

Figure 5.1 Position of particle between two grid points……………………………..45

Figure 5.2 Position of a particle in the grid cell …………………………………….48

CHAPTER I

INTRODUCTION

1.1 Background

 Plasma is the fourth state of matter. It is most similar to gas but is

fundamentally different in that gas is made up of molecules and is electrically neutral

while plasma is a collection of the free moving electrons and ions. Plasma can be

made in a number of ways but the end result is always a combination of the positively

charged ions (atoms with one or more missing electrons) and the negatively charged

electrons. The movement of charged particles in plasma generates current and charge

density gradient which in turn give rise to electric and magnetic field which affect to

the motion of other charged particles over a large distance. This characteristic is

called the exhibition of collective behavior. Plasma is not only electrically charged it

is an efficient electrical conductor. The state of plasma can exist anywhere from

inside the room temperature metal to the star. Plasma must conform these criteria, the

size of system length must be larger than the Debye length, the number of particles

are enough in a Debye length and the multiplication of the mean time between

collision with neutral atoms and the frequency of plasma are greater than unity. At

low density, plasma has collisionless behavior which means the collective behavior is

much more important in determining the characteristic of plasma than local collision

which can be neglected.

 In order to understand the behavior of plasma, it is necessary to study its

behaviors. Because of some technical and economical difficulties, the experimental

method may be impossible or very difficult. Therefore, the simulation method is an

alternative. Because plasma can be used in the innumerable applications, this mean to

control the behavior of plasma is needed. As plasma is conductive and respond to the

electric and magnetic fields therefore plasma can be accelerated and steered by the

electric and magnetic fields. Plasma research also yields a greater understanding of

2

the universe. It also provides many practical uses in new manufacturing techniques,

the consumer products, and the prospect of abundant energy.

 One of the most challenging applications of plasma is to develop the controlled

thermonuclear fusion as an economical energy source. Fusion is a process that

combines the atomic nuclei of light elements, like the isotopes of hydrogen called

deuterium and tritium, to form heavier elements. There are many advantages of using

fusion energy such as abundant and inexpensive fusion fuel, short life of radioactivity

less than 100 years. The key to fusion is to heat hydrogen to an extreme temperature,

which strip electrons from the nuclei of the atoms. The resultant mix of the positive

(the nuclei) and negative (the electrons) particles creates an ionized gas called plasma.

Importantly, the fact that the particles in plasma have these positive and negative

charges allows them to be confined by magnetic fields in a fusion reactor.

1.2 Confinement schemes

 In order to control the fusion process, two commonly forms of plasma

confinements can be implemented.

Magnetic confinement

 The magnetic field acts like a net to the charged particles of plasma preventing

the plasma from leaking out. In deed, the very best way to trap the plasma is to form

magnetic field like a ball but the magnetic field in the form donut shape called torus

is made in stead. This method uses the fact that plasma is in the conducting state, that

it contains charged particles (ions and electrons), it can be acted up on by a magnetic

field so that it is shaped and confined. If you arrange the magnetic field carefully, the

particles will be trapped by it. There are several major schemes to confine plasma

with magnetic field as following.

Tokamak

 One of the greatest innovations for fusion science was the Tokamak concept

which was invented in the Soviet Union in 1950s by the Russians Tamm and

3

Sakharov. The word “Tokamak” is contraction of Russian word: toroidalnaya, kamera

and magnitnaya these mean toroidal chamber magnetic. The Tokamak is a device

which employs magnetic fields in a toroidal configuration to confine the plasma. The

magnetic field in a tokamak are produced by a combination of the currents flowing

within the plasma itself and the current flowing in external coils. Although the

tokamak has excellent confinement properties, it still has the disadvantage that the

current in the plasma tends to make it unstable. This can lead to a disruption where

the plasma dramatically crashed against the inside of container. In currently, there are

several major tokamak facilities throughout the world such as the Joint European

Tokamak (JET) in England, JT-60 in Japan, International Thermonuclear

Experimental Reactor (ITER). Much of the knowledge of plasma science gained in

Tokamak experiments is directly applicable to alternate fusion systems. The present

generation of these experiments, therefore, are effective tools for advancing the

foundation of science and technology required for developing a commercially viable

fusion power plant.

Stellarator

 Stellarator have a magnetic topology similar to that of tokamak. The traditional

stellarator consist of a set of continuous helical coils that create the twisted magnetic

field needed to confine plasma. The advantage of this type of confinement scheme is

the magnetic field can be created independently of plasma therefore, plasma does not

influence the magnetic field. This method of trapping plasma is more stable than

tokamak. However, the disadvantage is helical ripple created by the helical field coils

which does not confine plasma efficiently. This lead to Quatos (Quasi Toroidal

Stellarator) which is unique stellarator design that fool the plasma into thinking there

is no helical ripple as conventional stellarator. Quatos incorporates the advantage of

tokamak with its good plasma confinement properties and the advantage of stellarator

with its stability.

Alternative magnetic confinement schemes

 There are several alternative magnetic confinement schemes. Reverse Field

Pinch looks similar to tokamak with a lot current in plasma which creates a strong

4

poloidal magnetic field. The toroidal field is about ten times smaller thus, the field

line make many poloidal circuits per toroidal circuit. The smaller field yields potential

cost saving reactor advantage for instance, in copper magnets. Speromak is another

idea is similar to reverse field pinch but in spherical containment vessel rather than a

torus. This also eliminates any conductors through the hole in the doughnut.

Inertial confinement

 No magnetic field are needed in this scheme. This technique contains the

gaseous mixture within a small pellet or bead then have it bombarded from all

directions by the high power laser beams. If the process is done quickly and compress

it enough the subsequent shock wave causes the pellet to implode. The inertia then

holds it together long enough for fusion reaction. This method is known as Inertial

Confinement Fusion (ICF). It offers a different approach to developing the fusion

energy. To achieve ICF, the powerful lasers or particle beams are focused on a small

target of hydrogen fuel for a few billionths of a second. The target is compressed to

the density 1000 times the normal density of a solid material and heated to the

temperature of about 100 million degrees. In this condition, the hydrogen nuclei fuse

to form helium, and release a significant amount of energy. The process is the same

as that in the sun, except that a laser or particle beam heats and compresses the

hydrogen fuel rather than the sun’s gravity. The primary mission of ICF is to carry out

the experiment on the nuclear weapon physics and its effects, under the extreme

condition of density and temperature created in the inertial fusion. The major problem

is getting the lasers to hit the pellet appropriately so that it compresses symmetrically

rather than one side.

1.3 The method for heating plasma

 There are several methods for heating plasmas. These include Ohmic Heating,

Neutral Beam Injection, Magnetic Compression, Radio-Frequency Heating, and

Inertial Compression. Each of these is discussed below.

5

 1: Ohmic Heating

Since the plasma is an electrical conductor, it is possible to heat the plasma by passing

a current through it; in deed, the current that generates the poloidal field also heats the

plasma. This is called ohmic (or resistive) heating, it is the same kind of heating that

occurs in an electric light bulb or in an electric heater. The heat generated depends on

the resistance of the plasma and the current.

 2: Neutral-Beam Injection

Neutral-beam injection involves the introduction of high-energy (neutral) atoms into

the ohmically heated, magnetically confined plasma. The atoms are immediately

ionized and are trapped by the magnetic field. The high-energy ions then transfer part

of their energy to the plasma particles in repeated collisions, thus increasing the

plasma temperature.

 3: Magnetic Compression

A gas can be heated by sudden compression. In the same way, the temperature of a

plasma is increased if it is compressed rapidly by increasing the confining magnetic

field. In a tokamak system this compression is achieved simply by moving the plasma

into a region of higher magnetic field (i.e. radially inward). Since plasma compression

brings the ions closer together, the process has an additional benefit of facilitating

attainment of the required density for a fusion reactor.

 4: Radio Frequency Heating

In radio frequency heating, high frequency waves are generated by oscillators outside

the torus. If the waves have a particular frequency (or wavelength), their energy can

be transferred to the charged particles in the plasma, which in turn collide with other

plasma particles, thus increasing the temperature of the bulk plasma. This process is

similar to how a microwave oven heats food.

6

 5: Inertial Compression

In the inertial approach the compression is achieved by using laser or particle beams

to heat the outer layer of a target pellet; the outer layer vaporizes and the pressure that

the vaporized layer exerts back on the core of the pellet accelerates the plasma inward

on itself, and the inertia of the imploding atoms in the pellet allows the pellet to be

compressed (for a very short time), and thus heated.

1.4 Plasma simulation

 Computer simulation plays an important role in the development of plasma

theory. In order to provide prediction in plasma, there are a large variety of models for

simulating plasma but, basically, there are two major types;

Particle Model

 This involves following the motion of a large number of charged particles in

their self-consistent electric and magnetic fields. It is limited to only simulate the

phenomenon in which only a small fraction of plasma is involved and only for a short

period of time.

Fluid Model

 This adopts a set of the fluid equations to describe plasma by solving

numerically the magnetohydrodynamic (MHD) equation. The method is possible

because of the fact that plasma behaves sometimes like a fluid and sometimes

like a collection of individual particles. In the fluid approximation , plasma is

considered to compose of two or more interpenetrating fluids. By treating plasma

as a magnetized conducting fluid, this method can be applied to the large scale

problems.

7

In some plasma problem, neither fluid theory nor kinetic theory is sufficient to

describe the plasma’s behavior. The alternate model is Hybrid model by treating the

electrons as a fluid and ions are represented by macro particles.

1.5 One dimensional plasma simulation

 This thesis uses the particle model to simulate one dimensional plasma. The

calculation also employs the finite difference technique. The procedure comprises of

two main parts, the field produced by particles according to Maxwell’s equations and

the motion produced by forces that use Lorentz equation of motion. This process is

repeated over many time steps.

1.6 Objectives

 1.5.1 To simulate one dimensional plasma on a microcomputer in order to

 investigate the motion and the primary characteristics of plasma.

1.5.2 To develop the technique to analyze and simulate the motion of plasma.

1.7 Scope of thesis

 1.6.1 Develop the code based on solving Maxwell’s equations together and

 Lorentz’s equation of motion.

1.6.2 Obtain the fundamental characteristics of one dimensional plasma.

1.8 Methodology

1.5.1 Study the theory of plasma and relating subjects.

1.5.2 Choose the appropriate numerical technique to develop the simulation

 code.

1.5.3 Program and debug the code for simulation.

8

1.5.4 Analyze and compare the obtained results with the theoretical data.

1.5.5 Conclude the research and write the thesis.

1.9 Potential application

 1.6.1 Used for initial exploration of plasma simulations.

1.6.2 The simulation of one dimensional plasma can be used to test the

 numerical techniques against the theoretical predictions.

1.6.3 To further develop two and three dimensional model to describe

 the complete characteristic of plasma.

1.10 Relative researches

• Charles K. Birdsall and A.Bruce Langdon developed the plasma simulation

using particles model in 1985, their works originated as a set of class notes

intended for use by the graduate students at University of California, Berkeley.

To simulate a laboratory plasma in one dimension with the numerical methods of

the fast Fourier transform (FFT) and written in Fortran language. The results

from their works are enough to explain the background behaviors of the plasma.

• In 1996, Kevin Bowers at Plasma Theory and Simulation Group, Electrical

Engineering and Computer Science Department at University of California,

Berkeley developed the two dimensional plasma simulation using the Monte-

Carlo of the numerical technique. The simulating code employed a hybrid of C

and MATLAB. It is optimized for modern processors and shared memory

operation. The code can run on any platform that has MATLAB V5+ and an

ANSI C. His work is used to simulate physics of plasma.

9

• In 1998, Z.Lin, T.S. Hahm, W.W.Lee, W.M.Tang andR.B.White at department of

energy’s Princeton Plasma Physics Laboratory used the power of the

SGI/CrayT3E supercomputer to create the three-dimensional nonlinear particle

simulation of microturbulence in the plasma. The simulation involved the number

of particle as large as 400 million plasma particles. The results were achieved

with the ability of the massively parallel processor (MPP). The research

discovered the suppression of the turbulence. This helps enhancing the

administration of the plasma confinement.

• Dr. Chin S. Lin at Aurora Science Inc. developed the plasma simulation codes on

the parallel computers. The codes are useful for investigating kinetic plasma

processes associated with the global space plasma phenomena. A key element of

developing the PIC(Particle in cell) codes on the parallel computers is the gather-

scatter scheme. The gather-scatter scheme is used to communicate between

particle quantities and the grid quantities. This project created a PIC code and a

particle trajectory code on Thinking Machines Corp. CM-2 with 32,768

processors.

