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investigated using the multiconfiguration self consistent-field (MCSCF) and mul-
tireference configuration interaction (MRCI) methods with various basis sets. For
Fe,, the ground state is the 7A, with o%7%8° electronic structure, the structure
which is markedly different from the previous studies. The equilibrium nucle-
ar distance (R,) of 4.15 Bohr and the zero-point frequency (w,) of 215.0 em™!
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3.53+0.24 or 3.82+0.04 Bohr and 299.6 em™', respectively. For Fef, the ground
state is the ®A, with R, and w, of 4.49 Bohr and 159.6 em ™!, respectively. For Fe;,
the ground state is #A, state with R, and w. of 4.03 (3.89-4.04) Bohr and 278.2
(250+20) em™?, respectively (the experimental values are given in parentheses).
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comparison with the experimental value of 0.902:£0.008 eV. The calculations also

showed that it is easier for Fe, to accept than to lose electron.
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CHAPTER I

INTRODUCTION

Recently there exists the nano-scale synthetic of transition metal clusters which
forms charged dielectric nanospheres called quantum drop. Interestingly, the
physcial and chemical properties of these clusters differ somewhat from their bulk.
It was found that both neutral and ionic forms of the metal clusters involve in
catalysis processes. For example, the clusters of iron were observed during the
catalysis progress [1] and, hence, its properties have been of interest. Since, the
electron configuration of the iron atom is d® which enables to form many oxidation
states. Thus, the electron configuration of iron cluster is very complex. Among
the iron clusters, the iron dimer, Fe,, has been subjected to the most number of
studies. Its electronic ground state configuration was proposed by many people
{see Table 1). [5, 6, 7, 8, 9] Although it is now well accepted that the ground
state of Fep is A, state, the electronic configuration of this state is still far from

reaching the conclusion.

1.1 Previous studies on Fe, cluster

In 1980, P.A. Montano and G.K. Shenoy reported the internuclear distance of
Fey from the extended X-ray absorption fine structure (EXAFS) experiment in
argon matrix to be 1.87 + 0.13 A. [2] Later in 1982, H. Purdum and co-workers
obtained the Fe-Fe distance of 2.02 + 0.02 A using EXAFS but performed in neon



matrix. [3] The later work is considered to be more accurate and the accepted
distance is 2.00 - 2.04 A or 3.78 - 3.86 Bohr. Several experiments were also carried
out to elucidate other properties of Fe;. In 1984, E.A. Rohlfing and co-workers
using laser photoionization spectra obtained the first ionization potential of 6.30 £
0.01 eV for Fe,. {1} In 1986, D.G. Leopold and W.C. Lineberger using photoelectron
spectra investigated the anion Fe, and the values of 0.902 £+ 0.008 eV for the
electron affinity of the Fe; was reported together with, for the bond elongation
of 2.10 + 0.04 A, and the zero-point frequency (w.) of 250 £ 20 em™!. [4] Since
there is very much limitation on the experimental side to determine the electronic
structure of Fes, several theoretical studies were lauhched. The comparison of
these studies were shown in Table 1. In 1979, J. Harris and R.O. Jones carried
out calculations using density functional theory (DFT) and found the 'A, as
the ground state with lo? 207 7, 83 67 72 1o} electronic configuration with the
equilibrium nuclear distance of 3.96 Bohr (2.09 f\) and zero-point frequency of
390 em~L. {5] In 1981, D. Guenzburger and E.M.B. Saitovitch using SCF-X,-
SW (an DFT method) calculated isomer shift (IS) as well as quadrupole splitting
(QS). They found that when using the configuration of (607 60. 3n; 373 162
162 4s0?) which corresponds to "II, state the results were very agreeable to the
experiments. {6] In 1982, I. Shim and K.A. Gingerich using ab initio Hartree-Fock
(HF) and configuration interaction (CI), with double zeta quality basis and the
triple zeta function for 8d orbital again obtained the "A, state for the ground
state and the configuration 3doy® 3dn3% 3d25 3d6247 3dm2® 3dol* 3do?"
was given. Though both Harris and Jones and Shim ancj Gingerich reported the
same state as the groundstate, however, the reported electron configurations are
markedly different. Furthermore, the equilibrium nuclear distance of 4.54 Bohr

(2.40 A), and zero-point frequency of 204 em™! were obtained. [7] This however



emphasizes the weakness of Shim and Gingerich’s result. In 1988, M. Tomonari and
H. Tatewaki performed ab initio SCF and CI calculation and the “A, state were
suggested the ground state of Fe; molecule with the equilibrium nuclear distance
of 2.02 A. Amazingly, this bond distance is within the error of the experiments.
They, furthermore, gave the configuration of (60}° 605! 3x2° 3737 1828 1422
4303"’) for the ground state. Moreover, they also calculated the anionic state
where the 8A, state with R, and w, of 2.05 A and 370 em™!, respectively was
yielded. From the result, they computed the electron affinity and the value of 0.45

eV was obtained. [§] |

Interestingly, there is quite a disagreement between two CI calculations {Shim-
Gingerich and Tomonari-Tatewaki) in the electron configuration of Fe,. For the
moment, the most trusted theoretical result is that of Tomonari and Tatewak-
i's. Still their electron affinity is overly underestimated. From the complexity of
the electronic structure of Fey, the near-degeneracy correlation which is lacked in
previous studies is supposed to be a crucial factor for determining. the electronic
structure of Fes correctly. It is, therefore, our task to perform calculations that

includes such a correlation to obtain the more accurate results.

Table 1: The electron configuration of Fe, dimer in the previous studies.

The electron configuration Ground state Ref.
3do203dny03dd3 0 3d6; *3dr; *3do, ¥4s02? A, Harris et al. [3]
3do293dn03d8;°3d62 3dr} 3do ¥ 4s02" I, Guenzburger et al. [6]
3do}03dn313dd233d67 " 3dn 2 93doL 402" Ay Shim et al. 7]
3do,%3dn373d5}23d5*3dn233do ) 145020 A, Tomeonari et al. [8]

3do203dnt03d6%03d6%3dn2 3do 04502 () Nagarathna et al. [9]




1.2 Scope of this Study

The systems under investigation in this study consisted of Fey, Fe;, FeJ and
FeJ " clusters. The ab initio Multiconfiguration Self-Consistent Field (MCSCF)
and Multi-Reference Configuration Interaction (MRCI) calculations were carried
out for such systems to elucidate their electronic stuctures and find their equi-
librium nuclear distances (R,) and the zero-point frequencies (w,). The first and
second ionization energy were also computed from the energy difference between
Fe, and Fe} and between Fe] and Fel™, respectively. The electron affinity were

- computed from the energy difference between Fe, and Fe; .



CHAPTER II

THEORETICAL METHODS

For tiny particles, Newtonian mechanics can not be applied. The quantum
mechanics are then introduced, in which any properties can be calculated based

on the solution of the time-independent Schrédinger equation
HY = EV. (2.1)
Here, H stands for the Hamiltonian operator and E for the energy. In the system

of n electrons and M nuclei, the nonrelativistic Hamiltonian in atomic unit is given

by

Z V2 Z:ZMAVA ZZ—*
i=1 A=1 2.2)
VAVA
+ZZ_+ZZ Rag

i=1 3> Tij A=1B>A

where V? is the Laplacian operator
52 32 32
= e ——
ox?  Oy* 022

From (2.2), M4 and Z, are refered to mass and charge of the A® nucleus re-

(2.3)

spectively, Rap stands for the distance between the A® and B! nucleus, while

ri; for the distance between the i* and j** electron, and ryy is the distance be-

tween the i** electron and the A* nucleus. Unfortunately, the analytic solutions

of the Schrédinger equation can be found only for a few simple one-electron sys-
!

tems such as the one-electron hydrogen atom and the Hf molecule. Hence, the

approximations must be introduced for the many-electron system. [10]



The first approximation to be applied is the Born-Oppenheimer approxima-
tion. In this approximation electron and nuclear motions are separated when the
exact stationary states are applied to the nucleus. Therefore, Coulombic energy
is obtained in a simple calculation. The application of the Born-Oppenheimer ap-
proximation reduced the once complicated problem to solving only the electronic
part of the Schrodinger equation. Still the electronic part is too complex to be

solved analytically. Further approximations must be introduced.

There are many approximations in quantum chemistry, for examples Hartree-
-Fock (HF) approximation, Multiconfiguration self-consistent field (MCSCF) the-
ory, Configuration interaction (CI) theory, Coupled-cluster {CC) theory, Pertur-
bation theory, Density-Functional theory and so on. In this thesis, the CI and
the MCSCF methods were employed and only the theoretical background of these

methods were discussed.

[t is known that the HF theory is not sufficient to describe the many-electron
system accurately. This is because, the method only contains the correlation of
electrons with the same spin, the so called “Fermi correlation”. However, the
inclusion of the electron correlation of the electron with different spin, the so
called “coulomb correlation”, is also of importance and could not be neglected.
In the electronic structure theory, the term electron correlation often refers to
the correlation of the coulomb holes or the correction to the HF. The difference
between the exact non-relativistic energy, £4**¢*, and the HF energy, E#¥ | is called

the correlation energy, E°.
Eeorr = Eezact _ EHF' (24)

The contribution to the E®™ could be divided into the near-degeneracy correlation



or the static correlation and the dynamic correlation. The former arises when there
exists many low-lying electronic states which are coupled to the ground state, or
in the other words when one or more configurations are strongly coupled with
the Hartree-Fock wave function. This correlation describes, for examples, the
molecular bond dissociation, multiple weak bonds, transition metal compounds,
etc. A correlated method that can account for this near-degeneracy correlation is
the MCSCF. The latter is associated to the motions of electrons further from the
nucleus. Usually, this correlation does not invelve configurations which strongly
mixed with the Hartree-Fock wave function. The dynamic correlation describes,
for examples, the highly conjugated systems, the electric polarizability, etc. The

dynamic correlation can be accounted for by several techniques including the CL

2.1  Multiconfigurational Self-Consistent Field Theory

In the derivation of MCSCF equations [11, 12], it is convenient to define the
wave function, the energy, and also the Hamiltonian in the second quantization
formulae. In the 2™ guantization, 2 operators i.e. the creation, a,I-, and the

annihilation, a; operators were introduced. The properties of the creation and the

annihilation operators are given by;

a}lxk...x;)zl)ﬁxk...x;) and a:-‘lxk...x;)=0 if '!:E{k,...,ﬂ}

(2.5)
ai|Xxk - X = e X and a;lxe...x) =0 i & {k, ..., I}
(2.6)
Anti-commutation relations of these operators are
a;a; + a;0; = 0
a.,ta} + a}a:-’ =0 (2.7)

a}aj ~+ aja:[ = 5-,;3'.



