การวางนัยทั่วไปของบางทฤษฎีบทในทฤษฎีมอดูลไปยังมอดูลเสมือน

Thesis Title : Generalization of Some Theorems in Module Theory to Skewmodules

By : Miss Kanokporn Changtong
Field of Study : Mathematics
Thesis Advisor : Assistant Professor Amorn Wasanawichit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of Faculty of Science
(Associate Professor Wanchai Phothiphichitr, Ph.D.)

THESIS COMMITTEE

\qquad
(Associate Professor Yupaporn Kemprasit, Ph.D.)

Thesis Advisor
(Assistant Professor Amorn Wasanawichit, Ph.D.)

Member
(Assistant Professor Ajchara Harnchoowong, Ph.D.)

กนกพร ช่างทอง : การวางนัยทั่วไปของบางทฤษฎีบทในทฤษฎีมอคูลไปยังมอดูลเสมือน (GENERALIZATION OF SOME THEOREMS IN MODULE THEORY TO SKEWMODULES) อ.ที่ปรึกษา : ผศ. ดร. อมร วาสนาวิจิตร์, 37 หน้า. ISBN 974-13-0925-2 .

กำหนดให้ R เป็นวงเสมือน เราจะเรียก M ว่า มอดูลสสมือนบน R ก็ต่อเมื่อ M เป็นกลุ่มภายใต้การ ดำเนินการการบวก และมีการกระทำทางซ้าย $R \times M \rightarrow M$ ซึ่งกำหนดโดย $(r, m) \alpha r m$ มีสมบัติว่า สำหรับ ทุกๆ $r, s \in R$ และ $m, n \in M$, (1) $(r+s) m=r m+s m$, (2) $r(m+n)=r m+r n$ และ (3) $(r s) m=r(s m)$

เราจะเรียกกลุ่มย่อย N ของมอดูลเสมือน M บน R ว่า มอดูลเสมือนย่อยของ M ก็ต่อเมื่อ สำหรับทุกๆ $n \in N$ และ $r \in R$ จะได้ $r n \in N$ และจะเรียก N ว่า มอดูลเสมือนย่อยปกติ ก็ต่อเมื่อ N เป็นมอดูลเสมือนย่อย ของ M และ สำหรับทุกๆ $m \in M, N+m=m+N$

เราจะเรียกมอดูลเสมือน M บน R ว่าซิมเปิล ก็ต่อเมื่อ M มีมอดูลเสมือนย่อยปกติเพียงสองตัวเท่านั้น คือ $\{0\}$ และ M

กำหนดให้ M เป็นมอดูลเสมือนบน R เราจะเรียก มอดูลเสมือนย่อยปกติ M_{1} และ M_{2} ของ M ว่า ซับพลีเมนเทอรี ก็ต่อเมื่อ $M=M_{1} \oplus M_{2}$ และเราจะเรียกมอดูลเสมือนย่อยปกติ N ของ M ว่าไดเรคซัมมานด์ ก็ต่อเมื่อ มีมอดูลเสมือนย่อยปกติ P ของ M ซึ่ง N และ P เป็นซับพลีเมนเทอรี

ผลสำคัญของงานวิจัยมีดังนี้

การทำให้ทฤษฎีบทไอโซมอร์ฟิซึมพื้นฐาน 4 ทฤษฎีบท ทฤษฎีบทไชเออร์และทฤษฎีบท จอร์แดน-โฮลเดอ ในทฤษฎีมอคูล เป็นกรณีทั่วไปในมอดูลเสมือน นอกจากนี้จะได้ทฤษฎีบทดังต่อไปนี้ ทฤษฎีบท 1 กำหนดให้ M เป็นมอคูลเสมือนบน R ถ้า M เป็นมอดูลเสมือนอาธีเนียนและโนธีเรียนแล้ว M จะมีอนุกรมคอมโพสิชัน
ทฤษฎีบท 2 กำหนดให้ M เป็นมอดูลเสมือนบน R ถ้า M เป็นผลรวมของมอดูลเสมือนย่อยปกติของ M ซึ่ง ซิมเปิลแล้ว ทุกๆ มอดูลเสมือนย่อยปกติของ M เป็นไดเรคซัมมานด์
จุฬาลงกรณนมหาวิทยาลัย

ภาควิชา คณิตศาสตร์
สาขาวิชา คณิตศาสตร์
ปีการศึกษา 2543

ลายมือชื่อนิสิต.
ลายมือชื่ออาจารย์ที่ปรึกษา
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม -
\# \# 4172202523 : MAJOR MATHEMATICS
KEYWORD : SKEWMODULES / NORMAL SUBSKEWMODULES / COMPOSITION SERIES / ARTINIAN / NOETHERIAN KANOKPORN CHANGTONG : GENERALIZATION OF SOME THEOREMS IN MODULE THEORY TO SKEWMODULES. THESIS ADVISOR : ASSISTANT PROFESSOR AMORN WASANAWICHIT, Ph.D. 37pp. ISBN 974-13-0925-2.

Let R be a skewring. An R-skewmodule M is an additive group with a left action $R \times M \rightarrow M$, defined by $(r, m) \propto r m$, such that (1) $(r+s) m=r m+s m$, (2) $r(m+n)=r m+r n$ and (3) $(r s) m=r(s m)$ for all $r, s \in R$ and $m, n \in M$.

A subgroup N of an R-skewmodule M is called a subskewmodule of M if for all $n \in N$ and $r \in R$, then $r n \in N$. Moreover, N is called a normal subskewmodule if N is a subskewmodule of M such that $N+m=m+N$ for all $m \in M$.

An R-skewmodule M is simple if $\{0\}$ and M are only normal subskewmodules of M

Let M be an R-skewmodule. Normal subskewmodules M_{1} and M_{2} of M are said to be supplementary if $M=M_{1} \oplus M_{2}$. A normal subskewmodule N of M is called a direct summand if there exists a normal subskewmodule P of M such that N and P are supplementary.

The main results of this research are follows:
Generalization the notion of the four Isomorphism Theorems, the Schreier's theorem and the Jordan Hoder theorem in module theory to skewmodules. Moreover we obtain the following theorems:

Theorem1 Let M be an R-skewmodule. If M is both artinian and noetherian, then M has a composition series.

Theorem 2 Let M be an R-skewmodule. If M is the sum of a family of its normal simple subskewmodules, then every normal subskewmodule of M is a direct summand.
จุหาลงกรณโมหาวิทยาลัย

Department Mathematics Field of Study Mathematics
Academic year 2000

Student's signature
Advisor's signature.
Co-advisor's signature -

ACKNOWLEDGEMENTS

I would like to express my profound gratitude and deep appreciation to my advisor Assistant Professor Dr. Amorn Wasanawichit for his invaluable guidance of this thesis. Sincere thanks and deep appreciation are also extended to Associate Professor Dr. Yupaporn Kemprasit, the chairman, and Assistant Professor Dr. Ajchara Harnchoowong, the committee member, for their comments and suggestions. I am grateful to Dr. Sajee Pianskool who gave her time reading my thesis. Moreover, I would like to thank all of the lecturers for their valuable lectures while I was studying. Especially, the person I can never forget is my another advisor, Dr. Sidney S. Mitchell. I am extremely indebted to him for his helpful advice, endurance and encouragement almost throughout this research. Although none of us will ever see him again, he will stay in our heart forever.

A special word for appreciation also goes to my classmates for their help as well as their friendship. Finally, I would like to express my sincere gratitude to my beloved parents and my sisters for their love, support and endurance.

Without them, it would beextremely difficult to complete my studies successfully
 จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

Page

CHAPTER I

INTRODUCTION

A Construction of great versatility is that of a module over a ring. For this research, we are interested in a more general structure. Sureeporn has been introduced the concept of a skewring in [1]: A skewring is a ring dropping an additively commutative property. An object analogous to a module over a ring which is called a skewmodule can be defined over a skewring. Moreover, we study which theorems in Module Theory can be generalized to skewmodules. In this research,we study the theorems in [1], [2], [4] and [5].

There are four chapters in this thesis. In Chapter I, we introduce the concept of a normal subskewmodule. We find that skewmodules can be studied in much the same way as modules if we replace submodules in Module Theory by normal subskewmodules.

In Chapter II, we give definitions, examples and prove some fundamental theorems about skewmodules.

In Chapter HI, we study the concept of the composition series and generalize the four basic Isomorphism Theorems and the Jordan Hölder Theorem to

In Chapter IV, we give definitions and theorems related artinian and noetherian skewmodules. Moreover, we prove the relation between artinian, noetherian skewmodules and the composition series.

CHAPTER II

PRELIMINARIES

In this chapter we give some definitions and theorems which are used in this thesis. Moreover, some examples are given.

Notation My general notation conventions are as follows:
\mathbb{N} is the set of all natural numbers,
0_{R} (or 0) is the additive identity of a group $(R,+)$,
$A \subset B($ or $B \supset A)$ means that A is a proper subset of B.

Definition 2.1. A triple $(R,+, \cdot)$ is a skewring if
(1) $(R,+)$ is a group,
(2) (R, \cdot) is a semigroup and
(3) $x(y+z)=x y+x z$ and $(y+z) x=y x+z x$ for all $x, y, z \in R$.
สถาบันวิทยบริการ

Definition 2.2. Let R be a skewring. A left R-skewmodule M or a left skewmodule M over R is an additive group M with a left action $R \times M \rightarrow M$, given by ${ }^{9}(r, m) \mapsto r m$, such that
(1) $(r+s) m=r m+s m$,
(2) $r(m+n)=r m+r n$,
(3) $(r s) m=r(s m)$
for all $r, s \in R$ and all $m, n \in M$. If R has a multiplicative identity 1 , we define $1 m=m$ for all $m \in M$.

A left R-skewmodule M is called a left R-module or a left module over R if M is an abelian group.

A right R-skewmodule or a right skewmodule over R and a right
R-module or a right module over R are defined in the similar way by replacing a left action with a right action with corresponding properties to (1)-(3). In what follows, we make the convention that the term R-skewmodule always means a left R-skewmodule.

Remark 2.3. Let M be a skewmodule with additive identity 0_{M} over a skewring R with additive identity 0_{R}. It is easy to prove that, for all $r \in R, m \in M$, $r 0_{M}=0_{M}, 0_{R} m=0_{M}$ and $(-r) m=-(r m)=r(-m)$.

Lemma 2.4. Let M be an R-skewmodule. For $r, s \in R$ and $m, n \in M$, $r n+s m=s m+r n$.

Proof. Consider

$$
\begin{align*}
& (r+s)(m+n)=r(m+n)+s(m+n)=r m+r n+s m+s n \tag{1}\\
& (r+s)(m+n)=(r+s) m+d r+s) n=r m+s m+r n+s n \tag{2}
\end{align*}
$$

By (1), (2) and the definition of an R-skewmodule, we obtain that $r n+s m=$ $s m+r n$.

