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Chapter 1

Introduction

Progress in many-particle problems is generally associated with a success-
ful model approach. In recent years, there have been intense research efforts on
one-particle self-consistent treatments of many-particle systems. In the case of
a charged test particle interacting with an electron gas, the single-particle spec-
trum was investigated in an approximation with a particle coupled to plasmons.
This kind of coupling in solids has been discussed by many authors since the pio-
neering work by Bohm-Pines [1]. The Bohm-Pines results have been extended in
various directions using the perturbation-theoretical method developed by Gell-
Mann and Brueckner [2], the dielectric formulation of Nozieres and Pines [3], and
the powerful many-body techniques [4].

In metal, Lundqvist [5] showed that the interaction of an individual elec-
tron with plasmons, in the random phase approximation (RPA), can be described
in terms of the Frohlich-type interaction Hamiltonian in analogy with the polaron
problem [6]. This form of the electron-plasmon interaction may be called the
plasmaron coupling.

In this thesis, we would like to study the behaviour of the ground state
energy and the effective mass of the plasmaron by using Feynman’s path integral
approach [7]. Path integral is a very powerful method applied very successfully to
the polaron problem [6], since it can be used for all ranges of coupling constants
and gives the best results for intermediate values of the coupling interaction.

The outlines of this work will be presented as follows: the next chapter will be



devoted to the basic background of the Bohm-Pines theory of an electron gas
with Coulomb interaction which leads to the concept of plasmon and screening
effect. The electron-plasmon interaction Frohlich-type Hamiltonian, proposed
by Lundqvist, will also be discussed in details. In chapter 3, Feynman’s path
integration is presented. The propagator and density matrix including the off-
diagonal part will be calculated by the variational method using the two-particle
model trial action introduced by Samathiyakanit [8] in chapter 4. In chapter 5,
the ground state energy and the effective mass of the plasmaron will be extracted
from the density matrix obtained in the previous chapter with the numerical
results and discussions. Conclusions for the application and the implication of

the present theory will be given in the last chapter.



Chapter 2

Theoretical Reviews

In this chapter the theory of an electron gas, developed by D. Bohm and
D. Pines, will be discussed in details. This leads to the concept of plasmon and
screening effect in solids. And next, Lundqvist’s Frohlich-type electron-plasmon

interaction, which is very important in this work, will be presented.

2.1 The Bohm-Pines theory

Consider a system of electrons moving in a uniform positive charged background
in which these electrons interact with each other and the positive background via

the Coulomb potential. The Hamiltonian of this system can be written as

< 1 P

p? e
H = =+ — — + H 2.1
: =3 Z |Xi—Xj|+ i (21)

LF g

where x; and p; denote the coordinate and momentum of the ith electron respec-
tively, H, represents the interaction between electrons and the positive back-
ground.

To calculate the ground state energy, the perturbation theory will be
applied to this problem by trying to treat the Coulomb interaction as a perturba-
tion. Unfortunately, it has been found that the second-order perturbation term
diverges. This is because of the long-range nature of the Coulomb interaction.
Thus it is not generally possible to simplify the calculation by considering only a

small region of space surrounding any given particle.



In the Bohm-Pines treatment [1,9,10] an extra approximation, just as
extreme but opposite to that of the individual electron model, is introduced such
that the behaviour of the entire electron gas is considered as a whole. Thus, be-
sides the degrees of freedom associated with the motion of the individual particles,
extra degrees of freedom associated with the collective behaviour of the electron
gas are introduced. These give rise to a description in which electrons, beyond
some screening radius r. of any given electron, act cooperatively on that electron,
while the individual-particle aspects are important for radii smaller than r.. The
collective modes of behaviour of the electron gas are associated with plasma os-
cillations with characteristic frequencies w,, and their energy quanta (hw,) are
commonly called plasmons.

The plasma itself may be treated in terms of the equations of motion of
the particle density fluctuations of the system. In order to predict the equations of
motion of density fluctuations in plasma, it is convenient, because of the periodic
boundary conditions imposed on the electron wave functions, to describe our
system in k space rather than x space. The potential energy for the interaction
between the ith and jth electrons may be expanded in a Fourier series, then we

obtain
2

e 4re? I
6 (% — ) = TS e ), (22)
k

%, —x;|

where V' denotes volume of the system.
In the same way, the particle density p(x) is Fourier-decomposed with

the corresponding Fourier coefficients or density fluctuations given by

Pk = /dxp (x) e~Hx, (2.3)



If it is now assumed that we are dealing with point particles, then

p(x) = Z(S (x —x;). (2.4)

Therefore the equation of motion of pg, with the help of the equation mx; = —V¢,

is

; 4re? (k- k/) 1! .
5, — — v )2 omikexi i(k'—k)-x; ,—ik-x;
" Z(k R mv £ ij K2 € (2:5)

where v; is the velocity of the ith electron.
When k = k', the sum over 4 is independent of x; and gives N, the number
of electrons in the system. When k # k', there is indeed a dependence of the sum

on x;. This involves the phase factors e/ K,

Since there is a very large
number of particles at random locations, these terms (summed over k # k') tend
to cancel each other and, in the first approximation, the Bohm-Pines treatment

neglects them. This is ealled the random phase approximation (RPA). Thus the

equation of motion of Eq. (2.5) takes the approximate form as
L= —Z (k- vi)2 eTikxi _ wzpk, (2.6)

where w, = \/m = plasma frequency and n = N/V = mean electron
density.

The first term on'the right-hand side-of Eq. (2.6) does not describe
collective behavieur; rather it corresponds to the contribution of the thermal
motion of individual particles to the density fluctuations. On the other hand,
the second term on the right-hand side of Eq. (2.6) describes each constituent
electron of the entire gas, to contribute the same frequency w, to the density
fluctuations. Thus the latter is a collective behaviour whereas the former is an

individual-particle behaviour. They are both, in principle, present at all times.



However, we may use the criteria of the relative magnitudes of their average

values to determine when one or the other will predominate. If

4mne?

> ((k-vy)?) (2.7)

m

the electron gas will tend to behave collectively, whereas the individual-particle
aspects become important if this inequality is reversed.

Thus far, we have described the electron gas in a metal in terms of the
density fluctuations py, and we have seen that these field coordinates incor-
porate both collective and individual-particle features of the electron gas. Thus
they would not properly serve as pure collective coordinates. The Bohm-Pines
treatment attempts to transform the Hamiltonian of the system (in terms of
these coordinates), by means of canonical transformation from the appropriate
set of field coordinates that represent extra degrees of freedom in the system,
to the normal coordinates which describe the independent modes of collective
behaviour separately from the individual-particle behaviour of the gas.

The Hamiltonian of Eq. (2.1) can be rewritten in terms of field coordi-

nates, pg, as

27T6 Zpkpk Zkz (2.8)
k#0

k#0

It is noted that k = 0 term cancels H,, the interaction between electrons and
the positive background, to zero.
By canonical transformation mentioned above, this Hamiltonian can be

transformed into the equivalent one expressed in the approximate form as

H=T + Hcoll + HI + Hsr + HS€7 (29)



2
7

o~ is the total kinetic energy of the electrons. The second term,

where T = >"2

1
Heoy = —52 (|pk\2 + wi |Qk\2) (2.10)

k<kc

represents the collective modes of the system which is responsible for the long-

range Coulomb interaction, where k. is the critical wave number. The third term,

A1 e h -
Hr=4/——) é.(pi— -k ik 2.11
I v mzék (pz 9 ) gk€ ) ( )

k<kc

describes a coupling of each electron with the collective field of the remaining

electrons, and
2re? eik-(xi—xj)
Hy'= = Z N (2.12)
k>ke,i#j
is a short-range interaction to the Coulomb potential which has a nature similar

to the screening potential as shown in Fig. (2.1). The last term

1
Hi= —27‘(71622 = (2.13)

k<ke
is the self-energy, when ¢ = 7 .

The presence of the interaction term H; in H means that, unless this term
can be neglected, we have not yet provide a purely collective description. The
final transformation to independent collective modes is carried out by Bohm and
Pines [1] with the use of perturbation theoretic canonical transformation theory.
The final form of the Hamiltonian can be transformed into

3

Hnew =T (1 B _6—> H HCOll + Hse + Hs?" + Hel—€l7 (214)

where H,;_ ., Tepresents the electron-electron interaction which is small compared
with the other terms and v = k./kr. Note that the new frequency of the collective

oscillations, denoted by w, is given by the dispersion relation

Arne? 1
L W o) P~ 219
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screened potential [~ exp (—k.r)] is also shown [11].




which leads to

w? (k):w§+§ (@>2/€2+ (hk2)2+... : (2.16)

5\ m 2m
It is interesting that the kinetic energy term in Eq. (2.14) implies that
the electron mass has been increased to

m = 7575 (2.17)

This may be interpreted as the inertial property of a bare electron surrounded by
a plasmon field.
The correlation energy, the total energy subtracted by the Hartree-Fock

energy, of this system has been calculated by Pines [10, 12], it gives

Ecorr 3 EBP_EHF

7i (Esr + Elr) — Eyp

= —0.114 +0.0313In7s — 0.0005r; Ry, (2.18)
where
E..» = -correlation energy,
Egp = Bohm-Pines total energy,
Eyr = Hartree-Fock energy = % — 0‘3516 Ry,
E,. = short-range energy,
E;,. = ‘“long-range energy,
rs ‘= * the'interparticle distance in the unit of the Bohr radius. (2.19)

Before going into a more discussion, let us survey the regimes of different

electron density [13]. We may characterize the electron density by r that is

ay = —, (2.20)



10

where ay = h*/me?.
For actual metals ry varies between about 2 and 5.5, if we regard the
valence electrons as making up our free electron gas. There are for the general

problem three regions of interest:

1) High densities re < 1
2) Metallic densities 2<r,<55
3) Low densities r, > 10.

