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CHAPTER 1
INTRODUCTION

The beginning of the history of celestial mechanics is the model stating that
the Sun is the center of the sky, proposed by Poland astronomer Nicolas Copernicus
[1]. He settled as a canon of Frauenburg where his famous book De Revolutionibus
Orbium Coelestium was written. He was afraid of ridicule and allowed publication of
his book only after his death. The way Copernicus and his students proposed the
heliocentric idea was that they suggested this as a convenient way of computing
planetary orbits rather than as a physical fact. Nevertheless, the Catholic Church still
put Copernicus’s work on the index of prohibited book in 1616. Note that Copernicus
considered all planets on circular orbits around the Sun.

The next significant steps were made by the German astronomer Johannes
Kepler who in addition to a holiocentric view introduced the idea of elliptic orbits of
the planets. His three laws of planetary motion and the equation named after him,
which connects the eccentric anomaly with the mean anomaly, are still in use today.
Many of his results were based on the observations of the Dutch astronomer Tycho
Brahe whom he followed as court mathematician in Prague after his professorship in
Graz was terminated in 1600.

In 1687, Sir Isaac Newton published the important scienctifically titled
"Philosophiae Naturalis Principia Mathematica™. The book is the foundation of laws
of motions in classical mechanics under gravitational influence. From such principles,
we could determine position and velocity of the object at a given time by solving
Newton’s equations of motion.

In celestial mechanics the components of position and velocity provide a
completely general description of orbital motion; however, their vector form does not
clearly reveal the orbit’s size, shape, and orientation in space. So we have to
transform their components into the set of the parameters known as "classical
elements”.

In "orbit determination” the classical elements of a celestial body observed in
the solar system are found from reduced observational data. In this research, we shall
refer to the observed body as the planets and find a “preliminary orbit", approximation
of orbit from a minimum of observations of their planets using data from three
observations, each one comprising time, right ascension and declination.

An observer on another star would recognize the bodies in the solar system as
moving in elliptic orbits about the Sun; but observations from the Earth are affected
by the motion of the Earth. The observed geocentric will obviously not be on ellipse,
and Figure 1.1, showing part of the path of comet Arend-Roland in 1956 [2],
demonstrated how complicated to observed path will become. The position of the
Earth in the solar system at any time is, of course, accurately known. If we could
observe the distance of the comet, then there would be no difficulty in calculating its
position in the solar system; unfortunately only its direction can be observed, and the
calculation of its distance is one of the process of orbit determination. In
astrodynamics more and different information may be available from observations.
The processes of orbit determination can be modified (and simplified) to take
advantage of this extra information.
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Figure 1.1 The chart is a central projection, so that all great circles appear as
straight lines.[2]

Figure 1.2 The heliocentric orbit of Earth and Mars.[2]




For interest we shall describe in principle the method used by Kepler to find
the distance, and thence the orbit, of Mars. The sidereal period of Mars was accurately
known, and Figure 1.2 shows the situation for two observations separated by one
sidereal period, so that Mars has returned to the same position in the solar system.
Since the sidereal period is 1.88 years, the Earth will have revolved through
approximately 677°, so that the angle E;SE; is known, as is the distance E;E, (but
only in term of the astronomical unit). Observations furnish the angles E;E,M and
E2E1M, so that the triangle E;E;M can be solved to find the lengths of the sides, and
ultimately the distance MS.

The price of simplicity of Kepler’s method is that observations are needed
over many revolutions, and this is a luxury that we cannot afford. The history of the
discovery of Ceres will illustrate this [3,4,5]. Two centuries ago, no asteroids had yet
made their appearance in astronomical catalogs of the solar system, which then
included just the Sun, seven planets, and the mysteriously evanescent comets. The
first sighting of an asteroid occurred on Jan. 1, 1801, when the monk Giuseppe Piazzi
[6] noticed a faint, star like object not included in a star catalog that he was checking.
Fascinated by astronomy, Piazzi had in 1790 established and equipped an observatory
in Palermo on the island of Sicily. Taking advantage of a favorable climate for
astronomical viewing, he launched a lengthy project dedicated to determining
precisely the astronomical coordinates of several thousand stars.

Piazzi’s observations of the mysterious object on successive nights revealed
that it moved slowly against its starry backdrop, first drifting backward, then
reversing direction and overtaking the background stars. Unsure whether the object
was a comet or a planet, Piazzi watched it regularly until Feb. 11, when he fell ill. By
the time he recovered a few days later, he was able to make only one more
observation before the object advanced sufficiently close to the Sun to disappear in its
glare. Piazzi named the tiny new planet Ceres.

Piazzi had already begun notifying colleagues in other parts of Europe of his
discovery, but political turmoil in Italy delayed the mail. As a result, no one else had a
chance to observe the object. Only one-tenth the brightness of Uranus and on the
fringe of visibility in most telescopes of the time, this faint speck had no telltale
planetary disk to make it easier to locate. To recover the object once it emerged from
the sun’s glare several months later, astronomers needed to know its orbit. Piazzi’s
observations, however, covered a period of just 41 days, during which time the object
had moved through an arc of only 3 degrees across the sky. Any attempt to compute
the orbit of such an inconspicuous object from this meager set of date appeared futile.

To Carl Friedrich Gauss [7], a 24-year-old mathematician who. early in life
had displayed a prodigious talent for mathematics and a remarkable facility for highly
involved mental arithmetic, this problem presented an enticing challenge. Having
completed his studies at the University of Gottingen, Gauss was living on a small
allowance granted by his patron, the Duke of Brunswick. With a major mathematical
work just published and little else to occupy his time during the latter part of 1801,
Gauss brought his formidable powers to bear on celestial mechanics. Like a skillful
mechanics, he systematically disassembled the creaky, ponderous engine that had
long been used for determining approximate orbits and rebuilt it into an efficient,
streamlined machine that could function reliably given even minimal data. Assuming
that Piazzi’s object circumnavigated the Sun on an elliptical course and using only
three observations of its place in the sky to compute its preliminary orbit,



Gauss calculated what its position would be when the time came to resume
observations. In December, after three months of labor, he delivered his prediction to
the Hungarian astronomer Franz Xaver von Zach, who had organized a self-
proclaimed “celestial police” to track down a "missing” planet between the orbits of
Mars and Jupiter. Any hope of locating Piazzi’s celestial mote after a lapse of nearly a
year rested on the reliability of Gauss’s innovative methods and the accuracy of his
calculations. On Dec. 7, von Zach relocated the object only a short distance away
from where Gauss had predicted it would lie. Gauss became a celebrity. After Piazzi’s
discovery, astronomers quickly found additional minor planets. To Gauss, the
discovery of one asteroid after another furnished new opportunities for testing the
efficiency and generality of his methods.

From the history of Ceres, as such, we find that Ceres is a faint object, and it
was obviously important to predict when and where it could be observed again; this
prediction could not be based on the leisurely study of several revolutions but had to
depend on a small arc of one revolution supported by Gauss.

In 1984, however, Taff has issued a strange condemnation of Gauss’s method
for determination of preliminary orbit [8]. When he can really offer as an alternative
is the use of Laplace’s method in situation where he presupposes a wealth of
observational data. The criticism of Gauss’s method enters on the grounds of the
small radius of convergence of f and g series that leads to divergent iterating result
and so makes the determination of orbits using 3 observations failed.

Using modern computational technology that plays central roles in
astronomical computation after, however, in 1985 Marsden [9] published the article
titled “Initial orbit determination: the pragmatist’s point of view" in the paper, he
argued that the comment by Taff is immaterial. Technically, he used Gauss’s method
to determine the trajectory of the amor-type minor planet 1982 DV and 1971 SL,.
Developing the values of f and g "function” from their closed expressions in terms of
the so-called universal variable [10,11]. He could show that Taff's comment could be
unwaranted.

From the achievement of Marsden, using Gauss's method, in the paper referred
above, the author realizes advantages of Gauss's method and tries, in this research, to
follow Marsden’s research appoarch. Importantly, the goal of the research is to give
some ideas that hopefully can improve Thai astronomy wisdom partly because (as we
know) none in Thailand tries to figure out the trajectory of celestial body by
observation before. The main objective of the research is determining the trajectory of
planets. in the solar system by-observational data obtaining from photographing with
simple-widely-used instruments.

There are many reasons why we choose Mars and Jupiter as observed celestial
bodies. First, they can be observed over night sometimes, making observing easier.
Secondly, the position of Mars is suitable for observing. Thirdly, Jupiter is one of the
brightest planets in the solar system. Finally, Jupiter is interesting since it is the
heaviest planet in the sysytem as well.

The scope of the research is to figure out the solution of two-body equation of
motion in terms of six numerical quantities, called classical elements. These elements
can be obtained by transforming the position and velocity vectors at a given time. To
transform those vectors we have to use celestial mechanics and analytical geometry
with numerical computation techniques to find the position and velocity vector from



3-sets of observational data that passed a reduction technique in the astronomical
photography. Moreover, two forms of constraints, geometric constraint and dynamic
constraint are needed for numerical technique, especially in iteration process. The
approach is a standard Gauss’s method improved by Encke [12] and Merton [13].



CHAPTER 2
FUNDAMENTALS OF ORBITAL MOTION

Suppose we carefully follow the apparent motion of a celestial body as it
travels across the heavens. Its track against the background of fixed stars might turn
out to be an interesting curve such as that depicted in Figure 2.1. If we wish to
determine the orbit of this celestial body, we must make accurate measurements of its
position at a series of convenient times and use certain clever procedures to
disentangle its orbital motion from the motion of our observing station on the surface
of the moving Earth. Although such observational data contain a complex mixture of
several independent motions, the orbit of the celestial body can, in principle, be
determined by employing a theory of celestial mechanics developed from three
general laws of motion and one law which accounts for the acceleration caused by
gravity. Armed with these four fundamental principles, the orbits of planets can be
computed using only elementary physics and simple calculus.

This chapter introduces the basic physics of celestial mechanics. The methods
by which these principles are applied and the numerical techniques used to solve the
orbital equations are taken up later in the thesis.

2.1 The Laws of Motion

Three laws of motion received explicit formulation by Isaac Newton in the
Seventeenth Century. The importance of these principles to the development of
celestial mechanics can hardly be overestimated. They may be stated as follows:

Law 1 A body continues in a state of rest or uniform motion in a straight line
unless compelled to change its state by forces impressed upon it.

Law 2 The acceleration of a body is directly proportional to the net force
impressed upon the body, inversely proportional to the mass of the body, and in the
same direction as the net force.

Law 3 When one body exerts a force on a second body, the second body exerts
a force of equal magnitude, but opposite direction, upon the first body.

2.2 The Law of Gravitation

Newton’s law of -universal. gravitation -is the fourth fundamental principle of
orbital motion. It may be stated as follows:

Law 4 Every particle of matter in the universe attracts every other particle of
matter with a force that is directly proportional to the product of their masses and
inversely proportional to the square of the distance between them.

The gravitational law is summarized by the following expression:
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Figure 2.1 The apparent path of a celestial body [27].

where F is the magnitude of the force, k is the gravitational constant, m; and
m, are the masses, and r is the distance. Although the law is stated for particles,
Equation 2.1 can be applied to large accumulations of matter if we assume that the
mass distribution of each body is spherically symmetric about its center of that all
bodies are separated by distances which are very great in comparison to their sizes.

2.3 Equations of Maotion

The orbital motion of a celestial body must be described by an equation which
expresses its instantaneous acceleration in terms of all gravitational and non-
gravitation forces. We shall reduce the problem considerably by dealing only with
spherically symmetric gravitational force fields and ignoring all non-gravitational
influences. Applying the fundamental principles already discussed in the context of
these simplifying assumptions, the result is an equation of motion which can be used
to compute the movement of a planet, taking into account the effects of any number of
perturbing masses.

2.3.1 The Equation of Inertial Motion

Figure 2.2 depicts a mass my subject to the gravitational attractions of several
other masses m,, ms, ...., my. The position vector R, defines the location of m; with

respect to the center of m;. The magnitude of the force exerted on m; by any other
mass mq is as follows:

F, = @, (2.2)

The force vector radiating from m; toward any of other bodies:

2 —
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Figure 2.2 Mass my subject to the gravitational attractions of other bodies [27].

Thus, the net force F acting on my is the vector sum

Fi= ZN: A (2.4)

q=2

According to Newton’s second law, the inertial acceleration A, of the mass
my is given by

B
A1—m—l-

Dividing F by m; is equivalent to dividing each term on the right side of
Equation 2.4 by m;. Therefore, by Equation 2.3

- N k?m. T
A=Y at (2.5)
q

q=2

which is the equation of inertial motion for mass m; with respect to the Newtonian
frame of reference.

2.3.2 The Equation of Relative Motion

Figure 2.3 illustrates the gravitational problem we mast solve in order to
compute an orbit. Several masses my, my, ..., my are moving under the influence of
their mutual attractions. Vector R, and R, define the locations of m; and m, with

respect to the inertial origin O, and r, and p, define the position of any other mass

mq relative to my and my, respectively. According to the second law of motion, the
forces of gravitational attraction will cause m; and m; to accelerate with respect to the
inertial origin. The acceleration a, of m, with respect to m; can by found by

differentiating the vector r, twice with respect to time. Obtained

a, =A; - Al’ (2.6)



Figure 2.3 The many-body gravitational problem [27].

where A, and A, represent the inertial accelerations of m; and my, respectively.
Now, let Equation 2.5 be rewritten as follows:

2 N
AL KMals g2 C Moy (2.7)
q

By analogy with Equation 2.7 we can also write an expression for A, in term
of my, r,, mg, and p, . The result is
. k’m,f, < k’m,p
Ap ==t Z —_
Iy =3 Pyq

(2.8)

where p, =1, -T,, p, =Ip{, and first term on the right side is negative because the
acceleration of m; due to my is in a direction opposite to vector r, . Finally, we obtain

k3(my & m)T O Py T
ML o LR B (2.9)
r =3 Pe Fq

D)

This is'the equation of relative mation for mass m, with-respect to an origin at
the center of mass mj.

2.4 Working Units and Constant: The Heliocentric System

We are concerned with applying Equation 2.9 to orbital problems in which the
motion of interest is about the Sun, heliocentric motion. The motion of a body
orbiting the Sun is referred to a rectangular coordinate system centered in the Sun.
The fundamental defining constant of the heliocentric system of units is the Gaussian
gravitational constant given exactly by

k =0.0172029895 .
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Length, mass, and time are expressed in astronomical units (AU), solar
masses (M), and days (day), respectively. One day is defined to be 86400 seconds,
and the astronomical unit is that length for which the Gaussian gravitational constant
takes the value defined above when the units of measurements are astronomical units,
solar masses, and days. The resulting value is approximately equal to the Earth’s
average distance from the Sun. This practice of holding k fixed while allowing the
astronomical unit to vary insures that whenever better data for the masses of the Earth
and Sun become available all calculations functionally dependent on k do not have to
be repeated, but only scaled for the new value of the au.

2.5 The Working Equation of Motion

Consider again Equation 2.9 which describes the relative motion of m, with
respect to my:

QD

3 3 3
2 4=3 Pa Tq

2 —— P, T
2 :_k_ﬁm_lﬂz@kzm{p_q_r_q} (2.10)

It is possible to write a simpler version of this equation if we consistently let
m; represent the central mass and m, the mass of the orbiting body of primary
interest. Then, m; will be unity, so that we can define a combined mass

pu=1+m, (2.11)

and drop the subscripts on a, and r,. When this accomplished, the summation

indices can be adjusted to begin at g = 1 and end at a new value n which is equal only
to the number of perturbing bodies. Thus, when all these changes are made, Equation
2.10 becomes

Z n n r
a=_ s +Zk2mq(p—q—r—‘;]. (2.12)

r 9-1 Pe Tq
Simplification can be carried one step farther by defining modified time = as
follows [14]:
T =k(t —t,) (2.13)
so that
dt =kdt, (2.14)

where K is appropriate gravitational constant, t is'given instant of time, and to is an
arbitrarily initial time or epoch. If we use a dot to indicate differentiation with respect
to madified time, then

F e (3\7 (2.15)
F o (kl—z)a . (2.16)

It follows that if both sides of Equation 2.12 are multiplied by 1/k?, we are
able to write

?:_u_§+z”:mq{£3_i} (2.17)
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Equation 2.17 is the working equation of motion. If a celestial body’s position
and velocity are known for a given time, then, in principle, Equation 2.17 can be
integrated to yield the body’s position and velocity at some other time.



CHAPTER 3
TIME AND POSITION

Nothing in the heavens is at rest, and not one of its movements is precisely
uniform. Consequently, the specification of position is tied closely to a measure of
time, and the convenient inertial reference frame we have thus far assumed does not
exist. Of course, the situation is not really very serious. We know from experience
that a carefully chosen origin along with a celestial coordinate system defined for a
particular epoch can be used to accurately define a position in space at a given instant
of time. This is achieved by determining initial values for certain fundamental
parameters of the coordinate system and measuring the rate at which these quantities
change with time [15].

3.1 The Fundamental References

Consider the celestial sphere depicted in Figure 3.1. The nighttime sky created
the strong impression that the stars are fixed to an enormous curved surface which
appears to be equally distant in all directions regardless of our location on the Earth.
Indeed, this imaginary sphere is so vast that any location within the solar system S can
serve as the origin of its radius. The celestial sphere is banded by two fundamental
reference circles which correspond to its intersections with the fundamental planes of
the Earth’s equator and orbit. These great circles are called the celestial equator and
ecliptic, respectively. The two-dimensional starry surface of the celestial sphere
provides the background upon which the reference circles are traced. This is
accomplished by meticulous observations of the motions of the Sun and planets
relative to a network of fundamental reference stars [16]. The ecliptic crosses the
celestial equator at an inclination of approximately 23.5 degrees, forming an angle e
known as the obliquity of the ecliptic. The two points of intersection lie on a line
passing through the center of the celestial sphere at S. One of these intersections has
been defined as the fundamental direction. Originally named the First Point of Aries
Y, it is often symbolized by the horns of a ram. This designation was applied in the
second century B.C. when Y was in the constellation of Aries.

The physical significance of X is further-illustrated in Figure 3.2, where the
Earth is shown moving into spring (for its northern hemisphere) as it approaches the
point E where day and night are of equal length (equinox). To an observer on the
Earth, the Sun’s projection S against the inside surface of the celestial sphere will
travel along the path of the ecliptic toward the celestial equator, crossing it from south
to north at the moment the Earth passes through E. Thus, the fundamental reference
direction is also called the vernal (spring) equinox. The corresponding point on the
opposite side of the celestial sphere is known as the autumnal equinox. When the term
equinox is used in this text, it will always refer to the fundamental direction Y.

3.2 Time Scales

Before we can define an inertial frame of reference for some particular epoch,
we must have at least one accurate method for measuring the passage of long intervals
of time. Two different scales used in this thesis: universal time and Julian date.
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Figure 3.1 The celestial sphere [27].
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Figure 3.2 The physical significance of Y [27].
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3.2.1 Universal Time

Universal time (UT) is a form of solar time which corresponds closely to the
daily (diurnal) motion of the Sun across the sky as seen from a point on the
Greenwich meridian of zero terrestrial longitude. It serves as the basis for worldwide
civil timekeeping. Universal time is actually determined from observations of the
diurnal motions of the stars and made to correspond to solar time by a formula which
relates it to Greenwich mean sidereal time [17].

Universal time can be easily computed for any given local standard civil time
(CT) by using the following relationship:

UT=CT+2Z, (3.1)

where Z is the number of standard time zones which the locality is displaced to the
west of the Greenwich meridian.

3.2.2 Julian date

A Concept of fundamental importance in the reckoning of time is that of the
Julian Date (JD). This is nothing more than another arbitrary benchmark that is a
continuing count of each day elapsed since some particular epoch. This epoch was
arbitrarily selected as January 1, 4713 B. C. Thus, at given universal time,

uT
JD=J,+—, 3.2
0+ g (32)
where UT is expressed in hours and J, is the tabular value of the Julian date at 0" UT.

As an alternative to using the table, we have a formula which can be used in a
subroutine to automatically compute J, when the calendar date is given:

3o =367V - <7[Y+ (0 9)/12>]> ; <27§ M> +D+1721013 5, (3.3)

4

where the symbolism is defined as follows:

e (x) represents a truncation function which extracts the integral part of x. For
example, (-7.32)=-7 and (3.91)=3.

e Y isthe year. It must be an integer in the range 1901 to.2099.
e M is the month. It must be an integer in the range 1 to 12.
e D is the day of the month. It must be an integer in the range 1 to 31.

3.3 Coordinate Systems

We now have the pieces necessary to assemble the coordinate systems used
for the computation of orbits. Based on what has been said up to this point. It should
come as no surprise that the major astronomical coordinates systems are based on
either the celestial equator or ecliptic, and share the vernal equinox as their principal
coordinate direction. Furthermore, in the case of spherical coordinate systems, it is
customary for the angle in the fundamental plane to be measured positively toward
the east from Y and to measure the perpendicular angle positively toward the north
from the fundamental plane. Finally, the rectangular coordinate systems are all right-
handed systems of three mutually perpendicular axes. The +x-axis is directed toward
Y, the xy-plane lies in the fundamental plane, and +z-axis points northward.
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Figure 3.3 Parallel astronomical coordinate systems [27].

It is convenient to group the primary coordinate systems used for orbit
determination into three general categories: celestial equatorial, terrestrial equatorial
and celestial ecliptic. Within any one of these categories, the coordinate systems
differ only by the location of their origins. As shown in Figure 3.3, the origin of a
geocentric system is centered in the Earth at E, the origin of a topocentric system is at
the observer O, and the origin of a heliocentric system is at S in the center of the Sun.
it is important to realize that because Y iIs on the infinite celestial sphere, all axes
pointing toward it are parallel. Therefore, although the coordinate systems in a
particular category may be widely separated in space, their respective fundamental
planes and axes are parallel. For the heliocentric orbit, the object moving around the
Sun, two systems are now considered: celestial equatorial and celestial ecliptic
systems.

3.3.1 Celestial Equatorial Systems

Figure 3.4 illustrates the characteristic features of celestial equatorial systems.
The position of a given point P in space is specified by three spherical coordinates:
the radial distance r from the origin C, the angle of right ascension «, and the angle
of declination §. Right ascension (RA) is measured eastward from Y around the
celestial equator in units of time or degrees. Declination (DEC) is always measured in
degrees and ranges from 0° at the equator to +90° at the north celestial pole (NCP) or
-90° at the south celestial pole (SCP). Given the spherical coordinates of a point P, its
rectangular coordinates can be found from the following:

X =T C0S & CoS a (3.4)
y =rcos dsina (3.5)

z=rsing. (3.6)
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equator

Figure 3.4 The celestial equatorial coordinate system [27].

The process of orbit determination will also require converting equatorial
rectangular coordinates to equatorial spherical coordinates. Thus, the declination can
be found from

sind = % (3.7)
Then, for the right ascension,
cos & =1 —sin®$ (3.8)
= 3.9
o I cos o (3.9)
sing = ——. (3.10)
r cos 6

3.3.2 Celestial Ecliptic Systems

The spherical and rectangular celestial ecliptic systems are shown in Figure
3.5. The fundamental circle and plane are those defined by the ecliptic, and the origin
C is usually centered in the Sun. The position of a point P in space is defined by its
radial distance r, ecliptic longitude A, and ecliptic latitude g. The angle A is

measured eastward from Y around the ecliptic from 0° to 360°. The angle B is

measured from the ecliptic plane to +90° at the north ecliptic pole (NEP) or —90° at
the south ecliptic pole (SEP). Given these spherical coordinates, the rectangular
coordinates are computed as follows:

X =rCos Bcos A (3.11)
y =rcos Bsin (3.12)
Z=rsinp. (3.13)
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Figure 3.5 The celestial ecliptic coordinate system [27].

3.4 Ecliptic-Equatorial Transformations

It is often convenient and sometimes necessary to transform rectangular
coordinates between the ecliptic and equatorial frames of reference. As both frames
share the same principal direction for their x-axes, the transformation is simply a
rotation about the x-axis through an angle equal to the obliquity of the ecliptic e.
Because of the effects of general precession, the numerical value of ¢ is not constant.
However, the obliquity of the ecliptic for date t, with respect to the equator of date t,
can be computed from

& =23°0439291 —0°.0130042 T - 0°.00000016 T2 , (3.14)
where

_1-2000.0  JD-2451545 .0
100 36525

T (3.15)

Using the appropriate value of ¢ from Equation-3.14, the transformation of
equatorial rectangular coordinates at epoch t to ecliptic rectangular coordinates at the
same epoch is given by

X =x (3.16)
y = Xsing +Yycos & (3.17)
Z=1zc0se-Yysine. (3.18)

The reverse transformation from ecliptic rectangular coordinates to equatorial
rectangular coordinates is given by

X = X (3.19)
y=ycose—zsing (3.20)
zZ=ysing+zcos¢. (3.21)
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Figure 3.6 The fundamental vector triangle [27].

3.5 The Fundamental Vector Triangle

Consider the general vector relationship illustrated in Figure 3.6, where R, 7,
and p define the relative positions of the observer O, center of force C, and object B.

If it is assumed that all vectors are referred to the same inertial coordinate system,
then

p=r+R. (3.22)

Equation 3.22 represents the fundamental vector triangle of orbit computation.
If we let

r={xyz} (3.23)
R={XYZ, (3.24)

then the topocentric position vector to B can be expressed as
p={x+Xy+ Y,z+Z}. (3.25)

Let it now be assumed, as almost always the case, that the object’s topocentric
position is measured in the celestial equatorial coordinate system. Then, by Equations
3.4 through 3.6, we can write

X ; X_ Cos & CoS o (3.26)
y ; Y_ cos & sin o (3.27)
Z;Z _sins . (3.28)

Where p =|p| is the range of the object from the observer. The ratios on the

left sides of these equations are knows as direction cosines. Since we have divided
each component of p by p,
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we have created a unit vector

=P (3.29)
p
pointing toward the position of the object on the celestial sphere. Thus,
L = {cos & cos o, cos & sina, Sin 8} . (3.30)
So, we obtain
pL=F +R (3.31)
or, equivalently,
f=pL-R. (3.32)

Equations 3.31 and 3.32 are the most convenient forms of the equation of
fundamental vector triangle.

3.6 Reduction of Astronomical Coordinates: Planetary
Aberration

Before two or more sets of position data are compared, their coordinates
should be based on a common inertial frame of reference. The choice of common
reference frame is largely a matter of convenience according to the nature of the
available date and the problem to be solved. For a physical standpoint, consider the
general type of the correction for the motions of celestial body and the observer with
respect to the inertial reference frame. It is the reduction for the aberration of light,
which causes the observed direction toward the celestial body to depend on the
motions of both the body and the observer during the time interval required for light
to travel from the body to the observer.

Because the velocity of light is finite, the apparent direction toward a moving
celestial body as viewed by a moving observer is not the same as the geometric
direction toward the object a the same instant of time. This displacement from the
geometric position results from two separate effects. The first, caused by the motion
of the celestial body independent of the motion of the observer, is known as the
correction for light-time. The second, caused by the motion of the observer
independent of the motion of the celestial body, is called stellar aberration because it
typically affects observations of the fixed stars. The total effect due to light-time and
stellar aberration is called planetary aberration.

Consider the situation depicted in Figure 3.7, where a celestial body B and
observer- O are shown in the geometric. positions they.occupy. at-a time t when O
observes B. let B’ be the position of the celestial body at a previous instant tc, when
the light left the body to reach O at the observation time. If &t is the light-time, or
interval required for light to travel from B’ to O, then

t.=t-5t. (3.33)
Furthermore, if c is speed of light and p is distance from B’ to O, we have

st =2, (3.34)
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Figure 3.7 The aberration of light [27].

and
to=t-2 (3.35)
C
where, in heliocentric working units,
¢ =173.1446 AU/Day . (3.36)

If it can be assumed that the observer is at rest, the apparent direction of the
celestial body will be toward the point B’ which the body occupied at time t..
Therefore, if the light-time and the body’s motion are known, its geometric position at
tc can also be found.

In situations where the observer cannot be assumed to be at rest, stellar
aberration caused the problem to be more complex. When the light which left the
celestial body at time t. arrives at the observer at time t, it will not appear to be
coming from B’ but from its direction relative to-the moving-observer. According to
classical physics, the observed direction of the celestial body will be opposite that of
the vector d, which is difference between the velocity of light ¢ and the velocity of
the observer v.. In.other words,

d=c-v. (3.37)

Therefore, the apparent position of the celestial body will be some point D on
the celestial sphere which is displaced from B’ toward the direction of the observer’s
motion.



CHAPTER 4
THE TWO - BODY PROBLEM

We have at our disposal a celestial frame of reference. Now we shall apply
that equation to a specific type of orbital problem which is great practical
significance. The opportunity presents it because our interest in heliocentric orbit
restricts the application of the general equation to orbits dominated by the mutual
gravitational attraction of two celestial bodies. In this context, theory and experience
have shown that a two-body orbit can be computed using a simple mathematical
model which ignores all perturbations and considers only the attraction between the
orbiting and central masses.

4.1 The Two-Body Equation of Motion
Two-body motion is nothing more than a special case of the many-body
motion modeled by Equation 2.17, namely,

?:_u_;émq[?%_f_q} @.1)

The two-body equation follows immediately from the above when we make
the simplifying assumption that all term involving masses mq can be neglected when
computing a first approximation of the orbit. Thus,

i (4.2)

r3

is the two-body equation of motion. As shown in Figure 4.1, the acceleration r will
always point directly toward the origin O at the center of the central body C because
that is the direction of the net force acting on boy B. As a consequence of this, there is
no tendency for B to move out of the plane formed by r, t, and O. Therefore, a two-
body orbit is always confined to a plane which passes through the center of the
central body.

4.2 The Orbital and Radial Rates

Before taking up the solution of the two-body equation of motion, we must
digress to discuss the potentially confusing relationship between the rate of motion
along the orbital path and the rate of change of the magnitude of the radius vector r .

As illustrated-in Figure 4.2, a body B has velocity r which is tangent to the orbit at r .
Consider the magnitude of r is the orbital speed v . Thus,

v=|1]. (4.3)

Letting r represent the rate of change of the scalar r with respect to modified
time, then

. dr
r=—, 4.4
o (4.4)
where r=| r| and dr is the incremental change in r during an infinitesimal
interval of modified time dr . Equation 4.4 is a scalar relationship which expresses

only the rate at which the distance between bodies B and C changes with time.
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Figure 4.1 Two-body orbital motion [27].

Figure 4.2 The orbital and radial rates [27].



23

Figure 4.3 The two-body problem [27].

In the right triangle BDE of Figure 4.2, 9 represents the angle between two
sides whose lengths are in the ratio r/v . Thus,

r=vcos 9. (4.5)
By the definition of the dot produce to give
F-T=rvecos 9. (4.6)

4.3 The Law of Two-Body Motion

When the techniques of integral calculus are used to solve the Newtonian two-
body differential equation of motion, the results confirm the law derived empirically
by Johannes Kepler [18,19,20]:

1. The orbits of the planets are ellipses, with the Sun at one focus.

2. The line joining a planet to the Sun sweeps out equal areas in equal times.

3. The square of a planet’s period is proportional to the cube of its mean
distance from the Sun.

Moreover, the Newtonian formulation expresses these original principles in a
general fashion, and an important relationship is shown to exist between the speed and
position of a celestial body in any two-body orbit

4.3.1 The Conic Section Law
Let the fundamental equation of two-body motion be written as follows [14]:

?:—%D, (4.7)

where

C
Il
= | =

(4.8)
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Figure 4.4 The angular momentum vector h [27].