Remark 2.5. Let R be a skewring and M an R-skewmodule. The following statements hold.
(1) $R M=\left\{\sum_{i=1}^{n} r_{i} m_{i} \mid r_{i} \in R, m_{i} \in M, n \in \mathbb{N}\right\}$ is a module over R.
(2) If $R M=M$, then M is a module over R.
(3) If R has a multiplicative identity, then R is a ring, and M is an R-module.

Proof. (1) Apply Lemma 2.4 to prove the commutativity of addition.
(2) The result is obtained immediately from (1).
(3) If R has a multiplicative identity, Sureepron proved that R is a ring in [1], then by (2), we obtain that M is an R-module.

Lemma 2.6. Let R be a skewring and M an R-skewmodule. If M is finite and there exists an $r \in R \backslash\{0\}$ such that $r m \neq 0$ for all $m \in M \backslash\{0\}$, then M is a module over R.

Proof. Assume that M is finite and there exists an $r \in R \backslash\{0\}$ such that $r m \neq 0$ for all $m \in M \backslash\{0\}$. Define $f: M \backslash\{0\} \rightarrow M \backslash\{0\}$ by

$$
f(m)=r m \text { for all } m \in M \backslash\{0\} .
$$

To show that f is $1-1$, let $m_{1}, m_{2} \in M \backslash\{0\}$ be such that $f\left(m_{1}\right)=f\left(m_{2}\right)$. Then $r m_{1}=r m_{2}$. Thus $r\left(m_{1}-m_{2}\right)=0$. By the assumption, we have $m_{1}-m_{2}=0$, i.e., $m_{1}=m_{2}$. Hence f is $1-1$. Since M is finite, f is onto. Then $R M=M$. By Remark 2.5(2) Mis a module over $R \cdot \cap \mathrm{G}$

Definition 2.7. Let R be a skewring and I a nonempty subset of R.
(1) If I is a skewring under the operations of R, then I is a subskewring of R, denoted by $I \leq R$.
(2) If I is a subskewring of R and $\{y x \mid x \in I, y \in R\} \subseteq I(\{x y \mid x \in I, y \in$ $R\} \subseteq I$), then I is a left (right) ideal of R.

If I is both a left and right ideal of R, then I is a two-sided ideal or ideal of R.
(3) If I is a subskewring of R and $\{r+x-r \mid r \in R, x \in I\} \subseteq I$, then I is a normal subskewring of R.
(4) If I is a left (right) ideal of R and I is a normal subskewring of R, then I is a normal left (right) ideal of R.

If I is both a normal left and right ideal of R, then I is a normal two-sided ideal or normal ideal of R.

Definition 2.8. Let R and S be skewrings and $f: R \rightarrow S . f$ is called a homomorphism if and only if for all $x, y \in R$,

$$
f(x+y)=f(x)+f(y) \text { and } f(x y)=f(x) f(y) .
$$

Let R be a skewring and I a normal ideal of R. Let $R / I=\{x+I \mid x \in R\}$ and define the binary operations + , on R / I as follows : for all $x+I, y+I \in R / I$,

$$
\begin{gathered}
(x+I)+(y+I)=x+y+I \text { and } \\
(x+I)(y+I)=x y+I
\end{gathered}
$$

We, now, give some examples of skewmodule.

Example 2.9. Any a skewring R is an R-skewmodule. \sim

Example 2.10. If S is a skewring and R a subskewring of S, then S is an

Example 2.11. If I is a left ideal of a skewring R, then I is a left R-skewmodule with $r a(r \in R, a \in I)$ being the multiplication in R.

Example 2.12. If I is a normal left ideal of a skewring R, then R / I is an R-skewmodule with

$$
r(\bar{r}+I)=r \bar{r}+I \quad \text { where } r, \bar{r} \in R .
$$

Example 2.13. Let R and S be skewrings and $\varphi: R \rightarrow S$ a homomorphism. Then every S-skewmodule M can be made into an R-skewmodule by defining $r m(r \in R, m \in M)$ to be $\varphi(r) m$.

To prove this, let $r, r_{1}, r_{2} \in R$ and $m, m_{1}, m_{2} \in M$. We obtain that $\left(r_{1}+r_{2}\right) m=\left(\varphi\left(r_{1}+r_{2}\right)\right) m=\left(\varphi\left(r_{1}\right)+\varphi\left(r_{2}\right)\right) m=\varphi\left(r_{1}\right) m+\varphi\left(r_{2}\right) m=r_{1} m+r_{2} m$, $r\left(m_{1}+m_{2}\right)=\varphi(r)\left(m_{1}+m_{2}\right)=\varphi(r) m_{1}+\varphi(r) m_{2}=r m_{1}+r m_{2}$ and $\left(r_{1} r_{2}\right) m=\varphi\left(r_{1} r_{2}\right) m=\left(\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)\right) m=\bar{\varphi}\left(r_{1}\right)\left(\varphi\left(r_{2}\right) m\right)=r_{1}\left(r_{2} m\right)$. Then M is an R-skewmodule.

Sureeporn introduced the next two examples for skewring and we continue studying the same examples for skewmodules.

Example 2.14. Let $(R,+, \cdot)$ be the ring of all strictly upper triangular 3×3 matrices over \mathbb{R} under the usual of addition and multiplication of matrix. Then $R^{3}=\{0\}$. Define a binary operation \oplus on R by $a \oplus b=a+b+a b$ for all $a, b \in R$. By [1], (R, \oplus, \cdot) is a skewring which is not a ring. Then from Example 2.9, (R, \oplus) is an (R, \oplus, \cdot)-skewmodule.

Example 2.15. Let $(G,+)$ be a nonabelian group, K an abelian subgroup of G and X a nonempty set such that $X \cap G=\emptyset$ and $|X| \geq 1$.

Let $\operatorname{Map}(G, X, K)=\left\{f: G \cup X \leftrightarrow G|f|_{G}: G \rightarrow K\right.$ is a homomorphism $\}$. For all $f, g \in \operatorname{Map}(G, X, K)$, define

$$
\begin{aligned}
\left(f+^{\prime} g\right)(x) & =f(x)+g(x) \quad \text { and } \\
(f \cdot g)(x) & =(f \circ g)(x)
\end{aligned}
$$

for all $x \in G \cup X$. Then
(1) $\left(\operatorname{Map}(G, X, K),+^{\prime}, \cdot\right)$ is a skewring which is not always a ring,
(2) G is a $\operatorname{Map}(G, X, K)$-skewmodule with $f a$ defined to be $f(a)$ for all $a \in G, f \in \operatorname{Map}(G, X, K)$.

The first result is already proved in [1]. Next, let $a, b \in G$ and $f, g \in \operatorname{Map}(G, X, K)$. We obtain that
(2.1) $\left(f+^{\prime} g\right) a=\left(f+^{\prime} g\right)(a)=f(a)+g(b)=f a+g a$.
$(2.2) f(a+b)=f(a)+f(b)=f a+f b$.
The second equality holds since $a, b \in G$ and $\left.f\right|_{G}$ is a homomorphism.

$$
\begin{equation*}
(f \cdot g) a=(f \circ g)(a)=f(g(a))=f(g a) \tag{2.3}
\end{equation*}
$$

Therefore, G is a $\operatorname{Map}(G, X, K)$-skewmodule.

We now define a homomorphism from an R-skewmodule to another.

Definition 2.16. If M and N are R-skewmodules, then a mapping $\varphi: M \rightarrow N$ is called an R-homomorphism if
(1) $\varphi(m+n)=\varphi(m)+\varphi(n)$ and
(2) $\varphi(r m)=r \varphi(m)$
for all $r \in R$ and $m, \bar{n} \in M$.
An R-homomorphism φ is called an R-monomorphism, R-epimorphism, R-isomorphism if it is injective, surjective, bijective, respectively. In the case φ is an R-isomorphism, M and N are said to be isomorphic, denoted by $M \cong N$. The kernel of φ is its kernel as on R-homomorphism of modules, namely
$\operatorname{Ker} \varphi=\{m \in M \mid \varphi(m)=0\}$. Similarly the image of φ is the set
$\operatorname{Im} \varphi=\{n \in N \mid \varphi(m)=n$ for some $m \in M\}$.
If $\varphi: M \rightarrow N$ is an R-homomorphism, then φ is a group homomorphism of $(M,+)$ into $(N,+)$, so
(1) $\varphi\left(0_{M}\right)=0_{N}$,
(2) $\varphi(-m)=-\varphi(m)$ for all $m \in M$.

Example 2.17. Obviously, the zero map from M into M^{\prime} and the identity map on M are R-homomorphisms.

Definition 2.18. A subgroup N of an R-skewmodule M is an
R-subskewmodule, denoted by $N<M$, is stable under the action of R on M in the sense that if $n \in N$ and $r \in R$, then $r n \in N$.

For simplicity we use the term subskewmodule instead of R-subskewmodule.

Remark 2.19. It is easy to show that a nonempty subset N of an R-skewmodule M is a subskewmodule of M if and only if
(1) $n_{1}-n_{2} \in N$ for all $n_{1}, n_{2} \in N$, and
(2) $r n \in N$ for all $r \in R, n \in N$.

Example 2.20. Any R-skewmodule M has trivial subskewmodules M and $\{0\}$.

Lemma 2.21. (1) If M and M^{\prime} are R-skewmodules and $f: M \rightarrow M^{\prime}$ an
R-homomorphism, then $\operatorname{Ker} f<M$ and $\operatorname{Im} f<M^{\prime}$.
(2) If $\left\{M_{i} \mid i \in I\right\}$ is a family of subskewmodules of an R-skewmodule, then ฉ. a $^{\mu<x}$. สถาบนวิทยบริการ

Theorem 2.22. (Modular Law) If M is an R-skewmodule and if A, B, C are subskewmodules of M with $C \subseteq A$, then $A \cap(B+C)=(A \cap B)+C$.

Proof. Let M be an R-skewmodule. Assume that A, B, C are subskewmodules of M with $C \subseteq A$. Since $C \subseteq A$, it follows that $A+C=A$. Now $(A \cap B)+C \subseteq A+C$ and $(A \cap B)+C \subseteq B+C$. Thus $(A \cap B)+C \subseteq(A+C) \cap(B+C)=A \cap(B+C)$. Next, let $a \in A \cap(B+C)$. Then $a=b+c$ for some $b \in B, c \in C$. Since $C \subseteq A$, we
have $c \in A$. Then $b=a-c \in A$, that is $b \in A \cap B$. Thus $a=b+c \in(A \cap B)+C$. Therefore $A \cap(B+C)=(A \cap B)+C$.

Definition 2.23. A subskewmodule N of an R-skewmodule M is a normal subskewmodule, denoted by $N \triangleleft M$, if $N+m=m+N$ for all $m \in M$.

Remark 2.24. Let M be an R-skewmodule. The followings are equivalent.
(1) N is a normal subskewmodule of M.
(2) $m+N-m=N$ for all $m \in M$.
(3) $m+N-m \subseteq N$ for all $m \in M$.

We can see that the skewring and skewmodules in Example 2.15 are significant and interesting. From this example, we shall give various examples of definitions given previously.