In the high density case, the electronic kinetic energy dominates the scene,
and the interaction between the electrons is relatively weak. In this domain
the Coulomb interaction can be handled rigorously, and this is Gell-Mann and
Brueckner [2] have done to evaluate the energy. The basic idea of the method
is to examine the increasingly divergent terms of the perturbation series and to
notice that they fall into subseries that can be summed under the integral sign to
give convergent results. The summation is performed by a technique similar to
Feynman’s method in field theory. They find that the total energy per electron

can be written as a power series in 7, which has the form

b
Ef Fo= %—I——+c—|—dlnrs—|—e7‘5+frslnrs+... Ry, (2.21)

8 TS

where the first two terms represent the average kinetic energy and the exchange
energy, and the remaining terms are the correlation energy. We might add that
the basic approximation which they make is the random phase approximation,
which is rigorously satisfied in the very high density limit.

The very low density regime presents a quite different picture. Here, as
Wigner [14] who first pointed out, the electron will be found in a regular array.
The total energy per electron may be written as

a’ b c

Wig
Bl =—+—+—
total 3/2 2
r 7"5/ rs

+.. Ry, (2.22)

s
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where the first term represents the exchange energy plus the leading term in
the correlation energy, the second term represents the zero-point energy of the
electrons oscillating about their equilibrium positions, and the third term arises
from the van der Waals interaction between the electrons. In this case, the
interaction between electrons is all important and actually forces them into a
regular array. Of course the random phase approximation is no longer valid here,

since the electrons are now in a periodic array.

2.2 Lundqvist’s Frohlich-type electron-plasmon
interaction

In Lundqvist’s model of the interacting electron gas [5], he views the system as
a continuous medium or dielectric medium and studies the behaviour of a single
electron added into this system by the Green function technique. We will now
discuss his model in more details.

The single-particle properties, i.e. the properties of the electron system,
when one electron has been added or subtracted, are described by the electron
Green function or propagator G'(q,e) = G (q) [15,16]. This propagator satisfies

the Dyson equation

G{q) = Go(q) + Go (¢) M(q) G (q) - (2.23)

Here the energy spectrum of the non-interacting electrons, described by the prop-

agator
1
G = : 2.24
e P I PTE P (2249
with € (q) = h?q?/2m, is modified by a self-energy
- 2 'k,
M (q) = ie*h e )46 G(q—Fk)D(q,k)V (k). (2.25)
m
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This self-energy depends on the propagator V (k) = V (k,w) for the effective

interaction,
Y= = T my 220

where vy, = 47 /k? is the Coulomb potential in k space and P (k) is the polariza-

tion

P (k) = —2i€2h/ (ﬁ%ei&a ()T (q,k)G (g — k). (2.27)

27)

In his work, gp is the Fermi wave number and £ a positive infinitesimal con-
stant. The vertex part [ involves the coupling to the hierarchy of many-particle
equations.

The expression for the self-energy may be written as a sum of a general-
ized exchange term ( it reduces to the Hartree-Fock exchange potential, if T" is

approximated by 1 and G by G ),

dik k.
M. (q) = i62h/ ———e G (g — k)T (q, k) vx, (2.28)
(2)
and a term involving the single-particle coupling to the density fluctuations [17],
) d4k 2
M,y (q) = ie’h WG (¢ = k)T (g, k)S (k) vy, (2.29)
where
P (k) 1 ( 1 )
Sky=——-——=—|——-1 2.30
(k) (1 —wP (k) vk \€(k) (2.30)

is the propagator for the density fluctuations.
The collective excitations; the plasmons [1] ; appearin low approximations
as poles of the density fluctuation propagator S (k). For instance, in random

phase approximation

62/ ¢ 2(c(q+k)—<c(q) O(qr—q) O (lg+k|—qp)

2r)’w? — (c(a+k) —e(q)® |e(k,e(q+k)—e(q))

1 1 2w (k) © (ke — |K|)
vk ¢ (k,w (k) /0w w? — (w (k) —i€)?’

S (k,w)

(2.31)
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where O (z) is the unit step function.

The first term expresses the propagation of the continuum of electron-hole
pair states, and the second the propagation of the plasmon state, which exists as
a pole only for k smaller than a critical momentum k.. For long wavelength the
plasmon frequency w (k) approaches w, = \/m.

With an effective coupling

€2Uk

9" = 5 (k, w (k) /0w

(2.32)

and a Bose propagator

2w (k)
w? —w? (k) +i&

D(k)y=D (k,w) = (2.33)

for the plasmon, the contribution to the self-energy from only the last term of
Eq. (2.31) is
d*k

M, (q) = ih / Grlad DG~ (2.34)

in an approximation that neglects vertex corrections and the electron-hole pair
excitation appeared in the first term of Eq. (2.31), or mathematically by taking
k. approach infinity. This is just the self-energy in the lowest self-consistent
approximation for a fermion coupled to a boson field.

Eq. (2.34) can be derived from the following Hamiltonian:

[
Hepp =Y e(q)cieq+ Y hw(k)bibc+ Y ngc:;rkcq (b +bh) . (2.35)
q k q,k

Here cjlr , cq and b , by are creation and annihilation operators for fermions and
bosons, respectively, and V' is the volume of the system. For the electron gas
problem this effective Hamiltonian is applicable only to determine the dressing

of the fermions due to the fermion-boson coupling. The source of both of the
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two last terms of Eq. (2.35) is the electron-electron interaction term of the exact
Hamiltonian.

By using the relation [18§]

Zc xCq = €& (2.36)
q

for only one electron, this Hamiltonian can be rewritten, with the zero-point

energy of plasmons, as

Hepp = % + ;hw (k) <blibk + %) Sy Xk:\/égk (biee™ + b =) | (2.37)
which is in the form of Frohlich-type Hamiltonian similar to the polaron problem
[6]. We will call this form of coupling the plasmaron coupling.

For Lundqvist’s model {19], a simple interpolation formula for the dielec-
tric function has been used. It can be expressed as

w? (k) — w?
w? (k) = w2 —w?’

e(kw) = (2.38)

The form of the dielectric function given in Eq. (2.38) is chosen to produce the

following sum rules:

/OO dwwIm (1/e (kw +i)) = —gwg
0

and
p

/ dwwIm (e (kw + i€)).= ng. (2.39)
0

The plasmon dispersion law is taken as

w? (k) = w2 + % (M—F)QH + (h—k2>2 (2.40)

m 2m
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The coefficient in front of the k? term in Eq. (2.40) is a factor 5/9 smaller
than the RPA coefficient of Eq. (2.16). It is chosen in order to give the correct

Thomas-Fermi potential in the static long wavelength limit [18]

w—s0 4

Vk

where kpp = 6mne? /Er being the Thomas-Fermi screening constant.

As pointed out by Lundqvist, that the k2 term is not as important as the
k* term determining the contributions from short wavelength fluctuations. From
the information given above, the electron-plasmon coupling constant g defining

in Eq. (2.32) can be expressed by the equation

1 2me*w?
2 (ae & (7)) /0w>w:wp = o) (242)

|2 47re?

‘gk

In the later chapters, Feynman path integral method will be applied to
this model for some quantities of our interest, i.e. the ground state energy and

the effective mass of the plasmaron.



Chapter 3

Feynman’s path integration

In this chapter we would like to discuss the path integral formulation
of quantum mechanics [7], first proposed by R.P. Feynman, which is based on
Lagrangian instead of Hamiltonian. For simplicity, we shall restrict ourselves to
the case of a particle moving in one dimension.Thus the position at any time can
be specified by a coordinate x, a function of 7. By the path, then, we mean a
function x (7). Before we go on to give the rule for the quantum-mechanical case,

let us remind ourselves of the situation in classical mechanics.

3.1 The classical action

One of the most elegant ways of expressing the condition that determines the
particular classical path Z (7) out of all the possible paths for a particle, from an
initial point z, at time ¢, to a final point @, at time t;, is the principle of least
action. That is, there exists a certain quantity S which can be computed for each
path. The classical path T is that for which S is a minimum. Actually, the real
condition is that S be merely an extremum. That is to say, the value of S is
unchanged in the first order if the path Z (7) is modified slightly. The quantity

S is given by the expression

ty
S:/ L(&,z,7)dr, (3.1)
ta
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where L is the Lagrangian for the system. For a particle of mass m moving in a

potential V' (x,7), which is a function of position and time, the Lagrangian is

L= 5532 —V(z,7). (3.2)

The form of the extremum path Z (7) is determined with the usual procedures of
the calculus of variations. Thus, suppose the path is varied away from = by the

amount dz (7); the condition that the end peints of T are fixed requires
oz (ty) = oz (tp) = 0. (3.3)
The condition that ¥ be an extremum of S means
09 =5z +0z] - SZ]=0 (3.4)
to first order in dz. Using the definition of Eq. (3.1) we may write

tp
Slz+dz] = / L(z+ 0,2+ dx,7)dr
ta

oL oL

ty
= /ta [L (T, 2,7) + 5x% + 5ZL‘%:| dr

% (o oL
= Slz]+ /ta (5x8_a: + 5:17%) dr. (3.5)

Upon integration by parts, the variation in S becomes

o B d (OL\ OL
= /;a (SZIZ' |:% <£) — a—x:| dr. (36)

la

oL
0S8 = dz—=—
xa,

a

Since dx is 0 at the end points, the first term on the right-hand of this equation
is 0.~ Between the end points, dx can take on-any arbitrary value: Thus the

extremum is that curve along which the following condition is always satisfied:

d (0L oL

This is, of course, the classical Lagrangian equation of motion.
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3.2 The quantum-mechanical amplitude

The basic difference between classical mechanics and quantum mechanics should
now be apparent. In classical mechanics the particular path of extremum action
is associated with the particle’s motion; in contrast, in quantum mechanics all
possible paths must play roles including those which do not bear any resemblance
to the classical path. There exists the amplitude, to go from an initial point a
to a final point b, associated with each path. We must say how much each
trajectory contributes to the total amplitude to go from a point a to a point b.
Feynman conjectures that they contribute equal amounts to the total amplitude,
but contribute at different phases. The phase of the contribution from a given
path is the action S for that path in units of the quantum of action h.

