References

Thai

บุญเลิศ ผาสุก. 2538. การอนุรักษ์เต่าทะเลในประเทศไทย. วารสารการประมง. 45:807-820.

สมชาติ ลุขวงศ์ และโกวิทย์ เก้าเอี้ยน. 2537. การเลี้ยงเด่าทะเลในกระชัง. เอกสารวิชาการฉบับที่ 5/2637 มกราคม 2537. สถานีเพาะเลี้ยงสัตว์น้ำชายฝั่งทะเลจังหวัดพังงา. กองเพาะเลี้ยงสัตว์น้ำชาย ฝั่ง. กรมประมง. กรุงเทพฯ.

English

- Allard, M.W., Miyamoto, M.M., Bjoundal, K.A., Bolten, A.B., and Bowen, B.W. 1994. Support for natal homing in green turtles from mitochondrial DNA sequences. *Copeia*. 1: 34-41.
- Angers, B., Bernatchez, L., Angers, A., and Desgroseillers, L. 1995. Specific microsatellite loci for brook charr reveal strong population subdivision on a microgeographic scale. *Journal of Fish Biology*. 47: 177-185.
- Arias, J., Sanchez, L., and Martinez, P.1995. Low stocking incidence in brown trout population from northwestern Spain monitored by LDH*-5 diagnostic marker. Journal of Fish Biology. 47(Supplement A):170-175.
- Avise, J. C. 1994. Molecular markers, natural history and evolution.

 New York: Chapman & Hall, Inc.,.
- Bowen, W.B., Nelson, W.S., and Avise, J.C. 1993. A molecular phylogeny for marine turtles: Trait mapping, rate assessment, and conservation relevance. *Proceedings of the National Academy of Science of the USA*. 90: 5574-5577.

- Bowers, J. E., Dangl, G.S., Vignani, R., and Meredith, C.P. 1996. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome. 39: 628-633.
- Bull, J.J., and Vogt, R.C. 1979. Temperature-dependent sex determination in turtles. Science. 206: 1186-1188.
- Bull, J. J., Vogt, R.C., and Bulmer, M.G.1982. Heritability of sex ratio in turtles with environmental sex determination. *Evolution*. 36: 333-341.
- Bustard, R.1972. Sea turtles: their natural history and conservation.

 New York: Taplinger Publishing Co.
- Caetano-Anolles, G., Gresshoff, P. M. 1994. Staining with silver. Promega Notes magazine. 45: 13-18.
- Carvalho, G.R., and Hauser, L. 1994. Molecular genetics and the stock concept in fisheries. Reviews in Fish Biology and Fisheries. 4: 326-350.
- Deka, R., McGarvey, S.T., Ferrell, R.E., Kamboth, M.I., Yu, L.M., Aston, C.E., Jin, L., and Chakraborty, R. 1994. Genetic characterization of American and western salmoans. *Human Biology*. 66: 805-822.
- Encalada, S.E., Lahanas, P.N., Bjorndal, K.A., Bolten, A.B., Miyamoto, M.M., and Bowen, B.W. 1996. Phylogeography and population structure of the Atlantic and Mediterranean green turtle *Chelonia mydas*: a mitochondrial DNA control region sequence assessment. *Molecular Ecology*. 5: 473-483.

- Engel, S.R. Linn, R.A., Taylor, J.F., and Davis, S.K. 1996. Conservation of microsatellite loci across species of artiodactyls: implications for population studies. *Journal of Mammalogy*. 77: 504-518.
- Estoup, A., Garnery, L., Solignac, M., and Cornuet, J-M.1995. Microsatellite variation in honey bee (*Apis Mellifera* L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. *Genetics*. 140: 679-695.
- Ferguson, M. 1994. The role of molecular genetic markers in the management of cultured fished. Reviews in Fish Biology and Fisheries. 4:351-373.
- Ferguson, A., Taggart, J.B., Prodohl, P.A., McMeel, O., Thompson, C., Stone, C., McGinnity, P., and Hynes, R.A. 1995. The application of molecular markers to the study and conservation of fish populations, with special reference to Salmo. Fish Biology and Fisheries. 47 (Supplement A):103-126.
- FitzSimmons, N.N., Moritz, C., and Moore, S.S. 1995. Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. *Molecular Biology Evolution*. 12: 432-440.
- FitzSimmons, N.N., Limpus, C.J., Norman, J.A., Doldizen, A.R., Miller, J.D., and Moritz, C. 1997. Philopatry of male marine turtles inferred from mitochondrial DNA markers. *Proceedings of the National Acadamy of Science of the USA*. 94: 8912-8917.
- Gua, S.W., and Thompson, E.A. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. *Biometrics*. 48: 361-372.

