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CHAPTER I

INTRODUCTION

A Construction of great versatility is that of a module over a ring. For this

research, we are interested in a more general structure. Sureeporn has been

introduced the concept of a skewring in [1]: A skewring is a ring dropping an

additively commutative property. An object analogous to a module over a ring

which is called a skewmodule can be defined over a skewring. Moreover, we study

which theorems in Module Theory can be generalized to skewmodules. In this

research,we study the theorems in [1], [2], [4] and [5].

There are four chapters in this thesis. In Chapter I, we introduce the concept

of a normal subskewmodule. We find that skewmodules can be studied in much

the same way as modules if we replace submodules in Module Theory by normal

subskewmodules.

In Chapter II, we give definitions, examples and prove some fundamental

theorems about skewmodules.

In Chapter III, we study the concept of the composition series and generalize

the four basic Isomorphism Theorems and the Jordan Hölder Theorem to

skewmodules.

In Chapter IV, we give definitions and theorems related artinian and

noetherian skewmodules. Moreover, we prove the relation between artinian,

noetherian skewmodules and the composition series.



CHAPTER II

PRELIMINARIES

In this chapter we give some definitions and theorems which are used in this

thesis. Moreover, some examples are given.

Notation My general notation conventions are as follows:

N is the set of all natural numbers,

0R (or 0) is the additive identity of a group (R, +),

A ⊂ B (or B ⊃ A) means that A is a proper subset of B.

Definition 2.1. A triple (R, +, ·) is a skewring if

(1) (R, +) is a group,

(2) (R, ·) is a semigroup and

(3) x(y + z) = xy + xz and (y + z)x = yx + zx for all x, y, z ∈ R.

Definition 2.2. Let R be a skewring. A left R-skewmodule M or a left

skewmodule M over R is an additive group M with a left action R×M → M ,

given by (r,m) 7→ rm, such that

(1) (r + s)m = rm + sm,

(2) r(m + n) = rm + rn,

(3) (rs)m = r(sm)

for all r, s ∈ R and all m,n ∈ M . If R has a multiplicative identity 1, we define

1m = m for all m ∈ M .



A left R-skewmodule M is called a left R-module or a left module over R

if M is an abelian group.

A right R-skewmodule or a right skewmodule over R and a right

R-module or a right module over R are defined in the similar way by replacing

a left action with a right action with corresponding properties to (1)–(3). In what

follows, we make the convention that the term R-skewmodule always means a left

R-skewmodule.

Remark 2.3. Let M be a skewmodule with additive identity 0M over a skewring

R with additive identity 0R. It is easy to prove that, for all r ∈ R, m ∈ M ,

r0M = 0M , 0Rm = 0M and (−r)m = −(rm) = r(−m).

Lemma 2.4. Let M be an R-skewmodule. For r, s ∈ R and m,n ∈ M ,

rn + sm = sm + rn.

Proof. Consider

(r + s)(m + n) = r(m + n) + s(m + n) = rm + rn + sm + sn (1)

(r + s)(m + n) = (r + s)m + (r + s)n = rm + sm + rn + sn (2)

By (1), (2) and the definition of an R-skewmodule, we obtain that rn + sm =

sm + rn.

Remark 2.5. Let R be a skewring and M an R-skewmodule. The following

statements hold.

(1) RM = {
n
∑

i=1
rimi | ri ∈ R, mi ∈ M,n ∈ N} is a module over R.

(2) If RM = M , then M is a module over R.

3



(3) If R has a multiplicative identity, then R is a ring, and M is an

R-module.

Proof. (1) Apply Lemma 2.4 to prove the commutativity of addition.

(2) The result is obtained immediately from (1).

(3) If R has a multiplicative identity, Sureepron proved that R is a ring in [1],

then by (2), we obtain that M is an R-module.

Lemma 2.6. Let R be a skewring and M an R-skewmodule. If M is finite and

there exists an r ∈ R \{0} such that rm 6= 0 for all m ∈ M \{0}, then M is a

module over R.

Proof. Assume that M is finite and there exists an r ∈ R \{0} such that rm 6= 0

for all m ∈ M \{0}. Define f : M \{0} → M \{0} by

f(m) = rm for all m ∈ M \{0}.

To show that f is 1-1, let m1,m2 ∈ M \{0} be such that f(m1) = f(m2). Then

rm1 = rm2. Thus r(m1 −m2) = 0. By the assumption, we have m1 −m2 = 0,

i.e., m1 = m2. Hence f is 1-1. Since M is finite, f is onto. Then RM = M . By

Remark 2.5(2), M is a module over R.

Definition 2.7. Let R be a skewring and I a nonempty subset of R.

(1) If I is a skewring under the operations of R, then I is a subskewring of

R, denoted by I ≤ R.

(2) If I is a subskewring of R and {yx | x ∈ I, y ∈ R} ⊆ I
(

{xy | x ∈ I, y ∈

R} ⊆ I
)

, then I is a left (right) ideal of R.

If I is both a left and right ideal of R, then I is a two-sided ideal or ideal

of R.

4



(3) If I is a subskewring of R and {r + x− r | r ∈ R, x ∈ I} ⊆ I, then I is a

normal subskewring of R.

(4) If I is a left (right) ideal of R and I is a normal subskewring of R, then I

is a normal left (right) ideal of R.

If I is both a normal left and right ideal of R, then I is a normal

two-sided ideal or normal ideal of R.

Definition 2.8. Let R and S be skewrings and f : R → S. f is called a

homomorphism if and only if for all x, y ∈ R,

f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y).

Let R be a skewring and I a normal ideal of R. Let R/I = {x + I | x ∈ R}

and define the binary operations +, · on R/I as follows : for all x+I, y+I ∈ R/I,

(x + I) + (y + I) = x + y + I and

(x + I)(y + I) = xy + I.

We, now, give some examples of skewmodule.

Example 2.9. Any a skewring R is an R-skewmodule.

Example 2.10. If S is a skewring and R a subskewring of S, then S is an

R-skewmodule with rs(r ∈ R, s ∈ S) being the multiplication in S.

Example 2.11. If I is a left ideal of a skewring R, then I is a left R-skewmodule

with ra(r ∈ R, a ∈ I) being the multiplication in R.

Example 2.12. If I is a normal left ideal of a skewring R, then R/I is an

R-skewmodule with

r(r + I) = rr + I where r, r ∈ R.

5



Example 2.13. Let R and S be skewrings and ϕ : R → S a homomorphism.

Then every S-skewmodule M can be made into an R-skewmodule by defining

rm(r ∈ R, m ∈ M) to be ϕ(r)m.

To prove this, let r, r1, r2 ∈ R and m,m1,m2 ∈ M . We obtain that

(r1 +r2)m =
(

ϕ(r1 +r2)
)

m =
(

ϕ(r1)+ϕ(r2)
)

m = ϕ(r1)m+ϕ(r2)m = r1m+r2m,

r(m1 + m2) = ϕ(r)(m1 + m2) = ϕ(r)m1 + ϕ(r)m2 = rm1 + rm2 and

(r1r2)m = ϕ(r1r2)m =
(

ϕ(r1)ϕ(r2)
)

m = ϕ(r1)
(

ϕ(r2)m
)

= r1(r2m). Then M is

an R-skewmodule.

Sureeporn introduced the next two examples for skewring and we continue

studying the same examples for skewmodules.

Example 2.14. Let (R,+,·) be the ring of all strictly upper triangular 3 × 3

matrices over R under the usual of addition and multiplication of matrix. Then

R3 = {0}. Define a binary operation ⊕ on R by a⊕ b = a+ b+ab for all a, b ∈ R.

By [1], (R,⊕, ·) is a skewring which is not a ring. Then from Example 2.9, (R,⊕)

is an (R,⊕, ·)-skewmodule.