IS a unit vector pointing in the direction of the radius vector as shown in Figure 4.3.

Taking the cross product of Equation 4.7 with r ,
we obtain
Fxr =—£(F><D),

I,2

so that
Fxt=0 (4.9)

because ¥ and U are parallel, causing their cross product to be the null vector 0.
Now consider the following differentiation with respect to modified time:

d . -

—\rxr)=0 4.10
dt ( ) ) ( )
since rx r= 0 by Equation 4.9, and rx r=0 for the same reason. If we integrate
Equation 4.10 to reverse the differentiation process, we obtain

Fxf=h, (4.11)
where ‘h is a vector constant of integration which is equal to the angular momentum
per unit mass of the two-body system.

The physical significance of this important result is illustrated in Figure 4.4.
The fact that h is constant implies that its magnitude and direction in inertial space
never change. Therefore, vector ¥ and r always lie in a fixed paned which passes
through the central body C. The direction of h establishes the orientation of the
orbital plane with respect to the inertial rectangular coordinates system. When the z
component of h is positive, the celestial body B is moving in a counter-clockwise
direction as viewed from the positive z-axis, and the motion is called direct.
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When the z component of h is negative, the orbital motion is clockwise as
seen from the positive z-axis, and the motion is called retrograde.

The angular momentum vector can be used to transform the fundamental
equation of motion into an expression which can be easily integrated.

Returning to Equation 4.7 and taking the cross product of that expression
with h

?xﬁz—%[@x(?x?)], (4.12)

because h=rxr by definition. Now, apply a vector identity to Equation 4.12, the
result is

Fxh= b -], (4.13)

Before we can integrate Equation 4.13, we must pause to show that the
expression on each side of the equal sign represents a perfect differential. Consider

the following:
au _ i(ij . (4.14)
dt dt\r
Carrying out the differentiation on the right side of Equation 4.14 produces
d (F)_ rf—if
ZeAWAL - . 4.15
dt ( r J r? (4.15)

Consider also the following:

di(?xﬁ)=(?xﬁ)+(?xﬁ). (4.16)
T
However, by Equations 4.10 and 4.11, h .is-a constant vector so that

h=0. (4.17)

Therefore, Equation 4.16 becomes simply
di(?xﬁ)=(?xﬁ). (4.18)
T

Returning to Equation 4.13, we see that its right and left ides can be replaced
by Equations 4.15 and 4.18, respectively. Upon making those substitutions, we have

S lexh)-ugr (T, (4.19)

T dr \r
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Equation 4.19 can be immediately integrated to eliminate the differentiation.
The result can be written as follows:

Fxh =|1(:+éj, (4.20)

where e is an arbitrary vector constant of integration.

If we take the dot product of Equation 4.20 with r, the result can be
manipulated to obtain a key relationship. First,

(?xﬁ)-?:u(FrlMé-F]. (4.21)
Using the vector identity, Equation 4.21 can be rewritten to obtain
(Fx¥)-h=p(r +&-7), (4.22)
which, according to Equation 4.11, becomes
h? =p(r +€-7). (4.23)
Now, using the definition of the dot product produces
g-r=ercosv, (4.24)

where e =| €| and v isangle between e and r . Therefore,

h? = ur(1 +e cos v) , (4.25)
which can also be written
2
== N (4.26)
1+ecosv

The geometric significance of Equation 4.26 can be seen by comparing it to
the general equation of a conic section written in polar coordinates

g (4.27)
1+ecosv
where the origin is at a focus, the polar angle v is the angle between the radius vector
and the point on the conic nearest the focus, and
h2
=
The conclusion is that a two-body orbit is always a canic section which lies in

a fixed plane which passes through the central body at the focus. This is a generalized
statement of Kepler’s first law.

12 (4.28)

The elements commonly used to describe conic sections are illustrated for the

case of an ellipse in Figure 4.5, where r is the radius vector and e defines the
direction of perifocus. The angle v is called the true anomaly, the quantity g is the

semiparameter, the constant e is the eccentricity, the length q is the perifocal
distance, and the length a is the semimajor axis.
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Figure 4.5 The descriptive elements of a conic [27].

e>1

Figure 4.6 Four conic sections [27].
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Figure 4.7 The vector area WdA [27].
These elements are related as follows:
©=0(1+e) (4.29)
g=a(l-e) (4.30)
p=a(l-e?). (4.31)
Additionally, the semiminor axis b is related to the above by
b =ayl—e? (4.32)

b= Jpa. (4.33)

The value of the eccentricity determines the specific type of conic section
represented by Equation 4.26. Four possibilities are depicted in Figure 4.6, and
Equation 4.20 provides the useful vector relationship,

o= rxh_Te (4.34)
M r
which permits us to find the magnitude e =| e| and the direction of the perifocus in
inertial space when ¥ and r are known at any point on the orbit.

4.3.2 The Law of Areas

Consider the vector cross product shown below in light of the geometric
relationships depicted in Figure 4.7:

WA = %(F x dr), (4.35)

where dA is a very narrow triangular area swept out by the radius vector r during an
infinitesimal modified time interval dt, dr is the incremental change in r during the
interval, and W is a unit vector normal to the orbital plane. The numerical constant
1/2 accounts fact that the cross product is equivalent to the vector area of the entire
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parallelogram ABCD. The unit normal W defines the direction associated with the
vector area.

Dividing both sides of Equation 4.35 by the interval dt, during which the
triangular area is swept out, we obtain

wia_1
dt 2
which, by Equation 4.11, is equivalent to

wih _Llq (4.36)
dr 2

Taking the magnitude of Equation 4.36, the result is
dA _h
dt 2

Therefore, the rate at which the radius vector sweeps out area is constant. In
other word, the radius vector generates equal areas in equal times, which is Kepler’s
second law.

(F xT),

(4.37)

4.3.3 The Harmonic Law

Let Equation 4.37 be rearranged and the modified time interval replaced by
the corresponding normal time interval kdt as follows:

2(dA) = hk(dt) . (4.38)

If we assume the orbit to be an ellipse, integrating the area swept out by the
radius vector over a time interval of exactly one orbital period will yield the following
expression:

2(nab) = hkP (4.39)

where the term In parentheses is the area of an ellipse, and P is orbital period.
Recalling that, by Equations 4.28 and 4.33, we can write

2 E &Ma (4.40)

which is the generalized statement of Kepler’s third law [21].

4.3.4 The Vis-viva Law

An extremely important relationship between orbital speed and position can be
derived through another integration of the two-body equation of motion

If we take dot product of this equation with 2r we can obtain

2(r 1) = 2(— %} . (4.41)
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Figure 4.8 An orbiting body at perifocus [27].
Now consider the following two derivatives:
=D+ D=2 D (4.42)
T
and
d(u ur
L [t 4.43
dt (rj r2 (4.43)
Therefore, substituting Equations 4.42 and 4.43 into 4.41 yields
d - - d(p
—(r-r=2—|=]. 4.44
dt (g dt (r} ( )

Integrating Equation 4.44 will reverse the differentiation and produce an
arbitrary constant n . Thus,

which is equivalent to
v - 2r_“+n, (4.45)

The constant n can be evaluated by imposing the conditions which exist when
the orbiting body is at perifocus, as shown in Figure 4.8. In this situation, r=q, S0
that

n =V —%. (4.46)



31

Furthermore, because ¥ and r are perpendicular at the perifocus, we may use
the definition of the vector cross product to obtain the simple relationship

h=|Fxf| =rvsin90° = qv(at peri focus) . (4.47)
Squaring Equation 4.47 and substituting Equations 4.28 and 4.29, obtained
ve - Hdre) (4.48)
q

Using the above expression for vZand the fact that q =a(1-e) , Equation 4.46
yieds the following expression for n:

124 (4.49)
a

Finally, employing Equation 4.49 to replace n in Equation 4.45, the result is
V2 = u(% > 1) . (4.50)

a

Equation 4.50 is called the vis-viva equation. This relation is particularly
useful as a means of determining the semimajor axis when the position and velocity
vectors are known for any point on the orbit. Thus,

1.2 v (4.51)

4.4 Two-Body Motion by Numerical Integration: The f and g
Series

When a celestial body’s position 7, and velocity r, are given for some epoch
time to, then its acceleration r, is also known since

ES My
Iy b
Knowing the position, velocity, and acceleration at some epoch makes it

possible to extrapolate the orbiting body’s trajectory over a short interval of time to
yield a new position: and ‘velocity. ‘Furthermore, -the new position permits the
calculation of a new acceleration, and the whole process can be repeated. Therefore,
in principle, it is possible to calculate the body’s motion over an extended period or
time by means of a sequence of relatively short steps if its initial position and velocity
are known for a given epoch. This process is called -numerical integration, which is a
broad designation for a variety of clever procedures that are among the most powerful
tools of celestial mechanics [2,22,23].

Consider the free-fall motion illustrated in Figure 4.9, where body B has
position r,and velocity r, at an arbitrary epoch to. If we want to compute the position
of B at some other time t, we must have an expression for r, which will satisfy the
initial conditions at ty and equation of motion

F-_ M (4.52)

for any given time before or after to.
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Figure 4.9 The two-body free-fall trajectory [27].

It can be shown that the solution of Equation 4.52 may be written as an infinite
power series expansion in modified time about the position r, [22,24]. Therefore,

r = FCECTES C8 ¥C, ™ + ...,

where  =k(t —t,) is the modified time interval, and the coefficients are vector

constants which must be determined by applying the constraints imposed by the initial
conditions. If this infinite series is repeatedly differentiated with respect to modified
time, we obtain

r=C, +Cit+C,t? + C;iilfi@® o' 5 .....

f=C, +2C,7 +3C,12 +4C,1° +.....

iz 2C, +6CT et + ... (4.53)
r=6C; +24C,t +.....

Evaluating these equations at t, when t = 0-and replace the vector coefficients
in Equation 4.53, the result is

o - o ‘C2 e T3 i ‘[,'4
r=r0+ror+rOE+rOE+r0E+ ..... (4.54)
Notice that the first three terms are similar to the more familiar scalar equation
for free fall near the surface of the Earth. Equation 4.54 is a very useful model for
two-body orbital motion because the higher derivatives can be found by successively

differentiating Equation 4.52 and evaluating the results at the epoch to.
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Rather than attacking the problem head-on, it is more convenient to
differentiate Equation 4.54 by means of auxiliary quantities. Let u, z, and q (not the
perifocal distance) be defined as follows [14,24]:

u:%- (4.55)
7 = rr—zr (4.56)
q=L-u, (4.57)

and let Equation 4.53 be rewritten in the simpler form
f=—uf. (4.58)

Now, Equation 4.58 is the expression we want to differentiate; however, for
reasons which will be apparent shortly, we shall delay its differentiation until after we
have developed expressions for the first derivatives of u, z, and g. Commencing with
u, we have

U = =3u(F -f)r2,
which becomes
u=-3uz. (4.59)
Next, for quantity z,
2= |- DB+ F (-2,
Using Equations 4.57 and 4.58, the result is
z=q-222. (4.60)
Finally, by means of a similar process for g, we have
q=2(r-0)r? —2(t-nrir* -1,
and Equations 4.58 and 4.59 can be used to replace their corresponding identities.
Now, according to Equations 4.56 and 4.57 to give

q = —(uz +2zq) - (4.61)

The derivatives u,z, and g, are now given in terms of the original quantities

u,z,andg. . At last we are ready to complete the series solution by finding
expressions for the derivatives required by Equation 4.54. To do this, we differentiate

r=-ur (4.62)

repeatedly, replacing u,z,q, and r by their corresponding values in terms of u, z, q,
and -ur whenever they appear during the differentiation process. Thus,

T =3uzr —ur

F- (3uq —15uz? + u?)F + 6uzf
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Evaluating all derivatives at ty and substituting the resulting expressions into
the power series of Equation 4.54 yields

. 2 . 3
F =T, +T,1 + (U, — + (3uzf, —UT,) —
2 6 (4.63)

. 4
+ [(3uq ~15uz® +u®)T, + 6uzr, ];—4+

where, t = tp, The solution of the two-body equation of motion can be now written in
a very convenient form by rearranging and collecting the terms of Equation 4.63 into

coefficients of ¥, and r,. The result is
r = fr, +gf,, (4.64)

where f and g series are given by

uz 3uq —15uz? +u?
3 4 q o

f e, U5, + o (4.65)
2 2 24
g=t—%13+%t4+.... (4.66)

Finally, an expression for velocity is obtained by differentiating the equation
for position. Thus,

r=ff, + g, (4.67)



CHAPTER5
ORBIT GEOMETRY

The solution of the two-body problem can be characterized by six numerical
quantities which are related to the arbitrary constants resulting from the integration of
the differential equation

|':
|

F=-

w

r

These fundamental parameters are called orbital element, and, when they are
known, the orbiting body’s motion can be computed. The set of elements we shall use
often consists of the six scalar components of position and velocity evaluated at a
given instant of time. However, although this set uniquely defines the size and
orientation of the orbit in space, there are a number of other convenient sets from
which to choose.

This chapter continues the discussion of the two-body problem by introducing
an orbit-plane coordinates system which facilitates the derivation of elliptic which can
be used to change the form of the orbital elements.

5.1 General Relationships

Figure 5.1 depicts the two-body orbit of a celestial body B about a dynamical
center C located at the origin of an inertial rectangular coordinate system. The Xy -
plane coincides with the orbit plane, and the X -axis is aligned with the orbit’s
semimajor axis. The vector v is the velocity of the celestial body at a given instant
when its radius vector r is displaced from the x -axis by the angle of the true
anomaly v . Recalling Equation 4.11, we can write

h=FxV, (5.1)
where, in the orbit-plane coordinate system,
h={0,0h}
r ={xy,0}. (5.2)
v = {x¥,0}
From Equation 5.1, we have
h =Xy —yxX- (5.3)

5.1.1 Angular Momentum and Angular Speed

Equation 5.3 can be used to derive a useful relationship between h and the
angular speed v . From the geometry of Figure 5.1, we can write

X =1C0S v (5.4)
y =rsinv. (5.5)

Differentiating these two equations with respect to modified time produces
X = Cosv—rvsinu (5.6)

X
y =fsinv+rcosv. (5.7)



36

gl

Figure 5.1 The orbit-plane coordinate system [27].

Substituting Equations 5.4 through 5.7 into Equation 5.3 and utilizing the
trigonometric identity [25,26], we obtain

HE= % (5.8)

5.1.2 Radial Speed and True Anomaly

We can now use Equation 5.8 to derive an expression for the radial speed r.
Recalling the general equation of a conic, we know that

@ =r(1+ecosv), (5.9)
where the semiparameter p =h?/u. Differentiating Equation 5.9 with respect to
modified time produces

r(1+ecosv) —revsinv =0.
Multiplying by r and make use of Equations 5.8 and 5.9, we obtain

o —hesinv =0,

PO \/Ee sinv. (5.10)
2

5.2 Relationship between Geometry and Time: Elliptic
Formulation

When Equation 5.3 is applied to the elliptic orbit, it is possible to derive
mathematical relationships between position in the orbit plane and time elapsed from
a given epoch. We shall refer to this expression collectively as Kepler equation
[14,27,28,29]. Consider the geometric construction of Figure 5.2, where an auxiliary
circle centered at K circumscribes the actual ellipse of motion about the dynamical
center C. As the celestial body B moves along the ellipse,
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Figure 5.2 Elliptic formulation [27].

it is followed by a point B’ defined by the projection of B in the y-direction upon the
circle. The angle E, which is proportional to the shaded area, is called the eccentric
anomaly and is measured in the orbital plane from the x -axis to the line KB'. The
distance from B’ to K is always equal to a, the length of the semimajor axis of the
ellipse, and distance between K and C is equal to ae, where e is the eccentricity of the
ellipse.

The advantage of the auxiliary circle is that by expressing x and y in terms of

the eccentric anomaly, instead of the true anomaly, Equation 5.3 can be reduced to a
simple form which is easily integrated.

By carefully examining Figure 5.2, we see that the x-coordinate of the
celestial body is related to the eccentric anomaly by

X =a(cosE-e). (5.11)
Also, the general conic equation allows us-to write
@ =r+e(rcosv) . (5.12)
Now, by comparing Equations 5.4 and 5.11, we find that
rcosv =acosE—ae . (5.13)
Thus, substituting Equation 5.13 into Equation 5.12 produces
@=r+aecosE—ae’. (5.14)

Since
p=a(l-e?).
Equation 5.14 can be rearranged to yield an expression for r:
r=a(l-ecosE). (5.15)
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We derive the equation for y by substituting the expressions for X and r into
general relationship

r’ =x?+y°.
The substitutions produce
y? =a’(l-e?)(1-cos’E).
So that,

y=aVl-e?sinE,. (5.16)

Expression for components of the velocity vector are found by differentiating
the equations for x and y . Therefore,

X = —aEsinE, (5.17)
y =avl-e’EcosE. (5.18)

Now, if we substitute Equations 5.11, 5.16, 5.17, and 5.18 into Equation 5.3,
then

h=a%v1l—e?(cos?E—ecos E+sin’E)E,

\/ES =(1-ecosE)E (5.19)
a

when we apply the trigonometric identity and make use of the fact that

h=ylp =ha(l-e?).

Finally, Equation 5.19 becomes

‘/%dr =(1—-ecosE)dE.
a

This equation is easily integrated to produce

f%tzE—esinE,
a

where the arbitrary constant of integration is zero because we define the modified
time interval = to be zero when the eccentric anomaly E is zero. Letting T represent
the time of perifocal passage, then the celestial body’s position at any time t can be
written

which simplifies to

nt —T)=E—esinE,

where n, known as the mean motion, is given by

n=k aia (5.20)
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Figure 5.3 Classical geometric elements [27].

It is also convenient to define a quantity M, called the mean anomaly, such
that

M=n(t -T), (5.21)
so that we can finally write
M=E-esinE, (5.22)

which is Kepler’s equation. Although developed for elliptic orbits, Equation 5.22 also
holds for the case of circular motion when e = 0

5.3 The Classical Elements from Position and Velocity

The components of r and v provide a completely general description of
orbital motion; however, their vector form does not clearly reveal the orbit’s size,
shape, and orientation in space. Since it is often helpful to have a geometric
perspective such as that depicted in Figure 5.3, we will develop a procedure which
will transform-r_and- v into the following set of parameters known as classical
elements [27,28,29,30]:

a semimajor axis The conic parameter which is used to define the size of an
elliptic orbit.

e eccentricity The conic parameter which define the shape of an orbit.

i inclination The angle between the +z-axis and angular momentum vector h,
which is perpendicular to the orbit plane, measured from 0° to 180°. If i < 90°, the
orbital motion is counterclockwise when viewed from the north side of the
fundamental plane (direct motion). If i > 90°, the orbital motion is clockwise when
viewed from the north side of the fundamental plane (retrograde motion).
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Q longitude of the ascending node The angle in the fundamental plane
between the +x-axis and a line from the dynamical center C to the point N where the
celestial body crosses through the fundamental plane from south to north (ascending
node), measured counterclockwise from 0° to 360° as viewed from the north side of
the fundamental plane. If i =0, then Q is undefined.

o argument of the perifocus The angle in the orbital plane, between the line
of the ascending node and a line from the dynamical center C to the perifocus P,
measured from 0° to 360° in the direction of the celestial body’s motion. If e =0 or i
=0, then o is undefined.

n mean motion A mathematical quantity whose value is the constant angular
speed which would be required for the celestial body to complete its orbit in one
period.

M mean anomaly A mathematical quantity whose value relates the position
of the celestial body in the orbit to the elapsed time by means of the Kepler equations.
The mean anomaly changes at a uniform rate equal to the mean motion n.

T time of perifocal passage The moment when the celestial body passes the
perifocus P. This quantity can also be used to relate position along the orbit to the
elapsed time by means of the Kepler equation. If e = 0, then T is undefined.

5.3.1 Three Fundamental VVectors

We begin process of determining the classical elements by forming the
fundamental vector €, h, and N illustrated in Figure 5.4. The origin of the inertial

rectangular coordinate system is at the dynamical center C, and 1, J, and K are unit
vectors parallel to the x, y, and z-axes, respectively. The coordinate system is aligned
so that +x-axis points toward the vernal equinox, and the xy-plane coincides with the
fundamental plane of the celestial coordinate system. The fundamental plane will
correspond to the equatorial plane if the orbit is geocentric or to ecliptic plane if the
orbit is heliocentric. In the latter case, the vectors r and v must be referred to the
ecliptic coordinate system by using the equatorial-to-ecliptic transformation described
in Section 3.4. Thus, we have for any given time t

r=|r|
v =V-V (5.23)
Mm=r-v.

Therefore, according to Equation 4.34

- Vxh T
€= L_t
TR

because h = x v, utilizing the vector identity, the eccentricity vector is

) :
G- ["——EJF —[EJ\‘/ . (5.24)

poor H
The angular momentum vector is computed by means of its cross product

definition
h=rxv, (5.25)
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Figure 5.4 The fundamental vectors €, h, and N [27].

where
hx Zyi—Zy
hy =zx —xz (5.26)
h, =xy -yx.

Finally, the ascending node vector N is obtained from the cross product of
vector K and h . Accordingly,

N=Kxh, (5.27)
where
K ={0,01}
h={h,h,h,}
N, =—h,
N, = +h, (5.28)
N, =0.

5.3.2 The Conic Parameters

The conic parameter a, e, and q easily found by using relationships already
discussed. According to the vis-viva equation, we have

1.2 v, (5.29)
a

so the semimajor axis is determined. The eccentricity is obtained form Equation 5.24.
Thus,

e =|8]. (5.30)
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We find the perifocal distance by employing Equation 5.25 to compute

h =|h|, (5.31)
so that, by Equation 4.28, we have
2
p=" (5.32)
U
and Equation 4.29 yields
qg=-5_ (5.33)
l+e

5.3.3 The Orientation Angles

Returning to Figure 5.4, we see that orientation angles i, Q , @ can all be
determined from various dot products between fundamental vectors ¢ , h, N and unit
vectors 1, J, K. Accordingly, the angle of inclination is computed from the dot
product

K-h =|K| h|cos i, (5.34)
so Equation 5.34 simplifies to
cos i = hTZ (5.39)

and the inclination is determined. In the case of the longitude of the ascending node,
we begin with the dot product

I-N=|1]| NJcos Q, (5.36)
where
1 =41,0,0}
N = {N,,N,,N, }
So Equation 5.36 reduces to
cos Q = N_I\T (5.37)

where Q > 180° if Ny < 0. Therefore, the longitude of the ascending node is
determined.

Finally, the argument of the perifocus is obtained from the dot product
N-& =|N|le] cosw, (5.38)
where
N={N,.N,.N,}
e={e,e,e,}.
Equation 5.38 can be rewritten as
N-e

cos ® = ——
Ne

, (5.39)
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where ® > 180° if e, < 0. Thus, the argument of the perifocus is determined. This
element is frequently replaced by the longitude of the perifocus,

o=Q+0,
o=w-Q.
5.3.4 The Mean Anomaly

According to Equations 5.4 and 5.5, the celestial body’s position with
reference so the orbit-plane coordinate system is given by

X =1C0S v (5.40)
y=rsinv. (5.41)

Rearranging the conic equation to obtain

=T
€

rcoSv =

permits us to write Equation 5.40 in the form

i:fii. (5.42)

Now, recalling Equation 5.10, we have

f:\/Eesinn,
(Y

so that, multiplying through by r, we get

; rr
Fsiny =— |2
e \u

Substituting the above expression in Equation 5.41, the result is
y = &8 (5.43)
e\u

Now, if the eccentricity determined by Equation 5.30 is less than unity, the
mean anomaly must be computed using the elliptic equations of motion. We begin
with Equations 5.11 and 5.16, namely

X = a( cos E — e) (5.44)
y =bsinE, (5.45)

where, for convenience, we have let

b=ayl-e?. (5.46)

Since x and y are known quantities given by Equations 5.42 and 5.43, we
can write

COSE=—+e (5.47)

OISl o | x|

SiNE ==, (5.48)
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Figure 5.5 The unit vector P, Q and W [27].

which determine the eccentric anomaly without ambiguity. The elliptic mean anomaly
and mean motion can now be computed in radian measure from

M=E-esinE, (5.49)
n:kig. (5.50)

If desired, the period of the elliptic orbit can be found from Equation 4.40.

5.4 Position and Velocity from the Classical Elements

Occasionally, situations arise where it is necessary to convert a set of classical
elements into the elements of position and velocity at a given epoch time. This
transformation is facilitated by defining a set of mutually perpendicular unit vectors
P,Q, and W in the orbit-plane coordinate system. As shown in Figure 5.5 P is
directed along the x -axis toward the perifocus, Q- lies along the y -axis, and W is
perpendicular to the orhit plane. Thus,

W=PxQ. (5.51)

therefore, as celestial body B orbits dynamical center C, its position and

velocity may be described in terms of the unit vectors as follows:
—_ — _ﬁ P

IS (552)

vV =XP+YyQ.

Now, if we express all the quantities on the right sides of these equations in
terms of the classical elements, the vector elements r and v can be computed. We
being by transforming the scalar components using expression which are appropriate
to the conic section describes the orbit.
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5.4.1 The Scalar Components of Elliptic Motion

In the case of elliptic motion, we assume the following set of classical
elements:

{a,e.M,i,Q0},

where e < 1. The mean and eccentric anomalies are related by the elliptic Kepler
equation, namely

M=E =esinE, (5.53)
which can be written
f=E—-esinE-M. (5.54)
Differentiating f with respect to E, we obtain
g—lfzzl—ecos E. (5.55)

If we choose E = M as a first approximation for the eccentric anomaly,
Equations 5.54 and 5.55 can be solved for an accurate value of E by successive
iterations using the Newton-Raphson method. This procedure is straightforward
because a given value of the mean anomaly determines a unique value of the eccentric
anomaly. When a satisfactory value of E has been found, we use Equation 5.15 to
compute

r =a(l-ecosE) (5.56)
and rewrite Equation 5.19 to obtain
\/E = a(1-ecos E)E. (5.57)
Substituting Equation 5.56 into 5.57, the result can be arranged to yield
E-i (5.58)
ria

We now use Equations 5.11, 5.16, 5.17, and 5.18 to compute the scalar
components of position and velocity:
X=a(cosE—e)
y =bsinE
s .. (5.59)
X =—-aEsinE
y =bEcosE,

where b =ay1-¢e? .
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Figure 5.7 Rotation about K through angle Q [27].
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5.4.2 The Unit Vector Components of Motion

Now that we have developed equations which express the scalar components
of position and velocity in terms of the classical elements [31], all that remains is to

accomplish this for the vector components of P and Q. It will then be possible to use
Equations 5.52 to compute the vector elements r and v when the classical elements
are given. Consider the geometric relationships depicted in Figure 5.6. The {P,Q,W}

unit vector system can be obtained by successive rotations of the {1,J,K} unit vector
system through angles Q , i, and ® . We proceed as follows:

Step 1 Rotate the {1,J,K} system about K through the angle Q , as shown in Figure
5.7. Theresultisan {1',J',K'} system, where

I'=+1cos Q+JsinQ
J' = —1'sin Q+Jcos Q (5.60)
K =+K.
Step 2 Rotate the {1",J",K'} system about I' through the angle i, as shown in Figure
5.8. The resultisan {1™,J", K"} system, where

=5
'=4J'cos i+ Ksini (5.61)
K'=—J'sini+Kcosi.

lL-_l —

Step 3 Rotate the {1",J" K"} system about K through the angle o , as shown in
Figure 5.9. The result is the {P,Q,W} system, where

P=1"coso+J"sinw
Q=-1"sin® +J"cos » (5.62)
W = +K"

Step 4 Substitute Equations 5.60 into Equations 5.61 to obtain the following
relationships:

1" =+Icos Q+JsinQ
J" = —1(sinQcos i) + J(cos Qcos i) + Ksin i (5.63)
K' = +1(sinQsini)— J(cos Qsini) +Kcos i .

Step 5 Substitute Equation 5.63 into Equation 5.62, factor, and rearrange to obtain the
final forms of the unit vectors:

P =1(+c0S ®COS Q—sinw sin Qcos i) +
J(+cos @ sin Q + sin © cos Qcos i) + (5.64)
K( + sin  sin i)
QzT(—sincocos Q —c0os o sin Qcos i) +
J(—sin o sin Q + cos ® cos Qcos i) + (5.65)
K( + cos o sin i)
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Figure 5.8 Rotation about I’ through angle i [27].

Figure 5.9 Rotation about K" through angle o [27].
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W = 1(sin Qsini) +
J(—cos Qsini) + (5.66)
K( +cos i) .
Equations 5.64, 5.65, and 5.66 express the X, y, and z components of the unit

vectors P, Q, and W in terms of the classical elements. Now, in the case of the

heliocentric orbits, i, Q , and @ are measured with respect to the ecliptic coordinate
system, and the resulting values of ¥ and v must be reduced to the equator by the
ecliptic-to-equatorial transformation given in Section 3.4.



CHAPTER 6
EPHEMERIS GENERATION

In the previous chapter we derived the elliptic equation of motion which relate
position in the orbital plane to the time elapsed from the moment of perifocal passage:

M=E-esinE

However, since the expression is not the most convenient form for our
application, we shall modify this equation to obtain the relationship which express
motion in terms of time elapsed from an arbitrary epoch. This is done with a view
toward using the modified forms with closed f and g expressions and as a starting
point for a universal formulation which is equally applicable to conic sections.

6.1 The Differenced Kepler Equations: Elliptic Formulation

Consider the case of elliptic motion where, at some given epoch time to, there
exist corresponding values of the eccentric anomaly Eo and mean anomaly My. Then
we can write

M, =E, —esinE,. (6.1)
Subtracting Equation 6.1 from the more general form yields
M-M, =E-E; —esinE+esinE,, (6.2)
where, according to their definitions,
M=M, =n(t - t,)
n=k ais . (6.3)

If we write the sin E term in the following form
SinE=sin(E-E, +E,),
then we can apply a trigonometric identity to obtain
sinE = sin (E—E,) cos E, + cos (E —E,) sinE, . (6.4)
Thus, substituting Equation 6.4 into Equation 6.2, the result is
M- M, =(E'—EO)—(e €cos Eo)sin(E-—EO)—. (6.5)
(e'sinEy) cos'(E —Ey) + (e sinEy)

Equation 6.5 can be written in a more practical form by equation the three
trigonometric terms in parentheses to quantities which are easy to compute when the
position and velocity elements are known for the epoch. Equations 5.15 and 5.58
provide the following relationships:

r =a(l-ecosE) (6.6)

g1 B 6.7)
rva
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If we rearrange Equation 6.6, we can write
ecOSE=1-_. (6.8)
a

Therefore, at the epoch time t, we also have
e cos E, =1—r;°. (6.9)

Differentiating Equation 6.8 with respect to modified time and substituting
Equation 6.7 for E produces

esmE:%\E' (6.10)

Define

D (6.11)

o

Thus, at epoch tp Equation 6.10 become

esinE, :DO\E' (6.12)
Now, if we define
C, =e'cosE, (6.13)
Sy =esinE, , '

then, by Equations 6.9 and 6.12, we have

= i (6.14)
1
St DO\/;. (6.15)
Finally, if we let
W =M~
“b (6.16)
G=E-E,,
then Equation 6.5 can be written in the simpler form
W=G-C,sinG-S, cosG+S,. (6.17)

6.2 The Closed f and g Expressions

Closed expressions for the f and g series can be developed for the elliptic
motion. Since these close forms do not suffer from series truncation error, they
maintain their accuracy when the computed positions are separated by long intervals
of time [14].