Example 2.25. It is clear that $\langle(12)\rangle$ is an abelian subgroup of S_{3}. Let $X=\{a\}$ be such that $a \notin S_{3}$. Then $S_{3} \cap X=\emptyset$. It is easy to check that

$$
\begin{aligned}
R & \left.=\operatorname{Map}\left(S_{3},\{a\}, q(12)\right\rangle\right) \\
& =\left\{\varphi: S_{3} \cup\{a\} \rightarrow S_{3}|\varphi|_{S_{3}}: S_{3} \rightarrow\langle(12)\rangle \text { is a homomorphism }\right\}
\end{aligned}
$$

$$
\mathfrak{q} 9\left\{\varphi_{i} \mid i \in\{1,2, \ldots, 12\}\right\} \text { where }
$$

$$
\varphi_{1}(x)=(1) \text { for all } x \in S_{3} \cup\{a\} \quad \varphi_{2}(x)= \begin{cases}(1), & \text { if } x \in S_{3} \\ (12), & \text { if } x=a\end{cases}
$$

$\varphi_{3}(x)= \begin{cases}(1), & \text { if } x \in S_{3} \\ (13), & \text { if } x=a\end{cases}$
$\varphi_{4}(x)= \begin{cases}(1), & \text { if } x \in S_{3} \\ (23), & \text { if } x=a\end{cases}$
$\varphi_{5}(x)=\left\{\begin{array}{ll}(1), & \text { if } x \in S_{3} \\ (123), & \text { if } x=a\end{array} \quad \varphi_{6}(x)= \begin{cases}(1), & \text { if } x \in S_{3} \\ (132), & \text { if } x=a\end{cases}\right.$
$\varphi_{7}(x)= \begin{cases}(1), & \text { if } x \text { is even permutation and } \mathrm{x}=\mathrm{a} \\ (12), & \text { if } x \text { is odd permutation }\end{cases}$
$\varphi_{8}(x)= \begin{cases}(1), & \text { if } x \text { is even permutation } \\ (12), & \text { if } x \text { is odd permutation and } \mathrm{x}=\mathrm{a}\end{cases}$
$\varphi_{9}(x)= \begin{cases}(1), & \text { if } x \text { is even permutation } \\ (12), & \text { if } x \text { is odd permutation } \\ (13), & \text { if } x=a\end{cases}$
$\varphi_{10}(x)= \begin{cases}(1), & \text { if } x \text { is even permutation } \\ (12), & \text { if } x \text { ind }\end{cases}$
$\varphi_{10}(x)=\{(12), \quad$ if x is odd permutation
(2 3), if $x=a$
$\varphi_{11}(x)= \begin{cases}(1), & \text { if } x \text { is even permutation } \\ (12), & \text { if } x \text { is odd permutation } \\ \left(\begin{array}{ll}1 & 2\end{array}\right), & \text { if } x=a 9\end{cases}$
$\varphi_{12}(x)= \begin{cases}(1), & \text { if } x \text { is even permutation } \\ (12), & \text { if } x \text { is odd permutation } \\ \left(\begin{array}{lll}1 & 3\end{array}\right), \quad \text { if } x=a\end{cases}$

Then R is a skewring which is not a ring since $\varphi_{4} \varphi_{5} \neq \varphi_{5} \varphi_{4}$.
$R_{1}=\left\{\varphi_{1}, \varphi_{5}, \varphi_{6}\right\}$ is a subskewring of R which is a ring. Moreover, R_{1} is a left ideal of R, but it is not a right ideal because $\varphi_{5} \circ \varphi_{10}=\varphi_{2} \notin R_{1} .\left\{\varphi_{1}, \varphi_{2}, \varphi_{7}, \varphi_{8}\right\}$ is an ideal of R which is a ring and $R_{2}=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, \varphi_{5}, \varphi_{6}\right\}$ is a normal ideal
of R which is not a ring. Moreover, R_{1} is a normal ideal of R_{2}, but it is not normal ideal of R since $\varphi_{7} \varphi_{5} \varphi_{7}=\varphi_{12} \notin R_{1}$.

We obtain that S_{3} is an R-skewmodule which is not a module and R is an R_{2}-skewmodule. Moreover, A_{3} is a normal subskewmodule of S_{3}.

Example 2.26. $N=\{(1),(12)(34),(13)(24),(14)(23)\}$ is an abelian subgroup of S_{4}. Let $X=\{a\}$ be such that $a \notin S_{4}$. Then $\operatorname{Map}\left(S_{4},\{a\}, N\right)$ is a skewring which is not a ring and S_{4} is a Map $\left(S_{4},\{a\}, N\right)$-skewmodule. Moreover, A_{4} is a normal subskewmodule of S_{4} over $\operatorname{Map}\left(S_{4},\{a\}, N\right)$.
$\left\langle\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)\right\rangle$ is a subskewmodule of S_{4} over $\operatorname{Map}\left(S_{4},\{a\}, N\right)$, but it is not a normal subskewmodule since $\left(\begin{array}{llll}1 & 3 & 4 & 2\end{array}\right)\left(\begin{array}{llll}1 & 4 & 3\end{array}\right)(1342)=\left(\begin{array}{ll}1 & 4\end{array}\right) \notin\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle$

Lemma 2.27. (1) If M and M^{\prime} are R-skewmodules and $\varphi: M \rightarrow M^{\prime}$ an R-homomorphism, then $\operatorname{Ker} \varphi \triangleleft M$ and φ is a monomorphism if and only if $\operatorname{Ker} \varphi=\{0\}$.
(2) If $\left\{M_{i} \mid i \in I\right\}$ is a family of normal subskewmodules of an R-skewmodule M, then $\bigcap_{i \in I} M_{i} \triangleleft M$.

Definition 2.28. Let M be an R-skewmodule and $X \subseteq M$. The intersection of all normal subskewmodules of M containing X is called a normal subskewmodule generated by X. If X is finite, and X generates the skewmodule M, M is said to be finitely generated. If $X=\emptyset$, then X clearly generates the zero skewmodule.

If $\left\{M_{i} \mid i \in I\right\}$ is a family of normal subskewmodules of M, then the normal subskewmodule generated by $X=\bigcup_{i \in I} M_{i}$ is called the sum of the
skewmodules M_{i}, which is denoted by $\sum_{i \in I} M_{i}$. If $I=\{1,2, \ldots, n\}$, then the sum of $M_{1}, M_{2}, \ldots, M_{n}$ is $M_{1}+M_{2}+\ldots+M_{n}$.

Lemma 2.29. Let M be an R-skewmodule. If P and N are subskewmodules of M such that P is normal, then the following statements hold.
(1) P is contained in N implies that P is a normal subskewmodule of N.
(2) $P \cap N$ is a normal subskewmodule of N.
(3) $N+P$ is a subskewmodule of M.
(4) N is normal implies that $N+P$ is a normal subskewmodule of M.

Proof. Let M be an R-skewmodule. Assume that P and N are subskewmodules of M such that P is normal.
(1) The proof is obvious.
(2) Clearly, $P \cap N<N$. Let $n \in N, k \in P \cap N$. Then $n+k-n \in N$ since $N<M$ and $n+k-n \in P$ sinee $P \triangleleft M$. Thus $n+k-n \in P \cap N$. Hence $P \cap N$ is a normal subskewmodule of N.
(3) Notice that $\bar{N}+P \neq \emptyset$ since $0 \in N+P$. Let $\bar{n}+p, n^{\prime}+p^{\prime} \in N+P$ be such that $n, n^{\prime} \in N$ and $p, p^{\prime} \in P$. Then $(n+p)-\left(n^{\prime}+p^{\prime}\right)=n+p-p^{\prime}-n^{\prime}=$ $n+\left(p-p^{\prime}\right)-n^{\prime} \in P \subseteq N+P$ since $P \& M$. Next, Ret $r \in R$. Then $r(n+p)=$ $r n+r p \in N+P$. Hence $N+P$ is as subskewmodule of M.
(4) By (3), it is already preved that $N+P<M$. Let $m \in M$. Then

$$
\begin{aligned}
(N+P)+m & =N+(P+m) \\
& =N+(m+P) \\
& =(N+m)+P \\
& =(m+N)+P \\
& =m+(N+P) .
\end{aligned}
$$

The second and the fourth equalities hold since $P \triangleleft M$ and $N \triangleleft M$, respectively. Hence $N+P$ is a normal subskewmodule of M.

Theorem 2.30. Let N be a normal subskewmodule of an R-skewmodule M and $M / N=\{m+N \mid m \in M\}$ the set of all cosets of M by N. Then M / N is an R-skewmodule relative to the addition and scalar multiplication defined by

$$
(x+N)+(y+N)=(x+y)+N \quad \text { and }
$$

for all $x, y \in M, r \in R$.

Proof. First, we prove that these are indeed well-defined operations. Let $m_{1}, m_{2}, m_{1}^{\prime}, m_{2}^{\prime} \in M$ be such that $m_{1}+N=m_{1}^{\prime}+N$ and $m_{2}+N=m_{2}^{\prime}+N$. Then $m_{1}=m_{1}^{\prime}+n$ and $m_{2}=m_{2}^{\prime}+\bar{n}$ for some $n, \bar{n} \in N$. Thus $m_{1}+m_{2}=$ $\left(m_{1}^{\prime}+n\right)+\left(m_{2}^{\prime}+\bar{n}\right)=m_{1}^{\prime}+\left(n+m_{2}^{\prime}\right)+\bar{n}=m_{1}^{\prime}+m_{2}^{\prime}+\widehat{n}+\bar{n}$ for some $\widehat{n} \in N$ since $N \triangleleft M$. Thus $m_{1}+m_{2} \in\left(m_{1}^{\prime}+m_{2}^{\prime}\right)+N$. Hence $\left(m_{1}+m_{2}\right)+N=\left(m_{1}^{\prime}+m_{2}^{\prime}\right)+N$. Let $r \in R$. Then $r m_{1}=r\left(m_{1}^{\prime}+n\right)=r m_{1}^{\prime}+r n \in r m_{1}^{\prime}+N$ since $N<M$. Hence $r m_{1}+N=r m_{1}^{\prime}+N$. Therefore these operations are well-defined. It is straightforward that M / N is an R-skewmodule. d\|) d

จฬาลงกรณ์มหาวิทยาลัย

Definition 2.31. Let N be a normal subskewmodule of an R-skewmodule M. The R-skewmodule M / N defined in Theorem 2.30 is called the quotient skewmodule of M by N.

The map $\pi: M \rightarrow M / N$, defined by $\pi(x)=x+N$ for all $x \in M$, is called the canonical projection. It is an epimorphism with kernel N.

Definition 2.32. Let M be an R-skewmodule. M is simple if $\{0\}$ and M are only its normal subskewmodules.

Lemma 2.33. Let M be an R-skewmodule. If $M=R x=\{r x \mid r \in R\}$ for every nonzero $x \in M$, then M is simple.

Proof. Assume that $M=R x$ for all $x \in M \backslash\{0\}$. Let N be a nonzero normal subskewmodule of M and $n \in N \backslash\{0\}$. We obtain that $M=R n \subseteq N$. Thus $M=N$. Hence M is simple.