The propability P (b,a) to go from a point x, at the time ¢, to a point

xp, at the time ¢, is the absolute square of an amplitude G (b, a) to go from a to b
P(b,a) =G (b,a), (3.8)
where this amplitude is the sum of contribution ¢ [z (7)] from each path.

G (b,a) = > oz (r)]. (3.9)

over all paths
from a to b

The contribution of a path has a phase proportional to the action S :

M A8 (%s b (ﬂ]) | (3.10)

The action is that for the corresponding classical system. The constant will be
chosen to normalize G conveniently, and it will be taken up later when we discuss

more mathematically just what we mean in Eq. (3.9) by a sum over paths.
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3.3 The sum over paths

We can follow through an analogous procedure of Riemann integral in defining
the sum over all paths. To do this, we devide the independent variable time into
steps of width . This gives us a set of values 7; spaced a distance ¢ apart between
the value t, and t,. At each time 7; we select some special point x;. We construct
a path by connecting all the points so selected with straight lines. It is possible
to define a sum over all paths constructed in this manner by taking a mutiple

integral over all values of x; for ¢ between 1 and N — 1, where

Ne = ty,—t,
== AT
To .= la;TN =1
THEE = )il i = Tk (3.11)

The resulting equation is

G(b,a)://.../gb[x (7)] daadzs.dy ;. (3.12)

We do not integrate over x or zy because these are the fixed end points z, and
Tp.

In the present case we can obtain a more representative sample of the
complete set of all possible paths between a and & by making € smaller. However,
just as in the case of the Riemann integral, we cannot proceed to the limit of
this process because the limit does not exist. Once again we must provide some
normalizing factor which we expect will depend on €.

Unfortunately, to define such a normalizing factor seems to be a very

difficult problem and we do not know how to do it in general terms. But we
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Figure 3.1: Diagram showing the sum over paths defined as a limit, in which at
first the path is specified by giving only its coordinate = at a large number of
specified times separated by very small intervals e [7].

do know how to give the definition for all situations which so far seem to have

practical value. For example, take the case where the Lagrangian is given by Eq.

(3.2). The normalizing factor turns out to be A=V | where

Z (mhg)% . (3.13)

m

With this factor the limit exists and we may write
A d.Tl d’lﬁ'g d(TNfl
G (b lli% // /exp ( b a]) T T A (3.14)

Sbal = / " LG5 dr (3.15)

where

is a line integral taken over the trajectory passing through the point x; with
straight ‘sections in between; as in Fig. (3.1)

We shall write the sum over all paths in a less restrictive notation as

G (ba) = /abexp (hs b, a]) D (1), (3.16)

which we shall call a path integral and G (b,a) is named a propagator.
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3.4 (Gaussian integrals

The simplest path integrals are those in which all of the variables appear up to
the second degree in an exponent. We shall call them Gaussian integrals. In
quantum mechanics this corresponds to a case in which the action S involves the
path x (7) up to and including the second power.

To illustrate how the method works in such a case, consider a particle

whose Lagrangian has the form
L=a(n)#* +b(r) iz +c(r)z®>+d(r)i+e(r)z+ f(7). (3.17)

The action is the integral of this function with respect to time between two fixed
end points. Actually, in this form the Lagrangian is a little more general than
necessary. The factor @ could be removed from those terms, in which it is linear
through an integration by parts, but this fact is unimportant for our present

propose. We wish to determine

G (b,a) = / 27 [% / T 25) dT} Da (7). (3.18)

the integral over all paths which go from (z,,%,) to (xy,1;) .

Of course, it is possible to carry out this integral over all paths in the
way which was first described by deviding the region into short time elements,
and so on. That this will work follows from the fact that the integrand is an
exponential of a _quadratic form in the variables & and x. Such an integral can
always be carried out. -We shall not go through this tedious calculation, since
we can determine the most important characteristics of the propagator in the

following manner.
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Figure 3.2: Some possible alternative path in terms of the deviation y (7) from
the classical path z (1) [7].

Let Z (1) be the classical path between the specified end points. This is
the path which is an extremum for the action S. In the notation we have been
using

Sulb.a] =S [z (). (3.19)

We can represent x in terms of Z and a new variable y:
Syt (3.20)

That is to say, instead of defining a point on the path by its distance x (1) from
and arbitrary coordinate axis, we measure instead the deviation y (7) from the
classical path, as shown in Fig. (3.2).

At _each 7 the variables 2 and y differ by the constant z. (Of course,
this is a different constant for each value of 7.) Therefore, clearly, dz; = dy;

for each specific point 7; in the subdivision of time. In general, we may say

Dz (1) = Dy (7).
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The integral for the action can be written

Sl ()] = S[E(r) +y(r)] = /: [a(f) (¢2+2@+y2) +] dr.  (3.21)

If all the terms which do not involve y are collected, the resulting integral is just
S|z (1)] = Sq. If all the terms which contain y as a linear factor are collected,
the resulting integral vanishes. This could be proved by actually carrying out
the integration (some integration by parts would be involved); however, such a
calculation is unnecessary, since we already know the result is true. The function
Z (1) is determined by this very requirement. That is, Z is so chosen that there
is no change in S, to first order, for variations of the path around z. All that
remain are the second-order terms in y. These can be easily picked out, so that

we can write

Sz (7)) = Sa[bya] + /t j [a (1) +b (1) gy + c (1) y2] dr. (3.22)

The integral over paths does not depend upon the classical path, so the propagator

can be written

G (b, a) = e/MSalbal /0 (exp {% /tb la ()9 +b(z) gy + (1) y°] dT}) Dy (7).

i 3 (3.23)
Since all paths y (7) start from and return to the point y = 0, the integral over
paths can be a function only of times at the end points. This means that the

propagator can be written as

G (b, @) =F (ty, ts)exp (%Scz b a]) , (3.24)

where ' F (t,,t,) is called the prefactor which can be evaluated by using the Van

Vleck-Pauli formula as follows

1 o2 2
F(tb,ta> = {det (%mscl)] . (325)
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It is interesting to note that the approximate expression G ~ exp (%Scl) is exact

for the case that S is a quadratic form.

3.5 The path integral formulation of density ma-
trices

If a quantum-mechanical system is described by a complete set of wave function

¢; (x), the density matrix can be written in the form

pla'sw) = Zd) ()¢5 () 7™, (3.26)

where [ = ,{%T and T _is the absolute temperature.
It is remarkable that Eq. (3.26) bears a close resemblance to the general

expression for the propagator written as
G (1’2, t2, Z, tl) = Z¢] (’Bg) QS; (33'1) 6-(i/h)Ej(t27t1). (327)
J

The validity of this expression is restricted to situations in which the Hamiltonian
is constant in time and ¢, > t;. However, this situation is implied in statistical
mechanics; for only if the Hamiltonian is constant in time can equilibrium be
achieved. The difference between the form of Eq. (3.26) and that of Eq. (3.27)
is in the argument of the exponential. If the time difference ¢ — t; of Eq. (3.27)
is replaced by —i(3h, we see that the expression for the density matrix is formally
identical to the expression for the propagator corresponding to an imaginary
negative time interval.

We can develop the similarity between these two expressions from another
point of view. Suppose we write the density matrix in a way which makes it look

a little bit more like a propagator, thus, k (zq, us; z1,uy) for p(xs,z1), where

k (22, ug; 21, u1) = Z¢i (2) @5 (wy) e~ (vame)/MIEL, (3.28)
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Then if 29 = 2/, 1 = x, uy = hF3, and u; = 0, Eq. (3.28) becomes identical with
Eq. (3.26).
If we differentiate k partially with respect to us, we get

Ik

_ * —[(uz—u1)/h|E;
s > Eigi (w2) ¢ (wy) e 12mm)/ME: (3.29)

Now we recall that E;¢; (z') = He; (2') and let Hy imply operations only upon

the variables x5 , we can write

0k (2,1)

—h=—"—=Hok (2/1 3.30

S = HE 20 (330
or, to put the same thing another way,
9p(2,1)

— = Hsop (2,1 3.31

Gﬁ 2p< ) ) ( )

with simple Hamiltonians involving only momenta and coordinates, we have been
able to write the propagator as a path integral. For example, if the Hamiltonian
is given by

n &

AV S 32
2mdx2+v(x)’ (3.32)

then the solution for the propagator over a very short time interval to —t; = ¢ is

2mihe 2% € h 2 ’ (3.33)

which can be directly verified by substitution into Eq. (3.32) By building up a
product of many propagators of the form of Eq. (3.33) and taking the limit as
the time interval & goes to 0 and the number of terms in the product becomes
infinite, we have produced a path integral describing the propagator over a finite

period of time. We can produce a solution to Eq. (3.30) in the same manner.
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The solution for an infinitesimal interval of uy — u; = n is given by substituting

e = —in into Eq. (3.33). Thus

m
k(x2,m;21,0) = (Thn)

=

[_ (m/2n) (x5 — 21)? + 1V (22 + 71) /2]
Xp 7

(3.34)

That this is a valid solution of Eq. (3.30) can be demonstrated by direct substi-
tution of Eq. (3.34) into Eq. (3.30).

