

AThesis Submitted in Partial Fulfillment of the Requirements

Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2002
ISBN 974-17-2238-9

Thesis Title	Factorizations of some generalized exponential polynomials
By	Miss Ouamporn Phuksuwan
Field of study	Mathematics
Thesis Advisor	Assistant Professor Patanee Udomkavanich, Ph.D.
Thesis Co-advisor	Associate Professor Vichian Laohakosol, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of Faculty of Science
(Associate Professor Wanchai Phothiphichitr, Ph.D.)

Thesis Committee

Chairman
(Assistant Professor Ajchara Harnchoowong, Ph.D.)

(Assistant Professor Patanee Udomkavanich, Ph.D.)

จุฬาลงกรณ์มหาวิทยาลัย

เอื้อมพร ฟักสุวรรณ : การแยกตัวประกอบของนัยทั่วไปของพหุนามชี้กำลังบางประเภท (FACTORIZATIONS OF SOME GENERALIZED EXPONENTIAL POLYNOMIALS) อ. ที่ปรึกษา : ผศ.ดร. พัฒนี อุดมกะวานิช อ. ที่ปรึกษาร่วม : รศ.ดร. วิเชียร เลาหโกศล, 33 หน้า ISBN 974-17-2238-9

ในปี ค.ศ. 1927 Ritt ได้พิสูจน์ว่าผลบวกชี้กำลังเชิงซ้อนสามารถแยกตัวประกอบเป็นผลคูณของ ส่วนที่ลดทอนไม่ได้และส่วนที่เป็นเชิงเดียวได้เพียงแบบเดียวเท่านั้น ส่วนแรกของวิทยานิพนธ์นี้เป็นการ ขยายเซตสามเซตซึ่งเกี่ยวข้องในทฤษฎีบทแยกตัวประกอบของ Ritt กล่าวคือสัมประสิทธิ์ ตัวชี้กำลังและ ฟังก์ชันชี้กำลัง ทั้งนี้โดยการวิเคราะห์บทพิสูจน์ดั้งเดิมของ Ritt

ทฤษฎีบทของ Skolem-Mahler-Lech กล่าวไว้ว่า ถ้าพหุนามชี้กำลังมีรากจำนวนเต็มเป็นจำนวน อนันต์ แล้วรากเหล่านั้นเกือบทั้งหมดยกเว้นเพียงจำกัดตัว จัดได้ในรูปผลผนวกจำกัดของการก้าวหน้า เลขคณิต ในปี ค.ศ. 1959 Shapiro ได้ใช้ผลอันนี้ในการแยกตัวประกอบของพหุนามชี้กำลังดังกล่าว เมื่อให้ตัวชี้กำลังของพหุนามชี้กำลังเป็นพหุนามที่มีสัมประสิทธ์เป็นจำนวนเต็ม ทฤษฎีบทของ Skolem-Mahler-Lech ยังเป็นจริงสำหรับคลาสย่อยบางคลาสของเซตนี้ ในส่วนที่สองของวิทยานิพนธ์นี้เป็นการ พิสูจน์ทฤษฎีบทการแยกตัวประกอบของสมาชิกในคลาสย่อยนี้โดยนัยเดียวกับผลของ Shapiro

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา คณิตศาสตร์
สาขาวิชา คณิตศาสตร์
ปีการศึกษา 2545

ลายมื่คื่อนิ่ลิต
จายมื่ชชื่ออาจารย์ที่ปรึกษา,
จายมื้อชื่ออาจางย์ที่ปรึกษาร่วม. \qquad

KEY WORDS : EXPONENTIAL SUMS, EXPONENTIAL POLYNOMIALS, FACTORIZATION
OUAMPORN PHUKSUWAN : FACTORIZATIONS OF SOME GENERALIZED
EXPONENTIAL POLYNOMIALS THESIS ADVISOR:ASSISTANT PROFESSOR PATANEE UDOMKAVANICH, Ph.D. THESIS CO-ADVISOR : ASSOCIATE PROFESSOR VICHIAN LAOHAKOSOL, Ph.D., 33 pp. ISBN 974-17-2238-9

In 1927, Ritt proved that a complex exponential sum can be uniquely factored as a product of irreducible and simple parts. The first part of this thesis deals with the problem of enlarging the three possible sets of elements involved in Ritt's factorization theorem, namely, coefficients, exponents and exponential function. This is done by analyzing Ritt's original proof.

The Skolem-Mahler-Lech Theorem states that if an exponential polynomial has infinitely many integer zeros, then all but finitely many such zeros form a finite union of arithmetic progressions. Based on this result, Shapiro in 1959, established a factorization theorem for such exponential polynomials. Allowing the exponents in the exponential polynomial to be integer polynomials, the Skolem-Mahler-Lech Theorem still holds for a certain subclass of this set. In the second part of this thesis, a factorization theorem, in the spirit of Shapiro's result, is proved for some elements of this subclass.

สถาบันวิทยบริการ
 จุฬาลงกรณ์มหาวิทยาลัย

Department Mathematics
Field of study Mathematics
Academic year 2002

Student's signature
Advisor's signature
Co-advisor's signature
\qquad

ACKNOWLEDGEMENTS

A large number of people have assisted in preparing and writing of this thesis either directly or indirectly. First, I am deeply indebted to Assistant Professor Patanee Udomkavanich and Associate Professor Vichian Laohakosol, my thesis advisors for their advice and encouragement. I would also like to thank Assistant Professor Ajchara Harnchoowong, Dr. Nataphan Kitisin and Dr. Phichet Chaoha, my thesis committee for their valuable comments.

I also thank all teachers who have taught me all along. Finally, I would like to express my gratitude towards my family and friends for their continual support.

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH V
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER I Ritt's factorization theorem 1
1.1 Definitions 2
1.2 Finding base 4
1.3 Transforming to polynomials 8
1.4 Polynomials 10
1.5 Main theorem 18
CHAPTER II Shapiro's factorization theorem 24
2.1 Backgrounds 24
2.2 Lemmas and factorization theorem 26
REFERENCES $\cdots \cdots$
VITA 33

CHAPTER I

Ritt's factorization theorem

A (complex) exponential sum is an expression of the form

$$
a_{0} e^{\alpha_{0} z}+a_{1} e^{\alpha_{1} z}+\ldots+a_{n} e^{\alpha_{n} z}, \quad a_{i}, \alpha_{i} \in \mathbb{C} .
$$

Equip a lexicographical ordering,\leq, to \mathbb{C}. In order to factor such exponential sum, it suffices to factor a normalized exponential sum, i.e an expression of the shape

$$
1+a_{1} e^{\alpha_{1} z}+\ldots+a_{n} e^{\alpha_{n} z}
$$

where the exponents are so arranged that $0<\alpha_{1}<\ldots<\alpha_{n}$. A (normalized) exponential sum is said to be simple if each α_{i} is a multiple of some fixed complex number, termed index. Clearly, a simple exponential sum can be factored in infinitely many ways, and for factorization purposes, it is enough to group them into parts with different irrational indexGatios. Ritt's factorization theorem of 1927 essentially states that any normalized exponential sum can be uniquely written as a product of simple and irreducible exponential sums, where the simple exponential sums have pairwise irrational index ratio, and the irreducible ones are non-simple and not capable of being decomposed further.

In this chapter, the coefficients, exponents and exponential function involved in Ritt's factorization are studied in order to determine enlarged structures validating Ritt's theorem.

1.1 Definitions

Definition 1.1.1. A Ritt space (\mathcal{R}, θ_{r}), or simply \mathcal{R}, is an \mathbb{R}-vector space with a countable basis $\left\{\theta_{r}\right\}=\left\{\theta_{1}, \theta_{2}, \ldots\right\}$, and a lexicographical order defined by $\alpha=r_{1} \theta_{1}+\ldots+r_{t} \theta_{t}<\beta=s_{1} \theta_{1}+\ldots+s_{t} \theta_{t}\left(r_{i}, s_{j} \in \mathbb{R}\right)$ if and only if there is a positive integer $n \leq t$ such that $r_{1}=s_{1}, \ldots, r_{n-1}=s_{n-1}$ but $r_{n}<s_{n}$.

Define $\overline{0}=0 \theta_{1}+0 \theta_{2}+\ldots+0 \theta_{n} \in \mathcal{R}$ for all n. Clearly, $\overline{0}$ is the zero element of the Ritt space \mathcal{R}.

Proposition 1.1.2. Let \mathcal{R} be a Ritt space. Then
(i) For $\alpha \in \mathcal{R}$ and $r \in \mathbb{R}$, if $\alpha>\overline{0}$ and $r>0$, then $r \cdot \alpha>\overline{0}$.
(ii) For $\alpha, \beta, \gamma, \delta \in \mathcal{R}$, if $\alpha<\beta$ and $\gamma<\delta$, then $\alpha+\gamma<\beta+\delta$.
(iii) For $\alpha, \beta \in \mathcal{R}$, if $\alpha>\overline{0}$ and $\beta>\overline{0}$, then $\alpha+\beta>\overline{0}$.

Proof. Clear.

Let \mathcal{R} be a Ritt space. Denote by f a function whose domain is the set $\mathcal{R} x=\{\alpha x \mid \alpha \in \mathcal{R}\}$, where x is an indeterminate, satisfying $f\left(\alpha_{1} x\right) f\left(\alpha_{2} x\right)=$ $f\left(\left(\alpha_{1}+\alpha_{2}\right) x\right)$.

Definition 1.1.3. Let \mathbb{F} be an atgebraically closed field with characteristic zero and \mathcal{R} a Ritt space. A Ritt exponential sum, abbreviated by RES, is an expression of the shape ${ }_{9} a_{0} f\left(\alpha_{0} x\right)+a_{1} f\left(\alpha_{1} x\right)+\ldots+a_{n} f\left(\alpha_{n} x\right)$, bel
where $a_{i} \in \mathbb{F}, \alpha_{i} \in \mathcal{R}$ and $\alpha_{0}<\alpha_{1}<\ldots<\alpha_{n}$. The α_{i} 's will be referred to as

RE-coefficients.

Over the set of RES's, we impose
(i) an equality relation by the condition that
$\sum_{i=0}^{n} a_{i} f\left(\alpha_{i} x\right)=\sum_{i=0}^{n} b_{i} f\left(\beta_{i} x\right)$ if and only if $a_{i}=b_{i}$ and $\alpha_{i}=\beta_{i}$ for all i and
(ii) an algebraic independence condition stating that $f\left(\alpha_{1} x\right), \ldots, f\left(\alpha_{n} x\right)$ are algebraically independent over \mathbb{F} whenever $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{R}$ are linearly independent over \mathbb{Q}.

Denote the set of RES's imposed with such conditions by \mathcal{E}.
Define addition and multiplication on \mathcal{E} as follows :
For any $E_{1}(x)=\sum_{i=0}^{n} a_{i} f\left(\alpha_{i} x\right)$ and $E_{2}(x)=\sum_{i=0}^{n} b_{i} f\left(\alpha_{i} x\right)$,

$$
\begin{aligned}
& E_{1}(x)+E_{2}(x)=\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) f\left(\alpha_{i} x\right), \text { and } \\
& E_{1}(x) \cdot E_{2}(x)=\sum_{i=0}^{n} \sum_{j=0}^{n} a_{i} b_{j} f\left(\left(\alpha_{i}+\alpha_{j}\right) x\right)
\end{aligned}
$$

It is easy to verify that, under the operations defined above, \mathcal{E} is a ring with multiplicative identity $f(\overline{0} x)$, indeed \mathcal{E} is an integral domain. The multiplicative inverse of $f(\alpha x)$ is $f(-\alpha x)$, while the additive inverse is $-f(\alpha x)$. Any RES of the form $a_{0} f(\overline{0} x)$ is called a constant Ritt exponential sum. The constant RES's add and multiply as in \mathbb{F} and so form a subring of \mathcal{E} isomorphic to \mathbb{F}. We then identify \mathbb{F} as the set of constant RES's in \mathcal{E}. Sometimes, we refer to \mathcal{E} as a Ritt domain with respect to \mathbb{F} and \mathcal{R}.

It can be proved by induction that $(f(\alpha x))^{n}=f(n \alpha x)$ for all $n \in \mathbb{N}$ and it follows that $(f(\alpha x))^{q}=f(q \alpha x)$ for all $/ q \in \mathbb{Q}_{0}^{+} . \widetilde{己} \prod_{n} 𠃌^{\circ}$
Definition 1.1.4. A nonconstant element $E(x)=\sum_{i=0}^{n} a_{i} f\left(\alpha_{i} x\right)$ of a Ritt domain \mathcal{E} with respect to \mathbb{F} and \mathcal{R} iscsaid to be simple if there exists $\lambda \in \mathcal{R}$ such that for all $i, \alpha_{i}=k_{i} \lambda$ where $k_{i} \in \mathbb{Z}$, equivalently, a simple RES is an RES of the form $E(x)=\sum_{i=0}^{n} a_{i} f\left(k_{i} \lambda x\right)$ where $k_{i} \in \mathbb{Z}$. We refer to λ as an s-index of the simple RES $E(x)$.

Definition 1.1.5. A nonconstant element $E(x)$ of a Ritt domain \mathcal{E} with respect to \mathbb{F} and \mathcal{R} is said to be irreducible if it can not be factored as a product of other RES except 1 and itself.

Remarks.

(i) It follows immediately from the definition that in any Ritt domain \mathcal{E} with respect to \mathbb{F} and \mathcal{R}, the RES $a+b f(\beta x)$ is simple for all $a, b \in \mathbb{F}$ and $\beta \in \mathcal{R}$.
(ii) In any Ritt domain \mathcal{E}, the class of simple RES's and the class of irreducible RES's are disjoint.

1.2 Finding base

Throughout this section, let \mathcal{E} be a Ritt domain with respect to an algebraically closed field \mathbb{F} and a Ritt space $\left(\mathcal{R}, \theta_{r}\right)$. We will factor RES of the form $1+$ $a_{1} f\left(\alpha_{1} x\right)+\ldots+a_{n} f\left(\alpha_{n} x\right)$ with $\overline{0}<\alpha_{1}<\ldots<\alpha_{n}$. As the proof is long and complicated, we will first prove those lemmas needed.

A subset $\left\{m_{1}, \ldots, m_{p}\right\}$ of \mathcal{R} is said to be \mathbb{Q}-linearly independent if whenever $\sum_{i=1}^{p} q_{i} m_{i}=0$ for rational numbers q_{1}, \ldots, q_{p}, then $q_{1}=\ldots=q_{p}=0 . \quad$ A \mathbb{Q} base for $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq \mathcal{R}$ is a \mathbb{Q}-linearly independent subset of \mathcal{R} which spans $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. A \mathbb{Q}-linearly independent subset $\left\{\mu_{1}, \ldots, \mu_{p}\right\}$ of \mathcal{R} is called a \mathbb{Q}^{+}-base for $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ if each α_{i} can be written as a \mathbb{Q}^{+}-linearly combination of μ_{i} 's, i.e. $\alpha_{i}=\sum_{j=1}^{p} q_{i j} \mu_{j}$, where $q_{i j} \in \mathbb{Q}^{+}$.
Definition 1.2.1. An $\alpha=r_{1} \theta_{1}+\ldots+r_{n} \theta_{n} \in \mathcal{R}$ is said to be strictly positive

The next lemma gives a sufficient condition when a subset $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of \mathcal{R} has a \mathbb{Q}^{+}-base.