CHAPTER II

THEORY OF ONE DIMENSIONAL PLASMA

2.1 Overview

 As we shall see, every plasma can be completely described by five equations:

the four Maxwell’s equations and the Lorentz Force. Maxwell’s equations describe

the electric and magnetic field over time and space.

 The first equation of Maxwell’s equations is Poisson's Law describes the

electric field produced by the distribution of the electric charges. The second law is

the Faraday's Law of induction , which states the relationship between the fluctuating

magnetic field and the electric field it induces. The Ampere's Law is the third law that

describes the magnetic field induced by the current density and the electric

displacement . The last law has no name. It states that there is no magnetic monopole.

In other words, all magnetic field lines must be closed. The Lorentz equation explain

the total force on a particle due to its interaction with the electric and magnetic field.

2.2 Maxwell’s equations

• Maxwell equation

 In vacuum ; ∇⋅ E =
ρ
ε 0

 (Poisson’s equation) (2.1)

 ∇⋅ B = 0 (Absence of free magnetic poles) (2.2)

 ∇× E = -
∂
∂
B
t

 (Faraday’s law) (2.3)

 ∇× B = µ 0 (j + ε 0

∂
∂
E
t

) (Ampere’s law) (2.4)

11

 In a medium ; ∇⋅ D = ρ (2.5)

 ∇⋅ B = 0 (2.6)

 ∇× E = -
∂
∂
B
t

 (2.7)

 ∇× H = J +
t∂

∂ D (2.8)

 where D = ε 0 E + P

 H =
1

0µ
 B - M

 For linear and isotropic media

 D = ε E

 B = µ H

• Lorentz force equation

 F = q (E + v× B) (2.9)

These field variables are defined as follow :

E = electric field (V/m)

H = magnetic field (A/m)

D = electric displacement or electric flux density (C/m2)

B = magnetic induction or magnetic flux density (Wb/m2)

ρ = charge density (C/m3)

 J = current density (A/m2)

 P = polarization (C/m2)

M = magnetization (A/m)

ε = permittivity of the medium (F/m)

ε 0 = permittivity of free space or vacuum (F/m)

µ 0 = permeability of free space (H/m)

12

2.3 Debye Length

 Because of its collective behavior, a plasma tend to resist to the external

influence and thus, is able to shield out the electric potential that is applied to it as

seen in Figure 2.1. The shielding distance or thickness of the sheath that screens the

external field is called the Debye length (λD) and is equal to

 λD =
2
1

2
e0

B0

qn
Tk









 ε (2.10)

where qe is the electrical charge of an electron (C),

 no is the equilibrium particle number density (m -3),

 k B is Boltzman's constant (J/K),

 T is temperature (K).

 Figure 2.1 Debye length

 The calculation of λD can be done in the following steps. When an electric field

is applied to a plasma, the field only affects the distribution of the charged particle in

the plasma within the distance of Debye length (λD). Within this distance of λD , the

13

densities of the ions and the electrons can be found from the Boltzman distribution

(each species can be in its own distribution).

That is ni = n0







 φ−
Tk

q

B

e

e and ne = n0e







 φ
Tk

q

B

e

 ni and ne are the density of ions and electrons respectively.

 φ is the actual electric field .

Therefore , ρ = qe (n0 e Tk
q

B

eφ−

- n0e Tk
q

B

eφ

) (2.11)

 from sinh x =
e ex x− −

2

 thus ρ = qe (n0 e Tk
q

B

eφ−

- n0e Tk
q

B

eφ

)
2
2

 (2.12)

 become ρ = 2n0qe sinh 






 φ−
Tk

q

B

e (2.13)

 and ρ = - 2n0qe sinh 






 φ
Tk

q

B

e . (2.14)

 From this result, we substitute it into Poisson’s equation to get

 ∇2φ =
− ρ
ε 0

 =
1

0ε
2n0qe sinh 







 φ
Tk

q

B

e . (2.15)

Assume qe φ 〈〈 kBT then sinh 






 φ
Tk

q

B

e ≈
Tk

q

B

eφ

 and ∇2φ =
0

e0qn2
ε

Tk

q

B

eφ , (2.16)

 ∇2φ = 2φ

2

2
1

B0

2
e0

Tk
qn




























ε
. (2.17)

That ∇2φ =
2

2

φ
λ D

 (2.18)

14

 where λD =
2
1

2
e0

B0

qn
Tk









 ε and is the characteristic size for a plasma .

 The screening of the applied electric field as discussed so far has a physical

meaning only if a large number of particles, ND , are contained within a volume that

has the Debye length as its characteristic length. Assume that ND particles are

contained within a sphere of radiusλD , it is followed that

 ND =
4
3
π
λD

3 n0 〉〉 1 (2.19)

With the value of λD as derived, we then have

4
3
π

 n0

2
3

2
e0

B0

qn
Tk









 ε
 〉〉 1 (2.20)

 or
4
3
π

2
3

2
e

B0

q
Tk









 ε
 〉〉 n 0

1
2 . (2.21)

This value of n0 is another requirement for a given matter to be classified as a plasma.

2.4 Plasma frequency

 The particles in a plasma respond to an electric field by adjusting their

positions. The effect of this movement is to set up a local electric field within a

plasma that counteracts to the applied field. As a result, the energy shifts from the

electric potential to the kinetic energy and back. The frequency in which this

oscillation occurs is known as a plasma frequency (ω p) This frequency characterizes

the period in which plasma responses to an external field and is described as

15

 ω p =
2
1

0

2
e0

m
qn












ε
 (2.22)

 where m is the mass of an electron.

 The above definition is calculated based on the following assumption.

Consider in a plasma, as the electron is much less massive than the ion, the electrons

oscillate so fast around their equilibrium positions that the massive ions may be

considered as being relatively stationary. If the electrons are moved to a certain

distance x , this will give rise to electric field that, according to Poison's equation is

described as

 ∇ .E =
ρ
ε 0

 .

 If the displacement is only in x direction thus, electric field E = Eex then

dE
dx

 =
0

eq
ε

 (ni- ne) . (2.23)

 Thus dE∫ =
0

eq
ε

n0 dx∫ (2.24)

 E =
0

0e xnq
ε

 (2.25)

 where n0 = mean density of charged particle in plasma .

Given that the equation of motion of an electron in an electric field is

 m x
••

 = -qeE (2.26)

 or m x
••

 = -qe 







ε0

0e xnq (2.27)

 then x
••

 = - 










ε0

2
e0

m
qn x (2.28)

16

 and ω p =
2
1

0

2
e0

m
qn












ε
 (2.29)

 x
••

 = - ω p
2x . (2.30)

 The solution of the above equation is

 x = x1 sin ωpt + x2 cos ωpt . (2.31)

This solution simply states in that the electrons in the plasma oscillate with the

frequency of ωp .

Cyclotron frequency

 When a charged particle moves in a uniform magnetic field which does not

vary in time, in the absence of an electric field, it circulates around an axis called

guiding center with a radius rL which is known as Larmor radius and with the

frequency(ω c) where

 ω c =
qB
m

 (2.32)

 and rL =
mv
qB

 =
v

cω
 . (2.33)

The value of ω c and rL can proved by considering the following;

From Lorentz force equation m v
•

 = qv × B (2.34)

 given B = BeZ , m vz

•
= 0 (2.35)

 and m vx

•
= eBvy . (2.36)

 Thus m vx

••
= eB vy

•

 (2.37)

 or vx

••
=

eB
m

−





eBv
m

x . (2.38)

17

That is v x

••
 = -

eB
m







2

vx (2.39)

 Similarly, we have vy

••

 = -
eB
m







2

vy . (2.40)

 As we define ω c =
eB
m

, therefore v
••

 = ω c
2 v. The solution of this equation is v =

v ⊥ e i tcω = x
•

 where v = speed in the perpendicular plan to B.

Therefore m vx

•
 = eBvy (2.41)

 and vy =
m v
eB

x

•

 (2.42)

 vy =
vx

c

•

ω
 (2.43)

 vy =
v ei t

c

c
⊥

•





ω

ω
 i2 (2.44)

 vy =
v i ec

i t

c

c
⊥ ω
ω

ω

 (2.45)

 vy = iv ⊥ e i tcω (2.46)

dy
dt

 = iv ⊥ e i tcω (2.47)

 dy∫ =
v

c

⊥

ω
ei tcω∫ diω c t (2.48)

Integrating the above equation gives

 y - y0 =
v

c

⊥

ω
 ei tcω (2.49)

and x - x0 = -
v

c

⊥

ω
 i ei tcω . (2.50)

The real part of these equations give ,

 y - y0 = rL cos ω c t (2.51)

 and x - x0 = rL sin ω c t (2.52)

18

 From the above equations , it is immediately seen that a plasma particle moves on

an perpendicular plan to the constant magnetic field along a circular orbit with a

guiding center at (x 0 , y0).

CHAPTER III

NUMERICAL MODEL FOR

 ONE DIMENSIONAL PLASMA

3.1 Overview

 The basic technique for creating the model for the simulation is to choose the

appropriate numerical method to describe the physical system. For this thesis, the

finite difference technique is chosen . Once the finite difference scheme is set up, each

plasma particle is given the initial position and velocity. With these initial conditions,

the distribution of the charge densities in system can be calculated. Once these

quantities have been determined, Maxwell's equations are solved to find the electric

and the magnetic field. After the fields are known, the Lorentz Force equation is then

used to find the force on each particle. We can then push each of the particles in the

plasma one time step based on the force it feels. After being pushed, every particle

will have a new position and a new velocity. At the next time index, we can start the

calculation process again. Because we know all the new positions and velocities, we

can recalculate the charge and current densities. Continuing the cycle of calculations

with the Lorentz Force will then determine the next set of forces, and so on.

3.2 Simulation of Plasma in one dimension using finite difference method

The finite difference method proceeds according to the following steps. First,

identify a finite number of discrete points within the domain of interest. Next, the

derivatives that appear in the governing differential equations are replaced by the

discrete difference approximation. These approximating equations are written in terms

of nodal evaluation of the unknown functions.

20

Given the standard definition for the derivative of a continue function u(x)

dx
du ≡ l im h - > 0

x)hx(
)x(u)hx(u

−+
−+ = l im h - > 0

h
)x(u)hx(u −+ (3 .1)

dx
du ≅

ii

ii

x)hx(
)x(u)hx(u

−+
−+ =

i1i

i1i

xx
uu

−
−

+

+ (3.2)

 x i

where point xi and xi+1 are referred to as node points or grid points.

 A similar approximation in concept for the first order derivatives can be

written for the higher derivatives. Therefore, an approximation for the second

derivative of u(x) may be derived as follows.

dx
du

dx
du

 2

2

dx
ud ≅ xi+1/2 xi-1/2 (3.3)

 xi
2
1

i
x

+

2
1

i
x

−

 ≅
i1i

i1i

xx
uu

−
−

+

+
1ii

1ii

xx
uu

−

−

−
− (3.4)

2
1

i
x

+

2
1

i
x

−

 where
2
1

i
x

±
 represents the x-location of the midpoint between ix and 1ix ± . If

the node spacing is constant ,thus
2
1

i
x

+
 -

2
1

i
x

−
 = 1ix + - ix = ix - 1ix − = ∆ x ,

the above equation is simplified to

21

 2

2

dx
ud ≅ 2

1ii1i

)x(
uu2u

∆
+− −+ (3.5)

 xi

 With the finite difference expressions in place of the true continuous partial

differential equations and with the spatial grids for calculating the interacting forces,

evaluating the interacting forces can be done in a much more efficient manner than

summing all the direct interacting forces caused by the particles in the simulation. By

accumulating the charge and the current due to the particles on each grid, their

densities are used to calculate the acting forces that are applied on the particles.

Though each particle actually exerts a force on each other, the grid method (and the

alternated view) treats the process as if each particle feels a force due to the field at its

location. The advantage of the grid method is that the number of operations is greatly

reduced. The grid method procedure consists of three parts. The first part is to

accumulate the charge at a grid. Then, the tasks are to calculate the field caused by the

accumulation of charge and calculate the acting force that is to be applied to the

particles.