The rule for the combination of functions defined for successive values

of u is the same as the rule for the combination of propagators for successive

intervals of time. That is,

k(2.1)= /k (2,3) k (3,1) drs. (3.35)

That this result still holds follows from the fact that Eq. (3.29) is a first-order
derivative in u. This rule can be used to obtain the path integral to define k (2, 1)

as

(9, s 71, 11) = / (exp {—}_;; {5% (i1 — )+ TV (xi)] }) ]ﬁl dr;

— =1 a
(3.36)

The normalizing constant a now becomes

o= (M> ’ (3.37)

D=

m
and the integral is carried out over all paths going from wy to s (that is, z; is z;
for = 0 and x5 for i = N ) in the interval us — uy = Nn).

The result of this derivation is that if we consider a path z (u) as a
function which gives a coordinate in terms of the parameter u, and if we call z

the derivative dx/du, then

p(xQ,xl)—/(eXp{—%/oﬂh 2 () + V()] du}) Dr(u).  (3.38)
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It is noticed that Eq. (3.38) can be obtained by just substituting —iu and —ifh

into 7 and ¢, respectively of the propagator G (za, ta; x1,t1) as follows

p(.’L‘g,.’El) = G(Il?g,tg = —Zhﬂ, .’1)1,t1 = 0) . (339)

AONUUINYUINNS )
RN ITNINENAY



Chapter 4

The plasmaron propagator

The purpose of this chapter is to formulate the plasmaron problem in
terms of Feynman’s path integral [7]. This method has been applied very suc-
cessfully to several problems such as polarons [6], disordered system [20], etc.
The full form, including the off-diagonal part, of the plasmaron propagator (the
diagonal part has already been calculated by Sa-yakanit [21]) will be calculated
from Lundqvist’s Frohlich-type electron-plasmon Hamiltonian which will be used

to study the ground state energy and the effective mass in the next chapter.

4.1 The plasmaron action

From chapter 2, the Hamiltonian of the Frohlich-type electron-plasmon interac-

tion can be written, in the second quantization form, as

2
P 1 h ik-x —ik-x
H:%+zk:hw(k) (b;bk+§)+zk:\/vgk (bee™™ + be ™). (4.1)

Since the Hamiltonian given in Eq. (4.1) is expressed in terms of the second
quantization creation and annihilation operators which is not appropriate for use
in the path integral method; it has to be transformed back to the first quantization
form using the fact that the plasmaron coordinate ¢ and its conjugate momentum
p are

o () (e 0)

mw (k) b (b — b))
2 0 '
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Solve these two equations to obtain by , b and substitute into Eq. (4.1), then

the Hamiltonian becomes

H=_—— + Z (— + —w (k) qﬁ) + k \/ 2mb‘;<k)gqueik'x. (4.3)

The Lagrangian Correspondmg to the Hamiltonian in Eq. (4.3) can be easily

evaluated by using the relation from classical mechanics

L= pigi —H (4.4)
I

m. ™ 2mw (k) e
= EXQ 4 ;5 (Q12< — w? (k) %2() N Zk: \/ TQkae kex, (4.5)

where x represents the coordinate of an electron. This form of Lagrangian will

Therefore

be used in the path integral formulation in the next section.
Now the plasmon coordinates g can be eliminated by defining the trans-
formation function for the electron and the plasmons, from an initial point at

time 7 = 0 to a final point at time 7 = ¢, as

<X2»QI> "'7q]Vat;X17Q17 7QN;O>

x(t)=x2 a1 (t)=q gn(t)=gn i
— / Dx (7’)/ Dqy (1) / Dqn (1) exp <£S)
ql(o) =q an (0)=aqn

_ / ;x Dqk(T)eXp (%s)

where
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The path integrals over the plasmon coordinates ¢’s can be performed using the
well-known result [7] for the forced harmonic oscillator which has the Lagrangian
equal to £ (¢* (1) — w?¢® (7)) + f (1) ¢ (1) where f (7) is the time dependent force,
in this case f (1) = —y/ Qm;(k)g etkx(T),

After integrating over all the plasmon coordinates, from Eq. (4.6) the
transformation function becomes

00
<X2,t;X1,O> = / <X27q17'“7QNat;X17Q1a"'an70> dgldquQN

o

- H<27:sm< )) /Dx T) exp|5 /dTQX(T)

cos (w (k) (t/2 — |1 —0o]))
4mw //dd { sm( ()t/2) }
X exp {zk( (1) (4.8)
where g; = 2m+(k)gz

It is assumed that k is a continuous variable so the summation ) can be
K

changed into the integration written as

Z%#/dk.

k

This gives

(X2, %1, 0). = H(Zisin (%k)t))_l/:z Dx(7) exp[% /othW;XQ ()

k 1

z e’w? dk bt cos (w (k) (t/2 — |1 — o))
5 on / Ank2w (k) /0 /0 drdo o (@ (R 1/2)
x exp {ik- (x (1) = x (7)) }]. (4.9)

Since we are interested in the effect of the coupling between an electron and plas-

mons, we can ignore the prefactor in Eq. (4.9) which is the partition function for
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the plasmons (see appendix A). Therefore we will call, from now on, the transfor-
mation function in Eq. (4.9) without the prefactor the plasmaron propagator

G (x9,x1;t) given explicitly as

G (xg,x1;t / Dx (1) exp (hS) (4.10)

where S, is the plasmaron action defined by the exponent in Eq. (4.9) without

the i/h factor
o, a2~ o)
Sp = /OdTQX Qﬂ- 47rk2w sin (w (k) ¢/2)
x exp {ik- (x (1) = (4.11)

dea

4.2 The trial action

From the plasmaron action of Eq. (4.11) it can be seen obviously that S, is not
a quadratic action, so the plasmaron propagator cannot be evaluated exactly. To
carry out the path integral for the propagator G (x2,x;;t), Feynman’s method is
applied by introducing a trial action Sy. Then the plasmaron propagator can be

rewritten as

ket ~Got i (e {260 })

where
Go (X2, x1; 1 / Dx (1) exp (hS) (4.13)

and the average over Sy, (O)g , is defined as

0)

<O>So ﬁS ) :

*2 D (7) O
J, Dx(7) Oexp ( (4.14)
n

f:f Dx (1) exp (
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By approximation G (xs,x3;t) to the first cumulant, the approximate propagator

G1 (x2,x1;t) can be obtained as
7
G (x9,x71;t) = Gy (Xx2,X1;t) = G (x2,X1;t) exp {ﬁ (Sp — S0>SO} : (4.15)

The trial action Sy (k,2) developed by Samathiyakanit [8] is introduced

as a trial action Sy in this problem

So (H,Q)z/o dr [%XQ (ﬂ—ém/o dU|X(T)—x(a)|2COS(Q(;/I?(;_J)T_UD)]7

2
(4.16)
where x and () are variational parameters.
The physical meaning of this action is that of a two-particle model system
in which an electron is coupled to a second fictitious particle where the position

of the fictitious particle has been eliminated.

The above two-particle model system is well described by the Lagrangian

Lo (s, M) = "2y Maaih)

: ; M-y, @17

K
2
where M and y refer to the mass and the coordinate of the fictitious particle, and

k is a force constant. The propagator of the above two-particle model system can

be written in the path integral representation as

KZ (X27 Yo2,X1,Y1, t)

_ / Dx (r) Dy (7) exp| - /0 dr g s (1) — sx(r))

S [ e e ) S ey ()L aas)

Performing the path integration with respect to the second fictitious particle,
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then
K (X27Y2’X17YI7
1
— D - ° 2 o 2
(2mhsm Qt) / x (7) exp|— /d7'2 (m%* (1) — kx* (1))
+ﬁScl (IY% Yii K, Q)]? (419)
where
MQ
S (y2,y1;5,9Q2) = m[(yg + y7)cos (Q) — 2ys -y
2y2 ] .
+m /0 drkx (7) sin (Q27)
) o /td o () sin (2 (£ = 7))
7o r T
]W2Q2/ / drdok’®x (1) - x () sin (2 (t — 7)) sin (Q0)]

(4.20)

with Q@ = /k/M. The coordinate y can now be eliminated by first setting
y2 = y1 and then integrating Eq. (4.19) with respect to the variable ys.

As a result, this can be written in the form

Ky (x9,%x1;t) = /dY2dY15(Y2—Y1)K2 (%2, ¥2, X1, y1; 1)

_ (stm( N [oxerenlt [ 3ot o)

s (e w2 WQ;J)T“"”J-

h 2MQ sin ( 5

(4.21)
Rearranging terms in the exponent of Eq. (4.21), it becomes
-3
m.,
Ky (x2,x15t) = (22 sin ( )) /Dx T) exp[— / dT(EX (1)

Q t/2 — |t —

KL g () — x (o) L2 = oDy 9

8 0 sm(m)
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The expression in the exponent of the above equation is simply the trial action

So (1, §2) that has been introduced in Eq. (4.16).