Lemma 1.2.2. Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq \mathcal{R}$. If $\overline{0}<\alpha_{1}<\ldots<\alpha_{n}$ and α_{1} is strictly positive, then there exists a \mathbb{Q}^{+}-base $\left\{\mu_{1}, \ldots, \mu_{p}\right\}$ for $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$.

Proof. Let $\left\{m_{1}, \ldots, m_{p}\right\}$ be the largest \mathbb{Q}-linearly independent subset of $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. For each i, let $\alpha_{i}=\sum_{k=1}^{p} q_{i k} m_{k}$, where $q_{i k} \in \mathbb{Q}$. We can also write
$m_{j}=\sum_{k} r_{j k} \theta_{k}$, where $r_{j k} \in \mathbb{R}$. Define a linear map $\varphi: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ by $\varphi(X)=Q X$ for all $X \in \mathbb{R}^{p}$, where Q is the matrix $\left(q_{i j}\right)_{n \times p}$. Since α_{1} is strictly positive, all entries of $\varphi\left(\left(r_{11}, \ldots, r_{p 1}\right)\right)$ are positive. By the continuity of φ and the denseness of \mathbb{Q} in \mathbb{R}, for each $i=1, \ldots, p$, there is $\left(t_{1 i}, \ldots, t_{p i}\right) \in \mathbb{Q}^{p}$ such that all entries of $\varphi\left(\left(t_{1 i}, \ldots, t_{p i}\right)\right)$ are positive and the matrix $\left(t_{i j}\right)_{p \times p}$ has a nonzero determinant. Hence the system of linear equations

$$
\begin{gathered}
m_{1}=t_{11} x_{1}+t_{12} x_{2}+\ldots+t_{1 p} x_{p} \\
m_{2}=t_{21} x_{1}+t_{22} x_{2}+\ldots+t_{2 p} x_{p} \\
\vdots \\
m_{p}=t_{p 1} x_{1}+t_{p 2} x_{2}+\ldots+t_{p p} x_{p}
\end{gathered}
$$

has a unique solution, say μ_{1}, \ldots, μ_{p}. Consequently, each α_{i} is a \mathbb{Q}^{+}-linear combination of the μ_{i} 's as desired.

It remains to show that $\left\{\mu_{1}, \ldots, \mu_{p}\right\}$ is \mathbb{Q}-linearly independent. Suppose on the contrary that there exist rational numbers s_{1}, \ldots, s_{p}, not all zero, such that

$$
\begin{equation*}
\text { (1) } \quad s_{1} \mu_{1}+s_{2} \mu_{2}+\ldots+s_{p} \mu_{p}=\overline{0} \tag{1}
\end{equation*}
$$

The system

$$
\begin{aligned}
& t_{12} x_{1}+t_{22} x_{2}+\ldots+t_{p 2} x_{p}=s_{2}
\end{aligned}
$$

$$
\begin{aligned}
& t_{1 p} x_{1}+t_{2 p} x_{2}+\ldots+t_{p p} x_{p}=s_{p},
\end{aligned}
$$

then has a nontrivial solution, say v_{1}, \ldots, v_{p}. Substituting $s_{i}=t_{1 i} v_{1}+t_{2 i} v_{2}+\ldots+$ $t_{p i} v_{p}$ in (1), it follows that $\sum_{i} v_{i} m_{i}=0$, which contradicts the \mathbb{Q}-independence of $\left\{m_{1}, \ldots, m_{p}\right\}$. Consequently, $\left\{\mu_{1}, \ldots, \mu_{p}\right\}$ is \mathbb{Q}-linearly independent.

Remark. In Ritt's original construction of \mathbb{Q}^{+}-base $\left\{\mu_{1}, \ldots, \mu_{p}\right\}$ the real part of each complex α_{i} was made positive by multiplying with a fixed complex constant.

Our Ritt space, $\left(\mathcal{R}, \theta_{r}\right)$ does not enjoy this characteristic property of \mathbb{C}, which forces us to impose the strictly positive condition.

Definition 1.2.3. Let $E_{1}(x), E_{2}(x) \in \mathcal{E}$. We say that $E_{2}(x) \mid E_{1}(x)$ when there is $E_{3}(x) \in \mathcal{E}$ such that $E_{2}(x) E_{3}(x)=E_{1}(x)$.
Lemma 1.2.4. Let $E_{1}(x)=1+\sum_{i=1}^{n} a_{i} f\left(\alpha_{i} x\right)$ and $E_{2}(x)=1+\sum_{i=1}^{r} b_{i} f\left(\beta_{i} x\right)$.
If $E_{2}(x) \mid E_{1}(x)$, then each β_{j} is a \mathbb{Q}-linear combination of the α_{i} 's.

Proof. Let

$$
\begin{equation*}
1+\sum_{i=1}^{n} a_{i} f\left(\alpha_{i} x\right)=\left(1+\sum_{i=1}^{r} b_{i} f\left(\beta_{i} x\right)\right)\left(1+\sum_{i=1}^{s} c_{i} f\left(\gamma_{i} x\right)\right) \tag{2}
\end{equation*}
$$

Let $\left\{m_{1}, \ldots, m_{p}\right\}$ be the largest \mathbb{Q}-linearly independent subset of $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Suppose that there is a $\beta_{j_{0}}$ which is not a \mathbb{Q}-linear combination of α_{i} 's. Taking $m_{0}=\beta_{j_{0}}$, it follows that $\left\{m_{0}, m_{1}, \ldots, m_{p}\right\}$ is also \mathbb{Q}-linearly independent. Adjoin m_{p+1}, \ldots, m_{t} to this set in such a way that $\left\{m_{0}, m_{1}, \ldots, m_{t}\right\}$ is a \mathbb{Q}-linearly independent set and each $\alpha_{i}, \beta_{i}, \gamma_{i}$ is a \mathbb{Q}-linear combination of m_{i} 's. Then each β_{i} has a representation of the form $\sum_{k} q_{i k} m_{k}$, where $q_{i k} \in \mathbb{Q}$. Let u_{0} be the maximum $q_{i 0}$ in the representation of β_{i} 's. Note here that since $\beta_{j_{0}}=m_{0}$, $u_{0} \geq 1$. Then among those β_{i} 's whose $q_{i 0}$ is u_{0}, let u_{1} be the maximum $q_{i 1}$. Continuing this process for all $q_{i j}$ s, we obtain rational numbers $u_{0}, u_{1}, \ldots, u_{t}$. Let $\beta=u_{0} m_{0}+u_{1} m_{1}+\ldots+u_{t} m_{t}$. Then $\beta=\beta_{k}$ for some $k=1, \ldots, r$. We adjoin $\gamma_{0}=0$ to $\left\{\gamma_{1}, \ldots, \gamma_{s}\right\}$ and consider the representation of all γ_{i} 's in the form $\sum_{k} p_{i k} m_{k}$, where $p_{i k} \in \mathbb{Q}$. Let v_{0} be the maximum $p_{i 0}$ in the representation of γ_{i} 's. Since $\gamma_{0}=0$, it follows that $v_{0} \geq 0$. Then among those γ_{i} 's whose $p_{i 0}$ is v_{0}, let v_{1} be the maximum $p_{i 1}$. Continuing this method for all $p_{i j}$'s, we get rational numbers $v_{0}, v_{1}, \ldots, v_{t}$. Let $\gamma=v_{0} m_{0}+v_{1} m_{1}+\ldots+v_{t} m_{t}$. Then $\gamma=\gamma_{l}$ for some $l=1, \ldots, s$. Multiplying out the factors on the right hand side of (2), we obtain the unique term $d \cdot f((\beta+\gamma) x)$ in the resulting product for some $d \in \mathbb{F}$. By the choice of β and γ, we have that $\beta+\gamma=\alpha_{m}$ for some $m=1, \ldots, n$. Hence
$\alpha_{m}=\left(u_{0}+v_{0}\right) m_{0}+\left(u_{1}+v_{1}\right) m_{1}+\ldots+\left(u_{t}+v_{t}\right) m_{t}$ with $u_{0}+v_{0} \geq 1+0=1$. This contradicts the fact that $\left\{m_{1}, \ldots, m_{p}\right\}$ is a \mathbb{Q}-base for $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$.

Corollary 1.2.5. Let $E_{1}(x), E_{2}(x)$ be RES's. If $E_{2}(x) \mid E_{1}(x)$ and $E_{1}(x)$ is simple, then $E_{2}(x)$ is also simple.

Proof. Immediate from Lemma 1.2.4.
Corollary 1.2.6. Assume that $1+\sum_{i=1}^{n} a_{i} f\left(\alpha_{i} x\right)=\left(1+\sum_{i=1}^{r} b_{i} f\left(\beta_{i} x\right)\right)(1+$ $\left.\sum_{i=1}^{s} c_{i} f\left(\gamma_{i} x\right)\right)$. If α_{1} is strictly positive, then each β_{i}, γ_{i} can be written as \mathbb{Q}_{0}^{+}-linear combination with respect to the \mathbb{Q}^{+}-base $\left\{\mu_{1}, \ldots, \mu_{p}\right\}$ for $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ so obtained in Lemma 1.2.2. In particular,

$$
\begin{equation*}
1+\sum_{i=1}^{n} a_{i} \prod_{j=1}^{p} f\left(q_{i j} \mu_{j} x\right)=\left(1+\sum_{i=1}^{r} b_{i} \prod_{j=1}^{p} f\left(q_{i j}^{\prime} \mu_{j} x\right)\right)\left(1+\sum_{i=1}^{s} c_{i} \prod_{j=1}^{p} f\left(q_{i j}^{\prime \prime} \mu_{j} x\right)\right) \tag{3}
\end{equation*}
$$

for some positive rational numbers $q_{i j}$'s and some nonnegative rational numbers $q_{i j}^{\prime}$'s and $q_{i j}^{\prime \prime \prime}$'s.

Proof. From Lemmas 1.2 .2 and 1.2.4, each β_{i} is a \mathbb{Q}-linear combination of μ_{i} 's, say $\beta_{i}=\sum_{k} g_{i k} \mu_{k}$ where $g_{i k} \in \mathbb{Q}$. Suppose on the contrary that there were some β involves, without loss of generality, μ_{1} with negative coefficient. Let u_{1} be the minimum $g_{i 1}$ in the representation of β_{i} 's. Then among those β_{i} 's whose $g_{i 1}$ is u_{1}, let u_{2} be the minimum $g_{i 2}$. Continuing this process for all $g_{i j}$'s, we obtain rational numbers u_{1}, \ldots, u_{t}. Let $\beta=u_{1} \mu_{1}+u_{2} \mu_{2}+\ldots+u_{t} \mu_{t}$. Then $\beta=\beta_{k}$ for some $k=1, \ldots, r$, and $u_{1}<0$. We adjoin $\gamma_{0}=0$ to $\left\{\gamma_{1}, \ldots, \gamma_{s}\right\}$ and consider the representation of all γ_{i} 's in the form $\sum_{k} p_{i k} \mu_{k}$ where $p_{i k} \in \mathbb{Q}$. Let v_{1} be the minimum $p_{i 1}$ in the representation of γ_{i} 's. Then among those γ_{i} 's whose $p_{i 1}$ is v_{1}, let v_{2} be the minimum $p_{i 2}$. Continuing this method for all $p_{i j}$'s, we obtain rational numbers v_{1}, \ldots, v_{t}. Let $\gamma=v_{1} \mu_{1}+v_{2} \mu_{2}+\ldots+v_{t} \mu_{t}$. Then $\gamma=\gamma_{l}$ for some $l=1, \ldots, s$, and $v_{1} \leq 0$ because $\gamma_{0}=0$. Multiplying out the factors on
the right hand side of (3), we obtain $d \cdot f((\beta+\gamma) x)$ as a unique term for some $d \in \mathbb{F}$. By the choice of β and $\gamma, \beta+\gamma=\alpha_{m}$ for some $m=1, \ldots, n$. Thus $\alpha_{m}=\left(u_{1}+v_{1}\right) \mu_{1}+\left(u_{2}+v_{2}\right) \mu_{2}+\ldots+\left(u_{t}+v_{t}\right) \mu_{t}$ where $u_{1}+v_{1}<0$, i.e. α_{m} is a \mathbb{Q}-linear combination of μ_{i} 's with the coefficient of μ_{1} being negative. By assumption, α_{m} is a \mathbb{Q}-linear combination of μ_{i} 's with the coefficient of μ_{1} being positive, which is a contradiction.

1.3 Transforming to polynomials

Let $E(x)=1+a_{1} f\left(\alpha_{1} x\right)+\ldots+a_{n} f\left(\alpha_{n} x\right) \in \mathcal{E}$ with α_{1} strictly positive. Let $\left\{\mu_{1}, \ldots, \mu_{p}\right\}$ be a \mathbb{Q}^{+}-base for $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Then

$$
\begin{aligned}
E(x) & =1+a_{1} f\left(\left(\sum_{j=1}^{p} q_{1 j} \mu_{j}\right) x\right)+\cdots+a_{n} f\left(\left(\sum_{j=1}^{p} q_{n j} \mu_{j}\right) x\right) \\
& =1+a_{1} f\left(q_{11} \mu_{1} x\right) \cdots f\left(q_{1 p} \mu_{p} x\right)+\ldots+a_{n} f\left(q_{n 1} \mu_{1} x\right) \cdots f\left(q_{n p} \mu_{p} x\right)
\end{aligned}
$$

where $q_{i j}$'s are positive rational numbers.
Let $l_{j} \in \mathbb{N}(j=1, \ldots, p)$ be the least common multiple of the denominators of $q_{i j}$,

$$
\begin{aligned}
& i=1, \ldots, n \text {. Now } \\
& \begin{aligned}
E(x) & =1+a_{1} f\left(q_{11} l_{1} \frac{\mu_{1}}{l_{1}} x\right) \cdots f\left(q_{1 p} l_{p} \frac{\mu_{p}}{l_{p}} x\right)+\ldots+a_{n} f\left(q_{n 1} l_{1} \frac{\mu_{1}}{l_{1}} x\right) \cdots f\left(q_{n p} l_{p} \frac{\mu_{p}}{l_{p}} x\right) \\
& =1+a_{1} f\left(k_{11} \frac{\mu_{1}}{l_{1}} x\right) \cdots f\left(k_{1 p} \frac{\mu_{p}}{l_{p}} x\right)+\cdots+a_{n} f\left(k_{n 1} \frac{\mu_{1}}{l_{1}} x\right) \cdots f\left(k_{n p} \frac{\mu_{p}}{l_{p}} x\right) \\
& =1+a_{1}\left(f\left(\frac{\mu_{1}}{l_{1}} x\right)\right)^{k_{11}} \cdots\left(f\left(\frac{\mu_{p}}{l_{p}} x\right)\right)^{k_{1 p}}+\ldots+a_{n}\left(f\left(\frac{\mu_{1}}{l_{1}} x\right)\right)^{k_{n 1}} \cdots\left(f\left(\frac{\mu_{p}}{l_{p}} x\right)\right)^{k_{n p}},
\end{aligned}
\end{aligned}
$$

where $k_{i j}=q_{i j} l_{j} \in \mathbb{N}$. Invoking on the algebraic independence, replacing $f\left(\frac{\mu_{j}}{l_{j}} x\right)$ by y_{j}, the outcome can be considered as a polynomial in $\mathbb{F}\left[y_{1}, \ldots, y_{p}\right]$. This polynomial is called the polynomial corresponding to $E(x)$ and will be denoted by $Q_{E}\left(y_{1}, \ldots, y_{p}\right)$.