3.3 Initial conditions on the particles

 The first step is to have an appropriate system length L as shown in Figure

3.1 which is divided into N grids of length dx. From the definition of Debye length,

the system length should be many Debye length long. However, a Debye length is not

a hard number (temperature is not uniquely defined for a plasma as they are almost

always far from thermodynamic equilibrium). In deed, there is no need to have the

system be an exact multiple of a debye length ultimately, the plasma which is wanted

to simulate will dictate the system length. For instance, the long wavelength behavior

in an unbounded system, there must be the system length larger than the longest

wavelength which is interested in it. The longer making system length, the more

computational intensive the simulation confront. In calculating the Debye length, we

22

also want to know the temperature and the number of the particle to generate the

uniform distribution for the particle.

 0 j-1 j j+1 L

 dx

 L 〉〉 Debye length

 Figure 3.1 System length

Typically there must be number of particles such that are enough particles per grid

cell so that the simulation level is acceptably meaningful, the number of the particles

per grid cell is suggested that

 number of particles per grid cell >> 10 (number of dimensions) . (3.6)

That is, for a 1D simulation, there need more than 10 particles per grid cell and for a

2D simulation, use over 100 particles per grid cell. However, using the different

numerical techniques and weighting schemes can change this rule. Commonly,

random number generator, which gives the number in the range of [0,1] will be

modified with the suitable multiplier (the number of the grids) in order to generate

the position of the particles in terms of the distance between grid points and the

calculated grid width as shown in figure 3.2. In addition, the desired initial condition

for velocity including the initial perturbation are also selected to place the particles in

simulation for example, adding a sinusoidal perturbation in particle positions and/or

velocities to study kinetic effects such as Landau damping. The cold plasma means

no random thermal motion therefore, the electrons and ions are initially motionless.

However, the particles could be drifting such as an electron beam, in which case

velocity for all particle initially would be the same value. The cold drifting plasma

tend to be violently unstable though. The warm plasma requires that each particles be

given a velocity as following

23

 v[i] = vdrift +
m
kT × normal random number (3.7)

where normal random is Gausian (Maxwellian) random number (mean = 0, standard

deviation =1). The kind of random generation and the placement of particles are

properly considered in initial.

 (Number of grid -1) × Random number generator = Initial particle’s positions

 dx =
1N

L
−

 and 1
dx

D

≈
λ

 (3.8)

 N = Number of grid cell

 0 j-1 j j+1 N-1

 dx

 Figure 3. 2 Grid width

3.4 Charge density

 The charge density ρ j (at the grid with an index j) is obtained by summing

the charge qi locates at the position surrounding the grid within the distance of

2
x∆

± . This method is known as NGP (nearest grid point) which is commonly used in

computer simulation model because this method is much more efficient than summing

L

24

the direct all particles in the simulation. There numerous ways to find the number of

particles which are distributed around each grid. Two of the possible methods are

shown following. The first way is straightforwardly done by counting the particles

directly as seen below in Figure 3.3.

 xj -
2
x∆ xj +

2
x∆

 ∆ x

 xj-1 xj xj+1

 Figure 3.3 Dividing grid for counting particle

By using Loop structure such as For loop in the outer loop to run the number of the

particle and the inner loop employ selection structure , IF statement to determine

criteria if a particle fall between xj -
2
x∆ and xj +

2
x∆ then the given counting

variable is added by one according to the number of particle.

The second way is to transform the position of each particle , which is often real

number to an integer number then use this number as an array’s index of charging

particle variable (charge particle is grid quantity) to count the particle. For example, a

particle at the location of 8.4 will give the array index of 8 . Therefore, the value of

counting variable with the index of 8 must be increased by one . However , a particles

at the location of 8.8 will also give the array index of 8 which is not desirable. In

such case , 0.5 might be added to the particle’s position before the conversion. As a

result, 8.8+0.5 and 8.4+0.5, which are equal to 9.3 and 8.9, will be are converted to 9

and 8, respectively.

25

3.5 Potential field and electric field

 From ρ j , an electric field is found on the grid by solving the finite difference

forms of ∇⋅ E =
ρ
ε 0

 and E = − ∇ φ that can be approximated with the finite

difference technique.

 E = − ∇ φ (3.9)

 ∇⋅ E =
ρ
ε 0

 (3.10)

 Both are combined to obtain Poisson’s equationφ , whereφ is the electric potential

 ⋅∇ φ∇ = -
0ε
ρ . (3.11)

 In cartesian coordinates,

 ⋅∇ φ∇ = 






∂
φ∂

∂
∂

+







∂
φ∂

∂
∂

+






∂
φ∂

∂
∂

zzyyxx
(3.12)

 or ∇ 2φ = 2

2

2

2

2

2

zyx ∂
φ∂

+
∂
φ∂

+
∂
φ∂ (3.13)

 where operator ∇⋅∇ is abbreviated 2∇ .

 Therefore ∇ 2φ = 2

2

2

2

2

2

zyx ∂
φ∂

+
∂
φ∂

+
∂
φ∂ = -

ρ
ε 0

 (3.14)

 in one dimension the above equation is reduced into

 ∇ 2φ = 2

2

dx
d φ = -

ρ
ε 0

 . (3.15)

 With the finite difference, E and φ are approximated as

 Ej =
φ φj j

x
− +−1 1

2∆
 (3.16)

26

 and
()2

1jj1j

x

2

∆

φ+φ−φ −+
 = -

ρ

ε
j

0
 . (3.17)

 Once ρ j is known, it is used to obtain φ j and Ej for j starting from 0 to N-1.

A set of the linear algebraic equations are resulted as illustrated in the following

matrix equation,























−

−
−

−

21.
......

.121

.121

.12





























φ
φ

φ
φ
φ
φ

−

−

1N

2N

4

3

2

1

.
 =































φ−∆
ε
ρ

−

∆
ε
ρ

−

∆
ε
ρ

−

φ−∆
ε
ρ

−

−
N

2

0

1N

2

0

3

2

0

2

0
2

0

1

)x(

.

)x(

)x(

)x(

 (3.18)

There are various boundary conditions that can be applied for the calculation. For

 this simulation employs bounded system by applying zero potential at both ends, x =

 0, x = L (0φ = 0 and Nφ = 0 are given), this is homogeneous problem which plasma

 is bounded between grounded metal parallel plates. For inhomogeneous Dirchlet

 boundary condition in Poisson system, there must be added a linear voltage as below.

 phi[i] = phi_homog[i] + V
i

)iN(−
× , i = 0, 1 ,.., N (3.19)

 Here V is the applied voltage across the metal parallel plates and the right electrode is

 used as the reference or ground electrode, phi[i] is potential field at each grid cell.

27

3.6 Motion of the particles

 The particles are advanced in time using the particle equations of motion

and Lorentz equation with the self-consistently calculated electric and magnetic

fields. Eventually, the motion of a particle can be obtained by combination of

Lorentz equation with Newton Law.

 m . ai = q (Ej + ji Bv ×) . (3.20)

 ai =
dt

dvi . (3.21)

 vi =
dt

dxi . (3.22)

These equations are replaced by the finite difference equations as following

 a new =
t
vv oldnew

∆
− (3.23)

 v new =
t
xx oldnew

∆
− (3.24)

Where x , v and a are displacement , velocity and acceleration, respectively. The

index old indicate the previous time and the index new represent the current time.

As the velocity and position of each particle are not known at the same time therefore

the time must be centered properly. The algorithm generally used to solve this set of

equations is known as time-centered leap frog scheme. Time and space centered

roughly means that the finite difference approximations which are using is better than

first order accurate. This is time centered properly and for sufficiently small dt, stable.

The position and field are calculate at integer time-steps and velocities at half time-

steps of positions as following

 a(t) =
dt

)
2
dt

t(v)
2
dt

t(v −−+
 (3.25)

28

and)
2
dt

t(v + =
dt

)t(x)dtt(x −+ . (3.26)

 2.0dtP ≈×ω (3.27)

where Pω is plasma frequency.

If the time step too small, round off errors will screw up and if this take too big value

(>2), it becomes unstable and phase errors in the particles orbit also increase as dt is

increased. This rule of thumb is suitable for particle in cell with Monte Carlo

Collision simulation. However, if everything normalize correctly, there are no even

needs the multiplies for dt. In this case, velocity is in units of grid cells per time step

and displacement is normalized to the cell spacing.

3.7 Computing cycle

 The calculations can be repeated to simulate the motion of a plasma over a

time period. The positions and the velocities of the particles are updated by

calculating the forces on the particles from the interpolation of the field values at the

grid points. The updated fields are found by solving the field equations on the grids

using the new charge and the new current densities. The new charges and the new

current densities at the grid points are then calculated with the interpolation from the

new positions and the new velocities of the particles. This procedure is repeated for

many time steps as illustrated in Figure 3.4 .

29

 Begin

 SET NUMBER OF TIME STEP (numTimeStep)

 SET NUMBER OF PARTICLES (numParticle)

 SET NUMBER OF GRID CELL (numGrid)

 SET TEMPERATURE (temperature)

 GENERATE INITIAL POSITION AND VELOCITY (particle)

 CALCULATE CHARGE DENSITY (rho)

 CALCULATE POTENTIAL FIELD (phi)

 CALCULATE ELECTRIC AND MAGNETIC FIELD (ele)

 CALCULATE NEW POSITION (pos)

 NUMBER OF TIME STEP No

 EXCEEDS THE GIVEN VALUE

 (numTimeStep)

 Yes

 End

 Figure 3.4 Flow chart for plasma simulation in one dimension

CHAPTER IV

RESULTS FROM SIMULATIONS

4.1 Overview

 In this chapter, the computer model for one dimensional plasma is developed

to simulate the distribution and motion of the particles in an ideal one dimensional

plasma. The code is written in Java language which can be interpreted by the browser

such as Netscape (version 4.0 or later) or Internet explorer(version 4.0 or later). The

source code is also provided in the appendix of this thesis. Figure 4.1 shows the

introduction screen of the program when it is run by such browser. The calculation of

the plasma parameters and the result will be illustrated. In addition, the investigation

into the effect of using the different number of particles, the number of grids and the

time step will be also conducted.

 Figure 4.1 Plasma simulation program

4.2 Results from simulation for the motion

 We will start the investigation with 10,000 particles at the temperature of

1,000,000 K and with 100 grid points. Other necessary information is as given in

31

Figure 4.2. The output from the calculation consists of the position of each particle ,

the particle density ,the potential field and the electric field at each grid .

 Figure4.2 plasma parameters

Some of the results obtained from the calculation with the input as given in Figure 4.2
are illustrated in Figure 4.3, 4.4, 4.5 and 4.6

 Figure 4.3 Displacement of the particles (cm.)

32

 Figure 4.4 Particle density at each grid

 Figure 4.5 Potential field at each grid

33

 Figure 4.6 Electric field at each grid

 If all the electrons of plasma are removed from a uniform background of ions

with certain distance as seen Figure 4.3, the electric field in Figure 4.6 are generated

due to distribution of particle density as illustrated in Figure 4.4 according to

Poisson’s equation. Then the forces on the particles are found by using the electric

field and magnetic field in Lorentz equation of motion and recalculate the field from

the particles at their new positions.

4.3 The various parameters in simulation

 By investigating the results at one time step. The distribution of the potential

field with one grid and with many grids according to the theory is illustrated in

Figure4.7 and Figure4.8, respectively. The simulation with 10,000 and 1000 particles

give the potential distribution as shown in Figure 4.10 and 4.11.When the density is

increased (more particles), the local concentration of the charge particles around each

grid is also increased which in turn gives rise to the potential field at each grid and

having smoother profile of distribution than the one obtained with the less number of

particles.

34

 Figure 4.7 Potential distribution near a single grid in a plasma

 Figure 4.8 Potential distribution with a small number of grids .

35

 Figure 4.9 Potential distribution with a large number of grids.

 Figure 4.10 Potential Distribution from the simulation with 10,000 particles

36

 Figure 4.11 Potential Distribution from the simulation with 1,000 particles

 Figure 4.12 Density Distribution from the simulation with 10,000 particles
 and 100 grids

37

 When the effect of the time step is considered, with the time step that more

than 100 times the time scale of electron oscillations, the result from the calculation

for the new displacement of the electrons leads to the error in the displacement of the

electrons. In such case, the electrons are moved beyond the boundary of system.

Consequentially, the new computing cycle is continued with the erroneous initiated

condition. With the estimation of the plasma frequency of 106 Hz, time step of 10-7

sec. and the system length of 21 cm. , the displacement of each electron is obtained as

shown in Figure 4.13. When the time step is 10-4 sec. , 10-3 sec. and 10-2 sec. The

displacement are shown in Figure 4.14, 4.15 and 4.16, respectively. The erroneous

results are clearly seen with the time step 10-3 sec. and 10-2 sec.