Lemma 2.34. Let M and N be R-skewmodules and $f: M \rightarrow N$ a nonzero R-homomorphism. If M is simple, then f is a monomorphism.

Proof. Let $f: M \rightarrow N$ be a nonzero R-homomorphism. Assume that M is simple. Since f is a nonzero mapping, we obtain that $\operatorname{Ker} f \neq M$. Hence $\operatorname{Ker} f=\{0\}$ since $\operatorname{Ker} f \triangleleft M$ and M is simple. Therefore f is a monomorphism.

Lemma 2.35. Let M and M^{\prime} be R-skewmodules and $\varphi: M \rightarrow M^{\prime}$ an R-homomorphism. Then the following statements hold.
(1) If N is a subskewmodule of M, then $\varphi\left[\overparen{N]}\right.$ is a subskewmodule of M^{\prime}. Hence $\operatorname{Im} \varphi$ is a subskewmodule of M^{\prime}.
(2) If φ is an epimorphism and N is a normal subskewmodule of M, then $\varphi[N]$ is a normal subskewmodule of M^{\prime}. Hence $\varphi[N]$ is a normal subskewmodule of $\operatorname{Im} \varphi$.
(3) If N is a subskewmodule of M, then $\varphi^{-1}(\varphi[N])=(\operatorname{Ker} \varphi)+N$. Moreover if N contains Ker φ, then $\varphi^{-1}(\varphi[N])=N$.
(4) If N^{\prime} is a subskewmodule of M^{\prime}, then $\varphi^{-1}\left[N^{\prime}\right]$ is a subskewmodule of M containing $\operatorname{Ker} \varphi$.
(5) If N^{\prime} is a normal subskewmodule of M^{\prime}, then $\varphi^{-1}\left[N^{\prime}\right]$ is a normal subskewmodule of M containing $\operatorname{Ker} \varphi$.

Proof. Let M and M^{\prime} be R-skewmodules and $\varphi: M \rightarrow M^{\prime}$ an R-homomorphism.
(1) Assume that N is a subskewmodule of M. Then $\varphi[N] \neq \emptyset$ since $\varphi(0)=0_{M^{\prime}}$. Let $x, y \in \varphi[N]$. Then $\varphi(a)=x$ and $\varphi(b)=y$ for some $a, b \in N$. Thus $x-y=\varphi(a)-\varphi(b)=\varphi(a-b) \in \varphi[N]$. Let $r \in R$. Then $r x=r \varphi(a)=$ $\varphi(r a) \in \varphi[N]$. Hence $\varphi[N]$ is a subskewmodule of M^{\prime}.
(2) Assume that φ is an epimorphism and N is a normal subskewmodule of M. By (1) we have $\varphi[N]<M^{\prime}$. Let $x \in \varphi[N]$ and $m^{\prime} \in M^{\prime}$. Then $\varphi(a)=x$ for some $a \in N$. Since φ is onto, $\varphi(m)=m^{\prime}$ for some $m \in M$. It follows that $m+a-m \in N$ since $N \triangleleft M$. Thus $m^{\prime}+x-m^{\prime}=\varphi(m)+\varphi(a)-\varphi(m)=\varphi(m+a-m) \in \varphi[N]$. Hence $\varphi[N]$ is a normal subskewmodule of M^{\prime}.
(3) Assume that N is a subskewmodule of M. To show that $\varphi^{-1}(\varphi[N])=$ $(\operatorname{Ker} \varphi)+N$, first, let $\bar{a}+b \in(\operatorname{Ker} \varphi)+N$ be such that $\bar{a} \in \operatorname{Ker} \varphi$ and $b \in N$. Then $\varphi(a)=0$, so that $\varphi(a+b)=\varphi(a)+\varphi(b)=\varphi(b) \in \varphi[N]$. Hence $a+b \in \varphi^{-1}(\varphi[N])$. This shows that $(\operatorname{Ker} \varphi)^{+}+N \underset{\varphi^{-1}}{ }(\varphi[\mathcal{N}]) \cdot$ Next, let $x \in \varphi^{-1}(\varphi[N])$. Then $\varphi(x) \in \varphi[N]$, so $\varphi(x)=\varphi(n)$ for some $n \in N$. Thus $\varphi(x-n)=0$, i.e., $x-n \in$ $\operatorname{Ker} \varphi$. Hence $x=(x-n)+n \in(\operatorname{Ker} \varphi)+N$. Therefore $\varphi^{-1}(\varphi[N]) \subseteq(\operatorname{Ker} \varphi)+N$, so that $\varphi^{-1}(\varphi[N])=(\operatorname{Ker} \varphi)+N$. Then if N contains $\operatorname{Ker} \varphi$ then it is obvious that $\varphi^{-1}(\varphi[N])=N$.
(4) Assume that N^{\prime} is a subskewmodule of M^{\prime}. Let $x \in \operatorname{Ker} \varphi$. Then $\varphi(x)=$ $0 \in N^{\prime}$, so that $x \in \varphi^{-1}\left[N^{\prime}\right]$. Hence $\operatorname{Ker} \varphi \subseteq \varphi^{-1}\left[N^{\prime}\right]$. Let $x, y \in \varphi^{-1}\left[N^{\prime}\right]$ and $r \in R$. Then $\varphi(x), \varphi(y) \in N^{\prime}$. So that $\varphi(x-y)=\varphi(x)-\varphi(y) \in N^{\prime}$ since $N^{\prime}<M^{\prime}$. Hence $x-y \in \varphi^{-1}\left[N^{\prime}\right]$. Next, $\varphi(r x)=r \varphi(x) \in N^{\prime}$ since $N^{\prime}<M^{\prime}$.

Then $r x \in \varphi^{-1}\left[N^{\prime}\right]$. Therefore $\varphi^{-1}\left[N^{\prime}\right]$ is a subskewmodule of M.
(5) Assume that N^{\prime} is a normal subskewmodule of M^{\prime}. By (4), we already proved $\operatorname{Ker} \varphi \subseteq \varphi^{-1}\left[N^{\prime}\right]<M$. Let $x \in \varphi^{-1}\left[N^{\prime}\right]$ and $m \in M$. Then $\varphi(x) \in N^{\prime}$. Since $N^{\prime} \triangleleft M^{\prime}$ and $\varphi(m) \in M^{\prime}$, it follows that $\varphi(m)+\varphi(x)-\varphi(m) \in N^{\prime}$. Hence $\varphi(m+x-m)=\varphi(m)+\varphi(x)-\varphi(m) \in N^{\prime}$. Thus $m+x-m \in \varphi^{-1}\left[N^{\prime}\right]$. Therefore $\varphi^{-1}\left[N^{\prime}\right]$ is a normal subskewmodule of M.

CHAPTER III

JORDAN HÖLDER THEOREM

In this chapter, we discuss the basic Isomorphism Theorems and generalize Schreier's Theorem and Jordan Hölder Theorem of modules to skewmodules.

Theorem 3.1. Let $M, M^{\prime}, N, N^{\prime}$ be R-skewmodules and $f: M \rightarrow N$ an R-homomorphism.
(1) If $g: M \rightarrow M^{\prime}$ is an epimorphism with $\operatorname{Ker} g \subseteq \operatorname{Ker} f$, then there exists a unique R-homomorphism $h: M^{\prime} \rightarrow N$ such that $f=h \circ g$. Moreover, Ker $h=g[\operatorname{Ker} f]$ and $\operatorname{Im} h=\operatorname{Im} f$, so that h is a monomorphism if and only if $\operatorname{Ker} g=\operatorname{Ker} f$ and h is an epimorphism if and only if f is an epimorphism.
(2) If $g: N^{\prime} \rightarrow N$ is a monomorphism with $\operatorname{Im} f \subseteq \operatorname{Im} g$, then there exists a unique R-homomorphism $h: M \rightarrow N^{\prime}$ such that $f=g \circ h$. Moreover, $\operatorname{Ker} h=\operatorname{Ker} f$ and $\operatorname{Im} h=g^{-1}[\operatorname{Im} f]$, so that h is a monomorphism if and only if f is a monomorphism and h is an epimorphism if and only if $\operatorname{Im} g=\operatorname{Im} f$.

Proof. (1) Assume that $g: M \rightarrow M^{\nu}$ is an epimorphism with $\operatorname{Ker} g \subseteq \operatorname{Ker} f$. For each $m^{\prime} \in M^{\prime}$, there exists $m^{\prime} \in M$ such that $g(m)=m^{\prime}$ since g is onto. Then we define $h: M^{\prime} \rightarrow N$ by

$$
h\left(m^{\prime}\right)=f(m) \quad \text { for all } m^{\prime} \in M^{\prime}
$$

To show that h is well-defined, let $m_{1}, m_{2} \in M$ be such that $g\left(m_{1}\right)=g\left(m_{2}\right)$. We must show that $f\left(m_{1}\right)=f\left(m_{2}\right)$. Since $g\left(m_{1}-m_{2}\right)=g\left(m_{1}\right)-g\left(m_{2}\right)=0$, $m_{1}-m_{2} \in \operatorname{Ker} g \subseteq \operatorname{Ker} f$. Hence $f\left(m_{1}-m_{2}\right)=0$ and then $f\left(m_{1}\right)=f\left(m_{2}\right)$.

Thus h is well-defined, and it is clear that $f=h \circ g$. Moreover, it is easy to prove that h is an R-homomorphism and it is unique.

Next, we show that $\operatorname{Ker} h=g[\operatorname{Ker} f]$. Let $x \in \operatorname{Ker} h \subseteq M^{\prime}$. Then $h(x)=0$ and, since g is onto, $g(m)=x$ for some $m \in M$. Thus $f(m)=(h \circ g)(m)=$ $h(g(m))=h(x)=0$, i.e., $m \in \operatorname{Ker} f$. Hence $x=g(m) \in g[\operatorname{Ker} f]$. Now, let $y \in g[\operatorname{Ker} f]$. Then $g(x)=y$ for some $x \in \operatorname{Ker} f$. Thus $h(y)=h \circ g(x)=f(x)=$ 0 , so that $y \in \operatorname{Ker} h$. Hence $\operatorname{Ker} h=g[\operatorname{Ker} f]$.

It is easy to prove that $\operatorname{Im} f=\operatorname{Im} h$, so that h is an epimorphism if and only if f is an epimorphism. Hence it remains to show that h is a monomorphism if and only if $\operatorname{Ker} g=\operatorname{Ker} f$. First, assume that h is a monomorphism. Let $x \in \operatorname{Ker} f$. Then $h(g(x))=f(x)=0$. Since h is a monomorphism, $g(x)=0$. It follows that $x \in \operatorname{Ker} g$. This shows that $\operatorname{Ker} f \subseteq \operatorname{Ker} g$. By the assumption, we can conclude that $\operatorname{Ker} f=\operatorname{Ker} g$.

