NN9ANAN UL LTI LAIRMFUNN TP Aa U I IaanaNaN R AR Tuavd Lt wan AN

UNEl TIFYT BITRLATEY

N INUS T WA UM 189NN I AN EN ANNUAN AL TYTYN A AINT TN AN AR TN TTUTG
a a a o = a a a g =
arrngdaeasfmalulatl niadandamanfinaTulat
ANEAAINITNANART AW NaINTINNNINENAE
TnnsAnmn 2543
ISBN 974-13-0274-6

s

AVANDTVRIANIAINILINUN AN

NUMERICAL SIMULATION FOR MOTION OF ONE DIMENSIONAL
PLASMA IN AN ELECTROMAGNETIC FIELD

MR CHAWISNACH ENGCHATCHAROEN

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering in Nuclear Technology
Department of Nuclear Technology
Faculty of Engineering
Chulalongkorn University
Academic Year 2000
ISBN 974-13-0274-6

Thesis Title Numerical simulation for motion of one dimensional

plasma in an electromagnetic field.

By Mr. Chawisnach Engchatcharoen
Field of Study Nuclear Technology
Thesis Advisor Dr. Sunchai Nilsuwankosit

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master’s Degree

.. Dean of Faculty of Engineering

(Professor Somsak Punyakaew, D.Eng)
THESIS COMMITTEE
..................................... Chairman

(Associate Professor Somyot Srisatit)

.................................... Thesis Advisor

(Dr. Sunchai Nilsuwankosit)

.................................... Member

(Associate Professor Nares Chankow)

.................................... Member
(Assistant Professor Dr. Supitcha Chanyotha)

TAY BRI NNTANBILLLENAIR I LN R AUl IaINa I aNNTR

wen ludunudwannin. (NUMERICAL SIMULATION FOR MOTION OF

ONE DIMENSIONAL PLASMA IN AN ELECTROMAGNETIC FIELD)
a. Nlanm : 9.a9. dryde Dagossaulais, 86 wiin. ISBN 974-13-0274-6

o

NLILANANANTDRNNTNUTAD INDTREIULLANADINNADNNILADIIBINAIAN
LULRRARLILUATEIAENRLARTAMULARS WANANIADAD W NATBIARNITIAANT T UL
giazansnadoulunjagluaniuzaasmaiann wardundlsclaminanssulnaianizating
a Y a A e o | o A o s = =2 g A
gelusuiluedsfiafuluudzedunasniiinngeny aaiunisAnswanataniuiugiu
dl o o o FY =S a A o 1 di o
nérdrylunisinandnlauasAnEaataunts nanaRadduLALHesaINN1IIINIITMAaes
Auszuuase fasldsulsennnigs naliianisduass Auiunisairsuuuanassumig

A o = = =< A
AANNILARTUUNDL ’Q\Tu’]@‘;ﬂﬂquﬂL@@ﬂMuQ‘WLMNq:ﬁ@N

T a9AulazNIN124519UULAIARINANENN IUIZUUUTNER AAauRaaasn g
Tun1aW U uLLR1899A9 27197 TUaWATHANENE HENNN1TU TN ITIFILAT NARNGEL
= N o | > Ao . D e v
iHas ddupaunanataasduneu Ae dunauwsn wAtauN Wi uazawnudivian daean
v 1] 1 1 1
nsulindinad uardupauiiaes MINI9LAREUTTENETNIAAIEY FNN1TNITARLNTRIAE
[~3 g o dl o Dd‘ o [3 1
Sud nisRnsesnisiedeuinaaswatanignnsziinia liReulalaanvuadnd e
AUETNVBLNIADIVBITEUL TINATIIH ADINENUABTLNY UATAIINDITBINANANT ATYNAITIA
al o 1 al 1 dl a d? dl 1 1 o
aauwazLFRLeUALATYImgE] AaNuAnseiiaauHesa ANl uNuiN1e9n13
13NN URAARAAUANNRANANATLN AT ULBIRININATANITAT1I A Mt aNAen131 18
DX Y o ey . . y
pawantl Asaglldangluuudnaesilianunsnanaesdnsninisndaulumaeanaan

aa A [dl o o o/ o dld ° o
LL‘LI‘].IN[?]Lﬁﬁl'ﬂmuﬁ“éﬁﬁﬂﬂuﬂ’&’]‘Viﬁ“]_ﬁ/]?Wﬁl’mﬁ‘ﬂ'ﬁﬂ’]u’JM'Vm@’]ﬂﬁ

AR daeassneTulag. ... AVENDTATRB oo,
a a = I3 = A A rdl
113, Hoeasfnaluiat. ... ANNRTARIRNIETNUTNE oo,

n13@nEA 2543 ANUNRTARNANTETNUTNENT VN oo,

##4070246721 : MAJOR NUCLEAR TECHNOLOGY
KEY WORD: PLASMA / PLASMA SIMULATION / NUCLEAR / FUSION / SIMULATION

CHAWISNACH ENGCHATCHAREON : NUMERICAL SIMULATION
FOR MOTION OF ONE DIMENSIONAL PLASMA IN AN ELECTRO-
MAGNETIC FIELD. THESIS ADVISOR : SUNCHAI NILSUWANKOSIT,
Ph.D. , 86 pp. ISBN 974-13-0274-6

The purposes of this research are to develop a computer model to simulate
the motion of the one dimensional plasma on microcomputer. Plasma is the fourth
state of matter. Most of matter in the universe is in the plasma state. Plasma plays the
important role in many applications. One of the most challenging is to develop the
controlled thermonuclear fusion as an economical energy source. In order to achieve
these conditions, an understanding of how the plasma behaves is essential. Because
of some technical and economical difficulties, the experimental method may be

impossible or difficult. Therefore, the computer simulation technique is an alternative.

We restrict the scope on one dimensional plasma. The model is developed
with JAVA language with calculating Finite difference technique. The study consists
of two main parts; the fields produced by particles which are solved by Maxwell’s
equations and the motion of the particles caused by the forces that resulted from
the fields which are computed based on Lorentz equation. The motion of a one
dimensional plasma is analyzed and simulated under zero potential that is applied at
the boundary condition. The characteristic time and characteristic size are estimated
to compare with the theoretical value. The results show the discrepancy which might
have been due to the lack of accuracy of estimation and the inherent error caused by
the technique used for the simulation. Based on these assessments, it is .concluded that
the model as proposed is capable to simulate the motion of the one dimensional

plasma up to a level of certainty and with the limited computing resources.

Department...Nuclear Technology...... Student’s signature............c..coeviieiieininn
Field of study...Nuclear Technology... Advisor’s signature....................oceeuennn.n

Academic year...2000.................... Co-advisor’s signature.............ooeeeveeneannnnn.

vi

Acknowledgment

I would like to thank all the great people at the department of Nuclear
Technology at Chulalongkorn University, especially Assistant Professor Attaporn
Pattarasumunt for the help and advice. Specifically, I thank Dr. Sunchai
Nilsuwankosit, my thesis advisor, who gave me the opportunity to do this thesis and

who encouraged me every step of the way to ensure its success.

On a personal note, thanks to all of my friends who encouraged and prayed for
me during the writing of this thesis. I would like to sincerely thank Dr. Kevin Bowers
at Plasma Theory and Simulation Group, Electrical Engineering and Computer
Science Department at University of California, Berkeley for the help and more useful
suggestions. | also appreciate Dr. Vinai Pruksawan, a former advisor at Electrical
Engineering, Kasetsart University, for useful guidance. Most importantly and finally,
I thank my parents who highly supported, encouraged and truly impacted my

personal life.

Contents

page

ADSLIACE (THAL). .o e ettt e iv
Abstract(English).... ..o v
AcKNOWIEdZemENnt. . . .ccouontii vi
Contents.......coovneieene. . e . e vii
FigUuIes COMEENLS.utt ettt e e e ettt et e e e e aae e ix
CHAPTER I Introduction... . cu ettt et 1
1.1 Background.ot e 1

1.2 Confinement SChEMES.. ..o it 2

1.3 The methods for heating plasma..............c..cooiiiiiiiiiiii 4

1.4 Plasma sSimulation..........cocoueiiinieii e 6

1.5 One dimensional plasma simulation....................ocooiiiiiiiiiiiiiiin.n. 6

1.6 Objectives........d. . oomrrrrattn.o ooeeeenneeneraneeieenanens 7

1.7 Scope Of thesis. ...ttt e 7

1.8 Methodology . ..c.oonei i e e 7

1.9 Potential application. i i i e 7
1.10Relative researches.oiuiiii i 8
CHAPTER II Theory of one dimensional plasma..............c..coooviiiiiiiiin.n. 10
2.1 Overg®b .- 1-LJLo-dVIC) L)L L. d - ioionennne 10

2.2 Maxwell’s @qUationS.o . eeee e et e e e e 10
20J0ehe Do\ 0. 1. A 6 A8 A 8 V1 2 A Vil LEN-F e 12

2.4 Plasma freqUENCY.......cccviiriiieiieiieeie ettt et ettt ens 14

CHAPTER III Numerical model for one dimensional plasma............c.cccceeueee..... 19
3.1 OVEIVIEW....einiiiiiiiiciteeeetete sttt sttt 19
3.2 Simulating of one dimensional plasma with finite difference method......19

3.3 Initial conditions on the particles..........cccceevviieriiienciieecie e 21

viil

Contents(Cont.)
3.4 Charge density.......cocooieririeneeiereeeeteee ettt 23
3.5 Potential field and electric field..............cccoomiiiiiiniii e, 25
3.6 Motion of the particles.cccocieriieiieiiieiiee e 27
3.7 ComPULING CYCL. . ..eiiiiiiieiiieiiie ettt ettt e e e e ebee e 28
CHAPTER IV Results from the simulation....................ccoooiiiiiiii i, 30
4.1 OVErview..... ot ... S ... cmmm——oooooeonveeereesseessessssens 30

4.2 Results from simulation for the motion....................ccccceeeiveeieneennn.. . 30
4.3 The various parameters in simulation...................cooiiiiiiiiinn.ne. 33

4.4 Results from simulation for the characteristic..........ccccccevvevveeeeeeeeee.... 40

CHAPTER V Conclusion and Suggestions.ccovvieieiriniiaienienneennnnn. 43
5.1 CONCIUSION.ciut ittt ettt et ettt ettt ettt eaee i eae e e e 43

5.2 Simulation in one dimensional plasma.................ccoeveeeviierieeiienieenen . 43

5.3 The result of sSIMulation........cooooeeiii i 44

5.4 SUZEESLIONS. .. .euiiit it it s ettt sttt 45
Reference.................... 2. Sttt N NN ot e .50
PN 0] 013 T 1 P 51

| 3T0704 21 o) O FO O SO O RO U B B R O e S TR o OO PO PRPOOPPRTRO .86

X

Figure contents

Page

Figure 2.1 Debye length.........ccooiiiiiiiii e 12

Figure 3.1 System length........ ..o 22
Figure 3.2 Grid width. ..o i e 23

Figure 3.3 Dividing grid for counting particle............cocoooviiiiiiiiiiinin.. 24

Figure 3.4 Flow chart for plasma simulation in one dimension.......................... 29

Figure 4.1 Plasma simulation program..........coeovueiuiineeineeeeeiiieeieaeenneanannn. 30
Figure 4.2 Plasma parameters.ooueitiiitiiit it 31
Figure 4.3 Displacement of the particles...............ooeiiiiiiiiiiiiiie, 31

Figure 4.4 Particle density ateach grid ... 32

Figure 4.5 Potential field at each grid. ... 32
Figure 4.6 Electric field at each grid. ...t 33
Figure 4.7 Potential distribution near a grid in plasma............................oeeeee 34
Figure 4.8 Potential distribution in less number of gridcoooi 34
Figure 4.9 Potential distribution when increased number of grid....................... 35
Figure 4.10 Simulation of potential distribution and grid at 10,000 particles........... 35
Figure 4.11 Simulation of potential distribution and grid at 1,000 particles............. 36
Figure 4.12 Simulation of Particle density distribution of 10,000 and grid............. 36

Figure 4.13 Displacement of the electrons at time step 107 SeC 37

Figure contents (Cont.)

Figure 4.14 Displacement of the electrons at time step 10™* sec.......................... 38
Figure 4.15 Displacement of the electrons at time step 10~ sec........................ 38
Figure 4.16 Displacement of the electrons at time step 1072 sec......................... 39
Figure 4.17 Simulations of Electric field distribution at 100 Grids...................... 40
Figure 4.18 Simulations of Electric field distribution at 50 Grids........................ 40

Figure 4.19 Simulations of Electric field distribution and Time at time step 3.5x 107

second 1N ONE EIIA.. . .uotiti ittt e i 41
Figure 4.20 The measurement of Debye length.......................o 42
Figure 5.1 Position of particle between two grid points.................coeeiiiii.s. 45

Figure 5.2 Position of a particle in the gridcelloii. . 48

CHAPTER1

INTRODUCTION

1.1 Background

Plasma is the fourth state of matter. It is most similar to gas but is
fundamentally different in that gas is made up of molecules and is electrically neutral
while plasma is a collection of the free moving electrons and ions. Plasma can be
made in a number of ways but the end result is always a combination of the positively
charged ions (atoms with one or more missing electrons) and the negatively charged
electrons. The movement of charged particles in plasma generates current and charge
density gradient which in turn give rise to electric and magnetic field which affect to
the motion of other charged particles over a large distance. This characteristic is
called the exhibition of collective behavior. Plasma is not only electrically charged it
is an efficient electrical conductor. The state of plasma can exist anywhere from
inside the room temperature metal to the star. Plasma must conform these criteria, the
size of system length must be larger than the Debye length, the number of particles
are enough in a Debye length and the multiplication of the mean time between
collision with neutral atoms and the frequency of plasma are greater than unity. At
low density, plasma has collisionless behavior which means the collective behavior is
much more important in determining the characteristic of plasma than local collision

which can be neglected.

In order to understand the behavior of plasma, it is necessary to study its
behaviors. Because of some technical and economical difficulties, the experimental
method may be impossible or very difficult. Therefore, the simulation method is an
alternative. Because plasma can be used in the innumerable applications, this mean to
control the behavior of plasma is needed. As plasma is conductive and respond to the
electric and magnetic fields therefore plasma can be accelerated and steered by the

electric and magnetic fields. Plasma research also yields a greater understanding of

the universe. It also provides many practical uses in new manufacturing techniques,

the consumer products, and the prospect of abundant energy.

One of the most challenging applications of plasma is to develop the controlled
thermonuclear fusion as an economical energy source. Fusion is a process that
combines the atomic nuclei of light elements, like the isotopes of hydrogen called
deuterium and tritium, to form heavier elements. There are many advantages of using
fusion energy such as abundant and inexpensive fusion fuel, short life of radioactivity
less than 100 years. The key to fusion is to heat hydrogen to an extreme temperature,
which strip electrons from the nuclei of the atoms. The resultant mix of the positive
(the nuclei) and negative (the electrons) particles creates an ionized gas called plasma.
Importantly, the fact that the particles in plasma have these positive and negative

charges allows them to be confined by magnetic fields in a fusion reactor.