Consider the situation shown in Figure 6.1, where the position and motion of
celestial body B are referred to the orbit-plane coordinate system at an epoch time to.
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Figure 6.1 Orbital motion during the time interval t-to [27].

Using 1, and v, as the orbital elements, the position and velocity of B at some
other time t is described by the expressions

r=fr, +gv, (6.18)
V=ff +4v,. (6.19)
Equation 6.18 can be solved for f by taking its vector cross product with v, .
Thus,
Fx vy =1f(I, x Vo) +g(Vy x V),
which becomes
T xv, =fh (6.20)
because crossing any vector with itself yields the null vector, and
T, xV, =h

by definition. Now, if W is the unit vector perpendicular to the orbit-plane and h is
the magnitude of the angular momentum vector, then Equation 6.20 can be written

(XY — VX)W = fhW.
Equation the scalar coefficients of W, we have the general equation

f= Xyohﬂ (6.21)
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The expression for g is derived by crossing Equation 6.18 with t,. So that by

following a process similar to that used to derive the expression for f, we obtain the
general form

g =20y YoX, (6.22)

According to the formulation of orbital motion described in Sections 5.2 and
5.4.1, we have the following relationships:

X =a( cos E—e) (6.23)
y =bsinE (6.24)
X = —aEsinE (6.25)
y =bEcos E, (6.26)
where
b=avl-e? (6.27)
50\ (6.28)
ria
r=a(l—ecosE). (6.29)

If we substitute Equations 6.23 through 6.26, evaluated at t and t, Into
Equations 6.21 and 6.22, the resulting expressions for f and g can be written

abEy 220 [(cos E—e) cos Ey + SiNEsinE, |
h (6.30)

=%[(cos E, —€) sinE—sinE,(cos E—e)],

f=

where, according to Equations 4.28 and 4.31

=.Jua(l-e?). (6.31)

So that,

:—[(cos E—<e)cos Ey +sinEsinE ]

\/7[(cosE —¢) SinE—SinEy(cos E—e)].

Employing the trigonometric identities [25], we can replace sinE and cos E in
Equation 6.32 by the expressions

(6.32)

sin (G + E,) =sin Gcos E, + cos GsinE, (6.33)
cos (G +E,) =cos Gcos E, —sinGsinE, , '

where
G=E-E,. (6.34)
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When this substitution is made, Equations 6.32 become

fzi(cos G-ecoskE,)
o

: (6.35)
g= \/%[sin G(1 —e cos Ey) + (1 cos G)(e sinE,)].

Recalling Equations 6.10 and 6.12, Equations 6.35 can be further reduced to
yield

f:l—i(l—cos G)
o

(6.36)
1 !
g= \[g[ro(\/:a_sm G) +Dya(1l-cos G)|.
If we define
C=a(l- G
R (6.37)
S= \/gsm G,
then the closed f and g expressions can be written in the compact form

o o

(6.38)

o
1
g= \/:(rOS+DOC) .
M

Before proceeding to develop closed expressions for the derivatives of f and g,
we must derive an equation for the magnitude of the radius vector at time identity
from Equation 6.33, we can write

r= a[l—cos G(e cos E,) + sin G(e sin EO)]. (6.39)

Substituting Equations 6.10 and 6.12 for the appropriate terms above, the
result can be arranged to obtain

r=a(l-cos G) +ry(cos G) +D, (VasinG). (6.40)

Finally, if Equations 6.37 are used to replace the terms in parentheses above,
Equation 6.40 can be simplified to

f=r +C(1—%°j+DOS. (6.41)

The closed expressions for f and ¢, required by Equation 6.19, are derived by
differentiating Equations 6.38 with respect to modified time. Thus, we obtain

(6.42)
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The next step is to find relationships which express C and $ in term of
quantities which can be computed from the vector elements. Beginning with the
definition

G=E-E,,
differentiation yields
G=E,
since Ep is a constant. Therefore, according to Equation 6.28,

goLl (6.43)
rya

Turning to the definition for C, we have
C= aGsinG,
which, according to Equation 6.43, can be written

C= @ﬁsin G. (6.44)
Making use of Equations 6.37, we obtain

sobg (6.45)

r
Following a similar process for S, we have
S =+aGeos G
which, by Equation 6.43, is

S = @cos G. (6.46)

Again, employing Equations 6.37, we find that

szﬂ( —9]. (6.47)

r a

Now, if Equations 6.45 and 6.47 are substituted for the appropriate terms in
expressions for f and g, the results can be written

f:-ﬂs

rry

ot 3o

Finally, if we replace the term in square brackets by Equation 6.41, the
expression for g reduces to the simple relationship

(6.48)

g=1-%. (6.49)
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In order to use the closed f and g expressions to compute elliptic motion over
the time interval t - to, we must first solve the differenced Kepler equation for G by
applying the Newton-Raphson method to the function

f(G)=G-C,sinG-S,cos G+S, - W (6.50)
and its derivative
M:l—co cos G+ S, sinG. (6.51)
dG

Once G has been used to calculate C and S, the value of f, g, f, and g are

determined by their respective closed expressions, and the position and velocity at t
are computed from Equations 6.18 and 6.19.

6.3 The Universal Formulation

The closed f and g expressions are very convenient for computing orbital
motion when the value of the eccentricity clearly indicated that the orbit is an ellipse.
Unfortunately, the closed elliptic formulations begin to yield inaccurate results as the
eccentricity approaches unity in the ambiguous case of a nearly parabolic orbit.
Therefore, it is often advantageous to avoid the need to switch formulas when
changing from the conic section to another. Fortunately, general expressions have
been developed which retain their accuracy for all values of the eccentricity; however,
in order to obtain this universal formulation, we shall abandon the closed functions
derived in the previous sections and use series expansions [2,28,32].

6.3.1 The Coefficients C, S, and U

According to Equations 6.37, the coefficients C and S are given by the
trigonometric relationships

C=a(l-cos G) (6.52)
S=+asinG. (6.53)

These equations can be converted into series expansions by utilizing the
following general identities [25]:

2 4 6
QspIGA DD 1Sy 2 (6.54)
21 41 6!
3 5 7
sinx =X -~ X2 X, (6.55)
31 5 71
Let
1
B, = o (6.56)

then Equations 6.52 and 6.53 can be written
C=a(B,G* -B,G* +B;G® —B,G® +...) (6.57)

S =+a(G-B,G® +B,G’ —B,G’ +...) . (6.58)
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We now make a crucial change of variable which will cause the value of the
semimajor axis to appear only in the denominator so that the terms containing 1/a will
vanish when the semimajor axis becomes infinite. Let

X = 4/aG, (6.59)
substituting Equation 6.59 for G in Equations 6.57 and 6.58, the result is
X x°

C=B,X* -B, —+Bg — +... (6.60)
a a
3 5
S = X—By > +Bg o ... (6.61)
a a

If we define a new coefficient U such that

U=B, X =B . (6.62)
then we may also write
S - x—g. (6.63)

The derivatives of C and U with respect to X will be required for the solution
of the universal Kepler equation. When we take advantage of the values of the B-
coefficients, the expressions for the derivatives can be simplified to yield

dc x

—=X-B; —+.... .64
-5 3 + (6.64)
du x*

7:BZX2 —B4 ?4' (665)

Therefore, comparing the above expressions with Equations 6.60 and 6.61, we
can finally write

dc

el (< 6.66
= (6.66)
du

—=C 6.67
X (6.67)

6.3.2 The Equations of Motion

Now that we have series expansion in X for the coefficients C, S, and U, we
can use them to produce a universal formulation of the f and g equations of motion.
We begin by combining Equations 6.3, 6.16, and 6.17 to produce the following
expression for Kepler’s equation:

ntt —ty) =G-C,sinG-S,cos G+S,, (6.68)

where

U
n=k|h (6.69)
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If we redefine W to be

W = kJu(t — t,) (6.70)
then Equation 6.68 can be written
W = a+/aG — aC,+/a sin G + +/aS,a(1 — cos G) . (6.71)

Substituting Equations 6.52 and 6.53 for the appropriate terms in Equation
6.71, we obtain

W = ayaG—aC,S ++/as,C. (6.72)

Implementing the same change to the variable X introduced previously, the
result is

W = aX — aC,S ++/aS,C. (6.73)

Now, when Equations 6.14, 6.15, and 6.63 are substituted into the above, the
result can be arranged to yield

W =r, X+ C,U+D,C, (6.74)
which is the universal Kepler’s equation.

The remaining universal equations of motion follow immediately by using the
series expansions for C and S in the f and g formulation. Thus,

C

floqh & (6.75)
o
1
g= \E(ros +D,C) (6.76)
r=r, +C,C+D,S (6.77)
.
f=->-5 6.78
I, (6.78)
g=1 ‘% (6.79)
where
fo =Tl (6.80)
Dy =0 Yo (6.81)
Ju
1.2 VoVo (6.82)
a T H
C,=1-", (6.83)
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Orbiting
Body

Dynamical
Center

Observer

Figure 6.2 The fundamental vector triangle [27].

In order to use the universal f and g expressions to compute orbital motion
over the time interval t - to, we must first solve the universal Kepler equation for X by
applying the Newton-Raphson method to the function

f(X) =, X+ C,U+D,C- W (6.84)
and its derivative
K e p X (6.85)
dX dX dX

which can be written as simply
df(x) _
dXx
when Equations 6.66 and 6.67 are substituted for the derivatives of C and U. Once X
has been used to calculate C and S, the values of f, g, f, and g are determined from

their universal expressions, and the position and velocity at time t are computed from
Equations 6.18 and 6.19 [2,27].

Iy + C,C+D,S (6.86)

6.4 The Ephemeris

Given a celestial body’s position and velocity at a particular epoch time, it is
not difficult to compute a sequence of right ascension and declination coordinates at a
series of other convenient times. Consider the fundamental vector equation:

p=T+R. 6.87)
(

As illustrated in Figure 6.2, r is the radius vector from the dynamical center
of motion to the orbiting celestial body, R is the vector from the observer to the
dynamical center, and p is the vector which defines the position of the orbiting body

with respect to the observer. Now, for any given time t, the vector r can be computed
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from the orbital elements by numerical integration, the closed f and g series, or a
universal formulation. Furthermore, we may assume that the vector R is also known
because the daily geocentric rectangular coordinates of the Sun tabulated in the
Astronomical Almanac can be sued for heliocentric orbits. Therefore, p can be

determined and used to compute the unit vector L from

L= (6.88)
|l
Finally, since
L = {cos & cos a, cos & sin a, sin 3}, (6.89)
the scalar components of L are
L, =cos 8 cos o (6.90)
L, =cos dsina (6.91)
L, =sing, (6.92)
and since | L] =1, Equations 3.7 through 3.10 reduce to
sind =L, (6.93)
oS 8 =112 (6.94)
oS o = = (6.95)
cos o
L
Sino=—t—, (6.96)
cos o

which permit « and & to be found for time t.

In the case of geocentric orbits, we can usually assume that the effects of light-

time are negligible. Therefore, the vector p given by Equation 6.87 can used

immediately to compute L by Equation 6.88. However, when a heliocentric orbit is
being computed, the effects of light-time are normally taken into account because the
light which reaches the observer at a given time t had the observer to come from the
direction of a slightly different orbital position .. If we now let p =| p| represent the
distance which the light must travel between the point where it leaves the celestial
body and the point where it reaches the observer, then

Q498" (6.97)
where ¢ = 173.1446 AU/day, so that

% =0.005775519 Day/AU . (6.98)
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In practice, since r, is initially unknown, an approximate value of p is first
calculated from Equation 6.87 and used in Equation 6.97 to find t.. The vector r, is
then computed for time t; and used to find an improved value for p from

p=r + R. (6.99)
Therefore, we now have as before
-_p
L=—, (6.100)
[Pl

and Equations 6.90 through 6.96 yield o and s at time t.



CHAPTER 7
ASTRONOMICAL PHOTOGRAPHY

This chapter considers the photographic method of determining a star’s
position. This can, of course, only be a relative position, for it is necessary to assume
that the celestial coordinates of some a star on the photographic plate or film are
known a priori. The measurements of photographic astrometry must be underpinned
by a satisfactory framework of reference stars. In the last section, we shall determine
the star’s position by comparison stars, the method of dependences, with applicable to
obtain the preliminary orbit data in the method of Gauss.

7.1 The Tangent Plane

The central geometrical problem to be considered in astronomical photography
is the mapping of the celestial sphere on to the plane surface of a photographic plate
or film. To a high degree of approximation, this may be regarded as the simple central
projection, shown in Figure 7.1. The diagram illustrates the essential features of an
astronomical refractor when used for photography. In Figure 7.1 the celestial sphere,
with C as center, is drawn. The tangent plane at A is drawn, this plane is at right
angles to the radius CA and is therefore parallel to the photographic plate. It is to be
remembered that A is the point on the celestial sphere towards which the optical axis
of the telescope is directed. Produce CB to meet the tangent plane in D; then D will be
called the projection of B on the tangent plane. The projection of any other point on
the celestial sphere can be constructed in a similar manner by joining the center C to
the point under consideration and producing the radius to meet the tangent plane.
Consider a star L whose projection on the tangent plane is N and whose image on the

photographic plate is at M. if ¢ = OCM = ACL, we have [33,34]

OM AN
OC AC’

It follows generally that the system of stellar images on the plate is similar to
the system of the projections on the tangent plane, one system however being on a
different linear scale from the other. Let AR’, AS’ be the positive directions of
rectangular axes inthe tangent plane; let OR, OS be parallel to AR’, AS’ respectively,
in the plane of the plate, their positive directions being opposite to those of AR’ and
AS'. Let ¢, n' be the coordinates of the projection of a star on tangent plane and &,
n the coordinates of the image on the plate; then by the principle of similarity, we
have

tan ¢ = (7.1)

g _<

AC OC (7.2)
and

no_n (7.3)
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Figure 7.1 Central projection [33].
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Figure 7.2 The central sphere and the tangent plane [33].
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7.2 Standard Coordinates

For the sake of geometrical simplicity we shall suppose the celestial sphere
(center C) and the tangent plane at A to be drawn as in Figure 7.2. It is to be
understood that A is the point on the celestial sphere towards which the telescope is
pointed. If S is a star near A, its projection T on the tangent plane is obtained by
joining C to S and producing CS to meet the tangent plane in T. Draw the great circle
arc AS; then, since the plane of this great circle passes through C, it follows that all
radii joining C to points on AS lie in one plane and this plane intersects the tangent
plane in a straight line AT. More generally, we can say that any great circle projects
into a straight line in the tangent plane. Let P be the north pole of the celestial sphere.
AS is the meridian of A and it projects into the straight line AQ. We shall take AQ as
the n'- axis of the tangent plane. The &'- axis is taken to be AU, which is drawn

perpendicular to AQ, and its positive direction is taken to be eastwards of the
meridian AP so that increasing values of & correspond to increasing values of the

right ascension.

Since AT lies in the tangent plane, AT is perpendicular to AC and is therefore
the tangent at A to the great circle arc AS. Similarly, AQ is the tangent to the great
circle arc AP. Now QAT defines the angle between any two great circle arcs,
intersecting at the tangential point A, is exactly reproduced on the tangent plane as the
angle between the two straight lines into which the great circles project. This remark
holds only for great circles passing through the tangential point; for example, the great
circle SP projects into the straight line TQ and AP projects into AQ; but AQT (the
angle between AQ and TQ) is not equal to SPA (the angle between the great circles
AP and SP).

Denote the arc AS by ¢ and SAP by 6 ; then QAT =0 . Draw perpendiculars
TU, TV to AU, AQ respectively. Then

VT =¢ = ATsin0 (7.4)
UT =n'=ATcos 0 . (7.5)
Now
AT =ACtan ACT = ACtan ¢.
Hence
g .
— =tan ¢sin 0, 7.6
~ ¢si (7.6)
.
—— =tan ¢cos 0. 7.7
A= tan § (7.7)

Hence, by Equations 7.2 and 7.3,
% =tan ¢sin 6 (7.8)
o

=t 0, 7.9
c an ¢ cos (7.9)
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in which ¢ and n are the coordinates of the image of S on the photographic plate

with reference to rectangular axes through the center O of the plate (Figure 7.1), and
drawn parallel, but oppositely directed, to the axes AU, AQ on the tangent plane. OC
is the focal length of the telescope. Suppose that the focal length is known in
millimeters and that the plate coordinates ¢ and n are derived also in millimeters by

processes which will be described later; then the values of ¢ and 6 can be calculated
from Equations 7.8 and 7.9. As we shall see immediately, ¢ and 6 are functions of

the right ascension and declination of A are known, the right ascension and
declination of S can then be deduced from the values of the coordinates ¢ and n.

If we take the focal length OC to be the unit of length and ¢ and n to be
expressed in terms of this unit, we have from Equations 7.8 and 7.9,

E=tan ¢sin0, (7.10)
n =tan ¢Cos 0 . (7.11)

¢ and n are then called the standard coordinates of the star concerned. In this
definition of standard coordinates [35], the following points have to be noted: (i) the
origin of the coordinate axes corresponds to a definite position, whose right ascension
and declination are specified with respect to a standard mean equinox; the epoch of
this mean equinox is chosen to be 2000.0; (ii) the & and n axes are correctly oriented
for the epoch 2000.0; (iit) the definition, being a purely geometrical one, excludes the
effects of instrumental imperfections and of refraction and aberration (all of which
will be considered later). The standard coordinates of a particular star thus specify the
position of the star uniquely, and can therefore be used in place of right ascension and
declination.

7.3 Formula for the Standard Coordinates

Let A, D be the right ascension and declination (referred to 2000.0) of the
point A on the celestial sphere, and «, & the corresponding coordinates of the star S.
We shall now show how the relations between &, n and A, D, « and & are obtained.
In the spherical triangle ASP (Figure 7.2) we have: AP = 90°-D, SP = 90°-5,

APS =¢ -A (in the figure, S is eastwards of the meridian AP), AS = ¢, SAP =6. Then

cos ¢ =sin § sinD+ cos § cos Dcos (a —A), (7.12)
sin$sin® = cos & sin (a — A), (7.13)
sing cos 6 =sin & cos D~ cos dsinDcos (a— A). (7.14)

Dividing Equation 7.14 by 7.12 we obtain, using Equation 7.11,

_cos D—cot §sinDcos (a— A)

== : (7.15)
sinD + cot § cos Dcos (o — A)

Define g as follows:
cot g = cot 5 cos (a— A). (7.16)
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A
Figure 7.3 The spherical triangle [33].
Then
_ ¢cos D-—sinDcot q
sinD +cos Dcot q '
from which
n=tan (q-D). (7.17)

Again, dividing Equation 7.13 by 7.12 and using Equation 7.10, we have
cot & sin (a — A)

= sin D + cos Dcot 6 cos (o — A) (7.18)
_ cotqtan (a— A) '
~ sinD + cos Dcot q
by Equation 7.16, so that
_ gotgtan (a—A) (7.19)

cos (q — D)

The auxiliary. quantity g, which has been introduced into Equation 7.17 and
7.19 in order to simplify the logarithmic computations of & and n in the case when

A, D, « and & are all known, is readily seen to have a simple geometrical
interpretation. In Figure 7.3, draw a great circle arc SL to cut AP at right angle in L.
Denote PL by x; then

cos x cos (o — A) =sin xtan 6 —sin (a — A)cot 90°,
from which

tan x = cot o cos (a — A).
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Hence, by Equation 7.16, x = 90°- q, so that q is the declination of L.
Equations 7.17 and 7.19 enable the calculation of & and n to be made when A, D, ¢

and n . We have from Equation 7.15,

nsin D +ncot 6 cos Dcos (a — A)
=cos D—cot 6sinDcos (a— A),

from which
cot 5 cos (o — A)fncos D +sinD} = cos D-nsinD,
and hence,
cot & cos (a — A) = Fntan D (7.20)
n + tan D
Again, from Equation 7.18,
cot & sin(a—A)=EsinD + £ cos Dcot  cos (a— A)
/. &{sin D 4 €05 DL —n tan D)}
n + tan D
by means of Equation 7.20, whence we derive
cot dsin(a— A) = &SE—CD. (7.21)
n + tan D
Divide Equation 7.21 by 6.20; then
g&sec D
tan (a —A)=—=>—""—"——, 7.22
(o —A) 1-ntan D ( )

from which a - A can be calculated and o obtained. When « - A has been found, &
can be obtained from Equation 7.20 or 7.21.

In astronomical photography there are two fundamental processes employed
directly or indirectly [33]. The first is the calculation of the standard coordinates of
one or more stars whose right ascensions and declinations are known; this process
involves the use of Equations 7.17 and 7.19. The second is the calculation of right
ascensions and declinations of stars from the value of their standard coordinates; this
process is carried out by means of Equations 7.22 and 7.20 or 7.21.

7.4 The Measured Coordinates

In defining the standard coordinates of a star ‘we have assumed (a) that the
optical axis of the telescope passes through the origin of coordinates on the plate, (b)
that the plate is perpendicular to the optical axis, (c) that the m -axis corresponds
precisely to the projection of the central meridian, for the epoch 2000.0, on the
tangent plane, (d) that the &-axis is perpendicular to the n-axis. In practice it is

impossible to attain the geometrical perfection just indicated, and consequently the
coordinates of a star-image, measured with reference to the axes on the plane, must be
expected to differ (generally slightly) from the theoretical standard coordinates. But
this is not all. Hitherto, in referring to star-images, we have ignored the effects of
refraction and aberration.
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Figure 7.4 The photographic plate measurement [33].

We have seen that owing to refraction and aberration the apparent position of a
star on the celestial sphere is displaced by measurable or calculable amounts from its
true position; consequently the actual image of a star on the photographic plate will be
somewhat displaced from the position it would occupy were these effects inoperative.
It will thus be realized that standard coordinates are ideal coordinates, whereas the
measured coordinates of a star-image include the effects of geometrical (or
mechanical) imperfections and the effects of refraction and aberration. At first sight
the problem of deriving the standard coordinates of a star from the measured
coordinates of its image on the photographic plate seems one of great difficulty;
actually, as we shall see, the solution in practice is extremely simple. We shall now
examine in detail the differences between the standard and measured coordinates.

7.5 The Measurement and Scale of Photographic Plates

For convenience “we shall consider the plates taken with astrographic
telescopes. These instruments, constructed according to a standard design, are in use
in about a score of observatories scattered over the globe, the work to which they have
been principally devoted being a complete photographic survey of the heavens. In this
enterprise the cooperating observatories had definite zones (between certain parallels
of declination) assigned to them; several observatories have finished their share of the
work, but under existing world-conditions it is uncertain when the survey will be
complete.

On each astrographic plate, a network system of parallel lines as shown in
Figure 7.4 is photographed, either before or after the plate is exposed to the stars, so
that on development the plate shows the stellar images and the reseau system of lines.
The lines are equally spaced at intervals of five millimeters. We shall suppose that the
central lines XOY and UOV correspond exactly to the ¢-axis and n -axis already

defined.Consider a star-image at S. The distance AS, parallel to OX, is measured by a
machine and we shall suppose that AS = 4.14 mm. The distance of S from the axis
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Figure 7.5 Orientation of axes [33].

UOV (that is to say OC) is thus 10+4.14 or 14.14 mm. In a similar way, BS is
measured and the distance OD obtained.

7.6 Discussion of Errors

We shall consider the errors individually. \We shall denote by ¢ and n the true
standard coordinates of a star and by x and y the coordinates as influenced by the

particular error concerned [33].
7.6.1 Error of Orientation

In Figure 7.5 let XOY and UOV be the axes of coordinates correctly centered
and oriented for the epoch 2000.0; let X’OY" and U'OV’ be the axes on the plate

correctly centered but erroneously oriented. Let X'OX=a. Let S be a point whose
standard coordinates are & and n, referred to OX and OY, and whose coordinates

referred to OX' and QY' are x and y. Draw perpendiculars SA, SB to OX, OX'
respectively. Then OA =&, AS= n, OB =x and BS =y. We have

OA= OBcos a +BScos (90° +a)

or
E=xcosa—-ysina,

whence

&—x:—szinZ%—ysina.
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Similarly,
n—y=xsina—2ysin2%.

We wrrite these in the form:

-Xx=a,X+b
sTX=a 13’} (7.23)
n-y=dx+epy
where ay, ...., €; are simple functions of a. In practice o is always a small angle and
in consequence the coefficients aj,...., e; are also small. The formula 7.23 are

essentially linear in x and y.

7.6.2 Centering Error

Suppose firstly that during an exposure the direction of the optical axis
corresponds to a given direction (A, D) referred to the mean equinox of 2000.0, and
that ¢ and n are the standard coordinates of a stars (a, &) with reference to the

position (A, D) as center. It is hardly to be expected that the straight line joining the
center of the object-glass to the origin of the impressed the reseau coordinate axes will
coincide exactly with the optical axis, and consequently the origin will correspond to
slightly different values of A and D. Secondly, the optical axis may not be directed
quite accurately to the position (A, D) for 2000.0. As a result, we must therefore
assume that the origin of coordinates on the plate corresponds to a position (A+A A,
D+A D), where A Aand A D may be supposed to be small quantities.

All other errors and influences being assumed absent, let x and y be the
coordinates of an image with respect to the reseau axes. Then x and y may be taken to
be the standard coordinates of the star concerned with reference to the position
(A+A A, D+A D) as center. We shall denote x-g& and y-n by A and An

respectively.
Now, by Equations 7.10 and 7.11,
E&=tan ¢sinO,n =tan ¢cos 0,

where ¢, 6 are functions of A and D. Corresponding to increments AA and AD , we
shall have increments A¢, A6 . Hence we have

A& = Ad(L +tan? §)sin 6 + AB tan ¢ cos 0,
An = Ad(1 + tan 2 ¢) cos B — AB tan ¢sin 6.

For a star at an angular distance of 1° from (A, D), tan ¢ = 1/57, and in the
above formula we can neglect such terms a have factors A¢tan ? ¢ . We thus have

AE = Adsin O +nAO } (7.2)

An = Adcos 6 — EAD.

We have now to express A¢ and A6 interms of AA and AD .
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From Equation 7.12 we have
— sin pAp = AD{sin  cos D — cos & sin D cos (o — A)}
+ AAcos 6 cos Dsin (a—a),
and, using Equations 7.13 and 7.14, this becomes
Ad = —ADcos 6 — AAcos Dsin 0. (7.25)

From Equation 7.14 we obtain
AB sin g cos 6 + Apcos ¢psin® = —AAcos & cos (o — A),

or, using Equation 7.25

A8 sin ¢ cos 6 = cos ¢sin O(AD cos 6 + AAcos Dsin 0)
— AAcos b cos (o —A) .

Multiply Equation 7.12 by cos Dand Equation 7.14 by sinD and subtract.

Then
cos o cos (a—A)=cos ¢cos D—sin¢cos 0sinD.
Hence
A8 sin ¢pcos 6 = ADcos ¢ sin 6 cos 6
+ AA{cos dsin? 0 cos D — cos ¢ cos D + sin ¢ cos 6 sin D},
from which

AB sin ¢ = ADcos ¢ sin 0 + AA(sin ¢ sin D — cos ¢ cos 6 cos D).
Multiplying this last equation by sec ¢cos 8, we have

nA6 = ADsin 6 cos 0 + AA(sin D — cos? 6 cos D).
Inserting this expression for nA® and expression for A¢ given by Equation
7.25 in the first of Equations 7.24, we obtain
AE = —-AAcos D +nAAsInD,

or
& —x= AAcos D-nAAsInD.

As (&-x) 1s of order AA, we can write this last equation with sufficient
accuracy. as

§—x = AAcos D - y(AAsin D) } (7.26)

n -y = AD+ x(AAsin D)
These formulas have the linear forms:
E—Xx= b ,y+c,,
n-y=d,x +f,.



72

€ axis

Figure 7.6 The stellar images due to refraction [33].

7.6.3 Error of Tilt

This error is due to the non-perpendicularity of the optical axis to the plane of
the plate [36]. If i is the angle between the optical axis and normal to the plate, the
expressions for & - X, n - y are of the form

& —x = tan i(px? + gxy) ,
n-y = tani(pxy +ay®).
As the angle i is in practice only a few minutes of arc and as the squares and
products of x and y only are involve, the correction for tilt can generally be neglected.
The total effect of the wvarious errors considered here is to give the
displacements (&¢- x) and (n - y) In terms of essentially linear expressions; we can
thus write the general formulas

E—X-=ax +by +c (7.27)
n-y=0dx +ey +f '

in which a, b, ..., f are small quantities depending on the small errors involved.

7.7 Refraction

We now investigate the displacements of the stellar images due only to
refraction. In Figure 7.6, the tangent plane to the celestial sphere at A is drawn as in
Figure 7.2. Z is the zenith and W is projection on the tangent plane; let the
coordinates of W be X, Y. Owing to refraction, a star S is seen at S’, the displacement
SS’ being along the great circle arc joining S to Z. We have[23]

SS' =k tan ZS, (7.28)

in which k is expressed in circular measure and ZS is written, without sensible loss of
accuracy, in place of the observed zenith distance ZS'.
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The great circle ZS'S projects into the straight line WT'T on the tangent
plane, T and T’ being the projections of S and S’ respectively. Let &, n be the

coordinates of T and x, y the coordinates of T".

