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CHAPTER I

Ritt’s factorization theorem

A (complex) exponential sum is an expression of the form

a0e
α0z + a1e

α1z + ... + aneαnz, ai, αi ∈ C.

Equip a lexicographical ordering ,<, to C. In order to factor such exponential

sum, it suffices to factor a normalized exponential sum, i.e an expression of the

shape

1 + a1e
α1z + ... + aneαnz,

where the exponents are so arranged that 0 < α1 < ... < αn. A (normalized)

exponential sum is said to be simple if each αi is a multiple of some fixed complex

number, termed index. Clearly, a simple exponential sum can be factored in in-

finitely many ways, and for factorization purposes, it is enough to group them into

parts with different irrational index ratios. Ritt’s factorization theorem of 1927

essentially states that any normalized exponential sum can be uniquely written

as a product of simple and irreducible exponential sums, where the simple ex-

ponential sums have pairwise irrational index ratio, and the irreducible ones are

non-simple and not capable of being decomposed further.

In this chapter, the coefficients, exponents and exponential function involved in

Ritt’s factorization are studied in order to determine enlarged structures validating

Ritt’s theorem.
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1.1 Definitions

Definition 1.1.1. A Ritt space (R, θr), or simply R, is an R-vector space with

a countable basis {θr} = {θ1, θ2, ...}, and a lexicographical order defined by

α = r1θ1 + ... + rtθt < β = s1θ1 + ... + stθt (ri, sj ∈ R) if and only if there is a

positive integer n ≤ t such that r1 = s1, ..., rn−1 = sn−1 but rn < sn.

Define 0 = 0θ1 + 0θ2 + ... + 0θn ∈ R for all n. Clearly, 0 is the zero element of the

Ritt space R.

Proposition 1.1.2. Let R be a Ritt space. Then

(i) For α ∈ R and r ∈ R, if α > 0 and r > 0, then r · α > 0.

(ii) For α, β, γ, δ ∈ R, if α < β and γ < δ, then α + γ < β + δ.

(iii) For α, β ∈ R, if α > 0 and β > 0, then α + β > 0.

Proof. Clear.

Let R be a Ritt space. Denote by f a function whose domain is the set

Rx = {αx | α ∈ R}, where x is an indeterminate, satisfying f(α1x)f(α2x) =

f((α1 + α2)x).

Definition 1.1.3. Let F be an algebraically closed field with characteristic zero

and R a Ritt space. A Ritt exponential sum, abbreviated by RES, is an

expression of the shape

a0f(α0x) + a1f(α1x) + ... + anf(αnx),

where ai ∈ F, αi ∈ R and α0 < α1 < ... < αn. The αi’s will be referred to as

RE-coefficients.

Over the set of RES’s, we impose

(i) an equality relation by the condition that
n∑

i=0

aif(αix) =
n∑

i=0

bif(βix) if and only if ai = bi and αi = βi for all i and
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(ii) an algebraic independence condition stating that f(α1x), ..., f(αnx) are

algebraically independent over F whenever α1, ..., αn ∈ R are linearly independent

over Q.

Denote the set of RES’s imposed with such conditions by E .

Define addition and multiplication on E as follows :

For any E1(x) =
n∑

i=0

aif(αix) and E2(x) =
n∑

i=0

bif(αix),

E1(x) + E2(x) =
n∑

i=0

(ai + bi)f(αix), and

E1(x) · E2(x) =
n∑

i=0

n∑
j=0

aibjf((αi + αj)x).

It is easy to verify that, under the operations defined above, E is a ring with

multiplicative identity f(0x), indeed E is an integral domain. The multiplicative

inverse of f(αx) is f(−αx), while the additive inverse is −f(αx). Any RES of the

form a0f(0x) is called a constant Ritt exponential sum. The constant RES’s

add and multiply as in F and so form a subring of E isomorphic to F. We then

identify F as the set of constant RES’s in E . Sometimes, we refer to E as a Ritt

domain with respect to F and R.

It can be proved by induction that (f(αx))n = f(nαx) for all n ∈ N and it

follows that (f(αx))q = f(qαx) for all q ∈ Q+
0 .

Definition 1.1.4. A nonconstant element E(x) =
n∑

i=0

aif(αix) of a Ritt domain

E with respect to F and R is said to be simple if there exists λ ∈ R such that

for all i, αi = kiλ where ki ∈ Z, equivalently, a simple RES is an RES of the form

E(x) =
n∑

i=0

aif(kiλx) where ki ∈ Z. We refer to λ as an s-index of the simple

RES E(x).

Definition 1.1.5. A nonconstant element E(x) of a Ritt domain E with respect

to F and R is said to be irreducible if it can not be factored as a product of

other RES except 1 and itself.
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Remarks.

(i) It follows immediately from the definition that in any Ritt domain E with

respect to F and R, the RES a + bf(βx) is simple for all a, b ∈ F and β ∈ R.

(ii) In any Ritt domain E , the class of simple RES’s and the class of irreducible

RES’s are disjoint.

1.2 Finding base

Throughout this section, let E be a Ritt domain with respect to an algebraically

closed field F and a Ritt space (R, θr). We will factor RES of the form 1 +

a1f(α1x) + ... + anf(αnx) with 0 < α1 < ... < αn. As the proof is long and

complicated, we will first prove those lemmas needed.

A subset {m1, ...,mp} of R is said to be Q-linearly independent if whenever
p∑

i=1

qimi = 0 for rational numbers q1, ..., qp, then q1 = ... = qp = 0. A Q-

base for {α1, ..., αn} ⊆ R is a Q-linearly independent subset of R which spans

{α1, ..., αn}. A Q-linearly independent subset {µ1, ..., µp} ofR is called a Q+-base

for {α1, ..., αn} if each αi can be written as a Q+-linearly combination of µi’s, i.e.

αi =

p∑
j=1

qijµj, where qij ∈ Q+.

Definition 1.2.1. An α = r1θ1 + ... + rnθn ∈ R is said to be strictly positive

if r1 > 0.

The next lemma gives a sufficient condition when a subset {α1, ..., αn} of R
has a Q+-base.

Lemma 1.2.2. Let {α1, ..., αn} ⊆ R. If 0 < α1 < ... < αn and α1 is strictly

positive, then there exists a Q+-base {µ1, ..., µp} for {α1, ..., αn}.

Proof. Let {m1, ..., mp} be the largest Q-linearly independent subset of

{α1, ..., αn}. For each i, let αi =

p∑

k=1

qikmk, where qik ∈ Q. We can also write
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mj =
∑

k

rjkθk, where rjk ∈ R. Define a linear map ϕ : Rp → Rn by ϕ(X) = QX

for all X ∈ Rp, where Q is the matrix (qij)n×p. Since α1 is strictly positive, all

entries of ϕ((r11, ..., rp1)) are positive. By the continuity of ϕ and the denseness

of Q in R, for each i = 1, ..., p, there is (t1i, ..., tpi) ∈ Qp such that all entries

of ϕ((t1i, ..., tpi)) are positive and the matrix (tij)p×p has a nonzero determinant.

Hence the system of linear equations

m1 = t11x1 + t12x2 + ... + t1pxp

m2 = t21x1 + t22x2 + ... + t2pxp

...

mp = tp1x1 + tp2x2 + ... + tppxp

has a unique solution, say µ1, ..., µp. Consequently, each αi is a Q+-linear combi-

nation of the µi’s as desired.

It remains to show that {µ1, ..., µp} is Q-linearly independent. Suppose on the

contrary that there exist rational numbers s1, ..., sp, not all zero, such that

s1µ1 + s2µ2 + ... + spµp = 0. (1)

The system

t11x1 + t21x2 + ... + tp1xp = s1

t12x1 + t22x2 + ... + tp2xp = s2

...

t1px1 + t2px2 + ... + tppxp = sp,

then has a nontrivial solution, say v1, ..., vp. Substituting si = t1iv1 + t2iv2 + ... +

tpivp in (1), it follows that
∑

i

vimi = 0, which contradicts the Q-independence of

{m1, ..., mp}. Consequently, {µ1, ..., µp} is Q-linearly independent.

Remark. In Ritt’s original construction of Q+-base {µ1, ..., µp} the real part of

each complex αi was made positive by multiplying with a fixed complex constant.
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Our Ritt space, (R, θr) does not enjoy this characteristic property of C, which

forces us to impose the strictly positive condition.

Definition 1.2.3. Let E1(x), E2(x) ∈ E . We say that E2(x) | E1(x) when there

is E3(x) ∈ E such that E2(x)E3(x) = E1(x).

Lemma 1.2.4. Let E1(x) = 1 +
n∑

i=1

aif(αix) and E2(x) = 1 +
r∑

i=1

bif(βix).