1.2 Confinement schemes

In order to control the fusion process, two commonly forms of plasma

confinements can be implemented.

Magnetic confinement

The magnetic field acts like a net to the charged particles of plasma preventing
the plasma from leaking out. In deed, the very best way to trap the plasma is to form
magnetic field like a ball but the magnetic field in the form donut shape called torus
is made in stead. This method uses the fact that plasma is in the conducting state, that
it contains charged particles (ions and electrons), it can be acted up on by a magnetic
field so that it is shaped and confined. If you arrange the magnetic field carefully, the
particles will be trapped by it. There are several major schemes to confine plasma

with magnetic field as following.

Tokamak

One of the greatest innovations for fusion science was the Tokamak concept

which was invented in the Soviet Union in 1950s by the Russians Tamm and

Sakharov. The word “Tokamak” is contraction of Russian word: toroidalnaya, kamera
and magnitnaya these mean toroidal chamber magnetic. The Tokamak is a device
which employs magnetic fields in a toroidal configuration to confine the plasma. The
magnetic field in a tokamak are produced by a combination of the currents flowing
within the plasma itself and the current flowing in external coils. Although the
tokamak has excellent confinement properties, it still has the disadvantage that the
current in the plasma tends to make it unstable. This can lead to a disruption where
the plasma dramatically crashed against the inside of container. In currently, there are
several major tokamak facilities throughout the world such as the Joint European
Tokamak (JET) in England, JT-60 in Japan, International Thermonuclear
Experimental Reactor (ITER). Much of the knowledge of plasma science gained in
Tokamak experiments is directly applicable to alternate fusion systems. The present
generation of these experiments, therefore, are effective tools for advancing the
foundation of science and technology required for developing a commercially viable

fusion power plant.

Stellarator

Stellarator have a magnetic topology similar to that of tokamak. The traditional
stellarator consist of a set of continuous helical coils that create the twisted magnetic
field needed to confine plasma. The advantage of this type of confinement scheme is
the magnetic field can be created independently of plasma therefore, plasma does not
influence the magnetic field. This method of trapping plasma is more stable than
tokamak. However, the disadvantage is helical ripple ereated by the helical field coils
which does not confine plasma efficiently. - This lead to Quatos (Quasi Toroidal
Stellarator) which is unique stellarator design that fool the plasma into thinking there
is no helical ripple as conventional stellarator. Quatos incorporates the advantage of
tokamak with its good plasma confinement properties and the advantage of stellarator

with its stability.

Alternative magnetic confinement schemes

There are several alternative magnetic confinement schemes. Reverse Field

Pinch looks similar to tokamak with a lot current in plasma which creates a strong

poloidal magnetic field. The toroidal field is about ten times smaller thus, the field
line make many poloidal circuits per toroidal circuit. The smaller field yields potential
cost saving reactor advantage for instance, in copper magnets. Speromak is another
idea is similar to reverse field pinch but in spherical containment vessel rather than a

torus. This also eliminates any conductors through the hole in the doughnut.

Inertial confinement

No magnetic field are needed in this scheme. This technique contains the
gaseous mixture within a small pellet or bead then have it bombarded from all
directions by the high power laser beams. If the process is done quickly and compress
it enough the subsequent shock wave causes the pellet to implode. The inertia then
holds it together long enough for fusion reaction. This method is known as Inertial
Confinement Fusion (ICF). It offers a different approach to developing the fusion
energy. To achieve ICF, the powerful lasers or particle beams are focused on a small
target of hydrogen fuel for a few billionths of a second. The target is compressed to
the density 1000 times the normal density of a solid material and heated to the
temperature of about 100 million degrees. In this condition, the hydrogen nuclei fuse
to form helium, and release a significant amount of energy. The process is the same
as that in the sun, except that a laser or particle beam heats and compresses the
hydrogen fuel rather than the sun’s gravity. The primary mission of ICF is to carry out
the experiment on the nuclear weapon physics and its effects, under the extreme
condition of density and temperature created in the inertial fusion. The major problem
is getting the lasers to hit the pellet appropriately so that it compresses symmetrically

rather than one side.
1.3 The method for heating plasma
There are several methods for heating plasmas. These include Ohmic Heating,

Neutral Beam Injection, Magnetic Compression, Radio-Frequency Heating, and

Inertial Compression. Each of these is discussed below.

1: Ohmic Heating

Since the plasma is an electrical conductor, it is possible to heat the plasma by passing
a current through it; in deed, the current that generates the poloidal field also heats the
plasma. This is called ohmic (or resistive) heating, it is the same kind of heating that
occurs in an electric light bulb or in an electric heater. The heat generated depends on

the resistance of the plasma and the current.

2: Neutral-Beam Injection

Neutral-beam injection involves the introduction of high-energy (neutral) atoms into
the ohmically heated, magnetically confined plasma. The atoms are immediately
ionized and are trapped by the magnetic field. The high-energy ions then transfer part
of their energy to the plasma particles in repeated collisions, thus increasing the

plasma temperature.

3: Magnetic Compression

A gas can be heated by sudden compression. In the same way, the temperature of a
plasma is increased if it is compressed rapidly by increasing the confining magnetic
field. In a tokamak system this compression is achieved simply by moving the plasma
into a region of higher magnetic field (i.e. radially inward). Since plasma compression
brings the ions closer together, the process has an additional benefit of facilitating

attainment of the required density for a fusion reactor.

4: Radio Frequency Heating

In radio frequency heating, high frequency waves are generated by oscillators outside
the torus. If the waves have a particular frequency (or wavelength), their energy can
be transferred to the charged particles in the plasma, which in turn collide with other
plasma particles, thus increasing the temperature of the bulk plasma. This process is

similar to how a microwave oven heats food.

5: Inertial Compression

In the inertial approach the compression is achieved by using laser or particle beams
to heat the outer layer of a target pellet; the outer layer vaporizes and the pressure that
the vaporized layer exerts back on the core of the pellet accelerates the plasma inward
on itself, and the inertia of the imploding atoms in the pellet allows the pellet to be

compressed (for a very short time), and thus heated.

1.4 Plasma simulation

Computer simulation plays an important role in the development of plasma

theory. In order to provide prediction in plasma, there are a large variety of models for

simulating plasma but, basically, there are two major types;

Particle Model

This involves following the motion of a large number of charged particles in
their self-consistent electric and magnetic fields. It is limited to only simulate the
phenomenon in which only a small fraction of plasma is involved and only for a short

period of time.

Fluid Model

This adopts a set of the fluid equations to describe plasma by solving
numerically the magnetohydrodynamic- (MHD) equation. The method is possible
because of the fact that plasma behaves sometimes like a fluid and sometimes
like a collection of individual particles. In the fluid approximation, plasma is
considered to compose of two or more interpenetrating fluids. By treating plasma
as a magnetized conducting fluid, this method can be applied to the large scale

problems.

In some plasma problem, neither fluid theory nor kinetic theory is sufficient to
describe the plasma’s behavior. The alternate model is Hybrid model by treating the

electrons as a fluid and ions are represented by macro particles.

1.5 One dimensional plasma simulation

This thesis uses the particle model to simulate one dimensional plasma. The
calculation also employs the finite difference technique. The procedure comprises of
two main parts, the field produced by particles according to Maxwell’s equations and
the motion produced by forces that use Lorentz equation of motion. This process is

repeated over many time steps.

1.6 Objectives

1.5.1 To simulate one dimensional plasma on a microcomputer in order to
investigate the motion and the primary characteristics of plasma.

1.5.2 To develop the technique to analyze and simulate the motion of plasma.

1.7 Scope of thesis

1.6.1 Develop the code based on solving Maxwell’s equations together and
Lorentz’s equation of motion.

1.6.2 Obtain the fundamental characteristics of one dimensional plasma.

1.8 Methodology

1.5.1 Study the theory of plasma and relating subjects.
1.5.2 Choose the appropriate numerical technique to develop the simulation
code.

1.5.3 Program and debug the code for simulation.

1.5.4 Analyze and compare the obtained results with the theoretical data.

1.5.5 Conclude the research and write the thesis.

1.9 Potential application

1.6.1 Used for initial exploration of plasma simulations.

1.6.2 The simulation of one dimensional plasma canbe used to test the
numerical techniques against the theoretical predictions.

1.6.3 To further develop two and three dimensional model to describe

the complete characteristic of plasma.

1.10 Relative researches

Charles K. Birdsall and A.Bruce Langdon developed the plasma simulation
using particles model in 1985, their works originated as a set of class notes
intended for use by the graduate students at University of California, Berkeley.
To simulate a laboratory plasma in one dimension with the numerical methods of
the fast Fourier transform (FFT) and written in Fortran language. The results

from their works are enough to explain the background behaviors of the plasma.

In 1996, Kevin Bowers at Plasma Theory and Simulation Group, Electrical
Engineering and Computer Science Department at University of California,
Berkeley developed the two dimensional plasma simulation using the Monte-
Carlo of the numerical technique. The simulating code employed a hybrid of C
and MATLAB. It is optimized for modern processors and shared memory
operation. The code can run on any platform that has MATLAB V5+ and an
ANSI C. His work is used to simulate physics of plasma.

In 1998, Z.Lin, T.S. Hahm, W.W.Lee, W.M.Tang andR.B.White at department of
energy’s Princeton Plasma Physics Laboratory used the power of the
SGI/CrayT3E supercomputer to create the three-dimensional nonlinear particle
simulation of microturbulence in the plasma. The simulation involved the number
of particle as large as 400 million plasma particles. The results were achieved
with the ability of the massively parallel processor (MPP). The research
discovered the suppression of the turbulence. This helps enhancing the

administration of the plasma confinement.

Dr. Chin S. Lin at Aurora Science Inc. developed the plasma simulation codes on
the parallel computers. The codes are useful for investigating kinetic plasma
processes associated with the global space plasma phenomena. A key element of
developing the PIC(Particle in cell) codes on the parallel computers is the gather-
scatter scheme. The gather-scatter scheme is used to communicate between
particle quantities and the grid quantities. This project created a PIC code and a
particle trajectory code on Thinking Machines Corp. CM-2 with 32,768

Processors.

CHAPTER II

THEORY OF ONE DIMENSIONAL PLASMA

2.1 Overview

As we shall see, every plasma can be completely described by five equations:

the four Maxwell’s equations and the Lorentz Force. Maxwell’s equations describe

the electric and magnetic field over time and space.

The first equation of Maxwell’s equations is Poisson's Law describes the

electric field produced by the distribution of the electric charges. The second law is

the Faraday's Law of induction , which states the relationship between the fluctuating

magnetic field and the electric field it induces. The Ampere's Law is the third law that

describes the magnetic field induced by the current density and the electric

displacement . The last law has no name. It states that there is no magnetic monopole.

In other words, all magnetic field lines must be closed. The Lorentz equation explain

the total force on a particle due to its interaction with the electric and magnetic field.

2.2 Maxwell’s equations

e Maxwell equation

In vacuum ; V.E = 2 (Poisson’s equation)
€

V-B = 0 (Absence of free magnetic poles)
OB

VXxE = - St (Faraday’s law)

OE
Vx B = p,(jt+eg, a_t) (Ampere’s law)

@2.1)
(2.2)

(2.3)

(2.4)

In a medium ; = p (2.5)
= 0 (2.6)
VxE o8 (2.7)
X = - —— .
ot
VxH = 1+22 (2.8)
ot
where D.= ¢, E+E
1
H= —B-M
Mo
For linear and isotropic media
D=¢E
B= pH
e Lorentz force equation
F = q(E+vxB) (2.9)

These field variables are defined as follow :

E = electric field (V/m)

H = magnetic field (A/m)

D = electric displacement or electric flux density (C/m?)
B = magnetic induction or magnetic flux density (Wb/m?)
p = charge density (C/m’)

J = current density (A/m?)

P = polarization (C/m?)

M = magnetization (A/m)

¢ = permittivity of the medium (F/m)

g, = permittivity of free space or vacuum (F/m)

1, = permeability of free space (H/m)

12

2.3 Debye Length

Because of its collective behavior, a plasma tend to resist to the external
influence and thus, is able to shield out the electric potential that is applied to it as
seen in Figure 2.1. The shielding distance or thickness of the sheath that screens the

external field is called the Debye length (Ap) and is equal to

2
o [ﬁg (2.10)

where e is the electrical charge of an electron (C),

n, is the equilibrium particle number density (m),
k, is Boltzman's constant (J/K),

T is temperature (K).

Figure 2.1 Debye length

The calculation of Ap can be done in the following steps. When an electric field
is applied to a plasma, the field only affects the distribution of the charged particle in
the plasma within the distance of Debye length (Ap). Within this distance of Ap , the

13

densities of the ions and the electrons can be found from the Boltzman distribution

(each species can be in its own distribution).

& B
That is n; = npe ke T and Ne = Nye kT
n; and n. are the density of ions and electrons respectively.

¢ 1s the actual electric field .

Q¢ et
Therefore , p = (e(noe KT _nge'") (2.11)
) ef—e "
from sinhx =
»)
% 0
thus p = qe(moe®" -nge’)5 (2.12)
become p = 2ngqsinh —Ged (2.13)
kT
and p = -2noqesinh qu) . (2.14)
KgT

From this result, we substitute it into Poisson’s equation to get

= i
V29 = —2 = —2nq, sinh (Eﬂ . 2.15)

€ € B

Assume qe ¢ ((kgT then sinh (%) & Ge?
B

Ad v = 2Nl G (2.16)

g, kgT

1 2
n,q.” |?
Vig =2 0le : 2.17
o022 on
2

That Vip = 20 (2.18)

14

N~

2
ane

kT . C
where A, = (80 B J and is the characteristic size fora plasma .
The screening of the applied electric field as discussed so far has a physical
meaning only if a large number of particles, Np , are contained within a volume that
has the Debye length as its characteristic length. Assume that Np particles are

contained within a sphere of radius A, , it is followed that

4
Np = ?XDno], (2.19)

With the value of A, as derived, we then have

3
A7 SokBT 2
Y Ny ane2 » 1 (2.20)
3
41 8OkBT ? 1
or 5 qez) ng. (2.21)

This value of ny is another requirement for a given matter to be classified as a plasma.

2.4 Plasma frequency

The particles in a plasma respond to an electric field by adjusting their
positions. The effect of this movement is to set up a local electric field within a
plasma that counteracts to the applied field. As a result, the energy shifts from the
electric potential to the kinetic energy and back. The frequency in which this

oscillation occurs is known as a plasma frequency (®) This frequency characterizes

the period in which plasma responses to an external field and is described as

15

(2.22)

o
I
VR
>
3o
o™ | Q
o |®
N
N—
N |-

where m is the mass of an electron.

The above definition is calculated based on the following assumption.
Consider in a plasma, as the electron is much less massive than the ion, the electrons
oscillate so fast around their equilibrium positions that the massive ions may be
considered as being relatively stationary. If the electrons are moved to a certain
distance x , this will give rise to electric field that, according to Poison's equation is

described as

If the displacement is only in x direction thus, electric field E = Eex then

dE q

—= = (m-n.) . (2.23)
dx €o

Thus [dB = Jenyfax (2.24)
€0

E = Jelo (2.25)

€
where no = mean density of charged particle in plasma .