The non-relativistic Hamiltonian in the second quantization formulism is

H Z: h’iJEIJ + = Z Qijkl Et_;.'EkI - JkE:I) (28)
i, tJ,ki

The hy; and gz are the one- and two-electron operators, respectively. The exci-

tation operator Ej; is introduced as

A

By = alybj0 + a':‘rgﬁjﬁ- (2.9)

Matrix elements of one- and two-electron operators on Slater determinants |m}

and |n) are

(mldtn) = S tmiBiln) = 52 5 (210)
and

(m|Haln) = Z Gis{m| By By = S Faln) = 3 gijui P (2.11)

i3kt i,k
The D" and Fjj are one- and two-electron coupling coefficients, respectively.
Where
Dp" = (9]B,/T)
E c;;an:-?" (2.12)
m,n

is the element of the first order reduced density matrix and

:JH 3 Zc Cﬂﬁgnk’: (213)
myn
is the element of the second order reduced density matrix. Thus, the energy
expression in the second quantization is

= (Wlﬁl\l’ ZhUDiJ + Z gajklptjkl (214)
Likd



The MCSCF energy is obtained by optimized both orbitals and MCSCF coef-

ficients until the energy (2.14) is at minimum.

Consider the unitary transformation of orbitals

¢' = ¢U (2.15)
or
G = alUu (2.16)
k
~ where
UlU =1. (2.17)

In the above equation U represents the unitary matrix. The unitary matrix U can

be written as an exponential of the anti-Hermitian matrix T

U=eT (2.18)
where
T = ZngaIa}. (219)
2]

The unitary matrix, U, in (2.15) can be expaned in Taylor’s series
). k (2.20)
For the singlet system, the operator T is expressed by

T= Ty(aladja + alyase)
i, (2.21}



In (2.21), when only the real part of T operator is considered we obtained

T =3 Ty(Ey - Ey)

2 (2.22)
=2 TuE;
-1

where E;; is antisymmetric combination of excitation operators.

The MCSCF configuration space can be expressed as the unitary transforma-
tion between the reference state, |0}, and the complementary space, |k}, which

spanned on |0) as

K

Ky =3 m). (2.23)

m

The unitary transformation is defined by projecting the reference state, |0}, to the

complementary space

§=>" Sko(lK)0] - [0)(K]) {2.24)
K#0
where Sy is the variational parameter and St = —§. The unitary transformation

of the reference state, [0}, is obtained as
0) = €0}, (2.25)

where the transformed function remains normalized. Thus, the overall transfor-

mation of the MCSCF wave function is
10y = &*eo). (2.26)

In equation (2.26), 7 and § do not commute. The energy of the system can be

Taylo.r expanded over a stationary point p; and for simplicity setting po = 0 as

E(p) = E(0) + Z (g—f;) Z:p, ( 6823"1 J) . (2.27)

10



or in vector notation
1
E(p) = B(0) + g'p + 5p'Hp+ ... (2.28)

Here, ¢ is the gradient vector and H is the Hessian matrix. The minimization
of E(p) is performed using the Newton-Raphson algorithm. Thus, the stationary
. 8E _

point is obtained as the solutions to the equation; . = 0, which gives the set of

linear equations

g+ Hp=20
(2.29)
p=—Hg
These equations are solved iteratively until the convergence is reached. The energy

expression for the wave function in (2.26) is given as
E(T, 8) = {0]e~%e T He e |0). (2.30)

By Taylor-expanding the equation {2.30) up to the second order terms of T and

S, the energy formulation is expressed as
E(T, ) = (O1F + [H,T) +[H,5] + 5([8,1),7)
1

= B(0,0)+ > Ti;(0|[H, E;]I0) +2 Y Sko(0|H|K)

i>j K#0
+ > TyTu{{0|E;; E5H|0) + (0| HE; Eg|0)
(-3
— 20 EZHER|0)} + 2 | SkoSio{ (KIHILY + 651, ({0|H|0)}
+2) ) SkoTiy(K|[H, B3|0)
=E(0,0)+ Y Tyoly + > Sxogls + > TyTuH,

+ D SkoStoHg, + Y STy HE,.
(2.31)

- The energy expansion in the equation (2.31) is equivalent to the equation (2.28).

Similary, we obtained the set of the linear equations which is equivalent to the

11



equation (2.29) as

(5 0 (F)=-() (2.32)

where the simplified notations are introduced as follows

1 1 1 1 1
= _H¢© = . [ = |9 = —g° = —-g°.
a 2H O gH e 2H U= 505w =g

The equation (2.32) is the MCSCF equation.
2.1.1 Complete Active Space SCF Method

Usually, the most difficult task in carrying out an MCSCF calculation is the
selection of configuration space. For complicated molecules, the selection of a

suitable configuration space can become very tedious.

There are several methods for selecting the MCSCF configurations. One of the
successful approach is to partition the orbital space into three subspaces according
to their occupation numbers (n;) i.e. the inactive (n; = 2), the active (0 < n; < 2)
and the secondary (virtual, n; = 0) orbitals. This method is known as the complete
active space self-consistent field (CASSCF). In this method, the MCSCF expansion
is obtained by distributing the active electrons in all possible ways among the
active orbitals. The active orbitals are normally orbitals which are involved in
the bond-formation or the bond-dissociation of the molecule, The number of CAS

configurations, Ngas, can be calculated by the Weyl’s formula:

_25+1( n+1 n+1
Neas =77 (%N—S) (%N+S+ 1) (2.33)

where n is the number of molecular orbitals, NV is the number of electrons ans S

is the spin quantum number.
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2.2 Configuration Interaction Theory

The typical applications of the CI method employ the Born-Oppenheimer ap-
proximation. Therefore, the electronic Schriodinger equation is solved at discrete

sets of fixed nuclear positions

) 1 Z 1
e‘I’e ;R =—-5 2 - =8 _‘I’e ;R
HLE.(rR) = -3 ;v, ; = +§>; o Te(ri B) 2.34)

= E.(R)¥.(r; R).

It is important to remember that the electronic energy, F., is an artifact of the
Born-Oppenheimer approximation and is not as physically meaningful as the total
“energy of the system. Within the Born-Oppenheimer approximation, we estimate
the total energy by adding the nuclear-nuclear replusion energy to the total elec-

tronic energy, U(R),

U(R) = E(R)+ 3 2222, | (2.35)

A<B TAB

The configuration-interaction (CI) wave function consists of the linear combi-

nation of Slater determinants constituted the exact wave function

|B0) = ColTo) + > CLID + > Cohl¥s) +.... (2.36)

e<hrds

The CI method is the properly size-extensive, which will be discussed in more
detailed in section 2.2.2. This method is flexible and highly accurate. However,
it is applicable to small molecules only since the member of Slater determinants
(configuration) to be included grows rapidly as the size of molecule increase and the
calculation would become impossible to be carried out. Thus for large molecules,
the CI expansion is normally truncated and the method is, therefore, susceptible

to the size-extensive error or the lack thereof.
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2.2.1 The CI model

In the CI method, the wave function is constructed as the linear combination

of determinants or configuration state functions (CSFs)

0) = 3_Cili) (2.37)

where the coefficient, Cj, is determined by variationally optimizing the expectation

value of the electronic energy;

_ . {CIH|C)
EBer = min CICy (2.38)
This condition is equivalent to a set of eigenvalue equations for the energy and the

expansion coefficients

HC = E;C ' (2.39)
where H is the Hamiltonian matrix with elements

Hy = (ilAl5) | (2.40)

and C is the vector containing the expansion coefficient C;. The equation (2.39)

corresponds to a standard Hermitian eigenvalue problem of linear algebra.

In the CI expansiou (2.37), the basis functions |¢) are the Slater determinants.
The wave function in the spin-symmetrized CSFs can be expanded more compact
than Slater determinants. The linear transformation between CSFs asd Slater
determinants of CI wave function can be carried out rather easily. The CSF
expansions are adapted using the determinantal techniques by expanding the CSFs
in determinants just before any calculation or manipulation is to be carried out on
the CI wave function in transforming back again immediately afterwards. However,

the high efficiency and generality, the simpler determinantal basis is more useful.

14



The CI method is completely general with respect to the choice of configuration.
The full CI (FCI) ezpansions are the full set of determinants that generated by

distributing all electrons among all orbitals.

For large system, the FCI wave function is very difficult to calculate. Thus, the
truncation of FCI expansion is normally introduced. It is important to distinguish
between static and dynamical correlation. The static correlation is treated by s-
electing the dominant configurations of the FCI expansion. These configurations
are often referred to as the reference configurations of the CI wave function, and

- the spanning of these reference configurations is called the reference space. The
dynamical correlation is treated by adding determinants constructed from exci-
tations out of the reference space to the wave function. However, the number of
configurations required in the CI expansion rise approximately as (2K)¥ so even a
trivial FCI calculation is barely affordable. A more practical approach is to trun-
cate the CI expansion and keep only terms up to the second summation (terms of
double excitations) in (2.36). The calculation based on this a.pproa.é,h is called CI
singles and doubles (CISD}

2.2.2 Size-extensivity and the CI model

The simple model for the size-extensivity is the non-interacting of system, A

and B. The FCI wave function for the system A can be written as
[W5E°T) =95 vac)
S (2.41)
= (P47 + 95 |vac)

where @f F is the operator that generates the normalized Hartree-Fock reference

state and gﬁg‘”“' is the operator that generates the correlation part of the wave
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function. The FCI wave function satisfies the equation;

HLW5C") = E5CTIECT) (2.42)

EFCI

where H4 is the Hamiltonian of the system A. The FCI energy, , can be

seperated into the Hartree-Fock, EX¥, and the correlation energy, ES™,

EECT = EfF + B (2.43)

= (tbffF [Halpi") (2.44)
($ECHH, — B [wi¢")
A A

EYT = (2.45)

Similar equations hold for system B. The wave function of non-interaction system

A and B is defined as

TANER A Sl )

(2.46)
= FF + 57 (@5F + 957 vac).
The size-extensive solution for this system is represent as
(Ha+ Hp)lpis") = (B + BEY)wAs") (2.47)

Because of the algebraic properties of the second-quantization the ¥5¢7 and 5%/,
the Pauli antisymmetry principle is satisfied for the product wave function YECIHECyac).
The FCI wave function and energy of the compound system can now be expanded

as

[WESTY = (WHFET + P92 + BT + i@ Y vac) (2.48)

EFST = EXF 4 EJF + ES™ 4+ EZ. (2.49)