If E2(x) | E1(x), then each βj is a Q-linear combination of the αi’s.

Proof. Let

1 +
n∑

i=1

aif(αix) = (1 +
r∑

i=1

bif(βix))(1 +
s∑

i=1

cif(γix)). (2)

Let {m1, ...,mp} be the largest Q-linearly independent subset of {α1, ..., αn}. Sup-

pose that there is a βj0 which is not a Q-linear combination of αi’s. Taking

m0 = βj0 , it follows that {m0,m1, ..., mp} is also Q-linearly independent. Ad-

join mp+1, ..., mt to this set in such a way that {m0,m1, ..., mt} is a Q-linearly

independent set and each αi, βi, γi is a Q-linear combination of mi’s. Then each

βi has a representation of the form
∑

k

qikmk, where qik ∈ Q. Let u0 be the

maximum qi0 in the representation of βi’s. Note here that since βj0 = m0,

u0 ≥ 1. Then among those βi’s whose qi0 is u0, let u1 be the maximum qi1.

Continuing this process for all qij’s, we obtain rational numbers u0, u1, ..., ut. Let

β = u0m0 + u1m1 + ... + utmt. Then β = βk for some k = 1, ..., r. We ad-

join γ0 = 0 to {γ1, ..., γs} and consider the representation of all γi’s in the form
∑

k

pikmk, where pik ∈ Q. Let v0 be the maximum pi0 in the representation of

γi’s. Since γ0 = 0, it follows that v0 ≥ 0. Then among those γi’s whose pi0 is v0,

let v1 be the maximum pi1. Continuing this method for all pij’s, we get rational

numbers v0, v1, ..., vt. Let γ = v0m0 + v1m1 + ... + vtmt. Then γ = γl for some

l = 1, ..., s. Multiplying out the factors on the right hand side of (2), we obtain

the unique term d · f((β + γ)x) in the resulting product for some d ∈ F. By

the choice of β and γ, we have that β + γ = αm for some m = 1, ..., n. Hence
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αm = (u0 + v0)m0 + (u1 + v1)m1 + ... + (ut + vt)mt with u0 + v0 ≥ 1 + 0 = 1. This

contradicts the fact that {m1, ..., mp} is a Q-base for {α1, ..., αn}.

Corollary 1.2.5. Let E1(x), E2(x) be RES’s. If E2(x) | E1(x) and E1(x) is

simple, then E2(x) is also simple.

Proof. Immediate from Lemma 1.2.4.

Corollary 1.2.6. Assume that 1 +
n∑

i=1

aif(αix) = (1 +
r∑

i=1

bif(βix))(1 +

s∑
i=1

cif(γix)). If α1 is strictly positive, then each βi, γi can be written as Q+
0 -linear

combination with respect to the Q+-base {µ1, ..., µp} for {α1, ..., αn} so obtained

in Lemma 1.2.2. In particular,

1 +
n∑

i=1

ai

p∏
j=1

f(qijµjx) = (1 +
r∑

i=1

bi

p∏
j=1

f(q′ijµjx))(1 +
s∑

i=1

ci

p∏
j=1

f(q′′ijµjx)), (3)

for some positive rational numbers qij’s and some nonnegative rational numbers

q′ij’s and q′′ij’s.

Proof. From Lemmas 1.2.2 and 1.2.4, each βi is a Q-linear combination of µi’s,

say βi =
∑

k

gikµk where gik ∈ Q. Suppose on the contrary that there were some

β involves, without loss of generality, µ1 with negative coefficient. Let u1 be the

minimum gi1 in the representation of βi’s. Then among those βi’s whose gi1 is

u1, let u2 be the minimum gi2. Continuing this process for all gij’s, we obtain

rational numbers u1, ..., ut. Let β = u1µ1 + u2µ2 + ... + utµt. Then β = βk for

some k = 1, ..., r, and u1 < 0. We adjoin γ0 = 0 to {γ1, ..., γs} and consider

the representation of all γi’s in the form
∑

k

pikµk where pik ∈ Q. Let v1 be the

minimum pi1 in the representation of γi’s. Then among those γi’s whose pi1 is

v1, let v2 be the minimum pi2. Continuing this method for all pij’s, we obtain

rational numbers v1, ..., vt. Let γ = v1µ1 + v2µ2 + ... + vtµt. Then γ = γl for

some l = 1, ..., s, and v1 ≤ 0 because γ0 = 0. Multiplying out the factors on
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the right hand side of (3), we obtain d · f((β + γ)x) as a unique term for some

d ∈ F. By the choice of β and γ, β + γ = αm for some m = 1, ..., n. Thus

αm = (u1 + v1)µ1 + (u2 + v2)µ2 + ... + (ut + vt)µt where u1 + v1 < 0, i.e. αm

is a Q-linear combination of µi’s with the coefficient of µ1 being negative. By

assumption, αm is a Q-linear combination of µi’s with the coefficient of µ1 being

positive, which is a contradiction.

1.3 Transforming to polynomials

Let E(x) = 1 + a1f(α1x) + ... + anf(αnx) ∈ E with α1 strictly positive. Let

{µ1, ..., µp} be a Q+-base for {α1, ..., αn}. Then

E(x) = 1 + a1f((

p∑
j=1

q1jµj)x) + ... + anf((

p∑
j=1

qnjµj)x)

= 1 + a1f(q11µ1x) · · · f(q1pµpx) + ... + anf(qn1µ1x) · · · f(qnpµpx),

where qij’s are positive rational numbers.

Let lj ∈ N (j = 1, ..., p) be the least common multiple of the denominators of qij,

i = 1, ..., n. Now

E(x) = 1 + a1f(q11l1
µ1

l1
x) · · · f(q1plp

µp

lp
x) + ... + anf(qn1l1

µ1

l1
x) · · · f(qnplp

µp

lp
x)

= 1 + a1f(k11
µ1

l1
x) · · · f(k1p

µp

lp
x) + ... + anf(kn1

µ1

l1
x) · · · f(knp

µp

lp
x)

= 1 + a1(f(
µ1

l1
x))k11 · · · (f(

µp

lp
x))k1p + ... + an(f(

µ1

l1
x))kn1 · · · (f(

µp

lp
x))knp ,

where kij = qijlj ∈ N. Invoking on the algebraic independence, replacing f(
µj

lj
x)

by yj, the outcome can be considered as a polynomial in F[y1, ..., yp]. This poly-

nomial is called the polynomial corresponding to E(x) and will be denoted

by QE(y1, ..., yp).

Conversely, for any P (y1, ..., yt) ∈ F[y1, ..., yt], if each yj is replaced by f(αjx)
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where {α1, ..., αt} is a Q-linearly independent set in R, then we obtain an RES

in E , referred to as the RES corresponding to P (y1, ..., yt) and denoted by

EP (f(α1x), ..., f(αtx)).

Remark. EQE
(f(µ1

l1
x), ..., f(µp

lp
x)) = E(x).

Lemma 1.3.1. Let E(x) = 1+a1f(α1x)+ ...+anf(αnx) with α1 strictly positive

and QE(y1, ..., yp) be the polynomial corresponding to E(x) with respect to a Q+-

base {µ1, ..., µp}. Then each factorization of E(x) in E gives rise to a factorization

of QE(yt1
1 , ..., y

tp
p ) in F[y1, ..., yp] for some (t1, ..., tp) ∈ Np and vice versa.

Proof. (⇒) To simplify notations, we treat only the case when E(x) has two

factors. By Corollary 1.2.6,

1 +
n∑

i=1

ai

p∏
j=1

f(qijµjx) = (1 +
r∑

i=1

bi

p∏
j=1

f(q′ijµjx))(1 +
s∑

i=1

ci

p∏
j=1

f(q′′ijµjx)),

where qij =
mij

nij
, q′ij =

m′
ij

n′ij
and q′′ij =

m′′
ij

n′′ij
, m′

ij,m
′′
ij ∈ N0 and mij, nij, n

′
ij, n

′′
ij ∈ N.

Let lj = l.c.m.(n1j, ..., nnj) and tj = l.c.m.(n′1j, ..., n
′
rj, n

′′
1j, ..., n

′′
sj). Then

1 +
n∑

i=1

ai

p∏
j=1

f(qijµjx) = 1 +
n∑

i=1

ai

p∏
j=1

(f(
µj

lj
x))kij ,

where kij = qijlj ∈ N and

1 +
r∑

i=1

bi

p∏
j=1

f(q′ijµjx) = 1 +
r∑

i=1

bi

p∏
j=1

(f(
µj

lj
x))q′ij lj ,

1 +
s∑

i=1

ci

p∏
j=1

f(q′′ijµjx) = 1 +
s∑

i=1

ci

p∏
j=1

(f(
µj

lj
x))q′′ij lj .