Given that the equation of motion of an electron in an electric field is

mx = -q.E (2.26)

or mx = -Qe [MJ (2.27)

2
then x = {@] X (2.28)

16

.’ :
and ©, = [LJ (2.29)
me,
(1] . 2
X =-0,% . (2.30)
The solution of the above equation is
X = X;sin @pt + Xy cos opt . (2.31)

This solution simply states in that the electrons in the plasma oscillate with the

frequency of ;.

Cyclotron frequency

When a charged particle moves in a uniform magnetic field which does not
vary in time, in the absence of an electric field, it circulates around an axis called

guiding center with a radius 1y which is known as Larmor radius and with the

frequency(®.) where

qB
We = —— (2.32)
m
mv v
and L= —— = — (2.33)
qB o,
The value of @ and 1 can proved by considering the following;
From Lorentz force equation mv = qv x B (2.34)
given B =Bez, mv.Z =0 (2.35)
and mV.X = eBv, (2.36)
Thus m VX = ¢B V.y (2.37)
* eB(—eBv,
or vV, = — (j (2.38)
m m

. . eB)’
That is v, = -|—] W (2.39)
m
. . eB)’
Similarly, we have Vi =) W , (2.40)

eB * . . S
As we define ®,= —, therefore v = w’v. The solution of this equation is v =
m

v, e =x wherev=speedin the perpendicular plan to B.
Therefore m\.fx = eBvy (2.41)
d A 242
an o B (2.42)
v,
7 - (2.43)
(Vleiw‘:tj
MG (2.44)
(DC
v, io e
N — (2.45)
COC
vy, = iv, e (2.46)
dy : io
e C et (2.47)
V. ot q:
_fdy = — |e dio,t (2.48)
O)C
Integrating the above equation gives
VJ_ i@t
2% 5 e 2.49
P Y (2.49)
A it
and X - Xo = -— 1e". (2.50)
COC
The real part of these equations give ,
y - Yo = TrLcos ot (2.51)

and X-Xo = r.sin ot (2.52)

18

From the above equations , it is immediately seen that a plasma particle moves on
an perpendicular plan to the constant magnetic field along a circular orbit with a

guiding center at (X ¢, o).

AONUUINYUINNS)
RN ITNINENAY

CHAPTER III

NUMERICAL MODEL FOR
ONE DIMENSIONAL PLASMA

3.1 Overview

The basic technique for creating the model for the simulation is to choose the
appropriate numerical method to describe the physical system. For this thesis, the
finite difference technique is chosen . Once the finite difference scheme is set up, each
plasma particle is given the initial position and velocity. With these initial conditions,
the distribution of the charge densities in system can be calculated. Once these
quantities have been determined, Maxwell's equations are solved to find the electric
and the magnetic field. After the fields are known, the Lorentz Force equation is then
used to find the force on each particle. We can then push each of the particles in the
plasma one time step based on the force it feels. After being pushed, every particle
will have a new position and a new velocity. At the next time index, we can start the
calculation process again. Because we know all the new positions and velocities, we
can recalculate the charge and current densities. Continuing the cycle of calculations

with the Lorentz Force will then determine the next set of forces, and so on.

3.2 Simulation of Plasma in one dimension using finite difference method

The finite difference method proceeds according to the following steps. First,
identify a finite number of discrete points within the domain of interest. Next, the
derivatives that appear in the governing differential equations are replaced by the
discrete difference approximation. These approximating equations are written in terms

of nodal evaluation of the unknown functions.

20

Given the standard definition for the derivative of a continue function u(x)

du C imy g ux+h)-u(x) _ lim oo u(x +h) —u(x) 3.1)
dx (x+h)—x h
du ~ u(x; +h) —u(x;) Uy (3.2)
dx (x; +h) —x Xiv1 = X
X i

where point x; and x;:; are referred to as node points or grid points.

A similar approximation 1in concept for the first order derivatives can be
written for the higher derivatives. Therefore, an approximation for the second

derivative of u(x) may be derived as follows.

du du
dx — dx
d“u

o = Xit1/2 Xi-1/2 (3.3)

Xj X — X

i+= i-=
~ Ui, — Y /1 Ui —U, (34)

X — X X=X
X X

where X represents the x-location of the midpoint between X; and X;,,. If

the above equation is simplified to

21

2 -_ . .
d l: ~ Uiy 2u|2+ Uiy (3.5)
dx (AX)

Xi

With the finite difference expressions in place of the true continuous partial
differential equations and with the spatial grids for calculating the interacting forces,
evaluating the interacting forces can be done in a much more efficient manner than
summing all the direct interacting forces caused by the particles in the simulation. By
accumulating the charge and the current due to the particles on each grid, their
densities are used to calculate the acting forces that are applied on the particles.
Though each particle actually exerts a force on each other, the grid method (and the
alternated view) treats the process as if each particle feels a force due to the field at its
location. The advantage of the grid method is that the number of operations is greatly
reduced. The grid method procedure consists of three parts. The first part is to
accumulate the charge at a grid. Then, the tasks are to calculate the field caused by the
accumulation of charge and calculate the acting force that is to be applied to the

particles.

3.3 Initial conditions on the particles

The first step.is to have an appropriate system length L as shown in Figure
3.1 which is divided into N grids of length dx. From the definition of Debye length,
the system length should be many Debye length long. However, a Debye length is not
a hard number (temperature is not uniquely defined for a plasma as they are almost
always far from thermodynamic equilibrium). In deed, there is no need to have the
system be an exact multiple of a debye length ultimately, the plasma which is wanted
to simulate will dictate the system length. For instance, the long wavelength behavior
in an unbounded system, there must be the system length larger than the longest
wavelength which is interested in it. The longer making system length, the more

computational intensive the simulation confront. In calculating the Debye length, we

22

also want to know the temperature and the number of the particle to generate the

uniform distribution for the particle.

L)) Debye length

Figure 3.1 System length

Typically there must be number of particles such that are enough particles per grid
cell so that the simulation level is acceptably meaningful, the number of the particles

per grid cell is suggested that

number of particles per grid cell >> 10 (mberof dimensions) (3.6)

That is, for a 1D simulation, there need more than 10 particles per grid cell and for a
2D simulation, use over 100 particles per grid cell. However, using the different
numerical techniques and weighting schemes can change this rule. Commonly,
random number generator, which gives the number in the range of [0,1] will be
modified with the suitable multiplier (the number of the grids) in order to generate
the position of the particles in terms. of the distance between grid points and the
calculated grid width as shown in figure 3.2. In addition, the desired initial condition
for velocity including the initial perturbation are also selected to place the particles in
simulation for example, adding a sinusoidal perturbation in particle positions and/or
velocities to study kinetic effects such as Landau damping. The cold plasma means
no random thermal motion therefore, the electrons and ions are initially motionless.
However, the particles could be drifting such as an electron beam, in which case
velocity for all particle initially would be the same value. The cold drifting plasma
tend to be violently unstable though. The warm plasma requires that each particles be

given a velocity as following

23

Vv[i] = Vi + ‘/k—T x normal random number 3.7)
m

where normal random is Gausian (Maxwellian) random number (mean = 0, standard
deviation =1). The kind of random generation and the placement of particles are

properly considered in initial.

(Number of grid -1) x Random number generator = Initial particle’s positions
dx = —— and —=1 (3.8)

N = Number of grid cell

A
Y

Figure 3. 2 Grid width

3.4 Charge density

The charge density p;(at the grid with an index j) is obtained by summing

the charge ¢; locates at the position surrounding the grid within the distance of
i%. This method is known as NGP (nearest grid point) which is commonly used in

computer simulation model because this method is much more efficient than summing

24

the direct all particles in the simulation. There numerous ways to find the number of
particles which are distributed around each grid. Two of the possible methods are
shown following. The first way is straightforwardly done by counting the particles

directly as seen below in Figure 3.3.

Xj-1 Xj Xj+1

Figure 3.3 Dividing grid for counting particle

By using Loop structure such as For loop in the outer loop to run the number of the

particle and the inner loop employ selection structure , IF statement to determine
o . AX AX . .
criteria if a particle fall between x; - = and x; + el then the given counting

variable is added by one according to the number of particle.

The second way is to transform the position of each particle , which is often real
number to an integer number then use this number as an array’s index of charging
particle variable (charge particle is grid quantity) to count the particle. For example, a
particle at the location of 8.4 will give the array index of 8 . Therefore, the value of
counting variable with the index of 8 must be increased by one . However , a particles
at the location of 8.8 will also give the array index of 8 which is not desirable. In
such case , 0.5 might be added to the particle’s position before the conversion. As a
result, 8.8+0.5 and 8.4+0.5, which are equal to 9.3 and 8.9, will be are converted to 9

and 8, respectively.

25

3.5 Potential field and electric field

From p; , an electric field is found on the grid by solving the finite difference

forms of V- E Zeﬂ and E = -V ¢ that can be approximated with the finite
0

difference technique.

E=-Vé (3.9)

V.E = & (3.10)
Both are combined to obtain Poisson’s equation ¢ , where ¢ is the electric potential

vV.Vo = -2 (3.11)

In cartesian coordinates,

= i(a—d))+i % +ﬁ(6_¢j(3 12)
ox\ox) oyley) oz\oz)

2 2 2
or Vi = aqz>+a<i>+a<2|> (3.13)
ox° oy° oz
where operator V-V is abbreviated V* .
2 2 2
Therefore Vid = 0 i)+ 0 (l)+6 (21) - P (3.14)
OX oy 0z €

in one dimension the above equation is reduced into

d’¢ p
Vig = —L = _— | 3.15
¢ v . (3.15)

With the finite difference, E and ¢ are approximated as

¢j-1 _¢j+1
E = ——— 3.16
! 2Ax (3-16)

26

and ¢j+1 _2¢j +¢j—1 _ _&
(Ax) €

(3.17)

Once p; is known, it is used to obtain ¢; and E; forj starting from 0 to N-1.

A set of the linear algebraic equations are resulted as illustrated in the following

matrix equation,

[,] —%(Ax)z ~ 0,
2 1 : 11 o, °p)
1 -2 1 . 0, —é(AX)
1 -2 1 . o, | = D5 (a2 (3.18)
" 80
£ ¢N—2 '
N y Pn-1 2
Oy] _S_(AX) — by

There are various boundary conditions that can be applied for the calculation. For
this simulation employs bounded system by applying zero potential at both ends, x =
0,x=L(¢, =0 and ¢ = 0 are given), this is homogeneous problem which plasma
is bounded between grounded metal parallel plates. For inhomogeneous Dirchlet

boundary condition in Poisson system, there must be added a linear voltage as below.

phifi] = phi homog(i] + Vx N0 i_0 1N, (.19
|

Here V is the applied voltage across the metal parallel plates and the right electrode is

used as the reference or ground electrode, phi[i] is potential field at each grid cell.

27

3.6 Motion of the particles

The particles are advanced in time using the particle equations of motion
and Lorentz equation with the self-consistently calculated electric and magnetic
fields. Eventually, the motion of a particle can be obtained by combination of

Lorentz equation with Newton Law.

m.a; = q(Ej+ v;xB;), (3.20)
dv,
3= —= 3.21
a1 (3.21)
dx.
V'~ -—t 3.22
0 (3.22)

These equations are replaced by the finite difference equations as following

View ~ Void

n

t (3.23)

a new

Xnew — Xoid

At

new

(3.24)

Vv new

Where x , vand a are displacement , velocity and acceleration, respectively. The
index old indicate the previous time and the index new represent the current time.
As the velocity and position of each particle are not known at the same time therefore
the time must be centered properly. The algorithm generally used to solve this set of
equations is known as time-centered leap frog scheme. Time and space centered
roughly means that the finite difference approximations which are using is better than
first order accurate. This is time centered properly and for sufficiently small dt, stable.
The position and field are calculate at integer time-steps and velocities at half time-

steps of positions as following

(3.25)

28

nd v 3y - X(ted)-x()
2 dt

(3.26)

0, xdt = 0.2 (3.27)
where ®, is plasma frequency.

If the time step too small, round off errors will screw up and if this take too big value
(>2), it becomes unstable and phase errors in the particles orbit also increase as dt is
increased. This rule of thumb is suitable for particle in cell with Monte Carlo
Collision simulation. However, if everything normalize correctly, there are no even
needs the multiplies for dt. In this case, velocity is in units of grid cells per time step

and displacement is normalized to the cell spacing.

3.7 Computing cycle

The calculations can be repeated to simulate the motion of a plasma over a
time period. The positions and the velocities of the particles are updated by
calculating the forces on the particles from the interpolation of the field values at the
grid points. The updated fields are found by solving the field equations on the grids
using the new charge and the new current densities. The new charges and the new
current densities at the grid points are then calculated with the interpolation from the
new positions and the new velocities of the particles. This procedure is repeated for

many time steps as illustrated in Figure 3.4 .

29

Begin

SET NUMBER OF TIME STEP (numTimeStep)
SET NUMBER OF PARTICLES (numParticle)
SET NUMBER OF GRID CELL (numGrid)
SET TEMPERATURE (temperature)

GENERATE INITIAL POSITION AND VELOCITY (particle)

¢

CALCULATE CHARGE DENSITY (rho)

!

CALCULATE POTENTIAL FIELD (phi)

CALCULATE ELECTRIC AND MAGNETIC FIELD (ele)

CALCULATE NEW POSITION (pos)

NUMBER OF TIME STEP No

EXCEEDS THE GIVEN VALUE

(numTimeStep)

Figure 3.4 Flow chart for plasma simulation in one dimension

CHAPTER 1V

RESULTS FROM SIMULATIONS

4.1 Overview

In this chapter, the computer model for one dimensional plasma is developed
to simulate the distribution and motion of the particles in an ideal one dimensional
plasma. The code is written in Java language which can be interpreted by the browser
such as Netscape (version 4.0 or later) or Internet explorer(version 4.0 or later). The
source code is also provided in the appendix of this thesis. Figure 4.1 shows the
introduction screen of the program when it is run by such browser. The calculation of
the plasma parameters and the result will be illustrated. In addition, the investigation
into the effect of using the different number of particles, the number of grids and the

time step will be also conducted.

’ Y Voo (G 75N &

Figure 4.1 “Plasma simulation program

4.2 Results from simulation for the motion

We will start the investigation with 10,000 particles at the temperature of
1,000,000 K and with 100 grid points. Other necessary information is as given in

31

Figure 4.2. The output from the calculation consists of the position of each particle ,

the particle density ,the potential field and the electric field at each grid .