 Figure 4.13 Displacement of the electrons from the simulation with 10,000 particles
 at time step 10-7 sec.

38

 Figure 4.14 Displacement of the electrons from the simulation with 10,000 particles
 at time step 10-4 sec.

 Figure 4.15 Displacement of the electrons from the simulation with 10,000 particles
 at time step 10-3 sec.

39

 Figure 4.16 Displacement of the electrons from the simulation with 10,000 particles
 at time step 10-2 sec.

 The results obtained from the calculation with the different number of grids are

considered. The calculation are conducted with the number of grids of 100 and with

the number of grids of 50. While the system length remains the same, the width

between two grids is increased when the number of grids is reduced. As a result, the

fluctuation of the electric field is reduced as the field is averaged over the longer

interval ∆ x. This effect is obviously shown in Figure 4.15 and 4.16.

40

 Figure 4.17 Simulations of Electric field distribution with 10,000 particles
 at 100 Grids

 Figure 4.18 Simulation of Electric field distribution with 10,000 particles
 at 50 Grids

4.4 Results from simulation for the characteristics

 Because the ions are much more massive than the electrons and so are

considered stationary. Plasma oscillations are caused by the displacement of electrons

from a uniform background of ions which electrons have distribution at each grid as

shown in Figure 4.12. When the electrons are displaced, electric fields are generated

41

due to charge separation. Due to the inertia of the electrons, they end up oscillating

back and forth at a very high frequency which is called plasma frequency as seen in

Figure 4.19 which is a plot of electric field at one grid versus time with the time step

of 3.5×10-9 second. The approximately obtained frequency from graph and from

theory are 5.9× 108 rad/sec. and 1.8 × 108 rad/sec. , respectively.

 Figure 4.19 Simulations of Electric field distribution and Time
 at time step 3.5×10-9 second in one grid

 In addition, the characteristic time which is determined by plasma frequency,

plasma still have characteristic size which is determined by Debye length. The Debye

length that is calculated from theory is 2.18 cm. and from simulation which can

approximately measure by graphical technique as illustrated in Figure 4.20 is 1.89 cm.

The difference of Debye length and plasma frequency of the both cause from various

factors. The major difference is the reality of plasma have three dimensional

characteristics but the obtained results from the simulation are done on a one

dimensional plasma. The other owing to self limiting simulation of capable

microcomputer and the selected technique in each step. For instance, the number of

particle and the number grid these directly affect on the ability of computer including

42

the used techniques for computer simulation, finite difference, this technique have

truncation error which is decreased as ∆ x or grid width becomes sufficiently small.

 Figure 4.20 The measurement of Debye length

CHAPTER V

CONCLUSION AND SUGGESTIONS

5.1 Overview

 The traditional method for obtaining a physical understanding of a physical

phenomena is through the experimental approach. From the experiments, the results

are interpreted in terms of the analytical relations. However, there are still some

situations of interest where the experiments cannot be conducted under a given

circumstance. In that case, the computer simulation is an alternative method that

offers many advantages over the conventional experiments. It can be tested much

more quickly while, at the same time, various physical effects can be specifically

included or omitted. It also costs less than actually conducting the experiment.

5.2 Simulation in one dimensional plasma

 There are a large variety of techniques for simulating plasmas but basically,

they are of two types; the particle model and the fluid model. This thesis adopts the

particle model which consist of calculating the charge densities on the discrete grid

points using the nearest grid point (NGP), then the field is calculated from Poisson’s

equation and by using Lorentz equation the electric and the magnetic field are

obtained. Later, by applying the calculated force on the particles, the new positions of

the particles are known. This study focus on the motion of a one dimensional plasma

in order to obtain various parameters, displacement, velocity and acceleration. The

parameters that characterize plasma such as Debye length and plasma frequency are

also estimated and compared with the theoretical values. The selected numerical

technique is the finite difference with the condition of zero potential at the boundary.

In addition, the inspection of the number of particles, the number of grid cells and

time step are also conducted. These parameters determines the precision of the

simulation.

44

5.3 The result of simulation

 This program simulates the motion of plasma and in validating results, it

also gives the primary characteristics of a plasma the Debye length and the

plasma frequency. Plasma frequency is obtained from simulation and from theory as

5.9× 108 rad/sec. and 1.8 × 108 rad/sec. , respectively.

 In addition, the characteristic time which is determined by plasma frequency,

plasma still has the characteristic size which is determined by Debye length. The

Debye length that is calculated from theory is 2.18 cm. and from simulation, which is

approximately measured by graphical technique as showed in Figure 4.20, is 1.89 cm.

 The different results from the simulation and the theory take place due to

various factors. The main difference is due to the fact that the actual plasma is three

dimension but the obtained results from the simulation are conducted on one

dimensional plasma. This error may be reduced for the simulation of the two or three

dimensional plasma. The others are due to the self limit in the simulation by the

capable microcomputer and the selected technique. The number of particles and the

number of grids directly affect on the ability of computer. The more number of

particles and the number of grids, the higher performance computer is required to

cope with the larger number of equations. The techniques used in the simulation, the

finite difference, also causes the truncation error, which can be decreased as ∆ x or

grid width is reduced toward zero. As an improvement, the other numerical technique

may be considered.

 This study is limited for a one dimensional plasma. Though the simulation for

the two and the three dimensional plasma are much more realistic, the one

dimensional plasma still has its merit. This is because, for the one dimensional

plasma, the simulation uses less computing resource. Since the theory of the one

dimensional plasma is well developed, it is easier to test the suitability of a numerical

technique against the theoretical prediction. In contrast, the two and the three

dimensional simulation are very computationally intensive. Therefore the optimal

result that might be selected between the time-consuming calculation and the

45

accuracy of the obtained result may be chosen. By convention, this is compromised

by limiting the resource for the simulation while still retains all the relevant physics.

5.4 Suggestions

 In deed, there are numerous methods and conditions in each step for improving

the simulation. Some other methods that can be further implemented are given and

briefly discussed.

CIC(Cloud-in-cell) technique

 In finding the charge density on a discrete grid point with NGP(Nearest grid

point) technique, we simply count the number of particles within distance. By using

CIC technique, the additional expenses are required for each particle. The advantage

of this technique that it is more accurate than NGP technique due to the smoother

distribution of the charge density. This technique employs two nearest grid points for

each particle in order to deposit the fractional charge, which is proportional to the

separation from each grid point as seen in Figure 5.1

 Figure 5.1 Position of particle between two grid points.

For the above figure, xi is the position of the particle and qc is the total charge.

Therefore, the fractions of charge particle that is assigned to j and j+1 as following

46

 qj = qc 







∆
−+

x
xX i1j (5.1)

and

 qj+1 = qc 







∆
−
x
Xx ji (5.2)

Electromagnetic field

 Given Vx and Vy are velocity in x axis and velocity in y axis, respectively. The

velocity in y axis can be obtained from velocity in x axis and the angle, theta at first

time is evaluated from random generator

 Vx = V cosθ (5.3)

 Vy = V sinθ (5.4)

thus, Vy = Vx tanθ (5.5)

and θ = random number×2π . (5.6)

From Lorentz equation FB = qV×B (5.7)

the electromagnetic field in z axis can be calculated by cross product as following

 FB = q zy BV × (5.8)

 m
•

xV = q zyBV (5.9)

 zB =
y

x

qV
ma (5.10)

Possible value for one dimensional plasma

 For a three dimensional plasma, a particle is free to move in any direction but

only the component in one specific direction, namely x-direction, is of interest. On the

other hand, in a one dimensional plasma, a particle only move in one direction, x-

direction. As a result, starting with the same number of particle, less particle would

47

contribute to the motion in x-direction in the use of the three dimensional plasma.

With this assumption, assume that each particle has the same drifting velocity,
→

v , the

average distance a particle can move in x-direction for three dimensional over time

t∆ , H is half hemisphere and ∫ Ω
H

d is for the positive direction, these are given as

 t
d

dev
x

H

H x
∆

Ω

Ω⋅
=

∫
∫

→
∧

 (5.11)

 = ∫ ∫
π
π

∧∧

φθθ⋅Ω
π
∆ 2

0

2

0
x ddsine

2
tv (5.12)

 = v ∫
π

θθθ∆
2

0

dsincost (5.13)

 = tv
2
1

∆ (5.14)

The above relation shows that a particle contributes only half the distance it should

have moved if it is a particle in a one dimensional plasma. Therefore, it is necessary

that the value of n0 is multiplied by the factor of two to compensate for this effect in

order to obtain the similar result as compared with that of the three dimensional

plasma.

Two dimensional Plasma

 There are various problems that one dimensional plasma is not suitable.

Therefore, two or three dimensional plasma must be considered. The method in two

dimensional plasma is similar to one dimensional plasma but it take more calculating

time and resource. The first step is to use the suitable random number to generate the

position of the particles (xi , yi). The interesting random number is the random walk or

the drunkard’s walk which is used to describe the random motion at any given point

in a two dimensional space. In this scheme, the motion can be equally either to the left

or right or forward or backward. The principle for this random number generator is to

48

produce random number in the range of 0 to 1. If the number is between 0 and 0.25,

the direction is up , for 0.25 to 0.50 the direction is right , for 0.50 to 0.75 represent

the down direction and the remaining range is equivalent the left direction The next

step is to find the charge density each grid in order to supply the right hand side of

Poisson’s equation.

 Figure 5.2 Position of a particle in the grid cell .

 As seen from Figure 5.2, the weights are given by

 k,jρ =
yx

)yy)(xx(
c ∆∆

−∆−∆
ρ (5.15)

 k,1j+ρ =
yx

)yy(x
c ∆∆

−∆
ρ (5.16)

 1k,1j ++ρ =
yx

xy
c ∆∆

ρ (5.17)

 1k,j +ρ =
yx

y)xx(
c ∆∆

−∆
ρ (5.18)

49

)y,x(2φ∇ = -)y,x(ρ (5.19)

In finite difference form, this becomes

() ()

2
j1kk1k

2
k1jj1j

y

2

x

2

∆

φ+φ−φ
+

∆

φ+φ−φ +−+− = - k,jρ (5.20)

and

 (Ex)j,k =
x2

)(k1j1j

∆

φ−φ +− (5.21)

 (Ey)j,k =
y2

)(j1k1k

∆

φ−φ +− . (5.22)

Where cρ is the charge density uniformly filling a cell , x∆ and y∆ are the width of

grid cell and the height of a grid cell, respectively. After obtaining the charge density,

the remaining steps are similar to that of the one dimensional case. In general, we then

have the following relations.

50

References

1. Birdsall, C. K., and Langdon, A. B. Plasma Physics via computer simulation.

 1st ed. Singapore: McGraw-Hill, 1985.

2. Dendy, R. Plasma Dynamics. 1st ed. New York: Oxford University Press, 1999.

3. Tajima, T. Computational Plasma Physics with application to fusion and

 astrophysics . 1st ed. Singapore: Addison Wesley, 1987.

4. Smirnov, B.M. Introduction to Plasma Physics. 1st ed. Moscow: Mir, 1977.

5. Celia, M. A., and Gray, W. G. Numerical Method for Differential Equation. 1st

 ed. Singapore: Prentice-Hall, 1992.

6. Press, W. H., Teukoisky, S. A., Vetterling, W. T., and Flannery, B. P.Numerical

 Recipes in C. 2nded. New York: Cambridge University Press, 1992.

7. Rojiani, K. B. Programming in C with Numerical Methods for engineers. 1st ed.

 Singapore: Prentice-Hall, 1996.

8. Curtis, F., and Patrick, O. Applied Numerical Analysis. 5st ed. Singapore:Addison

 Wesley, 1994.

Appendix

52

/*===*/

/* Plasma simulation in one dimension program */

/* last modified 1/12/2000 */

/* By Chawisnach Engchatcharoen */

/*===*/

// How to compile

// javac Thesis14.java Thesis14.class

// appletviewer fileName.html

// in fileName.html

// <html>

// <applet code=”Thesis14.class” width=750 height =440>

// </applet>

// </html>

// recommended Netscape or Explorer version 4.0 or later

/*

• JavaSoft is the divisoin of Sun Microsystem responsible for Java.
• Java’s first official beta release was in November 1995.
• In OOP, program is considered to be a group of objects that interact with each other.These objects exist independently

of each other since Java inherits OOP concepts from C++ and other languages such as Smalltake(pioneered OOP in
the 1970s).