If ¢, n and x, y are expressed in terms of AC as unit of length, these
quantities are the standard coordinates of the star and the measured coordinates of its
image on the plate respectively. Since the region to be photographed is generally no
more than 2°x2°, the different points on that part of the spherical surface concerned
are actually very close to the corresponding projected points on the tangent plane; we
accordingly assume that SS’ = TT'. From Equation 7.28 we have

TT'=ktan ZS. (7.29)
Since T, T' and W are collinear, we have
s Al =T Al
Il T™W J b T™W

and writing Ag for (& - X) and An for (n - y) we obtain

L —%m zs, (7.30)

- —Wtan zs. (7.31)

We remind the reader that the different coordinates ¢, n, X, y, X, Y are all
supposed to be expressed in terms of AC as the unit of length. In particular, ¢ and n
will thus be small quantities and in the sequel we shall neglect the much smaller
quantities &2, &y, n° and higher power and products of ¢ and n. Now from the
plane triangle TAW, we have

TW2 = AT? + AW? — 2AT- AWcos TAW,
so that
(X=8)2+(Y-1)?%=(E% +1°) + (X% + Y?) —2AT- AWcos TAW,
which gives us
AT “AWcos TAW = X +Yn . (7.32)

From the spherical triangle ZAS, we have by the cosine-formula

cos ZS = cos AScos AZ+sin ASsin AZcos ZAS
: AC. AC AT' AW

=—+.-——+—-——C0S ZAS.
CT CW CT CWwW

Since TAW defines the spherical angle ZAS, we have from Equation 7.32,
putting AC=1,
1+ X+ Y
CT-CW

cos ZS =
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But, when we neglect &2 and n?,

CT? =1+&% +n?
=1.
Hence

cos ZS = w (7.33)
Cw

from which

sin? ZS% CW2 — (1 + >2<2; +Yiy)?
CW
_(CW? =1) = 2(XE + Yi)
- CWA
AW - 2(XE + Yi)
7 CW2 '

Hence, using the binomial theorem, and neglecting &2, etc., we obtain

oo CAW( Xe+Yh
stS_CW(l T J (7.34)

From Equations 7.33 and 7.34,

X+ Y
N
tan ZS = AW : (7.35)

1+ X+ Y

Now
TW? = (X-8)% +(Y-n)?
=X+ Y2 -2(XE+ Yn)
= AW —2(XE+ V7)) .
So that

P, X+ 7
T™W = AW 1 A [ j (7.36)

Hence from Equations 7.35 and 7.36,

tan ZS= TW@ + X + Y) *
= TW@IL-XE - Yn) .

We thus obtain from Equation 7.30,
A& = —K(X-E(1-X - Yh),
or
AE = —kX+ k{1 + X?)E + XV}, (7.37)
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Since (&- x) and k (expressed in circular measure) are both small, we can
write x and y for ¢ and n respectively on the right hand side of Equation 7.37
without introducing any appreciable error. Write (&- x) for Ag ; then Equation 7.37
gives us

AE = & — X = KX+ k{1 + X2)x + XYy, (7.38)
Similarly, we obtain
An=n-y = —kY+k{1+ Y?)y + XY¥. (7.39)

The displacements due to refraction for the center of the plate are —-kX and -
kY, and these quantities, since they appear in the values of (&- x) and (n - y) for all
the images on the plate, may be supposed to be incorporated in the undetermined
constants ¢ and f of Equations 7.27. When -kX and -kY are omitted from Equations
7.38 and 7.39 the remaining terms express the values of (&- x) and (n - y) for the

differential refraction; these equations are then of the linear form
E—X=ax +by, (7.40)
n-y=dx+ey, (7.41)

in which, for example, a = k(1 + X%).

7.8 Aberration

The investigation of the effect of aberration on the standard coordinates of a
star is very similar to that the previous section. Let F be the position on the celestial
sphere towards which the earth is moving at the time of the observation, the position
of a star is displaced from its true position S to a position S’ on the great circle arc SF,
S’ being nearer to F than S. The displacement SS’ is given by

SS' =«sinFS, (7.42)

where « is the aberration constant whose value in circular measured is 20.4 sin 1”.
Confining ourselves to the effects of aberration only, we write, as before, ¢ and n for

the standard coordinates of a star and x and y for the coordinates of its image on the
photographic plate. F is, of course, a definite point on the celestial sphere; we shall
suppose that its projection on. the tangent plane is Wy, with coordinates U and V. We
shall also suppose that F, U and V correspond simply to the time of the middle of the
exposure. Following the procedure of the previous section, we have the formula
corresponding to Equations 7.30 and 7.31,

AE = —%sin FS, (7.43)
An= —K(\T/—_”)sin Fs, (7.44)

1

and from Equations 7.34 and 7.36,

o AW (L UE+ W
smFS_C\M (1 AV J (7.45)
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TW, = AV\{(l - Ui&fwj,
so that
sinFS _ L.
AW CW
Now

CW2 =1+ U + V2,
We accordingly obtain

kU kE

AE.!:_ 1 gt 1/ !
A+ + V)72 L+ 2 + VA%

(7.46)

- KV ~ K1
A+W +V3)7 1+ + V3%

An = (7.47)
As in the previous section, we can write x for ¢ and y for n without any

sensible loss of accuracy on the right hand sides of Equations 7.46 and 7.47; also we
can omit the constant terms (independent of & and n ) on the right of these equations.

We then obtain the expressions for differential aberration in the form
E—X=a;X, (7.48)

n-y=dy, (7.49)

in which a; and d; are small (they have as a common factor 20.1 sin 1", which is of
the order 10™). Again it is unnecessary, as a rule, to calculate the values of a; and d;
from their theoretical expressions.

7.9 The General Relations between Standard Coordinates and
Measured Coordinates

From the previous three sections we have seen that refraction, aberration and
the instrumental errors taken separately produce in each coordinate a displacement of
image of a star on the plate ‘from the position corresponding to the standard
coordinates of the star, and that this displacement is given, generally with sufficient
accuracy, as a linear expression in the coordinates. If we combine all the various
effects we clearly obtain linear formula for (& - x)and (n - y), which we can write in

the general forms
E-x=ax +hy+c, (7.50)
n-y=dx +ey +f, (7.51)

where &, n are the standard coordinates of the star and X, y are the measured

coordinates of its image on the photographic plate. In these equations a, b, etc. are
small and dependent, in a composite way, on the instrumental errors, on refraction and
on aberration.
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Thus in general x differs from ¢ by a small quantity and we can write the
equations, without loss of accuracy, in an alternative form, namely,

E-x=a+bn+c, (7.52)

n-y=dé+en+f, (7.53)

in which the quantities a, b, etc. are small. These quantities are called the plate
constants.

7.10 The Method of Dependeces

The method of dependences was first developed by F. Schlesinger in 1911
[37] in connection with the determination of stellar parallaxes and was subsequently
applied to the measurement of the positions of asteroids and comets from photographs
[38,39,40].

In the previous section we obtained linear formulas connecting the standard
coordinates of a star, or other object, in terms of the measured coordinates and the
“plate constants” a, b, etc. To evaluate the plate constants, we make use of at least
three comparison stars. In the astrographic problem, for example, if we have several
plates giving the position of a planet, the plate constants have to be determined from
each plate and this involves a large amount of numerical work. Consider a series of
plates with the same plate-center and in which the positions of the planet differ little
from one plate to another. The same comparison stars can be used for each plate and
instead of computing the plate constants for each plate we calculate certain quantities
which depend on the comparison stars selected and on one position of the planet;
these gquantities, called dependences, are thus independent of the particular plate under
investigation. The position of the planet is then expressed in terms of the dependences
and certain measured quantities.

7.10.1 The Astrographic Problem: 3 Comparison Stars

In this section we shall suppose that we employ three comparison stars. For a
given plate, the measured and standard coordinates of the comparison stars are given
by Equations 7.52 and 7.53. We consider the measures in x only - the procedure for
measures in y is similar. For three comparison stars, refer to equatorial coordinate
system:

o, =X, =aq; +bd, +c, (7.54)
0, — X, =aa, +hd, + ¢, (7.55)
03 =Xy =aoa, +bd;+c, (7.56)
and for the planet
a—X=ao+hd+c. (7.57)

If (o, 8,) are the standard coordinates of the planet for one of the plates, we
shall refer to it as the “selected plate”, we can write Equation 7.57 as

a—X=aa, +hd, +c+ala—oay) +b(d-35,). (7.58)

We are assuming for all the plates concerned that (a- e,) and (8- 5,) are
small quantities. Also, the constants a and b, which involve respectively the scale-
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correction and the orientation of the plate, are to be regarded as small quantities;
accordingly, we neglect a(a—0a,) and b(s -5,) in Equation 7.58 which then becomes

a—X=aa, +hd, +cC. (7.59)

It is to be remembered that, in Equations 7.54, 7.55, 7.56 and 7.59, X1, X2, X3
and x are measured quantities obtained with all necessary accuracy. The standard
coordinates (a,, &,) etc. of the comparison stars are supposed to be known. We can
then, if we please, solve Equations 7.54, 7.55 and 7.56 in order to obtain a, b and c
then substitute their values in Equation 7.59. Suppose for the moment that we know
the values of a, andé,. We then derive from Equation 7.59 the value of o for the
plate concerned. But this procedure is equivalent to the elimination of a, b and ¢
between the four Equations 7.54, 7.55, 7.56 and 7.59, and we can effect this
elimination as follows.

Multiply Equations 7.54, 7.55, 7.56 and 7.59 by D;, D, D3 and -1
respectively and add. \We obtain

Dy(a; — %) +Dy(a; = X,) +Dj(a; —X3) — (o= X)
=a[D;o; +D,a, + Dya; —a,]

(7.60)
+b[D,5, +D,8, +D38, — 5]
+¢[D; +D, +Dg —1].
The elimination of a, b and c is effected if
D,a; +D,a, + D0, = 0y, (7.61)
D,8, + D8, + D385 = 5,, (7.62)
D,+D, +D; =1, (7.63)

and these are three equations from which Dy, D, and D3 can be obtained. The factors
D;, D, and D3 are called the dependences. We then have from Equation 7.60

a =X =Di(a; = X;) +Dy(a; —X;) +D3(as —X3) (7.64)
from which a can be determined, all the other quantities being now supposed known.

Now (a; —x;), (e, —x,) and (a; —x3) are all small quantities and it will thus
be sufficiently accurate to determine D, D, and. Ds-if we substitute in Equations 7.61
and 7.62 the measured coordinates of the comparison stars and planet for the selected
plate. Denoting these by (X1, Y1), (X2, Y2), (X3, Y3) and (Xo, Yo) respectively, the
equations to determine D1, D, and D3 become

D, X, +D;X, + DX, = X, , (7.65)
DY, +D,Y, +D3Y; =Yg, (7.66)
D, +D, +D; =1, (7.67)
from which, solving in determinant form, we have for D,

b, __ 1 (7.68)
XO XZ XS Xl XZ X3
Y0 Y2 Y3 Yl YZ Y3
1 1 1 1 1
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Figure 7.7 Graphical evaluation of dependences for three reference stars [40].

In Figure 7.7, let S3, S; and Sz be the positions on the selected plate of the
images of the comparison stars, and A the position of the image of the planet. Then
the determinant under Dy in Equation 7.68 is simply twice the algebraic measure of
the area of the triangle AoS;S; and second determinant in Equation 7.68 is twice the
area of the triangle S;S,S3;. We obtain similar results for D, and for D3 and we then
have, as the solutions of Equations 7.65, 7.66 and 7.67,

D77 D/ B, 1
AoS:Ss ASsSi ASiS;  S.S,S;

Let the straight lines through Ao and the vertices of the triangle cut the sides in
P, P2 and P3. Then

(7.69)

AgS,S4 _ APy .
S15,9; SR
Hence
D1=AOP1 ,D2=A0P2 andD3=1—D1—Dz- (770)
SlPl SZPZ

The values of Dy, D, and D3 can be readily obtained, with sufficient accuracy,
by plotting the positions of the comparison stars and planet on squared paper, from
the measured coordinates of the selected plate. It can be shown that the results of
applying the method are most accurate when A, in Figure 7.7 coincides with the
centroid of the triangles S;1S,Ss.
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7.10.2 The Astrographic Problem : n Comparison Stars

We suppose now that the number, n, of comparison stars is greater than 3. We
now have n equations of the form Equations 7.54, 7.55 and 7.56 to give the values of
the plate constants a, b and c. They are

ao, +bd; +c =0, — X,
ao, +bd, +c=a, - X, . (7.71)

aa, +bd, +c=a, - X,

The values of a, b and ¢ are to be obtained by the method of least squares.
Multiply each by the corresponding coefficient of a and, adding, we obtain

azn: o + bzn: a;d; + Czn: o = Zn:ai(ai - Xj) . (7.72)
=) 1 =] =

Similarly, by multiplying each equation of 7.71 by the corresponding
coefficient of b, and adding, we obtain

ay ad; +bY 87 +6> 8, = 5(0;-X). (7.73)
i=1 i=1 =8 i=1
Also, adding the n equations of 7.71, we have
ay @ +bY 8, +nc=>" (o -X,). (7.74)
i=1 i=1 i=1

As in Equation 7.59, the equation for the planet is
aa, +bny +c=a-x, (7.75)
in which, as before, a, and n, denote the standard coordinates of the planet for a
selected plate.

To eliminate @, b and ¢ from the four Equations 7.72 through 7.75 multiply
these in order by P, Q, R and -1 and add. Then if P, Q and R are given by

Pzn: oZ+ an: 0,8, + RZH: o =0g, (7.76)
i=1 i=1 i=1

piai5i+Qisf+Ri6i=50, (7.77)
=1 i=1 i=1

Pzn:ai+QZn:8i+Rn=1, (7.78)
i=1 i=1

we have
a—X= Pzai(ai - Xp) + sti(ai —Xp) + RZ(ai - X)),
i=1 i=1 i=1
which can be written

a—XZi(Pai +Qd; +R)(a; — X;) .
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Set
D, =Pa, +Q3, +R. (7.79)
Then
a—X= Z:Di(oti - X;) . (7.80)
i=1

In this last equation, D; is a function of the equatorial coordinates of the n
comparison stars and of a, and n,. Since (a; —x;) is a small quantity for any one of
the stars it will be sufficient to regard D; as a function of the measured coordinates
X1,..., Yn» Xo, Yo for the selected plate; as before, we denote these coordinates by X;,
Yi, Xo and Yy. Thus P, Q and R are now to be determined from Equations 7.76, 7.77
and 7.78 in which we replace «; etc. by X; etc. Hence

Pzn: X +Qi XY, +Ri X =X, , (7.81)
= i=1 (=8
Pzn:XiYi+QiYiz+Rn Yo (7.82)
i=1 i=1 i=1
Pixi+an:\(i+Rn:1. (7.83)
i=1 i=E

We can simplify the calculation of P, Q, and R by supposing that for the
selected plate the values of X, Yj, X and Y, are measured from the centroid of the n
comparison stars. We then have

n n
> X =31 -0,
=l i~y

and P, Q and R are now to be determined from

PY X + QY XY =X, (7.:84)
= i=1
PY XY +Q> Y= Y, (7.85)
i=1 i=1
Rn =1, (7.86)
Then
D, =PX +QY, +R. (7.87)

The quantities D; are the dependences. The practical procedure is first to
calculate P, Q and R by means of Equations 7.84, 7.85 and 7.86 and then to form the
dependence D; for each star by means of Equation 7.70. As in the previous section,

ioi -1, (7.88)

as we can see from Equations 7.87 and 7.86, remembering that

D X =>Y,=0.
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When the dependences have been calculated the value of a for the planet can
be then found from Equation 7.80 for any number of plates.
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CHAPTER 8
THE METHOD OF GAUSS

8.1 Determination of Orbit

In Chapter five we have seen how, once the elements of an orbit are known,
the geocentric position on the celestial sphere can be calculated for any time. In this
chapter we shall be concerned with the reverse situation, that of finding the elements
of an orbit from observations.

The method of Gauss has features which permit the solution to be brought to a
higher state of refinement. The excellent utility of this method has encouraged
successive researchers to develop increasingly more elegant and powerful variations
of the original procedure [2,9]. The approach described in this chapter is one of the
simpler versions of the Gaussian method [27].

Orbit determination by the method of Gauss requires exactly three sets of
position data [2,9,14,41,42,43,44]. These need not be separated by equal intervals of
time. The Guassian method is applicable to orbits of any form, but difficulties may
arise when it is used to determine very eccentric orbit because the influence of the
radial velocity is neglected in the first approximation.

8.2 Solution by f and g Expressions

Assume that from the available data three sets have been chosen and reduced
to the following:

{t:LiR}
where i = 1, 2, 3. If we let t, be the epoch time, then the observed times can be
converted to the modified time intervals
T, =K(t; —t1,)
T3 =K(t; —t,).

Now, the closed or universal f and g expressions which were developed for the
solution of the two-body equation-of motion,
ur
r_3

-

may be employed to describe the dynamic constraints at =, and t, as follows:
n="fr+ 91?2 (8.1)
T, = 5, +gaf, . (8.2)

Furthermore, the geometric constraint of fundamental vector triangle must
hold at all three times. Thus,

piL' _F—{i’ (8.3)

=}
Il

fori=1,2, 3.
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Multiplying Equation 8.1 by gs and Equation 8.2 by g; and subtracting, we
eliminate r, to obtain

0sh — 0.1 = (f,0; — 59,)7;.

Dividing each term by the coefficient of r, and rearranging we can write

Cifp +C,fh +C41 =0, (8.4)
where
c,=+4- 3
f9; — 30,
03 = _g—l.
fig; — 0,

Equation 8.4 reflects the fact that two-body motion requires the three radius
vector to lie in the same plane. Substituting Equation 8.3 for each of the r,

c,psL, +¢€,p,L, +cp,Ls = ¢,R; +C,R, +C,4R;. (8.6)

The solution of equation for the unknown p; is the key to the method of Gauss [2,9].

8.3 The Scalar Equations for the Ranges

We solve Equation 8.6 for the three p; by taking appropriate cross and dot
products with the vectors L;. When this is accomplished the result is

_ Cl(ﬁl X E2) 'Ea + Cz(ﬁz X Ez) : [3 + Cg(ﬁs X [2) : Ea (8.7)
1= L .
(L xLy) - Ly
¢, (L, xR;) -L; +¢,(L, xR,) L, +Ca(L;, xR,) -L
p2 N l( 1 1) 3 2(_1 _2) _3 3( s 3) 3 (88)
C,(L xLy) - Lg
_ C1E1 (Ez Xﬁl) +02E1 (Ez Xﬁz) +CSE1 (Ez Xﬁs) (8.9)
3 = e . .
Caly - (L, xLy)
for convenience, we shall write these equations in the following simpler form:
¢,D;, +¢,D;, +C,D
pl — 111 2¥12 3¥13 (810)
¢,D,
¢,D,, +¢,D,, +¢.D
p2 i Topal 222 323 (8.11)
¢,Dy
¢,D,, +C,D,, +C,D
p3 — 131 232 333 , (812)
3D
where, for j =1, 2, 3.
D,; = (ﬁj XEz) 'La
D,; = (L xR)) - Ly (8.13)
D3J :[1 (EZ Xﬁj),
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and
D, = (L, xL,) Ly =L, -(L, xL,). (8.14)

8.4 The First Approximation

Equations 8.10, 8.11, and 8.12 were developed using no assumptions beyond
that of two-body motion. Unfortunately, these equations cannot be used to compute
the p; until the quantities c; and cs are known. These coefficients were defined in
Equation 8.5. Thus, there is a problem because c; and c3 are expressed in terms of the
fi and @;, which, in turn, require knowledge of the vector orbital elements. The
solution to this dilemma is to assume approximate values for the f and g expressions
which can be improved once initial values for the vector elements have been
computed.

Consider the first few terms of the f and g series developed in Section 4.4

1

f :1—Eu2ri2 +%uzzzr-

(8.15)

where i =1, 2, 3, and

o
P
k|

r

If the f; and g; series are truncated to eliminate all terms beyond the second, the
resulting approximations do not require the vector elements. Thus, we make the
following simplifying assumptions:

f; :1—£u2ri2
- ! (8.16)
gi=1 _EUzTi3 ,

where the contributions of the vectors have been ignored-so-the only unknown is the
scalar uy. Using these approximations, it is possible to form

fg; —f,0, & 1 —u?zrg, (8.17)

where all orders above <3 have been neglected and t, —t, has been replaced by = .

Therefore, substituting Equations 8.16 and 8.17 into the expressions for ¢; and
Cs3, We obtain

T3 _UzTg/G

L x T —u213/6

T +uztf/6
? r—u213/6 '
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Carrying out the division and neglecting all terms with order greater than
three, the result is

T u,t
C, m+—2 4+ 22 (1% — 1))
T 61
T u,t
Cy ~ -1 421 (’EZ —le).
61

(8.18)

T

For convenience, we rewrite Equations 8.18 as follows:

(8.19)
HB4

(8.20)

8.5 The Scalar Equations Relating p and r at Epoch

Equation 8.11 can now be solved for the range p, by letting ¢, = -1 and

replacing c; and c3 by Equations 8.19. Making these substitutions and collecting
terms, we can obtain the following expression:

B
p2=A+%;, (8.21)

2
where

A:_A1D21 — Dy + AsDyg
D
i (8.22)
B _ = BiDx +BsDy
Dy

A second equation containing the unknowns p, and r, can be derived by
taking the dot product of Equation 8.3 with itself when i = 2. Thus,

[P =(p2E2 _F_Qz)‘(pziz _ﬁz)-

Making use of the fact that L =1, since L, is a unit vector, the above equation
can be reduced to

r; =p3 +p,E+F, (8.23)
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where
EZ_Z(EZ IiZ) (8 24)
F=R3.

We now have two independent scalar equations relating p, and r»

8.6 The Scalar Equation of Lagrange

Substituting Equation 8.21 for the range p, in Equation 8.23, we obtain the
equation of Lagrange, that is

ry +ary +br} +c=0, (8.25)
where

a=-(A* + AE+F)
b = —(2AB+ BE) (8.26)
c =B,

If we let the symbol X represent the unknown value of r, which will satisfy
Equation 8.25, we can write

f(x) =x® +ax® +bx® +c.
Differentiating f(x) with respect to x produces
f(x) = 8x" +6ax> +3bx?.

When the above equations are solved for x by the Newton-Raphson method,
the result will be the value of r, needed to complete Gauss’ method.

8.7 The Vector Orbital Elements

8.7.1 Initial Position Vector

The f; and g; can now be computed by Equations 8.16 using the value of r;,
found from Equation 8.25. Thus,

, (8.27)

where i =1, 3,
and

u, = (8.28)
I
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Employing these values of f; and g;, the quantities c;, ¢, and c3 are obtained
from Equations 8.5:

€1 =73 gSf

193 =130
c,=-1 (8.29)
Cs = T 91f .

193 130,

Finally, substituting c;, c,, and c3 into

A Dy +¢,Dp, +C3Dg4

Py ¢.D,
¢,D,, +¢,D,, +c,D

p2 121 A 323 (830)

¢,Do

D, = ;D35 +C5D5 +€45Dy
: 3Dy
produces the three p; which can be used in the general geometric constraint,

h= pi[i &\ ﬁw (8.31)

to determine the vector element r, along with the other two radius vectors.

8.7.2 Initial Velocity Vector

We now have more than enough information to determine the vector element
r,. Consider again the dynamic constraints at =, and t:

n="fn +0h
r; =30, + 9,0, .

Multiplying the first equation by f3 and the second equation by f;, we subtract
and eliminate T, to obtain

fn —fir; =—(f,0; - f3g1)i}2'

Dividing each term by the coefficient of r, and rearranging, we can write

r, =d,r +dsr,, (8.32)
where
_ 1:3
 =———3%
f1g3 - f391 (8 33)
_ fl .
’ f,9; — 1,0, .

Therefore, since approximate values for f; and g;, are known, d; and ds can be
calculated, and Equation 8.32 yields the velocity T, .
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In the case of heliocentric orbits, the correction for light-time should be
introduced before going on to refine the initial approximations of r, and r,. Thus, for
all three observation times t;, the corrected values are

- (8.34)

where
c =173.1446 AU/day .

Consequently, the modified time intervals should also be computed anew from
T, = k(tcl » tcz)
T, =kK(tcg—te) (8.35)

T=T3 = Tq"

8.7.3 Refinement of the Elements

The vector orbital elements may be refined by using the initial values of r,

and r, to recompute the f; and g; from their universal formulations. When this has

been accomplished, improved values of c; and d; can be determined. The results
permit better values of the p; to be found from

_ CyDyy + 6,0y +¢5Dy,

p
. ¢,Dy
_ Dy +¢yDy +C3Dy
? ¢,D, ,
D = ;D3 +C,D5; +C3D;;
=

¢3D,
which may then be used with the geometric constraint,
r = piLi - ﬁi’

to improve the element r, along with the other two position vectors. Finally, the new
di and r;j are used in

L, =df +d;h,

to find an improved r,. The whole process is repeated until the magnitudes of the p;

stop changing and converge to stable values. -~ When this occurs, we have the final
vector element set, and the preliminary orbit is determined.

The orbital elements derived from the method of Gauss will represent all three
observations satisfactorily because the corresponding L; were used to determine the T,
when the geometric constraint was applied. Therefore, the accuracy of the elements
must be tested by comparing computed positions with observed positions not used in
the solution.



CHAPTER 9
WORKING, RESULTS AND DISCUSSION

This chapter presents the results of applying the Gauss’s method to calculate
the position and velocity vector elements at a given epoch time of Jupiter and Mars.
To apply the technique of astronomical photography, we obtain the observational data
needed to calculate the orbit of our planets. Consequently, in the last portion, the
results are discussed and compared with the results from the astronomical almanac
[45,46].

9.1 Working

From the fact that the orbit of celestial body around the Sun which has a conic
section (without regarding the perturbation) we can get the classical elements which
characterize the solution of the two-body problem [27]. It is sufficiently to determine
the orbit of celestial body. The observation from the Earth can be done in many ways
such as the analysis by radio wave or photography which used in this thesis.

Normally, the method of observation (after usually process by the reduction
method in Chapter 7) provides the angle only data [9] which is sufficient for the
determination of orbit by Gauss method. The observed data containing the time of
observations, right ascension and declination in equatorial coordinate system.

The celestial bodies such as Jupiter and Mars are observed in this thesis and
the instruments have use consist of

Nikon FM single lens reflex (SLR) camera
Standard lens Nikor 50 mm F 1.4

Tripod (Slik 6000)

Daylight films (ISO 400, 24 x 36 mm)
Star chart 1999 [47-52]

The observable location is Salaya, where is the subdivision of a Nakorn
pathom. Salaya district performing the observation has a clear sky, no cloud or dust
making it preferable to Bangkok in which the artificial light obscure the heavenly
objects. Salaya can be easily travel from Bangkok. We facilitated to take photographs
and sometimes we need to take the photographs in late at night. So we have to wait
until the celestial body appear in the appropriate position (the zenith point or the
region near the declination at zero degree). At the position, the objects appear at the
east and move along the ecliptic line (depend on the inclination of orbital plane of
observable object) to the west, following the Earth’s rotation that rotate from west to
east. Example, to take photographs of Mars in January 17, 1999 has, approximately
2:35a.m.

The starting day of the observation was January 16, 1999. At 7:45 p.m. on the
west near the horizon we took the photographs of Jupiter as shown in Figure 9.1 with
place the planets (Jupiter and Mars) at the center of films. In the method, we need to
include the stars that we know their positions in equatorial coordinate system (right
ascension and declination) as much as possible. Then it was selected to be the
reference stars.

SAEIE A
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Figure 9.2 The photograph of Mars, September 8, 1999.
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For convenience, the positions of both of the stars and the planets are obtained
by opening the aperture in the lens as widest at f-stop 1.4 [53,54] and setting the
shutter speed about 5 seconds (if we set the shutter speed longer than 5 seconds for
the standard lens 50 mm., the object would appear as a line because the Earth rotates
around itself).

In Figure 9.1 the picture has been color inverted. The black spot at the center
is Jupiter and the reference stars have less brightness. The next day we took
photographs of Mars at 2:35 a.m. Unfortunately, there is an artificial light from
houses. This light reduced the brightness of the stars. So we choose the photograph
that is taken on September 8, 1999 in Figure 9.2. The camera setting detail for the
Mars is the same as for Jupiter. Later times, to obtain the best photographs we have to
wait until the object reached the zenith point (less artificial light.)

We took the Mars and Jupiter in the next week as well. We choose the period
of observation to be about one week because we want to have the pictures of the
planets which relate to the reference stars. Yet sometimes, the observation of the
celestial body can’t be taken the photograph because of many reasons such as the
objects appears near the moon so the moon’s light is brighter than the reference stars
or the objects appears at during the day. These problems occur in the observation of
Jupiter that we can’t take the photograph from February to August in 1999. The data
of Mars and Jupiter are shown in the tables 9.1 through 9.4

From the photographs we can see the name of the reference stars, right
ascension and declination by comparing from the star chart [45-52]. It is named after
the constellation in Greek era [55] as shown in Figures 9.1 and 9.2.

After we know the right ascension and declination of the stars, the next step is
to obtain the right ascension and declination of Jupiter and Mars. This can be done by
the method of dependences. It can be derived into 2 types: 3 reference stars and 5
reference stars. Because of the limitation in our observation (too little stars), the latter
type is done in a less frequency. However we try to use both method by using the
same data.

9.1.1 Method of Dependency: 3 Reference Stars.

From the photographs we sketched them on the graphing paper with resolution
1 mm. as shown in Figure 9.3. From the right ascension, declination of the stars and
other quantities in Figure 7.7 we can find the right ascension and declination of the
planets by using Equations 7.61, 7.62 and 7.63. The results are shown in tables 9.1
and 9.2 where X, Y, Z are the topocentric positions of the Sun:(from table in the
astronomical ~almanac  [45,46]) and: using Julian date to convenience for the
specification of time in Gauss’s method.