Example 2.15. Let (G, +) be a nonabelian group, K an abelian subgroup of G

and X a nonempty set such that X ∩G = ∅ and |X| ≥ 1.

Let Map (G, X,K) = {f : G ∪X → G | f |G : G → K is a homomorphism}.

For all f, g ∈ Map (G, X,K), define

(f +′ g)(x) = f(x) + g(x) and

(f · g)(x) = (f ◦ g)(x)

for all x ∈ G ∪X. Then

6



(1)
(

Map (G,X, K), +′, ·
)

is a skewring which is not always a ring,

(2) G is a Map (G,X, K)-skewmodule with fa defined to be f(a) for all

a ∈ G, f ∈ Map (G,X,K).

The first result is already proved in [1]. Next, let a, b ∈ G and

f, g ∈ Map (G,X, K). We obtain that

(2.1) (f +′ g)a = (f +′ g)(a) = f(a) + g(b) = fa + ga.

(2.2) f(a + b) = f(a) + f(b) = fa + fb.

The second equality holds since a, b ∈ G and f |G is a homomorphism.

(2.3) (f · g)a = (f ◦ g)(a) = f
(

g(a)
)

= f(ga).

Therefore, G is a Map (G,X, K)-skewmodule.

We now define a homomorphism from an R-skewmodule to another.

Definition 2.16. If M and N are R-skewmodules, then a mapping ϕ : M → N

is called an R-homomorphism if

(1) ϕ(m + n) = ϕ(m) + ϕ(n) and

(2) ϕ(rm) = rϕ(m)

for all r ∈ R and m,n ∈ M .

An R-homomorphism ϕ is called an R-monomorphism, R-epimorphism,

R-isomorphism if it is injective, surjective, bijective, respectively. In the case ϕ

is an R-isomorphism, M and N are said to be isomorphic, denoted by M ∼= N .

The kernel of ϕ is its kernel as on R-homomorphism of modules, namely

Kerϕ = {m ∈ M | ϕ(m) = 0}. Similarly the image of ϕ is the set

Imϕ = {n ∈ N | ϕ(m) = n for some m ∈ M}.

If ϕ : M → N is an R-homomorphism, then ϕ is a group homomorphism of

(M ,+) into (N ,+), so

(1) ϕ(0M) = 0N ,

(2) ϕ(−m) = −ϕ(m) for all m ∈ M .

7



Example 2.17. Obviously, the zero map from M into M ′ and the identity map

on M are R-homomorphisms.

Definition 2.18. A subgroup N of an R-skewmodule M is an

R-subskewmodule, denoted by N < M , is stable under the action of R on M

in the sense that if n ∈ N and r ∈ R, then rn ∈ N .

For simplicity we use the term subskewmodule instead of R-subskewmodule.

Remark 2.19. It is easy to show that a nonempty subset N of an R-skewmodule

M is a subskewmodule of M if and only if

(1) n1 − n2 ∈ N for all n1, n2 ∈ N , and

(2) rn ∈ N for all r ∈ R, n ∈ N .

Example 2.20. Any R-skewmodule M has trivial subskewmodules M and {0}.

Lemma 2.21. (1) If M and M ′ are R-skewmodules and f : M → M ′ an

R-homomorphism, then Ker f < M and Im f < M ′.

(2) If {Mi | i ∈ I} is a family of subskewmodules of an R-skewmodule, then
⋂

i∈I
Mi < M .

Theorem 2.22. (Modular Law) If M is an R-skewmodule and if A, B, C are

subskewmodules of M with C ⊆ A, then A ∩ (B + C) = (A ∩B) + C.

Proof. Let M be an R-skewmodule. Assume that A,B, C are subskewmodules of

M with C ⊆ A. Since C ⊆ A, it follows that A+C = A. Now (A∩B)+C ⊆ A+C

and (A∩B)+C ⊆ B +C. Thus (A∩B)+C ⊆ (A+C)∩ (B +C) = A∩ (B +C).

Next, let a ∈ A∩(B+C). Then a = b+c for some b ∈ B, c ∈ C. Since C ⊆ A, we

8



have c ∈ A. Then b = a−c ∈ A, that is b ∈ A∩B. Thus a = b+c ∈ (A∩B)+C.

Therefore A ∩ (B + C) = (A ∩B) + C.

Definition 2.23. A subskewmodule N of an R-skewmodule M is a normal

subskewmodule, denoted by N C M , if N + m = m + N for all m ∈ M .

Remark 2.24. Let M be an R-skewmodule. The followings are equivalent.

(1) N is a normal subskewmodule of M .

(2) m + N −m = N for all m ∈ M .

(3) m + N −m ⊆ N for all m ∈ M .

We can see that the skewring and skewmodules in Example 2.15 are significant

and interesting. From this example, we shall give various examples of definitions

given previously.

Example 2.25. It is clear that
〈

(1 2)
〉

is an abelian subgroup of S3. Let X = {a}

be such that a /∈ S3. Then S3 ∩X = ∅. It is easy to check that

R = Map
(

S3, {a},
〈

(1 2)
〉

)

= {ϕ : S3 ∪ {a} → S3

∣

∣ ϕ|S3 : S3 →
〈

(1 2)
〉

is a homomorphism}

=
{

ϕi | i ∈ {1, 2, . . . , 12}
}

where

ϕ1(x) = (1) for all x ∈ S3 ∪ {a} ϕ2(x) =















(1), if x ∈ S3

(1 2), if x = a

ϕ3(x) =















(1), if x ∈ S3

(1 3), if x = a

ϕ4(x) =















(1), if x ∈ S3

(2 3), if x = a
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ϕ5(x) =















(1), if x ∈ S3

(1 2 3), if x = a

ϕ6(x) =















(1), if x ∈ S3

(1 3 2), if x = a

ϕ7(x) =















(1), if x is even permutation and x=a

(1 2), if x is odd permutation

ϕ8(x) =















(1), if x is even permutation

(1 2), if x is odd permutation and x=a

ϕ9(x) =































(1), if x is even permutation

(1 2), if x is odd permutation

(1 3), if x = a

ϕ10(x) =































(1), if x is even permutation

(1 2), if x is odd permutation

(2 3), if x = a

ϕ11(x) =































(1), if x is even permutation

(1 2), if x is odd permutation

(1 2 3), if x = a

ϕ12(x) =































(1), if x is even permutation

(1 2), if x is odd permutation

(1 3 2), if x = a

Then R is a skewring which is not a ring since ϕ4ϕ5 6= ϕ5ϕ4.

R1 = {ϕ1, ϕ5, ϕ6} is a subskewring of R which is a ring. Moreover, R1 is a left

ideal of R, but it is not a right ideal because ϕ5 ◦ϕ10 = ϕ2 /∈ R1. {ϕ1, ϕ2, ϕ7, ϕ8}

is an ideal of R which is a ring and R2 = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6} is a normal ideal
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of R which is not a ring. Moreover, R1 is a normal ideal of R2, but it is not

normal ideal of R since ϕ7ϕ5ϕ7 = ϕ12 /∈ R1.

We obtain that S3 is an R-skewmodule which is not a module and R is an

R2-skewmodule. Moreover, A3 is a normal subskewmodule of S3.

Example 2.26. N = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is an abelian subgroup

of S4. Let X = {a} be such that a /∈ S4. Then Map (S4, {a}, N) is a skewring

which is not a ring and S4 is a Map (S4, {a}, N)-skewmodule. Moreover, A4 is a

normal subskewmodule of S4 over Map (S4, {a}, N).