Plasma Parameters
dt=3.45249287316419854E-9 sec

GridWide =0.21212121212121213

Grid Mumbers =100

Debye Length = 218468747 7E4398355 cm
Swstermn Length = 21 cm

Temperature (k3 = 1000000.0

Paricles Mumber= 10000

Plasma Frequency= 1732499955467 8964E8 rad/sec

Input Patticle Density Plasma Parameters Position Potertial Electric Potential Distribution Charge Distribution

Figure4.2 plasma parameters

Some of the results obtained from the calculation with the input as given in Figure 4.2
are illustrated in Figure 4.3, 4.4, 4.5 and 4.6

7.643T647976B50223 10.637 305827266936 2923138839525 25 2.8013384620783R82
2.81700981 25233687 20 468552077514342 2.3305514531698134 14.237637969499448
1644414681 843636 0.478008877660242 1549844 9293RTA9TT 20.6ATE5E93902TT
12 166037149800193 17.265565181685866 14 6942350620000285 177718444 T1473548
18.00207464101073 2.8040803701502635 T A845230TEE21791 10.8021883216140892
1387248885057 2967 5ATE06228024T72145 a.76134814708434528 4 91TETH9I86633T
1.7549121259045326 4 830066690939936 2662240878671 058 B.A52263913641209
1.0616598527874093 0.2929780533395950 B.411946316973993 11.3946145338702083
13.33713287871091 12.734624577R937458 10.6627 20694825431 16.07TBE2E2275527 36
5201 0454649080455 2.210910548594545 2. 72682649195676 12.741138352956145
5.072581161606368 1.9634405982077168 10.727065439687977 13.950933844719117
19.4826T4748817847 16666297 10595814 1.07127630146TES 36 15.195353012692035
20 46170421984877 11.6579481310TEE46 01407 1527TEBETA9G62 2 15.1231505496270105
11.230808591494247 11.371531328917608 12.354589600601 207 1163771321 TRAY6T 2
16.30344 2724947356 19.6897 359354661 2 0.3712680901372111 19.413296132976104
13.647031392643202 20.062052444178775 9A608318517250146 201641563761 30865
18.783002702093427 f.7TRSE80002095591 10.866072591756295 1.9643382339710694
16.25308363981747 J.B61235342253543 12.3291136196445445 991119096167 2638
0.32366018225528215 12.818898577515936 17.784469018559722 I RH30640293713712
17.820750326067728 1.2718886342052933 19.22849803088164A 12.04461624113324
7.25595338849633 5.98699197111445 B.710633557907 268 18.2650679R95334572
2 T72B93716RO104205 15 79246617479423 A870770816150401 14.06814200439992
89.2445604022424845 11.334220402789242 10.530054165913272 19.8180436898945026
17.432137145691335 4.94856305605843 A 15764394053651 38 19.9072282215560845
14.326309562523063 10.158471557808296 16 7BT1354674284931 16.693986332380508
Input Padicle Densty Plazma Parameters Postion Potential — Electric Potential Distribution Charge Distribution

Figure 4.3 Displacement of the particles (cm.)

32

oo cco oo oo oo
O Pmeoa" RS oD oo o
P 0 T v S 0 o O e o W 3 0 D0 0 0 00 D e 0
0000 T v v R o 05 0 o e 0 e v O e e

o _=e T — L Wy Y U 3
e EeiaE T g P eigcir o S ma e = S m
OGO T P OO D D e 0 e 0 e e S P O
S Gl G0 Gl D e o 00— TR —

o8 oooooo ooo = -

S o rimmaoo— oo 222 a2 m e s
1T e Pl 0 e D T 0 0 e 15 0 e 0 T e 0 0 3 e e W 5 0
R 7 e 0 e 7 e e e D e e e 50 0) e 50 e 50 0

= o O oooooo O o0 o0

== 0 0 00 e 0 0 0 e 00— 00 000 00 D) 0 e 0 0 0 L
O D O O G O O — — G 00— — SO)

Charge Distribution

Patential Distribution

Particle Density Plasma Parameters Fosition Potential — Electric

Input

Figure 4.4 Particle density at each grid

O C 0 T E C C 0 DD D O T T T O C T T DO O i

R o e i NGO D O
Lol 5 L S5 5 L S S 2 R bl Ul

CRC D S) — DL = — L0 0 O SR 00 0o O Oy 0
0T = 000 0700 WO P = T 0 P-m 00— 10 = 105D P — O 0 00
N F-- OO P (007 L0 — L0 P-- 00 == 00 - 05D — OO Lo ==k O
== SO0 CH U — 00 OO P —— = O L G O O P O OO = L 00
F= DL T = O D 0 T O L0 e DO O L O T 00 D 0

[fu] iwliu)in]iu} [Lu] [Culdwliu]in]iu] [fu]iw]iw]iu} [{u]iw) {u]
w5 S S i = i) 5 5 i
ot 0 et T e LU LU 7 L] e e L3 00 et LU LS e e D LU L O e L T
O 20 00 O 0 0 00 T = T 00 O LD L = = = OO T L O TR D
o= 00— (0 == 00 T e L T = 0 e e LD e = D0 D D O e —
00 0D O O ot o D00 D0 o 07 o e e L o L) T = O O O o
== D O O 0 00 L T 00 o 0 e o L L e = L T L O O o
OO0 L0 D O O L) P e e T O L 00 OO e e = 00— D0 00 0 =
O e e OO 0 IR0 00 e D LT 0 o OO0 L L e 07 TR W T o L Y P
== = OO0 O 00 S 0 L P 0000 L O OO O L D e D0 00 o —— ()
00 00 O L e 0 L) (00 e (0 e 0 e e L P D DD P S0 0
0 =— == O 00 C0 35 =t = e — O — o (0 o = 20 T 0 OO F-- OO
~— 0 SO — = O L =P F-- Qo = O — T 00 O Ly =

q
fi
7
q
a2
q
fi
1
1
7
1]
a
1
4
1]
g
4
2
i
4
1
]
i
4
a

L0 L O 00 O L TR — O = —— O - L L0 O 00 (0 O = L0000 00 00
O e— L) e Poe T = O P L O O O O S r— P OO P OO — — 0 O

(=] [{=llu] (L= o [L{=] [d=) o [CufimYlu] (L=
: i) T e :
R U e TR A e BY R R B g (VAR WA TR AR e B
W= Wit g e Wa=r oo el s =l
PP 0= 7 OO = O DL — " — 00— — L — S P OO
O et e L st) 00 00 O e 00 00 00 00— O e — OV e TR

0 P C OO 0 DO D D0 T T T O O 0 T T O] e

Charge Distribution

Potertial Distribution

Electric

Input Particle Density Plasma Parameters Position Potential

Figure 4.5 Potential field at each grid

33

89007661 2235E-7
4971033835646E-6

1661603397801 5E-7
53334433079E-3

2
5
5
2
1]
g
7
4
4
g
a
i

i
B

g

4

1

5

8 30
73
28
70
70
26
ar
83
i
44
09
78

35
3
34
&
a
5}
0
3
i
2
hili}
41

e e Rt A A Sar I
T T T T T s SN mm T e St

.......... Soupoiy TS e
e PP L L e P e R

-1
-1
-1
-3
-G
-5

214E-7

[[y Rty Sy T] S S
C T e e ey

cownooSne P B r —F o H e e o
oo B Boc s Sam ZE S T rn S E
= ol o0y o (gl o Lo D-ﬂ-ﬁ[_
—omE el SR T om0 Do D o S
ot 0 P M o B0 ey T o T i 2 00 o U0 D ERID
N — [arpiges] OO o) O
momm e DT —e =]
@ [Pebrtes Sramon e 07 Fo et
I R e e A T = B P | ;oo
ST e et o s e e —
= r— oo (] LoD O e o 00—
W@ Dot 02 = ey — et
[ap] o o o OO F-- L (=) =t 00
= e et 0 e P2 i e e B o e =11
w2 [S e =T
= o S D N = P e B2 gy of-me
Mo e S s S L i — T = 00 o O oy e 0 D0
e D an ey n e Pl e o T e e
oot P T S I e 2R S O i o MDD
T bt e T e na NS e inm
T e e T =T = P e = e T i

Charge Distribution

Potertial Distribution

Electric

won

lat

in simu

Figure 4.6 Electric field at each grid
If all the electrons of plasma are removed from a uniform background of ions

By investigating the results at one time step. The distribution of the potential

Input Particle Density Plasma Parameters Fosition Potential

with certain distance as seen Figure 4.3, the electric field in Figure 4.6 are generated
Poisson’s equation. Then the forces on the particles are found by using the electric
field and magnetic field in Lorentz equation of motion and recalculate the field from
field with' one grid and with many grids according to the theory is illustrated in
Figure4.7 and Figure4.8, respectively. The simulation with 10,000 and 1000 particles
give the potential distribution as shown in Figure 4.10 and 4.11.When the density is
increased (more particles), the local concentration of the charge particles around each
grid is also increased which in turn gives rise to the potential field at each grid and

due to distribution of particle density as illustrated in Figure 4.4 according to

the particles at their new positions.

4.3 The various parameters
having smoother profile of distribution than the one obtained with the less number of

particles.

34

Figure 4.7 Potential distribution near a single grid in a plasma

-1 j j+1

Figure 4.8 Potential distribution with a small number of grids .

35

L w)

arge number of grids.

N

O T | T T T
u TTONN LB LB & S Vel N els,

Figure 4.10 Potential Distribution from the simulation with 10,000 particles

36

with 1,000 particles

0 20 40 60 50 100

Figure 4.12 Density Distribution from the simulation with 10,000 particles
and 100 grids

37

When the effect of the time step is considered, with the time step that more
than 100 times the time scale of electron oscillations, the result from the calculation
for the new displacement of the electrons leads to the error in the displacement of the
electrons. In such case, the electrons are moved beyond the boundary of system.
Consequentially, the new computing cycle is continued with the erroneous initiated
condition. With the estimation of the plasma frequency of 10° Hz, time step of 107
sec. and the system length of 21 cm. , the displacement of each electron is obtained as

shown in Figure 4.13. When the time step is 10™ sec. , 10” sec. and 107 sec. The
displacement are shown in Figure 4.14, 4.15 and 4.16, respectively. The erroneous

results are clearly seen with the time step 10~ sec. and 107 sec.

2.440840351430724 8.111101849127545 1377534171591 2397 13.2363786429768149
19.433672444927417 4 17BB282599597 06 2. 23BB5T 2546904026 4. 870640400329855
12.530705532390492 4 581 506904420835 09205047 269532411 2.506617622709352
T A1 263IRI19TH4AE 19479904 363515406 4 2527416R15258235 4.7809784939794034
TB.70403307772348 9854144737 0R2T2E A r2555781123408 A.430795950231408
9.770094959356964 14 404084486035175 12.007624130441517 1346029991 0914134
10.716151340682548 17.324277337328617 20 233RQ2453749024 9.02957049511477
101255977 393505 191160545 32841 12 9 71B209826532038 1.759038R37297072
7.24306475329450 9.3938148B85827174 17.94006703322377 2.7041379454233168
0.3147252330212027 16.00B6460302466E 15.647143703385872 10.980727110331259
7.2044704184107749 1.46514308872291 1177355625679093 10.022604474747924
14.880217699389295 12.823231945389887 19.42019821676447 2.52508927871445445
20.54B8502503877593 B 245744026697 467 2.2043324129710373 13.3426466062420617
1595802189577 3069 84447897 TEETEI1 6 18.109184741814875 15.570672848940603
1.3884727E17078911 18.397561527963568 T ATEETOTE2420496 10.54618026581 764
1.6350148220467657 B.990B850495436933 16.060024789554024 19.81397859036547
19.610258876644775 2.558352248459489 15.458838327729774 20.175337520111068
14.128105680822894 8.1703355176282458 19.584905691963224 12.055143836431 752
14.308886475381463 19.68906517077145 12.854937080838296 4. 812844607729437
101461 79459960035 3.954538082635674 16. 146B97HE8285977 19.9082295867948747
12.348967525984471 10.17E2800863712444 0.934177T0962033182 14.091985181700142
14.545595329582877 13.846829192190206 10.8038109353649617 12.5541308502766EA
11.854955444 267564 12.27428447232737 2.B024387797204986 17.28282281340838
A.45576644F422331 2.187892128030934 A.5458214572101183 H9.BA07E3I2E9809927
19.050537843923603 15.54920380561 9694 17.024931 253702267 17.945141303736442
Input Particle Density Plasma Parameters Position Potertial Electric Potential Distribution Charge Distribution

Figure 4.13 Displacement of the electrons from the simulation with 10,000 particles
at time step 107 sec.

38

Q0 - =t [e S e | ==t 00— L) = 1D
o TC0 T e LY e e 00 L0 WO O e e T 00 e D D T D) e
ot = T TS T WO s 0 L) e LY e 00— 0 00 T P OO0 e 0 L0
1000w 100 e T D 0 P D000 T et L D00 0 T e D L P T e P T
TR e e T e e P e e L L 0 200 T D e T D D P T T P
L 100 L e 00 e e L e i 0 00 0 e 4T 2 e L 200 00T T e e
e e I 200 P 2 ST LT e 0 D00 00D0) e P D00 e i P P D)
SO == 0T T o = L 00 e P O S0 e 100 0 L0 P P LD 00 T 0
[o e o e L L e Ll e | i 10

/41483606
2292167825
884806494179
21075364738

3842396584904

62
a3
90
30
49
63
91
ar
6Y
14
48
20
18
7
=)
91
01
=10}
76
41
98
45
0z
G2
53

W= S P T PD 0 LD L R N T - —
oM T mer el S g e e T el
e P e e e W e e D M e e O

DL TP DT Lo =

287234630774
4063744786591

1
2
2
1]
2
T
g
2
]
7
7
T
3
]
]
g
2
T
1
G
1
Ty
]
7
G

[LuJunfiu]

20354201958
280441018243
640141396774
32490109244T
04439500596
a5

52

a1]

58 g

78 1

59 2

20 1

20 g

16 1

32]

39 1]

G1 3

i 0

69 2
15943491291
064723830296
719712675495
3251649165046
9353265725589

939
329
5349
134
G54
472
360
492
934
647
G35
144
445
336
246
249
273
oog
ari
04%
BE2
920
10

G5

Ell

Charge Distribution

Potential Distribution

Electric

Input Particle Density Plasma Parameters Position Potential

Figure 4.14 Displacement of the electrons from the simulation with 10,000 particles

SecC.

4

at time step 10

o
Sen oca@rooe o I W

S R T D =00 DT e b SO0 OO0 O
Ty 0 o 00 P A0 £ £ P o e e] £ £ £ P 00 0 P
£8P et (0 P £ 9 0 e (e 7 i (0 0 00 e o P 08 0 (0 0]
0 e e 50 0 0) W 0 0 000 £ £ 0 P) 00 = M e 0 e

= OO0 = L) e P LOWC o 00 o oo e 0 e e L 0 (T e e
oy U 000 0 L0 O e L L L 0w D0 e et 0 e e D O LW D00
Pon MO CH O O = P- S L LD S = S = (i O O O -
o T D LD O e o (00 P P D00 QO L (N O D — QD O L

00 07 5 00 E0 O 0 = L0 O 0 e 0 o G e 10
=T M S T M el P M i e S g CROIE0 0 T
T ol e 0 £ e 05 00 6 R e e e

LW

L R e s 39% o, SOD=r0o=r 0000 T
S0 -—00 0 0 S b g O D LR 000 = P
SR =E T 0 00 S0 00 T = 00 (L0 (et O e S b RO Q0 Tk
O = P D00 = 00 07 o L0 GO L0 QR = — D D D
== b et O LD T L i 2 e o D e e O D Q0 T e
L0t L OO o e (8 (00) 05 s TR O P QO G- 0 O O 00
O R 0 P P Q0L e QOO0 o 00 = O e L O o (o P LD e L0000

OO0 —— — L = = P — 0
SO OO O P P 0O —

o o Lo B L T e e S e =T 1=
— ERE0 T L (o L e] e L 0 R L 0 T (0
?5353

W m =T o oo [y [v
[L L R gt] LOV L O == WO G0 O == 0 = - L)
=R - 00— 00 O - 000 0oL

D07 C D P T £ P DD) D 3) e 00) 0 P 0
[el e = e Tt T iy L T Ll
P 0o L e e £ 00 ol e 0 £ 0 O 4 e e 065 1 e O e T

Charge Distribution

Potential Distribution

Electric

Input Paticle Density Plasma Parameters Postion Potentizl

Figure 4.15 Displacement of the electrons from the simulation with 10,000 particles

-3

at time step 10™ sec.