4.3 The approximate plasmaron propagator

As we can see from Eq. (4.15) of the previous section that the propagator can be
obtained if one can calculate Gy and (9, — 50) 5, -

First of all, consider (S, — Sp) g, which can be rewritten as

(S, — So)s, = <Sp - /Ot dT%fCQ (T)>SO ~ <50 - /Ot dT%)’g (7)>SO. (4.23)

Substitute the first and second terms on the right-hand side with Eq. (4.11) and

Eq. (4.16) respectively, we arrive at the expression

-0, = o f f anio [ 8 C%(LE?F;—dD

< G 6 <m&
cos (Q(t/2 — |7 — o) (o)
+ 2 [ e o () ),

(4.24)

Therefore the main task now is to calculate (exp{ik-(x(7) —x(0))})g, and

(Jx () = x (o) ).

The first-quantity, of Eq:. (4:24) can be achieved-using the generating
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functional derived by Samathiyakanit [8] as shown below

<exp{%/0td7'f(r)-x(7)}>so

B exp{%[ /0de< ){u(sm(m-) sin(%(t—7))sin(§7)>+ﬂ

m " sin (vt) cos (5t) Mt

i /de< ){,u<sin( (t—T))_Sin(%(i—7))sin(%7))+L(t_T)}

m>  sin (vt) cos (47) Mt

/ / drdof (1) - f (o) {mQJ/ sljn( N (sin (v (t — 7)) sin (vo)
—4sin (2 (t — 7’)) sin (;7‘) sin (g (t— a)) sin (; >) + mLM (t—r7) Z}]}
(4.25)
where p = M-y ="\ /i/pand v2 = O? + k/m.
We can express (exp {ik- (x (7) —x(a))}) g, to be in the same form as the

generating functional as
(exp{ik: (x(7) =x(0))}) g,

_ <exp{7il/0 dThk[a(T'—T)-5(7'—0)]-x(7’)}>30
- (e s [arte), <>}> (1.26)

where f5 (7') is the delta force defined by
f5(7)=nhk[6(7"—7) =0 (7" —0)]. (4.27)

Then replace f (1) and (o) in Eq. (4.25) with the delta force, after a tedious

calculation we get

 2mu? msin (
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The next step is to find (|x (1) — x (0)\2>SO.

The left-hand side of Eq. (4.28) can be expanded in cumulants [22], and

because Sy (k, 1) is quadratic, the expansion can be written as (see appendix B)
(exp {ik- (x (1) —x(0))}) 5,
= exp{ik- ((x(7) —x(0)))g,
3
1
52k (e (1) =i (@) = (s (1) =i (0))?), ) 1o (4:29)
i=1
When comparing with the result from Eq. (4.28), we obtain

((x (1) —x(2))) g,

B sin (£ (7 —0))cos (£ (t=7—0)) 1
= U [ 21 (%t) b M (T — 0')] (Xg - Xl) (430)

and

(I () b

o)
IS T S
i |2t Z)Sfr?s(i%)(t == 0>] % i (431)

We are now ready to get the quantity of our interest by substituting Eq. (4.28)
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and Eq. (4.31) into Eq. (4.24), then the result is

(Sp — S0)g,

_ e / / irio [ o cos<w<i;>n<t</j75t|>f—o|>>

msms( )t_T_U ) +ﬁ(7—0)]
2vsin (¥ (1t —o))sin (4 (t—|r=o]) o2

[ msin(%t) +M|7—_0_| (t—|7'—o'|)]}

[ [

3zhu[2usm (2(r=0))sin(2(t—|r—a]) 12
my? msin (41) Mt

2 [ [ At

S ) Lo b (132)

Slrl(2 7'—0')

x exp{ik- (x2 — x1) p 2
2

_dhpk®
2mu?

[T — ol (t =7 —0al)]

x 2]

The propagator G has already been derived by Samathiyakanit [8]. It is written

as

N m 2 l/sin(
Go (Xg,Xlat) - (27riht) (Qsin(

3 A
e i)+ )]

SIS M=)
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Therefore, the approximate propagator becomes

G (x2,%151)
3
B m \5 [ vsin (%t) L p 2
B <27Tiﬁt> (Q sin (%t) exp{— (Z cot (225) + 2_]\4t) %) — X

HLo / / o [ cos(w(f:j:t(/;;;-ﬂ))

sin<%<7—o>>cos<z<t—7—a>> !
msin (%t) + Mt (r—0)]

2vsin (%(7‘—0’)) sin (Z(t_ |7-_U|)) 2

| mbm( 0) gl ol —oll}

Kk 3 cos (2 (t/2 = |1 —ol))

_§W/ / g0 sm( t)

2vsin (5 (7 = 0)) sin (t%) (t= Iz~ al) + M T —ol|(t— |7 —o)]
i kKQ cos (2 (t/2 — |1 — a]))

) /0 o T G ()

o 8in (¥ (1 —0))cos (£(t— 7 —0)) 1 ) )
| msin (1) g (Tl e —xalT) (4.34)

x exp{ik- (xo — x1)

_ihpk?

2mu?

x|

Before we go on to find the ground state energy or any interesting quantities, the
propagator has to be transformed into the density matrix by just replacing ¢, 7,

o as followed
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After doing this, the density matrix will be expressed in the form

p1 (X2, %15 )

3 3
B m 2 [ vsinh (%ﬁh)
B <27Th2ﬁ> Q2 sinh (Zﬁh)
X exp{—% (% coth ( 67’1) 2]\/;%) |xo — X1|2
Bh rBh Cosh( (k) (BR/2 — |1 — o))

< 47rk2w sinh ( ﬁh)

sinh (¥ (1 — O’)) cosh (X (Bh — 1 — o))
m sinh (%ﬁh)
hk?

g 7~ gpd (im0l 60}
+§ (1 = 9—2) |5 9hcoth (50m) —1]

/ﬂh /ﬁhd Y 4 cosh (2 (BR/2 — |1 — o))

27Th

x exp{ik: (x3 =31 ]

sinh (£3h)
X“Q[Smh Sl Ty ) e (= =
(4.35)
where
Fir-ollp) - pmbGEEe ))nh(h(ﬁn§ﬁh =
ol (121 = ) (4.36)

Note that the term % (1 — S—j) [%Bh coth (%ﬂh) - 1] on the seventh line has been

derived from the expression

K 3p /ﬁh /*% cosh Q(Bh/2 — |1 —0a]))
8 my? sinh (%ﬁh)

2vsinh (% (7 — o)) sinh (% (Bh — |T—a|)) v?
<l msinh (23h) " Mph

[T =l (Bh = |7 = al)].
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By setting |7 — 0| = u and using the relation

/ / drdog (|7 — o]) = /0 du (B —u)g (), (4.37)

we obtain the result as mentioned above.

AONUUINYUINNS )
ANRINTUNINEAE



Chapter 5

The ground state of the plasmaron

In this chapter the plasmaron ground state energy and its effective
mass will be derived from the density matrix obtained in the previous chapter.
First of all, we would like to discuss the effective mass defined by the off-diagonal
part, called Feynman mass, and the diagonal part, called Krivoglaz-Pekar
mass, of the density matrix as mentioned in the polaron problem, then the

relation between the two effective masses is revealed.

5.1 The path integral definition of the effective
mass

Consider an electron moving in an interacting electron gas. If we neglect the
electron-electron interaction, only electron-plasmon interaction is taken into ac-
count. It is possible to replace the system of an electron interacting with its
surrounding (in this case, a set of plasmons) by regarding this system as a free
particle with finite ground state energy. Owing to collecting every effect of plas-
mons on an electron, these will appear in the form of an inertia which gives an
additional value to the electron mass. A new value of this quasi-particle mass is
called an effective mass denoted by m*.

The definition of an-effective mass can be determined by various ways.

The most common approach is to first looking at the following equation,

p2
E=FE+— 5.1
0+2m*7 ( )

where FEj is the ground state energy or self-energy of the quasi-particle,
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m* is an effective mass of the equivalent system.
In this thesis, we will focus on the path integral definition. Assuming

that the velocity of the quasi-particle is small, so it can be written as

"R, Ry

U ;
¢

(5.2)

where t is the time interval between two points R; and Ra,

U is a mean group velocity.

According to Feynman [6, 23], the effective mass can be determined by the
off-diagonal part of the density matrix which can be expressed in an approximate
form of a free particle as

P27 e (—mF'R?—‘Rl'—Q) (5.9
28h° ' '
We will call the effective mass obtained by this method the Feynman mass,
mg.

There is another way to treat this problem. That is, the effective mass
may be defined using the diagonal part of the density matrix (setting Ry = Ry),
introduced by Krivoglaz and Pekar [24]. For this method the density matrix can

be written in an approximate form as

I (;g;)emm—aﬁy (5.4)

The effective mass will be called the Krivoglaz-Pekar mass, myp, following
the name used in the polaron problem.
We are now in a position to study the ground state energy and the effective

mass of the plasmaron from the last two equations mentioned above.
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5.2 The ground state energy and the effective
mass of the plasmaron

To obtain the quantities of interest, it is very important to note that from the
two-particle model system in previous chapter, instead of considering the electron
coordinates, it is more convenient to transform these coordinates into the center

of mass coordinates in which

R :mx—|—My

5.5
o — (5.5)

where R is the center of mass coordinate between the electron and the fictitious
particle,
X is the electron coordinate of mass m,
y is the fictitious particle coordinate of mass M.