〈(1 2 3 4)〉 is a subskewmodule of S4 over Map (S4, {a}, N), but it is not a

normal subskewmodule since (1 3 4 2)(1 4 3 2)(1 3 4 2) = (3 4) /∈ 〈(1 2 3 4)〉

Lemma 2.27. (1) If M and M ′ are R-skewmodules and ϕ : M → M ′ an

R-homomorphism, then Kerϕ C M and ϕ is a monomorphism if and only if

Kerϕ = {0}.

(2) If {Mi | i ∈ I} is a family of normal subskewmodules of an R-skewmodule

M , then
⋂

i∈I
Mi C M .

Definition 2.28. Let M be an R-skewmodule and X ⊆ M . The intersection of

all normal subskewmodules of M containing X is called a normal

subskewmodule generated by X. If X is finite, and X generates the

skewmodule M , M is said to be finitely generated. If X = ∅, then X clearly

generates the zero skewmodule.

If {Mi | i ∈ I} is a family of normal subskewmodules of M , then the normal

subskewmodule generated by X =
⋃

i∈I
Mi is called the sum of the
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skewmodules Mi, which is denoted by
∑

i∈I
Mi. If I = {1, 2, . . . , n} , then the sum

of M1, M2, . . . , Mn is M1 + M2 + . . . + Mn.

Lemma 2.29. Let M be an R-skewmodule. If P and N are subskewmodules of

M such that P is normal, then the following statements hold.

(1) P is contained in N implies that P is a normal subskewmodule of N .

(2) P ∩N is a normal subskewmodule of N .

(3) N + P is a subskewmodule of M .

(4) N is normal implies that N + P is a normal subskewmodule of M .

Proof. Let M be an R-skewmodule. Assume that P and N are subskewmodules

of M such that P is normal.

(1) The proof is obvious.

(2) Clearly, P ∩ N < N . Let n ∈ N, k ∈ P ∩ N . Then n + k − n ∈ N since

N < M and n + k− n ∈ P since P C M . Thus n + k− n ∈ P ∩N . Hence P ∩N

is a normal subskewmodule of N .

(3) Notice that N + P 6= ∅ since 0 ∈ N + P . Let n + p, n′ + p′ ∈ N + P be

such that n, n′ ∈ N and p, p′ ∈ P . Then (n + p)− (n′ + p′) = n + p− p′ − n′ =

n + (p− p′)− n′ ∈ P ⊆ N + P since P C M . Next, let r ∈ R. Then r(n + p) =

rn + rp ∈ N + P . Hence N + P is a subskewmodule of M .

(4) By (3), it is already proved that N + P < M . Let m ∈ M . Then

(N + P ) + m = N + (P + m)

= N + (m + P )

= (N + m) + P

= (m + N) + P

= m + (N + P ).
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The second and the fourth equalities hold since P CM and N CM , respectively.

Hence N + P is a normal subskewmodule of M .

Theorem 2.30. Let N be a normal subskewmodule of an R-skewmodule M and

M/N = {m + N | m ∈ M} the set of all cosets of M by N . Then M/N is an

R-skewmodule relative to the addition and scalar multiplication defined by

(x + N) + (y + N) = (x + y) + N and

r(x + N) = rx + N

for all x, y ∈ M, r ∈ R.

Proof. First, we prove that these are indeed well-defined operations. Let

m1,m2,m′
1,m

′
2 ∈ M be such that m1 + N = m′

1 + N and m2 + N = m′
2 + N .

Then m1 = m′
1 + n and m2 = m′

2 + n for some n, n ∈ N . Thus m1 + m2 =

(m′
1 +n)+(m′

2 +n) = m′
1 +(n+m′

2)+n = m′
1 +m′

2 + n̂+n for some n̂ ∈ N since

N CM . Thus m1 +m2 ∈ (m′
1 +m′

2)+N . Hence (m1 +m2)+N = (m′
1 +m′

2)+N .

Let r ∈ R. Then rm1 = r(m′
1 + n) = rm′

1 + rn ∈ rm′
1 + N since N < M .

Hence rm1 + N = rm′
1 + N . Therefore these operations are well-defined. It is

straightforward that M/N is an R-skewmodule.

Definition 2.31. Let N be a normal subskewmodule of an R-skewmodule M .

The R-skewmodule M/N defined in Theorem 2.30 is called the quotient

skewmodule of M by N .

The map π : M → M/N , defined by π(x) = x + N for all x ∈ M , is called

the canonical projection. It is an epimorphism with kernel N .
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Definition 2.32. Let M be an R-skewmodule. M is simple if {0} and M are

only its normal subskewmodules.

Lemma 2.33. Let M be an R-skewmodule. If M = Rx = {rx | r ∈ R} for every

nonzero x ∈ M , then M is simple.

Proof. Assume that M = Rx for all x ∈ M \{0}. Let N be a nonzero normal

subskewmodule of M and n ∈ N \{0}. We obtain that M = Rn ⊆ N . Thus

M = N . Hence M is simple.

Lemma 2.34. Let M and N be R-skewmodules and f : M → N a nonzero

R-homomorphism. If M is simple, then f is a monomorphism.

Proof. Let f : M → N be a nonzero R-homomorphism. Assume that M is simple.

Since f is a nonzero mapping, we obtain that Ker f 6= M . Hence Ker f = {0}

since Ker f C M and M is simple. Therefore f is a monomorphism.

Lemma 2.35. Let M and M ′ be R-skewmodules and ϕ : M → M ′ an

R-homomorphism. Then the following statements hold.

(1) If N is a subskewmodule of M , then ϕ[N ] is a subskewmodule of M ′.

Hence Imϕ is a subskewmodule of M ′.

(2) If ϕ is an epimorphism and N is a normal subskewmodule of M , then

ϕ[N ] is a normal subskewmodule of M ′. Hence ϕ[N ] is a normal subskewmodule

of Imϕ.

(3) If N is a subskewmodule of M , then ϕ−1
(

ϕ[N ]) = (Kerϕ
)

+N . Moreover

if N contains Kerϕ, then ϕ−1
(

ϕ[N ]
)

= N .

14



(4) If N ′ is a subskewmodule of M ′, then ϕ−1[N ′] is a subskewmodule of M

containing Kerϕ.

(5) If N ′ is a normal subskewmodule of M ′, then ϕ−1[N ′] is a normal

subskewmodule of M containing Kerϕ.

Proof. Let M and M ′ be R-skewmodules and ϕ : M → M ′ an R-homomorphism.

(1) Assume that N is a subskewmodule of M . Then ϕ[N ] 6= ∅ since

ϕ(0) = 0M ′ . Let x, y ∈ ϕ[N ]. Then ϕ(a) = x and ϕ(b) = y for some a, b ∈ N .

Thus x − y = ϕ(a) − ϕ(b) = ϕ(a − b) ∈ ϕ[N ]. Let r ∈ R. Then rx = rϕ(a) =

ϕ(ra) ∈ ϕ[N ]. Hence ϕ[N ] is a subskewmodule of M ′.

(2) Assume that ϕ is an epimorphism and N is a normal subskewmodule of M .

By (1) we have ϕ[N ] < M ′. Let x ∈ ϕ[N ] and m′ ∈ M ′. Then ϕ(a) = x for some

a ∈ N . Since ϕ is onto, ϕ(m) = m′ for some m ∈ M . It follows that m+a−m ∈ N

since N C M . Thus m′ + x−m′ = ϕ(m) + ϕ(a)−ϕ(m) = ϕ(m + a−m) ∈ ϕ[N ].

Hence ϕ[N ] is a normal subskewmodule of M ′.

(3) Assume that N is a subskewmodule of M . To show that ϕ−1
(

ϕ[N ]
)

=

(Kerϕ)+N , first, let a+b ∈ (Kerϕ)+N be such that a ∈ Kerϕ and b ∈ N . Then

ϕ(a) = 0, so that ϕ(a+b) = ϕ(a)+ϕ(b) = ϕ(b) ∈ ϕ[N ]. Hence a+b ∈ ϕ−1
(

ϕ[N ]
)

.