39

e e e s 0 o okt
| D, W00 Yy LD T, 0 — s

126519581 96615349

-25 G4BRG2E36231547

Charge Diztribution

Potertial Distribution

Electric

Input Particle Density Plasms Parameters Position Potertizl

Figure 4.16 Displacement of the electrons from the simulation with 10,000 particles

at time step 10 sec.

The results obtained from the calculation with the different number of grids are

considered. The calculation are conducted with the number of grids of 100 and with

the number of grids of 50. While the system length remains the same, the width

between two grids is increased when the number of grids is reduced. As a result, the

fluctuation of the electric field is reduced as the field is averaged over the longer

interval Ax. This effect is obviously shown in Figure 4.15 and 4.16.

40

ARNAIEUN T IVIE INE

l%ue 8 Simulation of Electric field distribution with I0,00%articles
q

4.4 Results from simulation for the characteristics

Because the ions are much more massive than the electrons and so are
considered stationary. Plasma oscillations are caused by the displacement of electrons
from a uniform background of ions which electrons have distribution at each grid as

shown in Figure 4.12. When the electrons are displaced, electric fields are generated

41

due to charge separation. Due to the inertia of the electrons, they end up oscillating
back and forth at a very high frequency which is called plasma frequency as seen in
Figure 4.19 which is a plot of electric field at one grid versus time with the time step
of 3.5x10” second. The approximately obtained frequency from graph and from

theory are 5.9x 10° rad/sec. and 1.8 x 10® rad/sec. , respectively.

Electric field(x10-7)

AN /A

Figure 4.19 Simulations of Electric field distribution and Time
at time step 3.5x10” second in one grid

In addition, the characteristic time which is determined by plasma frequency,
plasma still have characteristic size which is determined by Debye length. The Debye
length that is calculated from theory is 2.18 c¢cm. and from simulation which can
approximately measure by graphical technique as illustrated in Figure 4.20 1s 1.89 cm.
The difference of Debye length and plasma frequency of the both cause from various
factors. The major difference is the reality of plasma have three dimensional
characteristics but the obtained results from the simulation are done on a one
dimensional plasma. The other owing to self limiting simulation of capable
microcomputer and the selected technique in each step. For instance, the number of

particle and the number grid these directly affect on the ability of computer including

42

the used techniques for computer simulation, finite difference, this technique have

truncation error which is decreased as A x or grid width becomes sufficiently small.

T

A

\

AOUUINBUINT)
RN ITNAINENAY

CHAPTER V

CONCLUSION AND SUGGESTIONS

5.1 Overview

The traditional method for obtaining a physical understanding of a physical
phenomena is through the experimental approach. From the experiments, the results
are interpreted in terms of the analytical relations. However, there are still some
situations of interest where the experiments cannot be conducted under a given
circumstance. In that case, the computer simulation is an alternative method that
offers many advantages over the conventional experiments. It can be tested much
more quickly while, at the same time, various physical effects can be specifically

included or omitted. It also costs less than actually conducting the experiment.

5.2 Simulation in one dimensional plasma

There are a large variety of techniques for simulating plasmas but basically,
they are of two types; the particle model and the fluid model. This thesis adopts the
particle model which consist of calculating the charge densities on the discrete grid
points using the nearest grid point (NGP), then the field is calculated from Poisson’s
equation and by using Lorentz equation the electric and the magnetic field are
obtained. Later, by applying the calculated force on the particles, the new positions of
the particles are known. This study focus ‘on the motion of a one dimensional plasma
in order to obtain various parameters, displacement, velocity and acceleration. The
parameters that characterize plasma such as Debye length and plasma frequency are
also estimated and compared with the theoretical values. The selected numerical
technique is the finite difference with the condition of zero potential at the boundary.
In addition, the inspection of the number of particles, the number of grid cells and
time step are also conducted. These parameters determines the precision of the

simulation.

44

5.3 The result of simulation

This program simulates the motion of plasma and in validating results, it
also gives the primary characteristics of a plasma the Debye length and the
plasma frequency. Plasma frequency is obtained from simulation and from theory as

5.9x 10® rad/sec. and 1.8 x 10® rad/sec. , respectively.

In addition, the characteristic time which is determined by plasma frequency,
plasma still has the characteristic size which is determined by Debye length. The
Debye length that is calculated from theory is 2.18 cm. and from simulation, which is

approximately measured by graphical technique as showed in Figure 4.20, is 1.89 cm.

The different results from the simulation and the theory take place due to
various factors. The main difference is due to the fact that the actual plasma is three
dimension but the obtained results from the simulation are conducted on one
dimensional plasma. This error may be reduced for the simulation of the two or three
dimensional plasma. The others are due to the self limit in the simulation by the
capable microcomputer and the selected technique. The number of particles and the
number of grids directly affect on the ability of computer. The more number of
particles and the number of grids, the higher performance computer is required to
cope with the larger number of equations. The techniques used in the simulation, the
finite difference, also causes the truncation error, which can be decreased as Ax or
grid width is reduced toward zero. As an improvement, the other numerical technique

may be considered.

This study is limited for a one dimensional plasma. Though the simulation for
the two and the three dimensional plasma are much more realistic, the one
dimensional plasma still has its merit. This is because, for the one dimensional
plasma, the simulation uses less computing resource. Since the theory of the one
dimensional plasma is well developed, it is easier to test the suitability of a numerical
technique against the theoretical prediction. In contrast, the two and the three
dimensional simulation are very computationally intensive. Therefore the optimal

result that might be selected between the time-consuming calculation and the

45

accuracy of the obtained result may be chosen. By convention, this is compromised

by limiting the resource for the simulation while still retains all the relevant physics.
5.4 Suggestions

In deed, there are numerous methods and conditions in each step for improving
the simulation. Some other methods that can be further implemented are given and

briefly discussed.

CIC(Cloud-in-cell) technique

In finding the charge density on a discrete grid point with NGP(Nearest grid
point) technique, we simply count the number of particles within distance. By using
CIC technique, the additional expenses are required for each particle. The advantage
of this technique that it is more accurate than NGP technique due to the smoother
distribution of the charge density. This technique employs two nearest grid points for
each particle in order to deposit the fractional charge, which is proportional to the

separation from each grid point as seen in Figure 5.1

X)4 X+

Figure 5.1 Position of particle between two grid points.

For the above figure, x; is the position of the particle and q. is the total charge.

Therefore, the fractions of charge particle that is assigned to j and j+1 as following

o Xia =X .1)
9 = 9 Ax .
and
=g | 2N (5.2)
Gt = e 0y '

Electromagnetic field

Given Vy and V, are velocity in x axis and velocity in y axis, respectively. The
velocity in y axis can be obtained from velocity in x axis and the angle, theta at first

time is evaluated from random generator

Vi = VcosH (5.3)
Vy = Vsin0 (5.4)
thus, Vy, = V tan0 (5.5)
and 0 = random numberx2m . (5.6)
From Lorentz equation Fg = qVxB (5.7

the electromagnetic field in z axis can be calculated by cross product as following

Fg = q V, xB, (5.8)

m V, = qV,B, (5.9)

B 1= 1o (5.10)
qv,

Possible value for one dimensional plasma

For a three dimensional plasma, a particle is free to move in any direction but
only the component in one specific direction, namely x-direction, is of interest. On the
other hand, in a one dimensional plasma, a particle only move in one direction, x-

direction. As a result, starting with the same number of particle, less particle would

47

contribute to the motion in x-direction in the use of the three dimensional plasma.

N
With this assumption, assume that each particle has the same drifting velocity, v, the

average distance a particle can move in x-direction for three dimensional over time

At , H is half hemisphere and IdQ is for the positive direction, these are given as
H

N jv~exaQ
X = At (5.11)
dQ
H
2”%/\ A
= ﬂjjg-ex sin 0dodd (5.12)
T 00
%
= VAtjcosesinede (5.13)
0
1
=i (o MAL 5.14
3 (5.14)

The above relation shows that a particle contributes only half the distance it should
have moved if it is a particle in a one dimensional plasma. Therefore, it is necessary
that the value of ny is multiplied by the factor of two to compensate for this effect in
order to obtain the similar result as compared with that of the three dimensional

plasma.

Two dimensional Plasma

There are various problems that one dimensional plasma is not suitable.
Therefore, two or three dimensional plasma must be considered. The method in two
dimensional plasma is similar to one dimensional plasma but it take more calculating
time and resource. The first step is to use the suitable random number to generate the
position of the particles (x;, y;). The interesting random number is the random walk or
the drunkard’s walk which is used to describe the random motion at any given point
in a two dimensional space. In this scheme, the motion can be equally either to the left

or right or forward or backward. The principle for this random number generator is to

48

produce random number in the range of 0 to 1. If the number is between 0 and 0.25,

the direction is up , for 0.25 to 0.50 the direction is right , for 0.50 to 0.75 represent

the down direction and the remaining range is equivalent the left direction The next

step is to find the charge density each grid in order to supply the right hand side of

Poisson’s equation.

_-_M_-_
ikl i+, kH

i
Y

& Ay
Ay - ¥

f b 4

Y —X x
ik i+, k

Figure 5.2 Position of a particle in the grid cell .

As seen from Figure 5.2, the weights are given by

Pjx =

Pj+1.k

pj+l,k+l -

Pjx+1 =

(Ax=Xx)(Ay —-y)

Py (5.15)
P X(iz—A_yy) (5.16)
o, Aiiy (5.17)
o, (AX=X)y (5.18)

AXAY

49

VA(x,y) = -p(X,y) (5.19)

In finite difference form, this becomes

(=20, +0p1). (G =20, +dyn)

o + Ay2 = -Pjx (5.20)

and
(Edix = W (5.21)
(Ey)ix W : (5.22)

Where p, is the charge density uniformly filling a cell , AXx and Ay are the width of
grid cell and the height of a grid cell, respectively. After obtaining the charge density,
the remaining steps are similar to that of the one dimensional case. In general, we then

have the following relations.

50

References

—

. Birdsall, C. K., and Langdon, A. B. Plasma Physics via computer simulation.
1* ed. Singapore: McGraw-Hill, 1985.
. Dendy, R. Plasma Dynamics. 1% ed. New York: Oxford University Press, 1999.

[\S}

(98]

. Tajima, T. Computational Plasma Physics with application to fusion and

astrophysics . 1% ed. Singapore: Addison Wesley, 1987.

N

. Smirnov, B.M. Introduction to Plasma Physics. 1*' ed. Moscow: Mir, 1977.
Celia, M. A., and Gray, W. G. Numerical Method for Differential Equation. 1%

N

ed. Singapore: Prentice-Hall, 1992.
6. Press, W. H., Teukoisky, S. A., Vetterling, W. T., and Flannery, B. P.Numerical
Recipes in €. 2"%ed. New York: Cambridge University Press, 1992.

7. Rojiani, K. B. Programming in C with Numerical Methods for engineers. 1* ed.

Singapore: Prentice-Hall, 1996.
8. Curtis, F., and Patrick, O. Applied Numerical Analysis. 5% ed. Singapore:Addison
Wesley, 1994.

AONUUINYUINNS)
ANRINTUNAINENRE

52

/* */
/* Plasma simulation in one dimension program */
/* last modified 1/12/2000 */

/* By Chawisnach Engchatcharoen */

/* */
// How to compile

/I javac Thesisl4.java =» Thesisl4.class

/| appletviewer fileName.html

/" in fileName.html

/' <html>

/I <applet code="Thesis14.class” width=750 height =440>

// <lapplet>

/I </html>

/I recommended Netscape or Explorer version 4.0 or later

/*

JavaSoft is the divisoin of Sun Microsystem responsible for Java.

Java’s first official beta release was in November 1995.

In OOP, program is considered to be a group of objects that interact with each other.These objects exist independently
of each other since Java inherits OOP concepts from C++ and other languages such as Smalltake(pioneered OOP in
the 1970s).

Java can be used to create programs that execute from WWW pages,these programs are called Applets.

Java program is created as text file with extension .java that is compiled into one or more files of bytecodes with the
extension .class .

Bytecodes are sets of instructions similar to the machine code instructions created when a computer program is
compiled since the difference is that machine code must run on the computer system it was compiled for but
bytecodes can run on any computer system equipped to handle Java programs.

Java has been described as C++ minus because of complex parts of C++ were excluded from Java such as pointer ,
memory management(occurs automatically in Java).

Java program that executes from a Web page is called an applet, all other Java programs are called applications.
Pointer can be used to forge access to parts of a program where access is not allowed, by eliminating all pointer
except for a limited from of references to objects thus Java is a much more secure language.

Platform independence is the ability of the same program to work on different operating systems therefore Java’s
variable types have the same size across all Java development platforms so an integer is always the same size on
matter which system a Java program was written and compiled on.

Java Developers Kit (JDK) is a set of command line tools that can be used to create Java programs which includes
compiler , interpreter to run compiled Java standalone applications, applet viewer to run Java applets ,sample code for
developing Java program and other utilities.

Java Application Programming Interface (API) is set of classes used to develop Java programs as these classes are
organized into groups called packages

Java API includes enough functionality to create sophisticated applets and applications and it must be supported by all
operating systems and Web software .

JavaOs 1is a compact operating systems intended to run Java programs and used to embedded on processor chips in
appliances

Load JDK at www.javasoft.com/

Applet demos are interesting examples of Java applets which all come with complete source code.

Java runtime interpreter is stand-alone version of Java interpreter built into HotJava browser which acts as a command
line tool for running nongraphical Java programs

Class is a template for multiple objects with similar features.

When you write a program in OOP ,you don’t define individual objects, instead you define class of objects.

Objects are made up of many kinds of smaller objects.

Term instance and object often are used interchangeably in OOP.

Generally, every class you write in Java is made up of two components

Attributes are the individual things that differentiate one object from another and determine the appearance, state, or

other qualities of that object.

Behavior is the only way objects can do anything to themselves in order to define an object’s behavior, you create
methods that is just like function in other language but it is defined inside classes unlike C++,Java does not have
function of any kind defined outside of classes.

Java header and stub file generator (javah) is used to generate C header and source files for implementing Java
methods in C.

Java has single inheritance that each class can have only one superclass although any superclass can have many
multiple subclasses, unlike C++, class can has more than one superclass called multiple inheritance.

HotJava is Web browser that not only support Java applets but also was written using Java language.