Hence the center of mass coordinates can be transformed into

m
R2 = R1 = % (X2 — Xl) s (56)

where  mg=m+ M.

After the electron coordinates have been transformed, the full form of density



44

matrix can be written as

P1 (R2,R1;5)
B m 3 Vsinh(%ﬂh) ’
B (2#5) Qsinh (43h)

XeXp{_% (%mh< ﬁh) 2MZFL>< ) R~ Ru[*

Bh (Bh 0N cosh( (k) (BR)2 — |7 — o))
27Th 47rk2 slnh< 5h>
xwmm«RQ:m)é)ﬁﬂ%ﬂf—ggﬁzggm_T_a»

1 hk?
Faiar TV gt im =l8)

+g (1 y 9—2) [ B coth (Vﬁh) \ 1]

AR ﬁh cosh QBh/2—|T—0]) 5 1
/ / sinh (2530) W3 )
sinh (£ (7 — ) cosh (X (Bl — 7 —0)) ., rmo\?2 )
" m sin (% 5h) P(Gr) Re-Raf} (57)

Let us firstly consider the off-diagonal part of the density matrix. As Ry — Ry
— 0, the exponent on the fifth and sixth lines of Eq. (5.7) can be expanded

in power series of (Ry — Ry). By keeping terms inside the curly bracket up to
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, We can write

(R,
2ﬁf /6h /ﬂthdU /°° dk cosh (w S(m)h(?h/Qﬁ—hgr—al))

xexp< ;Lk f(r—oal, 5))
Bk pBh dk; k2 ,cosh (w (k) (BR/2 — |7 — o))

127T7'z drdo sinh ( Qk) ﬁh)

second order

sinh ( (1 — a)) cosh (¥ (Bh = 7= 0))
m sinh (%ﬁh)
g oo (g (=1 8) ) (22) 1Re — Rl (59

At low temperature and small velocity, we take § — oo, Ry — Ry — 0. One

x|

can show that
cosh (w (k) (BR/2 — |7 — al))
sinh (#ﬁn)
exp (w (k) (B1/2 = |7 — al)) +exp (—w (k) (BR/2 — |1 — a]))
exp (w (k) B1/2) = exp (—w (k) 81 /2)

P exp (—wiE) | — ol

similarly
cosh-(Q(Bh/2 — |7 —a))) e
sinh (%ﬂh)

exp (=2 |7 — o)

and the term

sinh (% (1 — 0)) cosh (£ (Bh — 7 — o)) _exp (—vo) —exp (—vT) o
sinh (%ﬁh) 2

The last expression goes to zero under the integration of the imaginary time from

0.

zero-to infinity.

By using again the relation

/05/06de09(|7—0|) = 2/06619;(@_3;)9(@
SRR T /0 " dug (@)
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The expression of the second term of Eq. (5.8) becomes

2 2 oo 2
il ﬂ;ﬁ/ dup? u
“6nh oM 23

2
< exp (—;fygf (1.8 — 00) ~w b)) (%) Re =R, 69
where
v N 7o
f(u,p— o) = p {—rﬁ (1—e )+MU} (5.10)

and that of the eighth and ninth lines of Eq. (5.7) is

2
ﬁ/ duji® (Mﬁ) exp (— Qu)( > Ry — R4|”. (5.11)
Collecting Eq. (5.9), Eq. (5.11) and substitute into Eq. (5.7), the off-diagonal

part of the density matrix at zero temperature will be expressed in the form as
2 2

e“w, [ dk >
p1 (Rg,Ry; 6 — 00) ~  exp{—[mo+ 37:/0 w(k)kg/o duu?

2
scoxp (g P — 00) — w (B u)

Kk$) = |R2 R1|

duu® exp (—Qu)] ————

Comparing this form with Eq. (5.3), we get

efw, [ dk . hk?
mp = Mo+ 37rp /0 - (k)k2/0 duu® exp <_2my2f (u, 5 — 00) —w (k) u)
K2

2 )

duu® exp (—Qu) . (5.13)

The last term can be integrated to give

KD

duu® exp (—Qu) = M.
2 Jo
This M together with mg will give m, the mass of an electron. So we arrive at

the Feynman effective mass of the plasmaron

ew [ dk 9 hk?
mp =m+ 3 /o mk /0 duu exp(—mezf(u,ﬂ—>oo)—w(k)u).
(5.14)




47

Now we turn to the other part of the plasmaron density matrix, the diagonal
part. From Eq. (5.7), Eq. (5.8) and Eq.(4.37), only parts which is independent

of the plasmaron coordinates will be taken into account. So we can write

P1 (0,0,ﬁ)
B m 3 ysinh(%ﬂh) ’ 3 . 02\ ry r oot (Var ,
- (%#5) Qsinh (%3h) “Mi('_ﬁ>[?3“’<§ﬁ>_}

2w? [ gk [Bn nk?
cosh (w (k) (Bhj2= |7 — o))
X
sinhy (#0231 )

v (5.15)

As taking 3 — oo, in this case, we will also keep the term including 1/ in the
function f (u, s — o0) and will denote this new function F (u, 5 — oo) which

can be written as

2 221
L a2 }. (5.16)

v —ru
F(u,ﬁ—>oo):u{;;(1~e )+Mu+ M B

Then expand the function exp (— G F(u,p— oo)> with respect to 1/

2mu?

about 1/8 = 0 up to first order

exp (— ks F(u,8— oo)>

2muy?

2
= exp —hk F(u, — o0)
2mu? 1/6=0

d hi? 1
57 [ (ot T )] S

2
Nalialb e

b (5.17)
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Substituting back into the density matrix in Eq. (5.15), we obtain

mo V2 0? Q% e*w? [ dk >
= | — - 1 __ p —k2/ d 2
[27Tﬁh2 (Q) exp{ ( V2 > - v23mm Jo w(k) Jo e

<o (- M 1,8 — 00) — w () )t el (1~ 9)2h

2mu? v

62“)1% > dk & 7 L2
_ /0 o) /0 du exp (-Wf(%ﬁ — o0) — w (k) u)]ﬂ},

™

(5.18)

where f (u, 3 — 00) can be expressed in terms of only parameter € and v as
QQ
fu,3—00)=v (1 - —2> (1—e™) + Q% (5.19)
v
Compare the density matrix of Eq. (5.18) with Eq. (5.4), we can obviously
conclude that

V)2 02 Q% e*w’ [~ dk >
— - _— 1 — . 4 —k2/ d 2
mKp m (Q) exp V2 + v23mm J, w(k) o u

hk?
X exp (—Qmﬂf (u, 8 — 00) — w (k) u)} (5.20)
and the ground state energy

0 2 2, .2 oo L 00
Ey = §1/(1——) h_ewp/ / du
4 v T Jo w(k)Jp

X exp (— ;;fyzf (u, 3 — 00) —w (k) u) , (5.21)

where (2 and v are variational parameters.
It is easy to see that the Krivoglaz-Pekar effective mass is related to the

Feynman mass through the equation

2 2
mgp =m <6> exp (Q—@ — 1) ) (5.22)
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The Feynman effective mass of Eq. (5.14), the Krivoglaz-Pekar effective mass
of Eq. (5.20) and the ground state energy of Eq. (5.21) can be expressed as
functions of some dimensionless variables by introducing u = hs/Er where EF is

the Fermi energy. This gives

%: 2E2\/§T;/ dEEllj\/—/ dss?

x exp{—E (k )[EHE%( EQ) (1= P — B, (k) s).
- (5.23)
and
5 = B s [
x exp{—B (k )[%5+E—V< E2) (1—e‘E”s)]—Ew (k) 5}(5.25)
where

E, = Ey/EF is measured in the unit of Fermi energy,
EV = hV/EF,EQ:hQ/EF,Ew(k)— ( )/EF, —hwp/EF,
E(k) = Rm*k*/2mEp , Ey = me*/2h* = 1 Ry,
4
E, (k) = \/Eg + §E (k) + E2 (k). (5.26)
Since

9 5-1 471
Fp = NN +$ Ry and B, = v12 | — | 75 Ry,
41) Cr? 97

where r, is the interparticle distance in units of Bohr radius.

2
™ EF

We have



20

wlout

with ¢ = (12) (&)

T/ \4

mp 2cr? [*dE (k) <
— = 1+=-= VE (k d
+ 3E§/0 B ( )/0 xx

and by setting x = F,s, we obtain

m (F)
x exp{—az — A (e™* — 1)}, (5.27)
WTAAN L 2
AN exp (,0 — 1) (5.28)
and
2 ] E e8]
4 E, Jo B, (k)\/E (k) Jo
x exp{—az — X (e * —1)}, (5.29)

where we have used p = Fq/E, , \ = —%f) (1=p%),a=5 (Ek)p*+E, (k).

To obtain the best approximation for the actual ground state energy EY,
the two parameters p and £, have to be varied separately to yield the minimum
E{. This can be accomplished generally by minimizing Eq. (5.29) with respect
to both p and E,. Unfortunately, since these variational equations cannot be
calculated in closed forms, numerical method must be employed. When we get p

and £, that give minimum £, they can be substituted back into Eq. (5.27) and

Eq. (5.28) to find the plasmaron effective mass.