Conversely, assume that $\operatorname{Ker} f=\operatorname{Ker} g$ and let $x \in M^{\prime}$ be such that $h(x)=0$. Since g is onto, there exists $m \in M$ such that $g(m)=x$. Thus $f(m)=h \circ g(m)=$ $h(x)=0$. Hence $m \in \operatorname{Ker} f=\operatorname{Ker} g$, so that $x=g(m)=0$. Therefore h is a monomorphism.
(2) Assume that $g: N^{\prime} \rightarrow N$ is a monomorphism with $\operatorname{Im} f \subseteq \operatorname{Im} g$. We claim that for each $m \in M$ there exists a unique $m^{\prime} \in N^{\prime}$ such that $g\left(m^{\prime}\right)=f(m)$. Let $m \in M$. Then $f(m) \in \operatorname{Im} f \subseteq \operatorname{Im} g$. QThus there exists $m^{\prime} \in N^{\prime}$ such that $g\left(m^{\prime}\right)=q(m)$. Let $n^{\prime} \in N^{\prime}$ be such that $g\left(n^{\prime}\right)=f(m)$. Then $g\left(n^{\prime}\right)=g\left(m^{\prime}\right)$. Since g is $1-1$, it follows that $n^{\prime}=m^{\prime}$. Now, the claim is proved. Next, define $h: M \rightarrow N^{\prime}$ by

$$
h(m)=g^{-1}(f(m)) \text { for all } m \in M
$$

By the claim, h is well-defined, and it is clear that $f=g \circ h$. It is routine to check that h is an R-homomorphism. To prove the uniqueness of h, let $k: M \rightarrow N^{\prime}$
be an R-homomorphism such that $f=g \circ k$. Then $g(h(m))=g\left(g^{-1}(f(m))\right)=$ $f(m)=g(k(m))$. Since g is $1-1, h(m)=k(m)$. This proves that $h=k$.

To show that $\operatorname{Ker} h=\operatorname{Ker} f$, first, let $x \in \operatorname{Ker} h$. Then $h(x)=0$. But $h(x)=g^{-1}(f(x))$, so that $f(x)=g(h(x))=g(0)=0$. Thus $x \in \operatorname{Ker} f$. Next, let $x \in \operatorname{Ker} f \subseteq M$. Then $f(x)=0$. We obtain that $h(x)=g^{-1}(f(x))=g^{-1}(0)=0$ since g is $1-1$. Thus $x \in \operatorname{Ker} h$. This shows that $\operatorname{Ker} f=\operatorname{Ker} h$. Moreover, it is easy to prove that $\operatorname{Im} h=g^{-1}[\operatorname{Im} f]$.

To prove that h is an epimorphism if and only if $\operatorname{Im} f=\operatorname{Im} g$, first, assume that h is an epimorphism. By the assumption, we have that $\operatorname{Im} f \subseteq \operatorname{Im} g$. Next, let $n \in \operatorname{Im} g$. Then $g\left(n^{\prime}\right)=n$ for some $n^{\prime} \in N^{\prime}$. Since $h: M \rightarrow N^{\prime}$ is an epimorphism, there exists $m \in M$ such that $h(m)=n^{\prime}$. But $h(m)=g^{-1}(f(m))$, so that $f(m)=g(h(m))=g\left(n^{\prime}\right)=n$. Then $n \in \operatorname{Im} f$. We obtain that $\operatorname{Im} f=\operatorname{Im} g$. It is clear that if $\operatorname{Im} f=\operatorname{Im} g$, then h is an epimorphism.

Corollary 3.2. Let M, N be R-skewmodules and $\varphi: M \rightarrow N$ an R-homomorphism. Then $M / \operatorname{Ker} \varphi \cong \operatorname{Im} \varphi$.

Proof. Let $\pi: M \rightarrow M / \operatorname{Ker} \varphi$ be the canonical projection. Then π is an epimorphism and $\operatorname{Ker} \pi=\operatorname{Ker} \varphi$, By Theorem 3.1, there exists a unique R-homomorphism $h: M / \operatorname{Ker} \varphi \rightarrow \mathbb{N}$ such that $\operatorname{Im} h=\operatorname{Im} \varphi$. Moreover, h is a monomorphism since $\operatorname{Ker} \pi=\operatorname{Ker} \varphi$. Then $M / \operatorname{Ker} \varphi \cong \operatorname{Im} h=\operatorname{Im} \varphi$.

Corollary 3.3. Let M be an R-skewmodule and P and N normal subskewmodules of M such that $P \subseteq N$. Then $M / N \cong(M / P) /(N / P)$.

Proof. Define $\varphi: M / P \rightarrow M / N$ by

$$
\varphi(m+P)=m+N \quad \text { for all } m \in M
$$

Since $P \subseteq N$, we obtain that φ is well-defined, and it is easy to prove that φ is an epimorphism. Next, we show that $\operatorname{Ker} \varphi=N / P$. Let $m \in M$ be such that $N=\varphi(m+P)=m+N$. Then $m \in N$. Thus $m+P \in N / P$. This proves that $\operatorname{Ker} \varphi \subseteq N / P$. Next, let $n \in N$. Then $\varphi(n+P)=n+N=N$. Thus $n+P \in \operatorname{Ker} \varphi$. Hence $\operatorname{Ker} \varphi=N / P$. By Corollary 3.2, $M / N \cong(M / P) /(N / P)$.

Corollary 3.4. Let M be an R-skewmodule and P and N subskewmodules of M such that P is normal. Then $N / N \cap P \cong(N+P) / P$.

Proof. Assume that P and N are subskewmodules of M such that $P \triangleleft M$. By Lemma 2.29 (2) and (3), we have $N \cap P \triangleleft N$ and $N+P<M$, respectively. Since $P \triangleleft M$, we obtain that $P \triangleleft(N+P)$. Next, define $\varphi: N \rightarrow(N+P) / P$ by

$$
\varphi(n)=n+P \quad \text { for all } n \in N .
$$

Clearly, φ is an R-homomorphism. To prove that φ is onto, let $k \in N+P$. Then $k=n+p$ for some $n \in N$ and $p \in P$. Thus $k+P=(n+p)+P=n+P$, so that $\varphi(n)=n+P=k+\bar{P}$. Hence φ is onto. It is easy to show that $\operatorname{Ker} \varphi=N \cap P$. By Corollary 3.2, $N / N \cap B \cong(N+P) / P$.

สถาบนวทยบรการ

Corollary 3.5. Let M, N be R-skewmodules and L a normal subskewmodule of N. If $\varphi: M \rightarrow N$ is an epimorphism, then $M / \varphi^{-1}[L] \cong N / L$.

Proof. By Lemma $2.35(5), \varphi^{-1}[L]$ is a normal subskewmodule of M. Define $f: M \rightarrow N / L$ by

$$
f(m)=\varphi(m)+L \quad \text { for all } \quad m \in M
$$

Since φ is an epimorphism, f is also an epimorphism. To show that
Ker $f=\varphi^{-1}[L]$, let $m \in \varphi^{-1}[L]$. Then $\varphi(m) \in L$. Thus $f(m)=\varphi(m)+L=L$
which is the zero in N / L. Hence $m \in \operatorname{Ker} f$. Next, let $m \in M$ be such that $L=f(m)=\varphi(m)+L$. Then $\varphi(m) \in L$. Thus $m \in \varphi^{-1}[L]$. We obtain that Ker $f=\varphi^{-1}[L]$. By Corollary 3.2, $M / \varphi^{-1}[L] \cong N / L$.

The following theorem is generalized from the butterfly of Zazzenhaus Theorem of modules.

Theorem 3.6. Let M be an R-skewmodule and N, P, N^{\prime} and P^{\prime} subskewmodules of M such that $N \triangleleft P$ and $N^{\prime} \triangleleft P^{\prime}$. Then
(1) $N+\left(P \cap N^{\prime}\right)$ is a normal subskewmodule of $N+\left(P \cap P^{\prime}\right)$;
(2) $N^{\prime}+\left(P^{\prime} \cap N\right)$ is a normal subskewmodule of $N^{\prime}+\left(P \cap P^{\prime}\right)$;
(3) $\left[N+\left(P \cap P^{\prime}\right)\right] /\left[N+\left(P \cap N^{\prime}\right)\right] \cong\left[N^{\prime}+\left(P \cap P^{\prime}\right)\right] /\left[N^{\prime}+\left(P^{\prime} \cap N\right)\right]$.

Proof. Assume that N, P, N^{\prime} and P^{\prime} are subskewmodules of M such that $N \triangleleft P$ and $N^{\prime} \triangleleft P^{\prime}$
(1) Clearly, $N+\left(P \cap N^{\prime}\right)$ is a subskewmodule of $N+\left(P \cap P^{\prime}\right)$. Let $n+k \in$ $N+\left(P \cap N^{\prime}\right)$ and $n^{\prime}+l \in N+\left(P \cap P^{\prime}\right)$ be such that $n, n^{\prime} \in N, k \in P \cap N^{\prime}$ and
$l \in P \cap P^{\prime}$. Then

$$
\begin{array}{rlrl}
\left(n^{\prime}+l\right)+(n+k)-\left(n^{\prime}+l\right) & =n^{\prime}+l+n+k-l-n^{\prime} & \\
& =n^{\prime}+l+n+\bar{n}+k-l & & \text { for some } \bar{n} \in N \\
& =n^{\prime}+n^{\prime \prime}+l+k-l \quad & & \text { for some } n^{\prime \prime} \in N
\end{array}
$$

The second equality holds because $N \triangleleft P$ and $k-l \in P$, and the last one holds because $N \triangleleft P$ and $l \in P$. Since $l, k \in P$, we have $l+k-l \in P$, and since $k \in N^{\prime}, l \in P^{\prime}$ and $N^{\prime} \triangleleft P^{\prime}$, we also have $l+k-l \in N^{\prime}$. Hence $\left(n^{\prime}+l\right)+(n+k)-\left(n^{\prime}+l\right)=\left(n^{\prime}+n^{\prime \prime}\right)+(l+k-l) \in N+\left(P \cap N^{\prime}\right)$. Therefore $N+\left(P \cap N^{\prime}\right)$ is a normal subskewmodule of $N+\left(P \cap P^{\prime}\right)$.
(2) The proof is similar to the proof of (1).
(3) First, we prove that

$$
\left[N+\left(P \cap P^{\prime}\right)\right] /\left[N+\left(P \cap N^{\prime}\right)\right] \cong\left[P \cap P^{\prime}\right] /\left[\left(P^{\prime} \cap N\right)+\left(P \cap N^{\prime}\right)\right] .
$$

Since $P^{\prime} \cap N \subseteq P \cap P^{\prime}$ and $N \triangleleft P$, we obtain that $P^{\prime} \cap N \triangleleft P \cap P^{\prime}$, Moreover, since $P \cap N^{\prime} \subseteq P \cap P^{\prime}$ and $N^{\prime} \triangleleft P^{\prime}$, we have $P \cap N^{\prime} \triangleleft P \cap P^{\prime}$. By Lemma 2.29(4), $\left(P^{\prime} \cap N\right)+\left(P \cap N^{\prime}\right)$ is a normal subskewmodule of $P \cap P^{\prime}$.
Let $K=\left(P^{\prime} \cap N\right)+\left(P \cap N^{\prime}\right)$ Define $\varphi: N+\left(P \cap P^{\prime}\right) \rightarrow\left(P \cap P^{\prime}\right) / K$ by

To show that φ is well-defined, let $n_{1}, n_{2} \in N$ and $q_{1}, q_{2} \in P \cap P^{\prime}$ be such that $n_{1}+q_{1}=n_{2}+q_{2}$. Then $q_{1}-q_{2}=n_{2}-n_{1} \in\left(P \cap P^{\prime}\right) \cap N \subseteq P^{\prime} \cap N \subseteq$ $\left(P^{\prime} \cap N\right)+\left(P \cap N^{\prime}\right)=K$. Thus $q_{1}+K=q_{2}+K$. Hence φ is well-defined.