Since the Hartree-Fock energy EXF + EEF is size-extensive, the FCI correlation
energy ES"" + EF"™" must also be size-extensive. For the truncated CI wave func-

tion, the product 1,!3 1,0"""’ is not included. This exclusion of 1[334“"1/3"3“" leads to



the lack of size-extensivity in the truncated CI model. For examples, the truncat-
ed Cl-doubles (CID) expansion, which contains the individual system wcw and
1,55”’ can be written in the form (2.41). Since the term $$"™%™, which contains
quadruple excitations, is not included in the wave function for the non-interacting

system. Thus, the truncated CID wave function for the system is written as

WSE) = (BT BET + AT + 5T o) o (250)

In this expression, |¥55°) is construcied from the wave function of the subsystem
A and B. Since the total energy can be written in terms of the size-extensive

" Hartree-Fock contribution
Eff = EJF + E§F (2.51)

and the correlation contribution

CID|f] 0. - HE|CLD
peorr = Vg |Fla + Ha = Bjj 1455 (2.52)
<¢crowcw)
The expansion of the numerator in (2.52) for the correlation energy gives
( CIDIHA‘FHB FleID> < CIDlHA—-EfF!‘I,bCID)
(2.53)

( CIDlH _EgFleID>
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Considering the first term in (2.53) and substituting the CID expression (2.50)
then gives
WEE1HA — EfT1W3E) = (vad (595 + 97 LT + SR
(Ha - BEXFYWEFORT + 44 o
+ PR ) vac)
= (vacl$ A 1P Ha — EFFVPETPET vac)
+ {vac| B TP A, — EHEVWHF ™ [uac)
+ (vaclpy " WS (B4 — BEF YT HE vac)
vac|wC“rT¢fFT(fIA EHF)-d:-ngZrHFlmc)
+ (vaclpy A TN (A4 ~ BFF YT vac)
+ (vacl " 1 N (s — BEF Y9 ET vac)
+ (vacldy " dh T (A — BET VAT GEF luac)
+ (waclp S IGE (Ha — BEF)ET G5 vac)
+ (aclPp B4 (B4 — BET W9 E jvac)

(2.54)

Applying the orthogonal between 7% and 2/’ the expression (2.54) is reduced
to
(WSIP|EL 4 — BEFICIPY = (wsorr | Hy — BHF |y + (oo | H o[ T)
+ (R HAlE™)

(,!ngDlH all EfF[wGID>
(2.55)

and similarly for the system B. Combining the formular such as (2.55) for the
system A and B obtains
< CIDIHA +HB '¢CID) _( nglﬂA Fl,chD)

e (2.56)
+ (g P Hp — EETIWE™D)



The expansion of the denominator in (2.52) for the correlation energy yields

WSEPWSEP) = (vacl(dy T IHF™ + ErTIGHEY 4 GEFIGET
(AT HBF + 4l Fiﬁ”"” + 97 PE " vac)
= (vaclph " P IHETPE  lvac)
(vaclw””w“’”’*w””w“’”lvac)
+ (vach,L-B thbf‘“""w"“"wﬁﬁ'lvac)
+ {vacl T L TG HE G EE Ivac)
+ (vacl ST P TG E T e vac)
+ (waclp S G A Georr Sy gc) (2.57)
+ (vaclph " L G ETGEF lyac)
(,Uac,waFT,‘bEFTQpHchorrlvac
+ (vaelpp R T lh R ac)
=1+ W3 WET )+ WEWET)
= (PEEWATY + WET 1T + (w5 1o T)
+ (PETIETY ~ 1
= (W5 PS"P) + (WG Pl EP) - 1.

Inserting the expanding of numerator (2.56) and denominator (2.57) in (2.52), we
arrive at the following expression of the correlation energy of the truncated wave

function:

corr (,‘J}CIDIHA 4 F"IPCID) + (wGIDlHB il EHFWJCID

AB — <¢§10W,§m) = (wgwwgw> (2-58)

The correlation energy of the truncated CID wave function (2.50) is not size-
extensive. The expansion of the pumerator and denominator in correlation energy

(2.52) leads to a separation of the total energy as required by size-extensivity.
= (WGEP|Ha + Hp ~ BEE|9SIP (2.59)

For system A, consider the diference between the variational correlation energy

(2.52) and the size-extensive correlation energy (2.59)

($S'P\H s ~ EF|yS
1+ (i)

ID)
W 1WE) (2.60)

corr* coTT
EA —Ha =
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The intermediately normalized CID wave function in (2.60) is proportional to the

normalized state

WSy = Co(lfT) + |wsm™)) (2.61)
where
c - (2.62)
0= .
V1+ @)
so0 the equation (2.60) express as
corr® corr Care 1 - Cg

Since C2 is assumed to be close to 1, then replace %?i by 1 —~ C? and (2.63)

reduces to
ES = E57(1- C3). (2.64)

This correction energy, E‘f, is the Davidson correction. However, the addition of
the Davidson correction to the CI energy makes the energy only approxima.tely
size extensive. Because, the Davidson correction is determined from the cofficient
of the calculation which is not size-extensive. Furthemore, this correction includes

only contributions of quadruple excitations, while higher excitations are truncated.
2.2.3 CI Singles and Doubles method

The CISD method is based on the assumption that the wave function of the
system can be well approximated by the Hartree-Fock determinant. For this as-
sumption, the coefficient Cp in (2.36) is much larger than other coefficients. The
CI enérgy and also properties calculated are already near convergence by keeping

only single and double excitations in the expansion {2.36). Since the CI equation
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is a linear equation, it could be solved in a single step by diagonalizing the ma-
trix H. However, the practical problem in calculation process is the number of
operations and the storage of H. Therefore, the single step approach could put a
severe limit on the CI energy calculation. The direct CI approach is introduced
to solve the CI equation iteratively. In most cases, the CISD method is highly
accurate for determination of energies and properties of molecules. The accuracy
" of this method depends on the satisfactory description of the Hartree-Fock wave
function of the system, since the excitations include wave function out of Hartree-
Fock space. Furthermore, the truncation of higher excitations in the CI expansion
could cause the lack of size-extensivity (section 2.2.2). This error increases as the

number of electrons in the system increases.
2.2.4 Multireference CI wave function

The multi-reference CI method (MRCI) would be an extension to MCSCF

method. The wave function of MRCI is expressed by |
Whner = 3 [CAb) + DLl + 3 Clvi| s

P ar a<h,r<s

Similar to the CISD method, the CI expansion is truncated is keeping only single
and double excitations. The first term of (2.65) is the MCSCF wave function. The
single and double excitations is out of the MCSCF space. Similary to CISD, the
direct CI approach also employed in the MRCI method to avoid the size problem
and reduce the number of operations. One should also notice that the dimension
of H (the mémber of CSFs) in the MRCI calculation is much larger than the CISD

calculation.
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The MRCI method is appropriate to treat the system with strong near-degeneracy



carrelation, the configurations which is nearly degenerated to the Hartree-Fock
state would also be important in the expansion. These configurations are not in-

cluded in the CISD calculation. The error due to the size-extensivity of the MRCI

22

calculation is smaller than that of the CISD calculation since large configurational

space which contains higher excitations is included. This size-extensivity error can

be further reduced by choosing larger reference spaces.
2.2.5 Direct CI methods

The crucial step in a CI caleulation is the formation of the o vector:
o=HC ' (2.66)
where C is a trial CI vector and H is the matrix Hamiltonain matrix:

A= Z hogEipg + = Z (pql'rs)(quE” —6E,,). (2.67)

pq P g8

The ¢ vector is then:

= Z [Z hpeAgy + Z (pgirs) A;;,”] {2.68)

v ?nq PnQ‘v -

where AL and A;‘;’,s are the so-called direct CI coupling coeflicients. Thus, instead

of storing very large vectors such as AS¥ ‘and ALY the problem is reduced to

compute a much smaller vector o,. This o, could be computed as needed where

no storage is required.



CHAPTER III

COMPUTATIONAL DETAILS

In this study, four systems which consisted of Fey, Fel, Fe; and Fef™ were
investigated. These are small systems, but have very complicated electronic struc-
tures with many low-lying states. Therefore, it would be most suitable to perform
multi-reference CI (MRCI) calculations on these systems. Unfortunately, the suc-
cess of the Cl method depends on the starting orbitals since only CI coefficients
are optimized. Usually, the starting orbitals of CI calculation is obtained from the
optimized Hartree-Fock wave functio.n. In normal CI calculations, the HF state is
often chosen as the CI references state. In MRCI, the reference state must con-
sist of multiple CSFs. Thus, it is natural to collect MCSCF’s configurations as
the reference state and its orbitals as the starting orbitals for MRCI calculations.
The basis set employed in this study is atomic natural orbital (ANQ) [17512p9d4 f]
basis set of Pierloot et al. [14] For each system, the equilibrium nuclear (R,) and
zero-point frequency (w,) were determined. Furthermore, the first and the sec-
ond ionization potential (IP) and the electron affinity of Fe; were computed from
the energy difference between Fe; and its ionized states Fef, Fej*, and Fe;. All

calculations were performed using the COLUMBUS [15, 16] program package.



3.1 COLUMBUS program package

The COLUMBUS package can perform serveral types of quantum chemical
calculations. However, only procedures involving MCSCF and MRCI calculation

were discussed.
3.1.1 MCSCF calculation

Firstly, input files for sucessive calculations must be created using colinp in-
~terface program. In colinp, informations such as geometry coordinates, molecular
symmetry, number of electrons, spin multiplicity, basis functions etc. must be
provided. Secondly, the argos.z program for evaluating one- and two-electron inte-
grals over symmetry-adapted linear combinations of generally contracted gaussian
atomic orbitals is launched. This program generates argosis as its list file and
aoints and goints2 as integral files. Next, the scfvie.z which requires aoints and
aoints2 to calculate restricted Hartree-Fock wave functions and energies may be
executed. The scfvie.x yields scfls as printed output file and mocoef as molecular
orbital coeflicient file. This calculation is optional and it is useful for accelerating
the convergence of the MCSCF calculation. The MCSCF requires guess molecular
orbitals and formular to create CSFs. The former can be obtained from SCF calcu-
lation or previous run of MCSCF or core Hamiltonian while the latter is obtained
by launching medrt.x and meuft.x programs. The medrt.x could be run interac-
tively or in the batch mode with medrtin as the input file. In this program, the
molecular orbitals (MO) is catagorized to inactive, active and secondary orbitals
(see section 2.1.1). This program constructs the distinct row table (DRT) which

produces lists of CSFs while the mecuft.x generates the coupling coefficient over
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active orbitals. The next step which is the final step is to carry out mesef.z pro-
gram. This program performs optimization of CFS3s mixing coefficients and orbital
expansion coeflicients using the graphical unitary group approach and produces
the MCSCF energy. The diagram describes the procedure concerning the MCSCF

calculations depicted in Figure 1.