Conversely, for any $P\left(y_{1}, \ldots, y_{t}\right) \in \mathbb{F}\left[y_{1}, \ldots, y_{t}\right]$, if each y_{j} is replaced by $f\left(\alpha_{j} x\right)$
where $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$ is a \mathbb{Q}-linearly independent set in \mathcal{R}, then we obtain an RES in \mathcal{E}, referred to as the RES corresponding to $P\left(y_{1}, \ldots, y_{t}\right)$ and denoted by $E_{P}\left(f\left(\alpha_{1} x\right), \ldots, f\left(\alpha_{t} x\right)\right)$.

Remark. $E_{Q_{E}}\left(f\left(\frac{\mu_{1}}{l_{1}} x\right), \ldots, f\left(\frac{\mu_{p}}{l_{p}} x\right)\right)=E(x)$.
Lemma 1.3.1. Let $E(x)=1+a_{1} f\left(\alpha_{1} x\right)+\ldots+a_{n} f\left(\alpha_{n} x\right)$ with α_{1} strictly positive and $Q_{E}\left(y_{1}, \ldots, y_{p}\right)$ be the polynomial corresponding to $E(x)$ with respect to a \mathbb{Q}^{+}base $\left\{\mu_{1}, \ldots, \mu_{p}\right\}$. Then each factorization of $E(x)$ in \mathcal{E} gives rise to a factorization of $Q_{E}\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right)$ in $\mathbb{F}\left[y_{1}, \ldots, y_{p}\right]$ for some $\left(t_{1}, \ldots, t_{p}\right) \in \mathbb{N}^{p}$ and vice versa.

Proof. (\Rightarrow) To simplify notations, we treat only the case when $E(x)$ has two factors. By Corollary 1.2.6,

$$
1+\sum_{i=1}^{n} a_{i} \prod_{j=1}^{p} f\left(q_{i j} \mu_{j} x\right)=\left(1+\sum_{i=1}^{r} b_{i} \prod_{j=1}^{p} f\left(q_{i j}^{\prime} \mu_{j} x\right)\right)\left(1+\sum_{i=1}^{s} c_{i} \prod_{j=1}^{p} f\left(q_{i j}^{\prime \prime} \mu_{j} x\right)\right)
$$

where $q_{i j}=\frac{m_{i j}}{n_{i j}}, q_{i j}^{\prime}=\frac{m_{i j}^{\prime}}{n_{i j}^{\prime}}$ and $q_{i j}^{\prime \prime}=\frac{m_{i j}^{\prime \prime}}{n_{i j}^{\prime \prime}}, m_{i j}^{\prime}, m_{i j}^{\prime \prime} \in \mathbb{N}_{0}$ and $m_{i j}, n_{i j}, n_{i j}^{\prime}, n_{i j}^{\prime \prime} \in \mathbb{N}$. Let $l_{j}=$ l.c.m. $\left(n_{1 j}, \ldots, n_{n j}\right)$ and $t_{j}=$ l.c.m. $\left(n_{1 j}^{\prime}, \ldots, n_{r j}^{\prime}, n_{1 j}^{\prime \prime}, \ldots, n_{s j}^{\prime \prime}\right)$. Then

$$
1+\sum_{i=1}^{n} a_{i} \prod_{j=1}^{p} f\left(q_{i j} \mu_{j} x\right)=1+\sum_{i=1}^{n} a_{i} \prod_{j=1}^{p}\left(f\left(\frac{\mu_{j}}{l_{j}} x\right)\right)^{k_{i j}}
$$

where $k_{i j}=q_{i j} l_{j} \in \mathbb{N}$ and

$$
\begin{gathered}
1+\sum_{i=1}^{r} b_{i} \prod_{j=1}^{p} f\left(q_{i j}^{\prime} \mu_{j} x\right) \wedge 1+\sum_{i=1}^{r} b_{i} \prod_{j=1}^{p}\left(f\left(\frac{\mu_{j}}{l_{j}} x\right)\right)^{q_{i j}^{\prime} l_{j}} \\
\left.91+\sum_{i=1}^{s} c_{i} \prod_{j=1}^{p} \tilde{} \quad \widetilde{q_{i j}^{\prime \prime}} \mu_{j} x\right)=1+\sum_{i=1}^{s} c_{i} \prod_{j=1}^{p}\left(f\left(\frac{\mu_{j}}{l_{j}} x\right)\right)^{q_{i j}^{\prime \prime} l_{j}}
\end{gathered}
$$

Thus
$1+\sum_{i=1}^{n} a_{i} \prod_{j=1}^{p}\left(f\left(\frac{\mu_{j}}{l_{j}} x\right)\right)^{k_{i j}}=\left(1+\sum_{i=1}^{r} b_{i} \prod_{j=1}^{p}\left(f\left(\frac{\mu_{j}}{l_{j}} x\right)\right)^{q_{i j}^{\prime} l_{j}}\right)\left(1+\sum_{i=1}^{s} c_{i} \prod_{j=1}^{p}\left(f\left(\frac{\mu_{j}}{l_{j}} x\right)\right)^{q_{i j}^{\prime \prime} l_{j}}\right)$. Substituting $f\left(\frac{\mu_{j}}{l_{j}} x\right)$ for $y_{j}^{t_{j}}$ in the above equation, we get on the left hand side $1+\sum_{i=1}^{n} a_{i} \prod_{j=1}^{p} y_{j}^{k_{i j} t_{j}}$, which is $Q_{E}\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right)$. Since $q_{i j}^{\prime} l_{j} t_{j}, q_{i j}^{\prime \prime} l_{j} t_{j} \in \mathbb{N}_{0}$, we obtain on the right hand side a product of two polynomials in $\mathbb{F}\left[y_{1}, \ldots, y_{p}\right]$, $\left(\sum_{i=1}^{r} b_{i} \prod_{j=1}^{p} y_{j}^{q_{i j}^{\prime} l_{j} t_{j}}\right)\left(\sum_{i=1}^{s} c_{i} \prod_{j=1}^{p} y_{j}^{q_{i \prime j}^{\prime \prime} l_{j} t_{j}}\right)$, as required.
(\Leftarrow) Let

$$
\begin{equation*}
Q_{E}\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right)=R_{1}\left(y_{1}, \ldots, y_{p}\right) \cdots R_{m}\left(y_{1}, \ldots, y_{p}\right) \tag{5}
\end{equation*}
$$

be a factorization of $Q_{E}\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right)$ in $\mathbb{F}\left[y_{1}, \ldots, y_{p}\right]$. Replacing y_{j} by $f\left(\frac{\mu_{j}}{l_{j}} x\right)$ in (5), we obtain
$E_{Q_{E}}\left(\left(f\left(\frac{\mu_{1}}{l_{1}} x\right)\right)^{t_{1}}, \ldots,\left(f\left(\frac{\mu_{p}}{l_{p}} x\right)\right)^{t_{p}}\right)=E_{R_{1}}\left(f\left(\frac{\mu_{1}}{l_{1}} x\right), \ldots, f\left(\frac{\mu_{p}}{l_{p}} x\right)\right) \cdots E_{R_{m}}\left(f\left(\frac{\mu_{1}}{l_{1}} x\right), \ldots, f\left(\frac{\mu_{p}}{l_{p}} x\right)\right)$.
Then

$$
\begin{aligned}
E(x) & =E_{Q_{E}}\left(f\left(\frac{\mu_{1}}{l_{1}} x\right), \ldots, f\left(\frac{\mu_{p}}{l_{p}} x\right)\right) \\
& =E_{Q_{E}}\left(\left(f\left(\frac{1}{t_{1}} \frac{\mu_{1}}{l_{1}} x\right)\right)^{t_{1}}, \ldots,\left(f\left(\frac{1}{t_{p}} \frac{\mu_{p}}{l_{p}} x\right)\right)^{t_{p}}\right) \\
& =E_{R_{1}}\left(f\left(\frac{1}{t_{1}} \frac{\mu_{1}}{l_{1}} x\right), \ldots, f\left(\frac{1}{t_{p}} \frac{\mu_{p}}{l_{p}} x\right)\right) \cdots E_{R_{m}}\left(f\left(\frac{1}{t_{1}} \frac{\mu_{1}}{l_{1}} x\right), \ldots, f\left(\frac{1}{t_{p}} \frac{\mu_{p}}{l_{p}} x\right)\right)
\end{aligned}
$$

is a factorization of $E(x)$ in \mathcal{E} as desired.

1.4 Polynomials

Having reduced the problem of factorizing RES's to that of factorizing polynomials in several variables, we collect here those results needed to justify the proof of the main theorem.

Let $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{p}\right)$ where ε_{i} is a primitive k_{i}-th root of unity. We say that polynomial $P\left(y_{1}, \ldots, y_{p}\right)$ and $Q\left(y_{1}, \ldots, y_{p}\right)$ are ε-related if $P\left(y_{1}, \ldots, y_{p}\right)=$ $Q\left(\varepsilon_{1}^{n_{1}} y_{1}, \ldots, \varepsilon_{p}^{n_{p}} y_{p}\right)$ for some $\left(n_{1}, .6, n_{p}\right) \in \mathbb{Z}_{p}^{p}$. It canceasily be shown that ε-related is an equivalence relation on $\mathbb{F}\left[y_{1}, \ldots, y_{p}\right]$.

Lemma 1.4.1. Let $Q\left(y_{1}, \ldots, y_{p}\right)$ be an irreducible polynomial with constant term

1. If there are positive integers t_{i} 's such that

$$
Q\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right)=Q_{1}\left(y_{1}, \ldots, y_{p}\right) \cdots Q_{m}\left(y_{1}, \ldots, y_{p}\right)
$$

where $Q_{i}\left(y_{1}, \ldots, y_{p}\right)$'s are irreducible polynomials with constant term 1 , then every pair $Q_{i}\left(y_{1}, \ldots, y_{p}\right)$ and $Q_{j}\left(y_{1}, \ldots, y_{p}\right)$ are $\left(\varepsilon_{1}, \ldots, \varepsilon_{p}\right)$-related where each ε_{i} is a
primitive t_{i}-th root of unity.

Proof. Since each ε_{i} is a primitive t_{i}-th root of unity, it follows that for any $\left(n_{1}, \ldots, n_{p}\right) \in \mathbb{Z}^{p}$, we have

$$
\begin{aligned}
Q_{1}\left(y_{1}, \ldots, y_{p}\right) \cdots Q_{m}\left(y_{1}, \ldots, y_{p}\right) & =Q\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right) \\
& =Q\left(\left(\varepsilon_{1}^{n_{1}} y_{1}\right)^{t_{1}}, \ldots,\left(\varepsilon_{p}^{n_{p}} y_{p}\right)^{t_{p}}\right) \\
& =Q_{1}\left(\varepsilon_{1}^{n_{1}} y_{1}, \ldots, \varepsilon_{p}^{n_{p}} y_{p}\right) \cdots Q_{m}\left(\varepsilon_{1}^{n_{1}} y_{1}, \ldots, \varepsilon_{p}^{n_{p}} y_{p}\right) .
\end{aligned}
$$

Thus for each $i=1, \ldots, m, Q_{i}\left(\varepsilon_{1}^{n_{1}} \overline{y_{1}}, \ldots, \varepsilon_{p}^{n_{p}} y_{p}\right)=Q_{t}\left(y_{1}, \ldots, y_{p}\right)$ for some $t=$ $1, \ldots, m$; that is, each $Q_{i}\left(y_{1}, \ldots, y_{p}\right)$ is ε-related to some $Q_{t}\left(y_{1}, \ldots, y_{p}\right)$. To show that each $Q_{i}\left(y_{1}, \ldots, y_{p}\right)$ is ε-related to all $Q_{t}\left(y_{1}, \ldots, y_{p}\right)$, it suffices to show that $Q_{1}\left(y_{1}, \ldots, y_{p}\right)$ is ε-related to all $Q_{t}\left(y_{1}, \ldots, y_{p}\right)$. Suppose that $Q_{1}\left(y_{1}, \ldots, y_{p}\right)$ is not ε related to some $Q_{t}\left(y_{1}, \ldots, y_{p}\right)$, Without loss of generality, we may assume that $Q_{1}\left(y_{1}, \ldots, y_{p}\right), \ldots, Q_{j}\left(y_{1}, \ldots, y_{p}\right), 1 \leq j<m$, are in $\left[Q_{1}\left(y_{1}, \ldots, y_{p}\right)\right]$, the equivalence class containing $Q_{1}\left(y_{1}, \ldots, y_{p}\right)$, but $Q_{j+1}\left(y_{1}, \ldots, y_{p}\right), \ldots, Q_{m}\left(y_{1}, \ldots, y_{p}\right)$ are not in $\left[Q_{1}\left(y_{1}, \ldots, y_{p}\right)\right]$. Thus

$$
Q_{1}\left(\varepsilon_{1}^{n_{1}} y_{1}, \ldots, \varepsilon_{p}^{n_{p}} y_{p}\right) \cdots Q_{j}\left(\varepsilon_{1}^{n_{1}} y_{1}, \ldots, \varepsilon_{p}^{n_{p}} y_{p}\right)=Q_{1}\left(y_{1}, \ldots, y_{p}\right) \cdots Q_{j}\left(y_{1}, \ldots, y_{p}\right)
$$

for all $\left(n_{1}, \ldots, n_{p}\right) \in \mathbb{Z}^{p}$. To show that $Q_{1}\left(y_{1}, \odot, y_{p}\right) \cdots Q_{j}\left(y_{1}, \ldots, y_{p}\right):=P\left(y_{1}, \ldots, y_{p}\right)$ is a polynomial in $y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}$, suppose not. Then there is y_{i} such that t_{i} does not divide an exponent of y_{i}. Rewrite $19 / 90 \cap$ g $P\left(y_{1}, \ldots, y_{p}\right)=a_{0}(\bar{y})+a_{1}(\bar{y}) y_{i}+\ldots+a_{n}(\bar{y}) y_{i}^{n}=a_{0}(\bar{y})+\ldots+a_{j}(\bar{y}) y_{i}^{l t_{i}+r}+\ldots$, where $\bar{y}=\left(y_{1}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{p}\right), a_{j}(\bar{y}) \neq 0$ and $0 \leq r<t_{i}$, it follows that

$$
\begin{aligned}
& a_{0}(\bar{y})+\ldots+a_{j}(\bar{y}) y_{i}^{l t_{i}+r}+\ldots=P\left(y_{1}, \ldots, y_{p}\right)=P\left(\varepsilon_{1}^{n_{1}} y_{1}, \ldots, \varepsilon_{p}^{n_{p}} y_{p}\right) \\
& =a_{0}(\bar{y})+\ldots+a_{j}(\bar{y})\left(\varepsilon_{i}^{n_{i}} y_{i}\right)^{l t_{i}+r}+\ldots=a_{0}(\bar{y})+\ldots+a_{j}(\bar{y}) y_{i}^{l t_{i}+r} \varepsilon_{i}^{n_{i} r}+\ldots .
\end{aligned}
$$

Thus $\varepsilon_{i}{ }^{n_{i} r}=1$, this is not true for all $n_{i} \in \mathbb{Z}$. Hence $Q_{1}\left(y_{1}, \ldots, y_{p}\right) \cdots Q_{j}\left(y_{1}, \ldots, y_{p}\right)$ $=K\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right)$ for some $K\left(y_{1}, \ldots, y_{p}\right) \in \mathbb{F}\left[y_{1}, \ldots, y_{p}\right]$.