This shows that (Kerϕ) + N ⊆ ϕ−1
(

ϕ[N ]
)

. Next, let x ∈ ϕ−1
(

ϕ[N ]
)

. Then

ϕ(x) ∈ ϕ[N ], so ϕ(x) = ϕ(n) for some n ∈ N . Thus ϕ(x − n) = 0, i.e., x − n ∈

Kerϕ. Hence x = (x−n)+n ∈ (Kerϕ)+N . Therefore ϕ−1
(

ϕ[N ]
)

⊆ (Kerϕ)+N ,

so that ϕ−1
(

ϕ[N ]
)

= (Kerϕ) + N . Then if N contains Kerϕ then it is obvious

that ϕ−1
(

ϕ[N ]
)

= N .

(4) Assume that N ′ is a subskewmodule of M ′. Let x ∈ Kerϕ. Then ϕ(x) =

0 ∈ N ′, so that x ∈ ϕ−1[N ′]. Hence Kerϕ ⊆ ϕ−1[N ′]. Let x, y ∈ ϕ−1[N ′] and

r ∈ R. Then ϕ(x), ϕ(y) ∈ N ′. So that ϕ(x − y) = ϕ(x) − ϕ(y) ∈ N ′ since

N ′ < M ′. Hence x − y ∈ ϕ−1[N ′]. Next, ϕ(rx) = rϕ(x) ∈ N ′ since N ′ < M ′.
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Then rx ∈ ϕ−1[N ′]. Therefore ϕ−1[N ′] is a subskewmodule of M .

(5) Assume that N ′ is a normal subskewmodule of M ′. By (4), we already

proved Kerϕ ⊆ ϕ−1[N ′] < M . Let x ∈ ϕ−1[N ′] and m ∈ M . Then ϕ(x) ∈ N ′.

Since N ′ C M ′ and ϕ(m) ∈ M ′, it follows that ϕ(m) + ϕ(x)−ϕ(m) ∈ N ′. Hence

ϕ(m+x−m) = ϕ(m)+ϕ(x)−ϕ(m) ∈ N ′. Thus m+x−m ∈ ϕ−1[N ′]. Therefore

ϕ−1[N ′] is a normal subskewmodule of M .
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CHAPTER III

JORDAN HÖLDER THEOREM

In this chapter, we discuss the basic Isomorphism Theorems and

generalize Schreier’s Theorem and Jordan Hölder Theorem of modules to

skewmodules.

Theorem 3.1. Let M,M ′, N, N ′ be R-skewmodules and f : M → N an

R-homomorphism.

(1) If g : M → M ′ is an epimorphism with Ker g ⊆ Ker f , then there

exists a unique R-homomorphism h : M ′ → N such that f = h ◦ g. Moreover,

Kerh = g[Ker f ] and Imh = Im f , so that h is a monomorphism if and only if

Ker g = Ker f and h is an epimorphism if and only if f is an epimorphism.

(2) If g : N ′ → N is a monomorphism with Im f ⊆ Im g, then there

exists a unique R-homomorphism h : M → N ′ such that f = g ◦ h. Moreover,

Kerh = Ker f and Imh = g−1[Im f ], so that h is a monomorphism if and only if

f is a monomorphism and h is an epimorphism if and only if Im g = Im f .

Proof. (1) Assume that g : M → M ′ is an epimorphism with Ker g ⊆ Ker f . For

each m′ ∈ M ′, there exists m ∈ M such that g(m) = m′ since g is onto. Then

we define h : M ′ → N by

h(m′) = f(m) for all m′ ∈ M ′.

To show that h is well-defined, let m1,m2 ∈ M be such that g(m1) = g(m2).

We must show that f(m1) = f(m2). Since g(m1 − m2) = g(m1) − g(m2) = 0,

m1 − m2 ∈ Ker g ⊆ Ker f . Hence f(m1 − m2) = 0 and then f(m1) = f(m2).



Thus h is well-defined, and it is clear that f = h◦g. Moreover, it is easy to prove

that h is an R-homomorphism and it is unique.

Next, we show that Kerh = g[Ker f ]. Let x ∈ Kerh ⊆ M ′. Then h(x) = 0

and, since g is onto, g(m) = x for some m ∈ M . Thus f(m) = (h ◦ g)(m) =

h(g(m)) = h(x) = 0, i.e., m ∈ Ker f . Hence x = g(m) ∈ g[Ker f ]. Now, let

y ∈ g[Ker f ]. Then g(x) = y for some x ∈ Ker f . Thus h(y) = h ◦ g(x) = f(x) =

0, so that y ∈ Kerh. Hence Kerh = g[Ker f ].

It is easy to prove that Im f = Imh, so that h is an epimorphism if and only if

f is an epimorphism. Hence it remains to show that h is a monomorphism if and

only if Ker g = Ker f . First, assume that h is a monomorphism. Let x ∈ Ker f .

Then h(g(x)) = f(x) = 0. Since h is a monomorphism, g(x) = 0. It follows that

x ∈ Ker g. This shows that Ker f ⊆ Ker g. By the assumption, we can conclude

that Ker f = Ker g.

Conversely, assume that Ker f = Ker g and let x ∈ M ′ be such that h(x) = 0.

Since g is onto, there exists m ∈ M such that g(m) = x. Thus f(m) = h◦g(m) =

h(x) = 0. Hence m ∈ Ker f = Ker g, so that x = g(m) = 0. Therefore h is a

monomorphism.

(2) Assume that g : N ′ → N is a monomorphism with Im f ⊆ Im g. We claim

that for each m ∈ M there exists a unique m′ ∈ N ′ such that g(m′) = f(m).

Let m ∈ M . Then f(m) ∈ Im f ⊆ Im g. Thus there exists m′ ∈ N ′ such that

g(m′) = f(m). Let n′ ∈ N ′ be such that g(n′) = f(m). Then g(n′) = g(m′).

Since g is 1-1, it follows that n′ = m′. Now, the claim is proved. Next, define

h : M → N ′ by

h(m) = g−1(f(m)
)

for all m ∈ M.

By the claim, h is well-defined, and it is clear that f = g◦h. It is routine to check

that h is an R-homomorphism. To prove the uniqueness of h, let k : M → N ′
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be an R-homomorphism such that f = g ◦ k. Then g
(

h(m)
)

= g
(

g−1
(

f(m)
)

)

=

f(m) = g(k(m)). Since g is 1-1, h(m) = k(m). This proves that h = k.

To show that Kerh = Ker f , first, let x ∈ Kerh. Then h(x) = 0. But

h(x) = g−1
(

f(x)
)

, so that f(x) = g
(

h(x)
)

= g(0) = 0. Thus x ∈ Ker f . Next, let

x ∈ Ker f ⊆ M . Then f(x) = 0. We obtain that h(x) = g−1
(

f(x)
)

= g−1(0) = 0

since g is 1-1. Thus x ∈ Kerh. This shows that Ker f = Kerh. Moreover, it is

easy to prove that Imh = g−1[Im f ].

To prove that h is an epimorphism if and only if Im f = Im g, first, assume that

h is an epimorphism. By the assumption, we have that Im f ⊆ Im g. Next, let

n ∈ Im g. Then g(n′) = n for some n′ ∈ N ′. Since h : M → N ′ is an epimorphism,

there exists m ∈ M such that h(m) = n′. But h(m) = g−1
(

f(m)
)

, so that

f(m) = g
(

h(m)
)

= g(n′) = n. Then n ∈ Im f . We obtain that Im f = Im g. It

is clear that if Im f = Im g, then h is an epimorphism.