argos.x

produce one- and two-electron integrals

produce mocoeff
produce DRT (CSFs)

produce coupling coefficient

Figure 1: Schematic diagram of the MCSCF calculation

produce MCSCF energy

3.1.2 The CI calculation

To perform a CI calculation, the molecular orbital coefficient must be required.
This could be done by taking mocoef obtained from scfvie.x or by transforming
the restart file of mesef.x to mocoef using mofmt.z program. As in the MCSCF
calculation, the CI calculation required the DRT file which contains lists of CSF's.
However, this DRT is different from that of mcscf since the input provides the
definition of core, virtual, and internal orbitals as well as the reference state which
is the list of selected CSFs. Normally, those given in the mcscf calculation will be

chosen. This process performs using cidrt.z program. The efficiency of the wave
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function optimization steps depends on the complexity of the DRT. In the case,
where there are several ways of specifying a desired wave function, the best choice is
the one that results in the smallest DRT and the shortest indexing vectors. Similar
to mescf, The ciuft.z program creates the diagonal formula file, ciftdfl, off-diagonal
formula file, eiftofl, and information file, ciftifl. These files are needed in the next
step. Afterwards, the one- and two-electron AO integrals must be transfromed
to MO integrals using the tran.z program. For efficiency of the calculations, this
transfromed MO integrals are sorted using cisrt.z program. After these preparation
steps are completed, the ciudg.z program is launched and CI energy is obtained.
| Together with the CI energy, the Davidson corrections and simple wave function
analysis are determined. The procedure for the CI calculation in diagram is given

in Figure 2.
produce mocoeff from mcescf restart

produce DRT

produce formular files

transform AQ integrals to MQ integrals
cisrt.x sort MO integrals

produce Cl energy

Figure 2: Schematic diagram of the CI calculation

3.2 Basis set

Almldf and Taylor [13] suggested the use of basis functions derived from the
natural orbitals. The natural orbitals (NOs) are the one-electron representative of
the many-electron wave function in which their corresponding eigenvalues, known

as the occupation numbers, represent the contributions of different natural orbitals
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to the many-electron density matrix. The NOs of the CISD wave function are
truncated by occupation numbers to form a contracted set into desired size, and
the expansion coefficients of the NOs in terms of the primitive basis functions
then form the coefficient matrix for the general contraction. One advantage of
this atomic NO approach is that a single uncontracted calculation provides the
contraction information for any size of contracted set. The contracted sets are used
in molecular calculation without further modification, This appoach is well defined
and inexpensive, the natural orbital occupation numbers provide an excellent guide
to the relative importance of each contracted function. Functions of higher angular
| quantum number than the highest occupied shell in the atom can be included in
this approach without additional difficulty. In this study we employed the atomic

natural orbitals (ANOs), which is the natural orbitals type basis set.

All calculations in this study were carried out using the modification of ANQO
Pierloot et al.’s [14] basis sets. The basis set used in these calculation consist-
ed of (17512p9d]/(8s7p7d) denoted as 877 basis, [17s12p9d4f]/ (433p2d1 f) ba-
sis denoted as 4321 basis, [17s12p9d]/{554p3d) basis denoted as 543 basis, and
[17s12p9d4f]/(5s4p3d2f) basis denoted as 5432 basis.

3.3 The Fe; system

The molecular symmetry point group of Fe; molecule and Fe, molecule like ions
are Dyop. Owing to the limitation of most electronic structure theoretical calcula-
tion programs, including the COLUMBUS program package, it is not pluasible to
utilize molecular symmetry higher than the corresponding abelian group. Thus,
the Lz point group which is the sub group of the Dy, symmetry is imposed. The

term symbols of molecular states of Fe; in the D, symmetry which adapted to the
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Dy), symmetry were given in Table 2. The electonic ground state of Fe; molecule
is experimentally determined to be the 7A, state. {5, 7, 8] For performing the
MCSCF calculations, molecular orbitals of the Fe; must be divided into inactive
{(with occupations n; = 2), active (with 0 < n; < 2), and unoccupied (with n; = 0}
orbitals. Thus, 18 orbitals (1so, to 3pm,) obtained from the linear combinations of
15 to 3p orbitals of 2 Fe atoms were selected as the inactive orbitals. For the active
space, 12 orbitals from the linear combinations of 3d and 4s orbitals of 2 Fe atoms
were chosen. The rest are unoccupied orbitals. The sketch of the active space
which consisted of 16 electrons in 12 orbitals were shown in Figure 3. Since the
" molecular state for investigation is 7A,, state, the By, molecular symmetry {a Doy
representative of A, symmetry) was chosen. Using the active space in Figure 3
and restricting to B, symmetry, 1,150 CSFs of MCSCF were generated. For CI
calculations, MCSCF’s CSFs with CI coefficient > 0.05 and its MO were selected
as the CI reference and starting vectors respectively.

Table 2: The irreducible representation of Doy symmetry of MO of Fe, like struc-
ture.

AQ interaction MO type Irrep. of Dy,
1s — 1s log, 1oy g, 010,°

28 — 2s 204, 20, g, b1y

2p, — 2p, 304, 304 Qgy B1ay

2p:r: - sza 2py 5% 2py lﬂ'ua 17"_:; (b3u: b29)1 (qu: b3g)
38— 3s 4a,, 40, g, Din

3pz '"* 3pz 5093 5Gu Gy, blu

3pz - 3Px: 3113; =1 3py 27Tu: 277'9 (bSua b2g): (b21n b3g)
3d,z — 3d,2 6a,, 60y Qg, b1y

3d,, — 3d,., 3dy: — 3dy, 3, 37, (3w bag), (bau, bag)
3y — 3dgy, 3dpa_y2 — 3dsa_ya 16, 16, (brg, u), (g, bru)
4s — 4s dsg,, 450, ag, byy

“bonding, anti-bonding
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- o
i - I I
. i TS
A i S
o SHE~—

_T_l’_. do’g

Figure 3: Possible electron configuration of Fe; molecule and rough sketch of its
active space.

3.4 The Fe] system

Since Fe] is very similar to Fe, except there is one electron less, the same inac-
tive, active and unoccupied spaces were imposed. The corresponding representa-
tives in Dy, of A, are A, and B;, symmetries. However, A, is also representative
for &,. Thus By, is chosen. The 8A, state was suggested as the electronic ground
state of Fel by Tatewaki et al. [18] The possible electron configuration and sketch
of the active space which consisted of 15 electrons in 12 active orbitals were given
in Figure 4. A similar procedure to that of Fe, for selecting CI reference and

starting vectors is performed for Fej.



4s5a,

4s0,

34

do,

dmy

dby

ds,

=F
E R

dn.,

—L— doy

Figure 4: Possible electron configuration of Fef molecule and rough sketch of its
active space.

3.5 The Fe; system

The corresponding Dy, representatives for the A, state are By, and A,. By
similar argument to Fel system, the B, is chosen. The spaces as in the cases of
Fey and Fel were imposed. From previous studies, 3A, state was suggested as the
electronic ground state of Fe;. {4, 8] The possible electron configuration and the
sketch of the active space which consisted of 17 electrons in 12 active orbitals were

demonstrated in Figure 5.
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Figure 5: Possible electron configuration of Fe; molecule and rough sketch of its
active space.

3.6 The Fe;* system

Experimental and theoretical suggestions on the electronic structure of Fej*
are still lacked. Hence, there is no prior knowledge on the ground state of Fel,
calculations on several possible states were performed and their corresponding
energies were compared. Then, the ground state can be suggested. However,
there are too many possible states to be considered. Using the knowledge from
the ground electronic structure of Fe, 4 possible states were selected for Fej*.
The Fej has the (3do,)! (3dm, )*(3dé,)?(3d6, )*(3dm,)?(3doy,)! (4s04)* configuration
for the valence electrons and 4s electrons have lower energy that 3d electrons.
Therefor;, only the states which resulted from the detachment of 3d electrons were

. considered. For the linear molecule, 3d orbitals can combine to form molecular

orbitals which can be classified as sigma type (3do), pi type (3dw), and delta

31



type (3dd). (In each orbital types, there exists a bonding and an anti-bonding
orbital denoted by the subscript g and u.) Among the d orbital types, the 3do has
the lowest energy. Thus, only states derived from the detachment of an electron
in 3dn and 3dé are investigated. Taken a S-electron from 3dd,, the *A, state
is formed. This state corresponds to ®A, and ®B,, states in Dy,. By similar
argument to the previous sections, the ? By, state was studied. Taken a S-electron
from 3dm,, the °II, state is formed. In Dy, this stabe is split to *By, and %By,
states and we selected ®Bs, to study. By detaching one electron from 3d§,, the
"A, which is represented by "A, and “By, in Dy, symmetry is obtained. The 7By,
‘was chosen for the calculations. Finally “II, state is resulted when ionizing one
electron from 3dm, orbital. This state is decomposed to By, and "B, state in
D,y and only ?Bs, was considered. The MCSCF and MRCI calculations on the 4
states i.e. A, (°Bia), °Tl; (°Bay), A, ("By,), and I, ('B,,) were carried out.
The active space similar to other Fe, systems which contains 14 electrons in 12
active orbitals was imposed. The MCSCF orbitals and CSF's with coefficient. larger
than 0.05 were used as starting vectors and CI reference in the MRCI calculations.
The equilibrium distance (R.), the harmonic frequency (w.) of these 4 state were

determined and their energies were then compared.
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CHAPTER IV

RESULTS AND DISCUSSION

4.1 Feg

Experimentally, the R, obtained in inert gas matrix [2, 3] and w, obtained from
‘the resonance Raman spectrum [19, 20] of Fe, molecule are 3.54-3.82 Bohr and
299.6 cm™! respectively. In this study, the electronic and molecular structure of
Fe, molecule in the 7A, state (the ground electronic state) were investigated using

4 basis sets i.e. 877, 4321, 543 and 5432 (see section 3.2).
4.1.1 Electronic structure

As mentioned in section 1.1, there were several theoretical studies on the elec-
tronic and molecular structure of Fe; and the most accei)ted work is that of
Tomonari and Tatewaki. In this study (see Table 3), we obtained the CSF#2 as
the main configuration with contribution to the total wave function is only 53.9%.
Thus, it would not be reasonable to use the CSF#2 as a sole representative for
the electronic structure of Fe, due to the multi-determinantal nature of the wave
function. In this case, the natural occupations which is the average occupations of
all CSFs would be used as the better representative and the electronic structure of
Fe, obtained from the natural occupations is (3do,)!7 (3do,)1? (3dm,)%® (3dn,)%4

(3d8,)37 (3d8,)23 (450,)'0 (450,)%0.



Table 3: Electronic configurations with coefficients of the main configurations
obtained from calculation carried out with 5432 basis of Fes molecule.