Thus

1 +
n∑

i=1

ai

p∏
j=1

(f(
µj

lj
x))kij = (1 +

r∑
i=1

bi

p∏
j=1

(f(
µj

lj
x))q′ij lj)(1 +

s∑
i=1

ci

p∏
j=1

(f(
µj

lj
x))q′′ij lj).

Substituting f(
µj

lj
x) for y

tj
j in the above equation, we get on the left hand

side 1 +
n∑

i=1

ai

p∏
j=1

y
kijtj
j , which is QE(yt1

1 , ..., y
tp
p ). Since q′ijljtj, q′′ijljtj ∈ N0,

we obtain on the right hand side a product of two polynomials in F[y1, ..., yp],

(
r∑

i=1

bi

p∏
j=1

y
q′ij ljtj
j )(

s∑
i=1

ci

p∏
j=1

y
q′′ij ljtj
j ), as required.
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(⇐) Let

QE(yt1
1 , ..., y

tp
p ) = R1(y1, ..., yp) · · ·Rm(y1, ..., yp) (5)

be a factorization of QE(yt1
1 , ..., y

tp
p ) in F[y1, ..., yp]. Replacing yj by f(

µj

lj
x) in (5),

we obtain

EQE
((f(µ1

l1
x))t1 , ..., (f(µp

lp
x))tp) = ER1(f(µ1

l1
x), ..., f(µp

lp
x)) · · ·ERm(f(µ1

l1
x), ..., f(µp

lp
x)).

Then

E(x) = EQE
(f(

µ1

l1
x), ..., f(

µp

lp
x))

= EQE
((f(

1

t1

µ1

l1
x))t1 , ..., (f(

1

tp

µp

lp
x))tp)

= ER1(f(
1

t1

µ1

l1
x), ..., f(

1

tp

µp

lp
x)) · · ·ERm(f(

1

t1

µ1

l1
x), ..., f(

1

tp

µp

lp
x))

is a factorization of E(x) in E as desired.

1.4 Polynomials

Having reduced the problem of factorizing RES’s to that of factorizing polyno-

mials in several variables, we collect here those results needed to justify the proof

of the main theorem.

Let ε = (ε1, ..., εp) where εi is a primitive ki-th root of unity. We say

that polynomial P (y1, ..., yp) and Q(y1, ..., yp) are ε-related if P (y1, ..., yp) =

Q(εn1
1 y1, ..., ε

np
p yp) for some (n1, ..., np) ∈ Zp. It can easily be shown that ε-related

is an equivalence relation on F[y1, ..., yp].

Lemma 1.4.1. Let Q(y1, ..., yp) be an irreducible polynomial with constant term

1. If there are positive integers ti’s such that

Q(yt1
1 , ..., y

tp
p ) = Q1(y1, ..., yp) · · ·Qm(y1, ..., yp),

where Qi(y1, ..., yp)’s are irreducible polynomials with constant term 1, then ev-

ery pair Qi(y1, ..., yp) and Qj(y1, ..., yp) are (ε1, ..., εp)-related where each εi is a
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primitive ti-th root of unity.

Proof. Since each εi is a primitive ti-th root of unity, it follows that for any

(n1, ..., np) ∈ Zp, we have

Q1(y1, ..., yp) · · ·Qm(y1, ..., yp) = Q(yt1
1 , ..., ytp

p )

= Q((εn1
1 y1)

t1 , ..., (εnp
p yp)

tp)

= Q1(ε
n1
1 y1, ..., ε

np
p yp) · · ·Qm(εn1

1 y1, ..., ε
np
p yp).

Thus for each i = 1, ..., m, Qi(ε
n1
1 y1, ..., ε

np
p yp) = Qt(y1, ..., yp) for some t =

1, ..., m; that is, each Qi(y1, ..., yp) is ε-related to some Qt(y1, ..., yp). To show

that each Qi(y1, ..., yp) is ε-related to all Qt(y1, ..., yp), it suffices to show that

Q1(y1, ..., yp) is ε-related to all Qt(y1, ..., yp). Suppose that Q1(y1, ..., yp) is not ε-

related to some Qt(y1, ..., yp). Without loss of generality, we may assume that

Q1(y1, ..., yp), ..., Qj(y1, ..., yp), 1 ≤ j < m, are in [Q1(y1, ..., yp)], the equiva-

lence class containing Q1(y1, ..., yp), but Qj+1(y1, ..., yp), ..., Qm(y1, ..., yp) are not

in [Q1(y1, ..., yp)]. Thus

Q1(ε
n1
1 y1, ..., ε

np
p yp) · · ·Qj(ε

n1
1 y1, ..., ε

np
p yp) = Q1(y1, ..., yp) · · ·Qj(y1, ..., yp)

for all (n1, ..., np) ∈ Zp. To show that Q1(y1, ..., yp) · · ·Qj(y1, ..., yp) := P (y1, ..., yp)

is a polynomial in yt1
1 , ..., y

tp
p , suppose not. Then there is yi such that ti does not

divide an exponent of yi. Rewrite

P (y1, ..., yp) = a0(y) + a1(y)yi + ... + an(y)yi
n = a0(y) + ... + aj(y)yi

lti+r + ... ,

where y = (y1, ..., yi−1, yi+1, ..., yp), aj(y) 6= 0 and 0 ≤ r < ti, it follows that

a0(y) + ... + aj(y)yi
lti+r + ... = P (y1, ..., yp) = P (εn1

1 y1, ..., ε
np
p yp)

= a0(y) + ... + aj(y)(εni
i yi)

lti+r + ... = a0(y) + ... + aj(y)yi
lti+rεnir

i + ... .

Thus εi
nir = 1, this is not true for all ni ∈ Z. Hence Q1(y1, ..., yp) · · ·Qj(y1, ..., yp)

= K(yt1
1 , ..., y

tp
p ) for some K(y1, ..., yp) ∈ F[y1, ..., yp].

Similarly, Qj+1(y1, ..., yp) · · ·Qm(y1, ..., yp) = K(yt1
1 , ..., y

tp
p ) for some
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K(y1, ..., yp) ∈ F[y1, ..., yp]. Therefore,

Q(yt1
1 , ..., ytp

p ) = Q1(y1, ..., yp) · · ·Qj(y1, ..., yp)Qj+1(y1, ..., yp) · · ·Qm(y1, ..., yp)

= K(yt1
1 , ..., ytp

p )K(yt1
1 , ..., ytp

p ).

Then Q(y1, ..., yp) = K(y1, ..., yp)K(y1, ..., yp), so Q(y1, ..., yp) is reducible, a con-

tradiction.

Any P (y1, ..., yt) ∈ F[y1, ..., yt] is said to be primary in yi if the greatest

common divisor of all exponents of yi which appear in P (y1, ..., yt) is equal to 1

and it is said to be primary if it is primary in every yi.

Lemma 1.4.2. Let Q(y1, ..., yp) be a primary irreducible polynomial of degree

δ consisting of more than two terms and with constant term 1. Suppose that

for certain positive integers t1, ..., tp, the irreducible factors of Q(yt1
1 , ..., y

tp
p ) are

primary. Then there exist a polynomial T (y1, ..., yp) and positive integers τ1, ..., τp

with the following properties :

(a) T (y1, ..., yp) is a primary irreducible polynomial with constant term 1.

(b) The degree of T (y1, ..., yp) in each variable does not exceed the correspond-

ing degree of Q(y1, ..., yp).

(c) For every i, τi/ti ≥ δ−p.

(d) The irreducible factors of T (yτ1
1 , ..., y

τp
p ) are primary and consist of more

than two terms.

(e) The polynomials T (y1, y
τ2
2 , ..., y

τp
p ), T (yτ1

1 , y2, y
τ3
3 , ..., y

τp
p ), ... and

T (yτ1
1 , yτ2

2 , ..., y
τp−1

p−1 , yp) are all irreducible.

Proof. It is enough to consider the case p = 3, and replace y1, y2, y3, t1, t2, t3 by

x, y, z, p, q and r, respectively.

Step 1.((a),(e)) Let
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Q(x, yq, zr) = Q1(x, y, z) · · ·Qm(x, y, z), (6)

where Qi(x, y, z)’s are irreducible polynomials with constant term 1. By Lemma

1.4.1, Q1 is related to each Qi. Thus Q1 is primary in x, but may not be primary

in y and z. Let

Q1(x, y, z) = R(x, yq1 , zr1),

where R(x, y, z) is primary. Then R(x, y, z) is also irreducible. Let a be the degree

of x in Q(x, y, z). We will show that q
q1
≤ a and r

r1
≤ a.