*/

53

Applet is Java program that executes on a World Wide Web page as be a part of Web page by attach Java applet to
HTML page using two HTML tags <APPLET> and <PARAM >.This HTML code is included on a Web page along
with all other HTML code like putting a picture on web page.

The browser acts as the operating system for applets, you cann’t run an applet as a standalone program in the same
way you can run an executable file.

Once the applet is written and compiled then add it to HTML pages , if the applet makes use of class files that are not
part of the standard Java API ,these class files must be located in the same directory as the applet’s class file.

Abstract Windowing Toolkit (AWT) is set of classes used to build a graphical user interface for Java application and
applet , it also includes classes to handle fonts, mouse click, keyboard input, and so on.

AWT is one of useful packages included with JavaAPI that comes with JDK.

Numerous ways to develop GUI for Java programs such Java Workshop, Jfactory ,etc or even using AWT .

import java.awt.*;

import java.util. *;

import java.applet.*;

import java.awt.event.*;

public class Thesis14 extends Applet implements ActionListener, MouseListener,

MouseMotionListener,Runnable

RECT3D rect3d = new RECT3D();
PLASMA plasma = new PLASMA();

Date timel,time2;

Label titleNameL,enterPasswordL;

Thread moveGraphl moveGraph2;

String password,;

Button okButton;

Graphics g;

TextField enterPasswordTF, dtTF, numTimeStepTF, numGridTF, numParticleTF,
temperatureTF, densityTF;

double temperature;
int numTimeStep, numGrid, numParticle;
long startTimel,endTimel ,startTime2,endTime2;
boolean firstPage = true, callMouseMoveTaskbar = true,
callMouseMoveAtPlasmaSimulation = true ,callMouseMoveButton = true,
callAllButton = true, callEnterInput = true ,
paintFrame = true, nullPage = true, paintAnimaGraphPhi = true,

paintAnimaGraphCharge = true;

Image graphTempDensPic,definitionPic;

Color myBlue =new Color(150,150,200);
Color myGray = new Color(100,100,100);
Color myCyan = new Color(201,230,241);
Color myYellow =new Color(248,252,84);
Color myGreenl =new Color(214,241,201);

54

Color myGreen2 =new Color(204,255,153);
Color myCyan2 = new Color(103,235,250);
Color myOrangel = new Color(251,162,102);
Color myGreen3 = new Color(9,255,163);
Color myViolet =new Color(217,142,244);

Font f35cu = new Font("Courier", Font. BOLD+Font.ITALIC, 35);
Font f20cu = new Font("Courier", Font. BOLD, 20);
Font f10co = new Font("Cordia", Font.PLAIN,10);
Font fl1co = new Font("Cordia", Font.PLAIN,11);
Font f12co = new Font("Cordia", Font.PLAIN,12);
Font f13coB=new Font("Cordia", Font.PLAIN+Font.BOLD,13);

public void init()
{

setLayout(null);

titleNameL = new Label("Plasma Simulation in One Dimension");
titleNameL.setFont(f35cu);

titleNameL.setBackground(myBlue);
titleNameL.reshape(10,40,725,60);

add(titleNameL);

enterPasswordL = new Label("Enter Password");
enterPasswordL.setFont(f20cu);
enterPasswordL.setBackground(myCyan);
enterPasswordL.reshape(285,200,172,27);

add(enterPasswordL);

enterPasswordTF = new TextField(15);
password = "";
enterPasswordTF.setEchoChar('*");
enterPassword TF.reshape(295,260,150,20);
add(enterPasswordTF);

enterPasswordTF.addActionListener(this);

this.addMouseListener(this);
this.addMouseMotionListener(this);

//{{INIT_CONTROLS
s

public void paint(Graphics g)

{
if(firstPage)

55

{
setBackground(myCyan);
[Hemmeeee Draw Plasma simulation profile-------- */
g.setColor(Color.black);
g.drawLine(9,100,735,100); // hor line
g.drawLine(735,39,735,100); // ver line
g.setColor(Color.white);
g.drawLine(9,39,736,39); // hor line
g.drawLine(9,39,9,100); // ver line
g.setColor(myBlue);
rect3d.paintRect(g,230,170,280,180); // paint rectangular of enter password
/* Times /A
/*
while (firstPage)
{
clock.paint(g,320,380); // call paint in CLOCK class
repaint();
} */
}

if(!nullPage)
{

setBackground(Color.white);

if(!paintFrame)
{
g = getGraphies();

g.setColor(myCyan2);
rect3d.paintRect(g,10,10,727,389);

g.setColor(Color.lightGray);
rect3d.paintRect(g,50,35,650,340);

g.setColor(Color.black);
g.drawLine(65,50,685,50); // hor line
g.drawLine(65,50,65,330); // ver line

g.setColor(Color.white);
g.drawLine(65,330,685,330); // hor line
g.drawLine(685,50,685,330); // ver line

56

if(!paintAnimaGraphPhi)

{

double

plasma.debye(numParticle,temperature);
plasma.generateParticle(numParticle,numGrid);
plasma.adjustParticle(numParticle, numGrid);
plasma.assignCharge(numParticle, numGrid);
plasma.computeField(numParticle,numGrid);
plasma.pushParticle(numParticle,numGrid);
double yPosition, xPosition = 0.0;

increase = 0.0;

g.setColor(myGreenl);

g fillRect(66,51,619,279);
g.setColor(Color.blue);

g.setFont(f12co);

g.drawString("Potential Field Distribution",75,65);

g.drawString("Time step = "+plasma.dt*numTimeStep+" "+"sec.",75,80);
g.drawString("X-axis : Grid",75,95);

g.drawString("Y-axis : Potential at Grid",75,115);
g.setColor(Color.black);

for (int i =0; i< numGrid; i++)

{

increase = (692 / (numGrid-1));

xPosition = xPosition + increase ;

yPosition = plasma.phi[i]*100/10e-6;

g fillOval(70+(int)xPosition,100+195-(int)yPosition,3,3) ;
}

if(!paintAnimaGraphCharge)

{

plasma.debye(numParticle;temperature);

plasma.generateParticle(numParticle,numGrid);
plasma.adjustParticle(numParticle, numGrid);
plasma.assignCharge(numParticle, numGrid);
plasma.computeField(numParticle,numGrid);

plasma.pushParticle(numParticle,numGrid);

g.setColor(myViolet);

g fillRect(66,51,619,279);

g.setColor(Color.black);

g.setFont(f12co);

g.drawString("Charge Density Distribution",75,65);
g.drawString("Time step = "+plasma.dt*numTimeStep+" "+"sec.",75,80);
g.drawString("X-axis : Grid",75,95);
g.drawString("Y-axis : Charge Density at Grid",75,115);
g.setColor(Color.white);

57

double add ,xPos=0.0,yPos=0.0;

for (int i =0; i< numGrid; i++)

{
add =(690/ (numGrid-1));
xPos = xPos + add ;
yPos = plasma.rho[i]*250/10e-17;
g.fillOval(70+(int)xPos,250+80-(int)yPos,3,3) ;
}

public void start()

{
if(!paintAnimaGraphPhi)
{
if(moveGraphl == null)
{
moveGraphl =new Thread(this);
moveGraphl .start();
}
}
if(!paintAnimaGraphCharge)
{
if(moveGraph2 == null)
{
moveGraph2 = new Thread(this);
moveGraph?2.start();
}
}
}
public void stop()
{
if(moveGraphl != null)
{
moveGraphl.stop();
moveGraphl = null;
}
if(moveGraph2 != null)
{
moveGraph2.stop();
moveGraph2 = null;
}
}

public void update(Graphics g)
{

58

paint(g);
H
public void run()
{
if(!paintAnimaGraphPhi)
{
do
{

Date timel = new Date();

endTimel = (timel.getTi

= N/
if(!paintAnimaGraphCharge) /PJ A ‘/ ‘l
{

- -~

do
AA

{ e
Date Hl new Date();

endTime2 = (time2.getTime())/1000;

HOUNLUINT

awwmﬂéﬁbaimawmaﬂ

repalnt(),

}
while((endTime?2 - startTime2) != numTimeStep);

{
moveGraph2 = null;

59

public void actionPerformed(ActionEvent event)
{
String str,strl;
Object obj;
obj = event.getSource();
str = event.getActionCommand();

strl = event.getActionCommand();

if(obj == enterPasswordTF && str.equals(password))

{
titleNameL .setVisible(false);

enterPasswordL.setVisible(false);

enterPasswordTF.setVisible(false);

firstPage = false; // close
nullPage = false; // open

callMouseMoveTaskbar = false; // open

repaint();

if (numTimeStepTF != null)
{

str]l = numTimeStepTF.getText();
numTimeStep = Integer.valueOf(strl).intValue();

if (numGridTF !=null)

{
strl = numGridTF.getText();

numGrid = Integer.valueOf(strl).intValue();

if(numParticleTF != null)

{
strl = numParticleTF.getText();

numParticle = Integer.valueOf(strl).intValue();

if(temperatureTF !=null)

str] = temperatureTF.getText();
temperature = Double.valueOf{(str1).doubleValue();

60

if(str.equals("O.K."))
{

plasma.debye(numParticle,temperature);
plasma.generateParticle(numParticle,numGrid);

plasma.advanceSimulation(numParticle,numGrid,numTimeStep);

okButton.setVisible(false);
numGridTF .setVisible(false);
numParticleTF.setVisible(false);
numTimeStepTF .setVisible(false);
temperatureTF.setVisible(false);

repaint();

public void mousePressed(MouseEvent event)

{

int XX,yy;

g = getGraphics();

xx = event.getX();
yy = event.getY();

if ((xx>10) && (xx < 65) && (yy > 400) && (yy < 425))
{
callMouseMoveButton = true; // close
callMouseMoveTaskbar = true; // close

callMouseMoveAtPlasmaSimulation = false; -~ // open

g.setColor(Color.lightGray);
rect3d.paintRect(g,10,220,140,178);

g.setColor(Color.black);
g.setFont(f12co);

g.drawString("Plasma Simulation ",30,240);
g.drawString("Plasma Theoy", 38,270);
g.drawString("Plasma Condition",34,300);
g.drawString("Help",65,330);
g.drawString("Others",60,360);
g.drawString("Clear",63,390);

61

g.setColor(Color.white);

g.drawLine(10,250,149,250);
g.drawLine(10,280,149,280);
g.drawLine(10,310,149,310);
g.drawLine(10,340,149,340);
g.drawLine(10,370,149,370);

if (xx > 10) && (xx < 149) && (yy > 280) && (yy <310))

{
graphTempDensPic = getlmage(getCodeBase(),"graphTempDens.jpg");
g.drawlmage(graphTempDensPic,0,0,this);

callMouseMoveAtPlasmaSimulation = true;

if (xx > 155) && (xx <290) && (vy > 190) && (yy < 220))
{

paintFrame = false; // open
callAllButton = false; // open
callMouseMoveButton = false; // open
callMouseMoveTaskbar = false; // open

callMouseMoveAtPlasmaSimulation = true; // close

repaint();

if (xx > 10) && (xx < 149) && (yy > 370) && (yy < 400))
{

nullPage = false; // open
paintFrame = true; // close
callMouseMoveButton = true; // close
callMouseMoveTaskbar = false; // open

callMouseMoveAtPlasmaSimulation = true; // close

g.setColor(getBackground());
Dimension size = getSize();
g.fillRect(0,0,size.width,size.height);
/Ipaint(g);

okButton.setVisible(false);
dtTF.setVisible(false);
numGridTF.setVisible(false);
densityTF.setVisible(false);
numParticleTF.setVisible(false);
numTimeStepTF .setVisible(false);
temperatureTF.setVisible(false);

62

paintAnimaGraphPhi = true; // close
moveGraphl.stop();

paintAnimaGraphCharge = true; // close

moveGraph?2.stop();
repaint();
}
if(!callAllButton)
{
[e Press Input--------=--=-----=-—- B

i (xx > 67) && (xx < 105) && (yy > 345) && (yy < 365))

{
callEnterInput = false; // open
enterInputPanel();
}
[H e Press Particle Density Button -------------- */

if((xx > 110) && (xx < 190) && (yy > 345) && (yy < 365))
{
//g.setColor(myGreen3);
g.setColor(Color.white);
g fillRect(66,51,619,279);
g.setColor(Color.black);
g.setFont(f12co);

int k=64, z=80;

for(int i=0; i<100; i++)
{
g.drawString(String.valueOf(plasma.countParticle[i]),z,k);
if (z==530)
{
z.=-70;
k+=11;

z +=150;

i (xx > 193) && (xx < 288) && (yy > 345) && (yy < 365))

{
//g.setColor(myCyan);

"+"rad/sec",150,310);

63

g.setColor(Color.white);
g fillRect(66,51,619,279);

g.setColor(Color.black);

g.setFont(f13coB);

g.drawString("Plasma Parameters",310,80);
g.setFont(f12co);

g.drawString("dt ="+" "+plasma.dt+" "+"sec",150,100);

g.drawString("Grid Wide ="+""+plasma.dx,150,130);

g.drawString("Grid Numbers ="+" "+numGrid,150,160);

g.drawString("Debye Length ="+" "+plasma.db*100.0+" "+"cm",150,190);
g.drawString("System Length ="+" "+plasma.systemLength+" "+"cm",150,220);
g.drawString("Temperature (K) ="+" "+temperature,150,250);

g.drawString("Particles Number="+" "+numParticle,150,280);

g.drawString("Plasma Frequency ="+" "+plasma.frequency

if((xx >290) && (xx < 338) && (yy > 345) && (yy < 365))
{
//g.setColor(myGreen2);
g.setColor(Color.white);
g fillRect(66,51,619,279);
g.setColor(Color.black);
g.setFont(f12co);
int k=64, z=280;

for(int i=0; i<100; i++)
{
g.drawString(String.valueOf(plasma.pos[i]),z,k);
if (z==530)
{
z =-70;
k+=11;

z+=150;

if((xx > 340) && (xx < 388) && (yy > 345) && (yy <365))
{
//g.setColor(myOrangel);
g.setColor(Color.white);

4

64

g fillRect(66,51,619,279);
g.setColor(Color.black);
g.setFont(f12co);

intk = 64, z=80;

for(int i=0; i<100; i++)

{
g.drawString(String.valueOf(plasma.phi[i]),z,k);
if (z==530)

{
z =-70;
k+=11;
}
z +=150;
}
}
[Hemmmmeee e Press Electric field Button -------------- N

if((xx > 390) && (xx < 438) && (yy > 345) && (yy < 365))
{
//g.setColor(myYellow);
g.setColor(Color.white);
g fillRect(66,51,619,279);
g.setColor(Color.black);
g.setFont(f12co);
int k = 64, z = 80;

for(int i=0; i<100; i++)

{
g.drawString(String.valueOf(plasma.ele[i]),z,k);
if (z==530)

{
z =-70;
k+=11;
1
z +=150;
}
}
[Hemmmmeeeeee Press Potential field Button -------------- */

if((xx > 440) && (xx < 558) && (yy > 345) && (yy <365))
{
paintAnimaGraphPhi = false; // open
paintAnimaGraphCharge = true; // close
start();

moveGraphl.resume();

timel = new Date();