• Java can be used to create programs that execute from WWW pages,these programs are called Applets.
• Java program is created as text file with extension .java that is compiled into one or more files of bytecodes with the

extension .class .
• Bytecodes are sets of instructions similar to the machine code instructions created when a computer program is

compiled since the difference is that machine code must run on the computer system it was compiled for but
bytecodes can run on any computer system equipped to handle Java programs.

• Java has been described as C++ minus because of complex parts of C++ were excluded from Java such as pointer ,
memory management(occurs automatically in Java).

• Java program that executes from a Web page is called an applet, all other Java programs are called applications.
• Pointer can be used to forge access to parts of a program where access is not allowed, by eliminating all pointer

except for a limited from of references to objects thus Java is a much more secure language.
• Platform independence is the ability of the same program to work on different operating systems therefore Java’s

variable types have the same size across all Java development platforms so an integer is always the same size on
matter which system a Java program was written and compiled on.

• Java Developers Kit (JDK) is a set of command line tools that can be used to create Java programs which includes
compiler , interpreter to run compiled Java standalone applications, applet viewer to run Java applets ,sample code for
developing Java program and other utilities.

• Java Application Programming Interface (API) is set of classes used to develop Java programs as these classes are
organized into groups called packages

• Java API includes enough functionality to create sophisticated applets and applications and it must be supported by all
operating systems and Web software .

• JavaOs is a compact operating systems intended to run Java programs and used to embedded on processor chips in
appliances

• Load JDK at www.javasoft.com/
• Applet demos are interesting examples of Java applets which all come with complete source code.
• Java runtime interpreter is stand-alone version of Java interpreter built into HotJava browser which acts as a command

line tool for running nongraphical Java programs
• Class is a template for multiple objects with similar features.
• When you write a program in OOP ,you don’t define individual objects, instead you define class of objects.
• Objects are made up of many kinds of smaller objects.
• Term instance and object often are used interchangeably in OOP.
• Generally, every class you write in Java is made up of two components
• # Attributes are the individual things that differentiate one object from another and determine the appearance, state, or

• other qualities of that object.

• # Behavior is the only way objects can do anything to themselves in order to define an object’s behavior, you create

methods that is just like function in other language but it is defined inside classes unlike C++,Java does not have

function of any kind defined outside of classes.

• Java header and stub file generator (javah) is used to generate C header and source files for implementing Java

methods in C.

• Java has single inheritance that each class can have only one superclass although any superclass can have many

multiple subclasses, unlike C++, class can has more than one superclass called multiple inheritance.

• HotJava is Web browser that not only support Java applets but also was written using Java language.

53

• Applet is Java program that executes on a World Wide Web page as be a part of Web page by attach Java applet to

HTML page using two HTML tags <APPLET> and <PARAM >.This HTML code is included on a Web page along

with all other HTML code like putting a picture on web page.

• The browser acts as the operating system for applets, you cann’t run an applet as a standalone program in the same

way you can run an executable file.

• Once the applet is written and compiled then add it to HTML pages , if the applet makes use of class files that are not

part of the standard Java API ,these class files must be located in the same directory as the applet’s class file.

• Abstract Windowing Toolkit (AWT) is set of classes used to build a graphical user interface for Java application and

applet , it also includes classes to handle fonts, mouse click, keyboard input, and so on.

• AWT is one of useful packages included with JavaAPI that comes with JDK.

• Numerous ways to develop GUI for Java programs such Java Workshop, Jfactory ,etc or even using AWT .

•

 */

import java.awt.*;

import java.util.*;

import java.applet.*;

import java.awt.event.*;

public class Thesis14 extends Applet implements ActionListener, MouseListener,

 MouseMotionListener,Runnable

{

RECT3D rect3d = new RECT3D();

PLASMA plasma = new PLASMA();

Date time1,time2;

Label titleNameL,enterPasswordL;

Thread moveGraph1,moveGraph2;

String password;

Button okButton;

Graphics g;

TextField enterPasswordTF, dtTF, numTimeStepTF, numGridTF, numParticleTF,

 temperatureTF, densityTF;

double temperature;

int numTimeStep, numGrid, numParticle;

long startTime1,endTime1,startTime2,endTime2;

boolean firstPage = true, callMouseMoveTaskbar = true,

 callMouseMoveAtPlasmaSimulation = true ,callMouseMoveButton = true,

 callAllButton = true, callEnterInput = true ,

 paintFrame = true, nullPage = true, paintAnimaGraphPhi = true,

 paintAnimaGraphCharge = true;

Image graphTempDensPic,definitionPic;

Color myBlue = new Color(150,150,200);

Color myGray = new Color(100,100,100);

Color myCyan = new Color(201,230,241);

Color myYellow = new Color(248,252,84);

Color myGreen1 = new Color(214,241,201);

54

Color myGreen2 = new Color(204,255,153);

Color myCyan2 = new Color(103,235,250);

Color myOrange1 = new Color(251,162,102);

Color myGreen3 = new Color(9,255,163);

Color myViolet = new Color(217,142,244);

Font f35cu = new Font("Courier", Font.BOLD+Font.ITALIC, 35);

Font f20cu = new Font("Courier", Font.BOLD, 20);

Font f10co = new Font("Cordia", Font.PLAIN,10);

Font f11co = new Font("Cordia", Font.PLAIN,11);

Font f12co = new Font("Cordia", Font.PLAIN,12);

Font f13coB= new Font("Cordia", Font.PLAIN+Font.BOLD,13);

public void init()

{

setLayout(null);

titleNameL = new Label("Plasma Simulation in One Dimension");

titleNameL.setFont(f35cu);

titleNameL.setBackground(myBlue);

titleNameL.reshape(10,40,725,60);

add(titleNameL);

enterPasswordL = new Label("Enter Password");

enterPasswordL.setFont(f20cu);

enterPasswordL.setBackground(myCyan);

enterPasswordL.reshape(285,200,172,27);

add(enterPasswordL);

enterPasswordTF = new TextField(15);

password = "";

enterPasswordTF.setEchoChar('*');

enterPasswordTF.reshape(295,260,150,20);

add(enterPasswordTF);

enterPasswordTF.addActionListener(this);

this.addMouseListener(this);

this.addMouseMotionListener(this);

//{{INIT_CONTROLS

//}}

}

public void paint(Graphics g)

{

 if(firstPage)

55

 {

 setBackground(myCyan);

 /*--------Draw Plasma simulation profile--------*/

 g.setColor(Color.black);

 g.drawLine(9,100,735,100); // hor line

 g.drawLine(735,39,735,100); // ver line

 g.setColor(Color.white);

 g.drawLine(9,39,736,39); // hor line

 g.drawLine(9,39,9,100); // ver line

 g.setColor(myBlue);

 rect3d.paintRect(g,230,170,280,180); // paint rectangular of enter password

 /*----------------------Times----------------------*/

 /*

 while (firstPage)

 {

 clock.paint(g,320,380); // call paint in CLOCK class

 repaint();

 } */

 }

 if(!nullPage)

 {

 setBackground(Color.white);

 }

 if(!paintFrame)

 {

 g = getGraphics();

 g.setColor(myCyan2);

 rect3d.paintRect(g,10,10,727,389);

 g.setColor(Color.lightGray);

 rect3d.paintRect(g,50,35,650,340);

 g.setColor(Color.black);

 g.drawLine(65,50,685,50); // hor line

 g.drawLine(65,50,65,330); // ver line

 g.setColor(Color.white);

 g.drawLine(65,330,685,330); // hor line

 g.drawLine(685,50,685,330); // ver line

56

 }

 if(!paintAnimaGraphPhi)

 {

 plasma.debye(numParticle,temperature);

 plasma.generateParticle(numParticle,numGrid);

 plasma.adjustParticle(numParticle, numGrid);

 plasma.assignCharge(numParticle, numGrid);

 plasma.computeField(numParticle,numGrid);

 plasma.pushParticle(numParticle,numGrid);

 double yPosition, xPosition = 0.0;

 double increase = 0.0;

 g.setColor(myGreen1);

 g.fillRect(66,51,619,279);

 g.setColor(Color.blue);

 g.setFont(f12co);

 g.drawString("Potential Field Distribution",75,65);

 g.drawString("Time step = "+plasma.dt*numTimeStep+" "+"sec.",75,80);

 g.drawString("X-axis : Grid",75,95);

 g.drawString("Y-axis : Potential at Grid",75,115);

 g.setColor(Color.black);

 for (int i =0; i< numGrid; i++)

 {

 increase = (692 / (numGrid-1));

 xPosition = xPosition + increase ;

 yPosition = plasma.phi[i]*100/10e-6;

 g.fillOval(70+(int)xPosition,100+195-(int)yPosition,3,3) ;

 }

 }

 if(!paintAnimaGraphCharge)

 {

 plasma.debye(numParticle,temperature);

 plasma.generateParticle(numParticle,numGrid);

 plasma.adjustParticle(numParticle, numGrid);

 plasma.assignCharge(numParticle, numGrid);

 plasma.computeField(numParticle,numGrid);

 plasma.pushParticle(numParticle,numGrid);

 g.setColor(myViolet);

g.fillRect(66,51,619,279);

g.setColor(Color.black);

g.setFont(f12co);

g.drawString("Charge Density Distribution",75,65);

 g.drawString("Time step = "+plasma.dt*numTimeStep+" "+"sec.",75,80);

 g.drawString("X-axis : Grid",75,95);

 g.drawString("Y-axis : Charge Density at Grid",75,115);

 g.setColor(Color.white);

57

 double add ,xPos=0.0,yPos=0.0;

 for (int i =0; i< numGrid; i++)

 {

 add = (690 / (numGrid-1));

 xPos = xPos + add ;

 yPos = plasma.rho[i]*250/10e-17;

 g.fillOval(70+(int)xPos,250+80-(int)yPos,3,3) ;

 }

 }

}

public void start()

{

 if(!paintAnimaGraphPhi)

 {

 if(moveGraph1 == null)

 {

 moveGraph1 = new Thread(this);

 moveGraph1.start();

 }

 }

 if(!paintAnimaGraphCharge)

 {

 if(moveGraph2 == null)

 {

 moveGraph2 = new Thread(this);

 moveGraph2.start();

 }

 }

}

public void stop()

{

if(moveGraph1 != null)

{

 moveGraph1.stop();

 moveGraph1 = null;

}

if(moveGraph2 != null)

{

 moveGraph2.stop();

 moveGraph2 = null;

}

}

public void update(Graphics g)

{

58

 paint(g);

}

public void run()

{

 if(!paintAnimaGraphPhi)

 {

 do

 {

 Date time1 = new Date();

 endTime1 = (time1.getTime())/1000;

 try

 {

 Thread.sleep(1000);

 }

 catch(InterruptedException e)

 {

 }

 repaint();

 }

 while((endTime1 - startTime1) != numTimeStep);

 {

 moveGraph1 = null;

 }

 }

 if(!paintAnimaGraphCharge)

 {

 do

 {

 Date time2 = new Date();

 endTime2 = (time2.getTime())/1000;

 try

 {

 Thread.sleep(1000);

 }

 catch(InterruptedException e)

 {

 }

 repaint();

 }

 while((endTime2 - startTime2) != numTimeStep);

 {

 moveGraph2 = null;

 }

 }

59

}

public void actionPerformed(ActionEvent event)

{

String str,str1;

 Object obj;

obj = event.getSource();

str = event.getActionCommand();

str1 = event.getActionCommand();

if(obj == enterPasswordTF && str.equals(password))

{

 titleNameL.setVisible(false);

 enterPasswordL.setVisible(false);

enterPasswordTF.setVisible(false);

firstPage = false; // close

nullPage = false; // open

callMouseMoveTaskbar = false; // open

repaint();

}

if (numTimeStepTF != null)

{

 str1 = numTimeStepTF.getText();

 numTimeStep = Integer.valueOf(str1).intValue();

}

if (numGridTF != null)

{

 str1 = numGridTF.getText();

 numGrid = Integer.valueOf(str1).intValue();

}

if(numParticleTF != null)

{

 str1 = numParticleTF.getText();

 numParticle = Integer.valueOf(str1).intValue();

}

i f (tempera tu reTF != nul l)

{

str1 = temperatureTF.getText();

 temperature = Double.valueOf(str1).doubleValue();

60

}

if(str.equals("O.K."))