Corollary 3.2. Let M,N be R-skewmodules and ϕ : M → N an

R-homomorphism. Then M/Kerϕ ∼= Imϕ.

Proof. Let π : M → M/Kerϕ be the canonical projection. Then π is an

epimorphism and Kerπ = Kerϕ. By Theorem 3.1, there exists a unique

R-homomorphism h : M/Kerϕ → N such that Imh = Imϕ. Moreover, h is a

monomorphism since Kerπ = Kerϕ. Then M/Kerϕ ∼= Imh = Imϕ.

Corollary 3.3. Let M be an R-skewmodule and P and N normal

subskewmodules of M such that P ⊆ N . Then M/N ∼= (M/P )
/

(N/P ).

Proof. Define ϕ : M/P → M/N by

ϕ(m + P ) = m + N for all m ∈ M.
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Since P ⊆ N , we obtain that ϕ is well-defined, and it is easy to prove that ϕ is

an epimorphism. Next, we show that Kerϕ = N/P . Let m ∈ M be such that

N = ϕ(m + P ) = m + N . Then m ∈ N . Thus m + P ∈ N/P . This proves that

Kerϕ ⊆ N/P . Next, let n ∈ N . Then ϕ(n + P ) = n + N = N . Thus

n + P ∈ Kerϕ. Hence Kerϕ = N/P . By Corollary 3.2, M/N ∼= (M/P )
/

(N/P ).

Corollary 3.4. Let M be an R-skewmodule and P and N subskewmodules of

M such that P is normal. Then N/N ∩ P ∼= (N + P )/P .

Proof. Assume that P and N are subskewmodules of M such that P C M . By

Lemma 2.29 (2) and (3), we have N ∩P CN and N +P < M , respectively. Since

P C M , we obtain that P C (N + P ). Next, define ϕ : N → (N + P )/P by

ϕ(n) = n + P for all n ∈ N.

Clearly, ϕ is an R-homomorphism. To prove that ϕ is onto, let k ∈ N +P . Then

k = n+ p for some n ∈ N and p ∈ P . Thus k +P = (n+ p)+P = n+P , so that

ϕ(n) = n + P = k + P . Hence ϕ is onto. It is easy to show that Kerϕ = N ∩ P .

By Corollary 3.2, N/N ∩ P ∼= (N + P )/P .

Corollary 3.5. Let M, N be R-skewmodules and L a normal subskewmodule of

N . If ϕ : M → N is an epimorphism, then M/ϕ−1[L] ∼= N/L.

Proof. By Lemma 2.35 (5), ϕ−1[L] is a normal subskewmodule of M . Define

f : M → N/L by

f(m) = ϕ(m) + L for all m ∈ M.

Since ϕ is an epimorphism, f is also an epimorphism. To show that

Ker f = ϕ−1[L], let m ∈ ϕ−1[L]. Then ϕ(m) ∈ L. Thus f(m) = ϕ(m) + L = L
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which is the zero in N/L. Hence m ∈ Ker f . Next, let m ∈ M be such that

L = f(m) = ϕ(m) + L. Then ϕ(m) ∈ L. Thus m ∈ ϕ−1[L]. We obtain that

Ker f = ϕ−1[L]. By Corollary 3.2, M/ϕ−1[L] ∼= N/L.

The following theorem is generalized from the butterfly of Zazzenhaus

Theorem of modules.

Theorem 3.6. Let M be an R-skewmodule and N,P,N ′and P ′ subskewmodules

of M such that N C P and N ′ C P ′. Then

(1) N + (P ∩N ′) is a normal subskewmodule of N + (P ∩ P ′);

(2) N ′ + (P ′ ∩N) is a normal subskewmodule of N ′ + (P ∩ P ′);

(3) [N + (P ∩ P ′)]
/

[N + (P ∩N ′)] ∼= [N ′ + (P ∩ P ′)]
/

[N ′ + (P ′ ∩N)].

Proof. Assume that N, P,N ′and P ′ are subskewmodules of M such that N C P

and N ′ C P ′

(1) Clearly, N + (P ∩N ′) is a subskewmodule of N + (P ∩ P ′). Let n + k ∈

N + (P ∩N ′) and n′ + l ∈ N + (P ∩ P ′) be such that n, n′ ∈ N , k ∈ P ∩N ′ and
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l ∈ P ∩ P ′. Then

(n′ + l) + (n + k)− (n′ + l) = n′ + l + n + k − l − n′

= n′ + l + n + n + k − l for some n ∈ N

= n′ + n′′ + l + k − l for some n′′ ∈ N

The second equality holds because N C P and k − l ∈ P , and the last one

holds because N C P and l ∈ P . Since l, k ∈ P , we have l + k − l ∈ P ,

and since k ∈ N ′, l ∈ P ′ and N ′ C P ′, we also have l + k − l ∈ N ′. Hence

(n′ + l) + (n + k)− (n′ + l) = (n′ + n′′) + (l + k − l) ∈ N + (P ∩N ′). Therefore

N + (P ∩N ′) is a normal subskewmodule of N + (P ∩ P ′).

(2) The proof is similar to the proof of (1).

(3) First, we prove that

[N + (P ∩ P ′)]
/

[N + (P ∩N ′)] ∼= [P ∩ P ′]
/

[(P ′ ∩N) + (P ∩N ′)].

Since P ′ ∩N ⊆ P ∩ P ′ and N C P , we obtain that P ′ ∩N C P ∩ P ′, Moreover,

since P ∩N ′ ⊆ P ∩P ′ and N ′CP ′, we have P ∩N ′CP ∩P ′. By Lemma 2.29(4),

(P ′ ∩N) + (P ∩N ′) is a normal subskewmodule of P ∩ P ′.

Let K = (P ′ ∩N) + (P ∩N ′). Define ϕ : N + (P ∩ P ′) → (P ∩ P ′)/K by

ϕ(n + q) = q + K for all n ∈ N and q ∈ P ∩ P ′.

To show that ϕ is well-defined, let n1, n2 ∈ N and q1, q2 ∈ P ∩ P ′ be such that

n1 + q1 = n2 + q2. Then q1 − q2 = n2 − n1 ∈ (P ∩ P ′) ∩ N ⊆ P ′ ∩ N ⊆

(P ′ ∩N) + (P ∩N ′) = K. Thus q1 + K = q2 + K. Hence ϕ is well-defined.

To prove that ϕ is an R-homomorphism, let n1, n2 ∈ N, q1, q2 ∈ P ∩ P ′ and

r ∈ R. Then
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ϕ
(

(n1 + q1) + (n2 + q2)
)

= ϕ(n1 + q1 + n2 + q2)

= ϕ(n1 + n′2 + q1 + q2) for some n′2 ∈ N

= (q1 + q2) + K

= (q1 + K) + (q2 + K)

= ϕ(n1 + q1) + ϕ(n2 + q2).

The second equality holds because q1 ∈ P , n2 ∈ N and N CP , and we also obtain

that ϕ
(

r(n1 + q1)
)

= ϕ(rn1 + rq1) = rq1 + K = r(q1 + K) = rϕ(n1 + q1). Hence

ϕ is an R-homomorphism.

For each q ∈ P ∩ P ′, ϕ(0 + q) = q + K since 0 ∈ N , so that ϕ is onto. Next,

we prove that Kerϕ = N + (P ∩ N ′). Let n ∈ N and q ∈ P ∩ P ′ be such that

ϕ(n+q) = K. Then q+K = ϕ(n+q) = K. Thus q ∈ K = (P ′∩N)+(P ∩N ′) ⊆

N +(P ∩N ′). Next, let n+q ∈ N +(P ∩N ′) be such that n ∈ N and q ∈ P ∩N ′.