- Harry, J.L., and Briscoe, D.A. 1988. Multiple paternity in the loggerhead turtle (Caretta caretta). Journal of Heredity. 79: 96-99.
- Hirth, H.F. 1971. Synopsis of biological data on the green turtle. Rome:

 Food and Agriculture Organization of the United nations.
- Hoelzel, A. R., and Green, A. 1992. Molecular genetic analysis of populations. Hoelzel, A.R. (ed.), New York: Oxford University Press.
- Hoelzel, A.R., and Dover, G.A. 1991. Analysis of population-level variation

 by sequencing PCR-amplified DNA in molecular genetic ecology.

 Rickwood, D. (ed.), New York: Oxford University Press,. pp. 160-187.
- Johansen, T., and Naevdal, G. 1995. Genetic analysis of population structure of tusk in the North Atlantic. Fish Biology and Fisheries. 47 (Supplement A): 226-242.
- Karl, S.A., Bowen, W.B., and Avise, J.C. 1992. Global population genetic structure and male-mediated gene flow in green turtle (Chelonia mydas): RFLP analysis of anonymous nuclear loci. Genetics. 131:163-173.
- Karl, S.A., and Avise, J.C. 1993. PCR-based assays of Mendelian polymorphisms from anonymous single-copy nuclear DNA: techniques and applications for population genetics. *Molecular Biology Evolution*. 10: 342-361.
- Koreth, J., O'leary, J.J., and McGee, J. O'd. 1996. Review article "Microsatellites and PCR genomic analysis". *Journal of Pathology*. 178: 239-248.

- Lanzaro, G.C., Zheng, L., Toure, Y.T., Traore, S.F., Kafatos, F.C., and Vernick, K.D. 1995. Microsatellite DNA and isozyme variability in a West African population of *Anopheles gambiae*. Insect Molecular Biology 4: 105-112.
- Largiader, C.R., and School, A. 1995. Effects of stocking on the genetic diversity of brown trout populations of the Adristic and Danubian drainages in Switzerland. *Journal of Fish Biology. Fish Biology and Fisheries.* 47 (Supplement A): 209-255.
- Limpus, C.J. 1993. Marine turtle bilogy and worldwide status of marine turtle conservation. Proceedings of the first Asean symposium-workshop on marine turtle conservation at Manila, Philippines. pp. 33-71.
- Maniatis, T., Sambrook, J., and Fsitsch, E.F. 1989. Molecular cloning a laboratory manual. 2nd ed. USA: Cold Spring Harbor Press.
- Moritz, C.1994. Minireview "Applications of mitochondrial DNA analysis in conservation: a critical review. *Molecular Ecology*. 3: 401-411.
- Nei, M. 1972. Molecular evolutionary genetics. New York: Columbia
 University Press.
- Norman, J.A., Moritz, C., and Limpus, C.J. 1994. Mitochondrial DNA control region polymorphisms: genetic markers for ecological studies of marine turtles. *Molecular Ecology*. 3: 363-373.
- Park, L.K., and Moran, P. 1994. Developments in the molecular genetic techniques in fisheries. Review in Fish Biology and Fisheries. 4: 272-299.

- Patton, J.C., Gallaway, B.J., Fechhelm, G., and Cronin, M.A. 1997. Genetic variation of microsatellite and mitochondrial DNA markers in broad whitefish (*Coregonus nasus*) in the Colbille and sagavanirktok rivers in northern Alaska. *Canadian Journal of Fisheries and Aquatic Sciences*. 54: 1548-1556.
- Rene, M.M. 1990. An annotated and illustrated catalogue of sea turtles of the world. FAO species Catalogue, Vol. 11. Rome: FAO.
- Rico, C., Ibranim, K.M., Rico, I., and Hewitt, G.M. 1997. Stock composition in North Atlantic populations of whiting using microsatellite markers.