{

 plasma.debye(numParticle,temperature);

 plasma.generateParticle(numParticle,numGrid);

 plasma.advanceSimulation(numParticle,numGrid,numTimeStep);

 okButton.setVisible(false);

 numGridTF.setVisible(false);

 numParticleTF.setVisible(false);

 numTimeStepTF.setVisible(false);

 temperatureTF.setVisible(false);

 repaint();

}

}

public void mousePressed(MouseEvent event)

{

 int xx,yy;

 g = getGraphics();

 xx = event.getX();

 yy = event.getY();

 /*---------------------Press Start---------------------*/

 if ((xx > 10) && (xx < 65) && (yy > 400) && (yy < 425))

 {

 callMouseMoveButton = true; // close

 callMouseMoveTaskbar = true; // close

 callMouseMoveAtPlasmaSimulation = false; // open

g.setColor(Color.lightGray);

 rect3d.paintRect(g,10,220,140,178);

g.setColor(Color.black);

g.setFont(f12co);

 g.drawString("Plasma Simulation ",30,240);

g.drawString("Plasma Theoy", 38,270);

g.drawString("Plasma Condition",34,300);

g.drawString("Help",65,330);

g.drawString("Others",60,360);

g.drawString("Clear",63,390);

 /*------------Draw white line between message----------*/

61

g.setColor(Color.white);

g.drawLine(10,250,149,250);

g.drawLine(10,280,149,280);

g.drawLine(10,310,149,310);

g.drawLine(10,340,149,340);

g.drawLine(10,370,149,370);

 }

 /*---------------- Press Plasma Condition ----------------*/

 if ((xx > 10) && (xx < 149) && (yy > 280) && (yy < 310))

 {

 graphTempDensPic = getImage(getCodeBase(),"graphTempDens.jpg");

 g.drawImage(graphTempDensPic,0,0,this);

 callMouseMoveAtPlasmaSimulation = true;

 }

 /*---------------- Press Bounded Plasma ----------------*/

 if ((xx > 155) && (xx < 290) && (yy > 190) && (yy < 220))

 {

 paintFrame = false; // open

 callAllButton = false; // open

 callMouseMoveButton = false; // open

 callMouseMoveTaskbar = false; // open

 callMouseMoveAtPlasmaSimulation = true; // close

 repaint();

 }

 /*---------------------- Press Clear --------------------*/

 if ((xx > 10) && (xx < 149) && (yy > 370) && (yy < 400))

 {

 nullPage = false; // open

 paintFrame = true; // close

 callMouseMoveButton = true; // close

 callMouseMoveTaskbar = false; // open

 callMouseMoveAtPlasmaSimulation = true; // close

 g.setColor(getBackground());

 Dimension size = getSize();

 g.fillRect(0,0,size.width,size.height);

 //paint(g);

 okButton.setVisible(false);

 dtTF.setVisible(false);

 numGridTF.setVisible(false);

 densityTF.setVisible(false);

 numParticleTF.setVisible(false);

 numTimeStepTF.setVisible(false);

 temperatureTF.setVisible(false);

62

 paintAnimaGraphPhi = true; // close

 moveGraph1.stop();

 paintAnimaGraphCharge = true; // close

 moveGraph2.stop();

 repaint();

 }

 if(!callAllButton)

 {

 /*----------------------Press Input---------------------*/

 if((xx > 67) && (xx < 105) && (yy > 345) && (yy < 365))

 {

 callEnterInput = false; // open

 enterInputPanel();

 }

 /*--------------Press Particle Density Button --------------*/

 if((xx > 110) && (xx < 190) && (yy > 345) && (yy < 365))

 {

 //g.setColor(myGreen3);

 g.setColor(Color.white);

 g.fillRect(66,51,619,279);

 g.setColor(Color.black);

 g.setFont(f12co);

 int k = 64, z = 80;

 for(int i=0; i<100; i++)

 {

 g.drawString(String.valueOf(plasma.countParticle[i]),z,k);

 if (z == 530)

 {

 z = -70;

 k += 11;

 }

 z += 150;

 }

 }

 /*--------------Press Plasma Parameters Button -----------*/

 if((xx > 193) && (xx < 288) && (yy > 345) && (yy < 365))

 {

 //g.setColor(myCyan);

63

 g.setColor(Color.white);

 g.fillRect(66,51,619,279);

 g.setColor(Color.black);

 g.setFont(f13coB);

 g.drawString("Plasma Parameters",310,80);

 g.setFont(f12co);

 g.drawString("dt ="+" "+plasma.dt+" "+"sec",150,100);

 g.drawString("Grid Wide ="+" "+plasma.dx,150,130);

 g.drawString("Grid Numbers ="+" "+numGrid,150,160);

 g.drawString("Debye Length ="+" "+plasma.db*100.0+" "+"cm",150,190);

 g.drawString("System Length ="+" "+plasma.systemLength+" "+"cm",150,220);

 g.drawString("Temperature (K) ="+" "+temperature,150,250);

 g.drawString("Particles Number="+" "+numParticle,150,280);

 g.drawString("Plasma Frequency ="+" "+plasma.frequency +"

"+"rad/sec",150,310);

 }

 /*-----------------Press Position Button ----------------*/

 if((xx > 290) && (xx < 338) && (yy > 345) && (yy < 365))

 {

 //g.setColor(myGreen2);

 g.setColor(Color.white);

 g.fillRect(66,51,619,279);

 g.setColor(Color.black);

 g.setFont(f12co);

 int k = 64, z = 80;

 for(int i=0; i<100; i++)

 {

 g.drawString(String.valueOf(plasma.pos[i]),z,k);

 if (z == 530)

 {

 z = -70;

 k += 11;

 }

 z += 150;

 }

 }

 /*----------------- Press Potential Button --------------*/

 if((xx > 340) && (xx < 388) && (yy > 345) && (yy < 365))

 {

 //g.setColor(myOrange1);

 g.setColor(Color.white);

64

 g.fillRect(66,51,619,279);

 g.setColor(Color.black);

 g.setFont(f12co);

 int k = 64, z = 80;

 for(int i=0; i<100; i++)

 {

 g.drawString(String.valueOf(plasma.phi[i]),z,k);

 if (z == 530)

 {

 z = -70;

 k += 11;

 }

 z += 150;

 }

 }

 /*---------------Press Electric field Button --------------*/

 if((xx > 390) && (xx < 438) && (yy > 345) && (yy < 365))

 {

 //g.setColor(myYellow);

 g.setColor(Color.white);

 g.fillRect(66,51,619,279);

 g.setColor(Color.black);

 g.setFont(f12co);

 int k = 64, z = 80;

 for(int i=0; i<100; i++)

 {

 g.drawString(String.valueOf(plasma.ele[i]),z,k);

 if (z == 530)

 {

 z = -70;

 k += 11;

 }

 z += 150;

 }

 }

 /*--------------Press Potential field Button --------------*/

 if((xx > 440) && (xx < 558) && (yy > 345) && (yy < 365))

 {

 paintAnimaGraphPhi = false; // open

 paintAnimaGraphCharge = true; // close

 start();

 moveGraph1.resume();

 time1 = new Date();

65

 startTime1 = (time1.getTime())/1000;

 }

 /*-----------Press Charge Density Distribution Button -----------*/

 if((xx > 560) && (xx < 683) && (yy > 345) && (yy < 365))

 {

 paintAnimaGraphCharge = false; // open

 paintAnimaGraphPhi = true; // close

 start();

 moveGraph2.resume();

 time2 = new Date();

 startTime2 = (time2.getTime())/1000;

 }

 }

}

public void mouseMoved(MouseEvent event)

{

 int xx,yy;

 g = getGraphics();

 xx = event.getX();

 yy = event.getY();

if(!callMouseMoveTaskbar)

{

 if ((xx > 10) && (xx < 700) && (yy > 400) && (yy < 425))

 {

g.setColor(Color.lightGray);

 rect3d.paintRect(g,10,400,55,25); // draw start button

 rect3d.paintRect(g,67,400,670,25); // draw taskbar

 g.setColor(Color.black);

 g.setFont(f12co);

 g.drawString("Start",25,418);

 }

 else

 {

 g.setColor(Color.white);

 rect3d.deleteRect(g,10,400,727,25);

 }

}

66

if(!callMouseMoveAtPlasmaSimulation)

{

 if ((xx > 10) && (xx < 150) && (yy > 220) && (yy < 250))

 {

 g.setColor(Color.lightGray);

 rect3d.paintRect(g,152,190,140,60);

g.setColor(Color.black);

g.setFont(f12co);

g.drawString("One Dimension",175,210);

//g.drawString("",175,240);

g.setColor(Color.white);

g.drawLine(152,220,290,220);

 }

}

if(!callMouseMoveButton)

{

/*------------------Build Input Button------------------*/

 if((xx > 67) && (xx < 105) && (yy > 345) && (yy < 365))

{

 g.setColor(Color.lightGray);

 rect3d.paintRect(g,67,344,40,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Input",76,359);

}

else

{

 g.setColor(Color.lightGray);

 rect3d.deleteRect(g,67,344,40,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Input",76,359);

}

/*------------ Build Particle Density Button ---------------*/

if((xx > 110) && (xx < 190) && (yy > 345) && (yy < 365))

{

 g.setColor(Color.lightGray);

 rect3d.paintRect(g,110,344,80,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Particle Density",113,359);

}

else

{

 g.setColor(Color.lightGray);

67

 rect3d.deleteRect(g,110,344,80,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Particle Density",113,359);

}

/*------------ Build Plasma Parameters Button ------------*/

if((xx > 193) && (xx < 288) && (yy > 345) && (yy < 365))

{

 g.setColor(Color.lightGray);

 rect3d.paintRect(g,193,344,95,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Plasma Parameters",195,359);

}

else

{

 g.setColor(Color.lightGray);

 rect3d.deleteRect(g,193,344,95,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Plasma Parameters",195,359);

}

/*---------------- Build Position Button ----------------*/

if((xx > 290) && (xx < 338) && (yy > 345) && (yy < 365))

{

 g.setColor(Color.lightGray);

 rect3d.paintRect(g,290,344,48,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Position",296,359);

}

else

{

 g.setColor(Color.lightGray);

 rect3d.deleteRect(g,290,344,48,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Position",296,359);

}

/*----------------- Build Potential Button ----------------*/

if((xx > 340) && (xx < 388) && (yy > 345) && (yy < 365))

{

 g.setColor(Color.lightGray);

 rect3d.paintRect(g,340,344,48,20);

68

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Potential",343,359);

}

else

{

 g.setColor(Color.lightGray);

 rect3d.deleteRect(g,340,344,48,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Potential",343,359);

}

/*----------------- Build Potential Button ----------------*/

if((xx > 390) && (xx < 438) && (yy > 345) && (yy < 365))

{

 g.setColor(Color.lightGray);

 rect3d.paintRect(g,390,344,48,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Electric",398,359);

}

else

{

 g.setColor(Color.lightGray);

 rect3d.deleteRect(g,390,344,48,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Electric",398,359);

}

/*--------------- Build Potential field Button --------------*/

if((xx > 440) && (xx < 558) && (yy > 345) && (yy < 365))

{

 g.setColor(Color.lightGray);

 rect3d.paintRect(g,440,344,118,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Potential Distribution",452,359);

}

else

{

 g.setColor(Color.lightGray);

 rect3d.deleteRect(g,440,344,118,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Potential Distribution",452,359);

}

69

/*--------- Build Charge Density Button ---------*/

if((xx > 560) && (xx < 683) && (yy > 345) && (yy < 365))

{

 g.setColor(Color.lightGray);

 rect3d.paintRect(g,560,344,123,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Charge Distribution",576,359);

}

else

{

 g.setColor(Color.lightGray);

 rect3d.deleteRect(g,560,344,123,20);

 g.setFont(f11co);

 g.setColor(Color.black);

 g.drawString("Charge Distribution",576,359);

}

}

}

public void mouseDragged(MouseEvent event)

{

}

public void mouseReleased(MouseEvent event)

{

}

public void mouseEntered (MouseEvent event)

{

}

public void mouseExited (MouseEvent event)

{

}

public void mouseClicked (MouseEvent event)

{

}

public void enterInputPanel()

{

70

 g = getGraphics();

if(!callEnterInput)