Then ϕ(n + q) = q + K = K since q = 0 + q ∈ (P ′ ∩N) + (P ∩N ′) = K. Thus

n + q ∈ Ker ϕ. Hence Kerϕ = N + (P ∩N ′). By Corollary 3.2,

[N + (P ∩ P ′)]
/

[N + (P ∩N ′)] ∼= [P ∩ P ′]
/

[(P ′ ∩N) + (P ∩N ′)]. Similarly, we

prove that [N ′ + (P ∩ P ′)]
/

[N ′ + (P ′ ∩ N ] ∼= [P ∩ P ′]
/

[(P ′ ∩ N) + (P ∩ N ′)].

Therefore the result is proved.

Remark 3.7. Let M, N be R-skewmodules and L a normal subskewmodule of

M . If f : M → N is an R-isomorphism,then N/f [L] ∼= M/L.
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The proof of the following two theorems are similar to the analogous Theorems

in Module Theory.

Theorem 3.8. Let M be an R-skewmodule and N a normal subskewmodule of

M . Then there is an inclusion-preserving bijection from the set of

subskewmodules of M/N to the set of subskewmodules of M containing N .

Theorem 3.9. Let M be an R-skewmodule and N a normal subskewmodule

of M . Then there is an inclusion-preserving bijection from the set of normal

subskewmodules of M/N to the set of normal subskewmodules of M containing

N .

Definition 3.10. Let M be an R-skewmodule and let

C : M = M0 ⊇ M1 ⊇ . . . ⊇ Mr and C ′ : M = M ′
0 ⊇ M ′

1 ⊇ . . . ⊇ M ′
s

be two decreasing finite chains of subskewmodules of M . We say that C ′ is a

refinement of C if every member of C occurs in C ′; if C 6= C ′, then C is a

proper refinement of C.

Definition 3.11. Let M be an R-skewmodule. A finite chain of subskewmodules

M = M0 ⊇ M1 ⊇ . . . ⊇ Mr is called a finite subnormal series of M if MiCMi−1

for all i = 1, 2, . . . , r.

Let M = M0 ⊇ M1 ⊇ . . . ⊇ Mr be a finite subnormal series of an

R-skewmodule M . The quotient skewmodule Mi−1/Mi is called the factor of the

series. The length of this series is the number of nontrivial factors Mi−1/Mi.

A finite subnormal series such that Mi C M for all i = 1, 2, . . . r is said to be a

finite normal series.
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Definition 3.12. A strictly decreasing finite subnormal series

C : M = M0 ⊃ M1 ⊃ . . . ⊃ Mn = {0} is called a composition series of an

R-skewmodule M if C has no proper refinement.

Definition 3.13. Let M be an R-skewmodule and

C : M = M0 ⊃ M1 ⊃ . . . ⊃ Mr = {0} and

C ′ : M = M ′
0 ⊃ M ′

1 ⊃ . . . ⊃ M ′
s = {0}

two strictly decreasing finite subnormal series of M . Then C and C ′ are called

equivalent, denoted by C ≡ C ′ , if r = s and there exists a permutation π of

{0, 1, . . . , r − 1} such that M ′
i/M

′
i+1

∼= Mπ(i)/Mπ(i)+1 for all i = 0, 1, . . . , r − 1.

Definition 3.14. Let M be an R-skewmodule and C : M = M0 ⊇ M1 ⊇ . . .

a chain of subskewmodules of M . Let r1 < r2 < . . . < rn < . . . be a strictly

increasing sequence of natural numbers. Then the chain C ′ given by

Mr1 ⊇ Mr2 ⊇ . . . ⊇ Mrn ⊇ . . . is called a subchain of C.

The following lemma is generalized from Schreier’s Theorem of modules in

[5].

Lemma 3.15. Any two strictly decreasing finite subnormal series of an

R-skewmodule M have equivalent refinements.

Proof. Let M be an R-skewmodule and

C : M = M0 ⊃ M1 ⊃ . . . ⊃ Mr = {0} and

C ′ : M = M ′
0 ⊃ M ′

1 ⊃ . . . ⊃ M ′
s = {0}
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two strictly decreasing finite subnormal series of M . Define

Mi,0 = Mi−1 = Mi−1,s ; M ′
j,0 = M ′

j−1 = M ′
j−1,r ,

Mi,j = Mi + (Mi−1 ∩M ′
j) and M ′

j,i = M ′
j + (M ′

j−1 ∩Mi)

for all i = 1, 2, . . . , r, for all j = 1, 2, . . . , s. Then we obtain

C1 :M = M0 = M1,0 ⊇ M1,1 ⊇ M1,2 ⊇ . . . ⊇ M1,s = M1 = M2,0 ⊇

M2,1 ⊇ . . . ⊇ Mr,s = {0} and

C2 :M = M ′
0 = M ′

1,0 ⊇ M ′
1,1 ⊇ M ′

1,2 ⊇ . . . ⊇ M ′
1,r = M ′

1 = M ′
2,0 ⊇

M ′
2,1 ⊇ . . . ⊇ M ′

s,r = {0}.

We claim that C1 and C2 are decreasing finite subnormal series of M . For

each i = 1, 2, . . . , r, Theorem 3.6 shows that

Mi + (Mi−1 ∩M ′
j) C Mi + (Mi−1 ∩M ′

j−1) since M ′
j C M ′

j−1.

Thus we have the claim for C1. Similarly, we have the claim for C2. Note that

C1 and C2 are refinement of C and C ′, respectively. By Theorem 3.6, we obtain

that

Mi,j/Mi,j+1 = [Mi + (Mi−1 ∩M ′
j)]

/

[Mi + (Mi−1 ∩M ′
j+1)]

∼= [M ′
j+1 + (M ′

j ∩Mi−1)]
/

[M ′
j+1 + (M ′

j ∩Mi)]

= M ′
j+1,i−1/M

′
j+1,i

for all i = 1, 2, . . . , r and j = 0, 1, . . . , s−1. Hence it follows that Mi,j = Mi,j+1 if

and only if M ′
j+1,i−1 = M ′

j+1,i. Let C1 be a series obtained from C1 by dropping

every skewmodules which is equal to its predecessor and C2 a series obtained in

the similar way to C1 from C2. Hence C1 ≡ C2.

26



The next theorem is generalized from Jordan Hölder Theorem of modules in

[5].

Theorem 3.16. If an R-skewmodule M has composition series, then

(1) any strictly decreasing subnormal series of M is finite and admits a

refinement which is a composition series and

(2) any two composition series of M are equivalent.

Proof. (1) Let C1 be a composition series of M and C a strictly decreasing

subnormal series of M . We prove that C is finite. Let C2 be a finite subchain

of C. By Lemma 3.15, there exist finite chains C ′
1 and C ′

2 such that C ′
1 and

C ′
2 are refinements of C1 and C2, respectively, and C ′

1 ≡ C ′
2. Since C1 is a

composition series, C1 ≡ C ′
1. Hence C ′

2 ≡ C1. These equivalences show that C ′
2

is a composition series and, also, it is a refinement of C. Then C is finite.

(2) By the definition of a composition series, any refinement is equivalent to

itself. Thus the theorem holds by Lemma 3.15.
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CHAPTER IV

ARTINIAN AND NOETHERIAN SKEWMODULES

In this chapter, we study artinian and noetherian modules in [2] and [4] and

generalize some theorems to skewmodules. Furthermore, we prove the relation

between artinian, noetherian skewmodules and the composition series.

Definition 4.1. An R-skewmodule M is said to be artinian if for every

decreasing normal series M1 ⊇ M2 ⊇ . . . , there exists an integer n such that

Mi = Mn for all i ≥ n.