CSF  coefhicient doy doy, dmg dm, dn, dm, dd, do, do, do), 480y 4soy

1 0.115591 2 2 1 1 1 1 2 2 1 2 1 O
2 -0.734011 2 1 1 1 2 2 2 2 1 1 1 0
3 -0.215473 2 1 2 1 2 1 2 1 1 2 1 0
4 0.112913 2 1 2 1 1 2 2 1 2 1 1 0
5 0.215472 2 1 1 2 1 2 2 1 1 2 1 0
6 -0.112913 2 1 1 2 2 1 2 1 2 1 1 @
7  0.138580 1 1.2 1202 2 1 2 1 0
8 -0.182056 11 2 1 2 1 2 2 2 1 1 0
9 -0.062391 1 il 02 Taefe? 1 ] 1 0
10 -0.138580 11 1 2 2 1 2 2 1 2 1 0
11 0.182056 lagt™lry? 11 aln.2"wiel? 1 1 O
12 0.263202 1 _Je® 2F 20 [INNINEISST., 2 2 1 0

From this electronic structure, the bond order was calculated and the value
of 2.00 was resulted. The natural occupations obtained from this calculations

together with those from other caleulations were listed in Table 4.

Table 4: The natural occupations of CI calculation of Fe, with 5432 basis.

bond order
do, do, dm, dw, dé, di, 4s04 450, 3d 4s total

5432 1.7 1.2 3.5 24 3723 1.0 0.0 1.50 0.50 2.00
Shim et al. 16 25 31 292525 20 00  -0.351.00 0.65
Harris et al. 20 1.0 40 2.0 3.0 2.0 2.0 0.0 2.00 1.00 3.00

Tomenari at al. 1.9 1.1 3.7 2.3 2.8 2.2 2.0 0.0 1.40 1.00 2.40

By decomposing the bond order into the contribution of 3d and 4s orbitals,
it appears that the 3d contribute to 76% of the bond, while it is only 24% for
the 4s. When categorizing by bond characters, the Fe-Fe bond comprises of 44%
o, 27% =, and 29% &, while the o character is almost 50% 3d and 50% 4s. The
main electron configuration of Fey from Tomonari and Tatewaki’s were shown in

Table 5. In their calculations, they chose 3do®3dn53d5%4so? as the reference state
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for CI calculations and kept 4so as the core orbital (always doubly occupied).
This reference state, however, contributes to-64% of the total wave function. From
the natural occupations (Table 4), the configuration for Fe, is (3do,)!® (3doy)"!
(3dm, )27 (3dmg)?3 (3d6,)%® (3du)%? (4504)%0 (450,,)"0.

Table 5: RCSFs of the valence CI for Fey of Tomonari.

CSF do, do, dn, A, dr, dr, A0, A6, dd, A3, dso, 450,
RCSF 1 2 1 iemiod ] 52 ===y ] 2 0
RCSF 2 2 I e 27 1 wmglmI000) 1 2 0
RCSF 3 2 A1 | ST 2 2 O
RCSF 4 2 L2 T | NN, 2 2 0
RCSF 5 IR o ST/ I WA\ VNN s 0
RCSF 6 1 2 W SFF2-31 80NN "1 2 0
RCSF 7 1692 1 F 2L VERZANININNL ™S, 2 0
RCSF 8 1 F 2F FIF“2=—1""N0N"2 NN 1 2 0
RCSF 9 240 SF T =P NI 2 0
RCSF 10 2 11 12 271 2 11 2 0
RCSF 11 1 &2 £ F2 30-q 1R EN1Ta 2 2 0
RCSF 12 192 FLF 472020044 008 %2 2 0
RCSF 13 1 L 2922 TASE 1 2 0

Interestingly, both the main configuration and natural occupations from Tomonari
and Tatewaki’s and ours are guite different. From analysis of the natural occu-
pations, it was found that the Fe-Fe has the total bond order of 2.40, which is
slightly stronger thah that in our suggestions. This Fe-Fe bond has 58% contribu-
tion from 3d and 42% from 4s. Analysis by bond types, it is 58% o, 29% 7 and
12.5% &. Therefore, Tomonari’s Fe-Fe bond has less 3d contribution and is more
o characteristic which comes mainly from 4s. Again, one could see right away
that the Fe-Fe bond as suggested by Tomonari and Tatewaki and us are markedly
different. This difference is possibly caused by the discrepancy of the electronic

structure obtained from the calculations.

Considering the work of Shim and Gingerich and Harris and Jones, their nat-



ural occupations appear to be different from ours and Tomonari and Tatewaki’s.
Harris and Jones predicted too strong Fe-Fe bond (bond order of 3.00). This.is
probably due to the nature of DFT calculation which uses single-determinanial
wave function. Shim and Gingerich, however, suggested too weak bond with an-
tiboﬁding 3d, although they employed the SCF-CI scheme similar to ours and
Tomonari and Tatewaki’s. It seems that the choice of CI reference state and guess

vectors does has an effect on the CI results.
4.1.2 Molecular structure

Using 877, 4321, 543, and 5432 basis, the MRCI energies at nuclear distances
from 3.80-4.40 Bohr with the interval of 0.1 Bohr were given in Table 6. The
potential plot of the energy relative to the minimum of the result in Table 6 were
shown in Figure 6. From the plof, then the harmonic model was applied and
the equilibrium nuclear distance (R,.), the energies at minimum (TE), and the
zero-point frequencies (w,) at different level of basis set were yielde.d and listed in
Table 7. From Table 6, the 543 basis gave the result with the highest total energy.
By saturating s, p, and d functions of 543 basis (877 basis), the energies is improved
by 22 mHartree (energies being compared at R = 2.40 Bohr). Interestingly, by
including two f function to the 543 basis (5432 basis), its energy decreases by
143 mHartree (a 6.5 fold compared to when's, p, d were saturated). This implies
that the inclusion of functions with higher angular momentum (such as f, g, A
functions) is necessary. Thus, the 5432 basis seems to be sufficiently large for
the Fe, molecule and further investigations based on this basis set are warranted.
Comparing R, and We obtained at various basis sets, the 877 gave the shortest R,

of 4.14 Bohr but also the lowest w, of 309.7 cm~1. The 5432 basis gave comparable
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R, (4.15 Bohr) to that of 877 and a reasonably w, of 215.0 em™!,

Table 6: The calculation energy results of CI and CI energy (Hartree) with

correction calculated of the Fe; molecule.

877 basis

Distance ECI ECI+Q ECI+Q2 ECI+Q3 ECI+pople
3.80 -0.04295 -(.09204 -0.10010 -0.11132 -0.09976
3.90 -0.04587 -0.08453 -0.10256 -0.11377 -0.10227
4.00 -0.04689 -0.09375 -0.10130 -0.11175 -0.10085
4,10 -0.04786 -0.09311 -0.10024 -(.11003 -0.05965
4.20 -0.04781 -0.09150 -0.09823 -0.10740 -0.09752

4321 basis |

Distance ECI ECI+Q ECI+Q2 ECI+Q3  ECI+pople
3.80 -.08681 -0.13452 -0.14111 -0.14982 -0.13968
3.90 -0.08988 -0.13723 -0.14380 -0.15248 -0.14240
4.00 -(.059106 -0.13698 -0.14323 -0.15146 -0.14178
4.10 -0.09169 -0.13612 -0.14204 -0.14979 -0.14053
4.20 -0.09193 -0.13497 -0.14059 -0.14789 -0.13902
4,30 -0.09183 -(.13360 -0.13894 -0.14585 -0.13733
4.40 -0.09143 -0.13206 -0.13716 -0.14372 -0.13551
4.50 -0.09077 -0.13039 -0.13528 -0.14154 -0.13360

543 basis

Distance ECI ECI+Q ECI+Q2 ECI+Q3 ECI+pople
3.90 -0.02262 -0.06986 -0.07790 -0.08925 -0.07785
4.00 -0.02442 -0.07004 -0.07764 -0.08827 -0.07742
4.10 -0.02543 -0.06939 -0.07653 -0.08645 -0.07616
4.20 -0.02589 -0.06829 -0.07502 -0.08429 -0.07431
4.30 -0.0259] -0.06683 -0.07317 -0.08184 -0.07255
4.40 -0.02554 -0.06509 -0.07108 -0.07920 -0.07035

5432 basis

Distance ECI ECI+Q ECI+Q2 ECI+Q3  ECI+pople
3.80 -0.16431 -0.22304 -0.23150 -0.24280 -0.23003
3.90 -0.16765 -0.22664 -0.23527 -0.24684 -0.23390
4.00 -0.16859 -0.22615 -0.23444 ~0.24552 -0.23300
4.10 -0.16908 -0.22503 -0.23294 -0.24345 -0.23141
4.20 -0.16904 -0.22348 -0.23103 -0.24100 -0.22941

2.2524.0 Hartree is added to the total energy.

Compared to experimental results of 3.54-3.82 Bohr for R, and 299.6 em™

1
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for w,, it appears that the 877 basis generally yielded a better result. The bet-
ter agreement might cause by the cancellation of error and the values from 5432
basis should then be accepted. It is well known that the CI result could be se-
riously affected by the size-extensive error or the lack thereof. One attempt to
correct the size-extensive error is the Davidson’s correction (Q) as discussed in

section 2.2.2. Table 7 shows the R, and w, obtained without and with considera-

38

tion of size-extensive correction to CI. Also, in the Table, listed R, and w, reported |

by previous studies and experiments. By inclusion of size-extensive correction, the

R, is shorten and the value closer to the experiment was obtained.

Table 7: The MRCI results of Fes calculate with 877, 4321, 543, and 5432 basis
set.

R, (Bohr) TE (Hartree) we {cm™7)

877 basis

Cl 4.14 -2525.04786 309.7
CI+Q 3.99 -2525.00534 406.6
4321 basis

CI 4.27 -2525.09202 212.0
CI+Q 4.01 -2525.13826 404.3
543 basis

CI 4.26 -2525.02588 202.2
CI+Q 3.97 -2525.07007 279.9
5432 basis

CI 4.15 -2525.16911 215.0
Cl+Q 3.96 -2525.22708 453.6
Expt. 3.82 or 3.53 - 299.6
Tominarn 3.82 L 448.5
Shim 4.54 - 204.0

However, the w, of Cl+Q methods are much too high when compared to the

Y

experiment. This means that the CI4+Q) gave too deep potential which results
in a shorter bond lenght and stronger Fe-Fe bond. This, however, is possibly
the artifact of the size-extensive correction methods. Although, our calculations

gave longer R, to that of Tomonari and Tatewaki, the calculated w, is closer
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to the experiment (215.0 cm™! compared with 448.5 em™! from Tomonari and
Tatewaki [8]). Whereas, the R, reported by Shim and Gingerich [7] is too large
when compared to the experiment. Interestingly, the calculated R, from the three
calculations, Tomonari and Tatewaki, ours, and Shim and Gingerich depend on the
bond order (Fe-Fe longer as the bond order becomes smaller). Thus, the electronic
structure dictates the molecular structure of Fe;. To assess the quality of the
calculation, one could not rely on the agreement with R, alone. The agreement
with w, should also be considered, since the more accurate method should also
produce the correct curvature (w,) of the potential plot. Using this argument, we
are quite confident in our results and the correct description of the Fe-Fe bond

should be as we have suggested.