 Journal of Fish Biology. 51: 462-475.
- Ruzzente, D.E., Taggart, C.T., Cook, D., and Goddard, S. 1996. Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off Newfoundland: microsatellite DNA variation and antifreeze level. Canadian Journal of Fisheries and Aquatic Sciences. 53:634-645.
- Schlotterer, C., and Tautz, D. 1992. Slippage synthesis of simple sequence DNA. Nucleic Acids Research. 20: 211-215.
- Spotila, J.R., Spotila, L.D., and Kaufer, N.F. 1994. Molecular mechanisms of TSD in reptiles: A search for the magic bullet. *Journal of Experimental Zoology*. 270: 117-127.
- Stoner, D.S., Quattro, J.M., and Weissman, I.I. 1997. Highly polymorphic microsatellite loci in the colonial ascidian *Botryllus schlosseri*.

 Molecular Marine Biology and Biotechnology. 6: 163-171.

- Togan, I., Fidan, A.Z., Yain, E., Erguven, A., and Emre, Y. 1995. Genetic structure of two Turkish brown trout populations. *Journal of Fish Biology*. 47 (Supplement A): 164-169.
- Valsecchi, E., Palsboll, P., Hale, P., Glockner-Ferrari, D., Ferrari, M., Clapham,
 P., Larsen, F., Mattila, D., Sears, R., Sigurjounsson, J., Brown, M.,
 Corkeron, P., and Amos, B. 1997. Microsatellite genetic distances
 between oceanic populations of the humpback whale (Megaptera movaeangliae). Molecular Biology Evolution. 14: 335-362.
- Ward, R.D., and Grewe, P.M. 1994. Approach of molecular genetic techniques in fisheries. Reviews in Fish Biology and Fisheries. 4: 300-325.
- Wenburg, J.K., Olsen, J.B., and Bentzen, P. 1996. Multiplexed systems of microsatellites for genetic analysis in coastal cutthroat trout (Oncorhynchus clarki) and steelhead (O. mykiss). Molecular Marine Biology and Biotechnology. 5: 273-283.
- Weir, B.S. 1996. Genetic data analysis II. Canada: Sinauer Associated, Inc.
- Weising, K., Nybom, H., Wolff, K., and Meyer, W. 1995. DNA fingerprinting in plants and fungi. New York: CRC Press, Inc.
- Wolfus, G.M. Garcia, D.K., and Warren-Alcivar, A. 1997. Application of the microsatellite technique for analyzing genetic diversity in shrimp breeding programs. *Aquaculture*. 148: 1-13.
- Wright, S. 1978. Evolution and the genetics of populations. Vol. 4: Variability within and among natural populations. USA: Chicago University of Chicago Press.

Wright, J.M., and Bentzen, P. 1994. Microsatellites: genetic markers for the future. Reviews in Fish Biology and Fisheries. 4: 384-388.

APPENDIX I

Genotypes of three microsatellite in juvenile Chelonia mydas from two geographic areas

Individual	locus Cm3	locus Cm72	locus Cc117	
GU9	154/154	278/282	240/252	
GU12	154/162	270/278	250/260	
GU13	151/ <mark>151</mark>	229/251	240/244	
GU14	164/166	280/280	240/254	
GU15	15 <mark>4/172</mark>	260/260	244/264	
GU16	162/162	230/274	234/34	
GU17	160/174	289/289	234/234	
GU26	158/158	278/288	242/242	
GU27	154/158	278/288	241/241	
GU28	154/164	278/288	241/241	
GU29	148/154	255/267	252/260	
GU30	146/160	284/288	241/241	
GU31	156/158	280/280	241/241	
GU32	162/164	271/281	250/258	
GU33	162/164	271/281	234/242	
GU35	162/166	282/288	240/246	

ndividual	locus Cm3	locus Cm72	locus Cc117 242/238	
GU36	162/174	248/260		
GU37	154/154	251/293	236/246	
GU38	154/168	250/250	236/242	
GU39	160/160	242/246	244/248	
GU41	150/174	250/296	240/242	
GU42	172/174	260/270	238/246	
GU43	166/174	278/284	240/240	
GU44	162/176	250/266	242/242	
GU45	160/182	242/246	-	
GU46	162/182	240/244	240/246	
GU47	162/ <mark>172</mark>	254/256	236/240	
GU48	162/172	232/246		
GU49	151/155	282/284	244/246	
GU50	150/154	248/254	238/262	
GU51	164/182	244/262	244/244	
GU52	150/162	286/280	248/256	
GU53	150/178	288/294	240/252	
GU54	160/174	282/292	240/246	
GU55	151/163	254/256	-	
GU56	160/174	282/286	246/268	