65

startTimel = (timel.getTime())/1000;

if((xx > 560) && (xx < 683) && (yy > 345) && (yy <365))
{

paintAnimaGraphCharge = false; // open
paintAnimaGraphPhi =true; // close
start();

moveGraph2.resume();

time2 = new Date();

startTime2 = (time2.getTime())/1000;

public void mouseMoved(MouseEvent event)

{

int XX,yy;

g = getGraphics();
xx = event.getX();

yy = event.getY();

if(!callMouseMoveTaskbar)
{

if (xx > 10) && (xx < 700) && (yy > 400) && (yy < 425))
{

g.setColor(Color.lightGray);
rect3d.paintRect(g,10,400,55,25); // draw start button
rect3d.paintRect(g,67,400,670,25); // draw taskbar

g.setColor(Color.black);
g.setFont(f12co);
g.drawString("Start",25,418);
¥
else
{
g.setColor(Color.white);
rect3d.deleteRect(g,10,400,727,25);

66

if(!callMouseMoveAtPlasmaSimulation)
{
if ((xx>10) && (xx < 150) && (yy > 220) && (yy <250))
{
g.setColor(Color.lightGray);
rect3d.paintRect(g,152,190,140,60);
g.setColor(Color.black);
g.setFont(f12co);
g.drawString("One Dimension",175,210);
//g.drawString("",175,240);
g.setColor(Color.white);
g.drawLine(152,220,290,220);

if(!callMouseMoveButton)

{

if((xx > 67) && (xx < 105) && (yy > 345) && (yy < 365))

{
g.setColor(Color.lightGray);
rect3d.paintRect(g,67,344,40,20);
g.setFont(fl1co);
g.setColor(Color.black);
g.drawString("Input",76,359);

}

else

{
g.setColor(Color.lightGray);
rect3d.deleteRect(g,67,344,40,20);
g.setFont(f1 1co);
g.setColor(Color.black);
g.drawString("Input",76,359);

}

if((xx > 110) && (xx < 190) && (yy > 345) && (yy <365))
{
g.setColor(Color.lightGray);
rect3d.paintRect(g,110,344,80,20);
g.setFont(f11co);
g.setColor(Color.black);
g.drawString("Particle Density",113,359);
i

else

{
g.setColor(Color.lightGray);

67

rect3d.deleteRect(g,110,344,80,20);
g.setFont(fl 1co);
g.setColor(Color.black);
g.drawString("Particle Density",113,359);

i (xx > 193) && (xx < 288) && (yy > 345) && (yy < 365))
{
g.setColor(Color.lightGray);
rect3d.paintRect(g,193,344,95,20);
g.setFont(f11co);
g.setColor(Color.black);
g.drawString("Plasma Parameters",195,359);
h

else
{
g.setColor(Color.lightGray);
rect3d.deleteRect(g,193,344,95,20);
g.setFont(fl1co);
g.setColor(Color.black);
g.drawString("Plasma Parameters",195,359);
}

if((xx>290) && (xx <338) && (yy > 345) && (yy < 365))

{
g.setColor(Color.lightGray);
rect3d.paintRect(g,290,344,48,20);
g.setFont(fl Lco);
g.setColor(Color.black);
g.drawString("Position",296,359);

H

else

{
g.setColor(Color.lightGray);
rect3d.deleteRect(g,290,344,48,20);
g.setFont(fl 1co);
g.setColor(Color.black);
g.drawString("Position",296,359);

}

if((xx > 340) && (xx <388) && (yy > 345) && (yy < 365))
{
g.setColor(Color.lightGray);
rect3d.paintRect(g,340,344,48,20);

68

g.setFont(f11co);

g.setColor(Color.black);

g.drawString("Potential",343,359);
H

else

{
g.setColor(Color.lightGray);
rect3d.deleteRect(g,340,344,48,20);
g.setFont(f11co);
g.setColor(Color.black);
g.drawString("Potential",343,359);

H

if((xx >390) && (xx <438) && (yy > 345) && (yy < 365))

{
g.setColor(Color.lightGray);
rect3d.paintRect(g,390,344,48,20);
g.setFont(fl Lco);
g.setColor(Color.black);
g.drawString("Electric",398,359);

}

else

{
g.setColor(Color.lightGray);
rect3d.deleteRect(g,390,344,48,20);
g.setFont(fl1co);
g.setColor(Color.black);
g.drawString("Electric",398,359);

i

if((xx > 440) && (xx < 558) && (yy > 345) && (yy < 365))
{
g.setColor(Color.lightGray);
rect3d.paintRect(g,440,344,118,20);
g.setFont(f11co);
g.setColor(Color.black);
g.drawString("Potential Distribution",452,359);
}
else
{
g.setColor(Color.lightGray);
rect3d.deleteRect(g,440,344,118,20);
g.setFont(f11co);
g.setColor(Color.black);
g.drawString("Potential Distribution",452,359);

69

if{ (xx > 560) && (xx < 683) && (yy > 345) && (yy < 365))
{
g.setColor(Color.lightGray);
rect3d.paintRect(g,560,344,123,20);
g.setFont(fl1co);
g.setColor(Color.black);
g.drawString("Charge Distribution",576,359);

}

else

{
g.setColor(Color.lightGray);
rect3d.deleteRect(g,560,344,123,20);
g.setFont(fl1co);
g.setColor(Color.black);
g.drawString(""Charge Distribution",576,359);

public void mouseDragged(MouseEvent event)

{

public void mouseReleased(MouseEvent event)

{

public void mouseEntered (MouseEvent event)

{

public void mouseExited (MouseEvent event)

{

public void mouseClicked (MouseEvent event)

{

public void enterInputPanel()

{

70

g = getGraphics();

if(!callEnterInput)

{
g.setColor(Color.lightGray);
rect3d.paintRect(g,67,90,233,253);

g.setColor(Color.blue);
g.setFont(f11co);

g.drawString("Grid Number",80,130);
g.drawString("Particle Number",80,160);
g.drawString("Time Step Number ",80,190);
g.drawString("Plasma Temperature (K)",80,220);

g.setColor(Color.lightGray);
rect3d.paintRect(g,155,315,50,20);
g.setColor(Color.black);
g.drawString("0.K.",171,330);

numGridTF = new TextField(20);
numGridTF.reshape(200,118,85,18);
add(numGridTF);
//mumGridTF.addActionListener(this);

numParticleTF = new TextField(20);
numParticleTF.reshape(200,148,85,18);
add(numParticleTF);
//mumParticleTF.addActionListener(this);

numTimeStepTF = new TextField(20);
numTimeStepTF.reshape(200,178,85,18);
add(numTimeStepTF);
/mumTimeStepTF.addActionListener(this);

temperatureTF = new TextField(20);
temperature TF.reshape(200,208,85,18);
add(temperatureTF);
//temperatureTF.addActionListener(this);

okButton = new Button("0.K.");
okButton.setFont(f10co);
okButton.reshape(155,315,50,20);
add(okButton);
okButton.addActionListener(this);

71

//{{DECLARE_CONTROLS
14}

class RECT3D extends Canvas

{
public void paintRect(Graphics g, int x,int y,int w,int L)
{
g fillRect(x,y,w,L);
g.setColor(Color.black);
g.drawLine(x, y+L, x+w, ytL); //hor line
g.drawLine(x+w, y, xtw, y+L); //ver line
g.setColor(new Color(220,220,220));
g.drawLine(x-1, y, Xtw, y); //hor line
g.drawLine(x-1, y, x-1, y+L); /lver line
}
public void deleteRect(Graphics g, int x,int y,int w,int L)
{
g fillRect(x-1, y, w+2, L+1);
)
}
class PLASMA
{

double temp,dx,db,frequency,Nd,density,dt;
double particle[],rho[],a[][],b[],phi[],ele[],mag[].theta[];
double acc[],velx[],vely[],pos[],countParticle[],plasmaFrequency[] ;
int systemLength,j;

public void debye(int numParticle,double temperature)
{
density = 10.0*Math.pow((double)numParticle, 3.0);
temp = (8.854e-12*temperature*1.38e-23)/(density* 1.6e-19*1.6e-19);
db = Math.sqrt(temp);
Nd' =4.0/3.0*Math.PT*density*db*db*db;

public void generateParticle(int numParticle,int numGrid)

{
particle = new double[numParticle];

theta =new double[numParticle];

for (int 1 =0; i<numParticle ; i++)

{

72

particle[i] = Math.random()*(double)(numGrid-2);
theta[i] = Math.random()*Math.PI*2.0;

public void adjustParticle(int numParticle,int numGrid)

for(int i=0; i<numParticle; ++i)
{
if ((particle[i]+0.5) >= (double)(numGrid-2))
particle[i] = (particle[i]+0.5) - (double)(numGrid-2);

else if ((particle[i]+0.5) <= 0.0)
particle[i] = (particle[i]+0.5) + (double)(numGrid-2);

public void assignCharge(int numParticle,int numGrid)

{

systemLength = (int)(db*100.0%10.0);
dx = (double)(systemLength)/(double)(numGrid-1);
rho = new double[numGrid-2];

countParticle = new double[numGrid-2];

for (int i =0; i<numParticle; i++)
{
j = (int)(particle[i]+0.5);

countParticle[j] = countParticle[j]+1.0;

for (int j=0; j<numGrid-2; j++)

{
rho[j] = countParticle[j];
tholj].= rho[j]*1.6e-19/dx;

frequency = Math.sqrt((density*2.56e-38)/(8.854*9.1¢e-43));
dt= (2.0*Math.PI)/(frequency*10.0);

public void computeField(int numParticle,int numGrid)

{

int num_iter = 0;
int max_iter = 7;

boolean tol_exceed = true;

73

double tol = 0.05;
double sum, y old, d_old;
double PHIO = -0.00000001, PHIL = -0.00000001;

a = new double[numGrid-2][numGrid-2];
b =new double[numGrid-2];
phi = new double[numGrid-2];

ele = new double[numGrid-2];

try
{
a0][0] =-2.0; a[0][1] = 1.0;

for (int i=1; i<numGrid-3; i++)
for (int j=0; j<numGrid-2; j++)
{

if (i ==j)

{
a[ilj] =-2.0;

ali][j-1]1= 1.0;

ali][j+1]= 1.0;

a[numGrid-3][numGrid-4] = 1.0;
a[numGrid-3][numGrid-3] = -2.0;

catch(Exception e)

{

System.out.printin ("Error =" + e);

Ik i

b[0] = (-tho[0]*(dx*dx)/8.854¢-12)-PHIO;

for (int i=1; i<numGrid-3; i++)

b[i] = -rtho[i]*(dx*dx)/8.854e-12;

b[numGrid-3] = (-tho[numGrid-3]*(dx*dx)/8.854e-12)-PHIL;

/* */

for (int i=0; i<numGrid-2; i++)

phili] = bli}/a[i][i];

while (tol exceed && num_iter < max_iter)

{

for (int i=0; i<numGrid-2; i++)

74

y_old = phi[i];
tol_exceed = false;

sum = b[i];

for (int j=0; j<numGrid-2; j++)
if(i!=))
sum -= a[i][j]*philj];

phi[i] = sum/a[i][i];

if (Math.abs(phi[i]-y_old) > Math.abs(y_old*tol))
tol_exceed = true;

}

++num iter;

ele[0] = (PHIO-phi[1])/(2*dx);

for (int j=1; j<numGrid-3; j++)
ele[j] = (phifj-1]-phi[j+1])/(2*dx);

ele[numGrid-3] = (phi[numGrid-4]-PHIL)/(2*dx);

public void pushParticle(int numParticle,int numGrid)

{

acc = new double[numGrid-2];

velx =new double[numParticle];
vely =new double[numParticle];
pos = new double[numParticle];

mag = new double[numGrid-2];
for (int j=0; j<numGrid-2; j++)
acc[j] = 1.6e-19*ele[j]/9.1e-31;
for (int i=0; i<numParticle; i++)
{
j = (int)(particle[i]+0.5);
velx[i] = acc[j]*(dt-0.5);
pos[i] = particle[i]*dx;

pos[i] = pos[i] + velx[i]*dt;

vely[i] = velx[i]*Math.tan(theta[i]);
mag[j] = (9.1e-31*acc[j])/(vely[i]*1.6e-19);

75

theta[i] = theta[i]+ (dt*1.6e-19*mag[j]/9.1e-31);

public void advanceSimulation(int numParticle,int numGrid,double numTimeStep)

{
for(int i=0; i<numTimeStep; i++)
{
adjustParticle(numParticle, numGrid);
assignCharge(numParticle, numGrid);
computeField(numParticle,numGrid);
pushParticle(numParticle,numGrid);
}
h

R e sk o sk ok ok ko R ok sk R s ok R R Rk s R R o R R R o SR sk R o kR s s s o ok ok ok sk ok sk R sk sk sk sk ok R sk KR ok ok K
*
* mexFunction: mexAccumulate
*
* Weights the particle positions to a uniform 2D rectangular grid.
* - Particle position given is normalized to the grid spacings (Thus
* xphys = xgiven * dx and similarly for y).
* - The density is measured in the number of particles per grid cell.
* It is weighted bilinearly.
* - Density are defined at the corners of the grid cells.
* - Density along the edge and corners may need correcting depending on how
* density is defined there (i.e. might want to x2 edge cells and x4 corner
* cells).
*
* Usage: NumInboundParticles = mexAccumulate('Particles', 'Density’,
* NumParticles);

*

* For below: J, L are the number of cells in the x and y directions tspctvly

*

* Particles is a real full single array with 5¥MaxNumParticles members

* - Note: Any layout in matlab will do but recommmend [5 MaxNumParticles]
* Then Particles(1,:) are the given x coords, Particles(2,:) are the y given

* y coords, Particles(3,:) are the given x grid vel, Particles(4,:) are the

* given y grid vel, and Particles(5,:) is the z grid vel (for 2D3V sims).

*

* Density is a real full single (J+1) x (L+1) arrays

* - Note: This must be strictly adhered to!

*

76

* NumParticles is the number of active particles in the Particles array

*

* Upon return all particles which went out of bounds are located at

* Particles(:,NumInbounds+1:NumParticles) (assuming [S MaxNumParticles]
* allocation was used). Particles(:,1:NumInbounds) are all inbounds.

*

* Warning: This function accesses and modifies arrays in the caller's

* workspace! This was done to avoid the overhead for the rhs copy

* mechanisms. This can have weird side effects (in particular if the

* copy count an altered array is greater than one, the memoryless

* copies will be altered - the API has no way to avoid this that [know of).

*

* Warning: Routine does no type checking. If you mess up the arguments or
* they are the incorrect sizes and types, you are screwed bad.

*

* Warning: All arrays passed by name to this function must be allocated before

* calling this function.