0.006 T T T T B el T T
5432 —o—
4321 —A—
= 0.005 - 543 « . 0r -s
et 877 ——
et
= 0.004 -
&
23 0.003 - i
g
= 0.002 | i
=
< 0.001 .
S,
fo'e]
0.000 - -

| 1 1 J 1 1 | 1

3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6
Distance (Bohr)

Figure 6: The represent data of Fe, molecule calculated based on 5432 basis

4.2 Fet

The electronic ground state for Fe as suggested by Tatewaki et al. [18] is 3A,

and the R, of 4.91 Bohr (2.60 A) was reported.
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4.2.1 Electronic structure

In this study (see Table 8), the CSF#3 is the main configuration with the
contribution to the total wave function of 62,2%. The natural occupations assess-
ment produces the (3dog)? (3do,)? (3dm,)>® (3dm, )24 (3d6,)3® (3d6,)23 (4s0,)!?
(450,)° configuration for the 3A, state of Fej. Compared to the 7A, state of
Fe,, this state is the result of the deleiion of one electron from the bonding 3do,.
Thus, the weakening of Fe-Fe bond is expected. This reflects by the reduced total
bond order of 1.65 as compared to 2.00 in Fes.

Table 8: Electronic configurations with coefficients of the main configurations
obtained from calculation carried out with 5432 basis of Fej molecule.

CSF coefficient dog doy d7m, dm, dm, dry, dég Ao, dd, dé, 4so, dsoy,

1 0.110441 T M B2 2 G 1 RN ] 1 0

2 0.121219 1 FIF IS AN 2 2 1 0

3 0.788809 I 1 1 <2882 2998 1 1 1 0

4  0.285720 1 & 2—1—2—J 2%1 1 2 1 0

5 -0.285719 1 Fl iisssamm? w1 1 2 1 0

6 -0.138855 11 2 2 1 1 1 1 1 2 1 1*
91= 4 spin

Table 9: The natural occupations of CI calculation of Fej with 5432 basis.

bond order
dog do, dn, dmy do, do,, 450, 4so, 3d 4s total
5432 1.0 1.0 3.5 243623 1.0 0.1 1.20 0.45 1.65

The 1.65 bond order compries of 27% o, 33% =, and 40% J. The ¢ bond comes
from 4s orbital completely. From the bond order, the lenghtening of the bond is

evident due to the high percentage of the weaker ¢ bond.
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4.2.2 Molecular structure

The MRCI energies at nuclear distance between 4.00-5.00 Bohr with the interval

of 0.10 Bohr obtained using 4321 and 5432 basis were given in Table 10.

Table 10: The MRCI and CI+Q energies computed at various nuclear
distances using 4321 and 5432 basis of the 8A, state FeJ. 2

4321 basis

Distance ECI ECI+Q ECI+Q2 ECI+Q3  ECI+pople
4.20 -0.88355  -0.92799  -0.93450 -0.94325 -0.93287
4.30 -0.88583  -0.93004  -0.93651 -0.94519 -0.93488
4.40 -0.88726  -0.93130  -0.93774 -0.94639 -0.93611
4.50 -0.88798  -0.93192 = -0.93835 -0.94699 -0.93674
4.60 -0.88813  -0.93204  -0.93848 -0.94714 -0.93688
4,70 -0.88784  -0.93177  -0.93824 -0.94695 -0.93666

5432 basis

Distance ECI ECI+Q ECI+Q2 ECI+Q3  ECI+pople
4.40 -0.98621  -1.03984  -1.04779 -1.06852 -1.04590
4.50 -0.98637 -1.03996 -1.04796 -1.05876 -1.04611
4.60 -0.98602 ~-1.03981 -1.04789 -1.05883 -1.04608

4_2524.0 Hartree is added to the total energy.

The R., TE and w, computed at 4321 and 5432 basis and the R, obtained from
Tatewaki et.al. were listed in Table 11. The results of CI+Q were also included
in Table 11. The R, from both 4321 and 5432 basis and CI+Q calculations are
all agreed to the value around 4.50 Bohr. However, their corresponding w,’s are
varied. The w, from 4321 basis is too large compared to when using 5432 basis.
The much longer R, (4.50 Bohr} of Fe; compared to that of Fe, (4.15 Bohr)
suggests a weaker Fe-Fe bond in this case. Thus, the smaller w, than 250 cm™!
should be expected. The w, between 159-219 em~! as obtained from CI and CI+Q

methods with 5432 basis seems to fit into this estimation.
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Table 11: The MRCI results of Fe} calculate with the 4321 and the 5432 basis

set.

R. (Bohr) TE (Hartree) we {em™7)
4321 basis
CI 4.49 -2524.88798 406.4
CI+Q 4.50 -2524.93192 328.0
5432 basis _
CI 4.48 -2524.98638 219.4
Cl+Q 4.49 -2525.03996 159.6
Tatewaki 4.91 - -

Unfortunately, there is no experimental R, and w, for FeJ to compare with

our calculations. The only experimental evidence that exists is the first ionization

potential (IP;) in which the comparison to our calculations is shown in Table 12.

Thus, our calculations is in good agreement with the experiment IP and the size-

extensive correction scheme improved the calculated IP by 0.13 eV.

Table 12: The first ionization potential of 4321 and 5432 with any corelation.

IPl (GV)
4321 4.35
5432 (CI) 4.97
5432 (CI+Q) 5.09
5432 (CI4+-Q2) 5.11
5432 (CI+Pople) 5.12
Tomonari et al. 4.79
Experimental 6.30+0.01

The 4321 basis yields too weak ionization, which probaply due to the underesti-

mated of Fe; energy. The agreement with experimented IP increases the confidence

in the calculated R, and w, obtained from our calculations, therefore, it is reason-

* able too say that the B, of 4.90 Bohr as reported by Tatewaki might be too long
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and for Fej the R, should be around 4.5 Bohr with w, between 150.0-219.0 em™1.

0.0012 T . T
5432 —e—
4321 —&— |
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0.0000

-0.0002 : ; ; '
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Figure 7: The represent data of Fel molecule calculated based on 5432 basis

4.3 Fe,

For Fe;, the experimental data reported by Leopold and Lineberger [4] gave the
R, and the w, of 3.89-4.04 Bohr and 250 £ 20 ¢m ™!, respectively. The electronic
ground state that is _suggested by Tatewaki et al. [18] is #A,. They also reported
the R, and the w, for Fe; of 3.88 Bohr (2.05 A) and 370 -em™!, respectively. Their
calculated R, is in the range of the experiments. However, their calculated w, is
overestimated. Here, MRCI calculations using 4321 and 5432 basis were carried

out for Fe;.
4.3.1 Electroaic structure

Tomonari and Tatewaki suggested electron configurations of Fe; similar to

those of A, state of Fey (see Table 5), except that the 4303 occupation was re-



placed by 43034305. In our calculations, the electron configurations were chosen
according to Leopold and Lineberger’s result [4] which suggested an extra electron
in 4s0,. The obtained electron configurations, which displayed in Table 13, espe-
cially the main configuration is the same as those of A, state Fe, (see Table 3),
except there is an extra electron in 4s0,.

Table 13: Electronic configurations with coefficients of the main configurations
obtained from calculation carried out with 5432 basis of Fe; molecule.

CSEF  coefficient dog doy dmy dm, dmy, du, dég Aoy do, dd;, 4so, dsoy,

1 0.145727 S WD gl 2 1 1
2 0.681582 2 A SFFF 2 NDN2. N1 1 1 1
3 0.226666 @ L AN 2 WIS 2 1 1
4 0.124189 2 M FFRE RSN D, 21 ] 1
5 -0.226668 2 gar2-1 202,11 2 1 1
6 -0.124189 2 N P\E.2 2 ANANE 1 1 1
7 0.108205 1418 Fol, T 28282 2 2 1
8 -0.171764 W W E @2 "2 2% 2 1 1
9 -0.193580 1 B B2, 05C200e A2 2 1 1 1
10 0.171764 140 F17 25,2780 2928 1 2 1 1
11 0.193579 1710 102 1 02 2 2 2 1 1 1
12 0.300181 11 2 2 1 1 2 1 2 2 1 1

Obviously, as in the case of "A, state of Fey, these configurations differ from
those reported by Tomonari and Tatewaki's. Again, the leading configuration
contributes only 46% of the total wave function. Thus, the wave function is heav-
ily multi-configurational. Its electronic structure should then be represented by
the natural occupations and the (3do,)*" (3doy)? (3dm,)*? (3dm,)%® (3dé,)>7
(3d6,)%* (4s04)"? (480, )1 configuration was obtained. This configuration is very
similar to those of A, state Fe; except the additional occupation of 1.0 at 4so,,.

This configuration results in the total bond order of 1.30, a much smaller value as
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compared to the Fe-Fe bond in Fes;. Similar trend is also observed by Tomonari

and Tatewaki. The weakening of the Fe-Fe bond is caused by the occupation of

the additional electron to the antibonding 4sc¢, orbital. However, our calculations



suggested that bonding of Fe-Fe contributes totally by 3d. From our result, the

contributions by ¢, 7, and § are almost equal.

Table 14: The natural occupations of CI calculation of Fe; with 5432 basis.

bond order
do, do, dn, dm, db, dé, 450, 450, 3d 4s total
5432 1.7 1.2 3.3 253.724 1.0 1.0 1.30 0.00 1.30

4.3.2 Molecular structure

Table 15 shows MRCI energies using 4321 and 5432 basis at the nuclear dis-
tances from 3.80 to 4.50 Bohr with the interval of 0.1 Bohr. The potential plot of
energies according to 4321 and 5432 basis were displayed in Figure 8. The values
in Table 15 were used to caleulated E., TE, and w, using the harmonic model.
The results were given in Table 16. In addition, the R,, the TE, and the w, calcu-
lated using the size-extensive correction scheme (CI+Q) were also included. For
the CI+Q at 5432 basis, the R, of 4.03 Bohr and w, of 278.2 em ™" were resulted.
For 5432 basis (without correction}, a longer R, of 4.37 Bohr and a smaller w,
of 140.8 cm™1 were.yielded. The size-extensive correction seems to deepen the
potential curve which causes a shorter bond and larger w,. The 4321’s R, of 4.03
agrees with the CI4+Q but its w, is too large. Besides there is an irregularity in
the potential curve of this basis (Figure 8). Therefore, the 4321 result should be

disregarded.
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Table 15: The calculation energy results of CI and CI energy {Hartree)
with correction calculated of the Fe; molecule. ?