Figure 9.3 Sketching pictures (Jupiter and Mars) on the graphing paper.
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JUPITER

D/IMIY Time Julian Date Right Ascension Declination X Y Z
16/1/1999 19:45 2451195.322917 18.254915 -3.121560 0.4350922 -0.8094893 -0.3509578
23/1/1999 19:00 2451202.291667 17.616314 -2.535857 0.5410324 -0.7544064 -0.3270807
30/1/1999 19:40 2451209.319444 12.847877 -2.126235 0.6395634 -0.6873894 -0.2980237

8/9/1999 23:30 2451430.479167 2.204782 11.451300 -0.9769745 0.2255460 0.0977893
19/9/1999 0:30 2451440.520833 2.165645 11.319543 -1.0018289 0.0698396 0.0302830
5/10/1999 0:05 2451456.503472 2.083568 10.830186 -0.9807426 -0.1801977 -0.0781227

19/10/1999 22:52 2451471.452778 1.917320 10.311054 -0.8943174 -0.4022344 -0.1743884
27/10/1999 21:31 2451479.396528 1.863612 9.962421 -0.8235861 -0.5101480 -0.2211762
17/11/1999 1:05 2451499.545139 1.732379 9.058393 -0.5778776 -0.7361569 -0.3191625
1/12/1999 18:50 2451514.284722 1.620075 8.641591 -0.3511939 -0.8453251 -0.3664889
7/12/1999 19:00 2451520.291667 1.636643 8.632747 -0.2511452 -0.8739995 -0.3789209
16/12/1999 21:57 2451529.414583 1.606796 8.590354 -0.0942162 -0.8987501 -0.3896568

23/12/1999 18:53 2451536.286806 1.595872 8.667984 0.0257542 -0.9020897 -0.3911031

4/1/2000 19:10 2451548.298611 1.637291 8.703891 0.2335655 -0.8763429 -0.3799378
12/1/2000 19:15 2451556.302083 1.657360 8.413147 0.3668161 -0.8372123 -0.3629776
26/1/2000 19:30 2451570.312500 1.738010 9.432903 0.5808886 -0.7293575 -0.3162115

1/2/2000 19:20 2451576.305556 1.817611 9.934944 0.6624552 -0.6692618 -0.2901584

8/2/2000 20:15 2451583.343750 1.861046 10.117069 0.7488010 -0.5892035 -0.2554534
13/3/2000 19:15 2451617.302083 2:233649 12.357944 0.9878263 -0.1028619 -0.0445986

Table 9.1 The observational data of Jupiter from the method of dependences: 3 - reference stars.
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MARS

D/IMIY Time Julian Date Right Ascension Declination X Y z
17/1/1999 2:35 2451195.607639 13.918710 -8.3835228 0.4395625 -0.8074811 -0.3500872
24/1/1999 3:15 2451202.635417 14.266305 -9.275035 0.5460620 -0.7513933 -0.3257744
31/1/1999 2:30 2451209.604166 14.028503 -10.056338 0.6433622 -0.6844542 -0.2967509

7/2/1999 2:50 2451216.618056 14.278954 -10.919104 0.7315683 -0.6067593 -0.2630618
21/2/1999 2:30 2451230.604167 14.210536 -11.779351 0.8733278 -0.4255904 -0.1845210
28/2/1999 2:00 2451237.583333 14.390639 -12.510615 0.9249294 -0.3249595 -0.1408895

8/3/1999 0:30 2451245.520833 15.024819 -13.5626650 0.9669905 -0.2047959 -0.0887880
14/3/1999 2:10 2451251.590278 14.993534 -13.535273 0.9867765 -0.1101129 -0.0477401
25/3/1999 1:30 2451262.562500 15.085812 -13.593778 0.9946700 0.0634662 0.0275135
12/4/1999 0:10 2451280.506944 14.625239 -12.601398 0.9313965 0.3395688 0.1472210
21/4/1999 23:00 2451290.458333 14.578763 -11.906317 0.8577205 0.4805546 0.2083452
25/4/1999 23:00 2451294.458333 14.445790 -11.595872 0.8209863 0.5335016 0.2313033

2/5/1999 22:15 2451301.427083 13.875640 -10.401241 0.7480403 0.6196814 0.2686688
16/5/1999 0:00 2451314.500000 14.040348 -10.182779 0.5838654 0.7572277 0.3282973
24/5/1999 19:45 2451323.322917 13.516521 -9:422362 0.4563260 0.8294336 0.3596077
19/6/1999 19:50 2451349.326389 13.547916 -10.587300 0.0335536 0.9317591 0.4039711

Table 9.2 The observational data of Mars from the method of dependences: 3 - reference stars.
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MARS

D/IMIY Time Julian date Right Ascension Declination X Y 4

21/6/1999 20:45 2451351.364583 13.666162 -10.855177 -0.0260454 0.9323888 0.4042451
2/7/1999 20:15 2451362.343750 13.875643 -11.599048 -0.1856244 0.9170884 0.3976083
8/7/1999 19:45 2451368.322917 14.138485 -13.144876 -0.2839913 0.8956636 0.3883172
21/8/1999 20:10 2451412.340278 15.447101 -20.264874 -0.8610417 0.4871323 0.2112020
3/9/1999 20:45 2451425.364583 16.251115 -22.240242 -0.9532276 0.3025965 0.1311914
8/9/1999 20:00 2451430.333333 15.762411 -21.407613 -0.9763829 0.2277659 0.0987516
10/10/1999 19:00 2451462.291667 17.281906 -24.547597 -0.9543424 -0.2684323 -0.1163744
1/12/1999 18:55 2451514.288194 20.395553 -20.527726 -0.3511327 -0.8453463 -0.3664981

Table 2 (Continued) The observational data of Mars for three reference stars.
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(0,0)

Figure 9.4 The picture of Jupiter is extended by Adobe PhotoShop.

Figure 9.5 The coordinates of Adobe PhotoShop (X, y) and centriod (X, Y).




9.1.2 Method of Dependency: 5 Reference Stars.

After the photographs are scanned, to enlarge this picture and get the accurate
position, we use Adobe PhotoShop 6.0 to find the coordinates of the celestial bodies
relative to the origin of this program (X, y) as shown in Figure 9.4. We choose the
upper left corner as the origin of the coordinates, where +x axis is on the right and +y
axis is under the origin. According to the program, the coordinates of the planets and
the reference stars are shown as follows:

Jupiter 16/1/1999
Celestial Body Photographic Coordinates

Jupiter X =46.88 , y=28.23
o’ — Aquarius X=2256 , y=237.47
1 — Cetus X=26.86 , y=13.20
¢ — Aquarius X=46.76 , y=45.14
o — Pisces X =64.90 , y=9.99

0 — Pisces x=70.63 , y=27.18

Jupiter 8/9/1999
Celestial Body Photographic Coordinates
Jupiter X=46.76 , y=22.37
o — Triangulum X=6.39 , y=7.33
o — Aries x=20.18 , y=16.47
u — Cetus X=47.47, y=41.76
o — Cetus X=59.72 ,y=53.76
v — Pisces Xx=6329 ,y=715

Jupiter 19/9/1999

Celestial Body

Photographic Coordinates

Jupiter x=43.22 , y=2857
o — Triangulum x=133 , y=16.89

o — Aries x=15.61, y=25.31
u — Cetus Xx=44.23 , y=49.04
v — Pisces x=58.05, y=13.85

v — Cetus

x=60.30 , y=49.90




Jupiter 5/10/1999

Celestial Body

Photographic Coordinates

Jupiter

X=46.76 , y=22.37

o — Triangulum

X=639 , y=7.33

o — Aries x=20.18 , y=16.47
€ — Pisces X=4747, y=41.76
v — Pisces x=59.72 , y=53.76
v — Cetus Xx=63.29 , y=7.15

Jupiter 17/11/1999

Celestial Body

Photographic Coordinates

Jupiter x=7.01, y=454
o — Aries x=150, y=8.26
v — Aries x=3.01, y=6.57
o — Pisces x=4.17, y=4.08
¢ — Pisces Xx=6.53, y=051
o — Cetus Xx=12.76 , y=7.27

Jupiter 7/12/1999

Celestial Body

Photographic Coordinates

Jupiter X=7.84 6 y=523
o — Aries x=105,y=731
n — Pisces X=5.08 , y=827
d — Pisces x=8.87, y=5.23
o — Pisces x=9.80, y=8.27
0 — Cetus x=1510 , y=5.04

Jupiter 4/1/2000

Celestial Body

Photographic Coordinates

Jupiter x=40.77 , y=27.34
u — Cetus x=0.63 , y=25.76
o — Pisces X=26.60 , y=41.84
v — Aries x=29.37 , y=3.37

n — Pisces x=4221, y=11.85
d — Pisces x=68.01 , y=27.55
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Jupiter 1/2/2000

Celestial Body

Photographic Coordinates

Jupiter x=7.33, y=518
0 — Cetus x=0.23 , y=8.68
o — Cetus x=157 ,y=253
¢ — Pisces x=7.31 , y=9.69
x — Pisces Xx=1254 , y=7.83
o — Aries x=12.67 , y=2.28
Jupiter 8/2/2000
Celestial Body Photographic Coordinates
Jupiter x=795, y=519
v — Cetus x=4.08 , y=021
o — Pisces x=470 , y=451
n — Pisces x=10.48, y=6.53
B — Aries x=12.29, y=3.83
o — Aries x=13.19, y=241
Jupiter 13/3/2000
Celestial Body Photographic Coordinates
Jupiter X=758 , y=543
o — Cetus X=226,y=314
o — Pisces Xx=387,y=714
A — Cetus X=555, y=0.87
e — Aries x=10.71, y=0.37
B — Aries Xx=11.33, y=6.66
Mars 17/1/1999
Celestial Body Photographic Coordinates
Mars x=34.44 | y=38.55
T —Virgo x=8.45 , y=43.89
£ — Virgo x=18.71 , y=230.56
v — Virgo x=46.07 , y=15.97
89 — Virgo x=54.40 , y=51.82

v — Hydra

x=70.98 , y = 39.67
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Mars 14/3/1999

Celestial Body

Photographic Coordinates

Mars Xx=4240, y=26.95
B —Libra x=20.97, y=32.86
u — Virgo x=30.47, y=13.80
o’ — Libra Xx=42.13 , y=34.99
Kk — Virgo x=50.49 , y=11.46
7 — Hydra X=76.38 , y=39.74
Mars 25/3/1999
Celestial Body Photographic Coordinates
Mars Xx=8.55, y=5.29
B —Libra x=5.04 , y=6.62
u — Virgo X=6.27 , y=3.37
1—Virgo x=8.27,y=162
1— Libra x=8.28 , y=9.04
A —Virgo x=10.02, y=3.89
Mars 25/4/1999
Celestial Body Photographic Coordinates
Mars X=6.64 , y=5.89
u — Virgo x=2.80,y=8.04
¢ —Virgo x=418 , y=0.73
o — Virgo x=857,y=201
n — Hydra x=1245, y=8.66
y — Hydra x=13.36, y=3.96
Mars 24/5/1999
Celestial Body Photographic Coordinates
Mars x=761, y=516
¢ — Virgo Xx=4.28 , y=333
Kk — Virgo x=5.80, y=8.75
0 — Virgo x=738 ,y=220
o — Virgo Xx=857 ,y=474

vy — Hydra

x=13.27, y=6.82
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Mars 19/6/1999

Celestial Body

Photographic Coordinates

Mars X=779 , y=6.13
u — Virgo x=0.36 , y=5.19
o’ — Libra x=039 , y=9.76
£ — Virgo x=720,y=197
v — Virgo x=12.85, y=1.56
o — Corvus x=14.80, y=1.97
Mars 21/6/1999
Celestial Body Photographic Coordinates
Mars x=28.28 , y=5.89
n — Hydra x=231, y=10.12
Kk — Virgo x=519 , y=3.78
a — Virgo x=9.21, y=6.55
¢ — Virgo x=10.68, y=231
0 — Virgo x=11.82, y=5.40
Mars 2/7/1999
Celestial Body Photographic Coordinates
Mars x=4282 , y=30.95
o’ — Libra x=5.65 , y=2870
Kk — Virgo x=30.33 , y=22.06
1—Virgo x=31.69 , y=12.16
¢ — Virgo x=5834 ,y=7.89
0 — Virgo X=6794 , y=2357
Mars 8/7/1999
Celestial Body Photographic Coordinates
Mars X=7.36 , y=577
B —Libra x=0.25, y=0.53
o’ — Libra Xx=164 , y=4.32
n — Hydra x=9.00, y=20.28
a — Virgo x=10.36, y=6.53

¢ — Virgo

x=11.69, y=221
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Mars 8/9/1999
Celestial Body Photographic Coordinates
Mars x=4498 , y=30.70
g — Scorpius Xx=950 , y=3145
y. — Lupus X=29.53 , y=52.02
¢ — Ophiuchus x=46.47 , y=11.02
0 — Libra X=59.45, y=26.92
1— Libra X=67.44, y=49.61

The coordinates obtained by the program lead to the dependences D;. D; is
related to the centroid coordinates as in Equations 7.84 through 7.87. So we have to
transformed our data to the centroid (X, Y) as shown in Figure 9.5.

To define (., Ye) as the centroid coordinates relative to our origin (O). We use
the following equations:

D X —nx, =0
Zyi—nyc =0.

Where x; and y; are the coordinates of the stars (i) compare with the origin and
n is the number of the reference stars, in this case n = 5.

We can also transform the coordinates by the relation [33].
X=X—-X,
Y= Y—Ye-

Using Equations 7.84 through 7.87 we obtain the dependences of the reference
stars. These quantities lead to the right ascension and declination of Jupiter and Mars
as in Equation 7.80. We create the program using Turbo C++ version 3.0 to calculate
the right ascension and declination in both 3 and 5 reference stars (see Appendix C.2
and C.3). The numerical results are an observational data-and shown in tables 9.3 and
9.4.

The data are obtained from method of dependency in both- 3 and 5 reference
stars, we select only three data at each observed time to determine the orbit of Jupiter
and Mars by Gauss’s method [2,9].



JUPITER

D/IMIY Time Julian Date Right Ascension Declination X Y 4

16/1/1999 19:45 2451195.322917 23.695737 -3.285087 0.4350922 -0.8094893 -0.3509578
8/9/1999 23:30 2451430.479167 2.188110 11.594247 -0.9769745 0.2255460 0.0977893
19/9/1999 0:30 2451440.520833 2.149041 11.326239 -1.0018289 0.0698396 0.0302830
5/10/1999 0:05 2451456.503472 2.047980 10.757947 -0.9807426 -0.1801977 -0.0781227
17/11/1999 1:.05 2451499.545139 1.746747 7.687088 -0.5778776 -0.7361569 -0.3191625
7/12/1999 19:00 2451520.291667 1.603731 8.471869 -0.2511452 -0.8739995 -0.3789209
4/1/2000 19:10 2451548.298611 1.5697450 8.536461 0.2335655 -0.8763429 -0.3799378
1/2/2000 19:20 2451576.305556 1.768776 9.722489 0.6624552 -0.6692618 -0.2901584
8/2/2000 20:15 2451583.343750 1.821094 10.047594 0.7488010 -0.5892035 -0.2554534
13/3/2000 19:15 2451617.302083 2.207587 12.230821 0.9878263 -0.1028619 -0.0445986

Table 9.3 The observational data of Jupiter from the method of dependences: 5 - reference stars.

ol



MARS

D/IMIY Time Julian Date Right Ascension Declination X Y z
17/1/1999 2:35 2451195.607639 13.642020 -8.1586716|  0.4395625 -0.8074811 -0.3500872
31/1/1999 2:30 2451209.604 166 13.828924 -10.174488|  0.6433622 -0.6844542 -0.2967509
14/3/1999 2:10 2451251.590278 14.680361 -13.275144 0.9867765 -0.1101129 -0.0477401
25/4/1999 23:00 2451294.458333 14.126893 -11.376284|  0.8209863 0.5335016 0.2313033
24/5/1999 19:45 2451323.322917 13.517633 -9.273174|  0.4563260 0.8294336 0.3596077
19/6/1999 19:50 2451349.326389 13.580618 -10.272986|  0.0335536 0.9317591 0.4039711
21/6/1999 20:45 2451351.364583 13.614814 -10.848755| -0.0260454 0.9323888 0.4042451

2/7/1999 20:15 2451362.343750 13.794871 -11.936112| -0.1856244 0.9170884 0.3976083
8/7/1999 19:45 2451368.322917 14.117446 -10.766748| -0.2839913 0.8956636 0.3883172
8/9/1999 20:00 2451430.333333 16.111443 -22.066737| -0.9763829 0.2277659 0.0987516

Table 9.4 The observational data of Mars from the method of dependences: 5 - reference stars.

SolL
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9.2 Results

Method of Gauss

A method of Gauss is employed to obtain position and velocity (f,r) at the

epoch time of celestial body leading to six classical elements. We have written the

program for this purpose (see Appendix C.4 and C.5). There are 2 cases, Jupiter and
Mars, as below

We work in the units of solar days, in distance units of AU (the radius of
Earth’s orbit), and masses of a solar mass (M). Then astronomers like to use the
Gaussian gravitational constant k. In addition, We use mass units of 1 solar mass M.

k = 0.0172029895 M =1

The coordinates of three different planet measurements are the heliocentric

vectors 1, 2 and 3. We start with the right ascension and the declination measured here

on Earth. We use o for right ascension angle, and & for the declination. The data is
entered in decimal degrees, and converted into radians by the parameter Q1

L
= —= 1
Q 180

We use time units of Julian dates, and then multiply them by the Gaussian
gravitational constant k, to make the time come out in units of mean solar day.

Jupiter Mars
t; = 2451195.322917 t; = 2451195.607639
Jan. 16, 1999 7:45 p.m. Jan. 17,1999 2:35a.m.
t, = 2451440.520833 t; = 2451251.590278
Sep. 19,1999  0:30 a.m. Mar. 14,1999 2:10 a.m.
t; = 2451548.298611 t3 = 2451362.343750
Jan. 4, 2000 7:10 p.m. July 2,1999 8:15 p.m.
7y =Kty = ty)
T3 =K(t; —t3)
Ty =T3 —Ty.
Jupiter Mars
Right Ascension Declination Right Ascension Declination
a, =18. 254915 6, =-3.121560 a, =13.642020 6, =-8.158672
a, =2.165645 6, =11.319543 a, =14.680361 6, =-13.275144
a, =1.637291 5, =8.703891 a; =13.794871 8, =-11.936112
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These are three normalized differences associated with three separate
observations. Now we need the geocentric Sun positions for the three times. These are
from the 1999 astronomical almanac book [45], and we interpolate between two
adjacent days in these tables to get the right Julian time.

Solar Position in Case of Jupiter

X1 =10.4350922 Y1=-0.8094893 Z, =-0.3509578
X, =-1.0018289 Y, = 0.0698396 Z, =0.0302830
X3 =0.2335655 Y3 =-0.8763429 Z3=-0.3799378

Solar Position in Case of Mars

X1 = 0.4395625 Y1 = -0.8074811 Z1 = -0.3500872

X5 = 0.9867765 Y, =-0.1101129 Zo = -0.0477401

X3 =-0.1856244 Y3 = 09170884 Z3 = 0.3976083
Xl XZ X3

R,=|Y | . R, =|Y, LR, =| Y, R is the solar position for each of the three
Zl ZZ 23

times.

Next we calculate the geocentric unit vectors for each observation from the
right ascension and the declinations measured. These are basically the angles to the
planet from the Earth but we don’t know the distance, let

(Lxi Lyi Lzi):=(cos a;cos &; sina;cosd; sing;),

L,, L,, and L, are the unit vectors (directions) from the Earth to the planet for each of
the three time

|L, | =1.000000, |L,| =1.000000, |L,| =1.000000. The vectors do have
length 1.

Now Gauss determines the positions at a given time t, by using information
from times t; and t3 [27, 41], and the Newtonian force law.

Since a simple two-body orbit will be in one plane, then it is possible to describe the
third position vector for the object as some linear combination of the other two
positions, as long as the other two are not parallel to each other. So, for example
r, =c,f +C,l,, what we do is to calculate the geometrical coefficients c¢; and cs. We

calculate the geometrical coefficients from the relation of areas swept out per unit
time and using Kepler’s second law. c; and c3 is described in the form of f and g series
in Equations 8.29. We have obtained f and g by finding the distance between
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the Sun and the planet (the heliocentric distance at epoch time r;) which is carried out
by solving Lagrange equation in Section 8.6. The results are

Jupiter Mars

r, = 4.925931 r, = 1.607091
f1 = 0.925507 f; = 0.888283

f3 = 0.985607 f; =0.562753

01=-4.113184 g1 =-0.927157
gs = 1.845109 gs = 1.627512
c1 = 0.320240 ¢, =0.827218

c3 =0.713890 c3 = 0.471248

c,=-1 c, =-1.

From these results, We can evaluate the distance from the Earth to the planet

using Equations 8.30

Jupiter Mars
p1 = 5.405957 p1=1.247038
p.=4.097718 p2=0.755195
ps = 4.624786 ps = 0.836244

Finally we have solved for the position vector of Jupiter and Mars at the three
times. Now we multiply the distance by their unit vector from the Earth and get the
Sun-planet heliocentric rectangular equatorial vector positions

At epoch time t, we have

)

=

Jupiter

Mars

|| =4.925676

|| = 1.595389

This is the first loop of the entire process, next the heliocentric position vector
is improved to higher-order of accuracy. We are going to correct the observation times
for the speed of light and then iterate once on these coefficients, for an improved
calculation which shown in Equation 8.34 and getting the modified time interval
described in Equations 8.35.

to=t——Pr oy g o Pe oy P3|
L 1731446 1 2 % 1731446 1 % 3 1731446

Ty =Kty —te) 13 =Kt —t) Ty =T33~ Tg-

Now, we can recompute the geometrical coefficients by f and g series. We
have used the “universal formulation” in Section 6.3 which more appropriate than the
approximation of f and g by neglecting the term order higher than 3 as done in the
first loop.



109

Getting
Jupiter Mars
f1=0.926888 f1=0.889690
f; = 0.985613 f3 = 0.564451
gs = 1.845044 g3 = 1.610266
and the geometrical coefficients
Jupiter Mars
c1 =0.320111 c1=0.825184
c3=0.713785 c3=0.472713
c,=-1 c,=-1
as done in the first loop. We have
Jupiter Mars
p1=5.406717 p1=1.265940
p, = 4.097742 p,=0.767151
ps = 4.626073 ps = 0.829529

To terminate the program we have set the limits of convergence by compare
the recently obtained for p and the previous one. The difference should less than 107
in magnitude for acceptance. The recent p leads to the heliocentric vector of the
planets which can be deduced from the definition of the geocentric constraint

)

T

At epoch time t, we have

piEi =R

Jupiter

Mars

T =4.925726

|7 = 1.621668

The position and velocity components at epoch time are

Jupiter Mars
x'=4.400741 x= -1.570208
y = 2.073352 y = -0.383017
z=0.774499 z=-0.132492
x = -0.210888 x = 0.226879
y = 0.374655 y = -0.657073
z=0.164454 z = -0.304540

(x,yand z can be readily obtained as described in Section 8.7.2).
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Now we have to go to the ecliptic plane. Since the Earth axis tilt by 23 degree,
27 minutes to the plane of the ecliptic, this means that we have to rotate the
coordinates (using Equations 3.16, 3.17 and 3.18)

1 0 0
D(e)=|0 cose sing| Df(g)isthe 2D rotation matrix though an angle ¢
0 -sing cose
radians.

Since we are running out of r;’s to use. We will choose r to denote the new
heliocentric rectangular ecliptic coordinates, at epoch time t,

r=D(g) - 1,

Jupiter Mars

|T| = 4.925726 |F| = 1.621668

Just checking that the coordinate-rotation did not change the distances.

SO, FROM THE KNOWN POSITION AT A GIVEN EPOCH TIME, THE ORBIT PARAMETERS
CAN BE CALCULATED NEXT.

Finally, we can calculate the six standard orbital elements, in the heliocentric
ecliptic coordinate system as shown in Section 5.3. Define “the ascending node vector

N” that

N=kxh
0
k=0, h =T xV is the angular momentum vector, and
1
(2 VP : I :
a=|=-—|, a is the semimajor axis.
M
Jupiter Mars
a =5.145403 a=1.521296
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e =,lel+el +e7, e is the eccentricity.

Jupiter Mars
e =0.043968 e =0.084052
. h
i= -z 1
i:=acos ( o J/Q
Jupiter Mars
i =1.345439 i =1.700862

iota is the inclination of the orbit with respect to the ecliptic

. N
Q._acos(NJ/Ql

Jupiter Mars

Q =107.390368 Q =154.199783

Omega is the longitude of the ascending node of Jupiter with respect to the
line of the vernal equinox (if Ny < 0.0 then Q = 360- Q).

. N-e
m.—acos(Ne J/Ql

Jupiter Mars

o =293.718743 o =284.830516

o is the-argument of the perifocus.(if e; < 0.0 then .o = 360- ).

%—r

E: =acos —-e /01
ae
Jupiter Mars
E =13.824567 E=141.717454

E is eccentric anomaly angle at epoch time t;,
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M:=(E-esinE)/Q1l

Jupiter Mars
M = 346.777385 M = 221.266138
M is the mean anomaly angle at epoch time t;.
: M M
T. = tZ —H y n= k a—3
Jupiter Mars
T = 2447335.958245 T =2450830.348361

T is the time of perihelion passage, in Julian date unit.

The calculated orbital elements of these data are:

Jupiter

a =5.145403
e =0.043968
i =1.345439

Q =107.390368

o =293.718743

T = 2447335.958245
=June. 23, 1988

distance of perihelion closet approach the Sun (in AU)
eccentricity
inclination angle from ecliptic
longitude of ascending node
Argument of perihelion
Time of perihelion passage
11:00 a.m.

a =1.521296
e =0.084052
i =1.700862
Q =54.199783

o =284.830516
T = 2450830.348361
= Jan. 16, 1998

distance of perihelion closet approach the Sun (in AU)
eccentricity
inclination angle from-ecliptic
longitude of ascending node
Argument of perihelion
Time of perihelion passage
8:22 p.m.
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Moreover, we select the other sets of preliminary orbit data to calculate the
classical elements as shown in tables 9.5 and 9.6.

Now we check the accuracy of the orbital elements using these parameters to
calculate the position and velocity vector at epoch time (r, and v,), and then ¥, and
v, are calculated to find the right ascension and the declination of arbitrary time
which are the preliminary orbit data as we have observed and determined the Jupiter
and Mars orbits.

We calculated the position and velocity from the classical elements by using
the formulae state in Section 5.4. Now,

i-Q1

Il
Q
=

I
mze Do
Q
[

1
1,

Q

i+
Q
®
M

Es

Q

We will improve the parameter E by using Newton-Raphson method. The new
E lead to the scalar components of position and velocity appears in Equations 5.59.
Consequently, the position and velocity vector can be found from Equation 5.52

where P and Q are defined from Equations 5.64 and 5.65 respectively. For celestial
equatorial systems, rotating r and v by matrix D(-¢), we have

Jupiter Mars
4.400741 —1.570208
T, =|2.073351 r, =| —0.383017
0.774499 —0.132492
—0.210888 0.226879
v, =| - 0.374655 v, =|—0.657073
0.164454 —0.304546

Comparing between r, and v, obtained by this method and Gauss’s method,
the results have shown to be identical results.

Using position and velocity vector to calculate the right ascension and
declination at epoch time t, employed by the formulae in Chapter 6. Let 1, and v, to
be position and velocity at epoch time.




Jupiter
t1 to t3 a & i Q ® T
=16/1/1999 | 17/11/1999 | 26/1/2000 | 5.9469322 | 0.2466846 | 1.3540095 | 108.7109930 | 205.1449707 | 2450736.1099344
«16/1/1999 =8/9/1999 | 7/12/1999 | 6.1081910 | 0.1711398 | 1.3376510 | 106.0952679 | 270.4925113 | 2451330.0982264
=16/1/1999 =8/9/1999 | =1/2/2000 | 5.1512353 | 0.1800390 | 1.3282304 | 104.0279993 | 356.0793152 | 2447821.1759242
«16/1/1999 =8/9/1999 | 13/3/2000 | 5.4783254 | 0.0905595 | 1.3352446 | 105.4683411 | 279.8518335 | 2451425.0657365
*16/1/1999 *8/9/1999 | *13/3/2000 | 4.9775410 | 0.0148916 | 1.3335166 | 104.9033378 | 305.0942882 | 2447642.1046518
=16/1/1999 | +19/9/1999 | =4/1/2000 | 5.1454074 | 0.0439738 | 1.3454377 | 107.3907045 | 293.7324469 | 2447336.1037951
*16/1/1999 | =19/9/1999 | +1/2/2000 | 5.2399013 | 0.3159066 | 1.3308744 | 104.8367959 5.0586085 | 2447661.1873539
=16/1/1999 19/9/1999 | 8/2/2000 | 5.3050847 | 0.1600296 | 1.3949344 | 114.3359630 | 332.8262524 | 2447543.2377190
=16/1/1999 5/10/1999 | 8/2/2000 | 5.0306579 | 0.1180199 | 1.3950657 | 114.3328740 | 342.1130985 | 2447976.9257016
19/9/1999 =4/1/2000 | 13/3/2000 | 5.3101483 | 0.3186870 | 1.4498441 | 97.8678706 | 207.9274757 | 2450865.1968487

Table 9.5 The classical elements of Jupiter at epoch time t;.
(Since * are the data from 5-reference stars).

il



Mars

t1 to t3 a e | Q ) T
«17/1/1999 | 14/3/1999 | 25/3/1999 | 1.5226900 | 0.0978765 | 1.6009529 | 98.0348986 203.8995500 | 2450743.6510137
«17/1/1999 | «14/3/1999 | 19/6/1999 | 1.5133042 | 0.1544338 | 1.7852079 | 52.5114181 269.8353769 | 2450784.5564166
«17/1/1999 | <14/3/1999 | «2/7/1999 | 1.5212958 | 0.0840533 | 1.7008563 | 54.1999100 284.8293777 | 2450830.3462507
«17/1/1999 | 25/4/1999 | 8/7/1999 | 1.4638548 | 0.0832216 | 1.5068264 | 73.9704726 257.0677906 | 2450837.8759703
14/3/1999 | 25/4/1999 | 8/7/1999 | 1.5241081 | 0.0940631 | 1.9996421 | 67.1341040 25.5649153 | 2451076.2289969
=14/3/1999 | 24/5/1999 | 21/6/1999 | 1.5172155 | 0.1932683 | 1.2977409 | 49.6898106 64.4774712 | 2451147.8985234
«14/3/1999 | «2/7/1999 | =8/9/1999 | 1.5197647 | 0.0868060 | 1.6928876 | 54.3883849 283.2582335 | 2450827.6155798

Table 9.6 The classical elements of Mars at epoch time t,.
(Since * are the data from 5-reference stars).

Gl
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Now, r can be computed from the orbital elements by using the numerical
integration of a universal formulation, then we correct the time by improving the
speed of light. And we get the topocentric position vector at time to, p,. From the

geometric constraint

50 =Fo _ﬁo’

this lead to the geometric unit vector at time to

=l

hor

0

ol

1=l

Using Equations 6.93 through 6.96, We have the right ascension and
declination of Jupiter and Mars at time epoch t; as shown below:

Jupiter
(o, ) Test Observation Astronomical Almanac
o 2.148738 2.165145 2.150000
0 11.324716 11.319543 11.433333
Mars
(o, 8) Test Observation Astronomical Almanac
o 14.680106 14.680361 14.685333
S -13.273794 -13.275144 -13.375000

From these six elements, we choose the best data of Jupiter and Mars to sketch
their orbits in space (heliocentric orbit) as shown in Figure 9.6 and 9.7
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Jupiter
Classical Elements Gauss’s Method Astronomical Almanac

a 5.145 5.202603

e 0.044 0.048493

i 1.345 1.3033

Q 107.390 100.4628

® 293.719 273.8665

T 2447335.943 2447267.308399

Table 9.7 Comparison the classical elements of Jupiter from Gauss’s method with
the astronomical almanac.

Mars
Classical Elements Gauss’s Method Astronomical Almanac

a 1.521 1.523679

e 0.084 0.093400

i 1.701 1.8498
Q 54.200 49.5609

® 284.831 286.4951

T 2450830.349 2450829.358385

Table 9.8 Comparison the classical elements of Mars from Gauss’s method with the
astronomical almanac.
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9.3 Discussion

A comparison of the classical elements from the Gauss’s method (Figures 9.6
and 9.7) with the astronomical almanac (1999) [45] in tables 9.7 and 9.8. There are
errors in the orbital determination. These errors are accepted in some cases of
consideration. The Gauss’s method has limitation. If the arc of the celestial body’s
apparent path has too little curvature, the coefficient D, in Equations 8.10, 8.11 and

8.12 will approach zero. This method may be failed [2,9,14,27,42,43,44].

Consider the time duration of observation of Jupiter and Mars, tables 9.1
through 9.4, compares to the time duration of planet’s orbit around the Sun. The
observation time interval is quite small. So the errors may arise from this reason.

The other way, there are errors in the observational data. Our photographs
were taken from the standard lens (short focus 50 mm). This gives the accuracy of the
pictures less than 1 minute. If one wants to improves this accuracy, the picture should
be 10”"x12" or more. The picture of that size is more expensive than the smaller size.
The pictures in this thesis are 4"x6" . The reference stars are located in the margin of
the photograph. There are distortions in our pictures when we take measurement for
the distance of the celestial bodies. Distortions are decreased when the reference stars
are located in the middle of the photograph. If one uses the long focus, this problem
will be solved.