Similarly, $Q_{j+1}\left(y_{1}, \ldots, y_{p}\right) \cdots Q_{m}\left(y_{1}, \ldots, y_{p}\right)=\bar{K}\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right)$ for some
$\bar{K}\left(y_{1}, \ldots, y_{p}\right) \in \mathbb{F}\left[y_{1}, \ldots, y_{p}\right]$. Therefore,

$$
\begin{aligned}
Q\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right) & =Q_{1}\left(y_{1}, \ldots, y_{p}\right) \cdots Q_{j}\left(y_{1}, \ldots, y_{p}\right) Q_{j+1}\left(y_{1}, \ldots, y_{p}\right) \cdots Q_{m}\left(y_{1}, \ldots, y_{p}\right) \\
& =K\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right) \bar{K}\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right)
\end{aligned}
$$

Then $Q\left(y_{1}, \ldots, y_{p}\right)=K\left(y_{1}, \ldots, y_{p}\right) \bar{K}\left(y_{1}, \ldots, y_{p}\right)$, so $Q\left(y_{1}, \ldots, y_{p}\right)$ is reducible, a contradiction.

Any $P\left(y_{1}, \ldots, y_{t}\right) \in \mathbb{F}\left[y_{1}, \ldots, y_{t}\right]$ is said to be primary in y_{i} if the greatest common divisor of all exponents of y_{i} which appear in $P\left(y_{1}, \ldots, y_{t}\right)$ is equal to 1 and it is said to be primary if it is primary in every y_{i}.

Lemma 1.4.2. Let $Q\left(y_{1}, \ldots, y_{p}\right)$ be a primary irreducible polynomial of degree δ consisting of more than two terms and with constant term 1. Suppose that for certain positive integers t_{1}, \ldots, t_{p}, the irreducible factors of $Q\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right)$ are primary. Then there exist a polynomial $T\left(y_{1}, \ldots, y_{p}\right)$ and positive integers $\tau_{1}, \ldots, \tau_{p}$ with the following properties:
(a) $T\left(y_{1}, \ldots, y_{p}\right)$ is a primary irreducible polynomial with constant term 1.
(b) The degree of $T\left(y_{1}, \ldots, y_{p}\right)$ in each variable does not exceed the corresponding degree of $Q\left(y_{1}, \ldots, y_{p}\right)^{c} / 9$ ล
(c) For every $i, \tau_{i} / t_{i} \geq \delta^{-p}$.
(c) For every $i, \tau_{i} / t_{i} \geq \delta^{-p}$.
(d) The irreducible factors of $T\left(y_{1}^{\tau_{1}}, \ldots, y_{p}^{\tau_{p}}\right)$ are primary and consist of more than twe terms.
(e) The polynomials $T\left(y_{1}, y_{2}^{\tau_{2}}, \ldots, y_{p}^{\tau_{p}}\right), T\left(y_{1}^{\tau_{1}}, y_{2}, y_{3}^{\tau_{3}}, \ldots, y_{p}^{\tau_{p}}\right), \ldots$ and $T\left(y_{1}^{\tau_{1}}, y_{2}^{\tau_{2}}, \ldots, y_{p-1}^{\tau_{p-1}}, y_{p}\right)$ are all irreducible.

Proof. It is enough to consider the case $p=3$, and replace $y_{1}, y_{2}, y_{3}, t_{1}, t_{2}, t_{3}$ by x, y, z, p, q and r, respectively.

Step 1.((a),(e)) Let

$$
\begin{equation*}
Q\left(x, y^{q}, z^{r}\right)=Q_{1}(x, y, z) \cdots Q_{m}(x, y, z) \tag{6}
\end{equation*}
$$

where $Q_{i}(x, y, z)$'s are irreducible polynomials with constant term 1. By Lemma 1.4.1, Q_{1} is related to each Q_{i}. Thus Q_{1} is primary in x, but may not be primary in y and z. Let

$$
Q_{1}(x, y, z)=R\left(x, y^{q_{1}}, z^{r_{1}}\right)
$$

where $R(x, y, z)$ is primary. Then $R(x, y, z)$ is also irreducible. Let a be the degree of x in $Q(x, y, z)$. We will show that $\frac{q}{q_{1}} \leq a$ and $\frac{r}{r_{1}} \leq a$.
To see this, from (6), $m \leq a$ and $q_{1} \mid q$. Let $k=\frac{q}{q_{1}}$ and ε_{k} be a primitive k-th root of unity. Since $R(x, y, z)$ is primary, the k polynomials $R\left(x, \varepsilon_{k}^{i} y^{q_{1}}, z^{r_{1}}\right), i=1, \ldots, k$, are all distinct. Since each ε_{k}^{i} is a q_{1}-th power of a q-th root of unity, it follows from Lemma 1.4.1 that $\frac{q}{q_{1}}=k \leq m \leq a$. Similarly, $\frac{r}{r_{1}} \leq a$. Denote the degrees of y, z in $Q(x, y, z)$ by b, c, respectively, and the degrees of x, y, z in $R(x, y, z)$ by a_{1}, b_{1}, c_{1}, respectively. By (6), we obtain $a=m a_{1}$, and so $a_{1} \leq a$. Since $m b_{1} q_{1}=b q$ and $q \leq m q_{1}, b_{1} \leq b$. Similarly, $c_{1} \leq c$.

We replace p by p_{1} and let

$$
R\left(x^{p_{1}}, y, z^{r_{1}}\right)=R_{1}(x, y, z) \cdots R_{m^{\prime}}(x, y, z)
$$

where $R_{i}(x, y, z)$'s are irreducible polynomials with constant term 1 . Then R_{1} is primary in y, but may not be primary in x and z Let $\widetilde{\delta}$
where $S(x, y, z)$ is primary. This implies that $S(x, y, z)$ is irreducible. Then $\frac{p_{1}}{p_{2}} \leq b_{1}, \frac{r_{1}}{r_{2}} \leq b_{1}$ and $a_{2} \leq a_{1}, b_{2} \leq b_{1}, c_{2} \leq c_{1}$, where a_{2}, b_{2}, c_{2} are the degrees of x, y, z in $S(x, y, z)$, respectively.

We substitute q_{1} by q_{2} and let

$$
S\left(x^{p_{2}}, y^{q_{2}}, z\right)=S_{1}(x, y, z) \cdots S_{m^{\prime \prime}}(x, y, z)
$$

where $S_{i}(x, y, z)$'s are irreducible polynomials with constant term 1. Then $S_{1}(x, y, z)$ is primary in z, but may not be primary in x and y. Let

$$
S_{1}(x, y, z)=T\left(x^{\pi}, y^{\chi}, z\right),
$$

where $T(x, y, z)$ is primary. Then $T(x, y, z)$ is irreducible and $\chi \mid q_{2}$. Thus $\frac{p_{2}}{\pi} \leq c_{2}$, $\frac{q_{2}}{\chi} \leq c_{2}, a_{3} \leq a_{2}, b_{3} \leq b_{2}$ and $c_{3} \leq c_{2}$, where a_{3}, b_{3}, c_{3} are the degrees of x, y, z in $T(x, y, z)$, respectively.

We replace r_{2} by ρ. We shall show that $T\left(x, y^{\chi}, z^{\rho}\right)$ is irreducible. Suppose that $T\left(x, y^{\chi}, z^{\rho}\right)$ is reducible. Let

$$
T\left(x, y^{\chi}, z^{\rho}\right)=A(x, y, z) B(x, y, z)
$$

where $A(x, y, z)$ and $B(x, y, z)$ are non-constant polynomials. Then

$$
S_{1}\left(x, y, z^{\rho}\right)=T\left(x^{\pi}, y^{\chi}, z^{\rho}\right)=A\left(x^{\pi}, y, z\right) B\left(x^{\pi}, y, z\right)
$$

Let $l=\frac{q_{2}}{\chi}$ and ε_{l} is a primitive l-th root of unity. Since $T(x, y, z)$ is primary, the l polynomials $T\left(x^{\pi}, \varepsilon_{l}^{i} y^{\chi}, z^{\rho}\right), i=1, \ldots, l$, are all distinct. Since each ε_{l}^{i} is a χ-th power of a q_{2}-th root of unity, it follows that each $T\left(x^{\pi}, \varepsilon_{l}^{i} y^{\chi}, z^{\rho}\right)$ is obtained from $S_{1}\left(x, y, z^{\rho}\right)$ by replacing y by the product of a q_{2}-th root of unity and y. Consequently, each $T\left(x^{\pi}, \varepsilon_{l}^{i} y^{\chi}, z^{\rho}\right)$ is $S_{i}\left(x, y, z^{\rho}\right)$ and so $l \leq m^{\prime \prime}$. Hence

$$
\begin{aligned}
& S\left(x^{p_{2}}, y^{q_{2}}, z^{r_{2}}\right)=S_{1}\left(x, y, z^{r_{2}}\right) \cdots S_{m^{\prime \prime}}\left(x, y, z^{r_{2}}\right) \\
& =S_{1}\left(x, y, z^{\rho}\right) \cdots S_{m^{\prime \prime}}\left(x, y, z^{\rho}\right) \\
& \text { 6. }{ }^{2}=T\left(x^{\pi}, y^{\chi}, z^{\rho}\right) T\left(x^{\pi}, \xi_{l}^{1} y^{\chi}, z^{\rho}\right) \curvearrowright T\left(x^{\pi}, \varepsilon_{l}^{l} y^{\chi}, z^{\rho}\right) \cdots \\
& =A\left(x^{\pi}, y, z\right) B\left(x^{\pi}, y, z\right) A\left(x, \varepsilon_{l}^{1} y^{\chi}, z\right) B\left(x, \varepsilon_{l}^{1} y^{\chi}, z\right) \cdots
\end{aligned}
$$

Therefore, $A\left(x, \varepsilon_{l}^{1} y^{\chi}, z\right) \cdots A\left(x, \varepsilon_{l}^{l} y^{\chi}, z\right) \mid S\left(x^{p_{2}}, y^{q_{2}}, z^{r_{2}}\right)=R\left(x, y^{q_{2}}, z\right)$. Note that when we multiply out $A\left(x, \varepsilon_{l}^{1} y^{\chi}, z\right) \ldots A\left(x, \varepsilon_{l}^{l} y^{\chi}, z\right)$ each coefficient of $y^{\chi n}, n \in \mathbb{N}$ is a symmetric polynomial in $\varepsilon_{l}^{1}, \ldots, \varepsilon_{l}^{l}$ and vanishes unless n is a multiple of l, i.e. $A\left(x, \varepsilon_{l}^{1} y^{\chi}, z\right) \cdots A\left(x, \varepsilon_{l}^{l} y^{\chi}, z\right)$ is a polynomial in $x, y^{q_{2}}, z$. Thus $R(x, y, z)$ is reducible, which is a contradiction. Hence $T\left(x, y^{\chi}, z^{\rho}\right)$ is irreducible.

By the same proof as what has just been done, $T\left(x^{\pi}, y, z^{\rho}\right)$ is irreducible.

Step 2. (d) We have that
(1) $T\left(x^{\pi}, y^{\chi}, z^{\rho}\right)$ is a factor of $S\left(x^{p_{2}}, y^{q_{2}}, z^{r_{2}}\right)$,
(2) $S\left(x^{p_{2}}, y^{q_{2}}, z^{r_{2}}\right)$ is a factor of $R\left(x^{p_{1}}, y^{q_{1}}, z^{r_{1}}\right)$ and
(3) $R\left(x^{p_{1}}, y^{q_{1}}, z^{r_{1}}\right)$ is a factor of $Q\left(x^{p}, y^{q}, z^{r}\right)$.

Thus $T\left(x^{\pi}, y^{\chi}, z^{\rho}\right)$ is a factor of $Q\left(x^{p}, y^{q}, z^{r}\right)$. By assumption, the irreducible factors of $Q\left(x^{p}, y^{q}, z^{r}\right)$ are primary. Thus the irreducible factors of $T\left(x^{\pi}, y^{\chi}, z^{\rho}\right)$ are primary. Let

$$
T\left(x^{\pi}, y^{\chi}, z^{\rho}\right)=T_{1}(x, y, z) \cdots T_{t}(x, y, z)
$$

where $T_{i}(x, y, z)$'s are primary irreducible polynomials with constant term 1 . We must show that each $T_{i}(x, y, z)$ has more than two terms. Without loss of generality, suppose that $T_{1}(x, y, z)$ contains only two terms. Let $T_{1}(x, y, z)=1+c x^{\alpha} y^{\beta} z^{\gamma}$. Since $T_{1}(x, y, z)$ is an irreducible factor of $Q\left(x^{p}, y^{q}, z^{r}\right)$, by Lemma 1.4.1, other irreducible factors of $Q\left(x^{p}, y^{q}, z^{r}\right)$ are ε-related to $T_{1}(x, y, z)$. Thus $Q\left(x^{p}, y^{q}, z^{r}\right)$ is a polynomial in $x^{\alpha} y^{\beta} z^{\gamma}$. Then the exponents of x, y, z in each term of $Q(x, y, z)$ are respectively multiples of $\frac{\alpha}{p}, \frac{\beta}{q}, \frac{\gamma}{r}$.

Let A, B, C be the greatest common divisor of all exponents of $x^{\frac{\alpha}{p}}, y^{\frac{\beta}{q}}, z^{\frac{\gamma}{r}}$ which appear in $Q(x, y, z)$, respectively Let $\mathcal{T}=x^{A} y^{B} z^{C}$. Then $Q(x, y, z)$ is a polynomial in \mathcal{T} which contains more than two terms. Hence $Q(x, y, z)$, considered as polynomial in one variable \mathcal{T} of mఠre than two terms, must then be reducible, which is a contradiction.

Step 3. (b) From above, degree of x in $T(x, y, z)=a_{3} \leq a_{2}=$ degree of x in $S(x, y, z) \leq a_{1}=$ degree of x in $R(x, y, z) \leq a=$ degree of x in $Q(x, y, z)$, and so are the degrees of y, z.