To see this, from (6), m ≤ a and q1|q. Let k =
q

q1

and εk be a primitive k-th root

of unity. Since R(x, y, z) is primary, the k polynomials R(x, εi
ky

q1 , zr1), i = 1, ..., k,

are all distinct. Since each εi
k is a q1-th power of a q-th root of unity, it follows

from Lemma 1.4.1 that q
q1

= k ≤ m ≤ a. Similarly, r
r1
≤ a. Denote the degrees

of y, z in Q(x, y, z) by b, c, respectively, and the degrees of x, y, z in R(x, y, z)

by a1, b1, c1, respectively. By (6), we obtain a = ma1, and so a1 ≤ a. Since

mb1q1 = bq and q ≤ mq1, b1 ≤ b. Similarly, c1 ≤ c.

We replace p by p1 and let

R(xp1 , y, zr1) = R1(x, y, z) · · ·Rm′(x, y, z),

where Ri(x, y, z)’s are irreducible polynomials with constant term 1. Then R1 is

primary in y, but may not be primary in x and z. Let

R1(x, y, z) = S(xp2 , y, zr2),

where S(x, y, z) is primary. This implies that S(x, y, z) is irreducible. Then

p1

p2
≤ b1,

r1

r2
≤ b1 and a2 ≤ a1, b2 ≤ b1, c2 ≤ c1, where a2, b2, c2 are the degrees of

x, y, z in S(x, y, z), respectively.

We substitute q1 by q2 and let

S(xp2 , yq2 , z) = S1(x, y, z) · · ·Sm′′ (x, y, z),

where Si(x, y, z)’s are irreducible polynomials with constant term 1. Then

S1(x, y, z) is primary in z, but may not be primary in x and y. Let
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S1(x, y, z) = T (xπ, yχ, z),

where T (x, y, z) is primary. Then T (x, y, z) is irreducible and χ | q2. Thus p2

π
≤ c2,

q2

χ
≤ c2, a3 ≤ a2, b3 ≤ b2 and c3 ≤ c2, where a3, b3, c3 are the degrees of x, y, z in

T (x, y, z), respectively.

We replace r2 by ρ. We shall show that T (x, yχ, zρ) is irreducible. Suppose

that T (x, yχ, zρ) is reducible. Let

T (x, yχ, zρ) = A(x, y, z)B(x, y, z),

where A(x, y, z) and B(x, y, z) are non-constant polynomials. Then

S1(x, y, zρ) = T (xπ, yχ, zρ) = A(xπ, y, z)B(xπ, y, z).

Let l =
q2

χ
and εl is a primitive l-th root of unity. Since T (x, y, z) is primary,

the l polynomials T (xπ, εi
ly

χ, zρ), i = 1, ..., l, are all distinct. Since each εi
l is a

χ-th power of a q2-th root of unity, it follows that each T (xπ, εi
ly

χ, zρ) is obtained

from S1(x, y, zρ) by replacing y by the product of a q2-th root of unity and y.

Consequently, each T (xπ, εi
ly

χ, zρ) is Si(x, y, zρ) and so l ≤ m
′′
. Hence

S(xp2 , yq2 , zr2) = S1(x, y, zr2) · · ·Sm′′(x, y, zr2)

= S1(x, y, zρ) · · ·Sm′′(x, y, zρ)

= T (xπ, yχ, zρ)T (xπ, ε1
l y

χ, zρ) · · ·T (xπ, εl
ly

χ, zρ) · · ·

= A(xπ, y, z)B(xπ, y, z)A(x, ε1
l y

χ, z)B(x, ε1
l y

χ, z) · · ·

A(x, εl
ly

χ, z)B(x, εl
ly

χ, z) · · · .

Therefore, A(x, ε1
l y

χ, z) · · ·A(x, εl
ly

χ, z) | S(xp2 , yq2 , zr2) = R(x, yq2 , z). Note that

when we multiply out A(x, ε1
l y

χ, z)...A(x, εl
ly

χ, z) each coefficient of yχn, n ∈ N
is a symmetric polynomial in ε1

l , ..., ε
l
l and vanishes unless n is a multiple of l,

i.e. A(x, ε1
l y

χ, z) · · ·A(x, εl
ly

χ, z) is a polynomial in x, yq2 , z. Thus R(x, y, z) is

reducible, which is a contradiction. Hence T (x, yχ, zρ) is irreducible.

By the same proof as what has just been done, T (xπ, y, zρ) is irreducible.
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Step 2. (d) We have that

(1) T (xπ, yχ, zρ) is a factor of S(xp2 , yq2 , zr2),

(2) S(xp2 , yq2 , zr2) is a factor of R(xp1 , yq1 , zr1) and

(3) R(xp1 , yq1 , zr1) is a factor of Q(xp, yq, zr).

Thus T (xπ, yχ, zρ) is a factor of Q(xp, yq, zr). By assumption, the irreducible

factors of Q(xp, yq, zr) are primary. Thus the irreducible factors of T (xπ, yχ, zρ)

are primary. Let

T (xπ, yχ, zρ) = T1(x, y, z) · · ·Tt(x, y, z),

where Ti(x, y, z)’s are primary irreducible polynomials with constant term 1. We

must show that each Ti(x, y, z) has more than two terms. Without loss of general-

ity, suppose that T1(x, y, z) contains only two terms. Let T1(x, y, z) = 1+cxαyβzγ.

Since T1(x, y, z) is an irreducible factor of Q(xp, yq, zr), by Lemma 1.4.1, other ir-

reducible factors of Q(xp, yq, zr) are ε-related to T1(x, y, z). Thus Q(xp, yq, zr) is

a polynomial in xαyβzγ. Then the exponents of x, y, z in each term of Q(x, y, z)

are respectively multiples of α
p
, β

q
, γ

r
.

Let A,B,C be the greatest common divisor of all exponents of x
α
p , y

β
q , z

γ
r which

appear in Q(x, y, z), respectively. Let T = xAyBzC . Then Q(x, y, z) is a polyno-

mial in T which contains more than two terms. Hence Q(x, y, z), considered as

polynomial in one variable T of more than two terms, must then be reducible,

which is a contradiction.

Step 3. (b) From above, degree of x in T (x, y, z) = a3 ≤ a2 = degree of x in

S(x, y, z) ≤ a1 = degree of x in R(x, y, z) ≤ a = degree of x in Q(x, y, z), and so

are the degrees of y, z.

Step 4. (c) We have q
q1
≤ a, r

r1
≤ a, p1

p2
≤ b1,

r1

r2
≤ b1,

p2

π
≤ c2,

q2

χ
≤ c2, a2 ≤ a1 ≤

a, b2 ≤ b1 ≤ b and c2 ≤ c1 ≤ c. Thus π
p

= π
p2
· p2

p1
· p1

p
≥ 1

c2
· 1

b1
· 1 ≥ 1

ab1c2
≥ 1

abc
≥ 1

δ3 ,

χ
q

= χ
q2
· q2

q1
· q1

q
≥ 1

c2
· 1 · 1

a
≥ 1

ab1c2
≥ 1

abc
≥ 1

δ3 and ρ
r

= ρ
r2
· r2

r1
· r1

r
≥ 1 · 1

b1
· 1

a
≥ 1

ab1c2
≥
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1
abc
≥ 1

δ3 , where δ ≥ max{a, b, c}.

Lemma 1.4.3. Let Q(y1, ..., yp) be a primary irreducible polynomial consisting of

more than two terms and having 1 for its constant term. Then there exist only a

finite number of sets of positive integers t1, ..., tp such that the irreducible factors

of Q(yt1
1 , ..., y

tp
p ) are primary.

Proof. Let T (y1, ..., yp) be the polynomial and τ1, ..., τp be the integers whose ex-

istence were shown in Lemma 1.4.2. Let

T (yτ1
1 , ..., y

τp
p ) = T1(y1, ..., yp) · · ·Tt(y1, ..., yp), (7)

where each Ti(y1, ..., yp) is a primary irreducible polynomial consisting of more

than two terms with constant term 1. We will show that t = τ1 = τ2 = ... = τp.

To prove this, let ε be a primitive τ1-th root of unity. Thus the τ1 polynomi-

als T1(ε
iy1, y2..., yp), i = 1, ..., τ1 are all distinct, and each of them is equal to

some Ti(y1, ..., yp). Then the product of these polynomials is a polynomial in

yτ1
1 , y2, ..., yp. Since T1(ε

1y1, y2, ..., yp), ..., T1(ε
τ1y1, y2, ..., yp) are irreducible factors

of T (yτ1
1 , ..., y

τp
p ) and they are all distinct, it follows that τ1 ≤ t. Assume that

τ1 < t. Then

T (yτ1
1 , ..., yτp

p ) = T1(ε
1y1, y2, ..., yp) · · ·T1(ε

τ1y1, y2, ..., yp) · · ·

= P (yτ1
1 , y2, ..., yp)P (yτ1

1 , y2, ..., yp).