5.3 Numerical results and discussions

In this section, the plasmaron ground state energy and its effective mass will be
evaluated numerically. We choose to adopt, for simplicity, the MATHEMAT-
ICA program [25], since it provides many built-in functions and can perform a

numerical integration appeared in the formulas for the ground state energy and
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the effective mass. FindMinimum function of the MATHEMATICA program
will be applied in the minimization process (see appendix C). We can understand
something about how FindMinimum works by thinking of the values of our func-
tion as defining the height of a surface. What FindMinimum does is essentially
to start at the points we specify, then follow the path of steepest descent on the
surface. After applying this program to Eq. (5.29), the results of the ground
state energy and the two variational parameters (p and F,) plotted versus r, are
shown in Fig. (5.1), Fig. (5.2) and Fig. (5.3) respectively.

Energy (Ry)
0_

05

14

r.S
0.1 1 10 100 1000 10000 100000

Figure 5.1: A plot of the plasmaron ground state energy at wide ranges of r,.

As mentioned in chapter 2, there are three different regimes of densities.
It is very important to connect this to the behaviour of all ranges of coupling. At
very high density (r; — 0), the kinetic term dominates all terms of interaction.
So it corresponds to weak coupling. Meanwhile, at very low density (r; — 00),

the interaction term becomes important. This is called strong coupling which
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Figure 5.2: The parameter p obtained from the minimization process.

is opposite to the first case. Intermediate coupling goes to the region where
we cannot neglect both kinetic and interaction terms such as the region of real
metallic density, for example.

In Fig. (5.1), the plasmaron ground state energy is plotted in all regions
of coupling. It is shown that the energy increases as going from the weak coupling
to the strong coupling limit. It is interesting to compare this result with some
methods for the same Frohlich-type electron-plasmon interaction model.

When we consider characteristic of both two parameters p and E,, it can
readily be seen that p, in Fig. (5.2), varies from 1 to 0 as r, increases. Whereas
E,, in Fig. (5.3), tends to go to infinity.

Now we would like to compare the ground state energy of our numerical
result with the method called generalized path integral method which is
introduced by Luttinger and Lu for the polaron problem [26] and taken into the

calculation for our model by Sa-yakanit, Lakno and Hass [27]. The energy is
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Figure 5.3: The other parameter F, which has a characteristic different from p.

approximated to be

2
Ey, = 3 pad 20
20 T

12r %

S

/oo exp <—\/§rs_3/2u2x2/B2>
dx
0 \/1+ (w23 ) V/3V2/F5) a2 + x*
1

X Ry, (5.30)
\/1 + (w332 frs) %+ ot + (1 — p) 2

where B and pu are variational parameters.

In the case of weak coupling limit, when u — 0, the energy is

1
T's

and in the region of strong coupling, when'p — 1, they get
FEy =~ —0.1085 Ry (5.32)

Plots of the ground state energy compared with the energy obtained from the
generalized path integral method in the two extreme cases are shown in Fig.

(5.4) and Fig. (5.5)
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Figure 5.4: Comparison of the ground state energy obtained from the generalized
path integral method with our result in the weak coupling limit.

In the weak coupling limit, the energy from the generalized path integral
method is much lower than that of our result but tends to converge to our ap-
proach as r, going to 1, the difference is about 10 %. This is due to the fact that
the energy in Eq. (5.31) increases more rapidly than our result. When we turn to
the strong coupling limit, it behaves differently. That is, as r, becomes greater,
the ground state energies of the two methods seem to diverge from each other.

In the case of intermediate coupling, we use the energy of a few metals
evaluated by generalized path integral method [28] and ecompare this with our
result as shown in Table (5.1).

Surprisingly, although the energies are calculated by different approaches, this
table demonstrates a good agreement between them.

Up to now, we have not yet discussed about the plasmaron effective mass.

When we obtain the two parameters p and E, from the minimization process,
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Figure 5.5: Comparison of the ground state energy obtained from the generalized
path integral method with our result in the strong coupling limit.

Li Na Be Mg Al
A 3.26 | 4.00 1.88 | 2.66 | 2.07

¢1 (Ry) | =0.36 | —0.32 | —0.53 | —0.42 | —0.5

Ey(Ry) | —0.37 | —0.32 | —0.54 | —0.42 | —0.5

Table 5.1: Comparison of the ground state energy of some metals from the two
methods, where ¢; denotes the energy obtained from the generalized path integral
method and Ej is our result.
they can be substituted back into Eq. (5.27) and Eq. (5.28). The results of the
two definitions of the plasmaron effective mass, the Feynman mass and Krivoglaz-
Pekar mass, are shown in Fig.. (5.6).

In Fig. (5.6), the Krivoglaz-Pekar mass is greater than the Feynman mass
(mgp > mp) at all ranges of coupling. - The two masses seem to coincide with
each other, within a six-digit accuracy of the MATHEMATICA program, in the
weak coupling limit and they begin to diverge from each other when entering into

the region of strong coupling.
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Figure 5.6: A plot of Feynman and Krivoglaz-Pekar effective masses at various
Ts.

It is worth studying the behaviour of the effective mass in both extreme
regions of coupling. We firstly consider the effective mass derived from the gen-

eralized path integral method [28], it can be expressed as
exp <—\/§r§3/2u2x2/32>

\/1 + (7?2/3/{5/5\3/5@) z2 +
1

*

3

2 (e.9]
= 1+ —123/47’2/4/ drz?
9 0

X 3 (5.33)
(\/1 (3 ) a7+ (1 - 1) :1:2)
In the case of weak coupling, © — 0, it gives
m* 2
sl V32, 5.34
RS R (534

When comparing with our two effective masses in Fig. (5.7), it coincides with

our results for small r,, but becomes larger obviously as r, approaches 1.
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Figure 5.7: A plot of Feynman and Krivoglaz effective masses compared with the
mass derived by the generalized path integral method in the weak coupling limit.

In the case of strong coupling, © — 1, the approximate form is

o e (5.35)

m 233 7

When comparing with our two effective masses as in Fig. (5.8), it is about 10

times greater than our results and tends to infinity.

The behaviour of m*/m in Fig. (5.6) is worth discussing in more detail.
It shows that both mpg/m andmgp/m are close to 1 in the high density limit
and they become very large in the low density limit. We can interpret this
characteristic in the way that the particle in the high density limit is mobile,
because of its small effective mass. While the particle in the low density limit has
very large effective mass, so it cannot move away from its own field. The particle
in this limit becomes localized. This may reflect an interesting phenomenon

called a phase transition, which occurs in an interacting system, from the weak
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Figure 5.8: A plot of Feynman and Krivoglaz-Pekar effective masses compared
with the mass derived by the generalized path integral method in the strong
coupling limit.

coupling limit to the strong coupling limit. Comparing our result with the theory
of the electron gas, we find that at very high density, the electrons are essentially
mobile. While at very low density, the electrons are localized known as Wigner

crystallization. However, our theory cannot describe at what value of rg the

phase transition will take place.



Chapter 6

Conclusions

In this thesis, the ground state energy and the effective mass of the plas-
maron, defined as the dressing of an electron by the plasmons, have been investi-
gated. We start at the Frohlich-type electron-plasmon Hamiltonian, introduced
by Lundqvist, which is expressed in the second-quantization form. The electron-
hole pair excitation is neglected in this model. It corresponds to taking the
critical k., the maximum value of the wave number that plasmons can exist, to
infinity. We chose the Feynman path integral method to study this system since
it can be applied very successfully to the polaron problem in all ranges of coupling
constants.

First of all, the Hamiltonian must be transformed into the first-quantization
representation which is suitable for this method. Then the Lagrangian is ob-
tained. Secondly, the transformation function which connects the initial and
final states of the electron and plasmons is set up. After eliminating the plasmon
coordinates, we obtain the transformation function consisting of the prefactor
which is the partition function for the plasmons in the imaginary time represen-
tation and the resulting contribution due to the effect of plasmons on an electron.
The later transformation funetion is called the plasmaron propagator. Since this
propagator-cannot be evaluated in an exact form, the variational method must
be taken into account by introducing a trial action proposed by Sa-yakanit. If we
keep the off-diagonal part, then we arrive at the fullform of the propagator and
also the density matrix.

The ground state energy and the Krivoglaz-Pekar effective mass of the
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plasmaron is obtained from the diagonal part of the density matrix by letting
£ go to infinity, whereas the Feynman effective mass is derived from the off-
diagonal part. We can find the ground state energy and the two effective masses
numerically by using the MATHEMATICA program. Our results are compared
with that obtained from the generalized path integral method. In the weak
coupling case, we have found that the energy of such method is much larger
than our result but tends to come closer as r; becomes greater. The energy
in the high density limit has a different characteristic. The two ground state
energies diverge from each other as r, increases. Surprisingly, in the region of
intermediate coupling, considering for a few metals, they both are in a good
agreement. When turning to the effective mass, the Krivoglaz-Pekar mass is larger
than the Feynman mass in all regions of coupling and the difference between them
increases as 7 goes to infinity. We again compare our results with the generalized
path integral method in the two extreme limits. In the weak coupling case, it
coincides with mpr/m and mgp/m for small r,, but becomes larger than our
results obviously as ry approaches 1. In the strong coupling case, it is about
10 times greater than our effective masses. There is an interesting behaviour of
the effective mass which is worth discussing. We can see that both mpg/m and
myp/m are close to 1 in the high density limit. This means that the particle
is mobile, because of its small effective mass, whereas they are very large in
the low density limit. It can be interpreted that the particle cannot move away
from its own field and becomes localized. This result may be connected to the
phenomenon known as Wigner crystallization. Unfortunately, we do not know at
what value of r, the phase transition begins to occur.