{

g.setColor(Color.lightGray);

rect3d.paintRect(g,67,90,233,253);

g.setColor(Color.blue);

 g.setFont(f11co);

g.drawString("Grid Number",80,130);

g.drawString("Particle Number",80,160);

g.drawString("Time Step Number ",80,190);

g.drawString("Plasma Temperature (K)",80,220);

g.setColor(Color.lightGray);

rect3d.paintRect(g,155,315,50,20);

g.setColor(Color.black);

g.drawString("O.K.",171,330);

numGridTF = new TextField(20);

numGridTF.reshape(200,118,85,18);

add(numGridTF);

//numGridTF.addActionListener(this);

numParticleTF = new TextField(20);

numParticleTF.reshape(200,148,85,18);

add(numParticleTF);

//numParticleTF.addActionListener(this);

numTimeStepTF = new TextField(20);

numTimeStepTF.reshape(200,178,85,18);

add(numTimeStepTF);

//numTimeStepTF.addActionListener(this);

temperatureTF = new TextField(20);

temperatureTF.reshape(200,208,85,18);

add(temperatureTF);

//temperatureTF.addActionListener(this);

okButton = new Button("O.K.");

okButton.setFont(f10co);

okButton.reshape(155,315,50,20);

add(okButton);

okButton.addActionListener(this);

}

}

71

//{{DECLARE_CONTROLS

//}}

}

class RECT3D extends Canvas

{

 public void paintRect(Graphics g, int x,int y,int w,int L)

 {

g.fillRect(x,y,w,L);

g.setColor(Color.black);

g.drawLine(x, y+L, x+w, y+L); //hor line

g.drawLine(x+w, y, x+w, y+L); //ver line

g.setColor(new Color(220,220,220));

g.drawLine(x-1, y, x+w, y); //hor line

g.drawLine(x-1, y, x-1, y+L); //ver line

 }

 public void deleteRect(Graphics g, int x,int y,int w,int L)

 {

 g.fillRect(x-1, y, w+2, L+1);

 }

}

class PLASMA

{

 double temp,dx,db,frequency,Nd,density,dt;

 double particle[],rho[],a[][],b[],phi[],ele[],mag[],theta[];

 double acc[],velx[],vely[],pos[],countParticle[],plasmaFrequency[] ;

 int systemLength,j;

 public void debye(int numParticle,double temperature)

 {

 density = 10.0*Math.pow((double)numParticle, 3.0);

 temp = (8.854e-12*temperature*1.38e-23)/(density*1.6e-19*1.6e-19);

 db = Math.sqrt(temp);

 Nd = 4.0/3.0*Math.PI*density*db*db*db;

 }

 public void generateParticle(int numParticle,int numGrid)

 {

 particle = new double[numParticle];

 theta = new double[numParticle];

 for (int i =0; i<numParticle ; i++)

 {

72

 particle[i] = Math.random()*(double)(numGrid-2);

 theta[i] = Math.random()*Math.PI*2.0;

 }

 }

 public void adjustParticle(int numParticle,int numGrid)

 {

 for(int i=0; i<numParticle; ++i)

 {

 if ((particle[i]+0.5) >= (double)(numGrid-2))

 particle[i] = (particle[i]+0.5) - (double)(numGrid-2);

 else if ((particle[i]+0.5) <= 0.0)

 particle[i] = (particle[i]+0.5) + (double)(numGrid-2);

 }

 }

 public void assignCharge(int numParticle,int numGrid)

 {

 systemLength = (int)(db*100.0*10.0);

 dx = (double)(systemLength)/(double)(numGrid-1);

 rho = new double[numGrid-2];

 countParticle = new double[numGrid-2];

 for (int i =0; i<numParticle; i++)

 {

 j = (int)(particle[i]+0.5);

 countParticle[j] = countParticle[j]+1.0;

 }

 for (int j=0; j<numGrid-2; j++)

 {

 rho[j] = countParticle[j];

 rho[j] = rho[j]*1.6e-19/dx;

 }

 frequency = Math.sqrt((density*2.56e-38)/(8.854*9.1e-43));

 dt = (2.0*Math.PI)/(frequency*10.0);

 }

 public void computeField(int numParticle,int numGrid)

 {

 int num_iter = 0;

 int max_iter = 7;

 boolean tol_exceed = true;

73

 double tol = 0.05;

 double sum, y_old, d_old;

 double PHI0 = -0.00000001, PHIL = -0.00000001;

 a = new double[numGrid-2][numGrid-2];

 b = new double[numGrid-2];

 phi = new double[numGrid-2];

 ele = new double[numGrid-2];

 try

 {

 a[0][0] = -2.0; a[0][1] = 1.0;

 for (int i=1; i<numGrid-3; i++)

 for (int j=0; j<numGrid-2; j++)

 {

 if (i == j)

 {

a[i][j] = -2.0;

 a[i][j-1] = 1.0;

a[i][j+1] = 1.0;

 }

 }

 a[numGrid-3][numGrid-4] = 1.0;

 a[numGrid-3][numGrid-3] = -2.0;

 }

 catch(Exception e)

 {

 System.out.println ("Error =" + e);

 }

 /*---*/

 b[0] = (-rho[0]*(dx*dx)/8.854e-12)-PHI0;

 for (int i=1; i<numGrid-3; i++)

 b[i] = -rho[i]*(dx*dx)/8.854e-12;

 b[numGrid-3] = (-rho[numGrid-3]*(dx*dx)/8.854e-12)-PHIL;

 /*--*/

 for (int i=0; i<numGrid-2; i++)

 phi[i] = b[i]/a[i][i];

 while (tol_exceed && num_iter < max_iter)

 {

 for (int i=0; i<numGrid-2; i++)

74

 {

 y_old = phi[i];

 tol_exceed = false;

 sum = b[i];

 for (int j=0; j<numGrid-2; j++)

 if(i != j)

 sum -= a[i][j]*phi[j];

 phi[i] = sum/a[i][i];

 if (Math.abs(phi[i]-y_old) > Math.abs(y_old*tol))

 tol_exceed = true;

 }

 ++num_iter;

 }

 ele[0] = (PHI0-phi[1])/(2*dx);

 for (int j=1; j<numGrid-3; j++)

 ele[j] = (phi[j-1]-phi[j+1])/(2*dx);

 ele[numGrid-3] = (phi[numGrid-4]-PHIL)/(2*dx);

 }

 public void pushParticle(int numParticle,int numGrid)

 {

acc = new double[numGrid-2];

velx = new double[numParticle];

vely = new double[numParticle];

pos = new double[numParticle];

mag = new double[numGrid-2];

 for (int j=0; j<numGrid-2; j++)

 acc[j] = 1.6e-19*ele[j]/9.1e-31;

 for (int i=0; i<numParticle; i++)

 {

 j = (int)(particle[i]+0.5);

 velx[i] = acc[j]*(dt-0.5);

 pos[i] = particle[i]*dx;

 pos[i] = pos[i] + velx[i]*dt;

 vely[i] = velx[i]*Math.tan(theta[i]);

 mag[j] = (9.1e-31*acc[j])/(vely[i]*1.6e-19);

75

 theta[i] = theta[i]+ (dt*1.6e-19*mag[j]/9.1e-31);

 }

}

public void advanceSimulation(int numParticle,int numGrid,double numTimeStep)

{

 for(int i=0; i<numTimeStep; i++)

 {

 adjustParticle(numParticle, numGrid);

 assignCharge(numParticle, numGrid);

 computeField(numParticle,numGrid);

 pushParticle(numParticle,numGrid);

 }

}

 }

/**

 *

 * mexFunction: mexAccumulate

 *

 * Weights the particle positions to a uniform 2D rectangular grid.

 * - Particle position given is normalized to the grid spacings (Thus

 * xphys = xgiven * dx and similarly for y).

 * - The density is measured in the number of particles per grid cell.

 * It is weighted bilinearly.

 * - Density are defined at the corners of the grid cells.

 * - Density along the edge and corners may need correcting depending on how

 * density is defined there (i.e. might want to x2 edge cells and x4 corner

 * cells).

 *

 * Usage: NumInboundParticles = mexAccumulate('Particles', 'Density',

 * NumParticles);

 *

 * For below: J, L are the number of cells in the x and y directions rspctvly

 *

 * Particles is a real full single array with 5*MaxNumParticles members

 * - Note: Any layout in matlab will do but recommmend [5 MaxNumParticles]

 * Then Particles(1,:) are the given x coords, Particles(2,:) are the y given

 * y coords, Particles(3,:) are the given x grid vel, Particles(4,:) are the

 * given y grid vel, and Particles(5,:) is the z grid vel (for 2D3V sims).

 *

 * Density is a real full single (J+1) x (L+1) arrays

 * - Note: This must be strictly adhered to!

 *

76

 * NumParticles is the number of active particles in the Particles array

 *

 * Upon return all particles which went out of bounds are located at

 * Particles(:,NumInbounds+1:NumParticles) (assuming [5 MaxNumParticles]

 * allocation was used). Particles(:,1:NumInbounds) are all inbounds.

 *

 * Warning: This function accesses and modifies arrays in the caller's

 * workspace! This was done to avoid the overhead for the rhs copy

 * mechanisms. This can have weird side effects (in particular if the

 * copy count an altered array is greater than one, the memoryless

 * copies will be altered - the API has no way to avoid this that I know of).

 *

 * Warning: Routine does no type checking. If you mess up the arguments or

 * they are the incorrect sizes and types, you are screwed bad.

 *

 * Warning: All arrays passed by name to this function must be allocated before

 * calling this function.

 *

 ***/

#include <string.h>

#include <mex.h>

#include "../mexCommon.h"

static int Accumulate(ParticleData *ptrParticle, float *ptrDensity,

 int N, int J, int L);

/***/

#define mNumInbounds plhs[0]

#define mParticles prhs[0]

#define mDensity prhs[1]

#define mN prhs[2]

void mexFunction(int nlhs, mxArray *plhs[],

 int nrhs, const mxArray *prhs[])

 {

 ParticleData *ptrParticle;

 float *ptrDensity;

 int N, J, L;

 const mxArray *mx;

 if(mexIsLocked())

 {

 if((nrhs == 0) && (nlhs == 0))

 {

 mexUnlock();

 return;

 }

77

 }

 else

 {

 mexLock();

 }

 /* Parse the input */

 GetMatrix(mParticles, mx, ptrParticle);

 GetMatrix(mDensity, mx, ptrDensity); J = mxGetM(mx)-1; L = mxGetN(mx)-1;

 N = mxGetScalar(mN);

 /* Do the calculation */

 N = Accumulate(ptrParticle, ptrDensity, N, J, L);

 /* Store the output */

 mxSetScalar(mNumInbounds, N);

 mexAddFlops(14*N);

 }

#undef mNumInbounds

#undef mParticles

#undef mDensity

#undef mN

/**/

int Accumulate(ParticleData *Particle, float *Density,

 int N, int Nx, int Ny)

 {

 int i, j, n;

 float dx, dy;

 ParticleData *LastParticle;

 ParticleData ptmp;

#ifdef GCC_X86_ROUNDING_HACK

 FPUCW oldcw;

 oldcw = SetRoundingMode(FPU_RC_DOWN);

#endif

 Nx++; /* Number of grid points along x */

 Ny++; /* Number of grid points along y */

 LastParticle = &Particle[N-1];

 memset(Density,0,Nx*Ny*sizeof(float));

 for(n = 0; n < N; n++, Particle++)

 {

78

 i = FloatToInt(Particle->x);

 j = FloatToInt(Particle->y);

#ifdef GCC_X86_ROUNDING_HACK /* Round mode is towards -Infinity */

 if((i >= 0) && (j >= 0) && (i < (Nx-1)) && (j < (Ny-1)))

#else /* Round mode is truncate */

 if((Particle->x >= 0.0) && (Particle->y >= 0.0) &&

 (i < (Nx-1)) && (j < (Ny-1)))

#endif

 {

 dx = Particle->x - i;

 dy = Particle->y - j;

 Density[j*Nx+i] += (1-dx)*(1-dy);

 Density[j*Nx+i+1] += dx*(1-dy);

 Density[j*Nx+i+Nx] += (1-dx)*dy;

 Density[j*Nx+i+Nx+1] += dx*dy;

 }

 else

 {

 ptmp.x = Particle->x; ptmp.y = Particle->x;

 ptmp.vx = Particle->vx; ptmp.vy = Particle->vy;

 ptmp.vz = Particle->vz;

 Particle->x = LastParticle->x; Particle->y = LastParticle->y;

 Particle->vx = LastParticle->vx; Particle->vy = LastParticle->vy;

 Particle->vz = LastParticle->vz;

 LastParticle->x = ptmp.x; LastParticle->y = ptmp.y;

 LastParticle->vx = ptmp.vx; LastParticle->vy = ptmp.vy;

 LastParticle->vz = ptmp.vz;

 N--; n--; Particle--; LastParticle--;

 }

 }

#ifdef GCC_X86_ROUNDING_HACK

 SetFPUControlWord(oldcw);

#endif

 return(N);

 }

/**/

/**

 *

 * mexFunction: mexNegGrad

 *

 * Solves E = -grad PHI on a uniform 2D rectangular mesh. For the interior

 * points, central differencing is used (second order). That is:

 * Ex(i,j) = -(PHI(i+1,j) - PHI(i-1,j)) / dx

 * Ey(i,j) = -(PHI(i,j+1) - PHI(i,j-1)) / dy

 * On the edges, second order forward / backward differencing is used.