To prove that φ is an R-homomorphism, let $n_{1}, n_{2} \in N, q_{1}, q_{2} \in P \cap P^{\prime}$ and $r \in R$. Then

$$
\begin{aligned}
\varphi\left(\left(n_{1}+q_{1}\right)+\left(n_{2}+q_{2}\right)\right) & =\varphi\left(n_{1}+q_{1}+n_{2}+q_{2}\right) \\
& =\varphi\left(n_{1}+n_{2}^{\prime}+q_{1}+q_{2}\right) \quad \text { for some } n_{2}^{\prime} \in N \\
& =\left(q_{1}+q_{2}\right)+K \\
& =\left(q_{1}+K\right)+\left(q_{2}+K\right) \\
& =\varphi\left(n_{1}+q_{1}\right)+\varphi\left(n_{2}+q_{2}\right) .
\end{aligned}
$$

The second equality holds because $q_{1} \in P, n_{2} \in N$ and $N \triangleleft P$, and we also obtain that $\varphi\left(r\left(n_{1}+q_{1}\right)\right)=\varphi\left(r n_{1}+r q_{1}\right)=r q_{1}+K=r\left(q_{1}+K\right)=r \varphi\left(n_{1}+q_{1}\right)$. Hence φ is an R-homomorphism.

For each $q \in P \cap P^{\prime}, \varphi(0+q)=q+K$ since $0 \in N$, so that φ is onto. Next, we prove that $\operatorname{Ker} \varphi=N+\left(P \cap N^{\prime}\right)$. Let $n \in N$ and $q \in P \cap P^{\prime}$ be such that $\varphi(n+q)=K$. Then $q+K=\varphi(n+q)=K$. Thus $q \in K=\left(P^{\prime} \cap N\right)+\left(P \cap N^{\prime}\right) \subseteq$ $N+\left(P \cap N^{\prime}\right)$. Next, let $n+q \in N \neq\left(P \cap N^{\prime}\right)$ be such that $n \in N$ and $q \in P \cap N^{\prime}$. Then $\varphi(n+q)=q+K=K$ since $q=0+q \in\left(P^{\prime} \cap N\right)+\left(P \cap N^{\prime}\right)=K$. Thus $n+q \in \operatorname{Ker} \varphi$. Hence $\operatorname{Ker} \varphi=N+\left(P \cap N^{\prime}\right)$. By Corollary 3.2,
$\left[N+\left(P \cap P^{\prime}\right)\right] /\left[N+\left(P \cap N^{\prime}\right)\right] \cong\left[P \cap P^{\prime}\right] /\left[\left(P^{\prime} \cap N\right)+\left(P \cap N^{\prime}\right)\right]$. Similarly, we prove that $\left[N^{\prime} \sigma^{+}\left(P \cap P^{\prime}\right)\right] /\left[N^{\prime} \cap\left(P^{\prime} \cap N\right] \cong\left[P \cap P^{\prime}\right] /\left[\left(P^{\prime} \cap N\right)+\left(P \cap N^{\prime}\right)\right]\right.$.

Remark 3.7. Let M, N be R-skewmodules and L a normal subskewmodule of M. If $f: M \rightarrow N$ is an R-isomorphism, then $N / f[L] \cong M / L$.

The proof of the following two theorems are similar to the analogous Theorems in Module Theory.

Theorem 3.8. Let M be an R-skewmodule and N a normal subskewmodule of M. Then there is an inclusion-preserving bijection from the set of subskewmodules of M / N to the set of subskewmodules of M containing N.

Theorem 3.9. Let M be an R-skewmodule and N a normal subskewmodule of M. Then there is an inclusion-preserving bijection from the set of normal subskewmodules of M / N to the set of normal subskewmodules of M containing N.

Definition 3.10. Let M be an R-skewmodule and let

$$
C: M=M_{0} \supseteq M_{1} \supseteq \ldots M_{r} \text { and } C^{\prime}: M=M_{0}^{\prime} \supseteq M_{1}^{\prime} \supseteq \ldots \supseteq M_{s}^{\prime}
$$

be two decreasing finite chains of subskewmodules of M. We say that C^{\prime} is a refinement of C if every member of C occurs in C^{\prime}; if $C \neq C^{\prime}$, then C is a proper refinement of $C_{\dot{d}}$.
สถาบันวิทยบริการ

Definition 3.11. Let M be an R-skewmodule. Afinite chain of subskewmodules $M=M_{0} \supseteq M_{1} \supseteq \mathrm{Q} \supseteq M_{r}$ is called a finite subnormal series of M if $M_{i} \triangleleft M_{i-1}$ for all $i=1,2, \ldots, r$.

Let $M=M_{0} \supseteq M_{1} \supseteq \ldots \supseteq M_{r}$ be a finite subnormal series of an
R-skewmodule M. The quotient skewmodule M_{i-1} / M_{i} is called the factor of the series. The length of this series is the number of nontrivial factors M_{i-1} / M_{i}. A finite subnormal series such that $M_{i} \triangleleft M$ for all $i=1,2, \ldots r$ is said to be a finite normal series.

Definition 3.12. A strictly decreasing finite subnormal series $C: M=M_{0} \supset M_{1} \supset \ldots \supset M_{n}=\{0\}$ is called a composition series of an R-skewmodule M if C has no proper refinement.

Definition 3.13. Let M be an R-skewmodule and

$$
\begin{aligned}
& C: M=M_{0} \supset M_{1} \supset \ldots \supset M_{r}=\{0\} \quad \text { and } \\
& C^{\prime}: M=M_{0}^{\prime} \supset M_{1}^{\prime} \supset \ldots \supset M_{s}^{\prime}=\{0\}
\end{aligned}
$$

two strictly decreasing finite subnormal series of M. Then C and C^{\prime} are called equivalent, denoted by $C \equiv C^{\prime}$, if $r=s$ and there exists a permutation π of $\{0,1, \ldots, r-1\}$ such that $M_{i}^{\prime} / M_{i+1}^{\prime} \cong M_{\pi(i)} / M_{\pi(i)+1}$ for all $i=0,1, \ldots, r-1$.

Definition 3.14. Let M be an R-skewmodule and $C: M=M_{0} \supseteq M_{1} \supseteq \ldots$ a chain of subskewmodules of M. Let $r_{1}<r_{2}<\ldots<r_{n}<\ldots$ be a strictly increasing sequence of natural numbers. Then the chain C^{\prime} given by $M_{r_{1}} \supseteq M_{r_{2}} \supseteq \ldots \supseteq M_{r_{n}} \supseteq \ldots$ is called a subchain of C.

The following lemmacis generalized from Schreier's. Theorem of modules in [5]. 5].

Lemma 3.15. Any two strictly decreasing finite subnormal series of an R-skewmodule M have equivalent refinements.

Proof. Let M be an R-skewmodule and

$$
\begin{aligned}
& C: M=M_{0} \supset M_{1} \supset \ldots \supset M_{r}=\{0\} \text { and } \\
& C^{\prime}: M=M_{0}^{\prime} \supset M_{1}^{\prime} \supset \ldots \supset M_{s}^{\prime}=\{0\}
\end{aligned}
$$

two strictly decreasing finite subnormal series of M. Define

$$
\begin{gathered}
M_{i, 0}=M_{i-1}=M_{i-1, s} \quad ; \quad M_{j, 0}^{\prime}=M_{j-1}^{\prime}=M_{j-1, r}^{\prime}, \\
M_{i, j}=M_{i}+\left(M_{i-1} \cap M_{j}^{\prime}\right) \quad \text { and } \quad M_{j, i}^{\prime}=M_{j}^{\prime}+\left(M_{j-1}^{\prime} \cap M_{i}\right)
\end{gathered}
$$

for all $i=1,2, \ldots, r$, for all $j=1,2, \ldots, s$. Then we obtain

$$
\begin{aligned}
& C_{1}: M=M_{0}=M_{1,0} \supseteq M_{1,1} \supseteq M_{1,2} \supseteq \ldots \supseteq M_{1, s}=M_{1}=M_{2,0} \supseteq \\
& \quad M_{2,1} \supseteq \ldots \supseteq M_{r, s}=\{0\} \text { and } \\
& C_{2}: M=M_{0}^{\prime}=M_{1,0}^{\prime} \supseteq M_{1,1}^{\prime} \supseteq M_{1,2}^{\prime} \supseteq \ldots \supseteq M_{1, r}^{\prime}=M_{1}^{\prime}=M_{2,0}^{\prime} \supseteq \\
& \quad M_{2,1}^{\prime} \supseteq \ldots \supseteq M_{s, r}^{\prime}=\{0\} .
\end{aligned}
$$

We claim that C_{1} and C_{2} are decreasing finite subnormal series of M. For each $i=1,2, \ldots, r$, Theorem 3.6 shows that

$$
M_{i}+\left(M_{i-1} \cap M_{j}^{\prime}\right) \triangleleft M_{i}+\left(M_{i-1} \cap M_{j-1}^{\prime}\right) \text { since } M_{j}^{\prime} \triangleleft M_{j-1}^{\prime} \text {. }
$$

Thus we have the claim for C_{1}. Similarly, we have the claim for C_{2}. Note that C_{1} and C_{2} are refinement of C and C^{\prime}, respectively. By Theorem 3.6, we obtain that

$$
\begin{aligned}
M_{i, j} / M_{i, j+1} & =\left[M_{i}+\left(M_{i-1} \cap M_{j}^{\prime}\right)\right] /\left[M_{i j}+\left(M_{i-1} \tilde{\cap} M_{j+1}^{\prime}\right)\right] \\
& \cong\left[M_{j+1}^{\prime}+\left(M_{j}^{\prime} \cap M_{i-1}\right)\right] /\left[M_{j+1}^{\prime}+\left(M_{j}^{\prime} \cap M_{i}\right)\right] \\
& \left.=M_{j+1, i-1}^{\prime} / M_{j+1, i}^{\prime}\right)
\end{aligned}
$$

for all $i=1,2, \ldots, r$ and $j=0,1, \ldots, s-1$. Hence it follows that $M_{i, j}=M_{i, j+1}$ if and only if $M_{j+1, i-1}^{\prime}=M_{j+1, i}^{\prime}$. Let \bar{C}_{1} be a series obtained from C_{1} by dropping every skewmodules which is equal to its predecessor and \bar{C}_{2} a series obtained in the similar way to \bar{C}_{1} from C_{2}. Hence $\bar{C}_{1} \equiv \bar{C}_{2}$.