Individual	locus Cm3	locus Cm72	locus Cc117
GU57	150/164	282/286	
GU58	173/175	-	-
GU59	152/180	277/289	240/240
GU60	174/176	282/286	240/240
GU61	163/167	244/246	234/242
GU62	150/174	244/246	242/250
GU64	172/172		-
GU65	160/172	248/262	242/256
GU66.	158/170	260/290	240/242
GU67	172/172	280/296	240/242
GU68	158/1 <mark>74</mark>	249/273	252/256
GU69	164/174	256/282	-
GU70	158/172	252/272	-
GU71	160/160	278/298	236/260
GU72	151/151	-	-
GU73	154/172	268/268	244/256
GU74	166/174	248/280	บาลย
GU75	166/174	248/272	1 1 1 1 1 1
GU76	150/174	248/248	-
GU77	147/161	272/292	254/254
GU78	165/173	274/286	252/252

ndividual	locus Cm3	locus Cm72	locus Cc117	
GU79	150/154	272/272	•	
GU80	156/174	252/278	240/260	
GU81	160/172	240/282	238/238	
GU82	-	-	254/260	
GU83	. 150/162	248/298	250/250	
GU84	166/180	252/284	238/244	
GU85	170/172	240/248	244/244	
GU86	166/1 <mark>7</mark> 0	244/298	240/246	
GU87	144/162	230/278	238/258	
GU88	164/170	270/286	246/246	
GU89	160/162	256/256	•	
GU90	168/174	254/278	244/250	
GU91	168/174	298/298	238/250	
GU92	174/174	276/284	240/256	
GU93	160/176	288/288	240/240	
GU94	152/160	276/284	238/238	
GU95	174/178	280/296	246/246	
GU96	154/166	276/284	240/242	
GU97	174/174	252/272	250/252	
GU98	159/159	250/278	240/240	

Individual	locus Cm3	locus Cm72	locus Cc117	
GU99	155/163	239/239	238/240	
GU100	155/181	278/290	252/254	
GU101	172/176	284/288	232/242	
GU102	162/174	254/294	236/236	
GU103	164/174	270/276	240/246	
GU104	150/166	270/276	240/240	
GU105	158/172	264/272	240/242	
GU106	162/172	270/278	240/258	
GU107	156/178	270/282	242/246	
GU108	146/164	246/280	240/246	
GU109	154/1 <mark>74</mark>	272/272	250/252	
GU110	152/162	280/280	242/246	
GU111	160/162	280/280	240/246	
GU112	168/182	246/248	242/250	
GU113	162/176	244/292	248/248	