An R-skewmodule M is said to be noetherian if for every increasing normal

series M1 ⊆ M2 ⊆ . . . , there exists an integer n such that Mi = Mn for all i ≥ n.

Theorem 4.2. Let M be an R-skewmodule. Then M is artinian (noetherian) if

and only if for every nonempty collection of normal subskewmodules of M has a

minimal (maximal) element.

Proof. Assume that M is artinian and A a nonempty set of normal

subskewmodules of M . Then we choose N1 ∈ A. If N1 is not minimal, then

there exists N2 ∈ A such that N1 ⊃ N2. If we choose Ni ∈ A which is not

minimal, then there exists an Ni+1 ∈ A such that Ni ⊃ Ni+1. After a finite step,

we obtain a minimal element of A, otherwise we would have a chain of normal

subskewmodules of M such that N1 ⊃ N2 ⊃ N3 ⊃ . . . which contradicts the

assumption that M is artinian.



Conversely, assume that every nonempty collection of normal subskewmodules

of M has a minimal element. Let N1 ⊇ N2 ⊇ N3 ⊇ . . . be a decreasing normal

series of M . Then the set {N1, N2, . . .} has a minimal element, say Nk. By the

minimality of Nk, we have Nk = Nk+i for all i ∈ N. Thus M is artinian.

Theorem 4.3. Let M be an R-skewmodule. If every normal subskewmodule of

M is finitely generated, then M is noetherian.

Proof. Let M1 ⊆ M2 ⊆ . . . be an increasing normal series of M . Clearly,
⋃

i≥1
Mi C M . Let P =

⋃

i≥1
Mi. By the assumption, P is finitely generated, say

by m1, m2, . . . ,mk. Since mj is an element of some Mk for all j, there exists an

n0 ∈ N such that mj ∈ Mn0 for all j = 1, 2, . . . , k. Hence P ⊆ Mn0 . Thus, for

all l ≥ n0, we have Mn0 ⊆ Ml by the hypothesis and Ml ⊆ P ⊆ Mn0 . Then

Mn0 = Ml for all l ≥ n0. Therefore M is noetherian.

Theorem 4.4. Let N be a normal subskewmodule of an R-skewmodule M . If

M is artinian (noetherian), then the following statements hold.

(1) For every chain N1 ⊇ N2 ⊇ . . . (N1 ⊆ N2 ⊆ . . .) of subskewmodules of N

such that Ni C M for all i ∈ N there exists a k ∈ N such that Nk = Nk+i for all

i ∈ N.

(2) The quotient skewmodule M/N is artinian (noetherian).

Proof. Assume that M is artinian and N is a normal subskewmodule of M .

(1) Let C : N1 ⊇ N2 ⊇ . . . be a chain of subskewmodules of N such that

Ni C M for all i ∈ N. Then C is a decreasing normal series of M . Since M is

artinian, there exists a k ∈ N such that Nk = Nk+i for all i ∈ N.

(2) This follows immediately by Theorem 3.9.
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Theorem 4.5. Let N be a normal subskewmodule of an R-skewmodule M . If

N and M/N are artinian (noetherian), then M is artinian(noetherian).

Proof. Assume that N and M/N are artinian. Let D1 ⊇ D2 ⊇ . . . be a decreasing

sequence of normal subskewmodules of M . Let π : M → M/N be the canonical

projection. Then D1 ∩ N ⊇ D2 ∩ N ⊇ . . . and π(D1) ⊇ π(D2) ⊇ . . . are

decreasing sequences of normal subskewmodules of N and M/N , respectively.

By the assumption, there exists an n0 ∈ N such that Dn ∩ N = Dn0 ∩ N and

π(Dn) = π(Dn0) for all n ≥ n0.

We claim that Dn = Dn0 for all n ≥ n0. Let n ≥ n0. We know from the

assumption, Dn ⊆ Dn0 . It remains to show that Dn0 ⊆ Dn. Let x ∈ Dn0 . Since

π(Dn) = π(Dn0), there exists a y ∈ Dn such that π(x) = π(y), that is, x − y ∈

Kerπ = N . Since y ∈ Dn ⊆ Dn0 , it follows that x−y ∈ Dn0∩N = Dn∩N ⊆ Dn.

Thus x ∈ y +Dn = Dn. Hence Dn0 ⊆ Dn. Thus we obtain the claim. This shows

that M is artinian.

The proof for the noetherian case is similar .

Theorem 4.6. Let M be an R-skewmodule. If M is both artinian and

noetherian, then M has a composition series.

Proof. Assume that M is both artinian and noetherian. Let C be the collection

of all normal subskewmodules of M that have a composition series. Clearly,

{0} ∈ C. Thus C 6= ∅. Note that C has a maximal element, say M∗, since M is

noetherian. We now show that M∗ = M . Suppose that M∗ 6= M . Then M/M∗

is not the zero skewmodule. Let M/M∗ = M0/M∗ ⊇ M1/M∗ ⊇ . . . be decreasing

nonzero normal series of M/M∗. Since M is artinian, so is M/M∗ by Theorem

4.4(2). Then there exists an integer p such that Mp/M∗ = Mp+i/M∗ for all i ∈ N.

We can choose M∗∗CM such that M∗ ⊂ M∗∗ ⊆ M and M∗∗/M∗ is simple. Since
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M∗ ∈ C, it has a composition series : M∗ ⊃ M∗
1 ⊃ M∗

2 ⊃ . . . ⊃ M∗
n = {0}. Since

M∗∗/M∗ is simple, M∗∗ ⊃ M∗ ⊃ M∗
1 ⊃ M∗

2 ⊃ . . . ⊃ M∗
n = {0} is a composition

series of M∗∗. Hence M∗∗ ∈ C which contradicts the maximality of M∗. Hence

M∗ = M , whence M has a composition series.

Theorem 4.7. Let M be an R-skewmodule. If M has a composition series which

is a normal series then M is both artinian and noetherian.

Proof. Assume that M has a composition series which is a normal series and let

n be its length. We prove that M is both artinian and noetherian by induction

on n. Clearly, if n = 0 then M = {0} and there is nothing to prove. Assume

that the result is true for all R-skewmodules having composition series which is

a normal series of length less than n > 1.

Let M be an R-skewmodule having a composition series which is a normal

series of length n, say M = M0 ⊃ M1 ⊃ . . . ⊃ Mn−1 ⊃ Mn = {0}. Then we

observe that

M/Mn−1 = M0/Mn−1 ⊃ M1/Mn−1 ⊃ . . . ⊃ Mn−1/Mn−1 = {0} .....~

By Corollary 3.3, (Mi/Mn−1)
/

(Mi+1/Mn−1) ∼= Mi/Mi+1 for all i = 0, 1, . . . , n−2.

Since Mi/Mi+1 is simple, so is (Mi/Mn−1)
/

(Mi+1/Mn−1) and we also obtain that

the inclusions in the claim ~ are strict. Then ~ is a composition series which is a

normal series of M/Mn−1 with length n−1. By the induction hypothesis, M/Mn−1

is both artinian and noetherian. Since M = M0 ⊃ M1 ⊃ . . . ⊃ Mn−1 ⊃ Mn = {0}

is a composition series, Mn−1 is simple. Then Mn−1 is trivially both artinian and

noetherian. Since M/Mn−1 and Mn−1 are both artinion and noetherian and by

Theorem 4.5, we deduce that M is both artinian and noetherian.
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This then shows that the result holds for all skewmodules of length n and complete

the induction.

Theorem 4.8. Let M be an R-skewmodule. If M can be written as

M = M1 + M2 + . . . + Mn where each Mi is artinian (noetherian) and Mn C M ,

then M is artinian (noetherian).

Proof. It is enough to consider the case n = 2. By Corollary 3.4,

M/M2 = (M1 + M2)/M2
∼= M1/(M1 ∩M2).