The next theorem is generalized from Jordan Hölder Theorem of modules in [5].

Theorem 3.16. If an R-skewmodule M has composition series, then
(1) any strictly decreasing subnormal series of M is finite and admits a refinement which is a composition series and
(2) any two composition series of M are equivalent.

Proof. (1) Let C_{1} be a composition series of M and C a strictly decreasing subnormal series of M. We prove that C is finite. Let C_{2} be a finite subchain of C. By Lemma 3.15, there exist finite chains C_{1}^{\prime} and C_{2}^{\prime} such that C_{1}^{\prime} and C_{2}^{\prime} are refinements of C_{1} and C_{2}, respectively, and $C_{1}^{\prime} \equiv C_{2}^{\prime}$. Since C_{1} is a composition series, $C_{1} \equiv C_{1}^{\prime}$. Hence $C_{2}^{\prime} \equiv C_{1}$. These equivalences show that C_{2}^{\prime} is a composition series and, also, it is a refinement of C. Then C is finite.
(2) By the definition of a composition series, any refinement is equivalent to itself. Thus the theorem holds by Lemma 3.15.

CHAPTER IV

ARTINIAN AND NOETHERIAN SKEWMODULES

In this chapter, we study artinian and noetherian modules in [2] and [4] and generalize some theorems to skewmodules. Furthermore, we prove the relation between artinian, noetherian skewmodules and the composition series.

Definition 4.1. An R-skewmodule M is said to be artinian if for every decreasing normal series $M_{1} \supseteq M_{2} \supseteq \ldots$, there exists an integer n such that $M_{i}=M_{n}$ for all $i \geq n$.

An R-skewmodule M is said to be noetherian if for every increasing normal series $M_{1} \subseteq M_{2} \subseteq \ldots$, there exists an integer n such that $M_{i}=M_{n}$ for all $i \geq n$.

Theorem 4.2. Let \underline{M} be an R-skewmodule. Then M is artinian (noetherian) if and only if for every nonempty collection of normal subskewmodules of M has a minimal (maximal) element.

Proof. Assume that M is artinian and \mathcal{A} a nonempty set of normal subskewmodules of M. Then we choose $N_{1} \in \mathcal{A}$. If N_{1}^{9} is not minimal, then there exists $N_{2} \in \mathcal{A}$ such that $N_{1} \supset N_{2}$. If we choose $N_{i} \in \mathcal{A}$ which is not minimal, then there exists an $N_{i+1} \in \mathcal{A}$ such that $N_{i} \supset N_{i+1}$. After a finite step, we obtain a minimal element of \mathcal{A}, otherwise we would have a chain of normal subskewmodules of M such that $N_{1} \supset N_{2} \supset N_{3} \supset \ldots$ which contradicts the assumption that M is artinian.

Conversely, assume that every nonempty collection of normal subskewmodules of M has a minimal element. Let $N_{1} \supseteq N_{2} \supseteq N_{3} \supseteq \ldots$ be a decreasing normal series of M. Then the set $\left\{N_{1}, N_{2}, \ldots\right\}$ has a minimal element, say N_{k}. By the minimality of N_{k}, we have $N_{k}=N_{k+i}$ for all $i \in \mathbb{N}$. Thus M is artinian.

Theorem 4.3. Let M be an R-skewmodule. If every normal subskewmodule of M is finitely generated, then M is noetherian.

Proof. Let $M_{1} \subseteq M_{2} \subseteq \ldots$ be an increasing normal series of M. Clearly, $\bigcup_{i \geq 1} M_{i} \triangleleft M$. Let $P=\bigcup_{i \geq 1} M_{i}$. By the assumption, P is finitely generated, say by $m_{1}, m_{2}, \ldots, m_{k}$. Since m_{j} is an element of some M_{k} for all j, there exists an $n_{0} \in \mathbb{N}$ such that $m_{j} \in M_{n_{0}}$ for all $j=1,2, \ldots, k$. Hence $P \subseteq M_{n_{0}}$. Thus, for all $l \geq n_{0}$, we have $M_{n_{0}} \subseteq M_{l}$ by the hypothesis and $M_{l} \subseteq P \subseteq M_{n_{0}}$. Then $M_{n_{0}}=M_{l}$ for all $l \geq n_{0}$. Therefore M is noetherian.

Theorem 4.4. Let N be a normal subskewmodule of an R-skewmodule M. If M is artinian (noetherian), then the following statements hold.
(1) For every chain $N_{1} \supseteq N_{2} \supseteq\left(N_{1} \subseteq N_{2} \subseteq\right.$. of subskewmodules of N such that $N_{i} \triangleleft M$ for all $i \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $N_{k}=N_{k+i}$ for all $i \in$ จจฬาลงกรณมหาวทยาลย
(2) The quotient skewmodule M / N is artinian (noetherian).

Proof. Assume that M is artinian and N is a normal subskewmodule of M.
(1) Let $C: N_{1} \supseteq N_{2} \supseteq \ldots$ be a chain of subskewmodules of N such that $N_{i} \triangleleft M$ for all $i \in \mathbb{N}$. Then C is a decreasing normal series of M. Since M is artinian, there exists a $k \in \mathbb{N}$ such that $N_{k}=N_{k+i}$ for all $i \in \mathbb{N}$.
(2) This follows immediately by Theorem 3.9.

Theorem 4.5. Let N be a normal subskewmodule of an R-skewmodule M. If N and M / N are artinian (noetherian), then M is artinian(noetherian).

Proof. Assume that N and M / N are artinian. Let $D_{1} \supseteq D_{2} \supseteq \ldots$ be a decreasing sequence of normal subskewmodules of M. Let $\pi: M \rightarrow M / N$ be the canonical projection. Then $D_{1} \cap N \supseteq D_{2} \cap N \supseteq \ldots$ and $\pi\left(D_{1}\right) \supseteq \pi\left(D_{2}\right) \supseteq \ldots$ are decreasing sequences of normal subskewmodules of N and M / N, respectively. By the assumption, there exists an $\overline{n_{0}} \in \mathbb{N}$ such that $D_{n} \cap N=D_{n_{0}} \cap N$ and $\pi\left(D_{n}\right)=\pi\left(D_{n_{0}}\right)$ for all $n \geq n_{0}$.

We claim that $D_{n}=D_{n_{0}}$ for all $n \geq n_{0}$. Let $n \geq n_{0}$. We know from the assumption, $D_{n} \subseteq D_{n_{0}}$. It remains to show that $D_{n_{0}} \subseteq D_{n}$. Let $x \in D_{n_{0}}$. Since $\pi\left(D_{n}\right)=\pi\left(D_{n_{0}}\right)$, there exists a $y \in D_{n}$ such that $\pi(x)=\pi(y)$, that is, $x-y \in$ Ker $\pi=N$. Since $y \in D_{n} \subseteq D_{n_{0}}$, it follows that $x-y \in D_{n_{0}} \cap N=D_{n} \cap N \subseteq D_{n}$. Thus $x \in y+D_{n}=D_{n}$. Hence $D_{n_{0}} \subseteq D_{n}$. Thus we obtain the claim. This shows that M is artinian.

The proof for the noetherian case is similar

Theorem 4.6. Let M be an R-skewmodule. If M is both artinian and noetherian, then M has a composition/series. 5 ?
Proof. Assume that M is both artinian and noetherian. Let C be the collection of all normal subskewmodules of M that have a composition series. Clearly, $\{0\} \in C$. Thus $C \neq \emptyset$. Note that C has a maximal element, say M^{*}, since M is noetherian. We now show that $M^{*}=M$. Suppose that $M^{*} \neq M$. Then M / M^{*} is not the zero skewmodule. Let $M / M^{*}=M_{0} / M^{*} \supseteq M_{1} / M^{*} \supseteq \ldots$ be decreasing nonzero normal series of M / M^{*}. Since M is artinian, so is M / M^{*} by Theorem 4.4(2). Then there exists an integer p such that $M_{p} / M^{*}=M_{p+i} / M^{*}$ for all $i \in \mathbb{N}$. We can choose $M^{* *} \triangleleft M$ such that $M^{*} \subset M^{* *} \subseteq M$ and $M^{* *} / M^{*}$ is simple. Since
$M^{*} \in C$, it has a composition series : $M^{*} \supset M_{1}^{*} \supset M_{2}^{*} \supset \ldots \supset M_{n}^{*}=\{0\}$. Since $M^{* *} / M^{*}$ is simple, $M^{* *} \supset M^{*} \supset M_{1}^{*} \supset M_{2}^{*} \supset \ldots \supset M_{n}^{*}=\{0\}$ is a composition series of $M^{* *}$. Hence $M^{* *} \in C$ which contradicts the maximality of M^{*}. Hence $M^{*}=M$, whence M has a composition series.

Theorem 4.7. Let M be an R-skewmodule. If M has a composition series which is a normal series then M is both artinian and noetherian.

Proof. Assume that M has a composition series which is a normal series and let n be its length. We prove that M is both artinian and noetherian by induction on n. Clearly, if $n=0$ then $M=\{0\}$ and there is nothing to prove. Assume that the result is true for all R-skewmodules having composition series which is a normal series of length less than $n>1$.

Let M be an R-skewmodule having a composition series which is a normal series of length n, say $M=M_{0} \supset M_{1} \supset \ldots \supset M_{n-1} \supset M_{n}=\{0\}$. Then we observe that

$$
M / M_{n-1}=M_{0} / M_{n-1} \supset M_{1} / M_{n-1} \supset \ldots \supset M_{n-1} / M_{n-1}=\{0\} \ldots \ldots \circledast
$$

By Corollary 3.3, $\left(M_{i} / M_{n-1}\right) /\left(M_{i+1} / M_{n-1}\right) \cong M_{i} \downarrow M_{i+1}$ for all $i=0,1, \ldots, n-2$. Since $M_{i} / M_{i \neq 1}$ is simple, so is $\left(M_{i} / \vec{M}_{n-1}\right) /\left(M_{i+1} T_{n-1}\right)$ and we also obtain that the inclusions in the claim \circledast are strict. Then \circledast is a composition series which is a normal series of M / M_{n-1} with length $n-1$. By the induction hypothesis, M / M_{n-1} is both artinian and noetherian. Since $M=M_{0} \supset M_{1} \supset \ldots \supset M_{n-1} \supset M_{n}=\{0\}$ is a composition series, M_{n-1} is simple. Then M_{n-1} is trivially both artinian and noetherian. Since M / M_{n-1} and M_{n-1} are both artinion and noetherian and by Theorem 4.5, we deduce that M is both artinian and noetherian.

This then shows that the result holds for all skewmodules of length n and complete the induction.

Theorem 4.8. Let M be an R-skewmodule. If M can be written as $M=M_{1}+M_{2}+\ldots+M_{n}$ where each M_{i} is artinian (noetherian) and $M_{n} \triangleleft M$, then M is artinian (noetherian).