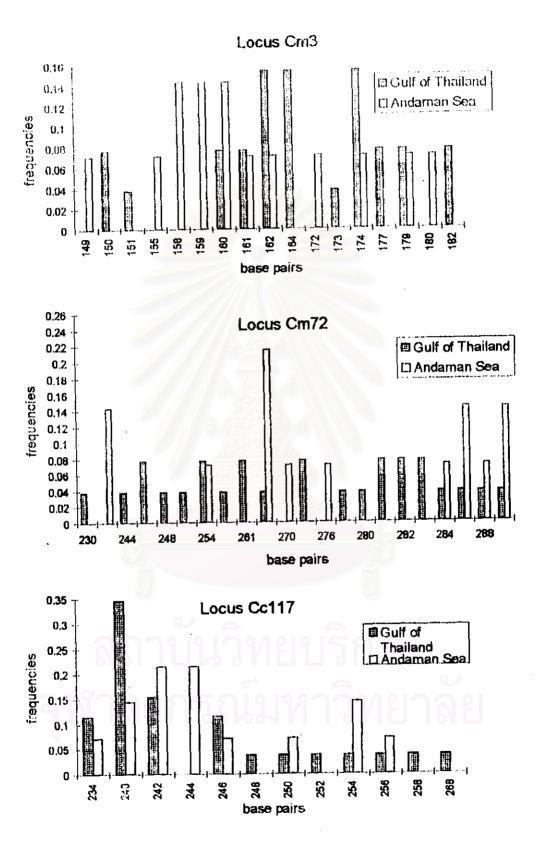
OF LIEURINE MILLISIA

จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX II

Table I Allele frequencies distribution of 20 individuals adult *C. mydas* analysed by three microsatellite loci (Cm3, Cm72 and Cc117) in the Andaman Sea and the Gulf of Thailand samples

Individual	locus Cm3	locus Cm72	locus Cc117	
GU1	150/162	286/290	240/246	
GU2	160/174	254/278	240/240	
GU3	162/182	258/262	234/252	
GU4	164/174	246/254	240/268	
GU5	161/173	280/284	240/246	
GU6	150/174	230/246	248/256	
GU7	1 5 1/161	244/248	234/240	
GU8	159/161	262/262	254/256	
GU10	174/180	286/290	234/244	
GU11	158/162	262/284	240/244	
GU18	158/172	270/288	242/242	
GU19	155/159	286/290	240/250	
GU20	160/160	242/242	244/246	
GU21	149/179	254/276	242/254	
GU22	177/179	261/283	242/240	
GU23	177/179	261/283	240/242	
GU24	162/164	250/282	240/254	
GU25	174/182	282/288	242/246	


Table II Sample size (N), number of alleles per locus (A), observed heterozygosity (H_o) , expected heterozygosity (H_e) and fixation indiced (F) at three loci for two C. mydas populations.

Locus	Gulf of Thailand	Andaman Sea	Total
N	13	7	20
Cm3			
A	11	11	17
H_o	1.00	0.86	0.95
H_e	0.93	0.92	0.93
F	-	-	0.065
Cm72			
A	19	9	22
H_o	1.00	0.71	0.90
H_e	0.95	0.	0.90
$\boldsymbol{\mathit{F}}$	(1) (a) (4)(4)(b) (4)(4)(b) (4)(4)(b) (4)(4)(b) (4)(4)(b) (4)(4)(b) (4)(4)(b) (4)(4)(b) (4)(4)(b) (4)(4)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6))	0.105
Cc117			
A	11	8	12
H_o	0.91	0.86	0.90
H_{e}	0.90	0.88	0.89
F		-	0.169

Table III Hardy-Weinberg expectation, pairwise comparisons of genotypic equilibrium between Cm3, Cm72 and Cc117 loci observed in 20 adult C. mydas

Locus	Gulf of Thailand	Andaman Sea	
Cm3	0.0765	0.2452	
Cm72	0.0469	0.0111	
Cc117	0.8534	0.6727	
overall	0.0721	0.0497_*	

at 95% C.I.

Histogram showing allele frequencies of three microsatellite loci (Cm3, Cm72 and Cc117) in two populations (the Gulf of Thailand and the Andaman Sea) of adult C. mydas

Table IV Results of tests for heterogeneity in adult C. mydas among two populations.

Sampling groups compared and locus	$F_{ m ST}$	F_{ST} P- value	Monte Carlo P-value
Cm3	0,0104	0.0232	0.0283
Cm72	0.0091	0.2888	0.2949
Cc117	0.0120	0.2746	0.4531
overall	0.0108	0.2546	0.1736

at 95% C.I.

Table V Pairwise comparisons of genotypic disequilibrium between Cm3, Cm72 and Cc117 loci observed in 20 adult C. mydas

P-value
0.00080
0.09976
0.05175

at 95% C.I.

Table VI Genetic distance between the Andaman Sea and the Gulf of Thailand samples computed from three loci of 20 adult C. mydas

Locus	genetic distance
Cm3, Cm72 and Cc117	0.6946
Cm3, Cm72	0.9913
Cm3	0.8794

Biography

Miss Thanaporn Veerapraditsin was born on November 4, 1972 in Bangkok. She graduated with the degree of Bachelor of Science from the Department of Science at Chulalongkorn University in 1993. In 1995, she has studies in Master degree of Science at the Department of Biotechnology, Chulalongkorn University.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย