CHAPTER |

THEORY

In this chapter presents a general treatment of a class of solution properties
known as excess properties. Of particular interest for vapor-liquid equilibrium is the
excess Gibbs free energy and a related property, the activity coefficient. Two simple
activity coefficient models (Wilson, and UNIQUAC) were presented in detail. All such
models are empirical in nature and represent the activity coefficient of a component in a

mixture in terms of an equation that contains a set of parameters. Finally, relations of

heat of mixing to interaction parameters are discussed.

An excess property is déﬁned as the difference between an actual property and
the property that would be calculated at the same conditions of 7, P, and x by the

equations for an ideal solution.

ME=M-M"

=D x,M,(T, P)+AM -M“ 1)

where M and AM are the excess solution property and the property change of mixing,
respectively. For internal energy (U), enthalpy (H), volume (V) and heat capacities (C,
and C,), the ideal property, M?, is

M" =Y "x.M, ' (2.2)

For Gibbs free energy (G/RT) and entropy (S/R), the ideal property is

M =Zx,M, —Zx, Inx; (2.3)
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The excess Gibbs free energy property, G', is related to the activity coefficients of the

components as follows.

= Zx, ing, - x,Inx, (2.4)

where 4, and y, are the activity and activity coefficient of component i .

The total derivative of (G /RT) for a binary mixture is
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where G £is the partial molar Gibbs free energy of component i. The derivative term,

a!GE/RT! e
T can be related to the excess enthalpy by thermodynamic identities.
Px,

[M] t { HE } s

Equation (2.4) and (2.6) provides the following expression involving the activity

coefficients:

HE = -erzx{%] @.7)
Px

2.2 Activity coefficient models

In order to represent activity coefficients as a function of temperature and

composition at constant pressure, some kind of thermodynamic model is required.
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Typical activity coefficient models contain parameters that are fitted to experimental

data on binary mixtures.

The oldest of the models still in common use is that of Margules equations which
amounts to representing the logarithm of the activity coefficient by a power series in
composition for each component. A model with some theoretical basis, the van Laar
equation, was based on van der Waals' equation of state and, although it can represent
experimental data rather well when the ftwo constants are treated as empirical
parameters, its predictive capabilities are limited (Van Ness and Abbott, 1982). The
modern development of activity coefficient models began with the work of Wilson (1964),
in which he intfoduced the *local composition* model. Later developments include the
Non Random Two Liquid model (NRTL) (Renon, and Pranusnitz, 1968) and the
UNIQUAC equations (Abrams, and Prausnitz, 1975).

The models that will be mentioned in this chapter are the Wilson and UNIQUAC

models.
2.2.1 Wilson model

The model proposed by Wilson (1964) is based on the concept of local
composition and leads to an expression for the Gibbs free energy from which the activity
coefficients can be obtained.  Wilson recognized that, in a mixture with specific
interactions, the distrbution of molecules is not purely random and that non-ideal mixing
is associated with this fact. Consider a binary mixture of component 1 and 2 with bulk
mole fractions x,and x,. The composition in the immediate viscinity of a@ molecule of
species 1 will not usually be the same as the mean bulk composition. Instead, Wilson
suggested that the local compositions x,,and x,, of components 1 and 2 around a
molecule of species 1 are given by Boltzmann-weighted averages of the bulk mole

fractions. Thus

no_ % °"P(“|1/RQ *1
— = =—-expl4d;; /RT 2.8
Xy X, cxp(— &y /RT) X, P( 12/ ) (2.8)



where g, and &,, are energies of interaction defined in a manner similar to the attractive
part of the van der Waals potential (Assael, Trusler, and Tsolakis, 1996) and
A =6y —£,. As one might expect, the compositional ordering of the fluid is
determined not by the absolute magnitude of the molecular interactions but by the

. difference between the like and unlike interactions.

Equation (2.8) is next used to evaluate the local volume fraction, z,, of species 1

around itself, with the result

5 =-——__ % (29)
i +xy¥s X+ Apx,

where
A V.
Al2 = ;,12 exp(-il%] and 1,12 =‘[72' B . (2.10)

Here, ¥,and V¥,are respectively the partial molar volumes of species 1 and 2 in the

liquid mixture.

In a'similar manner, the local volume fraction z, occupied by molecules of type 2

around a molecule of the same species is found to be

produla L ok (2.11)
XpVa+xpV) Xy + A%

where

14
A2| = Vz[ exp[—%] and V2| =V_] . (2.12)
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It should be noted that A, cannot be negative, that A,; =A, =1, and that, in general,



In order to obtain an expression for the excess Gibbs free energy of the mixture,
Wilson employed the Flory-Huggins theory (Walas, 1985). Thus, the Wilson model

becomes:

E
% ==X ln(xl +A12x2 )—xz ]n(Amx, +x2) l (2-13)

The activity coefficients are written

N

An Ay
Iny =—ln(x +X,5A 2)+x2( 1 - J
! T X +xX3A X XA (2.14)
A Aa

]ﬁ ==In(x,; +x;A5 )— X
72 (z 1 21) 1[11‘”1/\12 ¥y + X A0

Generalized expressions for multi-component mixtures are given in Table 2.1 and may
be used to obtain the activity coefficient of each component iin a mixture of n
components provided that all the binary parameters A, and the partial molar volumes
are known. No additional parameters are reqdired. Typically, partial molar volumes are
approximated by the molar volume of the pure liquids and, provided that this is done
consistently in both parameter determination and application, the results are generally

satisfactory.

Table 2.1 The Wilson Model (1964)

Iny, =1—1n[2x11\,j]—z:k# (2.15)

Ay Vi
and A=Ay =1 Ay #Ay (2.17)

In most cases, these parameters are assumed to be independent of temperature
The binary parameters 1,,and A, are usually determined by fitting either experimentally

determined excess Gibbs free energies to EQ.(2.13) or experimentally determined



activity coefficients to Egs.(2.14). In either case Eq.(2.16) is used to relate 4,and A, .
Usually, results over a range of liquid compositions are employed and the optimum

parameters found by a non-linear regression analysis.

The outstanding features of the Wilson equations include the generally superior
representation of activity coefficients for both polar and non-polar mixtures, and the

ability to treat multi-component systems with only binary parameters.
2.2.2 The UNIQUAC equations

The UNIQUAC (Universal Quasi-Chemical) equations, were developed by Abrams
and Prausnits (1975) and are based on a semi—theoreticail approach to the mixture
problem that includes a local composition model. It was also recognized that the non-
ideality of liquid mixtures has contributions not only from specific interactions but also
from the differences in the size and shape of the molecules. Consequently, in the
UNIQUAC model, the excess Gibbs free energy of the mixture is cor.elated by the sum

of two separate terms,
GE JRT =(GE, +GE, )JRT | (2.18)

which comprise:

- a contribution GE . known as the configurational term, due to differences in sizes
and shapes; and

- a contribution GE,, known as the residual term, due to energetic interactions

between the molecules.

Function G%, contains pure-species parameters only, whereas function GE,

incorporates two binary parameters for each pair of molecules. For a multicomponent

system,

GE, =Zx, lnﬂ+izq,x, infe (2.19)
i xl 2 i ¢i



and

GE, = —Z ;% ln[z 6t ﬁ] (2.20)
i i

the following expressions for a binary mixture:

RN CATN () #2], Lg%
GM/RT~x,[l|{x;]+2qlzh{¢i ﬂ+xz[|ﬂ[x2]+29uh{¢2 J] ‘ (2.21)

GE, [RT ==x\q] nlB] +85731 )-x205 InlBjr13 +63)

The quantities ¢,, 6, and 4, which appear here are pure-substance parameters given

by

= X7 ,6,= X4, . and 0" \’ .-‘:qt _, (2.22)
xin +X2r2 xlql +x2q2 xlql +x2qz

where r,is volume parameter and g, is surféce area parameter for species /. Usually,
g, =q, sothat 8, =6,. z is a co-ordination number to which the value 10 is usually, but
not necessarily, assigned. Finally, the model contains two adjustable binary energy
parameter u,and u, that enter the residual part of the excess Gibbs free energy

through the quantities r,, and r,, which are defined by

04 cxc{-—%]= exv[-ﬂT'f_] (2:23)

Consequently, the logarithm of the activity coefficient for each component also

has configurational and residual contributions:

Iny, =Iny/" +Iny™. (2.24)

The contributions to the activity coefficient of component iwhich result from this

formulation are;
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Iny™ =—q; ]n(O; +0}tﬂ)+0}q; - Tﬁ, y
6, +6;1,; 0,f +01

] (2.25)

" where

L=2r~a)-(:-1). | (2.26)
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The corresponding results for a multi-component system are givén in Table 2.2. Table

A2 of Appendix A. gives values of the parameter r, and ¢, for a selection of

compounds.

Table 2.2 UNIQUAC Equations (Abrams and Prausnits, 1975) |,

=lny” +Iny/* (2.27)
where In " |.{"']+2m(z ]+1, 4y, (2.28)
i 0‘,_1
i. res ¢ ST S 0;’!" |
Iny/” =q,|1-1 20,,1',‘, —Zn— (2.29)
k=1

- kzﬂ 6;'-1'b

u
and 7y =cxp[—;yf} y=7;=1_1 =-§-(r, -g,)-(r, -1}, andz=10 (2.30)

xfri 0 = qu, 0" = xiq; (2‘31)

n n
Zx.l"j Zxﬂj Z]xﬂ'j
=

J=1 J=1

# =
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The excess enthalpy is related to the derivatives of the activity coefficients with

respect to temperature at constant pressure and composition leads to

E__pp? diny, 2.7
HE =_RT Zx'[_ar ]N 2.7)

in terms of the Wilson equation (Section 2.2.1), the needed relationship is

developed with the following sequence of formutas:

. 3A|2 A«uAn aAzl A«QIA“
o ik iand 2L A , 2.32
oT  RT? T  RT? (2.32)
so that
HE=x|x2[ P UASY! 5 AnAa :i (2.33)
X|+ApRXy  Agx +x;y

which assumes that the A, are constant.

