CHAPTER VI

CONCLUSIONS & SUGGESTIONS

6.1 CONCLUSIONS

From the present investigation, which is related to the slurry polymerization of ethylene with Cp₂ZrCl₂-TMA catalyst system on SiO₂ support modified with silane compound and MAO, a number of conclusions may be summarized as follows:

- 1. The optimum polymerization conditions of SiO₂/Cl₂Si(CH₃)₂/MAO-Cp₂ZrCl₂/TMA catalyst system for the maximum catalytic activity are Al/Zr mole ratio of 3000, Cp₂ZrCl₂ catalyst concentration of 5.0x10⁻⁵ M and polymerization temperature of 60 °C.
- 2. The sequence of catalytic activity by different silane compounds to obtain the modified silica is SiCl₄ > Cl₃SiCH₃ > Cl₂Si(CH₃)₂ > ClSi(CH₃)₃.
- 3. Properties of produced polyethylene are the spherical morphology, melting temperature (T_m) in the range of 131.67-134.60 °C and narrow molecular weight distribution (MWD) between 1.41 and 1.68.

6.2 SUGGESTIONS

- 1. Further treatment of modified silica with other silane compounds or separating the active center from the support by a spacer unit should be investigated to improve the catalytic activity.
- 2. Other carriers with surface property appropriated for Cp₂ZrCl₂ to enhance the catalytic activity should be studied, e.g. TiO₂, zeolite and polymer supports.
- 3. Other supported metallocene catalyst preparations to improve the catalytic activity should be attempted, e.g. the direct synthesis of metallocene on carriers.