It is noted that we use Lundqvist’s Frohlich-type Hamiltonian which as-
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sumes the electron gas to be a continuous medium and allows RPA to be valid
in all regions of coupling. But in real system, when going from the high density
limit to the low density limit, the electron gas loses its homogenity and becomes
a discrete structure. So it is interesting to improve our model and the method of

calculation for future research.
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Appendix A:

The plasmon partition function

Consider a set of plasmons of which the Lagrangian can be written as

L= Z (k) Qk( )) (B.1)

It is similar to the Lagranglan of a set of harmonic oscillators, hence the prop-
agator for this system can be obtained from the well-known result for the path

integral of the harmonie oscillator. This gives

Q17' 7QN7t Q17' 7QEV70)

= Dq1 / Dy (1) exp <hZ/dT_ —WQ(/f)(Jﬁ(T))>

l
4

- T1[ P e (5 [ 4 G = 2061 o) )

_ mw (k) 3 imw (k) s ,
- 1;[ (27Tih sin (w (k) t)) = <m [ (gic + @i cos (w (k) t) — 2C]qu}) :

(B.2)

Note that gk (0) = ¢ and gk (t) = .
The partition function of such propagator in the real time (if we replace

t = —ihf, we call 3 the imaginary time) can be performed using the formula

Z = / d(11~--dCIN/ dqydgyo (¢ — q1) .0 (dy — an) G

o o

“ /_ZdCIL--dC]NG(ql,...,qN,t;ql,...,qN,O)
I/ i () o (i ko012

- Masnmn) e (rtimn = (557 2) e

S




67

This is the Gaussian integral, therefore

_ mw (k) : mhsin (w (k) t :
Z = 1;[ (27r'ih sin (w (k) t)) (Qimw (k) sin? (w(k) t) )
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Appendix B:

The calculation of cumulant expansion

We would like to approximate (exp{ik- (x(7) —x(0))})g, by using the

cumulant expansion

(exp (a)) = exp |(a) + % ((a®) — (a)Q) + ..., (B.1)

we use (a) instead of (a)g, for convenience.
By keeping the terms up to the second order and replacing a with

exp{ik- (x (1) — x(0))}, we have

(exp (it (x(7) 5 (@)}
— oxp (ke (x(r) (@) 4 [0 (x () < x(01))) — (ik (x(r) = x (0)))] ).
(B.2)

First of all, consider the second term on the right-hand side

((ik (x(r) = x(0)))")

= [k (2 (1) =2 (0)) + ky (y (1) =y (0)) + k2 (2 (1) = 2 (0))]")

= — (k) =2 (@)") = k5 (4. (7) — 4lo)?) = (&2 (z (1) — 2 (0))°)
—2kky ((x (1) — 2 (0)) (y (1) =y (9)))
=2k k- (Y (1) =y (@) (2(7) = 2(9)))

—2kzk: (2 (1) — 2 (0)) (2 (7) — 2(9))) - (B-3)
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Next turn to the third term

(ik- (x (1) —x(0)))*

(@ (1) = 2(0))) {(2(7) =2(2))) - (B4)

(@ (1) =z (o)) (2(r) = 2(0))) = ((@(7) =2(0))){(2(7) = 2(0))) . (B.5)

Then substitute Eq.(B.3), Eq.(B.4) and apply the relation of Eq.(B.5), we get

)
7) =2 (0)))* (2 (1) — 2 (0)1")))). (B.6)
Compare Eq.(B.6) with Eq. (4.28 ), we obtain
((x (1) =x(0))) = A (%2 —x1), (B.7)

where

K msin( ) Mt
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And
(o (7) =2 (@) = {(@(r) —2 (o)) = B (B.3)
()~ ()~ {(y(r) ~y (o)) = B (B.9)
(=) = 2 (@) — {(2(r) — 2 (0))*) = B (B.10)

where

B F”m (G(r ‘;)S)iz“(l%(f) R a\)] |

By taking Eq.(B.8) + Eq.(B.9) + Eq.(B.10) and using Eq.(B.7), the result is

((x(r) = x(a))")

_ 3ihp | 2vsin (4(r=0))sin (4 —|r—ol) V_2 - o
o2 [ m sin (%f) . Mt [m =l = —ol)

m sin (%t) 'y Mt

e [sin(% (1—0))cos (5(t—=T7—0)) 1 (r—a)] %o — x1)°.(B.11)



Appendix C:

The numerical calculation

Here is the MATHEMATICA program used in this work to minimize the

ground state energy:

Clear[r,c,p,x,Ep,EF,Ev,EK]|

r = 1.88;

¢ = (12/Pi) (4/(9 Pi))"(5/3);

Ep = (4/(9 Pi)) (2/3) (12 1)70.5;

EF = (9 Pi)/4) (2/3)/(x2);

FindMinimum| EF ((3/4) Ev (1-p)°2 - ¢ (+°2)/Ev Nlntegrate[l/(Ep"2
Ek+(4/3) Ek 24 Ek"3)70.5

NIntegrate[Exp|- x (Ek p" 2+ (Ep"2+(4/3) Ek+Ek"2)"0.5)/Ev+Ek
(1-p"2)/Ev (Exp|-x]-1)],{x.0.Infinity}], {Ek,0,Infinity}]),{p,2},{Ev,1}]

When we get p and Fr, we can evaluate Feynman and Krivoglaz-Pekar

effective mass by the following program:

Clear[r,c,p,x,mF,;mKP,Ep,Ev Ek]

r = 1.88;

¢ = (12/Pi) (4/(9 P1))"(5/3);

Bp = (4409 P))(2/3) (12x) 0.5

p = 0.979968;

Ev = 2.56577;

mF = 1+(2/3) ¢ (r"2)/(Ev"3) Nlntegrate[(Ek) 0.5



72

/(Ep”2+(4/3)Ek+Ek"2)"0.5

NlIntegrate[(x"2) Exp[-x (Ek p"2+(Ep~2+(4/3) Ek+Ek"2)"0.5)/Ev+Ek
(1-p"2)/Ev (Exp[-x]-1)], {x,0,Infinity}],{ Ek,0,Infinity }|;

mKP = 1/(p"2) Exp[(p"2) mF-1];

Print[’mF/m =7, mF | ” 7 ?’mKP/m =7, mKP]

The results are shown in table (C.1)

We also plot the graphs between the ground state energy and the varia-
tional parameters at 7y = 1.88 in different cases as shown in Fig. (C.1), when the
two parameters p and I, are both varied, Fig. (C.2), when setting £, = 2.56577,
and Fig. (C.3), setting p = 0.979968.
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Ts p E, Ey (Ry) mp/m | mgp/m
0.1 0.998895 | 0.499572 -3.5627 1.00206 | 1.00206
0.2 0.997931 | 0.790546 -2.32549 1.00449 | 1.00449
0.4 0.995159 | 1.05166 -1.49785 1.00941 | 1.00941
0.6 0.993355 | 1.47742 -1.15094 1.01427 | 1.01427
0.8 0.99105 1.69202 -0.952173 1.01903 | 1.01903

1.88(Be) | 0.979968 | 2.56577 -0.535701 1.04349 | 1.04349
2.07(Al) | 0.97806 | 2.68379 -0.501558 1.04762 | 1.04762
2.66(Mg) | 0.972551 | 3.03965 -0.422117 1.0602 | 1.0602

3.26(Li) | 0.967118 | 3.35984 -0.366692 1.07269 | 1.07269
4(Na) 0.960677 | 3.71846 -0.318049 1.08775 | 1.08776
6 0.944484 | 4.58411 -0.2394 1.12717 | 1.12718

8 0.929551 2.3289 -0.19543 1.16534 | 1.16537

10 0.91557 6.0029 -0.166859 1.20275 | 1.20279

20 0.855564 | 8.84784 -0.101863 1.38522 | 1.38536
40 0.764542 | 13.5546 -0.0620851 1.75008 | 1.75053

60 0.696294 | 17.8349 -0.0464928 2.12436 | 2.12529
80 0.642807 | 21.9661 -0.0378873 2.50691 | 2.50848
100 0.59963 | 26.0258 -0.0323373 2.89482 | 2.89718

200 0.467285 | 45.9268 -0.0198105 4.84637 | 4.85429
400 0.35441 84.777 -0.0121577 8.58202 | 8.60685
800 0.267687 | 159.869 | -7.45648x 102 | 15.3547 | 15.4272
1000 0.248225 | 170.135 | -6.36347x10~> [ 18.1577 | 18.2768
2000 0.186212 | 373.511 | -3.89106x1072 | 32.6952 | 32.9648
4000 0.142615 | 709.237 | -2.36891x 1073 | 57.1365 | 57.8188
8000 0.109881 1343.8 | -1.43676x1072 | 98.8757 | 100.537
10000 | 0.0972196 | 1567.07- | -1.22213x 1072 | 117.592 | 118.274
20000 | 0.0782011 | 3111.56 |-7.37908x107* | 201.868 | 206.737
40000 | 0.0606485 | 5852.1 | -4.44215%x107* | 344.269 | 354.826
100000 | 0.0434786 | 13432.9 |-2.26266x10~ | 693.361 | 721.762

Table C.1: The table shows the numerical values of the two variational parame-
ters,the ground state energy and the two effective masses at some selected r;.
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W A P\
Figure C.1: ﬁm@jﬁﬁrﬂx% % ?ﬁ c‘hT?ro variational param-
eters p and at ry = 1.88.
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Figure C.2: A plot of the ground state energy versus the variational parameter p
keeping F, = 2.56577 at r, = 1.88.
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Figure C.3: A plot of the ground state energy versus the variational parameter
E, keeping p = 0.979968 at r, = 1.88.
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