Step 4. (c) We have $\frac{q}{q_{1}} \leq a, \frac{r}{r_{1}} \leq a, \frac{p_{1}}{p_{2}} \leq b_{1}, \frac{r_{1}}{r_{2}} \leq b_{1}, \frac{p_{2}}{\pi} \leq c_{2}, \frac{q_{2}}{\chi} \leq c_{2}, a_{2} \leq a_{1} \leq$ $a, b_{2} \leq b_{1} \leq b$ and $c_{2} \leq c_{1} \leq c$. Thus $\frac{\pi}{p}=\frac{\pi}{p_{2}} \cdot \frac{p_{2}}{p_{1}} \cdot \frac{p_{1}}{p} \geq \frac{1}{c_{2}} \cdot \frac{1}{b_{1}} \cdot 1 \geq \frac{1}{a b_{1} c_{2}} \geq \frac{1}{a b c} \geq \frac{1}{\delta^{3}}$, $\frac{\chi}{q}=\frac{\chi}{q_{2}} \cdot \frac{q_{2}}{q_{1}} \cdot \frac{q_{1}}{q} \geq \frac{1}{c_{2}} \cdot 1 \cdot \frac{1}{a} \geq \frac{1}{a b_{1} c_{2}} \geq \frac{1}{a b c} \geq \frac{1}{\delta^{3}}$ and $\frac{\rho}{r}=\frac{\rho}{r_{2}} \cdot \frac{r_{2}}{r_{1}} \cdot \frac{r_{1}}{r} \geq 1 \cdot \frac{1}{b_{1}} \cdot \frac{1}{a} \geq \frac{1}{a b_{1} c_{2}} \geq$
$\frac{1}{a b c} \geq \frac{1}{\delta^{3}}$, where $\delta \geq \max \{a, b, c\}$.

Lemma 1.4.3. Let $Q\left(y_{1}, \ldots, y_{p}\right)$ be a primary irreducible polynomial consisting of more than two terms and having 1 for its constant term. Then there exist only a finite number of sets of positive integers t_{1}, \ldots, t_{p} such that the irreducible factors of $Q\left(y_{1}^{t_{1}}, \ldots, y_{p}^{t_{p}}\right)$ are primary.

Proof. Let $T\left(y_{1}, \ldots, y_{p}\right)$ be the polynomial and $\tau_{1}, \ldots, \tau_{p}$ be the integers whose existence were shown in Lemma 1.4.2. Let

$$
\begin{equation*}
T\left(y_{1}^{\tau_{1}}, \ldots, y_{p}^{\tau_{p}}\right)=\overline{T_{1}}\left(y_{1}, \ldots, y_{p}\right) \cdots T_{t}\left(y_{1}, \ldots, y_{p}\right) \tag{7}
\end{equation*}
$$

where each $T_{i}\left(y_{1}, \ldots, y_{p}\right)$ is a primary irreducible polynomial consisting of more than two terms with constant term 1. We will show that $t=\tau_{1}=\tau_{2}=\ldots=\tau_{p}$. To prove this, let ε be a primitive τ_{1}-th root of unity. Thus the τ_{1} polynomials $T_{1}\left(\varepsilon^{i} y_{1}, y_{2} \ldots, y_{p}\right), i=1, \ldots, \tau_{1}$ are all distinct, and each of them is equal to some $T_{i}\left(y_{1}, \ldots, y_{p}\right)$. Then the product of these polynomials is a polynomial in $y_{1}^{\tau_{1}}, y_{2}, \ldots, y_{p}$. Since $T_{1}\left(\varepsilon^{1} y_{1}, y_{2}, \ldots, y_{p}\right), \ldots, T_{1}\left(\varepsilon^{\tau_{1}} y_{1}, y_{2}, \ldots, y_{p}\right)$ are irreducible factors of $T\left(y_{1}^{\tau_{1}}, \ldots, y_{p}^{\tau_{p}}\right)$ and they are all distinct, it follows that $\tau_{1} \leq t$. Assume that $\tau_{1}<t$. Then

$$
\begin{aligned}
T\left(y_{1}^{\tau_{1}}, \ldots, y_{p}^{\tau_{p}}\right) & =T_{1}\left(\varepsilon^{1} y_{1}, y_{2}, \ldots, y_{p}\right) \ldots T_{1}\left(\varepsilon^{\varepsilon_{1}} y_{1}, y_{2}, \ldots, y_{p}\right) \ldots \\
999 \cap) & =P\left(y_{1}^{\tau_{1}}, y_{2}, \ldots, y_{p}\right) \bar{P}\left(y_{1}^{\tau_{1}}, y_{2}, \ldots, y_{p}\right) .
\end{aligned}
$$

Thus $T\left(y_{1}, y_{2}^{\tau_{2}}, \ldots, y_{p}^{\tau_{p}}\right)=P\left(y_{1}, y_{2}, \ldots, y_{p}\right) \bar{P}\left(y_{1}, y_{2}, \ldots, y_{p}\right)$. Hence $T\left(y_{1}, y_{2}^{\tau_{2}}, \ldots, y_{p}^{\tau_{p}}\right)$ is reducible, which contradicts Lemma 1.4.2(e). Therefore, $\tau_{1}=t$. Similarly, $\tau_{2}=t, \ldots, \tau_{p}=t$.

Since $T_{1}\left(y_{1}, \ldots, y_{p}\right)$ is primary, let $a y_{1}^{\alpha_{1}} \cdots y_{p}^{\alpha_{p}}$ and $b y_{1}^{\beta_{1}} \cdots y_{p}^{\beta_{p}}$ be two terms of $T_{1}\left(y_{1}, \ldots, y_{p}\right)$ with α_{1} and α_{2} not proportional to β_{1} and β_{2}; that is $\alpha_{1} \beta_{2}-\beta_{1} \alpha_{2} \neq 0$. Without loss of generality, we may assume that $\alpha_{1} \beta_{2}-\beta_{1} \alpha_{2}>0$. Then $\alpha_{1}>0$ and $\beta_{2}>0$. There are t^{2} relations transforming y_{1} and y_{2} in $T_{1}\left(y_{1}, \ldots, y_{p}\right)$ by primitive
t-th roots of unity but there are only t distinct $T_{i}\left(y_{1}, \ldots, y_{p}\right)$'s. Then there must be t ways which leave some $T_{j}\left(y_{1}, \ldots, y_{p}\right)$ invariant. Without loss of generality, we may assume $T_{j}\left(y_{1}, \ldots, y_{p}\right)=T_{1}\left(y_{1}, \ldots, y_{p}\right)$ by taking appropriate composite relations. Let $\varepsilon^{u} y_{1}$ and $\varepsilon^{v} y_{2}$ be any of the t operations which leave $T_{1}\left(y_{1}, \ldots, y_{p}\right)$ invariant. Thus the congruences

$$
\alpha_{1} u+\alpha_{2} v \equiv 0(\bmod t), \beta_{1} u+\beta_{2} v \equiv 0(\bmod t)
$$

must have at least t solutions (u, v) with $0 \leq u, v<t$. Any solution of the above congruences is also a solution of the congruences

$$
\begin{gather*}
\left(\alpha_{1} \beta_{2}-\beta_{1} \alpha_{2}\right) u \equiv 0 \quad(\bmod t) \tag{8}\\
\beta_{2} v \equiv-\beta_{1} u \quad(\bmod t) \tag{9}
\end{gather*}
$$

Let h be the greatest common divisor of $\left(\alpha_{1} \beta_{2}-\beta_{1} \alpha_{2}\right)$ and t. Then (8) has precisely h solutions in u. Let k be the greatest common divisor of β_{2} and t. Then for each u satisfying (8), the congruence (9) has at most k solutions in v. Thus $h k \geq t$, so that either $h \geq t^{\frac{1}{2}}$ or $k \geq t^{\frac{1}{2}}$. Finally, we show that for each $i=1, \ldots, p$, we have $t_{i} \leq \delta^{p+4}$ where δ is the degree of $Q\left(y_{1}, \ldots, y_{p}\right)$, which will imply that the set of all $\left(t_{1}, \ldots, t_{p}\right)$ is finite.

Case 1. $h \geq t^{\frac{1}{2}}$, then $\alpha_{1} \beta_{2} \geq \alpha_{1} \beta_{2}-\beta_{1} \alpha_{2} \geq h \geq t^{\frac{1}{2}}$. Thus $\alpha_{1} \geq t^{\frac{1}{4}}$ or $\beta_{2} \geq t^{\frac{1}{4}}$.
Case 1.1. $\alpha_{1} \geq t^{\frac{1}{4}}$, let a be the degree of y_{1} in $T\left(y_{1}, \widetilde{0}, y_{p}\right)$. Then by (7), $t \cdot a \geq t \cdot \alpha_{1} \geq t \cdot t^{\frac{1}{4}}$, and so $a \geq t^{\frac{1}{4}}$. By Lemma 1.4.2(b), $a \leq \delta$ where δ is the degree of $Q\left(y_{1}, \ldots, y_{p}\right)$. Thus $t \leq \delta^{4}$. By Lemma 1.4.2(c), $\frac{t}{t_{i}} \geq \delta^{-p}$, and so $t_{i} \leq \delta^{p+4}$ for all $i=1, \ldots, p$.

Case 1.2. $\beta_{2} \geq t^{\frac{1}{4}}$, by similar argument, $t_{i} \leq \delta^{p+4}$.
Case 2. $k \geq t^{\frac{1}{2}}$, then $\beta_{2} \geq k \geq t^{\frac{1}{2}} \geq t^{\frac{1}{4}}$. Then we are led to Case 1.2.

1.5 Main theorem

Definition 1.5.1. For any $E_{1}(x), E_{2}(x) \in \mathcal{E}$, we say that $E_{1}(x), E_{2}(x)$ are relatively prime if they have no common divisor in \mathcal{E} except 1.
Lemma 1.5.2. Let $E_{1}(x)=1+\sum_{i=1}^{n} a_{i} f\left(\alpha_{i} x\right), E_{2}(x)=1+\sum_{i=1}^{r} b_{i} f\left(\beta_{i} x\right)$ and $E_{3}(x)=1+\sum_{i=1}^{s} c_{i} f\left(\gamma_{i} x\right)$ be elements in \mathcal{E} with α_{1}, β_{1} and γ_{1} strictly positive. If $E_{1}(x) \mid E_{2}(x) E_{3}(x)$ and $E_{1}(x), E_{2}(x)$ are relatively prime, then $E_{1}(x) \mid E_{3}(x)$
Proof. Assume that $E_{2}(x) E_{3}(x)=E_{1}(x) E_{4}(x)$ for some $E_{4}(x)=1+\sum_{i=1}^{m} d_{i} f\left(\delta_{i} x\right)$ in \mathcal{E}. Since $\alpha_{1}, \beta_{1}, \gamma_{1}$ are strictly positive, δ_{1} is strictly positive. By Lemma 1.2.2, for each $i=1, \ldots, 4, E_{i}(x)$ has a \mathbb{Q}^{+}-base for the RE-coefficients. Let $\left\{\mu_{1}, \ldots, \mu_{p}\right\}$ be a largest \mathbb{Q}^{+}-linearly independent subset of the set of elements in \mathbb{Q}^{+}-base of all $E_{i}(x)$'s. Hence

$$
\begin{array}{r}
E_{1}(x)=1+\sum_{i=1}^{n} a_{i} f\left(\left(\sum_{j=1}^{p} q_{i j} \mu_{j}\right) x\right), \\
E_{2}(x)=1+\sum_{i=1}^{r} b_{i} f\left(\left(\sum_{j=1}^{p} p_{i j} \mu_{j}\right) x\right), \\
E_{3}(x)=1+\sum_{i=1}^{s} c_{i} f\left(\left(\sum_{j=1}^{p} k_{i j} \mu_{j}\right) x\right) \text { and } \\
0 \\
E_{4}(x)=1+\sum_{i=1}^{m} a_{i} f\left(\left(\sum_{j=1}^{p} q_{i j} \mu_{j}\right) x\right), ~
\end{array}
$$

where $q_{i j}$'s, $p_{i j}$'s, $k_{i j}$'s, $l_{i j}$'s are nonnegative rational numbers. Let t_{j} be the least common multiple of the denominators of nonzero $q_{i j}, p_{i j}, k_{i j}$ and $l_{i j}$. Then

$$
\begin{aligned}
& E_{1}(x)=1+\sum_{i=1}^{n} a_{i} f\left(\left(\sum_{j=1}^{p} q_{i j} t_{j} \frac{\mu_{j}}{t_{j}}\right) x\right) \\
& E_{2}(x)=1+\sum_{i=1}^{r} b_{i} f\left(\left(\sum_{j=1}^{p} p_{i j} t_{j} \frac{\mu_{j}}{t_{j}}\right) x\right) \\
& E_{3}(x)=1+\sum_{i=1}^{s} c_{i} f\left(\left(\sum_{j=1}^{p} k_{i j} t_{j} \frac{\mu_{j}}{t_{j}}\right) x\right) \text { and } \\
& E_{4}(x)=1+\sum_{i=1}^{m} d_{i} f\left(\left(\sum_{j=1}^{p} l_{i j} t_{j} \frac{\mu_{j}}{t_{j}}\right) x\right) .
\end{aligned}
$$

Replacing $f\left(\frac{\mu_{j}}{t_{j}} x\right)$ by y_{j} in $E_{i}(x)$, we obtain a polynomial $Q_{i}\left(y_{1}, \ldots, y_{p}\right)$. Hence
$Q_{1} Q_{4}=Q_{2} Q_{3} ;$ that is, $Q_{1} \mid Q_{2} Q_{3}$. If there is a nonconstant common factor, $\left.P_{(} y_{1}, \ldots, y_{p}\right)$, of $Q_{1}\left(y_{1}, \ldots, y_{p}\right)$ and $Q_{2}\left(y_{1}, \ldots, y_{p}\right)$, then $\left.E_{P}\left(f\left(\frac{\mu_{1}}{t_{1}} x\right)\right), \ldots, f\left(\frac{\mu_{p}}{t_{p}} x\right)\right)$, RES corresponding to $P\left(y_{1}, \ldots, y_{p}\right)$, is a nonconstant common factor of $E_{1}(x)$ and $E_{2}(x)$, which is a contradiction. Thus $Q_{1}\left(y_{1}, \ldots, y_{p}\right), Q_{2}\left(y_{1}, \ldots, y_{p}\right)$ are relatively prime as polynomials, and so $Q_{1}\left(y_{1}, \ldots, y_{p}\right) \mid Q_{3}\left(y_{1}, \ldots, y_{p}\right)$ implying $E_{1}(x) \mid E_{3}(x)$.

We are now ready to prove our main theorem.
Theorem 1.5.3. Every RES of the form

$$
1+a_{1} f\left(\alpha_{1} x\right)+\ldots+a_{n} f\left(\alpha_{n} x\right)
$$

with $a_{1} \neq 0$ and α_{1} strictly positive, can be uniquely expressed as a product

$$
\left(S_{1} S_{2} \cdots S_{s}\right)\left(I_{1} I_{2} \cdots I_{i}\right)
$$

where S_{1}, \ldots, S_{s} are simple RES's such that the RE-coefficients in any one of them have irrational ratios to the RE-coefficients in any other, and I_{1}, \ldots, I_{i} are irreducible RES's.