Thus T (y1, y
τ2
2 , ..., y

τp
p ) = P (y1, y2, ..., yp)P (y1, y2, ..., yp). Hence T (y1, y

τ2
2 , ..., y

τp
p )

is reducible, which contradicts Lemma 1.4.2(e). Therefore, τ1 = t. Similarly,

τ2 = t, ..., τp = t.

Since T1(y1, ..., yp) is primary, let ayα1
1 · · · yαp

p and byβ1

1 · · · yβp
p be two terms of

T1(y1, ..., yp) with α1 and α2 not proportional to β1 and β2 ; that is α1β2−β1α2 6= 0.

Without loss of generality, we may assume that α1β2−β1α2 > 0. Then α1 > 0 and

β2 > 0. There are t2 relations transforming y1 and y2 in T1(y1, ..., yp) by primitive
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t-th roots of unity but there are only t distinct Ti(y1, ..., yp)’s. Then there must be t

ways which leave some Tj(y1, ..., yp) invariant. Without loss of generality, we may

assume Tj(y1, ..., yp) = T1(y1, ..., yp) by taking appropriate composite relations.

Let εuy1 and εvy2 be any of the t operations which leave T1(y1, ..., yp) invariant.

Thus the congruences

α1u + α2v ≡ 0 (mod t) , β1u + β2v ≡ 0 (mod t)

must have at least t solutions (u, v) with 0 ≤ u, v < t. Any solution of the above

congruences is also a solution of the congruences

(α1β2 − β1α2)u ≡ 0 (mod t) (8)

β2v ≡ −β1u (mod t). (9)

Let h be the greatest common divisor of (α1β2 − β1α2) and t. Then (8) has

precisely h solutions in u. Let k be the greatest common divisor of β2 and t.

Then for each u satisfying (8), the congruence (9) has at most k solutions in v.

Thus hk ≥ t, so that either h ≥ t
1
2 or k ≥ t

1
2 . Finally, we show that for each

i = 1, ..., p, we have ti ≤ δp+4 where δ is the degree of Q(y1, ..., yp), which will

imply that the set of all (t1, ..., tp) is finite.

Case 1. h ≥ t
1
2 , then α1β2 ≥ α1β2 − β1α2 ≥ h ≥ t

1
2 . Thus α1 ≥ t

1
4 or β2 ≥ t

1
4 .

Case 1.1. α1 ≥ t
1
4 , let a be the degree of y1 in T (y1, ..., yp). Then by (7),

t ·a ≥ t ·α1 ≥ t ·t 1
4 , and so a ≥ t

1
4 . By Lemma 1.4.2(b), a ≤ δ where δ is the degree

of Q(y1, ..., yp). Thus t ≤ δ4. By Lemma 1.4.2(c), t
ti
≥ δ−p, and so ti ≤ δp+4 for

all i = 1, ..., p.

Case 1.2. β2 ≥ t
1
4 , by similar argument, ti ≤ δp+4.

Case 2. k ≥ t
1
2 , then β2 ≥ k ≥ t

1
2 ≥ t

1
4 . Then we are led to Case 1.2.
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1.5 Main theorem

Definition 1.5.1. For any E1(x), E2(x) ∈ E , we say that E1(x), E2(x) are rela-

tively prime if they have no common divisor in E except 1.

Lemma 1.5.2. Let E1(x) = 1 +
n∑

i=1

aif(αix), E2(x) = 1 +
r∑

i=1

bif(βix) and

E3(x) = 1 +
s∑

i=1

cif(γix) be elements in E with α1, β1 and γ1 strictly positive.

If E1(x) | E2(x)E3(x) and E1(x), E2(x) are relatively prime, then E1(x) | E3(x)

Proof. Assume that E2(x)E3(x) = E1(x)E4(x) for some E4(x) = 1 +
m∑

i=1

dif(δix)

in E . Since α1, β1, γ1 are strictly positive, δ1 is strictly positive. By Lemma 1.2.2,

for each i = 1,...,4, Ei(x) has a Q+-base for the RE-coefficients. Let {µ1, ..., µp}
be a largest Q+-linearly independent subset of the set of elements in Q+-base of

all Ei(x)’s. Hence

E1(x) = 1 +
n∑

i=1

aif((

p∑
j=1

qijµj)x),

E2(x) = 1 +
r∑

i=1

bif((

p∑
j=1

pijµj)x),

E3(x) = 1 +
s∑

i=1

cif((

p∑
j=1

kijµj)x) and

E4(x) = 1 +
m∑

i=1

dif((

p∑
j=1

lijµj)x),

where qij’s, pij’s, kij’s, lij’s are nonnegative rational numbers. Let tj be the least

common multiple of the denominators of nonzero qij, pij, kij and lij. Then

E1(x) = 1 +
n∑

i=1

aif((

p∑
j=1

qijtj
µj

tj
)x),

E2(x) = 1 +
r∑

i=1

bif((

p∑
j=1

pijtj
µj

tj
)x),

E3(x) = 1 +
s∑

i=1

cif((

p∑
j=1

kijtj
µj

tj
)x) and

E4(x) = 1 +
m∑

i=1

dif((

p∑
j=1

lijtj
µj

tj
)x).

Replacing f(
µj

tj
x) by yj in Ei(x), we obtain a polynomial Qi(y1, ..., yp). Hence



19

Q1Q4 = Q2Q3 ; that is, Q1 | Q2Q3. If there is a nonconstant common factor,

P(y1, ..., yp), of Q1(y1, ..., yp) and Q2(y1, ..., yp), then EP (f(µ1

t1
x)), ..., f(µp

tp
x)), RES

corresponding to P (y1, ..., yp), is a nonconstant common factor of E1(x) and E2(x),

which is a contradiction. Thus Q1(y1, ..., yp), Q2(y1, ..., yp) are relatively prime as

polynomials, and so Q1(y1, ..., yp) | Q3(y1, ..., yp) implying E1(x) | E3(x).

We are now ready to prove our main theorem.

Theorem 1.5.3. Every RES of the form

1 + a1f(α1x) + ... + anf(αnx),

with a1 6= 0 and α1 strictly positive, can be uniquely expressed as a product

(S1S2 · · ·Ss)(I1I2 · · · Ii),

where S1, ..., Ss are simple RES’s such that the RE-coefficients in any one of

them have irrational ratios to the RE-coefficients in any other, and I1, ..., Ii are

irreducible RES’s.

Proof. Let {µ1, ..., µp} be a Q+-base for {α1, ..., αn}. Then

E(x) = 1 +
n∑

i=1

aif((

p∑
j=1

qijµj)x)

= 1 +
n∑

i=1

aif((

p∑
j=1

qijlj
µj

lj
)x),

where qij’s are positive rational numbers and lj is the least common multiple

of the denominators of qij, i = 1, ..., n. Replacing f(
µj

lj
x) by yj, we obtain the

polynomial corresponding to E(x), QE(y1, ..., yp). We resolve QE(y1, ..., yp) into

irreducible factors with constant term 1 and separate these factors into two groups.

The first group contains irreducible factors consisting of two terms which will be

proved in step 1 that they offer the simple factors S1, ..., Ss and the second group
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contains the rest which will be proved in step 2 that they provide the irreducible

factors I1, ..., Ii.

Step 1. For each irreducible factor consisting of two terms T (y1, ..., yp) =

1 + ayt1
1 · · · ytp

p , replacing yj in T (y1, ...yp) by f(
µj

lj
x), we get a simple RES 1 +

af((t1
µ1

l1
+ ... + tp

µp

lp
)x). Partition the set of these simple RES’s into sets such

that the RE-coefficients of the RES’s of any one set have rational ratios to one

another, but have irrational ratios to the RE-coefficients of any other set. Then

the product of the simple RES’s in each set is also a simple RES. The simple

RES’s, so obtained, form the required simple RES’s S1, ..., Ss.

Step 2. For each irreducible factor consisting of three terms or more

U(y1, ..., yr); r ≤ p, we rewrite U(y1, ..., yr) as V (ym1
1 , ..., ymr

r ), where V (y1, ..., yr)

is primary. Then V (y1, ..., yr) is irreducible. By Lemma 1.4.3, there exist only a

finite number of set of positive integers t1, ..., tr such that the irreducible factors

of P (yt1
1 , ..., ytr

r ) are primary for all P (y1, ..., yr) ∈ F[y1, ..., yr]. Let t1, ..., tr be

natural numbers arisen from the factorization of V (yt1
1 , ..., ytr

r ) with a maximum

number, q, of irreducible and primary factors. Let

V (yt1
1 , ..., ytr

r ) = V1(y1, ..., yr) · · ·Vq(y1, ..., yr). (10)

We claim that the RES’s, obtained by replacing each yj in V1(y1, ..., yr), ...,

Vq(y1, ..., yr) by f(
mj

tj

µj

lj
x), are all irreducible in E .