*

L e L e LYl

#include <string.h>

#include <mex.h>

#include "../mexCommon.h"

static int Accumulate(ParticleData *ptrParticle, float *ptrDensity,

intN,intJ,int L);

[sk R Rk SRR R R SRRk R R s sk ok sk R R SRR sk R R R R R SRR SRR SRR R SRR R Rk

#define mNumInbounds plhs[0]
#define mParticles prhs[0]
#define mDensity prhs[1]
#define mN prhs[2]

void mexFunction(int nlhs; mxArray *plhs[],

int nrhs, const mxArray *prhs[])

ParticleData *ptrParticle;
float *ptrDensity;
intN,J,L;

const mxArray *mx;

if(mexIsLocked())
{
if((nrhs ==0) && (nlhs==0))
{
mexUnlock();
return;

}

77

}

else

{

mexLock();

}

/* Parse the input */

GetMatrix(mParticles, mx, ptrParticle);
GetMatrix(mDensity, mx, ptrDensity); J = mxGetM(mx)-1; L = mxGetN(mx)-1;
N = mxGetScalar(mN);

/* Do the calculation */

N = Accumulate(ptrParticle, ptrDensity, N, J, L');

/* Store the output */

mxSetScalar(mNumInbounds, N);

mexAddFlops(14*N);

#undef mNumInbounds
#undef mParticles
#undef mDensity
#undef mN

[s sk sk stk st ok ke ke e sk s sk stk sk st st kel kol s s s sk sk okt sttt st ke e s s s s sk stk st sttt st ot s ok sk sk skt skttt stttk kol sk sk stk sk ok klokokok /

int Accumulate(ParticleData *Particle, float *Density,
int N, int Nx, int Ny)
{
int1i, j, n;
float dx, dy;
ParticleData *LastParticle;

ParticleData ptmp;

#ifdef GCC_X86_ROUNDING HACK

FPUCW oldcw;
oldew = SetRoundingMode(FPU_RC DOWN);
#endif

Nx++; /* Number of grid points along x */
Ny++; /* Number of grid points along y */
LastParticle = &Particle[N-1];

memset(Density,0,Nx*Ny*sizeof(float));

for(n = 0; n <N; n++, Particlet+)

{

78

i = FloatTolnt(Particle->x);
j = FloatTolnt(Particle->y);
#ifdef GCC_X86_ROUNDING_HACK /* Round mode is towards -Infinity */
if((i>=0) && (j>=0) && (i < (Nx-1)) && (j <(Ny-1)))
#else /* Round mode is truncate */
if((Particle->x >= 0.0) && (Particle->y >= 0.0) &&
(i < (Nx-1)) && (j < (Ny-1)))
#endif
{
dx = Particle->x - i;
dy = Particle->y - j;
Density[j*Nx+i] += (1-dx)*(1-dy);
Density[j*Nx+i+1] += dx*(1-dy);
Density[j*Nx+i+Nx] += (1-dx)*dy;
Density[j*Nx+i+Nx+1] += dx*dy;
}
else
{
ptmp.x = Particle->x; ptmp.y = Particle->x;
ptmp.vx = Particle->vx; ptmp.vy = Particle->vy;
ptmp.vz = Particle->vz;
Particle->x = LastParticle->x; Particle->y = LastParticle->y;
Particle->vx = LastParticle->vx; Particle->vy = LastParticle->vy;
Particle->vz = LastParticle->vz;
LastParticle->x = ptmp.x; LastParticle->y = ptmp.y;
LastParticle->vx = ptmp.vx; LastParticle->vy = ptmp.vy;
LastParticle->vz = ptmp.vz;

N--; n--; Particle--; LastParticle--;

}
#ifdef GCC_X86_ROUNDING_HACK
SetFPUControlWord(oldew);
#endif
return(N);

}

JER e T Y]

/**
*

* mexFunction: mexNegGrad

*

* Solves E = -grad PHI on a uniform 2D rectangular mesh. For the interior

* points, central differencing is used (second order). That is:

* Ex(i,j) = -(PHI(i+1,j) - PHI(i-1,j)) / dx

* Ey(i,j) = -(PHI(i,j+1) - PHI(i,j-1)) / dy

* On the edges, second order forward / backward differencing is used.

*

* Usage: mexNegGrad('Ex', 'Ey', 'PHI', deltax, deltay);

*

* Ex, Ey and PHI are all real full single precision arrays of the same

79

* dimension. The arrays must be at least 3x3 in size.

* deltax and deltay are double scalars

*

* Data in PHI in the caller's workspace is unchanged.

* Data in Ex and Ey in the caller's workspace is replaced.

*

* Ex is the x-component of the electric field

* Ey is the y-component of the electric field

* PHI is the Potential

* deltax and deltay are the x and y grid spacing.

*

* This routine locks itself in memory

* If called with no rhs and lhs arguments, the routine is unlocked from memory
*

* Warning: This function accesses and modifies arrays in the caller's

* workspace! This was done to avoid the overhead for the rhs copy

* mechanisms. This can have weird side effects (in particular if the

* copy count an altered array is greater than one, the memoryless

* copies will be altered - the API has no way to avoid this that I know of).

*

* Warning: Routine does no type checking. If you mess up the arguments or
* they are the incorrect sizes and types you are screwed bad.

*

* Warning: All arrays passed by name to this function must be allocated before

* calling this function.

*

ks ok ok ok skskesk stk ok ok sk skl sk ok sk sk sk skesk sk sk okokok ksl ok sk sl sk sk ok sk sk sk kst sk ok sk skl sk sk sk skl sk ook ok skstlk ok skl sk sksk sk sksk ko okokskokskkokok skl skok ko ok kR ok ok /

#include <mex.h>

#include "../mexCommon.h"

static void SolveElectricFields(double *Ex, double *Ey, double *PHI,
double deltax, double deltay,
int], intL);

/***/

#define mEx prhs[0]
#define mEy prhs[1]
#define mPHI prhs[2]
#define mdeltax prhs[3]
#define mdeltay prhs[4]

void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

double *Ex, *Ey, *PHI;
int], L;
double deltax, deltay;

const mxArray *mx;

80

if(mexIsLocked())
{
if((nrhs ==0) && (nlhs ==0))
{
mexUnlock();
return;
}
}
else
{
mexLock();
}

GetMatrix(mEx, mx, Ex); J = mxGetM(mx)-1; L = mxGetN(mx)-1;
GetMatrix(mEy, mx, Ey);

GetMatrix(mPHI, mx, PHI);

deltax = mxGetScalar(mdeltax);

deltay = mxGetScalar(mdeltay);

SolveElectricFields(Ex, Ey, PHI, deltax, deltay, J, L);

mexAddFlops(6*L*J + 11*L + 11*]);

#undef mEx
#undef mEy
#undef mPHI
#undef mdeltax
#undef mdeltay
#undef GetMatrix

s R sk sk sk sk ko ok sk ook ook ks s ok ok s okl ok ks ok ks ok ke e ok ol ok sk ok ke sk ok sk ok ook sk sk ok sk sk sk ok ook ok sk ok o/

#define PHI(j,1) PHI[(1)*NgridsX + (j)]
#define Ex(j,l) Ex[(1)*NgridsX +(j)]
#define Ey(j,l) Ey[()*NgridsX + (j)]

void SolveElectricFields(double *Ex, double *Ey, double *PHI,
double deltax, double deltay, int J, int L)

int j, I, NgridsX;
double tmp;
double *ptrl, *ptr2, *ptr3;

NgridsX = J+1;

/* Solve for Ex except on the left and right edges */

81

tmp = -0.5 / deltax;
for(1=0;1<=L; 1++)
{
ptrl = &Ex(1,1); ptr2 = &PHI(2,1); ptr3 = &PHI(0,]);
for(j = 1;j <J; j++, ptrl++, ptr2++, ptr3++)
*ptrl = (*ptr2 - *ptr3)*tmp;

/* Solve for Ex on the left and right edges */

for(1=0;1<=L; I4++)

Ex(0,1) = (-PHI(2,1) + 4.0*PHI(L,1) - 3.0¥PHI(0,1))*tmp;
for(1=0;1<=L; 1++)

Ex(1,1) = (3.0*PHI(J,]) - 4.0¥*PHI(J-1,1) + PHI(J-2,1))*tmp;

/* Solve for Ey except on the top and bottom edges */

tmp = -0.5 / deltay;
for(1=1;1<L;1++)
{
ptrl = &Ey(0,1); ptr2 = &PHI(0,1+1); ptr3 = &PHI(0,I-1);
for(j = 0; j <=1J; j++, ptrl++, ptr2++, ptr3++)
*ptrl = (*ptr2 - *ptr3)*tmp;

/* Solve for Ey on the top and bottom edges */

for(j=0;j<=J;j++)

Ey(j,0) = (-PHI(j,2) + 4.0*PHI(j,1) - 3.0*PHI(j,0))*tmp;
for(j=0;j<=J;j++)

Ey(.L) = (3.0*PHI(j,L) - 4.0*PHI(j;L=1) + PHi(j,L-2))*tmp;

#undef PHI
#undef Ex
#undef Ey

e L e e L Y]

J T L

* mexFunction: mexPush

*

* Integrates the nonrelativistic equations of motion for a set of particles

* pushed by a force known on a uniform rectangular 2D grid.

* - The force is bilinearly interpolated to the particle positions

* - Particle position and velocity given are normalized to the grid spacings

* and timestep (Thus xphys = xgiven * dx, vxphys = vgiven * dx / dt and

* similarly for y and vy).

82

* - Ex and Ey are defined at the corners of the grid cells.
*

* Usage: mexPush('Particles', 'Ex', 'Ey’, 'PushAux, ...

* EtoDVx, EtoDVy, NumParticles);

*

* Assume J, L are the number of cells in the x and y directions respectively

*

* Particles is a real full single array with 5¥MaxNumParticles members

* - Note: Any layout in matlab will do but recommmend [5 MaxNumParticles].
* Then Particles(1,:) are the given x coords, Particles(2,:) are the y given

* y coords, Particles(3,:) are the given x grid vel, Particles(4,:) are the

* given y grid vel, and Particles(5,:) is the z grid vel (for 2D3V sims).

*

* Ex and Ey are real full (J+1) x (L+1) arrays

* - Note: This must be strictly adhered to!

*

* PushAux is a SINGLE precision array with 2*(J+1)*(L+1) members. Any layout
* in Matlab will do

*

* EtoDVx, EtoDVy convert the units of Ex, Ey into acceleration with respect

* to the grid and timestep

*

* NumParticles is the number of active particles in the Particles array

* - Note: All particles must be inbounds initially

*

* This routine locks itself into memory

* If called with no rhs and lhs arguments, the routine is unlocked from memory
*

* Warning: This function accesses and modifies arrays in the caller's

* workspace! This was done to avoid the overhead for the lhs, rhs copy

* mechanisms. This can have weird side effects (in particular if the

* copy count an altered array is greater than one, the memoryless

* copies will be altered - the API has no way to avoid this that I know of).

*

* Particles, PushAux are altered in the callers workspace

*

* Warning: Routine does no type checking. If you mess up the arguments or

* they are the incorrect sizes and types, you are screwed bad.

*

* Warning: All arrays passed by name to this function must be allocated before

* calling this function.

*

Ak e e s ok sk s sk sk ok ok sttt skt sk ok sk skt ok stk stttk ok s sk sk st sk stk stk sttt sk ok sk sk sk sk sk stk stk stk sk ok sk skesksksiek kol kot skt kool skl ks sk ok /

#include <mex.h>

#include "../mexCommon.h"

static void Push(ParticleData *ptrParticle,
double *ptrEx, double *ptrEy,

83

float *ptrdVx, float *ptrdVy,
double EtoDVX, double EtoDVy,
intN,intJ, intL);

/***/

#define mParticles prhs[0]
#define mEx prhs[1]
#define mEy prhs[2]
#define mPushAux prhs[3]
#define mEtoDVx prhs[4]
#define mEtoDVy prhs[5]
#define mN prhs[6]

void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

ParticleData *ptrParticle;
double *ptrEx, *ptrEy;
double EtoDVx, EtoDVy;
intN,J,L;

const mxArray *mx;

float *ptrdV;

if(mexIsLocked())
{
if((nrhs ==0) && (nlhs ==0))
{
mexUnlock();
return;
}
}
else
{
mexLock();

}

/* Parse the function input */

GetMatrix(mParticles, mx, ptrParticle);

GetMatrix(mEx, mx, ptrEx); J = mxGetM(mx)-1; L = mxGetN(mx)-1;
GetMatrix(mEy, mx, ptrEy);

GetMatrix(mPushAux, mx, ptrdV);

EtoDVx = mxGetScalar(mEtoDVx);

EtoDVy = mxGetScalar(mEtoDVy);

N = mxGetScalar(mN);

/* Do the calculation */

Push(ptrParticle, ptrEx, ptrEy, &ptrdV[0], &ptrdV[(J+1)*(L+1)],

84

EtoDVx, EtoDVy, N, J,L);

mexAddFlops(28*N + 2¥(J+1)*(L+1));
b

#undef mParticles
#undef mEx
#undef mEy
#undef mPushAux
#undef mEtoDVx
#undef mEtoDVy
#undef mN

void Push(ParticleData *Particle,
double *Ex, double *Ey,
float *dVx, float *dVy,
double Ex2dVx, double Ey2dVy,
int N, int Nx, int Ny)
{
inti, j, n;

float dx, dy;

#ifdef GCC_X86_ROUNDING_HACK

FPUCW oldcw;
oldew = SetRoundingMode(FPU_RC_ZERO);
#endif

Nx++; /* Nex is the number of grid points along x */

Ny++; /* Ney is the number of grid points along y */

/* Scale Ex and Ey into dVx and dVy */

for(n=0; n <Nx*Ny; nt++)
{
dVx[n] = Ex[n] * Ex2dVXx;
dVy[n] = Ey[n] * Ey2dVy;
}

for(n = 0; n <N; nt++, Particlet+)
{
i = FloatTolnt(Particle->x);
j = FloatTolnt(Particle->y);

/* The below trusts CSE (common sub-expression elimination) to
optimize this. Trusting CSE makes better assembly language code
with the GCC compiler on x86 platforms. Mileage may vary with

other compilers and architectures! */

&5

dx = Particle->x - i;
dy = Particle->y - j;
Particle->vx +=
(1-dx)*(1-dy)*dVx[j*Nx+i] +
dx *(1-dy)*dVx[j*Nx+i+1] +
(1-dx)* dy *dVx[j*Nx+i+Nx] +
dx * dy *dVx[j*Nx+i+Nx+1];
Particle->vy +=
(1-dx)*(1-dy)*dVy[j*Nx+i] +
dx *(1-dy)*dVy[j*Nx+i+1] +
(1-dx)* dy *dVy[j*Nx+i+Nx] +
dx * dy *dVy[[¥*Nx+i+Nx+1];

Particle->x += Particle->vx;

Particle->y += Particle->vy;

SetFPUControlWord(oldew);
#endif

Viakakaalobobotobobabalabababalabalob bbbt bttt * \ ki stk Rtk R kR ok kol kol koksk |

AONUUINYUINNS)
RN ITNINENAY

86

Biography

Mr. Chawisnach Engchatcharoen was born on April,16, 1970 at Amphur Bangkokyai,
Bangkok Thailand. As received the Bachelor degree in Electrical Engineering from
Kasetsart University in 1995. To beginning study Master degree in Nuclear
Engineering at Chulalongkorn University in 1997.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	Chapter 2 Theory of one dimensional plasma
	Chapter 3 Numerical model for one dimensional plasma
	Chapter 4 Results from simulations
	Vita