Proof. Let $\left\{\mu_{1}, \ldots, \mu_{p}\right\}$ be a \mathbb{Q}^{+}-base for $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Then

$$
\begin{aligned}
& 66 E(x)=1+\sum_{i=1}^{n} a_{i} f\left(\left(\sum_{j=1}^{p} q_{i j} \mu_{j}\right) x\right) \curvearrowright \sum_{0}^{2}
\end{aligned}
$$

where $q_{i j}$'s are positive rational numbers and l_{j} is the least common multiple of the denominators of $q_{i j}, i=1, \ldots, n$. Replacing $f\left(\frac{\mu_{j}}{l_{j}} x\right)$ by y_{j}, we obtain the polynomial corresponding to $E(x), Q_{E}\left(y_{1}, \ldots, y_{p}\right)$. We resolve $Q_{E}\left(y_{1}, \ldots, y_{p}\right)$ into irreducible factors with constant term 1 and separate these factors into two groups. The first group contains irreducible factors consisting of two terms which will be proved in step 1 that they offer the simple factors S_{1}, \ldots, S_{s} and the second group
contains the rest which will be proved in step 2 that they provide the irreducible factors I_{1}, \ldots, I_{i}.

Step 1. For each irreducible factor consisting of two terms $T\left(y_{1}, \ldots, y_{p}\right)=$ $1+a y_{1}^{t_{1}} \cdots y_{p}^{t_{p}}$, replacing y_{j} in $T\left(y_{1}, \ldots y_{p}\right)$ by $f\left(\frac{\mu_{j}}{l_{j}} x\right)$, we get a simple RES $1+$ $a f\left(\left(t_{1} \frac{\mu_{1}}{l_{1}}+\ldots+t_{p} \frac{\mu_{p}}{l_{p}}\right) x\right)$. Partition the set of these simple RES's into sets such that the RE-coefficients of the RES's of any one set have rational ratios to one another, but have irrational ratios to the RE-coefficients of any other set. Then the product of the simple RES's in each set is also a simple RES. The simple RES's, so obtained, form the required simple RES's S_{1}, \ldots, S_{s}.

Step 2. For each irreducible factor consisting of three terms or more $U\left(y_{1}, \ldots, y_{r}\right) ; r \leq p$, we rewrite $U\left(y_{1}, \ldots, y_{r}\right)$ as $V\left(y_{1}^{m_{1}}, \ldots, y_{r}^{m_{r}}\right)$, where $V\left(y_{1}, \ldots, y_{r}\right)$ is primary. Then $V\left(y_{1}, \ldots, y_{r}\right)$ is irreducible. By Lemma 1.4.3, there exist only a finite number of set of positive integers t_{1}, \ldots, t_{r} such that the irreducible factors of $P\left(y_{1}^{t_{1}}, \ldots, y_{r}^{t_{r}}\right)$ are primary for all $P\left(y_{1}, \ldots, y_{r}\right) \in \mathbb{F}\left[y_{1}, \ldots, y_{r}\right]$. Let t_{1}, \ldots, t_{r} be natural numbers arisen from the factorization of $V\left(y_{1}^{t_{1}}, \ldots, y_{r}^{t_{r}}\right)$ with a maximum number, q, of irreducible and primary factors. Let

$$
\begin{equation*}
V\left(y_{1}^{t_{1}}, \ldots, y_{r}^{t_{r}}\right)=V_{1}\left(y_{1}, \ldots, y_{r}\right) \cdots V_{q}\left(y_{1}, \ldots, y_{r}\right) \tag{10}
\end{equation*}
$$

We claim that the RES's, obtained by replacing each y_{j} in $\widetilde{V_{1}}\left(y_{1}, \ldots, y_{r}\right), \ldots$, $V_{q}\left(y_{1}, \ldots, y_{r}\right)$ by $f\left(\frac{m_{j}}{t_{j}} \frac{\mu_{j}}{l_{j}} x\right)$, are all irreducible in \mathcal{E}.
Suppose on the contrary that at least one of them is not irreducible, say $\left.V_{1}\left(y_{1}, \ldots, y_{r}\right)\right)$. Let

$$
V_{1}\left(f\left(\frac{m_{1}}{t_{1}} \frac{\mu_{1}}{l_{1}} x\right), \ldots, f\left(\frac{m_{r}}{t_{r}} \frac{\mu_{r}}{l_{r}} x\right)\right)=\left(1+\sum_{i=1}^{s_{1}} c_{i} f\left(\gamma_{i} x\right)\right)\left(1+\sum_{i=1}^{s_{2}} d_{i} f\left(\delta_{i} x\right)\right)
$$

By Corollary 1.2.6, γ_{i}, δ_{i} are \mathbb{Q}_{0}^{+}-linear combinations of $\frac{\mu_{i}}{l_{i}}$'s. Thus

$$
\begin{aligned}
V_{1}\left(f\left(\frac{m_{1}}{t_{1}} \frac{\mu_{1}}{l_{1}} x\right), \ldots, f\left(\frac{m_{r}}{t_{r}} \frac{\mu_{r}}{l_{r}} x\right)\right)= & \left(1+\sum_{i=1}^{s_{1}} c_{i} f\left(\gamma_{i} x\right)\right)\left(1+\sum_{i=1}^{s_{2}} d_{i} f\left(\delta_{i} x\right)\right) \\
= & \left(1+\sum_{i=0}^{s_{1}} c_{i} f\left(\left(\sum_{j=0}^{r} q_{i j}^{\prime} \frac{\mu_{j}}{l_{j}}\right) x\right)\right) \\
& \left(1+\sum_{i=0}^{s_{2}} d_{i} f\left(\left(\sum_{j=0}^{r} q_{i j}^{\prime \prime} \frac{\mu_{j}}{l_{j}}\right) x\right)\right)
\end{aligned}
$$

for some $q_{i j}^{\prime}, q_{i j}^{\prime \prime} \in \mathbb{Q}_{0}^{+}$. Let h_{j} be the least common multiple of the denominators of $q_{1 j}^{\prime}, \ldots, q_{s_{1} j}^{\prime}, q_{1 j}^{\prime \prime}, \ldots, q_{s_{2} j}^{\prime \prime}$. Replacing $f\left(\frac{\mu_{j}}{l_{j}} x\right)$ by $y_{j}^{h_{j}}$, we get

$$
V_{1}\left(y_{1}^{\frac{m_{1}}{t_{1}} h_{1}}, \ldots, y_{r}^{\frac{m_{r}}{t_{r}} h_{p}}\right)=\left(1+\sum_{i=1}^{s_{1}} c_{i} \prod_{j=1}^{r} y_{j}^{q_{i j}^{\prime} h_{j}}\right)\left(1+\sum_{i=1}^{s_{2}} d_{i} \prod_{j=1}^{r} y_{j}^{q_{i j}^{\prime \prime} h_{j}}\right)
$$

Thus $\frac{m_{1} h_{1}}{t_{1}}, \ldots, \frac{m_{r} h_{r}}{t_{r}}$ are positive integers making $V_{1}\left(y_{1}^{\frac{m_{1} h_{1}}{t_{1}}}, \ldots, y_{r}^{\frac{m_{r} h_{r}}{r}}\right)$ reducible.
$\operatorname{From}(10), V\left(y_{1}^{t_{1} \frac{m_{1} h_{1}}{t_{1}}}, \ldots, y_{r}^{t_{r} \frac{m_{r} h_{r}}{t_{r}}}\right)-\frac{\lambda}{=} V_{1}\left(y_{1}^{\frac{m_{1} h_{1}}{t_{1}}}, \ldots, y_{r}^{\frac{m_{r} h_{r}}{t_{r}}}\right) \cdots V_{q}\left(y_{1}^{\frac{m_{1} h_{1}}{t_{1}}}, \ldots, y^{\frac{m_{r} h_{r}}{r_{r}}}\right)$ contains more than q primary irreducible factors, which is impossible.

To prove the uniqueness, assume that $\left(S_{1} \cdots S_{s}\right)\left(I_{1} \not I_{i}\right)$ and $\left(T_{1} \cdots T_{t}\right)\left(J_{1} \cdots J_{j}\right)$ are two factorizations of $E(x)$. Thus $\left(S_{1} \cdots S_{s}\right)\left(I_{1} \cdots I_{i}\right)$ is divisible by J_{1}. If $J_{1} \dagger S_{l}$ for some l, then J_{1} is a simple RES, by Corollary 1.2.5, which is a contradiction. Thus $J_{1} \mid\left(I_{1} \cdots I_{i}\right)$. If $J_{1} \mid I_{l}$ for some l, then $J_{1}=I_{l}$ which implies that we can cancel out all these identical irreducible factors. Having done so, it follows that $i=j$ and $\left\{F_{1}, \ldots, I_{i}\right\}$ is a permutation of $\left\{J_{1,0}, J_{j}\right\}$. Since $T_{10} \mid S_{1} \cdots S_{s}$, it follows from Lemma 1.5.2 that a factor of T_{1} is also a factor of, say S_{1}. Then we can write

$$
\begin{aligned}
& T_{1}=F_{1} T_{1}^{\prime} \\
& S_{1}=F_{1} S_{1}^{\prime},
\end{aligned}
$$

where F_{1} is a common factor of T_{1} and S_{1} and T_{1}^{\prime} and S_{1}^{\prime} are relatively prime. By Lemma 1.2.4, $q_{1}\left(\mathrm{~s}\right.$-index of $\left.T_{1}\right)=\left(\mathrm{s}\right.$-index of $\left.F_{1}\right)=l_{1}\left(\mathrm{~s}-\mathrm{index}\right.$ of $\left.S_{1}\right)$ for some $q_{1}, l_{1} \in \mathbb{Q}$. Assume that T_{1}^{\prime} and some S_{i}, say S_{2}, have a common factor. Write

$$
\begin{aligned}
& T_{1}^{\prime}=F_{2} T_{1}^{\prime \prime} \\
& S_{2}=F_{2} S_{2}^{\prime},
\end{aligned}
$$

where F_{2} is a common factor of T_{1}^{\prime} and S_{2} and $T_{1}^{\prime \prime}$ and S_{2}^{\prime} are relatively prime. Thus $q_{2}\left(\mathrm{~s}\right.$-index of $\left.T_{1}^{\prime}\right)=\left(\mathrm{s}\right.$-index of $\left.F_{2}\right)=l_{2}\left(\mathrm{~s}\right.$-index of $\left.S_{2}\right)$ for some $q_{2}, l_{2} \in \mathbb{Q}$. Then $l_{1} q_{2} q_{3}\left(\right.$ s-index of $\left.S_{1}\right)=q_{2} q_{3}\left(\right.$ s-index of $\left.F_{1}\right)=q_{1} q_{2} q_{3}\left(\right.$ s-index of $\left.T_{1}\right)=q_{1} q_{2}($ s-index of $\left.T_{1}^{\prime}\right)=q_{1}\left(\mathrm{~s}\right.$-index of $\left.F_{2}\right)=l_{2} q_{1}\left(\mathrm{~s}\right.$-index of $\left.S_{2}\right)$ for some $q_{3} \in \mathbb{Q}$. Consequently, s-index of $S_{1}=q\left(\right.$ s-index of $\left.S_{2}\right)$ for some $q \in \mathbb{Q}$, which is impossible. Thus $T_{1} \mid S_{1}$. Similarly, $S_{1} \mid T_{1}$. Then $S_{1}=T_{1}$. Continuing in this fashion, we have $\left\{S_{1}, \ldots, S_{s}\right\}$ is a permutation of $\left\{T_{1}, \ldots, T_{t}\right\}$.

Definition 1.5.4. For any elements $\alpha=r_{1} \theta_{1}+\ldots+r_{m} \theta_{m}$ and $\beta=s_{1} \theta_{1}+\ldots+s_{n} \theta_{n}$ in \mathcal{R}, we say that α is strictly less than β if $r_{1}<s_{1}$.
Corollary 1.5.5. Let $E(x) \sum_{i=0}^{n} a_{i} f\left(\alpha_{i} x\right)$. If α_{1} is strictly less than α_{0}, then $E(x)$ can be uniquely expressed as a product

$$
c\left(S_{1} S_{2} \cdots S_{s}\right)\left(I_{1} I_{2} \cdots I_{i}\right),
$$

where c is a constant RES, S_{1}, \ldots, S_{s} are simple RES's such that the RE-coefficients in any one of them have irrational ratios to the RE-coefficients in any other, and I_{1}, \ldots, I_{i} are irreducible RES's.
Proof. Let $E(x)=\sum_{i=0}^{n} a_{i} f\left(\alpha_{i} x\right)$. Then we can write $E(x)$ in the form

$$
a_{0} f\left(\alpha_{0} x\right)\left[1+\sum_{i=1}^{n}\left(\frac{a_{i}}{a_{0}}\right) f\left(\left(\alpha_{i}-\alpha_{0}\right) x\right)\right], \quad \alpha_{0}<\alpha_{1}<\ldots<\alpha_{n}
$$

Since α_{1} is strictly less than $\alpha_{0}, \alpha_{1}-\alpha_{0}$ is strictly positive. By Theorem 1.5.3, $1+\sum_{i=1}^{n}\left(\frac{a_{i}}{a_{0}}\right) f\left(\left(\alpha_{i}-\alpha_{0}\right) x\right)$ can be factored in the form

$$
\begin{equation*}
\left(S_{1} \cdots S_{s}\right)\left(I_{1} \cdots I_{i}\right) \tag{11}
\end{equation*}
$$

where S_{1}, \ldots, S_{s} are simple RES's such that the RE-coefficients in any one of them have irrational ratios to the RE-coefficients in any other, and I_{1}, \ldots, I_{i} are
irreducible RES's. If $\alpha_{0}=\overline{0}$, then $a_{0} f\left(\alpha_{0} x\right)$ is a constant RES, and we are done. For the case $\alpha_{0} \neq \overline{0}, a_{0} f\left(\alpha_{0} x\right)$ is a simple RES. If $\alpha_{0}=q_{0}\left(\mathrm{~s}\right.$-index of $\left.S_{j_{0}}\right)$ for some $j_{0}=1, \ldots, s$ and $q_{0} \in \mathbb{Q}$, then $\bar{S}_{j_{0}}=a_{0} f\left(\alpha_{0} x\right) S_{j_{0}}$ is simple, so the factorization obtain by replacing $S_{j_{0}}$ by $\bar{S}_{j_{0}}$ in (11) is the factorization needed for $E(x)$. If $\alpha_{0} \neq q\left(\right.$ s-index of $\left.S_{j}\right)$ for all $j=1, \ldots, s$ and $q \in \mathbb{Q}$, then $S_{s+1}=a_{0} f\left(\alpha_{0} x\right)$ is a simple factor of $E(x)$ and $E(x)=\left(S_{1} \cdots S_{s} S_{s+1}\right)\left(I_{1} \cdots I_{i}\right)$ is the required factorization.

CHAPTER II

Shapiro's factorization theorem

2.1 Backgrounds

Lemma 2.1.1. Let $F(x)=\sum_{i=1}^{n} P_{i}(x) A_{i}^{Q(x)}$, where $A_{i} \in \mathbb{C} \backslash\{0\}, P_{i}(x) \in \mathbb{C}[x] \backslash\{0\}$ and $Q(x) \in \mathbb{Z}[x] \backslash \mathbb{Z}$. If $F(x)=0$ for all sufficient large integers x, then there exist $i_{0}, j_{0}, i_{0} \neq j_{0}$ such that $\left|\frac{A_{i_{0}}}{A_{j_{0}}}\right|=1$.