4321 basis

Distance ECI ECI+Q ECI+Q2 ECI+Q3 ECI+pople
3.80 -0.06360 -0.11764 -0.12582 -0.13692 -0.12550
3.90 -0.06568 -0.11847 -0.12636 -0.13701 -0.12595
4.00 -0.07008 -0.12125 -0.12873 -0.13878 -0.12818
4.10 -0.06892  -0.11973  -0.12717 -0.13716 -0.12663
4.20 -0.06970  -0.11915  -0.12626 -0.13576 -0.12562
4.30 -0.06955 -0.11709 -0.12373 -0.13252 -0.12294

5432 basis

Distance ECI ECI+Q  ECI+Q2 ECIH+Q3 ECI+pople
3.90 -0.17511  -0.23799 -0.24767 -0.26086 -0.24744
4.00 -0.17721 -0.23866 -0.24797 -0.26062 -0.24762
4.10 -0.17853 -0.23849 -0.24744 -0.25952 -0.24696
4.20 -0.17897  -0.23819  -0.24696 -0.25876 -0.24642
4.30 -0.17963 -(.23669 -0.24492 -0.25592 -0.24420
4.40 -0.17967 -0.235640 -0.24330 -0.25382 -0.24248
4.50 -0.17950  -0.23399  -0.24160 -0.25168 -0.24069

2_2524.0 Hartree is added to the total energy.

Table 16: The MRCI results of Fe; calculate with the 4321 and the 5432 basis
set.

R, (Bohr) TE (Hartree) we (cm™7)

4321 basis

CI 4.03 -2525.07032 T24.4
CI+Q 4.01 -2525.12130 637.1
5432 basis

CI 4.37 -2525.17968 140.8
CI+Q - 4.03 -2525.23869 2782
Tomonari et al. 3.88 370.0
Expt. 3.80 - 4.04 250420

The R, and w, of CI+Q methods are within the experimental error which

reflects the quality of our calculations. However, when considered the experimen-



tal electron affinities (EA), see Table 17, our best estimation is underestimated
by 0.529 eV, the value which is unsatisfactory though Tomonari and Tatewaki’s

estimation does not fair much better (EA = 0.450 eV).

Table 17: Electron affinity of result of Fe, by MRCL

EA (eV)
4321 ~0.580
5432 (CI) 0.288
5432 (CI+Q) 0.316
5432 (CI+-Q2) 0.337
5432 (CI+Pople) 0.365
Tomonari et al. 0.450
Experimental 0.90210.008

Interestingly, the negative EA weré obtained when using 4321 basis this implies
the lower energy of Fe; as compared to Fe, which is very unlikely for most cases
since the electronic energy varies with numbers of electrons. Thus, the result
reflects the dificiency of 4321 basis on the calculations of Fe; . This deficiency is
probably caused by the extra electron in Fe;. This suggested that the 5432 basis
might still be insufficient for the calculation of Fe;. The energy could be lowered
by inclusion of additional s, p, d, f functions or by adding functions with higher
angular momentum. Thus, the computed EA could be improved by using larger
basis sets while the R. and the w. would not very much affected. Comparing
the slightly lenghtening of the bond (for 3.86 in Fe, to 4.04 in FeJ) with the
reduced bond order to that of FeJ, the mismatch should be noticed. Probably, the
elongation of Fe-Fe bond in FeJ is caused by the repulsion of extra charges on Fe

atom and the discrepancy of the bond order between Fel and Fe; is explained.
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Figure 8: The represent data of Fe; molecule calculated based on 5432 basis

4.4 Fei*

As discussed in section 3.6, only 4 state i.e. *A,, °II,, "A,, and II, state were
considered. Unlike the previous systems, their is no information experimentally
and theoretically regarding the electronic and molecular structures for the Fej™.
Since the the ionization of Fe; molecule both 1% and 27 order are of interest, one
aim of this work is, therefore, to find out the second ionization potential (IP3). This
would require the knownledge of the electronic and molecular structure of Fel*.
Hence, the electronic ground state of Fej* were sought. MRCI calculations for
various state of Fef ™ were carried out using 5432 basis. Their minimum energies

were searched to elucidate the ground state of Fel+.



4.4.1 The %A, state

The MRCI configurations with coefficients larger than 0.1 of %A, state Fel™
were listed in Table 18. The leading configuration has 52% weight of the wave
function. The configurations in Table 18 is very similar to that of Fel (see Table 8)
except one electron less. Furthermore, the CSF#2 has the same configuration as
the leading configuration of the Fej substracting oune electron from 3do, orbital.
The natural occupations for the *A, state, is (3da,)!® (3do,)!? (3dm,)®* (3dm,)>
(3d8,)%7 (3db,)*3 (450,)'° (480,,)". The MRCI energies and their corresponding
. CI4+Q at nuclear distances from 5.60 to 6.10 Bohr with the interval of 0.1 Bohr

were given in Table 19.

Table 18: Electronic configurations with coefficients of the main configurations
obtained from calculation carried out with 5432 basis of FeJ* molecule, °A,,.

CSF  coefficient do, doy, dny dm, dm, dm, dé, 4§, dé, dé}, 4s0, 4soy

1 0.235499 1 1%L/l 2 2 2 |1 0
2 0.722320 1 1 1 1 2 2 1 2 1t 1 1 0
3 0.318165 11 2 1 2 1 1 1 1 2 1 0
4 -0.121231 —2—2—1—31—2—1—1—-1; 1 1 0
5 -0.316519 i 1 1 2 1 2 1 1 2 1 0
6 0.120804 1 2 1 2 2 1 1 1 1 1 1 ©

Table 19: The CI energies (-2524.0 + x Hartree) at various nuclear distances
calculated with 5432 basis.

Distance ECI ECI+Q ECI+Q2 ECI+Q3 ECI+pople
5.60 -0.38172° -0.44996 -0.46399 = -0.48530 = -0.46330
5.70 -0.38174 -0.45032 -0.46452 -0.48611 -0.46440
5.80 -0.38167 -0.45065 -0.46502 -0.48694  -0.46499
5.90 -0.38154 -0.45095 -0.46551 -0.48780  -0.46558
6.00 -0.38139 -0.45127 -0.46605 -0.48875 -0.46623
6.10 -0.37311 -0.43349 -0.44510 -0.46223  -0.44420

From Table 19, R,, TE, and w, were then computed and given in table 26. A
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very long R, of 5.67 (CI) and 5.95 (CI+Q) Bohr with corresponding w, of 92.2 and
1307.0 em ™! were reported. The very dubious value of 1307.0 cm~! for w, reflectd

the irregularity of the CI4+Q method.
4.4.2 The °I, state

The MRCI configurations of °I, state Fef * were listed in Table 20. Since this
is quite different state from A, state, the electron configuration in Table 20 is
markedly different from those in Table 18. They are two leading configurations

- with the weight of 44 and 37%. Thus, both contribute to 81% of total wave
function. From the natural occupations analysis, the electronic structure of °II,
state is given as (3day)'? (3do,)!? (3dm,)%® (3dm,)%* (3d8,)%° (3dd,)** (4s0,)'”
(450,,)°0. This configuration is similar to that of 7A,, state of Fe; by deleting one
electron from 3dn, and one from 3d6,.

Table 20: Electronic configurations with coeflicients of the main configurations
obtained from calculation carried out with 5432 basis of Fef* molecule, °IJ,.

CSF  coefhicient dog do, dng dm, dm, d=}, dé, do, do, dé, 4so, 4sa,,

20 0.666136 11 1 1 1 2 2 2 1 1 1 O
26 -0.609248 11 2 1 1 t 2 1t 1 2 1 O
128  0.220363 1-1 1. 1 1t 2 1 2 1 1 2 0
134  -0.160122 1.1 2 1 .1 1 1 1 1.2 2 0




Table 21: The CI energies {-2524.0 + x Hartree) at various nuclear distances
calculated with 5432 basis.

Distance ECI ECI4+Q ECI+Q2 ECI+Q3 ECI+pople
4.00 -0.38236 -0.41510 -0.41899 -0.42393  -0.41660
4.50 -0.41521 -0.44476 -0.44818 -0.45250 -0.44596
5.00 -0.42989 -0.45452 -0.45709 -0.46026 -0.45504
5.10 -0.43092 -0.45496 -0.45743 -0.46047  -0.45541
5.20 -0.43146 -0.45501 -0.45741 -0.46035  -0.45541
5.30 -0.43159 -0.45473 -0.45707 -0.45993 -0.45509
9.40 -0.43136 -0.45417 -0.45646 -0.45925 -0.45450
8.50 -0.4308]1 -0.45336 -0.45561 -0.45836 -0.45367
6.00 -0.42868 -0.44848 -0.45030 -0.45249  -0.44849

MRCI and CI+Qs energies at nuclear distances from 4.00 to 6.00 Bohr with
the interval of 0.1 Bohr were shown in Table 21. Their corresponding R, and w,
were summarized in Table 26 and the values of 5.29 (CI) and 5.16 (CI+Q) for R,

were reported as well as w, of 140.3 (CI) and 116.4 (CI+Q) cm™1.
4.4.3 The 7A, state

The MRCI configurations of "A, state displayed in Table 22. There are only
two configurations with CI coefficient larger than 0.1. These configurations con-
tribute to only 41% of the total wave function, This implies that the wave function
is highly multi-configurational. The electron configuration for the "A, state de-
rived from th.e natural occpations is (3doy )10 (3do, )% (3dm,)>* (3dmy)2® (3dd, )32
(3d8,)1® (4s0,)'° (450,)°0. Comparing with the ground state of Fe,, this state is

obtained by detaching one electron from 3dd, and one from 3dé,.



Table 22: Electronic configurations with coefficients of the main configurations
obtained from calculation carried out with 5432 basis of Fej ¥ molecule, "A,.

CSF_ coeficient ___do, do, dw, dw, dn, dr, 43, 3, a8, 43, 450, 450y,

145  0.427881 1 1 2 2 1 1 2 2 1 ¢ 1 0
198  0.480304 1 1 1 1 2 2 2 2 1 0 1 0

Table 23: The CI energies (-2524.0 + x Hartree) at various nuclear distances
calculated with 5432 basis.