We can neglect the time error during observational data. The Earth spends one
day for rotating 1 degree. If we spend 20 minuets for time error, the Earth rotates less
than 1 minute. That why we can neglect the observational time error.

The other problem is a divergence of our computer’s results. This is the
limitation of the Gauss’s method to determine the orbit of the celestial body with a
three very closely spaced observations. There are a few observational data give a
computer’s results converge (tables 9.5 and 9.6). A good observational data are shown
in tables 9.7 and 9.8.



CHAPTER 10
SUMMARY

Gauss’s method can determine the position and velocity vectors of the planets
in solar system while a direct observation is not accomplished. Gauss’s method needs
only three observational data, time and angular data (right ascension and declination)
to determine the orbit of celestial body.

From the observation, we know only the fixed star’s coordinates in the
equatorial coordinate system. The right ascension and declination of the planets can
be determined by using the method of dependences. This method needs to know the
angular data (right ascension and declination) of three reference stars or five reference
stars to compute the angular data (right ascension and declination) of the planets. For
three-reference star case, we plot it in the graphing paper. The distance between these
celestial bodies in this thesis is found. We get the dependence D, values. Finally, the

right ascension and declination of the planets at a given epoch time can be computed.

In the case of five reference stars, the coordinates of these celestial bodies are
found by using the microcomputer (not graphing paper such as in previous case). This
case gives more accurate position of the reference stars and planets than previous
case. However, during the observation, some problems such as the moonlight,
sunlight, artificial light from houses, clouds make pictures not clear. The observation
data is not completely smooth, for example, the Jupiter’s data in the thesis. However,
if data is correct for only three positions of the celestial body, Gauss’s method can
determines the correct orbit.

Preliminary approximation of the Gaussian method is a very fundamental and
useful transformation from a set of angular data to a set of position and velocity in
inertial space. By considering two constraints, one states the position vector of the
planet, the Sun and the Earth are the triangular forms. This constraint is called a
geometric constraint. Another one represents the heliocentric vector of the planet
expressed in the term of f and g series. This constraint is called a dynamics constraint.

In this thesis, the position and velocity vectors at epoch time of the planet in
heliocentric coordinates system are calculated by using the numerical iteration. The
first part of approximate of the geometrical coefficients c, and c, involve the second

order f and g series. After the first loop of iteration, these coefficients are adjusted by
the universal formulation. The iteration terminates when the topocentric vector, p

gives a suitable value. The topocentric vector is determined by two cases of our
constraints.

Their components of position and velocity from Gauss’s method do not clearly
reveal the orbit’s size, shape and orientation in space. However, this problem can be
solved in the celestial mechanics. The classical elements are introduced to explain the
orbit in the heliocentric system clearer.

In this thesis we use Gauss’s method to transform a set of angular data from
observation to a set of position and velocity vectors in the solar system at epoch time.
And the orbit geometry in celestial mechanics gives six classical elements of these
planets (Jupiter and Mars). These values are shown in table 9.5 and table 9.6 in
Chapter 9. The next step is to compare the classical elements from our calculation
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with the astronomical almanac [45,46] (tables 9.7 and 9.8 in Chapter 9). There are
many errors. These errors probably come from the observation instruments mentioned
in Chapter 9.

We write another program for checking our program (Method of Gauss).
Position and velocity components of Jupiter and Mars from Gauss method are the
initial conditions. In this procedure, the right ascension and declination of Jupiter and
Mars at epoch time are calculated again and compared with the astronomical almanac
[45] and the right ascension and declination from observations. We are agreed with
each other that means can improve the input data in Gauss method and our programs
for determination of orbit of Jupiter and Mars. Moreover, if we have the input data of
other planet or comet then our program can find its orbit accurately.

However, Marsden [9] reported that the Gauss’s method works for calculating
the position of the celestial body in the past and future approximately using only three
sets of the observational data. If the instrument can give an accurate data, the orbit
determination can probably give an accurate result.
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APPENDIX A
ORBIT IMPROVEMENT

When preliminary orbital elements are used to predict the motion of a celestial
body, it is normally found that the observed and computed motion is not in
satisfactory agreement. Thus, observed-minus-computed (O-C) residuals can be
determined for each time of observation by subtracting the computed coordinates
from the measured coordinates. When there exist at least three reliable observations
which cover a significant part of the orbital motion, yet are not too distant from the
epoch of the preliminary elements, it is often possible to improve the elements by a
straightforward differential correction process which ignores perturbations. If the
situation does not permit this simple approach, then perturbations should be taken into
account each time the residuals are determined.

In contrast to the dynamical problem of determining the orbital parameters
initially, differential correction is primarily a numerical procedure which uses a
multiple linear least squares regression to make small changes to the elements in order
to minimize the O-C residuals. There is no guarantee that the resulting element set
will ultimately prove to be better than the preliminary one. Only time and additional
observations can finally decide. However, given an initial element set which is not too
far off the mark and observations sufficiently accurate and spaced to get a
representative sample of the conic section of the orbit, the least squares differential
correction process can be very effective [14,22,32].

A.1 The Differential Equations of Condition

A celestial body’s right ascension a and declination s are complex functions
of the orbital elements and the components of R, the position of the dynamical center.
However, since the vector R may be regarded as accurately known, in need of no
improvement, we can simplify our problem by considering only the functional
dependence of « and & on the position and velocity elements

o = {Xo’yo’zo}
\70 = {XO’YOiO}

at the arbitrary epoch to. Thus, we let

o= a(Xg,Y0,20,X0,Y0:20) (A1)
8 = 8(X¢,Y0:20:X0:Y0:20) » (A.2)
and apply the definition of the total derivative of a function to obtain [14,56]

oa oo oo oo .

do = —dx, + —dy, + —dz, +... + —dz A.3

o X, 0 s Yo oz, 0 o2, 0 (A.3)
06 00 00 0o .

dd = —dx, + —dy, + —dz, +... + —dz,. A4

ox, 0 Py Yo oz, 0 o2, 0 (A.4)

Equations A.3 and A.4 express the amount of change produced in « and & in
response to independent changes in one or more of the scalar components of the
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position and velocity vectors. The partial derivatives represent the individual rates at
which « and & change with respect to each of the orbital elements. In practice, the
differentials can be replaced by finite differences, so that we can write

Aa:a—aAXO +ﬂAy0 +a—mAZ0 + ... +a—(.1Ai0 (A.5)
X Y, 0z, 0z

A5 =B kg + Bpy B pg s Bops (A6)
aX() ayo aZ0 0z

where Aa and As are the measured O-C residuals in right ascension and declination,
respectively, and Ax,, Ay,, ..., Az, are the small changes needed to improve the
orbital elements so that the residuals in o and ¢ are eliminated.

The residuals Aa and A& in Equations A.5 and A.6 are known quantities
obtained from measurements of the orbiting body’s position on the celestial sphere.
Three such observations would enable us to write six independent linear equations of
condition. However, since there may be more than three sets of residuals available, we
have in general

Ao, :aﬂAx0 +—a—0L1—Ay0 +5&AZO +... +ai.lAi0
0Xq Yo 0z, oz
Aa, =—aﬁAx0 +8_a2_Ay0 JraﬁAz0 +... +&L_2Ai0
X, oY, 0z, 0z
Ao =993—Ax0 +@L1AyO +%AZO + ... +&L?Ai0
00X, Yo 0z, 0z
Aa, = Oty AXy + Oy Ay, + Oy AzZy +... + aa,” Az,
0X, Y, 0z, 0z
A8 :&AX0 +68—1Ay0 +66—1Az0 e +86—_1A20
X, o 0z, 0z
ASZ:GS—ZAXO+68—2AyO+68—2AZO+ +86—_2Aio
0Xg Vo 0z, oz
. A7
A83=68—3Ax0+68—3Ay0+68—3Azo+...+68—.3Az0 (A7)
X, N 0z, 0z
AS, = 0, AX, Jraé—”Ay0 - a0, Azy +.. + 68,” Az, ,
0X Y, 0z, 0z

where n > 3. Now, if we are somehow able to obtain reasonable values for the partial
derivatives, then these equations can be solved by multiple linear least squares
regression to yield values for the corrections Ax,, Ay,, ..., Az, Which best fit all the
date
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A.2 Numerical Evaluation of the Partial Derivatives

Values for the partial derivatives in Equations A.7 can be determined to
sufficient accuracy by a simple numerical process which is accomplished by the
computer. If ¢ represents any one of the six orbital elements, and Ae is some small
change introduced in that typical element, then the partial derivatives of a;and s,

with respect to ¢ can be approximated as follows [14]:

(Xgew €9 + A€, ., Z0) = (X g, oy Eguenss Zg) (A.8)

3 8i(Xgyn €9 + A&, Zg) = 8i(Xgyeery Egyeens Zg)

, A.9
oe Age (A9)

where i = 1 to n. Therefore, by incrementing each element in turn while the others
maintain their original values, Equations A.8 and A.9 will produce the six partial
derivatives of «;and &; at each observation time ti. In most cases, selecting an

incrementation Ae which is equal to a few percent of ¢ will produce a small change
in «;and §; which is sufficient to yield satisfactory approximations of he partial

derivatives [14,32,56].

Once the partial derivatives have been determined, Equations A.7 are solved
for the corrections Ax,, Ay, ,..., Az,. When these are added to the original elements,

a new set

io = {x'O - AX.O ,y'0 + Ay'o,z.0 = Az?} (A10)

Vo = Xo + AXoYo + AY .2, + Az}
is obtained for the arbitrary epoch to. Finally, new angular positions are generated and
compared to the observations. If significant residuals remain, these may be used to
compute further improvements to the elements and the entire process repeated until
the observed and computed a;and &, agree within the limits of the accuracy of each

angu lar measurement.

From the results in tables 9.5 and 9.6 we found that the classical elements are
differ for different set samples. So-there is a possibility that the orbit determination by
three-observation.is insufficient. We:then improve the position and velocity elements
from observational data by a program C (see Appendices C.7.and C.8). The improved
data were shown tables A.1 and A.2

Which we have chosen position and velocity elements of the planets from
Figures 9.7 and 9.8. Form tables A.1 and A.2 we found that in Mars’s case, there are
deviations in classical elements when compare to the astronomical almanac [45,46]
but these are acceptable. In Jupiter case, it can not be improve since the calculation is
diverge. This may be caused by right ascension and declination of Jupiter with
reduction technique. The information has shown to be divided into two periods. The
former is in January and latter is in September — March. This is shown in tables 9.1
through 9.4.
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Jupiter
Classical Elements from Gauss’s Classical Elements from Improved
method Data

a 5.145 a -
e 0.044 e -
i 1.345 [ -
Q 107.390 Q -
® 293.719 ® -
T T

2447335.943

Table A.1
Mars
Classical Elements from Gauss’s Classical Elements from Improved
Method Data

a 1.521 a 1.494

e 0.084 e 0.066

i 1.701 [ 1.863

Q 54.200 Q 61.294

® 284.831 ® 295.298

T 2450830.349 T 2540879.421

Table A.2
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Classical Jupiter
Elements | Astronomical Method of Gauss Orbit Improvement
(CEE.) Almanac (CE.) (C.E)
a 5.202603 5.145 -
e 0.048493 0.044 -
[ 1.3033 1.345 -
Q 100.4628 107.390 -
® 273.8665 293.719 -
T 2447267.308399 2447335.943 -
Table A.3
Classical Mars
Elements | Astronomical Method of Gauss Orbit Improvement
(C.E) Almanac (C.E) (C.E)
a 1.523679 1.521 1.494
e 0.093400 0.084 0.066
[ 1.8498 1.701 1.863
Q 49.5609 54.200 61.294
® 286.4951 284.831 295.298
T 2450829.358385 2450830.349 2540879.421

Table A4
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B. 1 Jupiter

The picturc was taken at Salaya, Nakompathom, September 19, 1999.

The picture was taken at Bangkok, January 4, 2000.




The picture was taken at Salaya, Nakornpathom, July 2, 1999,
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#include
#include
#include
#include
main{}

{

int D, M,

Appendix C.1
Julian Date
<stdio.h>
<math.h>

<stdlib.h>
<conic.h>»

Y:

double JO,UT,JD,m, h;

clrscri()
printf ("
printf {*
printf{"
Jo = 367

r

Date = ");scanf("%d", &aD} ;
month = ") ;scanf{"%4d", &M} ;
year = ")ji;scanf{"%d",&Y);

LO0*Y~floor{fleoor{({7.0/4.0)*{Y+floor { (M+9.0)/12.0%}})

+floor(275.0*M/9.0) +tD+1721013.5;

printf{
printf {
printf |

"\n J0 = %0.81f\n\n",J0};
" hour = "};scanf{"%1f",&h):;
"minus ¢ m = "J;scanf("F1£", &am) ;

UT = h+m/60;

printf{"
JD=J0+UT/
printf{"
getch(}:

\n UT = %0.81f\n ",UT};
24;
\n JD = %0.8Lf\n ",JD};

return{0};

}
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Appendix C.2

Method of Dependence

#include<stdio.h>
finclude<math.h>
#include<conio.h>

maini{}

{

{3~-reference stars)
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double AP, 5P, BQ,SQ,CR,SR,AS,C5,BS,D,Da,Db,Dc,al,bkl,a2,b2,a3,b3,a,b;

clrscr{);
printf{"Input AS and AP\n");
scanf{"%1f %1£", &AS, &AP) ;

printf ("Input right ascension and declination of star 1\n");

scanf ("%1f F1Ef", 8al, &bl ;
printf {("Input BS and BO\n"):
scanf ("%1f %$1f", &BS, &BQ)

printf("Input right ascension and declination of star 2\n");

scanf("%1f R1f", &a2, sb2);
printf{"Input CS and CR\n"};
scanf ("$1f %1f", &CS, &4CR} ;

printf ("Input right ascension and declination of star 3\n"};

scanf ("%1f %1£f",za3, ekl ;
SP=AP-AS;

S0=BQ-B3;

SR=CR-C5;

Da=SP/AP;

Db=50Q/BQ;

Dc=SR/CR;

D=Da+Db+Dc;
a=al*Da+a2*Db+a3*Dc;
b=b1*Da+b2*Db+b3*Dc;

printE (M e e e e — T T e

printf{"Dependences = %,71f\n",D};
printf{("Right ascension = %.71f\n",a);
printf("Declination = %.,71f\n",b};

getch{);
returni{Q);

}
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Appendix C.3
Method of Dependence (5-reference stars}

#include<stdio.h>
#include<math.h>
#include<conio.h>

mainf)

{

double x1,x2,x3,x4,x2,y1,y2,v3,v4,¥3,%s,ys, sumx, sumy, Xxr,yr,Xl,X2,X3,
X4,X5,Y1,Y2,¥3,Y4,Y5,X8, Y3, SUMX, SUMY, SUMXY, SUMX2, SUMYZ, D1, D2,
b3,D4,D5,P,0, R, SUMD, SUMDr, SUMDx, SUMDd, SUMDy, dl,d2,d3,d4,d5, 1,
r2,r3,rd4,r5,ds, rs;

clrscell;

printf{"Please enter xs,ys\n");

scanf{"%1f %1f", &xs,&ys);

printf {"Please enter xl,yl,ritht ascensionl and declinationli\n"};

scanf ("%1f %1f %1f RLE",&x1,&yl, &rl, &dl);

printf {("Please enter x2,y2,right ascension? and declination2i\n");

scanf ("%1f %1f %1f %1f", &ax2,8v2,&r2,&d2);

printf {("please enter x3,y3,right ascension3 and declination3\n"};

scanf ("$1lf 31f %1f 31£", &ax3,&y3, &x3, &d3) ;

printf ("please enter x4,y4,right ascensiond and declinationdi\n"};

scanf ("%1f %1f %1£f $1f",axd,&yd,erd,&dd);

printf ("please enter x5,y5,right ascension5 and declinationS\n'):

scanf {"3%1f 331f %1f 31L",&x5, &y, &5, &d5);

sumx=x1+x2+x3+x4+x5;

sumy=yl+y2+y3+y4d+y5;

xr=sumx/5.0; yr=sumy/5.0;

Xl=x1l-xr; X2=x2-xr; X3=x3-xr; Xd=xd-xr; X5=xh-xr; X3=xs-nr;
Yl=yl-yr; Y2=y2-yr; Y3=y3~yr; Yd=yd-yr; YS=y5-yr; YS=ys—yry;

SUMK=X1+X2+X3+¥4+X5;

printf ("SUMX=%.7e\n",SUMX};
SUMY=Y1+Y2+Y3+Y4d+Y5;

printf ("SUMY=%.7e\n", SUMY) ;
SUMKZ=X1*KI+X2*H2+¥I*E3+H4*H4+X5*K5;
SUMYZ2=Y1*Y14+Y2*Y2+Y3*Y3+Y4*Y44+Y5*Yh;
SUMXY=X1*Y14+X2*Y2+X3*Y3+X4*Y4+X5*¥Y5;
P={X3*SUMY2-YS*SUMXY) / (SUMX2*SUMY2-SUMXY*SUMXY) ;
Q= (XS*SUMKXY-YS*SUMK2 ) / (SUMKY*SUMXY—-SUMY2*SUMXZ2) ;
R=0.2;

D1=P*X1+Q*¥Y1+R;

D2=P*X2+Q*Y2+R;

DI=P*X34Q*Y3I+R;

D4=P*X4+Q*Y4+R;

D5=P*X54+Q*Y5+R;

SUMD=D1+D2+D34+D4+D5;

printf ("SUMD=%.7e\n", SUMD} ;
SUMDr=D1*rl4+D2*r2+D03*r3+D4*r44+D5*r5;
SUMDx=DI1*x1+D2*x2+D3*x3+D4*x4+D5*x5;
rs=SUMDr+xs—-SUMDx;
SUMDd=D1*d1+D2*d2+D3*d34+D4*d4+D5*d5;
SUMDy=D1*y1+D2*y2+D3*y3+D4*y4+D5*y5;
ds=SUMDd+ys—-SUMDy;

printf {"Right Ascension of star number 1,2,3,4,and 5 are\n");.
printE("$1ENE™, rl) ;print £ ("S1ENEY, r2) jprint£("81EN\E", r3) sprint£{"%1£\t", rd};
printf {"%1f\t", 5) ;printf{"Declination of star number 1,2,3,4,and 5 are\n"};
printf {"$1E\t",dl) ;print£("S1ENt",d2} ;printf{"$1E\t",d3) ;printf("S1ENL", d4);
printf {("%1Lf\t",d5}) ;printf ("Xx~-coordinate of star number 1,2,3,4,and 5 are\n"};
printf ("$1ENE", x1) ;printE ("B1EN\L", x2) ;printf ("R1ENE", x3) ;print£("31ENEY, x4);
printf ("$1EN\Nt",x5) ;printf("y-coordinate of star number 1,2,3,4,and 5 are\n"};
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printf ("$1ENt", y1l};printf ("S1ENE", v2) ;printE("S1ENL", yv3) sprintE("S1ENE", vd);

printf ("$1EN\t", ¥5}printf("!!!!Result!!!f\n"};
printf ("Right Ascention is ---->%.71lf\n",rs});
printf("Declination is ---————- »>%.71f\n",ds);
getch();

return(Q);

)
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Appendix C.4
Method of Gauss (Jupiter)

#include<stdioc.h>
#include<conioc.h>
#include<math.h>

double dij(double al4][4],double bl4](4],double c(41{4],int X,int v,int z}
{
double r[4],sum;
int i;
sum=0.0;
ril]=a(x][2]*k[y][3]-(alx][3]1*bly][2]
r(2)=a{x} [3]*bly][1]-(alx] [1)*blyi[3]
r{3]l=alx] [(1]1*blyl[2)-{alx}[2])*bly}[1]
for (i=1;i<=3;i=1+1}
{
sum=sum+ {(r[i]*c[z] [1]};
}

return sum;

}

) r
Vi
yi

double dot{double al4)[4],double b{4][4],int x,int ¥)
{
double sum=0.0;
int i;
for {i=1l;i<=3;i++)
{
sum=sum+a [x} [1]*b[y]} [1];
}
return sum;

}

double newtoni{double tiul3],double 1[4][4],double rr[4][4],double mass,
double d0,double gv}
{ ;
double a,b,cc,A,B,E,F, r,xl,x2;
int k=0;
xi=tiu[3]/tiul2];
x2=-tiul[l)/tiui2];
F=-2.0*dot{l,rr,2,2};
F=dot{rr,rr,2,2);
A=-{xl1*dij(l,rr,1,1,1,3})-dij(l,rr,1,1,2,3)+{x2}*dij(l,rx,1,1,3,3))/d0;
B=—{(x1l*{tiu[2]*tiul2}-tiu(3]1*tiu([3]}/6.0)*dij{l,rr, 2,1,1,3)+(x2
*{giu[2)*tiu[2]- tlu[l]*tlu[l]}/G 0)*dij{i,rr,1,1,3, D)J/dO
a=~ (A*A+A*E+F} 5
b=—mass*{(2.0*A*B+B*E) ;
coe=—{mass*mass) * (B*B};
do
{
r=gv; //gv calculated values,r old
gv=gv—{ {pow{gv,8.0)+a*powigv, 6.0)+b* (guv*gv*gv) +ce) / (B.0*powi{gv,7.0)
+(6.,0%a) *pow({gv,5.0)+(3.0*gv*gv*gv)}];
k=k+1;
lwhile{fabs {gv-r)>=10e-8);
return ;

}

double findl (double all(4],double bll([4],int x,int vy)

{
double 1[4](4],L,a,b,Ql=M PI/180.0;
int i;
for {i=1;i<=3;i++)

a=all[i}*15.0%Q1;



b=bll[i]*Q1l;
1[ij[1]=cos{b}*cos{a); 141
1[il[2]=cos(b)*sin{a);
1[1)[3)=sin{b):
}
L=1[x](¥};
return L;

}

double findp(double f[4],double g[4],double r[4][4],doukle 1{4][4],int x)
{
double p[4];
double dO,pp,cl,c2,c3,dfg;
dfg=f[1]*g{3]-(f{3)*g(1});
cl=g(3)/dfg;
c2==-1.0;
c3=-gl[l)/dfg:
do=dij(1,1,1,1,2,3
pl1]=(ci*dij(r,1,1,
pl2]l={cl*dij{i,r, 1,
pl3l=(cl*dijf(l,r,1,
pp=plx];
refturn pp;

}

2,3)+e2*dij{r,1,1,2,2,3)+c3*dij{r,1,1,3,2,31)/(cl*d0);
1,3)+ec2*diji{l,r,1,1,2,3)+e3*di3(1,r,1,1,3,3})/(c2*d0};
1,1 +e2*dij(l,,1,2,2,1}+e3*dijtl, ,1,2,3,1))/ (c3*d0);

;
r
[
r

}
1
1
2

double findv{double r[4}[4],double f[4],dcuble g(4},int x)
{
double v[4],dgf,dl,d3,v2;
int i;
dgf=£[1]1*g[3]-(£[3F*qg[1]};
dl=-ff{3]/dqf;
d3=f{1]/dgf;
for (i=1;i<=3;i++4)
{
vi{il=dl*r[1][1]+4d3*r[3] [1]:
}
vZ2=v[x];
return v2;

}

double findfg{double r{4][4),double v[4][4},double mu,double dt,double k,int
{
double r0,d0,ail,cl,ww,xx,x1,=2a,x3,B[20]:;
double fx,df,x2,cc,uu,=s,£,q9,fp,gp,rr, num;
int 1i;
B[{1l}1=1.0;
for{i=2;i<=19;i=1i+1}
{
B{i]=B[i-1]/i¢
!
rO=sqgrt{dot{x,z,2,2)};
dO0=dot (r,v,2,2)/sgqrt{mul;
ai=2.0/r0-dot{v,v, 2,2}/ (mu) ;
c0=1,0-r0%ai;
ww=k*dt*sqrt (mu} ;
XK=ww/r0;
£x=0,0;df=1.0;
do
{
xx=xx-fx/df;
HE2ZHX*XX;
ra=x2*ai;
X3=R2*x%X;
cc=xX2* (B[2]-xa*{B{4]-xa* (B[6]—xa*{(B[8]-xa*{B[1l0]-xa*(B[12]
-xa* (B{l4]-xa*(B[l6]-xa* (B[18]1)))}))})};
uu=x3*(B[3]-xa* (B[5]-xa*(B[7])-xa* (B[9]—xa*{B[11]-xa* (B[13]
-xa* (B[15])-xa*{B[{1l7)-xa*(B[19)))}))}))};
ss=xXx—uu*ai;
df=r0+cl*cc+dl*ss;
fx=ri0*xx+cO0*uutdl*cc-ww;
}while {fabs (fx)>1.0e-6);



f=1.0-cc/r0;

g=(r0*ss+d0-cc) /sqrt (mu); 142
rr=ri+cO*ce+dl*ss;

fp=-sqgrt (mu) *ss/ {(rr*r0) ;
gp=1.0-cc/rr;

if {j==1) num = f;
else if (j==2) num = g;
else 1f (3==3) num fp;

ool

else if {(j==4} num
return num;

gp s
}

main{)

{
double tf{4],L[4])(4),R[4][4],p(4],<(4],£f[4],g(4],tuald],r[4][4],pt(4]:
doukle m, k,d0,u2,Hd,con,R0,D0,AT,C0O,CC,WW, XX, X2,XA,UU,S55,X3,v[4][4];
double sr,sr2,FX,DF,pl,p2,p3,r1,r2,F,G,3,n=0.0,a(4],bl[4],3[21];
double dI4],ff(4),gq(4],ttl4],b, X, mu,rv,rr[4]([4]),hh,HH, T, ee,V, a,e;
double h({4](4],P,0,I,W,E,M, vv[4][4]),xb,vb,sx,cxX,srr,er[4][4],N[4][4};
deuble NN,Ql1=M PI/180.0,wr,Rr,EE,XP,YP,XB,et,YB,Ff,DFf, rR(4],Vv[4];
double Bb,EP,PP[4},00{4],1rl,qq,nn, tRO(4],VvO[4];
int i,3j,49:
clrscr ()
con=173.1446;
k=0.01720209895;
m=0.000954791;
mu=1.0+m;

tt[1]=2451195.322817;
alfl]=23.695737;
b1[1]=-3.285087;
RIL1][1]=0.4350922;
R[1][2]1=-0.8094893;
RI1]{31=-0.3509578;
tt[21=2451440.520833;
al[21=2.1459041;
bl[2]=11.326239;
REZ2I[11=-1.0018289;
R[2]1[2]=0.0698396;
RIZ) [3]=0.0302830;
tt[3]=2451548.298611;
al[3]1=1.597450;
b1l[3]1=8.536461;
R{3]1([11=0.2335655;
R[3]1[2]1=-0.8763429;
R{3]{3]=-0.3799178;

T={tt[2]-2451545.0})/36525.0;
ee=(23.439291-0.0130042*T-0.0000001&*T*T}*Q1;
for {(J=1;3<=3;3++)
{

for (i=1;i<=3;1i++)

{
L{jl{ij=findl {al,bl,j,i});

}
}
tua[ll=k*{tt[1l]-tt[2]};
tual3]=k*{tt[3]-tt{21]);
tual[2]=tua{2l-tuall];
sr2=newton(tua,L,R,1.0+m,dij{L, L, L,1,2,3),10.0};
for {i=1;i<=3;i4++}
{
p[i]=0.0;
}
printf{"***Method of Gauss*** \n")};
printf{"Determination of Orbit of Jupiter\n"};:

do

{

sY=sr2;
u2=(1.04m}/(sr*sr*sr};



if (n>0.0}

{ 143

B[1}=1.0;

for{g=2;q<=19;gq++)

{

B{ql=Blg-11/q;

!

for {i=l;i<=3;i4+)

{

) H=tual[i}:
RO=sr;
DO={doti{r,v,2,2))/sgrt{l.0+m};
AI=2.0/RO-dot(v,v,2,2)/{1.0+m};
CO=1.0-RO*AI;
WW=H*sqrt{l.0+m};
X¥=WW/R0;
F¥=0,0;DF=1.0;

YX=XX-FX/DF;
K2=KKX*4LX;
KA=K2*ATI;
K3=X2*¥K;
CC=XZ2*(B(2]-XA*{B[4d]-XA* (B[6]-XA*(B[8]-XAa*{B[10]-XA*(B[12]
—XA* (BI14]-XA*(B[16]-XA* (B[18]))})I}))});
UU=X3* (B3] -XA* (B[H]-XA*{B[7]-XA*{B[9] -XA*(B[11]-XA*(B[13]
~XA* (B[15]-XA*(B[17]-XA*{(B[191)1})})iV)}s
35=XX-UU*ATI;
FX=RO*XX+CO*UU+DO*CC—WW;
DF=RO+CO*CC+DO*85;
twhile{fabs {FX}>1.0e~-0};
fli]=1.0-CC/RO;
g[i]=(RO*S5+DO*CC) /sgrt (1. U+m) ;
Fli)={(f£{i)+£[31}/2.0;
glil={gglil+g[il])}/2.0;
}
}
else
{
for (i=1;i<=3;i++)}
{
flil=1.0-{u2*tualil*tuali})/2.0;
glil=tualil-{u2*tuali]*tuali]*tuafil)/6.0;
}
}
for (3=1;3<=3;]++)
{
ptlil=pljl:
pl3l=findp{f,g,R,L,3};
vi2} [j)=findv{r, f,qg,7}:
tljl=tt{3l-(pljl/con);
££031=2[3];
ggliil=glil;
for {i=1;i<=3;i++)
{
r(jlIil=(p(J)*LE3)[1))-REJ}{1i):
}
}
sr2=sqrt{doti{r,r,2,2));
tua[l]l=k*(£[1]-t[2]):
tual[3]=k*{(t[3])-t{2]});
tuaf{2l=tua{3l-tuafl]l;
pl=fabsipl[l}l-pt[1]):
p2=fabs (p[2]-pt[2]);
p3=fabs (p[3]-pt(3]);
n=n+l;
}while{pl>1.0e-6 || p2>l.0e-6 || p3>1l,0e~-6);
printf ("At epoch Julian date: %If\n",tt[2]);
printf {"The heliocentric distance of Jupiter at epoch time = %.61f AU\n",sr};
printf("——————————-———-4 ———————————————————————————————————————————————— \n"t;
printf ("The position components of Jupiter at epoch time:\n"};



printf{"x = %.61f\t ¥ = %.061f\t z = &.61E\n",r[2)([1},c[2)(2]),[2])[3]):
printf ("The velocity components of Jupiter at epoch time:\n"):; 144
printf ("vx= %.61lf\t Vy= %.61f\t vz= %.61f\n",v[2][1],vI[2]1([2],v[2][3]):

rr{2] [1)=x{2) (11;
rr[2}[2}=r[2][3]*sin(ee}+r[2][2] *cos (ee};
rr(2](3]=rf2]{3)1*cos{ee)-r[2](2]*sin{ee};
vwi{2] [1]=v[2] [1]:
vv[2][2]=v(2][2]*cosi{ee}+Vv[2][3]1*sin{ee);
vwl2] [3)=v{2][3]*cos(eel-v[2][2] *sin{ee};

hi2) [1i=rel2] (2} *vv[2] [3]-re[2] {31*vv([2] [2];
hi2] [2)=rr (2] [3]*vv[2] [l -rr (2] (1] *wv{2][3];
hi2] (3]=rrl2)1 (1] *vv([2][2]-rx(2] (2]} *vv([2])[1]);
hh=dot (h,h,2,2};