Proof. Suppose that $\left|\frac{A_{i} i}{A_{j}}\right| \neq 1$ for all $i \neq j$. Let $Q(x)=c_{m} x^{m}+\ldots+c_{0}, c_{m} \neq 0$, and let $Z=\{x \in \mathbb{Z} \mid F(x)=0\}$. Without loss of generality, arrange the A_{i} 's so that $\left|A_{1}\right|<\ldots<\left|A_{n}\right|$. Assume that $c_{m}>0$. For $x \in Z$,

$$
0=\frac{F(x)}{A_{n}^{Q(x)}}=P_{1}(x)\left(\frac{A_{1}}{A_{n}}\right)^{Q(x)}+\ldots+P_{n-1}(x)\left(\frac{A_{n}-1}{A_{n}}\right)^{Q(x)}+P_{n}(x) .
$$

The limit on the right hand side does not exists, which is a contradiction. The case $c_{m}<0$ is similar.

From Lemma 2.1.1, there exist i, j sueh that $\left.\frac{T_{i}}{A_{i}} \right\rvert\,=1, i \neq j$. This leads us to consider an expression, called a pexponential polynomial, of thê form

$$
\begin{aligned}
& \text { FQ } \\
& F {\left[P_{01}(x) \rho_{01}^{Q(x)}+P_{02}(x) \rho_{02}^{Q(x)}+\ldots+P_{0 n_{0}}(x) \rho_{0 n_{0}}^{Q(x)}\right] A_{0}^{Q(x)}+} \\
& {\left[P_{11}(x) \rho_{11}^{Q(x)}+P_{12}(x) \rho_{12}^{Q(x)}+\ldots+P_{1 n_{1}}(x) \rho_{1 n_{1}}^{Q(x)}\right] A_{1}^{Q(x)}+} \\
& {\left[P_{21}(x) \rho_{21}^{Q(x)}+P_{22}(x) \rho_{22}^{Q(x)}+\ldots+P_{2 n_{2}}(x) \rho_{2 n_{2}}^{Q(x)}\right] A_{2}^{Q(x)}+\ldots+} \\
& {\left[P_{k 1}(x) \rho_{k 1}^{Q(x)}+P_{k 2}(x) \rho_{k_{2}}^{Q(x)}+\ldots+P_{k n_{k}}(x) \rho_{k n_{k}}^{Q(x)}\right] A_{k}^{Q(x)}, }
\end{aligned}
$$

where $\rho_{i j}$ is a $\delta_{i j}$-th root of unity, $\rho_{i 1}=1, P_{i j}(x) \in \mathbb{C}[x] \backslash\{0\}, Q(x) \in \mathbb{Z}[x] \backslash \mathbb{Z}$, $A_{i} \in \mathbb{C} \backslash\{0\}, A_{0}=1$ and $\left|A_{0}\right|<\left|A_{1}\right|<\ldots<\left|A_{k}\right|$.

Rewrite $F(x)=\sum_{i=0}^{k} F_{i}(x)$, where $F_{i}(x)=A_{i}^{Q(x)}\left(\sum_{j=1}^{n_{i}} P_{i j}(x) \rho_{i j}^{Q(x)}\right)$.
Let $S_{i}=\left\{\rho_{i 1}, \rho_{i 2}, \ldots, \rho_{i n_{i}}\right\}$ and define the rank of $F_{i}(x)$ to be the least common multiple of the order of the roots of unity in S_{i} and the rank of $F(x)$ to be the least common multiple of the ranks of $F_{i}(x), i=0,1, \ldots, k$, denoted by $R(F)$.

Let $F(x)=\sum_{i=0}^{k} A_{i}^{Q(x)}\left(\sum_{j=1}^{n_{i}} P_{i j}(x) \rho_{i j}^{Q(x)}\right)$ be a pexponential polynomial. If each $P_{i j}(x) \in \overline{\mathbb{Q}}[x] \backslash\{0\}, \log \left(\rho_{i j} A_{i}\right) \in \overline{\mathbb{Q}} \backslash\{0\}, Q(0)=0$ and $Q^{\prime}(0) \neq 0$, then $F(x)$ satisfies the result of the Skolem-Mahler-Lech theorem (Theorem 2.1.2), and will be called an SML pexponential polynomial and denoted by SML-pex. This particular shape of SML-pex will be kept standard throughout the rest of this chapter.

Let V denote the set of all nonzero SML-pex $F(x)$ with infinitely many integer zeros.

Theorem 2.1.2. If $F(x) \in V$, then there exist an integer Δ and a certain set $\left\{d_{1}, \ldots, d_{l}\right\}$ of least positive residues modulo Δ such that $F(x)$ vanishes for all integers $x \equiv d_{j}(\bmod \Delta), j=1, \ldots, l$, and $F(x)$ vanishes only finitely often on other integers.

The integer Δ, which appears in Theorem 2.1.2, is called a period of $F(x)$. In fact, any multiple of a period is also a period. We shall call the least positive period the basic period of $F(x)$.

For any $F(x) \in V$ with a period Δ, we shall denote by $\mathcal{P}(F, \Delta)$ the set of all least positive residues d_{1}, \ldots, d_{l} modulo Δ mentioned in Theorem 2.1.2.

2.2 Lemmas and factorization theorem

Lemma 2.2.1. Let $F(x) \in V$. Then for each $i=1,2, \ldots, k, \quad \sum_{j=1}^{n_{i}} P_{i j}(x) \rho_{i j}^{Q(d)}=0$. Proof. Let $\beta \in \mathbb{N}$. Substituting $x=t \beta \Delta+d$, where $t \in \mathbb{Z}$ and $d \in \mathcal{P}(F, \Delta)$, we get $\quad 0=\frac{F(t \beta \Delta+d)}{A_{k}^{Q(t \beta \Delta+d)}}=\sum_{i=0}^{k}\left(\frac{A_{i}}{A_{k}}\right)^{Q(t \beta \Delta+d)}\left(\sum_{j=1}^{n_{i}} P_{i j}(t \beta \Delta+d) \rho_{i j}^{Q(t \beta \Delta+d)}\right), A_{0}=1$. Assuming that the leading coefficient of $Q(x)$ is positive ; the other possibility is treated similarly, then $\sum_{j=1}^{n_{k}} P_{k j}(t \beta \Delta+d) \rho_{k j}^{Q(t \beta \Delta+d)} \rightarrow 0$, as $t \rightarrow \infty$. Taking $t=u \delta_{k}$, where $u \in \mathbb{Z}, u \rightarrow \infty$
and $\delta_{k}=$ l.c.m. $\left(\delta_{k 1}, \delta_{k 2}, \ldots, \delta_{k n_{k}}\right)$, we obtain $\sum_{j=1}^{n_{k}} P_{k j}\left(u \delta_{k} \beta \Delta+d\right) \rho_{k j}^{Q(d)} \rightarrow 0$. The polynomial $\sum_{j=1}^{n_{k}} P_{k j}(x) \rho_{k j}^{Q(d)}$ tending to 0 as $x \rightarrow \infty$ on \mathbb{Z} implies that it must vanish identically, and so

$$
\begin{aligned}
0=F\left(u \delta_{k} \beta \Delta+d\right) & =\sum_{i=0}^{k} A_{i}^{Q\left(u \delta_{k} \beta \Delta+d\right)}\left(\sum_{j=1}^{n_{i}} P_{i j}\left(u \delta_{k} \beta \Delta+d\right) \rho_{i j}^{Q\left(u \delta_{k} \beta \Delta+d\right)}\right) \\
& =\sum_{i=0}^{k-1} A_{i}^{Q\left(u \delta_{k} \beta \Delta+d\right)}\left(\sum_{j=1}^{n_{i}} P_{i j}\left(u \delta_{k} \beta \Delta+d\right) \rho_{i j}^{Q\left(u \delta_{k} \beta \Delta+d\right)}\right) .
\end{aligned}
$$

Repeating the above steps again, we have

$$
0=\frac{F\left(u \delta_{k} \beta \Delta+d\right)}{A_{k-1}^{Q\left(u \delta_{k} \beta \Delta+d\right)}}=\sum_{i=0}^{k-1}\left(\frac{A_{i}}{A_{k-1}}\right)^{Q\left(u \delta_{k} \beta \Delta+d\right)}\left(\sum_{j=1}^{n_{i}} P_{i j}\left(u \delta_{k} \beta \Delta+d\right) \rho_{i j}^{Q\left(u \delta_{k} \beta \Delta+d\right)}\right) .
$$

Thus $\sum_{j=1}^{n_{k-1}} P_{(k-1) j}\left(u \delta_{k} \beta \Delta+d\right) \rho_{(k-1) j}^{Q\left(u \delta_{k} \beta \Delta+d\right)}$ $\rightarrow 0$ as $u \rightarrow \infty$
Taking $u=v \delta_{k-1}, v \in \mathbb{Z}, v \rightarrow \infty$ and $\delta_{k-1}=$ l.c.m. $\left(\delta_{(k-1) 1}, \ldots, \delta_{(k-1) n_{k-1}}\right)$, then $\sum_{j=1}^{n_{k-1}} P_{(k-1) j}\left(v \delta_{k-1} \delta_{k} \beta \Delta+d\right) \rho_{(k-1) j}^{Q(d)} \rightarrow 0$, as $v \rightarrow \infty$, so $\sum_{j=1}^{n_{k-1}} P_{(k-1) j}(x) \rho_{(k-1) j}^{Q(d)}=0$.

Continuing in this fashion, we get $\sum_{j=1}^{n_{i}} P_{i j}(x) \rho_{i j}^{Q(d)}=0$ as required.
Let $F(x)=\sum_{i=0}^{k} A_{i}^{Q(x)}\left(\sum_{j=1}^{n_{i}} P_{i j}(x) \rho_{i j}^{Q(x)}\right) \in V, d \in \mathcal{P}(F, \Delta)$ and $\beta \in \mathbb{N}$. Define $R_{(\beta, d)}(x)=Q^{\prime}(d) x+\frac{Q^{\prime \prime}(d)}{2!} x^{2} \beta \Delta+\ldots+\frac{Q^{(m)}(d)}{m!} x^{m}(\beta \Delta)^{m-1}$, abbreviated by $R(x)$.

By hypothesis (Q, Δ, d, β), we mean :
(1) For $J_{k 1}, \ldots, J_{k l_{k}}$ with $\rho_{k J_{k t}}^{\beta \Delta}=\eta_{k J_{k t}} \neq 1\left(t=1, \ldots, l_{k}\right)$, assume that there exist integers $j_{k 1}, \ldots, j_{k l_{k}}$ such that

$$
\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & \eta_{k J_{k 1}}^{R\left(j_{k 1}\right)} & \ldots & \eta_{k J_{k l_{k}}}^{R\left(j_{k 1}\right)} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \eta_{k J_{k 1}}^{R\left(j_{k l_{k}}\right)} & \ldots & \eta_{k J_{k l_{k}}}^{R\left(j_{k l_{k}}\right)}
\end{array}\right| \neq 0
$$

(2) For $J_{(k-1) 1}, \ldots, J_{(k-1) l_{k-1}}$ with $\rho_{(k-1) J_{(k-1) t}}^{\beta \Delta}=\eta_{(k-1) J_{(k-1) t}} \neq 1\left(t=1, \ldots, l_{k-1}\right)$, assume that there exist integers $j_{(k-1) 1}, \ldots, j_{(k-1) l_{k-1}}$ such that

$$
\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \left.\eta_{(k-1) J_{(k-1)}}^{R\left(j_{(k-1),} \delta_{k}\right.}\right) & \cdots & \eta_{(k-1) J_{(k-1) l_{k-1}}^{R\left(j_{(k-1)} \delta_{k}\right)}}^{(\cdots} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \eta_{(k-1) J_{(k-1) 1}}^{R\left(j_{(k-1)} l_{k-1} \delta_{k}\right)} & \cdots & \eta_{(k-1) J_{(k-1) l_{k-1}}^{R\left(j_{(k-1) l_{k-1}} \delta_{k}\right)}}
\end{array}\right| \neq 0,
$$

where $\delta_{k}=$ l.c.m. $\left(\delta_{k 1}, \ldots, \delta_{k n_{k}}\right)$.
(k) For $J_{11}, \ldots, J_{1 l_{1}}$ with $\rho_{1 J_{1 t}}^{\beta \Delta}=\eta_{1 J_{1 t}} \neq 1\left(t=1, \ldots, l_{1}\right)$, assume that there exist integers $j_{11}, \ldots, j_{1 l_{1}}$ such that

Lemma 2.2.2. If $F(x) \in V$ satisfies the hypothesis (Q, Δ, d, β), then for each $i=1, \ldots, k$, we have

$$
0=\sum_{\substack{j \\ \rho_{i j}^{\beta \Delta}=1}} P_{\rho}(x) \rho_{i j}^{Q(d)}\left(:=\sum_{j \neq J_{i t}} P_{i j}(x) \rho_{i j}^{Q(d)}\right) \text { and } \quad P_{i J_{i 1}}(x)=\ldots=P_{i J_{i l_{i}}}(x)=0
$$

Proof. Substituting $x=t \beta \Delta+d$, where $t \in \mathbb{Z}$, we get

$$
0=\frac{F(t \beta \Delta+d)}{A_{k}^{Q(t \beta \Delta+d)}}=\sum_{i=0}^{k}\left(\frac{A_{i}}{A_{k}}\right)^{Q(t \beta \Delta+d)}\left(\sum_{j=1}^{n_{i}} P_{i j}(t \beta \Delta+d) \rho_{i j}^{Q(t \beta \Delta+d)}\right) .
$$

Assuming that the leading coefficient of $Q(x)$ is positive ; the other possibility is treated similarly, then $\sum_{j=1}^{n_{k}} P_{k j}(t \beta \Delta+d) \rho_{k j}^{Q(t \beta \Delta+d)} \rightarrow 0$, as $t \rightarrow \infty$. Taking $t=u \delta_{k}+j_{k 1}$, where $u \in \mathbb{Z}$ and $\delta_{k}=$ l.c.m. $\left(\delta_{k 1}, \delta_{k 2}, \ldots, \delta_{k n_{k}}\right)$, we get

$$
\begin{aligned}
& \sum_{j=1}^{n_{k}} P_{k j}\left(\left(u \delta_{k}+j_{k 1}\right) \beta \Delta+d\right) \rho_{k j}^{Q\left(\left(u \delta_{k}+j_{k 1}\right) \beta \Delta+d\right)} \\
& =\left[\sum_{j \neq J_{k t}} P_{k j}\left(\left(u \delta_{k}+j_{k 1}\right) \beta \Delta+d\right) \rho_{k j}^{Q(d)}\right]+\left[\sum_{j=J_{k t}} P_{k j}\left(\left(u \delta_{k}+j_{k 1}\right) \beta \Delta+d\right) \rho_{k j}^{Q(d)} \eta_{k j}^{R\left(j_{k 1}\right)}\right] \\
& \rightarrow 0, \text { as } u \rightarrow \infty .
\end{aligned}
$$