Proof. It is enough to consider the case $n=2$. By Corollary 3.4,

$$
M / M_{2}=\left(M_{1}+\overline{M_{2}}\right) / M_{2} \cong M_{1} /\left(M_{1} \cap M_{2}\right)
$$

Since M_{1} is artinian, so is $M_{1} /\left(M_{1} \cap M_{2}\right)$ by Theorem 4.4 (2). Then M / M_{2} is also artinian. Since M_{2} is artinian, by Theorem 4.5, we deduce that M is artinian.

Theorem 4.9. Let M be an R-skewmodule and $f: M \rightarrow M$ an R-homomorphism. For each $p \in \mathbb{N}$, let a positive integer. Let $I_{p}=\operatorname{Im}\left(f^{p}\right)$ and $N_{p}=\operatorname{Ker}\left(f^{p}\right)$. Then the following statements hold.
(1) $I_{1}=I_{2}$ implies that $I_{1}+N_{1}=M=N_{1}+I_{1} \quad$ and $N_{1}=N_{2}$ implies that $I_{1} \cap N_{1 c}=\{\theta\}$
If M is artinian and $I_{p} \triangleleft M$ for all $p \in \mathbb{N}$, then
(2) If M is artinian and $I_{p} \triangleleft M$ for all $p \in \mathbb{N}$, then (2.1) there exists an $r \in \mathbb{N}$ such that $M=I_{k}+N_{k}$ for all $k \geq r$,
(2.2) f is a monomorphism implies that f is an epimorphism.
(3) If M is noetherian, then
(3.1) there exists an $r \in \mathbb{N}$ such that $I_{k} \cap N_{k}=\{0\}$ for all $k \geq r$,
(3.2) f is an epimorphism implies that f is a monomorphism.

Proof. Assume that $f: M \rightarrow M$ an R-homomorphism. For each $p \in \mathbb{N}$, let $I_{p}=\operatorname{Im}\left(f^{p}\right)$ and $N_{p}=\operatorname{Ker}\left(f^{p}\right)$.
(1) Assume that $I_{1}=I_{2}$. Let $x \in M$. Then there exists a $y \in M$ such that $f(x)=f^{2}(y)$. So $f(f(y)-x)=f^{2}(y)-f(x)=0$ implies that $f(y)-x \in \operatorname{Ker} f=$ N_{1}. But $x=f(y)-(f(y)-x) \in I_{1}+N_{1}$. Hence $M=I_{1}+N_{1}$. Similarly, $M=N_{1}+I_{1}$.

Assume that $N_{1}=N_{2}$. Let $x \in I_{1} \cap N_{1}$. That is, $x \in \operatorname{Im} f \cap \operatorname{Ker} f$. Then $f(x)=0$ and $x=f(a)$ for some $a \in M$. Thus $f^{2}(a)=f(f(a))=f(x)=0$. Hence $a \in \operatorname{Ker} f^{2}=N_{2}=N_{1}=\operatorname{Ker} f$. We obtain that $f(a)=0$ and then $x=f(a)=0$. This shows that $I_{1} \cap N_{1} \subseteq\{0\}$. Therefore $I_{1} \cap N_{1}=\{0\}$.
(2) Assume that M is artinian and $I_{p} \triangleleft M$ for all $p \in \mathbb{N}$.
(2.1) We observe that $I_{1} \supseteq I_{2} \supseteq \ldots$ is a decreasing normal series of M. Since M is artinian, there exists an $r \in \mathbb{N}$ such that $I_{k}=I_{2 k}$ for all $k \geq r$. We apply (1) to f^{k}. Then we have $M=I_{k}+N_{k}$ for all $k \geq r$.
(2.2) Assume that f is a monomorphism. By the hypothesis and (2.1), there exists an $r \in \mathbb{N}$ such that $M=I_{r}+N_{r}$. Since f is a monomorphism, so is f^{r}. Hence $N_{r}=\operatorname{Ker}\left(f^{r}\right)=\{0\}$. Then $M=I_{r}$. From $M \supseteq I_{1} \supseteq I_{2} \supseteq \ldots \supseteq I_{r}=M$, it follows that $M=I_{1}=\operatorname{Im} f$. Thus f is an epimorphism.
(3) Assume that M is noetherian.
(3.1) We observe that $N_{1} \subseteq N_{2} \subseteq \cap$ is an increasing normal series of M. Then there exists an $r \in \mathbb{N}$ such that $N_{k}=N_{2 k}$ for all $k \geq r$. We apply (1) to f^{k}. So $I_{k} \cap N_{k}=\{0\}$ for all $k \geq r$.
(3.2) Assume that f is an epimorphism. By the hypothesis and (3.1), there exists an $r \in \mathbb{N}$ such that $I_{r} \cap N_{r}=\{0\}$. Since f is an epimorphism, so is f^{r}. Hence $I_{r}=M$, then $N_{r}=\{0\}$. From $0 \subseteq N_{1} \subseteq N_{2} \subseteq \ldots \subseteq N_{r}=\{0\}$, it follows that $N_{1}=\{0\}$. That is, $\operatorname{Ker} f=\{0\}$. Thus f is a monomorphism.

Definition 4.10. Let M be an R-skewmodule and $\left\{M_{i} \mid i \in I\right\}$ a family of normal subskewmodules of M. Then M is called the direct sum of $\left\{M_{i} \mid i \in I\right\}$, denoted by $M=\bigoplus_{i \in I} M_{i}$, if
(1) for each $m \in M$, there exists an $m_{i_{k}} \in M_{i_{k}}$, where $k=1,2, \ldots, n$, such that $m=m_{i_{1}}+m_{i_{2}}+\ldots+m_{i_{n}}$ and
(2) for all $i, j \in I$, if $i \neq j$, then $M_{i} \cap\left(\sum_{j \neq i} M_{j}\right)=\{0\}$.

Definition 4.11. Let M be an R-skewmodule. Then normal subskewmodules M_{1} and M_{2} are said to be supplementary if $M=M_{1} \bigoplus M_{2}$. A normal subskewmodule N of M is called a direct summand if there exists a normal subskewmodule P of M such that N and P are supplementary.

Theorem 4.12. Let M be an R-skewmodule. If M is a sum of a family of its normal simple subskewmodules, then every normal subskewmodule of M is a direct summand.

Proof. Assume that $\left(M_{i}\right)_{i \in I}$ is a family of normal simple subskewmodules of M such that $M=\sum_{i \in I} M_{i}$. We claim that for each normal subskewmodule N of M there exists a $J \subseteq I$ such thato $M=N \oplus\left(\bigoplus_{i \in J} M_{i}\right)$. If $N \neq M$, then, clearly, $J=\emptyset$. Suppose that $N \subset M$. Then there exists a $k \in I$ such that $M_{k} \nsubseteq N$. Since $N_{\bigcap} \cap M_{k} \triangleleft M_{k}$ and M_{k} is simple, we deduce that either $N \cap M_{k}=\{0\}$ or $N \cap M_{k}=M_{k}$. But $M_{k} \nsubseteq N$, so that $N \cap M_{k}=\{0\}$. That is, $N+M_{k}$ is a direct sum. Let

$$
A=\left\{H \subseteq I \mid N+\sum_{i \in H} M_{i} \text { is direct }\right\} .
$$

We have just shown that $A \neq \emptyset$. Let \subseteq be a partially order on A. Let \mathcal{C} be a totally ordered subset of A and let $K^{*}=\bigcup_{K \in \mathcal{C}} K$. We claim that $K^{*} \in A$. To see
this, we observe that if $x \in \sum_{i \in K^{*}} M_{i}$, then $x=m_{i_{1}}+m_{i_{2}}+\ldots+m_{i_{n}}$ where each i_{j} belongs to some subset I_{J} of \mathcal{C}. Since \mathcal{C} is totally ordered, all the set $I_{1}, I_{2}, \ldots, I_{n}$ are contained in one of them, say I_{p}. Then $N \cap \sum_{i \in I_{p}} M_{i}=\{0\}$ since $I_{p} \in A$. Hence $N \cap \sum_{i \in K^{*}} M_{i} \subseteq N \cap \sum_{i \in I_{p}} M_{i}=\{0\}$, so that $N+\sum_{i \in K^{*}} M_{i}$ is a direct sum. This shows that $K^{*} \in A$. Hence K^{*} is an upper bound of \mathcal{C} in A. By Zorn's Lemma, A has a maximal element, say J.

Next, we show that $N \oplus\left(\bigoplus_{i \in J} M_{i}\right)=M$. Suppose that $N \oplus\left(\bigoplus_{i \in J} M_{i}\right) \subset M$. Then there exists a $j \in J$ such that $M_{j} \nsubseteq N \oplus\left(\bigoplus_{i \in J} M_{i}\right)$. Since M_{j} is simple, we deduce that $M_{j} \cap\left(N \oplus\left(\bigoplus_{i \in J} M_{i}\right)\right)=\{0\}$. Hence $M_{j}+\left(N \oplus\left(\bigoplus_{i \in J} M_{i}\right)\right)$ is a direct sum. Thus $J \cup\{j\}$ belongs to A which contradicts the maximality of J. Hence $M=N \oplus\left(\bigoplus_{i \in J} M_{i}\right)$. Therefore the result holds.

Corollary 4.13. Let M be an R-skewmodule. Then the followings are equivalent.
(1) M is the sum of a family of normal simple subskewmodules of M.
(2) M is the direct sum of a family of normal simple subskewmodules of M.

Proof. (1) $\Rightarrow(2)$ This follows immediately by Theorem 4.12 .
$(2) \Rightarrow(1)$ This is obvious. 9 d9el9山己?
Theorem 4.14. Let M be an R-skewmodule. If $M=M_{\mathrm{D}} \oplus M_{2}$, then
$M / M_{1} \cong M_{2}$.
Proof. Let $\pi: M \rightarrow M_{2}$ be a projection mapping. We claim that $\operatorname{Ker} \pi=M_{1}$. Let $x \in \operatorname{Ker} \pi \subseteq M$. Then $x=m_{1}+m_{2}$ for some $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$. Thus $m_{2}=\pi(x)=0$. So $x=m_{1} \in M_{1}$. Then $\operatorname{Ker} \pi \subseteq M_{1}$. Moreover, $\pi(x)=0$ for all $x \in M_{1}$. Thus $x \in \operatorname{Ker} \pi$. Now, the claim is proved. By Corollary 3.2, $M / M_{1} \cong M_{2}$.

REFERENCES

[1] Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules.Springer-Verlag, New York, 1974.
[2] Blyth, T. S. Module Theory : An Approach to Linear Algebra. Oxford University Press, New York, 1990.
[3] Chaopracknoi, S. Generalizations of Some Theorems in Group and Ring Theory to Skewrings. Master's thesis, Department of Mathematics, Graduate School, Chulalongkorn University, 1996.
[4] Hungerford, T. W. Algebra. Springer-Verlag, New York, 1973.
[5] Ribenboim, P. Rings and Modules. John Wiley \& Sons, New York, 1969.

VITA

Name : Miss Kanokporn Changtong
Degree : Bachelor of Science (mathematics), 1995, Khon Kean University, Khon Kean, Thailand.

Position : Instructor, Department of Mathematics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190.

Scholarship : Ministry of University Affairs

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวัทยาล่ย }
\end{gathered}
$$