Suppose on the contrary that at least one of them is not irreducible, say

V1(y1, ..., yr)). Let

V1(f(
m1

t1

µ1

l1
x), ..., f(

mr

tr

µr

lr
x)) = (1 +

s1∑
i=1

cif(γix))(1 +

s2∑
i=1

dif(δix)).
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By Corollary 1.2.6, γi, δi are Q+
0 -linear combinations of µi

li
’s. Thus

V1(f(
m1

t1

µ1

l1
x), ..., f(

mr

tr

µr

lr
x)) = (1 +

s1∑
i=1

cif(γix))(1 +

s2∑
i=1

dif(δix))

= (1 +

s1∑
i=0

cif((
r∑

j=0

q′ij
µj

lj
)x))·

(1 +

s2∑
i=0

dif((
r∑

j=0

q′′ij
µj

lj
)x))

for some q′ij, q
′′
ij ∈ Q+

0 . Let hj be the least common multiple of the denominators

of q′1j, ..., q
′
s1j, q

′′
1j, ..., q

′′
s2j. Replacing f(

µj

lj
x) by y

hj

j , we get

V1(y
m1
t1

h1

1 , ..., y
mr
tr

hp

r ) = (1 +

s1∑
i=1

ci

r∏
j=1

y
q′ijhj

j )(1 +

s2∑
i=1

di

r∏
j=1

y
q′′ijhj

j ).

Thus m1h1

t1
, ..., mrhr

tr
are positive integers making V1(y

m1h1
t1

1 , ..., y
mrhr

tr
r ) reducible.

From(10), V (y
t1

m1h1
t1

1 , ..., y
tr

mrhr
tr

r ) = V1(y
m1h1

t1
1 , ..., y

mrhr
tr

r ) · · ·Vq(y
m1h1

t1
1 , ..., y

mrhr
tr

r )

contains more than q primary irreducible factors, which is impossible.

To prove the uniqueness, assume that (S1 · · ·Ss)(I1 · · · Ii) and

(T1 · · ·Tt)(J1 · · · Jj) are two factorizations of E(x). Thus (S1 · · ·Ss)(I1 · · · Ii) is

divisible by J1. If J1 | Sl for some l, then J1 is a simple RES, by Corollary 1.2.5,

which is a contradiction. Thus J1 | (I1 · · · Ii). If J1 | Il for some l, then J1 = Il

which implies that we can cancel out all these identical irreducible factors. Having

done so, it follows that i = j and {I1, ..., Ii} is a permutation of {J1, ..., Jj}.
Since T1 | S1 · · ·Ss, it follows from Lemma 1.5.2 that a factor of T1 is also a factor

of, say S1. Then we can write

T1 = F1T
′
1

S1 = F1S
′
1,

where F1 is a common factor of T1 and S1 and T ′
1 and S ′1 are relatively prime.

By Lemma 1.2.4, q1(s-index of T1) = (s-index of F1) = l1(s-index of S1) for some

q1, l1 ∈ Q. Assume that T ′
1 and some Si, say S2, have a common factor. Write
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T ′
1 = F2T

′′
1

S2 = F2S
′
2,

where F2 is a common factor of T ′
1 and S2 and T ′′

1 and S ′2 are relatively prime. Thus

q2(s-index of T ′
1) = (s-index of F2) = l2(s-index of S2) for some q2, l2 ∈ Q. Then

l1q2q3(s-index ofS1) = q2q3(s-index of F1) = q1q2q3(s-index of T1) = q1q2(s-index

of T ′
1) = q1(s-index of F2) = l2q1(s-index of S2) for some q3 ∈ Q. Consequently,

s-index of S1 = q(s-index of S2) for some q ∈ Q, which is impossible. Thus T1 | S1.

Similarly, S1 | T1. Then S1 = T1. Continuing in this fashion, we have {S1, ..., Ss}
is a permutation of {T1, ..., Tt}.

Definition 1.5.4. For any elements α = r1θ1 + ...+rmθm and β = s1θ1 + ...+snθn

in R, we say that α is strictly less than β if r1 < s1.

Corollary 1.5.5. Let E(x) =
n∑

i=0

aif(αix). If α1 is strictly less than α0, then

E(x) can be uniquely expressed as a product

c(S1S2 · · ·Ss)(I1I2 · · · Ii) ,

where c is a constant RES, S1, ..., Ss are simple RES’s such that the RE-coefficients

in any one of them have irrational ratios to the RE-coefficients in any other, and

I1, ..., Ii are irreducible RES’s.

Proof. Let E(x) =
n∑

i=0

aif(αix). Then we can write E(x) in the form

a0f(α0x)[1 +
n∑

i=1

(
ai

a0

)f((αi − α0)x)], α0 < α1 < ... < αn.

Since α1 is strictly less than α0, α1 − α0 is strictly positive. By Theorem 1.5.3,

1 +
n∑

i=1

(
ai

a0

)f((αi − α0)x) can be factored in the form

(S1 · · ·Ss)(I1 · · · Ii) (11)

where S1, ..., Ss are simple RES’s such that the RE-coefficients in any one of

them have irrational ratios to the RE-coefficients in any other, and I1, ..., Ii are
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irreducible RES’s. If α0 = 0, then a0f(α0x) is a constant RES, and we are done.

For the case α0 6= 0, a0f(α0x) is a simple RES. If α0 = q0(s-index of Sj0) for some

j0 = 1, ..., s and q0 ∈ Q, then Sj0 = a0f(α0x)Sj0 is simple, so the factorization

obtain by replacing Sj0 by Sj0 in (11) is the factorization needed for E(x). If

α0 6= q(s-index of Sj) for all j = 1, ..., s and q ∈ Q, then Ss+1 = a0f(α0x)

is a simple factor of E(x) and E(x) = (S1 · · ·SsSs+1)(I1 · · · Ii) is the required

factorization.



CHAPTER II

Shapiro’s factorization theorem

2.1 Backgrounds

Lemma 2.1.1. Let F (x) =
n∑

i=1

Pi(x)A
Q(x)
i , where Ai ∈ Cr{0}, Pi(x) ∈ C[x]r{0}

and Q(x) ∈ Z[x] r Z. If F (x) = 0 for all sufficient large integers x, then there

exist i0, j0, i0 6= j0 such that |Ai0

Aj0
| = 1.

Proof. Suppose that |Ai

Aj
| 6= 1 for all i 6= j. Let Q(x) = cmxm + ... + c0, cm 6= 0,

and let Z = {x ∈ Z | F (x) = 0}. Without loss of generality, arrange the Ai’s so

that |A1| < ... < |An|. Assume that cm > 0. For x ∈ Z,

0 = F (x)

A
Q(x)
n

= P1(x)( A1

An
)Q(x) + . . . + Pn−1(x)(An−1

An
)Q(x) + Pn(x).

The limit on the right hand side does not exists, which is a contradiction. The

case cm < 0 is similar.

From Lemma 2.1.1, there exist i, j such that |Ai

Aj
| = 1, i 6= j. This leads us to

consider an expression, called a pexponential polynomial, of the form

F (x) = [P01(x)ρ
Q(x)
01 + P02(x)ρ

Q(x)
02 + ... + P0n0(x)ρ

Q(x)
0n0

]A
Q(x)
0 +

[P11(x)ρ
Q(x)
11 + P12(x)ρ

Q(x)
12 + ... + P1n1(x)ρ

Q(x)
1n1

]A
Q(x)
1 +

[P21(x)ρ
Q(x)
21 + P22(x)ρ

Q(x)
22 + ... + P2n2(x)ρ

Q(x)
2n2

]A
Q(x)
2 + ...+

[Pk1(x)ρ
Q(x)
k1 + Pk2(x)ρ

Q(x)
k2

+ ... + Pknk
(x)ρ

Q(x)
knk

]A
Q(x)
k ,

where ρij is a δij-th root of unity, ρi1 = 1, Pij(x) ∈ C[x]r {0}, Q(x) ∈ Z[x]r Z,

Ai ∈ Cr {0}, A0 = 1 and |A0| < |A1| < ... < |Ak|.
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Rewrite F (x) =
k∑

i=0

Fi(x), where Fi(x) = A
Q(x)
i (

ni∑
j=1

Pij(x)ρ
Q(x)
ij ).

Let Si = {ρi1, ρi2, ..., ρini
} and define the rank of Fi(x) to be the least common

multiple of the order of the roots of unity in Si and the rank of F (x) to be the

least common multiple of the ranks of Fi(x), i = 0, 1, ..., k, denoted by R(F ).