Being a polynomial tending to 0 as the variable taking arbitrarily large integral values, we deduce that

$$
\left[\sum_{j \neq J_{k t}} P_{k j}(x) \rho_{k j}^{Q(d)}\right]+\left[\sum_{j=J_{k t}} P_{k j}(x) \rho_{k j}^{Q(d)} \eta_{k j}^{R\left(j_{k 1}\right)}\right]=0 .
$$

Continuing in this fashion, we obtain

$$
\begin{align*}
& {\left[\sum_{j \neq J_{k t}} P_{k j}(x) \rho_{k j}^{Q(d)}\right]+\left[\sum_{j=J_{k t}} P_{k j}(x) \rho_{k j}^{Q(d)} \eta_{k j}^{R\left(j_{k 1}\right)}\right]=0} \tag{1}\\
& {\left[\sum_{j \neq J_{k t}} P_{k j}(x) \rho_{k j}^{Q(d)}\right]+\left[\sum_{j=J_{k t}} P_{k j}(x) \rho_{k j}^{Q(d)} \eta_{k j}^{R\left(j_{k 2}\right)}\right]=0} \tag{2}\\
& {\left[\sum_{i \neq J_{k f}} P_{k j}(x) \rho_{k j}^{Q(d)}\right]+\left[\sum_{i=J_{k+1}} P_{k j}(x) \rho_{k j}^{Q(d)} \eta_{k j}^{R\left(j_{k l}\right)}\right]=0 .} \tag{k}
\end{align*}
$$

$$
\left[\sum_{j \neq J_{k t}} P_{k j}(x) \rho_{k j}^{Q(d)}\right]+\left[\sum_{j=J_{k t}} P_{k j}(x) \rho_{k j}^{Q(d)}\right]=0
$$

Since the determinant

$$
\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & \eta_{k J_{k 1}}^{R\left(j_{k 1}\right)} & \ldots & \eta_{k J_{k l_{k}}}^{R\left(j_{k 1}\right)} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \eta_{k J_{k 1}}^{R\left(j_{k l_{k}}\right)} & \ldots & \eta_{k J_{k l_{k}}}^{R\left(j_{k l_{k}}\right)}
\end{array}\right| \neq 0
$$

it follows that $\sum_{j \neq J_{k t}} P_{k j}(x) \rho_{k j}^{Q(d)}=0$ and $P_{k J_{k t}}(x) \rho_{k J_{k t}}^{Q(d)}=0$, i.e. $P_{k J_{k t}}(x)=0$ for all $t=1, \ldots, l_{k}$; that is, the result of the lemma holds for $i=k$. Observe that under the hypothesis (Q, Δ, d, β) what we have done above is to reduce the number of terms in the sum representing $F(x)$ by choosing appropriate integral values of x. We now repeat the steps by taking $x=u \delta_{k} \beta \Delta+d, u \in \mathbb{Z}$. Thus

$$
0=\frac{F\left(u \delta_{k} \beta \Delta+d\right)}{A_{k-1}^{Q\left(u \delta_{k} \beta \Delta+d\right)}}=\sum_{i=0}^{k-1}\left(\frac{A_{i}}{A_{k-1}}\right)^{Q\left(u \delta_{k} \beta \Delta+d\right)}\left(\sum_{j=1}^{n_{i}} P_{i j}\left(u \delta_{k} \beta \Delta+d\right) \rho_{i j}^{Q\left(j \delta_{k} \beta \Delta+d\right)}\right) .
$$

Then $\quad \sum_{j=1}^{n_{k-1}} P_{(k-1) j}\left(u \delta_{k} \beta \Delta+d\right) \rho_{(k-1) j}^{Q\left(u \delta_{k} \beta \Delta+d\right)} \rightarrow 0$, as $u \rightarrow \infty$.
Taking $u=v \delta_{k-1}+j_{(k-1) 1}$, where $v \in \mathbb{Z}$ and $\delta_{k-1}=$ l.c.m. $\left(\delta_{(k-1) 1}, \ldots, \delta_{(k-1) n_{k-1}}\right)$, we get

$$
\begin{aligned}
& \sum_{j=1}^{n_{k-1}} P_{(k-1) j}\left(\left(v \delta_{k-1}+j_{(k-1) 1}\right) \delta_{k} \beta \Delta+d\right) \rho_{(k-1) j}^{Q\left(\left(v \delta_{k-1}+j_{(k-1) 1}\right) \delta_{k} \beta \Delta+d\right)} \\
& =\left[\sum_{j \neq J_{(k-1) t}} P_{(k-1) j}\left(\left(v \delta_{k-1}+j_{(k-1) 1}\right) \delta_{k} \beta \Delta+d\right) \rho_{(k-1) j}^{Q(d)}\right]+ \\
& \quad\left[\sum_{j=J_{(k-1) t}} P_{(k-1) j}\left(\left(v \delta_{k-1}+j_{(k-1) 1}\right) \delta_{k} \beta \Delta+d\right) \rho_{(k-1) j}^{Q(d)} \eta_{(k-1) j}^{R\left(j_{(k-1) 1} \delta_{k}\right)}\right] \\
& \rightarrow 0, \text { as } v \rightarrow \infty .
\end{aligned}
$$

As polynomials, we infer as above that cud\}ld

$$
\bigvee_{j \neq J_{(k-1) t}} Q^{\prime} P_{(k-1) j}(x) \rho_{(k-1) j}^{Q(d)}+[\sum_{j=J_{(k-1) t}}^{\sigma} P_{(k-1) j} \overbrace{(x)} \rho_{(k-1) j}^{Q(d)} \eta_{(k-1), j}^{R\left(j_{(k-1) 1} \delta_{k}\right)}]=0,
$$

and so

$$
\begin{align*}
& {\left[\sum_{j \neq J_{(k-1) t}} P_{(k-1) j}(x) \rho_{(k-1) j}^{Q(d)}\right]+\left[\sum_{j=J_{(k-1) t}} P_{(k-1) j}(x) \rho_{(k-1) j}^{Q(d)} \eta_{(k-1) j}^{R\left(j_{(k-1) 1} \delta_{k}\right)}\right]=0} \tag{1}\\
& {\left[\sum_{j \neq J_{(k-1) t}} P_{(k-1) j}(x) \rho_{(k-1) j}^{Q(d)}\right]+\left[\sum_{j=J_{(k-1) t}} P_{(k-1) j}(x) \rho_{(k-1) j}^{Q(d)} \eta_{(k-1) j}^{R\left(j_{(k-1) 2} \delta_{k}\right)}\right]=0} \tag{2}\\
& \vdots \\
& {\left[\sum_{j \neq J_{(k-1) t}} P_{(k-1) j}(x) \rho_{(k-1) j}^{Q(d)}\right]+\left[\sum_{j=J_{(k-1) t}} P_{(k-1) j}(x) \rho_{(k-1) j}^{Q(d)} \eta_{(k-1) j}^{R\left(j_{(k-1) l_{k-1}} \delta_{k}\right)}\right]=0 .}
\end{align*}
$$

$$
\left[\sum_{j \neq J_{(k-1) t}} P_{(k-1) j}(x) \rho_{(k-1) j}^{Q(d)}\right]+\left[\sum_{j=J_{(k-1) t}} P_{(k-1) j}(x) \rho_{(k-1) j}^{Q(d)}\right]=0
$$

Since the determinant

it follows that $\sum_{j \neq J_{(k-1) t}} P_{(k-1) j}(x) \rho_{(k-1) j}^{Q(d)}=0$ and $P_{(k-1) J_{(k-1) t}}(x) \rho_{(k-1) J_{(k-1) t}}^{Q(d)}=0$ for all $t=1, \ldots, l_{k-1}$, i.e. the result holds for $i=k-1$.

Continuing in this pattern, we get the desired result.
Lemma 2.2.3. Let $F(x) \in V, d \in \mathcal{P}(F, \Delta)$ and $\beta \in \mathbb{N}$. If $F(x)$ satisfies the hypothesis (Q, Δ, d, β), then $F_{i}^{\beta}(x)=\sum_{j \neq J_{i t}} P_{i j}(x) \rho_{i j}^{Q(x)} \in V, i=1, \ldots, k$ with a period $\beta \Delta$.

Proof. By Lemma 2.2.2, $\sum_{j \neq J_{t}} P_{i j}(x) \rho_{i j}^{Q(d)}=0$. Replacing x by $u \beta \Delta+d, u \in \mathbb{Z}$, we obtain, for all $i, \overline{0}=\sum_{j \neq J_{t}} P_{i j}(u \beta \Delta+d) \rho_{i j}^{Q(d)}=\sum_{j \neq J_{t}} P_{i j}(u \beta \Delta+d) \rho_{i j}^{Q(u \beta \Delta+d)}=$ $F_{i}^{\beta}(u \beta \Delta+d)$.

919 Q $90 \cdot 19$

Lemma 2.2.4. Let $G(x)=\left[P_{1}(x) \rho_{1}^{Q(x)}+P_{2}(x) \rho_{2}^{Q(x)}+\ldots+P_{n}(x) \rho_{n}^{Q(x)}\right] A^{Q(x)}$ be an element in V with order of $\rho_{i}=\delta_{i}, P_{i}(x) \neq 0(i=1, \ldots n)$. If $G(x)$ satisfies the hypothesis $(Q, \Delta, d, 1)$, then l.c.m $\left(\delta_{1}, \ldots, \delta_{m}\right) \mid \Delta$ where m is the number of ρ_{i} 's in $G^{1}(x):=A^{Q(x)} \sum_{j, \rho_{j}^{\Delta}=1} P_{j}(x) \rho_{j}^{Q(x)}$.

Proof. Since $\rho_{i}^{\Delta}=1$ for all ρ_{i} in $G^{1}(x), \delta_{i} \mid \Delta(i=1, \ldots, m)$, and so l.c.m. $\left(\delta_{1}, \ldots, \delta_{m}\right) \mid \Delta$.

Theorem 2.2.5. Let $F(x) \in V$ with the basic period Δ and $\operatorname{rank} r(F)$. If $F(x)$ satisfies the hypothesis $(Q, \Delta, d, 1)$, then

$$
F(x)=\left\{\prod_{d \in \mathcal{P}(F, \Delta)}\left(\eta^{Q(x)}-\eta^{Q(d)}\right)\right\} G(x),
$$

where η is a primitive Δ-th root of unity and $G(x)$ is a pexponential polynomial. Proof. Recall that $F(x)=\sum_{i=0}^{k} F_{i}(x), F_{i}(x)=A_{i}^{Q(x)}\left(\sum_{j=1}^{n_{i}} P_{i j}(x) \rho_{i j}^{Q(x)}\right)$, and $F_{i}^{1}(x):=$ $A_{i}^{Q(x)}\left(\sum_{j, \rho_{i j}^{\Delta}=1} P_{i j}(x) \rho_{i j}^{Q(x)}\right)=A_{i}^{Q(x)}\left(\sum_{j \neq J_{i t}}(\right.$ same $\left.)\right)$. By Lemma 2.2.2, $F_{i}(x)=F_{i}^{1}(x)$. By Lemma 2.2.3, $F_{i}(x)=F_{i}^{1}(x) \in V$ with a period Δ, and so Lemma 2.2.4 implies $r\left(F_{i}^{1}\right) \mid \Delta$, i.e. $\rho_{i j}$ is a Δ-root of unity. Rewriting $F_{i}^{1}(x)$ as a polynomial in x with exponential coefficients, we have $F_{i}^{1}(x)=A_{i}^{Q(x)}\left(\sum_{t} x^{t}\left(p_{1_{t}} \rho_{1}^{Q(x)}+\ldots+p_{i_{t}} \rho_{i_{t}}^{Q(x)}\right)\right)$, and $\rho_{j}^{\Delta}=1\left(j=1, \ldots, i_{t}\right)$. For each $d \in \mathcal{P}(F, \Delta)$ and $u \in \mathbb{Z}$,

$$
\begin{aligned}
0 & =F_{i}^{1}(u \Delta+d) \\
& =A_{i}^{Q(u \Delta+d)}\left(\sum_{t}(u \Delta+d)^{t}\left(p_{1_{t}} \rho_{1}^{Q(u \Delta+d)}+\ldots+p_{i_{t}} \rho_{i_{t}}^{Q(u \Delta+d)}\right)\right) \\
& =A_{i}^{Q(u \Delta+d)}\left(\sum_{t}(u \Delta+d)^{t}\left(p_{1_{t}} \rho_{1}^{Q(d)}+\ldots+p_{i_{t}} \rho_{i_{t}}^{Q(d)}\right)\right) .
\end{aligned}
$$

Thus for each $i, p_{1_{t}} \rho_{1}^{Q(d)}+\ldots+p_{i_{t}} \rho_{i_{t}}^{Q(d)}=0$. Let η be a primitive Δ-th root of unity. Then $\rho_{j}=\eta^{k_{j}}$ for some $k_{j} \in \mathbb{N}$. Hence

$$
p_{1 \in} \eta^{k_{1} Q(d)}+\ldots+p_{i_{t}} \eta^{k_{i_{t}} Q(d)}=0 ;
$$

that is, $\eta^{Q(d)}$ is a root of $H_{i}(y)=p_{1}{ }_{t} y^{k_{1}}+\ldots+p_{i_{t}} y^{k_{i t}}$. Thus
$H_{i}(y)=\left\{\prod_{\substack{ \\\mathcal{P}(F, \Delta)}}\left(y-\eta^{Q(d)}\right)\right\} G_{i}(y)$,
where $G_{i}(y)$ is a polynomial. Hence 0 O

$$
\begin{aligned}
F_{i}^{1}(x) & =A_{i}^{Q(x)}\left(\sum_{t} x^{t} H_{i}\left(\eta^{Q(x)}\right)\right) \\
& =A_{i}^{Q(x)}\left(\left\{\prod_{d \in \mathcal{P}(F, \Delta)}\left(\eta^{Q(x)}-\eta^{Q(d)}\right)\right\} \sum_{t} x^{t} G_{i}\left(\eta^{Q(x)}\right)\right),
\end{aligned}
$$

and so $F(x)=\left\{\prod_{d \in \mathcal{P}(F, \Delta)}\left(\eta^{Q(x)}-\eta^{Q(d)}\right)\right\}\left(\sum_{i} A_{i}^{Q(x)} \sum_{t} x^{t} G_{i}\left(\eta^{Q(x)}\right)\right)$.

REFERENCES

[1] Bezivin, Jean-Paul and V. Laohakosol. On the theorem of Skolem-MahlerLech. Expo. Math., 9(1991), 89-96.
[2] Ritt, J.F.. A factorization theory for exponential function. Trans. Amer.
Math. Soc., 52(1927), 584-596.
[3] Shapiro, H.N.. On a theorem concerning exponential polynomials. Comm. Pure and Applied Math., 12(1959), 487-500.

VITA

Miss Ouamporn Phuksuwan was born on July 16, 1979 in Bangkok, Thailand. She graduated with a Bachelor Degree of Science in Mathematics from Chulalongkorn University in 2001. Then she got a scholarship from the Ministry Staff Development Project in 2001 to further her study in Mathematics. For her Master degree, she has studied Mathematics at the Faculty of Science, Chulalongkorn University. According to scholarship requirement, she will be a lecturer at the Faculty of Science, Chulalongkorn University.

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวัทยาล่ย }
\end{gathered}
$$