HH=sqgrt {hh};

N[2]{1l]=-h[2][2];
N(2][2]=h[2]11[1]:
N[21[3]=0.0;

NN=sqgrt{dot(N,N,2,2}];
srr=sqrt{doti{rr,rr,2,2)};
rv=dot{rr,vv,2,2};
V=dot{vv,vv,2,2);
a=1.0/{{2.0/sre}-{V/mu}};

for{i=1;i<=3;i++}
{
er[2] [il={(V/mu-1.0/srr)*rr[2] [1])~(t(ev/mul*vvi{2]{1i]);
}

P=hh/mu;
e=sqrt (dot (er,er,2,2});
O=acos {N[2]} [1]1/NN)}/0Q1;
1£(N{2}[2]<0,0}
{
0=360.0-0;
}

I=acos{h(2] [31/HH) /01;
W=acos {dot [N, er, 2,2}/ {NN*e)) /Q1;
if (er(2][3]1<0.0}
{
W=360.0-W;
}

Xb=(P-srr}/e;
yh=rv*sqrt (P/mu)/e;
b=a*sqrt{l.0-e*e);
cx=xb/a+te;
sx=yb/b;
if{fabs{sx)<=0.707107}
{
X=asin{fabs {sx}}:
}
if{fabs{cx}<=0.707107}
{
X=acos (fabs{cx)};
}
1f{ex>=0.0 && =sx>»=0.0)
{
X=X;
}
if{cx<0.0 && sx>=0.0)
{
X=180,0*Q1-X;
}
if{ex<0.0 && sx<0.0)})

{
X=180.0*Q1+X;



}
if{cx>=0.0 && =x<0.0) 145

{
X=360.0*Q1-X;
}
M=({X-e*sx)/Q1;
E=acoeos { (xb/a)+e) /Q1;
nn=k*sqrt (mu/ {a*a*a});
T=tt[2)-(M*Q1/nn};

printf("---—--—-———— e e \n"}
printf {"The classical elements of Jupiter at epoch time : \n");
printf("Semimajor axis a= %.6lfI\n",a):
printf{"Eccentricity e= %.61lf\n",e);
printf{"Inclination angle from ecliptic i= %.6lf\n",I);
printf("Longitude of ascending node 0= &.61f\n",0);
printf ("Argument of perihelion W= %.61f\n",W};
printf{"Time of perifocal passage = %,6LEf\n",T);
I=1*Ql;
O=0*Q1l;
W=w*Ql;
M=M*Q1;
E=E*Q1;
E=M;

do

{

Ff=FE-e*sin (E)-M;

DFf=1.0-e*cos (E} ;

E=E-~ {Ff/DFEf} ;

}while (fabs{Ff)>=1.0e-6} ;
Rr=a*(1.0-e*cos(E)};
EP=sqrt{mu/a) /Rr;
Bb=a*sqgrti{l.0-e*e);
XB=a* (cos (E)-e);
YB=Bb*sin (E} ;
AXP=—-a*EP*sin(E);
YP=+Bb*EP*cos (E)} ;
PP[l]=+cos (W} *cos (Q)-sin{W)*sin (O}l *cos (1) ;
PP{Z2)l=tcos(Wi*sin{O)+sin{Wi*cos (O} *cos (I} ;
PP[(3]=+sin(Wi*sin(I};
QC[l]=-8in{W)*cos{0O})-ceos (W) *sin(Q) *cos (I} ;
QO[2]=-sin{W)*sin{Q) +cos (W) *cos {(Q) *cos {I) ;
QO[31=+cos (W) *sin(I);
for{i=1;i<=3;i++)

i
1

rR{1L]=XB*PP[i]+¥B*QQ[1];

Vv [i}=XP*PP[i]+YP*QQ[1];
rRO[1]=rR[1];

rRG[2]=rR[2] *cos{ea)-rR[3])*sin(ee};
rRO[31=rR[3] *cos(ee)+rR[2]*sin{ee) ;
VvO[1l=vv[1l};

YO [2]=Vv([2] *cos (ee)-Vv[3] *sin(ee);
VvO[31=VvI[3] *cos {ee}t+vv[2]*sin(ee);

printf ("Recompute the pesition and velocity components from the classical
elements\n");
printf("x = $.61lf\t y = %.61f\t z = %.61f\n",rRO(1], rRO[2], rRO[3]));
printf{"Vx= %.8lE\t Vy= %.61f\t Vz= %.61f\n",vvO[1l],VvvO([2],VVvO([3]};
getch{};
returni{?);

}
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Appendix C.5
Method of Gauss (Mars})

#include<stdio.h>
#include<conio.h>»
#include<math.h>

double dij({double a[4][(4],double b{4][4],double cf{4])[4],int x,int y,int =z}
{
double r{41, sum;
int ij;
sum=0.0;
rill=a(x] [2]*k(¥]1[3]-(alx}[3]*bl¥](2]);
r{2]l=a[x][3]*b{yl(1]-{a[x][1]*b[y]{3]}:
rl3}=alx] [1)*hlyl (2] -(alx] [2]*bEy] [1]};
for (1=1;1<=3;i++)
{
sum=sum+ {r{il*c[z] (1]}
i
return sum;

}

double dot{double a[4][4],double b[4][4],int x,int vy}
{ E
double sum=0.0;
int i;
for (i=1;i<=3;1i++}
{
sum=sum+a [x] [i]1*b[y] [1];
}
return sum;

}

double newton (double tiu{3],double 1[4]{4],double rr{4]l4],double mass,
double d0,double gv}
{
double a,b,cc,n,B,E,F,r,xl,x2;
int k=0;
xi=tiuf{31/tiu[2];
x2=—-tiufll/tiuf2];
E=-2.0*dot (1, rr,2,2)+
r=dot(rr,rr,2,2);
A=-{x1*dij(l,rx,1,1,1,3)~-dij{l,rr,1,1,2,3)+{x2)*dij(l,rr,1,1,3,3))/d0;
B=-((x1*(tiu[2]*tiu{2]-tiul{3]*tiu[3]})/6.0)*dij(1l,rr,1,1,1,3)+{x2*(tiu{2]
*tiul2]-tiu[ll*tiul3])/6.03*dij (1, rr,1,1,3,3))/d0;
a== {(A*A+A*E+F) ;
b=-masa*{2.0*A*B+B*E] ;
coe=-{mass*mass) *{B*B);
do
{
r=gv; //gv calculated values,r old
gv=gv- ( {powi(gv,B.0}+a*pow{gv, 6.0} +b* (gv*gv*rgv) +cc) /(8. 0%pow(gv, 7.0} +
{6.0%a) *pow{gv,5.0) +{3.0*gv*gv*gv))};
k=k+1;
}while {fabs{gv-r)>=10e-6)};
return r;

1

double findl{double all[4]),double bll[4],int Xx,int vy}
{
double 1(4)[4],L,a,b,Ql=M PI/180.0;
int i;
for (i=l;i<=3;i++}
{
a=all[il*15,0*%Q1; "



b=bl1[i]*Q1;
1fil[1]l=cos(b)*cos{a); 147
1[i][2]=costb)*sin{a);
1[i}[3)=sin(b);
]
L=1[x]}[¥];
return L;

}

double findp{double f[4],double g{4],double r[4][4],double 1{4]{4],int x)
{
double p[4]:
double d0,pp,cl,c2,c3,dfg;
dfg=f£[1)1*g[3]1-{£[31*gl[1l]};
cl=g[3]/dfg:;
c2=-1.0;
c3=-gfl]/dfg;

d0=dij{1,1,11,1,2,3);

plli={(cl*dij(r,1,1,1,2,3)+c2*dii(r,1,1,2,2,3)+c3*dij{r,1,1,3,2,3}})/({cl*d0
pl2}={el*dij(l,r,1,1,1,3)+c2*dij{l,r,1,1,2,3)+c3%dij(1,r,1,1,3,3))/ (c2*d0
pi3l={cl*dij{l, r,1,2,1,1)+c2*dij(1,r,1,2,2,1)+c3%di3(1,r,1,2,3,1))/1c3*d0

pp=p[x];
return pp;

}

double findv(double r[4][4],double £[4],double gl[4],int x)
{
double v[4],dgf,dl,d3,v2;
int i;
dgf=£f[1]*g[3]1-(£[3)*g[1]):
di=-f[3]/dgf;
d3=f[1]/dgf;
for {i=l1;i<=3;i++}
{
v[i]=dl*r(1){i]+d3*c(3]1{1i};
}
v2=v[x];
return v2;

}

double findfg{double r[4]f{4],double v[4][4],double mu,double dt,double k,int
{
double r0,d0,ai,cl,ww, xx,x1,xa,x3,B[20];
double fx,df,x2,cc,uu,ss,f,qg,fp,gp,rr, num;
int i;
Bil1l1=1.0;
for{i=2;i<=19%;i=1++)
{
B(i]l=B[i-11/1;
}
rO=sqgrt({dotir,r,2,2});
d0=dot (r;v,2,2)/sqrt (mu};
ai=2.0/r0-dot{v,v,2,2)/(mu);
c0=1.0-r0*ai; '
ww=k*dt*sqrt {mu) ;
Xx=ww/r0;
fu=0.0;df=1.0;
do
{
xx=xx~-fx/df;
XZ2=XX*XR;
Xa=x2*ai;
K3I=x2*ux;
cc=x2* {Bl2] —xa* (Bt4])-xa*{B[o]l-xa* (B[B8]-xa*{B[10])-xa*(B[12]
-xa* (B[l4]-xa*(B[l6]-xa*(BI18])})})))});
uu=x3* (B[3]-xa* (B[b]-xa* (B[7]-xa*(B[9]-xa* (B[1l)-xa* (B[13]
-xa* (B[15])-xa* (B[17]-xa*{(B(19]1)))}})))};
ss=xx-uu*ai;
df=r0+cO0*cc+d0*ss;
fx=r0*xx+cl*uu+d0*co—ww;
Jwhile{fabs {fx)>1.0e-6};



f=1.0-cc/r0;
g=(r0*ss+db-cc) /sgrt{mu); 148
rr=r04+cO*cc+dl*ss;
fp=-sqrt{mu) *ss/{rr*rl};
gp=1.0-cc/rr;
if (j==1) num = f;
else if {j==2) num = g;
else i1f {(j==3) num fp;
else if (j==4) num ap?
return num;

}

main{)

{
double t{4],L(4](4],R[4)[4],p(4],cl4],£(4],9[4]),tuald],c(43[4),pt[4];
double m, k,d0,u2,H, con,R0O,D0,AL,CO,CC,WW, XX, X2,XA,0U,55,X3,v[4][4];
double sr,sr2,FX,DF,pl,p2,p3,rl,r2,F,G,x3,n=0.0,al[4],bl(4],B[21]};
double d[4],ff[4],gg9{4],tt[4],b,X,mu, rv,rx[4][4],hh,HH, T, ee,V,a,e;
double h(4](4],P,0,I,W,E, M, vv[4]([4],xb,vb,sx,cX,srr,er(4][4]1,N[4]{4);
double NN,Q1=M_PI/180.0,wr,Rr,EE,XP,YP,XB,et,YB,Ff,DFf,rR[4],VV[4];
double Bb,EP,PP[4],0014],1r]l,gg,nn, tRO[4],VYv0(4];
int i,3,q:
clrscr{);
con=173.1446;
k=0,01720209895;
m=0.000000323;
mu=1.0+m;

ttf1]=2451195.607639;
2al[11=13.6420208;
bl1[1]1=-8.158672;
R[1][1)=0.4385625;
R[1][2]=-0.8074811;
R{1][3]=-0.3500872;
tt{2]=2451251.5%0278;
alf2]=14.680361;
b1[2]=-13.275144;
R[21[1]=0.9867762;
R{2]{2]=-0.1101151;
R[2][3]=~0.0477410;
te{31=2451362.343750;
al[3]=13.794871;
bl[3]=-11.936112;
Rf31[1]=-0.1856244;
R[3}[2]=0.9170884;
R[3][3]=0.3976083;

T=(tt[2]~2451545.0)/36525.0;
ee=(23.439291-0.0130042+*7-0.00000016*T*T)*01;
for {(j=1;j<=3;3++}
{

for {i=l:;i<=3;i++)

{
L{jl[i]=findl{al,bl,j,i});

}
}
tua{1]=k*itt[1]—tt[21):
tual[3]=k*(tt[3]-tt{2]));
tual2l=tua[3}-tuall];
sr2=newteonf{tua,L,R,1.0+m,dij{L,L,L,1,2,3},10.0);
for (i=1;i<=3;i++}
{
plil=0.0;
}

printf {"***Method of Gauss*** \n");
printf{"Determination of Orbit of Mars\n"};
do ’
{
Sr=sr2;
u2=(1.04m}) /{sr*sr*sr):



if (n>0.0)

{
B[1l]1=1.0;

foriq=2;qg<=19;g++)

{

Blgl=Blg-11/q;

i

for (i=1;i<=3;1i+4)

{
H=tua[i};
RO=sr;
DO=f{dot (r,v,2,2})})/sgrt{1.0+m);
AT=2.0/RO-doti{v,v,2,2}/(1.0+m);
C0=1.0-RO*AI;
WW=H*sqrt{l.0+m);
XX=WW/RO;
FX=0.0;DF=1.0;

XE=XX-FX/DF;
KZ2=X¥*X¥;
RXA=K2*AI;
X3I=¥2*¥X;

CC=X2* (B[2]-XA* (B[4]-XA* (B[6]-XA*{B[8]-XA* (B[10]-XA*(B[12)]

~XA* (B{14]-XA* (B{16]-XA*(B[18])})}}}))}):

UU=X3*(B[3]1-XA* (B[5]-XA* (B[7]-XA*(B[8] XA*(B[11l]-¥A*(B[13]

~XA*(B[13]-¥A* (B[17]1-XA*{(B[18])))}1 )}
SS=¥¥X-UU*AT;
FX=RO*XX+CO*UU+DO*CC-WW;
DF=RO+CO*CC+DO*S8;
twhile (fabs {(FX)>1.0a-6) ;
f[i]=1.0-CC/RO;
g[i1={RO*SS+DO*CC} /sqrt (1. 0+m) ;
flil=(fE£li1+f[1]1)/2.0;
glil={ggii]+gl[i]l}/2.0;
}
}
else
{
for (i=l;i<=3;i++}
{
fli]l=1.0-f{u2*tua{i]*tuali]}/2.0;
glil=tuali]-{u2*tualil*tualil*tualil)}/6.0;
}
}
for (j=1;4<=3;9++)
{
ptlji=plils
plil=findp(£,g9,R,L,]3);
vi2][j]=findv(r, frg.3Y:
tfjl=tt{jl-(p{i]l/conj;
fL£(g1=£0]}+
ggijl=glils
for {i=1;i<=3;1i++)
{
r[3F(A1={p[I1*L{3I[4i])-RIIT[1]:
)
}
sr2=sqrti{doti{r,r,2,2));
tua[l]zk*(t[l]*t[2})i
tua[3]1=k*{t[3]-t[2]);
tualZ]l=tua{3]-tuall];
pl=fabs{p{l]-pt[L]});
p2=fabs{p[2]-pt(2]);
p3=fabs (p{3]-pt{3]);
n=n+1;
}while(pl>1.0e-6 || p2>1.0e-6 || p3>1l.0e-86);
printf {"At epoch Julian date: $1f\n",tt[2]);
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printf("The heliccentric distance of Mars at epoch time = %.61f AU\R™,sr);

pgrintf({"------—————————— e

printf{"The position components of Mars at epoch time:\n"):



printf{("x = %.61f\t yv = %.61lf\t 2z = &, 61lf\n", r[2][1),cl2]1{2},c[2][3]}:
printf ("The velocity components of Mars at epoch time:\n"}; 150
printf{("vx= %.61lf\t Vy= %.61f\t Vz= %.61f\n",vI[2][1],vI2][2]),vI[2](3]};

rr[2]1([1]=x{2][1];

rr(2)]I2]=rf(2] [3]*sin(ee}+r[2] (2] *cos {ea);
rr[2][3]1=r[2][3]*cos{ee)-ri{2]([2]*siniee);
vv[z}[li=v[2][1]);
vv[2][2]=v[2] (2] *cos{ea}]+v[2] [3] *sin{ee};
vwl2][3]1=v2]i(3]l*cos{ee)-v[2]([2])*siniee);
hi{2] [t]=rr(2) 2} *vv([2][3]-cc{2] i3] *vv[2]2];
hiz2l{2]=re[2} [3]*vv[2] [1]-rr[2] [1])*vv[2}[3]:
hi2] (3]=rcf2} [1]*vv (2]} [2]-rx[2][2])*vv[2]{1];
hh=det {h,h, 2,2} ;

HH=sqgrt {(hh)};

N[21[1l]=-h[2][2]:

N{2][2]1=h[2][1];:

N[2][3]=0.0;

NN=sqrt{doti{N,N,2,2}];
srr=sqrtidoti{rr,rr,2,2}));
rv=dot {rr,vv,2,2);

V=dot {vv,vv,2,2};
a=1.0/{{(2.0/srr}y~{(V/mu});

for{i=1;i<=3;i++)
{
er(2)[1]=({(V/mu-1.0/srr}*rr[2] fi])-({rv/mu) *vv[2][1i]};
}

P=hh/mu;
e=sqgrt(dotier,er,2,2)});"
O=acos (N[2] [1]/NN)/Q1;

if(N[21([2]<0.0}

{

0=360.0-0;

)

I=acos {h[2] [3]/HH}/Ql;
W=acos (dot (N, er, 2,2}/ (NN*e}}/0L;
if (er[2][31<0.0)
{
W=360.0-W;
1

xb=(P~-srr}/e;
yb=rv*sgrt {P/mu) /e;
b=a*sqrt(l.0-e*e};
cx=xb/a+te;
sx=yb/b;
if{fabs (sx)<=0.707107)
{ Y
X=asin(fabs{sx)}:
}
if{fabs {cx)<=0.707107;
{
X=acos {fabs({cx});
}
1f{ex>=0.0 && sx>=0.0})
{
xX=X;
} £
if{cx<0.0 && sx>=0.0)
{
X=180.0*Q1-X;
}
ifiex<0.0 && =sx<0.0)
{
X=180.0*Qi+X%X;

}
if{cx>»=0.0 && sx<0.0}



f
A=360.0%Ql-X; 151
i

M= {X-e*sx}/Q1;

E=acos ({xb/a)+e} /Ql;

nn=k*sqgrt{mu/ (a*a*a));

T=tt[2]- (M*Ql/nn};

pEintE{ " \n");
printf£("The classical elements of Mars at epoch time : \n"};
printf ("Semimajor axis a= %.61f\n",a);
printf{"Eccentricity e= %.6l1f\n",e);
printf{"Inclinaticn angle from ecliptic i= %.61f\n",1);
printf{"Longitude of ascending node = %,61f\n",0);
printf ("Argument of perihelicn W= %.61f\n",W);
printf ("Time of perifocal passage = %.,61f\n",T);
I=1*Q1;
0=0*Q1;
W=W*Q1l;
M=M*Q1;
E=E*Q1;
E=M;

do

{
Ff=F-e*sin{E)-M;
DFf=1.0-e*cos (E] ;
E=E-{(Ff/DFf) ;
Jwhile(fabs (FL)>=1.0e-6);
Rr=a*{l.0-e*cos (E));
EP=sgrt (mu/a)/Rr;
Bb=a*sqrt{l.0-e*e);
XB=a* (cos {E}—-e};
YB=Bb*sin{E) ;
XP=-a*EP*s5in (E) ;
YP=+Bb*EP*cos (E} ;
PPil]=+cos {(W)*cos{Q)-sin(W)*sin {0} *cos{I);
PP[2]=tcos (W) *sin(Q)+sin{W)*cos {0} *cos (I} ;
PP[3]=+sin{W)*sini{l};
Q0(1l)l=-s5in (W} *cos (O} ~cos (W) *sin{0) *cos (I};
QQ[2]=-sin (W) *sin(0) +cos (W) *cos {0) *cos (I} ;
QC[3]=tcos (W) *sin{I);
for{i=1;i<=3;i++}
{
rR{1])=XB*PP[1]+YB*QQ[1];
Vy{i]=XP*PP[i]+YP*Q0Q[i];
rRO[1]=rR[1]; '
rRO[Z2]1=rR[Z2]*coslee}-rR[3]*sinlee};
rRO[3]=rR[ 3] *cos{ee] +rR[2] *sin{es]);
Vvo{l]l=vv[1l];
VvQ[21=Vv(Z2] *cos (ee)-Vv[3]*sin{ee);
VvO[3l1=Vv[3]l*cos{eec)+tVv[Z2]*sin(ee):

printf ("Recompute the positicon and velocity components from the classical
elements:\n"};
printf{"x = %.61lE\t ¥ $.61f\t z = $.61f\n",rRO[1], rRO[2], rRO{3]);
printf{"Vvz= %.6lf\t Vy= %.61f\t Vz= %.61f\n",VvvO[1l],VvO[2],VVvO[3]);
getch{);
return{0};

}
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Appendix C.8&
Computation of the Astrometric Positions {Jupiter}

#include<stdio.h>
#include<conio.h>
#include<math.h>

double findfg{double *a,dcuble *b,double dt,double m,double k,int chcose}
{
double r0,d0,ai,cl,ww,xx,x2,%x3,%a,cc,uu,ss,BI20], fx,df;
double f,qg,r, fp,gp, result;
int i;
B[11=1.0;
for (i=2;i<=18;i=3i+1}
{
Bl[i]l=B[i-1]/i:
}
rO=sqrti{all]*alll)+{al2]*al2])}+{al3]1*a[3))}:
d0=({al[l)*b[1})+(al2]*b[2})+{al3]*p{3]))/sgrtim};
ai=(2.0/r0)~({b[11*b[1]})+(b[2]1*b[2]}+{(b[3]*b[3]))/m;
c0=1.0-(r0*ai) ;
ww=k*sqgrt {m}*dt;
RE=ww/r0;
do
{
XZ=RA*XX]
xa=x2*ai;
RI=x2F KK}
ce=x2* (Bl2]-xa*(B[4]~-xa*{B[6]-xa* (B[8]-xa*{B[10]-x2a*{B[12]
—xa* (B[ld4]-xa* (B[16])-xa*(B(18]))))}1)));
uu=x3* (B[3]-xa* (B{5b]-xa* (B[7]-xa* (B[9]-xa*(B[ll]-xa*{Bf13]
-xa* (B[15]-xa* (BI{1l7]-xa*{B[29]}1}1)))}));
ss=x¥-uu*ai;
fxr=r0*xx+cO0*uu+d0*coc-ww;
df=r0+cl*cc+d0*ss;
wu=xx- (fx/df};
}while{fabs (fxi>1le-8};
f=1.0-{cc/r0);
g=(r0*ss+d0*cc) /sqgrt{m};
r=r0+cO*cc+dQ*ss;
fp=—sqgrt(m)*ss/ {r*r0};
gp=1.0-{cefr);
if {choose ==1}
result=f;
else if {chooze ==2}
result=qg;
else if ({choose ==3)
result=£fp;
else if {choose ==4)
result=gp;
return result;
}
double mag{double x{4]{4],doukle y[4][4],int a,int b}
{
double ==0.0;
int 1;
for {(i=1;i<=3;i=1i+1)
{
s=s+i{x(a] [i]*y[R] [i]);
}
return sqrt{s);

}

main(}

{



double ab,n,e,k,m, t(101],c(2101)14),v{101}[4],tf,ns;
double rr(4]1,dt,£f,q9,fg,gp,R1[4],v1i4]; 153
double npl(4],ap,p,1104],01;
double x,cd,cx,sx,a,d,am,ah,ac,dd, dm,dc;
int 1i,73,1;
clrscr{);
ab=1,0/173.1446;
rrfl1]=-1.0018289;
rr[2]1=0.0698396;
rr[3]1=0.0302830;
Q1=M PI/LB0.0;
k=0.01720209895;
m=0.0008547514+1.0;
tf=2451440.520833;
ns=1.0;
t[0]=2451440.520833;
dt={tf-t[0])/ns;
r(01[(1]=4.400741;
r{0]1[2]=2.073351;
r(0]1[31=0.774489;
v[3] [1]=-0.210888;
vi0][2}=0.374655;
v(0][3]=0.164454;
for {i=0;i<=ns;i=i+1}
{
if (i==0}
{
printf ("t {%d}=%.61f, r[1]1=%.61f,r[2]1=%.61f,r([3]=%.61lf,mag({r)=%.61Lf\n",1,t[1},
rf0]{11,rf0)[2]),r[0][3],mag{r,r,0,0}};
}
else
{
t[il=t{i-1]+dt;
R1{1l}=r[i-1]{1];R1[2)=r[i-1}1{2];R1{31=c[i-111[3];:
V1{1]=v[i-11{1]1;V1[2]=v([i-1](2];V1[3]=v{i-1]1[3];
f=findfg(R1,V1l,dt,m,k,1};
g=findfg(R1,V1,dt,m, k,2);
fg=findfg{R1l,V1,dr,m, k,3};
gp=findfg{R1l,V1,dt,m,k, 4} ;
for (3=1;3<=3;j=7+1)
{
r{i) [J1=f*r(i-1][3)+g*vI[i-11[3};
vIii} [Jl=fg*c{i-1] ()] +tgp*v([i-1]1(3]:
}
printf ("t {%d)=%.61lf,r[1]=%.61f,r[2]=%.61lf,r[3]=%.61f,mag(r)=%.61£\n", 1,
tfi]l, clil{1],c(4]£2], (11 (3] ,magir, r,i,1}};
printf("v[1]1=%.61f,v{2]=%.61%,vI[3]=%.61f, mag(v)=%.61f\n",v[i}[1l],v[i][2],
vii] [3},magl{v,v,1,1i}};
}
}

for {l=i~1:l>=l;l=l—1}
{

for  {3=1;3<=3;3=3+1)

{
pplil=cll}[jl+rri3d;

}
p=sqrt(ppll]l*pp(il+pp[2]*pp[2)+pp[3])*pp[3]};
ap=ab*p;

while(t[l])-({tf-ap)>le-6&}

{
t[ll=tf-ap;
de=t[1l]1-tfl-1];
R1[(1]=r[1-11[1]:R1{2]=r[1-11([2]:R1{3)=r{1-1][3];
VI1[1]1=v[1-1][1];v1{2]=v[1-1]{2];V1(3]=v{1-1][3];

f=findfg{R1l,v1,dt,m,k,1};

g=findfg(Rl,Vvl,dt,m k,2};

for (j=1;j<=3;3=3+1)

{
r[l)[3]1=f*{c[1-1]Ej1)+g*({v(1i-1}[3]):

}



for (j3=1;3<=3;j=]+1}
{ 154
ppl{il=r[l][3l+er{]];
}
p=sqrt (pplll*pp[ll+ppl[2) *pp[2]+pp[3]1*pp[31};
ap=ab*p;
}
for (j=1;3<=3;3=3+1)
{
11{3l=pplil/p;
}
cd=sqgrt (1.0-(11[{31*11[3]})):
cx=11(1}/cd;
sx=11[2]/cd;
if (sx<=0.707107}
{
x=asin{fabs(sx));
}
1f {ex<=0.707107)
{
x=acos {fabs {cx) };
}
1f (ex>=0.0 && sx>=0.0} x=x;
else 1if {(cx<0.0 && sx>=0.0) x%=180.0*Ql-x;
else 1f {cx<0.0 && sx2<0.0) x=180.0*Ql+x;
else if (cx>=0.0 && sx<0.0) x=360.,0*Ql-x;
a=x/{15.0*Q1};
d={asin(11[31)}/¢1;
printf("\n");
printf("after light time...\n");
printf("r[l]=%.61f,r[2]=%f6lf,r[3]=%.61f,mag(r)=%.6lf\n",r[1]{l],r[l][2],
rfl] {3} ,mag(r,x,1,1));
printf("v[1l]=%.61f,v{2])=%.61f,v[3]=%.61f, mag({v)=%.61lf\n",v[1][1],v([2][2],
v[1][3]),mag({v,v,1,1})});
printf{"\n");
printf{"Right ascension =%.61f Declination =%.61f \n",a,d};
}
getch(}:
return{0j;
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Appendix C.7
Computatien of the Astrometric Positicons {(Mars)

Binclude<stdio.h>
#include<conic. h>
#include<math.h>

double findfg(double *a,double *b,dcuble dt,double m,double k,int choos
{
double r0,d0,ai,c0,ww, xx,x2,x3,4a,cc,uu,ss,B(20), fx,df;
double f,q,r,fp,ap,result;
int i
Bf11=1.0;
for (i=2;i<=19;1=1+1)
{
Blil=B[(i-11/1i;

)
rO=sqrt{(alll*afl])+{al2]*al2]i+t(al3]*a(3]));
do=({alll*b(1l])+{al2]*b{2]})+(al3]*b(3]}) )/ sqrtim);
ai={2.0/r0)~{(b[1j*b[1]}+{b[2]*b{2])+{b[31*b[3]})/n;
c0=1.0-(g0%ai};
wWw=k*sqrt {m) *dt;
xx=ww/rl;
deo
{

H2=XXF RK;

Xa=x2*ai;

X3=KZ2*NXA;

ce=x2*{B[2]-xa*{B{d]-xa* (B{6]l-xa*(B[8]-xa*{B[10]-xa* (B[1l2]-xa*(B[14

-xa* (Blle]l-xa*(B{18]}))3})})));
wu=x3* (B[3]-xa*({B[S5]-xa*{B{7]-x%a* (B[9]-xa*(B[l11l]-xa*(B[13)-xa*(B[15
-xa* {B{1l7]-~xa*{(B[181)}1}})¥v);
ss=xx-uu*ai;
fr=r0*xxtcl*uu+dl*co-ww;
df=r0+cl*cc+d0*ss;
Xx=xx—- (Fx/dEf);
lwhile{fabs{fx}>1le-8);
£=1.0-{cc/ 0} ;
g={rO*ss+d0*cec} /sgqrt(m);
r=r0+cl*cct+dl*ss;
fp=-sqrt{m)*ss/{c*x0);
gp=1.0~(cc/r);
if {choose ==1}
result=f;
else 1f {(choose ==2)
result=g;
else 1if {choose ==3)
result=fp;
else if {choose ==4}
result=gp;
return result;
}
double mag{double x[4][4],double y[4][4],int a,int b)
{

double s=0.0;

int i;

for {(i=1;i<=3;i=1i+1)}

i

s=s+{xlal [L]*y[b][i]);

}
return sqrcis);