When the UNIQUAC equation (Section. 2.2.2) is differentiated and substituted
into Equation (2.7), assuming all parameters a;, and aj; to be independent of

temperature, gives

HE =R —ﬁ—(g'ﬂnazl )+-_qz.27(0[.rlzalz ):| (2.34)
[9x +8,73 \Ti2 +62

Equations (2.33) and (2.34) are simple because all parameters are assumed
independent of temperature. In Table B.1 the complex expressions for excess enthalpy

are given if parameters are taken to vary linearly with temperature.
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2.4 Parameter estimation

In this work, The parameters of the activity coefficient model are determined by

two approaches
2.4.1. Parameter estimation of the VLE data

in principle, two parameters in an activity coefficient model may be obtained
from a pair of activity coefficients measured in a binary system at a single composition.
Provided that due attention is paid to the possibility of multiple roots, the resulting
parameters may permit useful predictions to be made over a range of cc;mpositions.

Here, two non-linear simultaneous equations musf be solved for the two model
parameters and the Newton-Raphson method is employed. For this method the partial

derivatives of the two equations with respact to the unknown parameters are required.

For example, the Wilson parameters for the mixture will be found, given
temperature, pressure, composition, and the activity coefficients. The Wilson equations

are written in the forms,
{

A Ay
=Ilny, +l| A - =0, 2.35
[ =lay, +lnfx, +A;,x,) xz{x, Aoty Apx +5 (2.35)
g= lnyz +ln(x2 +A2|xl )+x1 A12 - A2l =0 ‘ (2.36)
X tApXy  Ayxy+X,
The derivatives are
2
R Fevvry
=A , (2.37)
oAy Plxy +Apx,
2
A X2
= , 2.38
aA:l [x: +A21xl] ( )

2
% =[ X ] (2.39)

aAu X) +A.|2x2
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og x :
_ 1
BA:, - A2| [xz +A21xl ] ' (2.40)

The Newton-Raphson equations for the corrections, » and k, to initial estimates of A,,

and A, are

o ¥ | .

fO +}{m-]o +{a—2;-]0 =0, (2.41)
% o8 |

8o + W‘Z'Jo + FA:]O =0. (2‘42)

where A, is initial estimate. Require the values to be correct to 0.0001.

In addition, the UNIQUAC parameters for the binary systems are found by using

the excess gibbs energy (G£) relation:

GE = RT(x, Iny, +x37,) (2.43)

The UNIQUAC equations are written in the forms
f=xl 1“71 +x2 lan—Gcﬁ;n_GrL;J (2'44)
In equation 2.21, it can be observed that the interaction energy parameters are shown in

the residual term. Then this term is differentiated with respect to UNIQUAC parameters.

The derivatives are

@' = x2q'29l' (2'45)
3ty O, +6,
@. - xlq;o; (2.46)

arll - 0;1'21 +0;

These parameter were found by means of the Newton method.
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2.4.2. Parameter estimation of the HE model

The values for a set of parameters {6, } were obtained through regression by a

weighted least squares technique that minimized the objective function
HE —HEY
S= i__“"] (2.47)

Newton Raphson solution of linearized eguations is required to determine the

best values of the parameters.

Equations (2.33) and (2.34) were employed in the evaluation of parameters in

this investigation. The calculation procedure may be bfieﬂy outlined as follows:

1. For a given value of excess enthalpy, and the assumed values of parameters
calculate excess enthalpy by means of Equation (2.33) which expressed in
terms of the Wilson parameters.

2. Calculate the objective function (Equation 2.47).

3. Calculate derivatives of equation (2.33) with respect to parameters.

' 4, Substitute values obtained from step 1 through 3 into Newton Raphson 's

equation and solve simultaneously for another set of roots of parameters.
5. Substitute new parameters from step 4 into Equation (2.33) and calculate

new excess enthalpy and compare it with the experimental data

An iteration loop in Newton method is thus built up until the change of value of
parameters is less than the specified tolerance. The final set of the parameter values is
used to obtain activity coefficients values from Equations (2.14). The tolerance used in

this investigation is 0.0001.
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For UNIQUAC equation, substitute Equation (2.34) into Equaticn (2.33) and
repeat the steps 1-5 finding the new values of UNIQUAC parameters. The activity

coefficients in Equations (2.24) were determined using these new values.
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