Let F (x) =
k∑

i=0

A
Q(x)
i (

ni∑
j=1

Pij(x)ρ
Q(x)
ij ) be a pexponential polynomial. If each

Pij(x) ∈ Q[x] r {0}, log(ρijAi) ∈ Q r {0}, Q(0) = 0 and Q′(0) 6= 0, then F (x)

satisfies the result of the Skolem-Mahler-Lech theorem (Theorem 2.1.2), and will

be called an SML pexponential polynomial and denoted by SML-pex. This

particular shape of SML-pex will be kept standard throughout the rest of this

chapter.

Let V denote the set of all nonzero SML-pex F (x) with infinitely

many integer zeros.

Theorem 2.1.2. If F (x) ∈ V , then there exist an integer ∆ and a certain set

{d1, ..., dl} of least positive residues modulo ∆ such that F (x) vanishes for all

integers x ≡ dj (mod ∆), j = 1, ..., l, and F (x) vanishes only finitely often on

other integers.

Proof. This is proved in [1].

The integer ∆, which appears in Theorem 2.1.2, is called a period of F (x).

In fact, any multiple of a period is also a period. We shall call the least positive

period the basic period of F (x).

For any F (x) ∈ V with a period ∆, we shall denote by P(F, ∆) the set of all

least positive residues d1, ..., dl modulo ∆ mentioned in Theorem 2.1.2.
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2.2 Lemmas and factorization theorem

Lemma 2.2.1. Let F (x) ∈ V . Then for each i = 1, 2, ..., k,

ni∑
j=1

Pij(x)ρ
Q(d)
ij = 0.

Proof. Let β ∈ N. Substituting x = tβ∆ + d, where t ∈ Z and d ∈ P(F, ∆),

we get 0 = F (tβ∆+d)

A
Q(tβ∆+d)
k

=
k∑

i=0

(
Ai

Ak

)Q(tβ∆+d)(

ni∑
j=1

Pij(tβ∆ + d)ρ
Q(tβ∆+d)
ij ), A0 = 1.

Assuming that the leading coefficient of Q(x) is positive ; the other possibility is

treated similarly, then

nk∑
j=1

Pkj(tβ∆ + d)ρ
Q(tβ∆+d)
kj → 0, as t →∞. Taking t = uδk,

where u ∈ Z, u →∞
and δk = l.c.m.(δk1, δk2, ..., δknk

), we obtain

nk∑
j=1

Pkj(uδkβ∆ + d)ρ
Q(d)
kj → 0. The

polynomial

nk∑
j=1

Pkj(x)ρ
Q(d)
kj tending to 0 as x → ∞ on Z implies that it must

vanish identically, and so

0 = F (uδkβ∆ + d) =
k∑

i=0

A
Q(uδkβ∆+d)
i (

ni∑
j=1

Pij(uδkβ∆ + d)ρ
Q(uδkβ∆+d)
ij )

=
k−1∑
i=0

A
Q(uδkβ∆+d)
i (

ni∑
j=1

Pij(uδkβ∆ + d)ρ
Q(uδkβ∆+d)
ij ).

Repeating the above steps again, we have

0 = F (uδkβ∆+d)

A
Q(uδkβ∆+d)

k−1

=
k−1∑
i=0

(
Ai

Ak−1

)Q(uδkβ∆+d)(

ni∑
j=1

Pij(uδkβ∆ + d)ρ
Q(uδkβ∆+d)
ij ).

Thus

nk−1∑
j=1

P(k−1)j(uδkβ∆ + d)ρ
Q(uδkβ∆+d)
(k−1)j → 0, as u →∞.

Taking u = vδk−1, v ∈ Z, v → ∞ and δk−1 = l.c.m.(δ(k−1)1, ..., δ(k−1)nk−1
), then

nk−1∑
j=1

P(k−1)j(vδk−1δkβ∆ + d)ρ
Q(d)
(k−1)j → 0, as v →∞, so

nk−1∑
j=1

P(k−1)j(x)ρ
Q(d)
(k−1)j = 0.

Continuing in this fashion, we get

ni∑
j=1

Pij(x)ρ
Q(d)
ij = 0 as required.

Let F (x) =
k∑

i=0

A
Q(x)
i (

ni∑
j=1

Pij(x)ρ
Q(x)
ij ) ∈ V , d ∈ P(F, ∆) and β ∈ N. Define

R(β,d)(x) = Q′(d)x + Q′′(d)
2!

x2β∆ + ... + Q(m)(d)
m!

xm(β∆)m−1, abbreviated by R(x).

By hypothesis (Q, ∆, d, β), we mean :
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(1) For Jk1, ..., Jklk with ρβ∆
kJkt

= ηkJkt
6= 1 (t = 1, ..., lk), assume that there

exist integers jk1, ..., jklk such that

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

1 η
R(jk1)
kJk1

. . . η
R(jk1)
kJklk

...
...

...
...

1 η
R(jklk

)

kJk1
. . . η

R(jklk
)

kJklk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0

(2) For J(k−1)1, ..., J(k−1)lk−1
with ρβ∆

(k−1)J(k−1)t
= η(k−1)J(k−1)t

6= 1 (t = 1, ..., lk−1),

assume that there exist integers j(k−1)1, ..., j(k−1)lk−1
such that

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

1 η
R(j(k−1)1δk)

(k−1)J(k−1)1
. . . η

R(j(k−1)1δk)

(k−1)J(k−1)lk−1

...
...

...
...

1 η
R(j(k−1)lk−1

δk)

(k−1)J(k−1)1
. . . η

R(j(k−1)lk−1
δk)

(k−1)J(k−1)lk−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0,

where δk = l.c.m.(δk1, ..., δknk
).

...

(k) For J11, ..., J1l1 with ρβ∆
1J1t

= η1J1t 6= 1 (t = 1, ..., l1), assume that there exist

integers j11, ..., j1l1 such that

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

1 η
R(j11δ2···δk)
1J11

. . . η
R(j1l1

δ2···δk)

1J1l1

...
...

...
...

1 η
R(j1l1

δ2···δk)

1J11
. . . η

R(j1l1
δ2···δk)

1J1l1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0

Lemma 2.2.2. If F (x) ∈ V satisfies the hypothesis (Q, ∆, d, β), then for each

i = 1, ..., k, we have

0 =
∑

j

ρβ∆
ij =1

Pρ(x)ρ
Q(d)
ij (:=

∑

j 6=Jit

Pij(x)ρ
Q(d)
ij ) and PiJi1

(x) = ... = PiJili
(x) = 0

Proof. Substituting x = tβ∆ + d, where t ∈ Z, we get
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0 = F (tβ∆+d)

A
Q(tβ∆+d)
k

=
k∑

i=0

(
Ai

Ak

)Q(tβ∆+d)(

ni∑
j=1

Pij(tβ∆ + d)ρ
Q(tβ∆+d)
ij ).

Assuming that the leading coefficient of Q(x) is positive ; the other possibility

is treated similarly, then

nk∑
j=1

Pkj(tβ∆ + d)ρ
Q(tβ∆+d)
kj → 0, as t → ∞. Taking

t = uδk + jk1, where u ∈ Z and δk = l.c.m.(δk1, δk2, ..., δknk
), we get

nk∑
j=1

Pkj((uδk + jk1)β∆ + d)ρ
Q((uδk+jk1)β∆+d)
kj

= [
∑

j 6=Jkt

Pkj((uδk + jk1)β∆ + d)ρ
Q(d)
kj ] + [

∑
j=Jkt

Pkj((uδk + jk1)β∆ + d)ρ
Q(d)
kj η

R(jk1)
kj ]

→ 0, as u →∞.

Being a polynomial tending to 0 as the variable taking arbitrarily large integral

values, we deduce that

[
∑

j 6=Jkt

Pkj(x)ρ
Q(d)
kj ] + [

∑
j=Jkt

Pkj(x)ρ
Q(d)
kj η

R(jk1)
kj ] = 0.

Continuing in this fashion, we obtain

[
∑

j 6=Jkt

Pkj(x)ρ
Q(d)
kj ]+[

∑
j=Jkt

Pkj(x)ρ
Q(d)
kj η

R(jk1)
kj ] = 0 (1)

[
∑

j 6=Jkt

Pkj(x)ρ
Q(d)
kj ]+[

∑
j=Jkt

Pkj(x)ρ
Q(d)
kj η

R(jk2)
kj ] = 0 (2)

...

[
∑

j 6=Jkt

Pkj(x)ρ
Q(d)
kj ]+[

∑
j=Jkt

Pkj(x)ρ
Q(d)
kj η

R(jklk
)

kj ] = 0. (lk)

By Lemma 2.2.1, we also have

[
∑

j 6=Jkt

Pkj(x)ρ
Q(d)
kj ]+[

∑
j=Jkt

Pkj(x)ρ
Q(d)
kj ] = 0. (lk +1)

Since the determinant
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

1 η
R(jk1)
kJk1

. . . η
R(jk1)
kJklk

...
...