Since M1 is artinian, so is M1/(M1∩M2) by Theorem 4.4 (2). Then M/M2 is also

artinian. Since M2 is artinian, by Theorem 4.5, we deduce that M is artinian.

Theorem 4.9. Let M be an R-skewmodule and f : M → M an

R-homomorphism. For each p ∈ N, let a positive integer. Let Ip = Im (fp) and

Np = Ker (fp). Then the following statements hold.

(1) I1 = I2 implies that I1 + N1 = M = N1 + I1 and

N1 = N2 implies that I1 ∩N1 = {0}.

(2) If M is artinian and Ip C M for all p ∈ N, then

(2.1) there exists an r ∈ N such that M = Ik + Nk for all k ≥ r,

(2.2) f is a monomorphism implies that f is an epimorphism.

(3) If M is noetherian, then

(3.1) there exists an r ∈ N such that Ik ∩Nk = {0} for all k ≥ r,

(3.2) f is an epimorphism implies that f is a monomorphism.
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Proof. Assume that f : M → M an R-homomorphism. For each p ∈ N, let

Ip = Im (fp) and Np = Ker (fp).

(1) Assume that I1 = I2. Let x ∈ M . Then there exists a y ∈ M such that

f(x) = f 2(y). So f
(

f(y)−x
)

= f2(y)−f(x) = 0 implies that f(y)−x ∈ Ker f =

N1. But x = f(y) −
(

f(y) − x
)

∈ I1 + N1. Hence M = I1 + N1. Similarly,

M = N1 + I1.

Assume that N1 = N2. Let x ∈ I1 ∩ N1. That is, x ∈ Im f ∩ Ker f . Then

f(x) = 0 and x = f(a) for some a ∈ M . Thus f 2(a) = f
(

f(a)
)

= f(x) = 0.

Hence a ∈ Ker f 2 = N2 = N1 = Ker f . We obtain that f(a) = 0 and then

x = f(a) = 0. This shows that I1 ∩N1 ⊆ {0}. Therefore I1 ∩N1 = {0}.

(2) Assume that M is artinian and Ip C M for all p ∈ N.

(2.1) We observe that I1 ⊇ I2 ⊇ . . . is a decreasing normal series of M .

Since M is artinian, there exists an r ∈ N such that Ik = I2k for all k ≥ r. We

apply (1) to fk. Then we have M = Ik + Nk for all k ≥ r.

(2.2) Assume that f is a monomorphism. By the hypothesis and (2.1),

there exists an r ∈ N such that M = Ir+Nr. Since f is a monomorphism, so is f r.

Hence Nr = Ker (f r) = {0}. Then M = Ir. From M ⊇ I1 ⊇ I2 ⊇ . . . ⊇ Ir = M ,

it follows that M = I1 = Im f . Thus f is an epimorphism.

(3) Assume that M is noetherian.

(3.1) We observe that N1 ⊆ N2 ⊆ . . . is an increasing normal series of

M . Then there exists an r ∈ N such that Nk = N2k for all k ≥ r. We apply (1)

to fk. So Ik ∩Nk = {0} for all k ≥ r.

(3.2) Assume that f is an epimorphism. By the hypothesis and (3.1),

there exists an r ∈ N such that Ir ∩Nr = {0}. Since f is an epimorphism, so is

f r. Hence Ir = M , then Nr = {0}. From 0 ⊆ N1 ⊆ N2 ⊆ . . . ⊆ Nr = {0}, it

follows that N1 = {0}. That is, Ker f = {0}. Thus f is a monomorphism.
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Definition 4.10. Let M be an R-skewmodule and {Mi | i ∈ I} a family of normal

subskewmodules of M . Then M is called the direct sum of {Mi | i ∈ I}, denoted

by M =
⊕

i∈I
Mi, if

(1) for each m ∈ M , there exists an mik ∈ Mik , where k = 1, 2, . . . , n, such

that m = mi1 + mi2 + . . . + min and

(2) for all i, j ∈ I, if i 6= j, then Mi ∩
( ∑

j 6=i
Mj

)

= {0}.

Definition 4.11. Let M be an R-skewmodule. Then normal subskewmodules

M1 and M2 are said to be supplementary if M = M1
⊕

M2. A normal

subskewmodule N of M is called a direct summand if there exists a normal

subskewmodule P of M such that N and P are supplementary.

Theorem 4.12. Let M be an R-skewmodule. If M is a sum of a family of

its normal simple subskewmodules, then every normal subskewmodule of M is a

direct summand.

Proof. Assume that (Mi)i∈I is a family of normal simple subskewmodules of M

such that M =
∑

i∈I
Mi. We claim that for each normal subskewmodule N of M

there exists a J ⊆ I such that M = N ⊕
( ⊕

i∈J
Mi

)

. If N = M , then, clearly,

J = ∅. Suppose that N ⊂ M . Then there exists a k ∈ I such that Mk * N .

Since N ∩Mk C Mk and Mk is simple, we deduce that either N ∩Mk = {0} or

N ∩Mk = Mk. But Mk * N , so that N ∩Mk = {0}. That is, N + Mk is a direct

sum. Let

A =
{

H ⊆ I
∣

∣ N +
∑

i∈H
Mi is direct

}

.

We have just shown that A 6= ∅. Let ⊆ be a partially order on A. Let C be a

totally ordered subset of A and let K∗ =
⋃

K∈C
K. We claim that K∗ ∈ A. To see
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this, we observe that if x ∈
∑

i∈K∗
Mi, then x = mi1 +mi2 + . . .+min where each ij

belongs to some subset IJ of C. Since C is totally ordered, all the set I1, I2, . . . , In

are contained in one of them, say Ip. Then N ∩
∑

i∈Ip

Mi = {0} since Ip ∈ A. Hence

N ∩
∑

i∈K∗
Mi ⊆ N ∩

∑

i∈Ip

Mi = {0}, so that N +
∑

i∈K∗
Mi is a direct sum. This shows

that K∗ ∈ A. Hence K∗ is an upper bound of C in A. By Zorn’s Lemma, A has

a maximal element, say J .

Next, we show that N ⊕
( ⊕

i∈J
Mi

)

= M . Suppose that N ⊕
( ⊕

i∈J
Mi

)

⊂ M .

Then there exists a j ∈ J such that Mj * N ⊕
( ⊕

i∈J
Mi

)

. Since Mj is simple, we

deduce that Mj ∩
(

N ⊕
( ⊕

i∈J
Mi

)

)

= {0}. Hence Mj +
(

N ⊕
( ⊕

i∈J
Mi

)

)

is a direct

sum. Thus J ∪ {j} belongs to A which contradicts the maximality of J . Hence

M = N ⊕
( ⊕

i∈J
Mi

)

. Therefore the result holds.

Corollary 4.13. Let M be an R-skewmodule. Then the followings are

equivalent.

(1) M is the sum of a family of normal simple subskewmodules of M .

(2) M is the direct sum of a family of normal simple subskewmodules of M .

Proof. (1)⇒(2) This follows immediately by Theorem 4.12.

(2)⇒(1) This is obvious.

Theorem 4.14. Let M be an R-skewmodule. If M = M1 ⊕M2, then

M/M1
∼= M2.

Proof. Let π : M → M2 be a projection mapping. We claim that Kerπ = M1.

Let x ∈ Kerπ ⊆ M . Then x = m1 + m2 for some m1 ∈ M1 and m2 ∈ M2. Thus

m2 = π(x) = 0. So x = m1 ∈ M1. Then Kerπ ⊆ M1. Moreover, π(x) = 0

for all x ∈ M1. Thus x ∈ Kerπ. Now, the claim is proved. By Corollary 3.2,

M/M1
∼= M2.
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