Distance ECI ECI+Q ECI+Q2 ECI+Q3 ECI+pople
3.90 -0.15610 -0.34778 -0.43456 -0.66491 -0.49138
4.00 -0.17309 -0.36311 -0.45166 -0.69475 -0.51184
4.10 -0.18614 -0.37867 -0.473056 -0.74887 -0.54132
4.50 -0.25995 -0.53309 -0.81434 -0.25995 +1.72154
5.00 -0.27490 -0.57044 -0.93472 -0.27490 +1.73958
5.20 -0.27697 -0.57861 -0.96662 -0.27697 +1.74081
5.30 -0.27736 -0.58169 -0.98020 -0.27736  +1.74061
5.40 -0.27739 -0.58422 -0.99247 -0.27739 +1.73995
5.580 -0.27709 -0.58624 -1.00355 -0.27709  +1.738901
5.60 -0.27650 -0.58782 -1.01358 -0.27650 +1.73754
6.00 -0.27194 -0.59063 -1.04479 -0.27194 +1.72962

Table 23 shows MRCI and CI4+Qs energies at the distance from 3.90 to 6.00
Bohr with the interval of 0.1 Bohr of the “A, state. The R, and the w, obtained
from these values were given in Table 26 in which R, of 5.36 Bohr and w, of 176.5
em~! were listed. Interestingly for those CI+Qs no minimum could be located
within the range of nuclear distances studied. Thus, the CI+Qs results are not

reliable for this system.

4.4.4 The I, state

The MRCI configurations of the 7II, state are given in Table 24. This config-

urations contribute to 82.4% of the total wave function while the leading term is
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42.9%. Thus, this state is not as highly multi-configurational as the 7A, state.

From the natural occupations, this state has the configuration of (3do,)?? (3do,)*®

(3dm, )22 (3dmg)20 (3dd,)2° (3d8,)*° (4s0,)!? (4s0,)*°. The formation of this s-

tate is quite complicated. Compared to the "A, of Fe,, 2 electrons is removed from

the 34,/34, orbitals while there is a promotion of one electron from the 3dm, /3dn,

orbitals to 3dg,, or vice versa.

Table 24: Electronic configurations with coefficients of the main configurations
obtained from calculation carried out with 5432 basis of Fe* molecule, "II,.

CSF  coefficient

dgy doy dmy dm, dmy, dxy, dé, dé, dd, dd, 4soy, 4soy

382  0.655460
386  0.384375
666  0.432282
670  0.248059

oo S ]

1

oo oo

2
1
2

2% 2
2" N2
e 2
24 2

T 1
1 1 1
BN 1
i 1 1

2 1 1 0
1 1 1 0
2 1 2 0
11 2 0

Table 25: The CI energies (-2524.0 + x Hartree) at various nuclear distances
calculated with 5432 basis.

Distance . ECI _ ECI+Q ECI+Q2 ECI+Q3 ECI+pople
400  -0.14813 -0.35492 -0.44499 -0.67408  -0.50100
450  -0.25711 -0.51869 -0.77692 -40.99505  -1.10901
500  -0.27110 -0.56366 -0.91685 -0.27110  -+1.73619
530  -0.27357 -0.57498 -0.96177 -0.27357  +1.73730
540  -0.27361 -0.57752 -0.97388 -0.27361  +1.73666
550  -0.27332 -0.57956 -0.98482 -0.27332  +1.73565
6.00. -0.26825 -0.58308  -1.02515  -0.26825 = +1.72658

The Table 25 displays the MRCI and CI+Qs energies of the II,, state at the

nuclear distances from 4.00 to 6.00 Bohr with the interval of 0.1 Bohr.The R,

of 5.36 Bohr and w, of 176.5 em™! deduced from the information in Table 25

were given in Table 26. Again, no minimum could be observed within this range

of nuclear distances for CI4+Qs methods. Thus, these methods do not provide

reliable results.



54

+4.5 The ground state of Fej™*
Uhe comparison of R,, w,, and energy difference (AE) of four states of Fel+
_aculated using MRCI methods and 5432 basis were given in Table 26.

~ble 26: R,, w,, TE, and AE of different states of Fef* computed at MRCI level
<nd 5432 basis,

R, (Bohr) TE (Hartree) w, (em™'}) AE (kcal/mol)

'\, state

! 5.67 -2524.38174 92.2 31.28
JIHQ 5.95 -2624.45338 1307.0

11, state _

VI 5.29 -2524.43159 184.3 0.00
JI4+Q 5.16 -2525.45503 176.4

", state

I 5.36 -2524.27742 176.5 96.74
CIHQ - - -

‘11, state

Jl 5.36 -2524.27363 176.5 99.12
JI4+Q - - -

Among the four states, the °II, has the lowest energy following by the °A,,
A\,. and "II,, state which are 31.28, 96.74, and 99.12 keal/mol higher in energy,
wpectively. The °Tl, state is, therefore, the ground state of FeJ*. The potential
ot of the 4 states were given in Figure 9. The ground state of FeJ ™ has the R, of
+29 Bohr and w, of 176.5 ¢m~!. The Fe-Fe bond in Fej* has the total bond order
»f 1.10, where the main contribution comes from o and 7 bond. Thus, Fel" has
¢ weakest bond among all Fe, systems. However, the Fe-Fe bond seems to be
v long as compared to its bond order. This is probably due to the repulsion of
arges that bear on each Fe atom. From the CI and CI+Q minimum energies, the
woond ionization potential could be calculated and the value of 15.1 {(CI) and 15.9

LI+Q) eV were obtained. This suggests the much stronger binding of electron to
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Fej as compared to the Fey (~6.3 eV) Therefore, it would be very unlikely for Fe,

to form the bi-cationic state.
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Figure 9: The represent data of Fej ™ molecule calculated based on 5432 basis.
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CHAPTER V

CONCLUSION

This thesis investigated the electronic and molecular structure of the ground s-
tates of Fe,, FeJ, Fe; and Fej * with MCSCF-MRCI calculation. Our best approx-
imation predicted the equlibrium nuclear distance (R, ) and the zero-point frequen-
cy (w.) for Fe, of 3.96 Bohr and 453.6 cm ™! respectively. This compares well with
the experimental R, and the w, of 3.54-3.82 Bohr [2, 3] and 299.6 cm™!, respec-
tively and also in good agreement with the prediction of Tomonari et al. However,
there is markedly difference between the electron configuration of our calculations
and that of Tomonari et al. Qur calculations yield the electron configuration of
({8do, )" (3doy)'? (Bdmu)*® (3dmy)%* (3dd,)>7 (3d6,)22 (4s0,)1? (4s0,)%0) with
the bond order of 2.00 and the Fe-Fe bond comprises with 37.5% o, 27.5% =, and
35.0% & bonds, while the Fe-Fe bond predicted by Tomonari et al. has the bond
order of 2.40 which comprises of 58.3% o, 29.2% =, and 12.5% §. Indeed, our
Fe-Fe bond and that of Tomonari and Tatewaki are quite different. For the FeJ
molecule, the electronic ground state is 3A, state. The R, and the w, obtained
using the 5432 basis are 4.49 Bohr and 159.6 cm ™!, compared to Tatewaki et
al. [18] whose R, is 4.91 Bohr. For the ®A, state of Fef, the occupation numbers
of the natural orbitals revealed the electronic configuration of ((3de,)!? (3do,)!°
(3dm,)3® (3dm,)?* (3dd,)%® (3dd, )2 (4s0,)'0 (450,)"1). The Fe-Fe bond, is then,
constituted to 1.65 of the total bond order which contains 27.3% ¢, 33.3% =, and

39.4% & contributions. This bond is a weaker bond when compared with Fe, and
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has longer Fe-Fe distance. Compared with the experimental IP; of 6.30:£0.01 eV,
our best calculation predicted the IP, of 5.1 eV while Tomonari et al. predicted
4.79 eV. Thus, our calculations have the best prediction for IP; which supports
our Fe; and Fej electronic structures. For the Fe; molecule, the electronic state
is SAQ state. The R, a:ﬁd the w, obtained from our best calculations are 4.03
Bohr and 278.2 cm™! respectively while the experimental R, and w, are 3.89-4.04
Bohr and 250420 cm™!, respectively [4]. The occupation numbérs of the natu-
ral orbitals revealed the electronic configuration of ((3do,)'7 (3dou)!? (3dm,)%3

(3dmy)?® (3ddg)>7 (3ddy)** (4s0,)'° (4s0y)™"). The Fe-Fe bond in Fe; has the

- total bond order of 1.30 which contributed by 19.2% o, 30.8% =, and 50.0% &

bonds, the relatively weaker bond compared to Fe, but with a slightly longer R,.
From the Fe;, and Fe; energy, the EA was compﬁ_ted and the value of 0.316 eV
was obtained while experimentally the EA of 0.902+0.008 eV [4] was reported.
Interestingly, Tomonari et al. [8] also suggested the EA of 0.46 eV which is closer
to our prediction than that of the experiment. Possibly, the basis set for Fe; is still
not large enough and better EA could be obtained if larger basis set is employed.
For the Fej* molecule, the 4 electronic states were investigated, i.e. °A,, °II,,
A, and "II,. For each electronic state, only the 5432 basis is used. From our
calculation, the 51, state appears to be the electronic ground state of the Fef ™t
molecule with the energy of roughly 30 keal/mol below the next lowest state. The
occupation numbers of the natural orbitals revealed the electronic configuration
of ((3dog)'? (3doy )™ (3dm,)*® (3dmg)** (3d8,)*° (3ddy)%* (450,4)1° (450,)%0) for
the °I, Fej*. The bonding in this state has 1.10 bond order which comprises
of 45.5% o, 4.5% 7 and 50.0% & bond. The calculated R. and w, are 5.29 Bohr
and 176.5 ecm™!. The computed IP; of 15.9 eV was reported. Thus, the much

stronger 2™¢ ionization was observed. The electronic ground states, R., w, , and

a7
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the natural occupations of Fey, Fel, Fe;, and Fej* were summarized in Table 27.
The calculated and experimental IP,, the IP;, and the EA of these compounds

were given in Table 28.

Table 27: The natural orbitals, R,, and omega, of Fe,, FeJ, Fe;, and Fe}*.

e
————

3do, 3do, 3dm, 3dm, 3dé, 3dd, dso, 4so, R. We
The Fe; molecule, ‘A, state (R, = 3.82+0.04 Bohr, w. = 299.6 crn™1)
1.7 1.2 3.5 2.4 3.7 2.3 1.0 00 3.96 453.6

The FeJ molecule, *A,, state
1.0 1.0 - 35 2.4 36 23 1.0 0.1 4.49 159.6

The Fe; molecule, 8A, state (R, = 3.89-4.04Bohr, w, = 25020 cm™1)
1.7 1.2 3.3 260 3.7 24 1.0 1.0 4.03 278.2

The Fef* molecule, °I1, state
1.0 10 25 24 35 24 10 00 5.16 176.4

Table 28: The IP,, IP;, and EA of Fe; molecule. -

IP, (eV) IDP; (eV) EA (eV)

CI 4.97 15.1 " D.288
CI+Q 5.09 15.9 (.316
Tomonari and Tatewaki 4.79 - 0.450

Experimental 6.30+0.01 - 0.902-+0.008
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