...
...

1 η
R(jklk

)

kJk1
. . . η

R(jklk
)

kJklk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0,
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it follows that
∑

j 6=Jkt

Pkj(x)ρ
Q(d)
kj = 0 and PkJkt

(x)ρ
Q(d)
kJkt

= 0, i.e. PkJkt
(x) = 0 for all

t = 1, ..., lk ; that is, the result of the lemma holds for i = k. Observe that under

the hypothesis (Q, ∆, d, β) what we have done above is to reduce the number of

terms in the sum representing F (x) by choosing appropriate integral values of x.

We now repeat the steps by taking x = uδkβ∆ + d, u ∈ Z. Thus

0 =
F (uδkβ∆ + d)

A
Q(uδkβ∆+d)
k−1

=
k−1∑
i=0

(
Ai

Ak−1

)Q(uδkβ∆+d)(

ni∑
j=1

Pij(uδkβ∆ + d)ρ
Q(jδkβ∆+d)
ij ).

Then

nk−1∑
j=1

P(k−1)j(uδkβ∆ + d)ρ
Q(uδkβ∆+d)
(k−1)j → 0, as u →∞.

Taking u = vδk−1 + j(k−1)1, where v ∈ Z and δk−1 = l.c.m.(δ(k−1)1, ..., δ(k−1)nk−1
),

we get

nk−1∑
j=1

P(k−1)j((vδk−1 + j(k−1)1)δkβ∆ + d)ρ
Q((vδk−1+j(k−1)1)δkβ∆+d)

(k−1)j

= [
∑

j 6=J(k−1)t

P(k−1)j((vδk−1 + j(k−1)1)δkβ∆ + d)ρ
Q(d)
(k−1)j] +

[
∑

j=J(k−1)t

P(k−1)j((vδk−1 + j(k−1)1)δkβ∆ + d)ρ
Q(d)
(k−1)jη

R(j(k−1)1δk)

(k−1)j ]

→ 0, as v →∞.

As polynomials, we infer as above that

[
∑

j 6=J(k−1)t

P(k−1)j(x)ρ
Q(d)
(k−1)j] + [

∑
j=J(k−1)t

P(k−1)j(x)ρ
Q(d)
(k−1)jη

R(j(k−1)1δk)

(k−1)j ] = 0,

and so

[
∑

j 6=J(k−1)t

P(k−1)j(x)ρ
Q(d)
(k−1)j]+ [

∑
j=J(k−1)t

P(k−1)j(x)ρ
Q(d)
(k−1)jη

R(j(k−1)1δk)

(k−1)j ] = 0 (1)

[
∑

j 6=J(k−1)t

P(k−1)j(x)ρ
Q(d)
(k−1)j]+ [

∑
j=J(k−1)t

P(k−1)j(x)ρ
Q(d)
(k−1)jη

R(j(k−1)2δk)

(k−1)j ] = 0 (2)

...

[
∑

j 6=J(k−1)t

P(k−1)j(x)ρ
Q(d)
(k−1)j]+[

∑
j=J(k−1)t

P(k−1)j(x)ρ
Q(d)
(k−1)jη

R(j(k−1)lk−1
δk)

(k−1)j ] = 0. (lk−1)
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[
∑

j 6=J(k−1)t

P(k−1)j(x)ρ
Q(d)
(k−1)j]+[

∑
j=J(k−1)t

P(k−1)j(x)ρ
Q(d)
(k−1)j] = 0. (lk−1+1)

Since the determinant
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

1 η
R(j(k−1)1δk)

(k−1)J(k−1)1
. . . η

R(j(k−1)1δk)

(k−1)J(k−1)lk−1

...
...

...
...

1 η
R(j(k−1)lk−1

δk)

(k−1)J(k−1)1
. . . η

R(j(k−1)lk−1
δk)

(k−1)J(k−1)lk−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

6= 0,

it follows that
∑

j 6=J(k−1)t

P(k−1)j(x)ρ
Q(d)
(k−1)j = 0 and P(k−1)J(k−1)t

(x)ρ
Q(d)
(k−1)J(k−1)t

= 0 for

all t = 1, ..., lk−1, i.e. the result holds for i = k − 1.

Continuing in this pattern, we get the desired result.

Lemma 2.2.3. Let F (x) ∈ V , d ∈ P(F, ∆) and β ∈ N. If F (x) satisfies the

hypothesis (Q, ∆, d, β), then F β
i (x) =

∑

j 6=Jit

Pij(x)ρ
Q(x)
ij ∈ V , i = 1, ..., k with a

period β∆.

Proof. By Lemma 2.2.2,
∑

j 6=Jt

Pij(x)ρ
Q(d)
ij = 0. Replacing x by uβ∆ + d, u ∈ Z,

we obtain, for all i, 0 =
∑

j 6=Jt

Pij(uβ∆ + d)ρ
Q(d)
ij =

∑

j 6=Jt

Pij(uβ∆ + d)ρ
Q(uβ∆+d)
ij =

F β
i (uβ∆ + d).

Lemma 2.2.4. Let G(x) = [P1(x)ρ
Q(x)
1 + P2(x)ρ

Q(x)
2 + ... + Pn(x)ρ

Q(x)
n ]AQ(x) be

an element in V with order of ρi = δi, Pi(x) 6= 0 (i = 1, ..., n). If G(x) satisfies the

hypothesis (Q, ∆, d, 1), then l.c.m(δ1, ..., δm) | ∆ where m is the number of ρi’s in

G1(x) := AQ(x)
∑

j,ρ∆
j =1

Pj(x)ρ
Q(x)
j .

Proof. Since ρ∆
i = 1 for all ρi in G1(x), δi | ∆ (i = 1, ...,m), and so

l.c.m.(δ1, ..., δm) | ∆.

Theorem 2.2.5. Let F (x) ∈ V with the basic period ∆ and rank r(F ). If F (x)

satisfies the hypothesis (Q, ∆, d, 1), then
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F (x) = {
∏

d∈P(F,∆)

(ηQ(x) − ηQ(d))}G(x),

where η is a primitive ∆-th root of unity and G(x) is a pexponential polynomial.

Proof. Recall that F (x) =
k∑

i=0

Fi(x), Fi(x) = A
Q(x)
i (

ni∑
j=1

Pij(x)ρ
Q(x)
ij ), and F 1

i (x) :=

A
Q(x)
i (

∑

j,ρ∆
ij=1

Pij(x)ρ
Q(x)
ij ) = A

Q(x)
i (

∑

j 6=Jit

(same)). By Lemma 2.2.2, Fi(x) = F 1
i (x).

By Lemma 2.2.3, Fi(x) = F 1
i (x) ∈ V with a period ∆, and so Lemma 2.2.4 implies

r(F 1
i ) | ∆, i.e. ρij is a ∆-root of unity. Rewriting F 1

i (x) as a polynomial in x with

exponential coefficients, we have F 1
i (x) = A

Q(x)
i (

∑
t

xt(p1tρ
Q(x)
1 + ... + pitρ

Q(x)
it

)),

and ρ∆
j = 1 (j = 1, ..., it). For each d ∈ P(F, ∆) and u ∈ Z,

0 = F 1
i (u∆ + d)

= A
Q(u∆+d)
i (

∑
t

(u∆ + d)t(p1tρ
Q(u∆+d)
1 + ... + pitρ

Q(u∆+d)
it

))

= A
Q(u∆+d)
i (

∑
t

(u∆ + d)t(p1tρ
Q(d)
1 + ... + pitρ

Q(d)
it

)).

Thus for each i, p1tρ
Q(d)
1 + ... + pitρ

Q(d)
it

= 0. Let η be a primitive ∆-th root of

unity. Then ρj = ηkj for some kj ∈ N. Hence

p1tη
k1Q(d) + ... + pitη

kitQ(d) = 0 ;

that is, ηQ(d) is a root of Hi(y) = p1ty
k1 + ... + pity

kit . Thus

Hi(y) = {
∏

d∈P(F,∆)

(y − ηQ(d))}Gi(y),

where Gi(y) is a polynomial. Hence

F 1
i (x) = A

Q(x)
i (

∑
t

xtHi(η
Q(x)))

= A
Q(x)
i ({

∏

d∈P(F,∆)

(ηQ(x) − ηQ(d))}
∑

t

xtGi(η
Q(x))),

and so F (x) = {
∏

d∈P(F,∆)

(ηQ(x) − ηQ(d))}(
∑

i

A
Q(x)
i

∑
t

xtGi(η
Q(x))).
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