 *

 * Usage: mexNegGrad('Ex', 'Ey', 'PHI', deltax, deltay);

 *

 * Ex, Ey and PHI are all real full single precision arrays of the same

79

 * dimension. The arrays must be at least 3x3 in size.

 * deltax and deltay are double scalars

 *

 * Data in PHI in the caller's workspace is unchanged.

 * Data in Ex and Ey in the caller's workspace is replaced.

 *

 * Ex is the x-component of the electric field

 * Ey is the y-component of the electric field

 * PHI is the Potential

 * deltax and deltay are the x and y grid spacing.

 *

 * This routine locks itself in memory

 * If called with no rhs and lhs arguments, the routine is unlocked from memory

 *

 * Warning: This function accesses and modifies arrays in the caller's

 * workspace! This was done to avoid the overhead for the rhs copy

 * mechanisms. This can have weird side effects (in particular if the

 * copy count an altered array is greater than one, the memoryless

 * copies will be altered - the API has no way to avoid this that I know of).

 *

 * Warning: Routine does no type checking. If you mess up the arguments or

 * they are the incorrect sizes and types you are screwed bad.

 *

 * Warning: All arrays passed by name to this function must be allocated before

 * calling this function.

 *

 **/

#include <mex.h>

#include "../mexCommon.h"

static void SolveElectricFields(double *Ex, double *Ey, double *PHI,

 double deltax, double deltay,

 int J, int L);

/***/

#define mEx prhs[0]

#define mEy prhs[1]

#define mPHI prhs[2]

#define mdeltax prhs[3]

#define mdeltay prhs[4]

void mexFunction(int nlhs, mxArray *plhs[],

 int nrhs, const mxArray *prhs[])

 {

 double *Ex, *Ey, *PHI;

 int J, L;

 double deltax, deltay;

 const mxArray *mx;

80

 if(mexIsLocked())

 {

 if((nrhs == 0) && (nlhs == 0))

 {

 mexUnlock();

 return;

 }

 }

 else

 {

 mexLock();

 }

 GetMatrix(mEx, mx, Ex); J = mxGetM(mx)-1; L = mxGetN(mx)-1;

 GetMatrix(mEy, mx, Ey);

 GetMatrix(mPHI, mx, PHI);

 deltax = mxGetScalar(mdeltax);

 deltay = mxGetScalar(mdeltay);

 SolveElectricFields(Ex, Ey, PHI, deltax, deltay, J, L);

 mexAddFlops(6*L*J + 11*L + 11*J);

 }

#undef mEx

#undef mEy

#undef mPHI

#undef mdeltax

#undef mdeltay

#undef GetMatrix

/**/

#define PHI(j,l) PHI[(l)*NgridsX + (j)]

#define Ex(j,l) Ex[(l)*NgridsX + (j)]

#define Ey(j,l) Ey[(l)*NgridsX + (j)]

void SolveElectricFields(double *Ex, double *Ey, double *PHI,

 double deltax, double deltay, int J, int L)

 {

 int j, l, NgridsX;

 double tmp;

 double *ptr1, *ptr2, *ptr3;

 NgridsX = J+1;

 /* Solve for Ex except on the left and right edges */

81

 tmp = -0.5 / deltax;

 for(l = 0; l <= L; l++)

 {

 ptr1 = &Ex(1,l); ptr2 = &PHI(2,l); ptr3 = &PHI(0,l);

 for(j = 1; j < J; j++, ptr1++, ptr2++, ptr3++)

 *ptr1 = (*ptr2 - *ptr3)*tmp;

 }

 /* Solve for Ex on the left and right edges */

 for(l = 0; l <= L; l++)

 Ex(0,l) = (-PHI(2,l) + 4.0*PHI(1,l) - 3.0*PHI(0,l))*tmp;

 for(l = 0; l <= L; l++)

 Ex(J,l) = (3.0*PHI(J,l) - 4.0*PHI(J-1,l) + PHI(J-2,l))*tmp;

 /* Solve for Ey except on the top and bottom edges */

 tmp = -0.5 / deltay;

 for(l = 1; l < L; l++)

 {

 ptr1 = &Ey(0,l); ptr2 = &PHI(0,l+1); ptr3 = &PHI(0,l-1);

 for(j = 0; j <= J; j++, ptr1++, ptr2++, ptr3++)

 *ptr1 = (*ptr2 - *ptr3)*tmp;

 }

 /* Solve for Ey on the top and bottom edges */

 for(j = 0; j <= J; j++)

 Ey(j,0) = (-PHI(j,2) + 4.0*PHI(j,1) - 3.0*PHI(j,0))*tmp;

 for(j = 0; j <= J; j++)

 Ey(j,L) = (3.0*PHI(j,L) - 4.0*PHI(j,L-1) + PHI(j,L-2))*tmp;

 }

#undef PHI

#undef Ex

#undef Ey

/***/

/***

 * mexFunction: mexPush

 *

 * Integrates the nonrelativistic equations of motion for a set of particles

 * pushed by a force known on a uniform rectangular 2D grid.

 * - The force is bilinearly interpolated to the particle positions

 * - Particle position and velocity given are normalized to the grid spacings

 * and timestep (Thus xphys = xgiven * dx, vxphys = vgiven * dx / dt and

 * similarly for y and vy).

82

 * - Ex and Ey are defined at the corners of the grid cells.

 *

 * Usage: mexPush('Particles', 'Ex', 'Ey', 'PushAux', ...

 * EtoDVx, EtoDVy, NumParticles);

 *

 * Assume J, L are the number of cells in the x and y directions respectively

 *

 * Particles is a real full single array with 5*MaxNumParticles members

 * - Note: Any layout in matlab will do but recommmend [5 MaxNumParticles].

 * Then Particles(1,:) are the given x coords, Particles(2,:) are the y given

 * y coords, Particles(3,:) are the given x grid vel, Particles(4,:) are the

 * given y grid vel, and Particles(5,:) is the z grid vel (for 2D3V sims).

 *

 * Ex and Ey are real full (J+1) x (L+1) arrays

 * - Note: This must be strictly adhered to!

 *

 * PushAux is a SINGLE precision array with 2*(J+1)*(L+1) members. Any layout

 * in Matlab will do

 *

 * EtoDVx, EtoDVy convert the units of Ex, Ey into acceleration with respect

 * to the grid and timestep

 *

 * NumParticles is the number of active particles in the Particles array

 * - Note: All particles must be inbounds initially

 *

 * This routine locks itself into memory

 * If called with no rhs and lhs arguments, the routine is unlocked from memory

 *

 * Warning: This function accesses and modifies arrays in the caller's

 * workspace! This was done to avoid the overhead for the lhs, rhs copy

 * mechanisms. This can have weird side effects (in particular if the

 * copy count an altered array is greater than one, the memoryless

 * copies will be altered - the API has no way to avoid this that I know of).

 *

 * Particles, PushAux are altered in the callers workspace

 *

 * Warning: Routine does no type checking. If you mess up the arguments or

 * they are the incorrect sizes and types, you are screwed bad.

 *

 * Warning: All arrays passed by name to this function must be allocated before

 * calling this function.

 *

 **/

#include <mex.h>

#include "../mexCommon.h"

static void Push(ParticleData *ptrParticle,

 double *ptrEx, double *ptrEy,

83

 float *ptrdVx, float *ptrdVy,

 double EtoDVx, double EtoDVy,

 int N, int J, int L);

/***/

#define mParticles prhs[0]

#define mEx prhs[1]

#define mEy prhs[2]

#define mPushAux prhs[3]

#define mEtoDVx prhs[4]

#define mEtoDVy prhs[5]

#define mN prhs[6]

void mexFunction(int nlhs, mxArray *plhs[],

 int nrhs, const mxArray *prhs[])

 {

 ParticleData *ptrParticle;

 double *ptrEx, *ptrEy;

 double EtoDVx, EtoDVy;

 int N, J, L;

 const mxArray *mx;

 float *ptrdV;

 if(mexIsLocked())

 {

 if((nrhs == 0) && (nlhs == 0))

 {

 mexUnlock();

 return;

 }

 }

 else

 {

 mexLock();

 }

 /* Parse the function input */

 GetMatrix(mParticles, mx, ptrParticle);

 GetMatrix(mEx, mx, ptrEx); J = mxGetM(mx)-1; L = mxGetN(mx)-1;

 GetMatrix(mEy, mx, ptrEy);

 GetMatrix(mPushAux, mx, ptrdV);

 EtoDVx = mxGetScalar(mEtoDVx);

 EtoDVy = mxGetScalar(mEtoDVy);

 N = mxGetScalar(mN);

 /* Do the calculation */

 Push(ptrParticle, ptrEx, ptrEy, &ptrdV[0], &ptrdV[(J+1)*(L+1)],

84

 EtoDVx, EtoDVy, N, J, L);

 mexAddFlops(28*N + 2*(J+1)*(L+1));

 }

#undef mParticles

#undef mEx

#undef mEy

#undef mPushAux

#undef mEtoDVx

#undef mEtoDVy

#undef mN

/**/

void Push(ParticleData *Particle,

 double *Ex, double *Ey,

 float *dVx, float *dVy,

 double Ex2dVx, double Ey2dVy,

 int N, int Nx, int Ny)

 {

 int i, j, n;

 float dx, dy;

#ifdef GCC_X86_ROUNDING_HACK

 FPUCW oldcw;

 oldcw = SetRoundingMode(FPU_RC_ZERO);

#endif

 Nx++; /* Ncx is the number of grid points along x */

 Ny++; /* Ncy is the number of grid points along y */

 /* Scale Ex and Ey into dVx and dVy */

 for(n = 0; n < Nx*Ny; n++)

 {

 dVx[n] = Ex[n] * Ex2dVx;

 dVy[n] = Ey[n] * Ey2dVy;

 }

 for(n = 0; n < N; n++, Particle++)

 {

 i = FloatToInt(Particle->x);

 j = FloatToInt(Particle->y);

 /* The below trusts CSE (common sub-expression elimination) to

 optimize this. Trusting CSE makes better assembly language code

 with the GCC compiler on x86 platforms. Mileage may vary with

 other compilers and architectures! */

85

 dx = Particle->x - i;

 dy = Particle->y - j;

 Particle->vx +=

 (1-dx)*(1-dy)*dVx[j*Nx+i] +

 dx *(1-dy)*dVx[j*Nx+i+1] +

 (1-dx)* dy *dVx[j*Nx+i+Nx] +

 dx * dy *dVx[j*Nx+i+Nx+1];

 Particle->vy +=

 (1-dx)*(1-dy)*dVy[j*Nx+i] +

 dx *(1-dy)*dVy[j*Nx+i+1] +

 (1-dx)* dy *dVy[j*Nx+i+Nx] +

 dx * dy *dVy[j*Nx+i+Nx+1];

 Particle->x += Particle->vx;

 Particle->y += Particle->vy;

 }

#ifdef GCC_X86_ROUNDING_HACK

 SetFPUControlWord(oldcw);

#endif

 }

/***/

86

Biography

Mr. Chawisnach Engchatcharoen was born on April,16, 1970 at Amphur Bangkokyai,

Bangkok Thailand. As received the Bachelor degree in Electrical Engineering from

Kasetsart University in 1995. To beginning study Master degree in Nuclear

Engineering at Chulalongkorn University in 1997.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	Chapter 2 Theory of one dimensional plasma
	Chapter 3 Numerical model for one dimensional plasma
	Chapter 4 Results from simulations
	Vita