}

main(}

{



double ab,n,e,k,m, t{101),r{201][4]),vI101}[4),tf,ns;
double rr(4j},dt,f,qg, fg,gp,RL[4]1,V1[4]; 156
double ppld},ap,p,11{4],01;
double x,cd, cx,sx,a,d,am,ah,ac,dd,dm, dc;
int i,3.1;
clrscr{);
/* 1Initial values */

ab=1.0/173.1446;

rr[1]=0.9867762;

rr[2]1=-0.1101151;

rr(3]=-0.0477410;

Q1=M PI/18B0.0;

k=0.01720209895;

m=0.000000323+1.0;

tf=2451251.590278;

ns=1.0;

t[0]1=2451251.590278;

dt={tf~t[0]}/ns;

rf0][1]=-1.570208;

r{0)[2]=-0G.383017;

r[(0] [3}=-0.132482;

v[0]{1]=0.226879;

vi0)[2]=-0.657073;

v[0)[3]=-0.304540;

for {(1i=0;i<=ns;i=i+1}
{
if (i==0)
{
printf ("t {%d}=%.61f,r[1]1=%.61f,r[2]=%.61f,r[3]=%.61lf,mag(r)=%.61f\n",1i,t[1i],
r(01(1],cf01(2],x[0] (3], mag(x,r,0,0)};
}
else
{
t[i]=t[i-1]+dt;
RI{1I=r{i-1101};RI(2)=c[i-1}(2];R1[3]=r(i-1]113];
Vi[l)=v([i-1])[1];V1[2]l=v[i-1][2]:V1[3]=v({i-1]1[3]1;
f=findfg{Rl,Vvl,dt,m, k,1};
g=findfg{R1l,V1l,dt,m, k,2};
fg=findfg(R1,V1l,dt,m, k, 3) ;
gp=findfg(Rl,Vvl,dt, m,k,4};
for (j=1;j<=3;j=3+1}
{
r(1]EJ1=£*c[i-1} [J3+g*v[i-1][]];
viil [J1=fg*rli-1] [3)+gp*vIi-1)[3]);
}
printf("t{%d;=%.61f,r{1]=%.61f,r[2]=%.61f,r[3]=%.61f, mag(r)=%.61£f\n",1,
tlil, c{d){2],x(d]12),c{d] [3], maglr, r,d,3) )7
printf (" wv{ll=%.61f,v[21=%.61f,v[3]=%.61f,magi{vi=%.61f\n",v[i][1],v{i](2],
vii]l[3] ,mag(v,v,1,1)]);
}
}

for (l=i-1;1>=1;1=1-1}
{
for {(J=1;j<=3;3j=j+1}
{
pplli=cll] [J)+rx(j];
}
p=sqrt{pp{i]l*pp[l]+ppl2])*pp[2]+pp[3]*ppP[3]);
ap=ab*p;
while(t[l)-{tf-ap}>le-5}
{
t{ll=tf-ap:;
de=t[1l]-t[1-1];
R1[1}=r[1-11(1};R1[2)=rf1-1]1[2};R1[3]=x[1-1]1[3];
Vi[1)=v[1-2}{1];V1[2]=v[1-1])[2]):V2[3]=vI1-1])[3]);
f=findfg(R1l,V1l,dt,m,k,1);
g=findfg(R1,V1l,dt,m, k,2);
for (j=1;j<=3;j=j+1}
( .



r{l]} [§}1=£*(r{1-17[3F])) +g*
}
for {(j=1;3<=3;9=3j+1}
{
pelil=r(1]1(jl+rcljl;
1
p=sqrt{ppll)*pplli+ppl2] *pp
ap=ab*p;
}
for {i=1;3<=3;j=3+1}
{
11(31=pp(i]/p;
}
cd=sqrt(1.0~-{11[3]*11([31));
cx=11[11/cd;
sx=11(2])/cd;
if {sx<=0.707107)
{
x=asin(fabs(sx}};
}
if
{

{ex<=0.707107)

x=acos (fabs{cx});
}
1f {ex>=0.0 && sx>=0.40)
else if {cx<d.0 && sx>=0
else if (c¥<0.0 && sx<0.
else 1if {cx>=0.0 && sx<0
a=x/({15.0*Ql);
d={asin({11(3]}}/01;
printf{"\n"}:;
printf{"after light time...\n'"};
printf("r[1]=%.61f,r[2]=%.61f,r[3
e[1) (3], magi{r,z,1,1)};
printf(® vilij=%.61f,v[2)
vilifz],vil} (3}l magiv,v, 1,1
printf("\n"};
printf ("Right ascension =%.86lf
}
getch();
return{gj;

{(v{l-1]1{41);
157

(2)+pp[3]*pp[3]};

X=X;

L0y x=180.0%Q1-x;
0} x=180.0*Ql+x;
L0) x=360.0*Ql-x;

1=%.61f, mag(r}=%,.61f\n", c[1][Y],zx[1]{2],
=%.61f,v[3]1=%.61f, mag{v)=%.61f\n",v[1][1]},
1

Declination =%.61f \n",a,d):
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Appendix C.8
Orbkit Improvement {Jupiter)

#include<stdio.h>
#include<conio.h>
#include<math.h>

fdefine NP 20
#define PC 2.0
#define NM 6

double findfg{double *a,double *b,double dt,double m,double k,int chcose]
{
double r0,d0,ai, cl,ww, xx,x2,%3,%a,cc,uu,s5s,B[20], fx,df;
double f,q,r, fp,gp,cesult;
int 1i;
B[1]=1.0;
for {i=2;i<=19;i=i+1}
{
B[i]=B[i-11/1i;
}
rO=sqrti{(all}*all]}}+{al2]l*al2])+({alf3]*a(3])));
do={{all]l*b[1])+(al2]*b[2)})+(a{3]*b[3]})}/sqrt(m};
ai={2.0/r0) - ((b[1]*b[1])+{(b[2]1*k[2])+(b[3]*b[3]))/m;
cO0=1.0-({r0*ai);
ww=k*sgrt (m)*dt;
XX=wWwW/r0;
do
{
X2=XKX*XX;
Xa=x2%*ai;
X3=x2*uX;
cc=x2* (B[2]-xa*{B[4) —xa* (B[6]-xa*{B[B8]—xa*(B[10]-xa*[B[1l2]-xa*{B[14]

-xa* {B[l6]-xa*(B[181})1})}1)h)):
uu=x3* (B[3]-xa* (B[5]-xa*(B[7]~xa* (Bf[9]-xa*{B[ll]-xa* [(B{13]-xa*{B[15]
—xa* (B[17]-xa*(BI1S]} )0y}

ss=XX-uu*ai;
fx=r0*zx+cl*uu+dd*cc—ww;
df=r0+cO0*cc+dl*ss;
qx=xx— (fx/df)

lwhile (fabs (fx)>1e-8);
f=1.0-{ce/z0) ;
g=(r0*ss+dl*ce) /sqriim) ;
r=r0+c0*cc+dl*ss;
fp=-sqrt{m)*ss/ {r*rl};
gp=1.0-f{cc/r);

if fchoose ==1}
result=£f;

else if (choose ==2)
result=qg;

else 1f {choose ==3)
result=fp;

else if {(choose ==4}
result=gp;

return result;

}

double findad{double *p,docuble gq,int sel)

{
double sx,¢x,1[4]),pp,%,cd, result;
int k;

pp=sqrt ({pll}*pll]}+(p[2]*p{2]1)+({p[3)2*p(3]}};
for {(k=1;k<=3;k=k+1}
{
1lkl=plk]/pp:



}
cd=sqrt{1.0-1[3]*1[3]);
ex=1[1]/cd;
sx=1[2]/cd;
if {sx<=0.707107)
{
x=asin({fabs(sx})):
}
if {ex<=0.707107)
{
x=acos {fabslcx));
}
if {cx>=0.0 && sx>=0.0} =x=x:
else 1f {cx<0.0 && sx>=0.0} x=180.0*g-x;
else if (ox<0.0 && sx<0.0) x=180.0%g+x:
else if {cx>=0.0 && sx<0.0) x=360.0*g-x;
if {sel==1} result=x/(15.0%q);
else 1f (sel==2) result={asin(l1[3]})/q;
return result;
}
double finddc {deuble x[2*NP+1] [NM+2],int sel,int nm,int np}
{
double a[2*NP+1] [NM+2],pe,cd, he,ss,cesult, xu[NM+1}, ce;
int j,i,k,1,11,nn,ne,jp:
ne=2*np;
for {(j=l;j<=nm;j=j+1}
{
for {k=l1l;k<=nm+l;k=k+1)
{
al3l[k}=0.0;
for {(i=1l;i<=ne;i=i+1)
{
aljl [kl=aljl fkl+ix[i]l [J1*x[1i][ki};

for {(i=l;i<=nn-1;i=i+1}

jp=i;
pe=fabs{alil [i]};
for (j=it+l;j<=nn;j=j+1}
{
ce=fabstafj] [i});
if {ce-pe < 0.0)
( .
1f (jp==i}
{
for {(1=i+1;l<=nn;i=1+1)
{
for {ll=i+l;ll<=nn+l;11=11+1}
{

}
alli[i]=0.0;

afl] [1l]=a{l)[11]-(af{l]) {i]*alil[11])}/ali)[i];

}
}

else

{
for (k=i;k<=nn+l;k=k+1)

{
he=al[il] [k]:
alil (kl=aljpllkl:
a[jpl [kl=he;

}

for (l=i+l;l<=nn;l=1+1}
{ .
for (11=i+1;1l<=nn+1;11=11+1})
{
alll(1li=all)[11l)-(all) [i}*a(i][11})/a(i][1];
}
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all)[i1=0.0;
} 160

else

pe=ce;
ip=Ji
}
}
}
xu[nn]=a[nn] [nn+l}/a[nn] [nn]:;
for {i=nn-1;i>»>=1;i=1-1}
{
55=0.0;
for {(k=i+1;k<=nn;k=k+1}
{
ss=ss+al[i] [k]*xul[k];
}
xulil={ali]lnn+l]-ss)/ali] [1];
}
if {sel==l1} result = xull];
else if (sel==2) resgsult = xul2]:

else if (sel==3) result = xuf{3];
else if (sel==4) result = =zu(4];
else if {sel==5} result = =xu[S5];
else 1if (sel==6} result = xul[&l;

return result;
}
main{}
{
double talNP+1),a0[NP+1),d0fNP+L], t(NP+1],RINEP+1]{4],VINP+1]1[4];
double RR{NP+1][4],ec[NM+1],2[2*NP+1] [NM+2],sm[2*NP+1],s[2*NP+1];
double r[d],v[4];
double ab,E,K,M, ne, PE,CE, jp,01, pp, ap;
double dd[NPF+1],da[NP+1],pe[NM+1],ac[NP+1] [NM+1],pa[NP+1] [NM+1];
double 11[4],p[4],xu[NM+1],AINM] [NM+2]),pl(4],pd[NP+1] [NM+1];
double dc[NP+1] {(NM+1],ce[NM+1];
int i,3,k,l,m,z,zz;
double al,bka,dt,f,qg,rr,fp,gp,Rr[NP+1];
char c;
clrscri();
ab=1.0/173.1446;
K=0.01720209895;
Q1=M PI/180.0;
M=0.000954791+1.0;
tf0]=2451440.5208333;

ta[ll= 24511985.,3228167; al[l]l= 23.6957366; d0fl}= -3.28508B70;
ta(2]= 2451202.2916667; a0{2]= 17.6163136; d0[2]= -2.5358570;
ta[3]= 2451209.3194444;° al[3]= 12.8478768; dO[3]= -2.1262348;
tal4]= 2451430.4791687; al0[4]= 2.2047824; d0[4]= 11.4512997;
taf5]= 2451440.5208333; al[5]= 2.1450413; d0[5]=-11.3262380;
ta[6]=2451456.5034722; al[el= 2.0835679; dd[e]= 10.8301864;
tal[7]= 2451471.4527778; ald[7]=1.9173204; dO{7}=-10.3110544;
tafB8]= 2451479.3965278; alfg8]= 1.8636123; d0{8]= ©.9624210;
ta[9)= 2451489.5451389; a0[9)= 1,7323786; d0[8]= 2.0583931;
tall0]=2451480.3750000; al[l10]=1.7655548; d0[10]=9.3103931;
talll]= 2451314.2847222; al[ll]j= 1.6200747%; d0fll]= 8.6415906;
tall2]= 2451520.2%16667; al0[l2]= 1.6366431; dO[12]= B.6327469;
ta[l3]= 2451525.4145833; al[13]= 1.6067960; dof13]= 8.5903537;
ta[l4])= 2451536.2868056; al{ld4]= 1.5958717; dO[l4]= B.6679843;
ta[l5]= 2451548.2986111; al[15]= 1.5974504; dO0[15])= 8.5364612;
tall6]= 2451556.3020833; al[le])= 1.6573597; dO[16]= 8.4131468;
ta[l7]= 2451570.3125000; a0fl17}= 1.738009%; d0{17]= 9.4329030;
ta[l8]= 2451576.3055556; a0[18]= 1.7687759; d0[18]= $5.72248%1;
ta[l18]= 2451583.3437500; a0[19]= 1.861048&4; d0[19]}= 10.1170691;
tal20)= 2451617.3020833; al[20]= 2.2075871; d0[20}= 12.2308209;

eo[l]=4.4004595;
eo[2]=2.0733442;
eo[3]=0.77449¢4;



eo[4]=-0.

2108931;

eo[5)1=0.3746540;
eo[6]=0.1644540;

RR[1]{1]=0.4350822;
RR{2]1[1]=0.5410324;
RR[3][1]1=0.6385634;

RR[1]){2]=-0.805%4893;
RR{Z2}[2}=-0.7544064;
RR[3)[2]=-0.e8738%4;

RR{4]{11=-0.38765745; RR[4][2]=0.2255460;
RR[5]1[1]=-1.0018289; RR{51[2]=0.0698386;
RR[€][1]=-0.9807426; RR[8]{2]=-0.1801977;
RR[7][1)=-0.8943174; RR[7][2]=-0.4022344;
RR({B![1]=-0.8235861; RR[B][2]=-0.5101480;
RR[9])[1]1=-0.5778776; RR[8]12]=-0.7361569;

RR[10] [1)1=-0.7005456;
RR[11][1]=-0.3511939;
RR[12][1]1=-0.2511452;

RR[13][1]=-0.0942162;
RR{14][11=0.

0257542;

RR{10O] [2]=-0.
.8453251;

RR(11j[2)=-

RR{1Z2] [2]=-0.
RRf13]1[2]=~0.
RR[14}1 [2]=-0.

6430284;

B739995;
8987501 ;
9020897;
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RR[1][3]=-0.3509578;
RR{2]1([3])=-0.3270807%;
RR[3][3]1=-0.2980237;
RR[4])[3]=0.,03977893;
RR{5] {3]1=0.0302830;

RR([6] [3]}=-0.0
RR(7][3]=-0.1
RRE{B] [3]1=-0.2
RR[9][3)=-0.3
RR{10][3]=-0.
RRI11][3}=-0.
RR[12] [3]=-0.
RR[13][3]=~0.
RR([14] [3]=-0.

RR[15)11]=0.2335655; RR[15][2]=-0.8763429; RR[15] [3]=-0.
RR[16][1]1=0.3668161; RR[1le][2]=-0.8372123; RR[16][3]=-0.
RR[17][1]1=0.5808886; RR{17]{2]1=-0.7293575; RR[17]([3]=-0.
RR[18][1]=0.6624552; RR[18][2)=-0.6692618; RR[18] [3)=-0.

RR[19])[1]=0.
RRIZ20][1]1=0.

TABB010;
9878263;

RR[19] [2]=-0.
RR({20][2]=-0.

5892035;
1028619;

RR{19][3]=-0.
RR[20][3]1=-0.

for

{

for

{
}

{z=0;z<=NM;z=z+1)
(3=1;J<=NM;]j=3+1)
ce(jl=eoli]:

for (3=1;j<=NP;j=3+1)

{
ctlil=talil;

}

if {(zt=0}

{
pelz]=fabs{ec[z]*PC/100.0);
celzl=eclz]tpelz];

}
for (k=1;k<=3;k=k+1)

{

R{Q]) (kl=celk]:

V[0l [k]=ce[k+3]:;

}
for
{
al=t[1i];
r{1}=R{i-1](1);rf2}=R{1-13({2};c[3]=R{i-1]1[3];
v[1]=vIi-1][1];v[2]=V[i-1][2Fsv[3]=V[i-1][3];

{i=1;i<=NP;i=i+1}

for (k=1;k<=3;k=k+1} p[k]=0.0;
do
{
for (k=1;k<=3;k=k+1} pl[kl=plk]:
tlil=al;

dt=t[il-tfi-1];

f=findfgl{r,v,dt, M, K,1);

g=findfglr,v,dt,M, K, 2};

fp=findfgi{r,v,dt,M, K, 3};

gp=findigi{r,v,dt,M,K, 1};

for (4=1;3<=3;j=3+1)

{

RI1II[J)={E*REA21) 1) Y+ {g*VIi-1113]1):

VL1 (jI=(fp*RI1-11 (11 +{gp*V{i-11(3]);
pl3l=RI1] [J]1+RR{1i][3]:

}

pp=sart {{plll1*pll]i+({p(2]1*pl2] )+ (p(3]1*D(3])};

ap=ab*pp;

al=tali]-ap:

lwhileft[i]-al>le~5);

781227;

743884;

211762;

191625;

2787817;
2664889;
3789209;
3896568;
3911031;
3799378;
3629776;
3162115;
2901584;
2554534;
0445986;



/7
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ac[il[zl=findad({pl,01,1}:;
dce(i]l fz]=findad(pl,Q1,2); 162

for {(k=1;k<=NP;k=k+1)
{
da[k]=alO[k]-ac(k][z];
dd[k1=d0[kl-dc([k]l[z]:
printf{"ta{3d)=%1f da(%d}=%.51f dd{3d)=%.531f\n",k,talk],k,dalk],k,dd[k])
H
printf{"Continue? ");
scanf{"%s", &c);
printf{"\n");
if (e=='y'}
zz=1;
else
{
zZ=NM;
z2=NM;

1
for {i=1l;i<=NP;i=i+1}
{
for {(j=1;3j<=NM;3=3+1}
{
pa{il} [J]1=01%15.0* (ac{i] [3]-ac[i} [0]}/peld];
pdli} [31=Q1* (de[i]1[j]-dcli] [0]}/pel]]:
printf{"pa{%d, 3d)=%1f,pd(%d,3d)=%1f\n",1i,3,pali] (J],i,3,pd{i][3]}¢

for {(i=l;i<=NP;i=1i+1}

{
for (m=1;m<=NM:;m=m+1)
{
x[i] fm]=pa[i]} [m];
X[A+NP) [m]=pd[i] [m] ;
}
®x{1i} [7)1=Q1*15.0*dafi};
x[1+NP] [7]1=Q1*dd[i];

for {i=1;i<=NM;i=1i+1}
{
xul{il=finddc{x,1i,NM,NP);
eo(i]=eo[i)+xulil:
if {e=='v")
{ .
printfi{"de(3d]=%.101f\n", i, xu(il};
}
1
printf{"\n"};
if {c=='y"}
{
for (i=1l;i<=NM;i=1i+1) printf("eo(®d)=%.71f\n",i,e0[il]);
1
}while {zz2<=NM-1) ;
return{0);

}



Appendix C.9
Orbit Improvement (Mars)

#include<stdio.h>
#include<conio.h>
#include<math.h>

#define NP 24
#idefine PC 3.0
#define NM &

double findfg{double *a,double *b,double dt,double m,double k,int choose)
{
double r0,d0,ai,cl,ww,xx,x2,x3,xa,cc,un,ss,B[20], fx,dE;
deuble f,q,r,fp,gp,result;
int i;
B[1}=1.0;
for (i=2;1<=18;1i=1+1}
{
Bii)=B[i-1]/i;
}
rO=sqrt{{afll*all]l)+{al2]*a(2]}+{a[3]*al3])}:
do=({alll*b([ll)+(al2]*R[2])+(al31*k[(3]})]}/sqrt{m};
ai=(2.0/e0) - ({b[11*b[1]}+(b[2]*bI2])+(b[3}*b([3]))/m;
c0=1.0-{r0*ai) ;
ww=k*sqrt (m) *dt;
x=ww/r0;
do
{
XZ2=XXF XN ;
Xxa=X2%ai;
X3=X2*EX;
cc=x2* (BI2]—-xa*(B[4]-xa* (B[6] -xa*(B[B]-xa*{B[1l0]-xa*(B[1l2]-xa*(B[14}
-xa* (B(1l6]-xa* (B[18]})1})}1}));
uu=x3* {B[3]-xa*{B[5]-xa*(B[7)-xa*{B[2]-xa*(B[11l}-xa*(B[13]-xa*(Bf15}
~xa* (B[17]-xa* (B9} }b)idb)ys
ss=XxX-~uu+*ai; \
fr=ri*xx+cl*uu+dO0*cc—ww;
df=r0+cO*cc+dl*ss;
xu=xx-{fx/df};
lwhile({fabs (fx}>1e-8);
f=1.0=(ce/r0});
g={r0*ss+dl*cc)/sgrt{m);
r=r+cl*ce+d0*ss;
fp=-sqrt(m) *ss/{r*r0};
gp=1l.0~{cc/r);
1f (choose ==1)
result=f;
else if (choose ==2)
result=g;
else 1if {choose ==3)
result=£fp;
else if {choose ==4)
result=gp;
return result;

}

double findad{double *p,double q,int sel)

{
double sx,cx,1[4]1,pp,x,cd, result;
int k;

pp=sqrt{ (p(1]*p (1]} +{p(2]1*p(2]1) +i{p(3]1*p[3)));
for (k=1;:k<=3:k=k+1)
{
1(k]l=plk}l/pp;



}
cd=sgrt{1.0-1[3}*1[3]): 164
cx=1[1]/cd;
sx=1[2]/cd;
i {sx<=0.707107)
{
x=asin{fabs{sx)]};
}
1f (cx<=0.707107)
{
X=acos {fabs {cx}));
}
1f {ex>=0.0 && s5x>=0.0) x=X;
else 1if {cx<0.0 && sx>=0.0} x=180.0*g-%;
else 1f {(cx<0.0 && sx<0.0) x=180.0*g+x;
else 1f (cx>=0.0 && s5x<0.0} x=360.0%g-x;
if (sel==1} result=x/{15.0*qg};
else if (sel==2) result={asin{l([3])}/q:
return result;
)
double finddci{double x[2*NP+1] [NM+2],int sel,int nm,int np)
{
double a[2*NP+1] [NM+2],pe,cd,he,ss, result,xu[NM+1], ce, ne;
int 3,1i,k,1,11,nn,Jp;
ne=2*np;
for (j=1;j<=nm;j=j+1}
{
for (k=1;k<=nm+1;k=k+1}
{
aljl{kl=0.0;
for (i=l;i<=ne;i=i+1)

aljllkl=aljl[k]+{x[i} [J}*=x[1]) [k]));

for {i=l;i<=nn-1l;i=i+1}

Ip=i;
pe=fabs (ali] [i]);
for {j=i+1;3<=nn;j=3+1}
{
ce=fabs{alj] [1]};
if {ce-pe < 0.0)
{
it {jp==i)
{
for (l=i+l;l<=nn;:;l=1+1}
{
for (ll=i+1;ll<=nn+1;11=11+1}
{

)
afl}[i]1=0.0;

all}[11]=a[l]) [11]~(a[l]l[il*alil[li]}/afi][i];

}
}
else
{
for (k=i;k<=nn+1;k=k+1)
{
he=al[il{k];
ali} {kl=aljpl fkl;
aljpl [k]l=he;
1
for (1=i+l;l<=nn;l=1+1}
{ .
for (ll=i+l;ll<=nn+1;11=11+1}
{
afl) [11ll=a(l])[11]-{all)lfil>a[i][12])/ali}(i]:
}



)

1=

{
}
}
}

1
}
lse

pe=ce;
jp=37¢

xufnnl=alnn] {nn+l]/alnn] inn);
for {i=nn-1;i>=1;i=1i-1)

{

sz=0

.0;

for {(k=i+1l;k<=nn:k=k+1)

{
}

ss=sstali} [k]*xulk]:

xulil={ali] [nnt+tl)l-ss)/ali](i];

}

if (sel
else 1f
else if
else if
else if
else iF
return

1

maini)

{
double
double
doukble
double
double
double
double

char c;
clrscr(
ab=1.0/
¥=0.017
Ql=M PI
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ta[NP+1],a0[NP+1],d0[NP+1],E[NP+1],R[NE+1] (4], V{NP+1]1[4];
RR(NP+1] {4],ec[NM+1], 2 {2*NP+1]} [NM+2}, sm[2*NP+1),s[2*NP+11]1;

==1} result = xull];
{sel==2] result = xuf2l;
{sel==3} result = =xuf3}:
{sel==4}) result = xuf4};
{sel==5}) result = xuflbs];
{sel==6}) result = xufl6];

result;

r[4],vi4l;

ab,E,K,M,ne, PE,CE,Jp, 01, pp,ap;

dd [NP+1] ,dafiP+1] ,pe(NM+1]),ac(NP+1] [NM+1], pa[NP+1] [(NM+1];
11{4),pl4]l , xulBM+1] ,AINM] [NM42],p1{4], pd (NP+1] [NM+1];
doc[NP+1] {NM+1], ce fHM+1] ;
int i,9,k,1,m,z,2z;
double al,ba,dt,f,qg,rr, fp,gp, Rr{NP+1];

1
173.1446;
20209895;
/180.0;

M=0.000000323+1.0;
t[0]=2451251.5902778;

ta{ll=
ral2l=
tal[3j=
taldi=
tal[b]=
tale]=
tal7l=
tal[8i=
tal[9])=
tal[l0l= 24
tallll= 24
tall2]l= 24
tall3l= 24
tafl4l= 24
tallz]l= 24
tallel= 24
tafl7l= 24
tallBl= 24
tallsl= 24
taf20]= 24
taf2l]= 24
ta{22]l= 24
taf[23]= 24
ta{24]= 24

51280
51280.
51294.
51301.
51314.
51323.
51348.
51351.
51362.
51368.
51412.
51425.
51430.
51462.
51514.

2451185.6076389;
2451202.6354167;
2451209.6041660;
2451216.6180556;
2451230.6041667;
2451237.5833333;
2451245,5208333;
2451253 ,5902778;
2451262.5625000;
.5069444;
4583333;
4583333;
4270833;
5000000,
3225167;
3263888;
3645833;
3437500;
3228167;
3402778;
3645833;
3333333,
2916667;
2881944;

ad[l]
all2]
ad3]
afl4]
a0{5]

ol

ad{el=
ag[il=

alig]
af[9]

af(l0]=
al{l1ll=
ati{iz)=
al{l3]=
ab(l4]=
a{l3]=
at{ié]l=
al{l7]=
ad[18)=
aQ[lg8]=
ad(20]=

aldi21
a0{22
al(23
al[24

)

_— e s

Woaow o

13.2420198;
14.2663048;
14.0285034;
14.2788537;
14,2105357;
14.3906392;
15.0248182;
14.9935338;
15.0858119;
14.6252383;
14.5787627;
14.4457902;
12.8756396;
14.0403476;
13.5165213;
13.5479155;
13.6661617;
13.8756430;
14.1384853;
15.4471007;
16.2511150;
15.7624112;
17.2818063;
20.3555527;

dd{l]= -8.1
do{2]l= -9.2
d0[3)= -10.
di{4]= -10.
do(5l= -11.
dofe]l= -12.
dof{7]= -13.
do(8]= -13.
d0[9l= ~13.
d0{10]= -12.
d0{lij= -11.
db[(i2]= -11.
d0[13)= -10,
d0(14])= -10.
do[l15]= ~9.
d0[le]= -10.
d0f{17)= ~10.
dofls]= -11,
d0[19]= ~-13.
d0[20)= -20.
d0[21)= -22.
d0{22}= -21.
d0[23]= -24.
dof24]}= -20.

586716;
750346;
0563382;
9181036;
7793506;
5106152;
5266501;
3352734;
5937782;
6013976;
9063137%;
5958720;
4012411;
1827789;
4223617;
5873001;
B551768;
598047¢6;
1448762;
2648736;
2402421;
4076129;
5475968;
52772862;



eo[1]=-1.4906253;
eo[2}=-0.3920329;

eo[3]=-0.1235015;

eo[4]=0.

2843121;

eof5]=-0.6817588;
eo[6]=-0.3018053;

RRI11[1]1=0.4395625;
RR{Z2] [1]=0.5460620;
RR[3]{1]1=0.6433622;
RR[4][1]=0.7315683;
RR[5][1]=0.8733278;
RR[6][1]1=0.924925%4;
RR[7][1]=0.9668905;
RR[8][1]=0.9867765;
RR[E8][11=0.9946700;
RR[10]f1]=0.9313965;
RR[11}[11=0.8577205;
RR[12]{1]=0.8209863;
RRI13]1([1]1=0.7480403;
RR[14][1]=0.58380654;
RR[15}1[11=0,4563260;
RR[10][1]=0.0335536;
RR{17]1{1]=-0.0260454;
RR[18]{1)=-0.1856244;
RR[18]{1]1=-0.2839913;
RR[20]{1]1=-0.8610417;
RR(21]1{11=~-0.9532276;
RR[22]{1}=-0.9763829;
RR[23]1{1]=-0.9543424;
RR[24][11=-0.3511327;
for {(z=0;z<=NM;z=z+1)
{ o
for (j=1;j<=NM;ij=j+1}

{

celjl=ec[]]);

}

RR[1][2]=-0.
RR[2] [2])=~0.
RR{3][2]=-0.
RR[4] [2]=-

RR[5] [2]=-0.
RR[6] {2]=-

RR[7][2]=-0
RR[8])[2]=-0.

8074811;
7513933;
6844542,

. 6067593;

4255904;

.3249595;
.2047959;

1101129;

RR{9][2]=0.0634662;

RR[10] [2]=0.
RRI11]{2]1=0.
RR[12] [2}=0.

RR[13][2]=0.
RR[14} [2]=0.
RR{15] [2]=0.

RR[1&] [21=0.

RRE17] [2}=0.
RR[18] [2]=0.
RR[19]{2]=0.
RR[20][2]=0.
RR{21][2]=0.
RR[22][2]=0.

RR[23]1[2]=-0.2684323;
RR[24]1{2]=-0.8453463;

for (j=1l;j<=NP;j=3+1}

{
tijl=tal
}

if

{

{z

Al 2

1=0)

pel[z]=fabs{eolz]*PC/100.0);

celz]=eo

}

for {k=1;k<=3;k=k+1}

{
RLO] [kl=
V0] [k]=
}

[zl+pelz]:

celk];
celk+3]:;

for {(i=1;3i<=NP;i=i+l)

{
al=t[i}]:

3395688;
4805546;
5335016;
6156814;
1572277
8294336;
9317551
9323888;
9170884;
8956636;
AB71323;
3025965;
2277659;
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RR[1][3]=-0.3500872;
RR[2][3]1=-0.3257744;
RR[{3][3]=-0.2967509;
RR[4][3]=~0.2530618;

RR[5} [3]1=-0.1845210;
RR(6] [3]=-0.1408835;
RR[7][3]=-0.0887880;
RR[8][3]=-0.0477410;

RR[9][3]=0.0275135;
RR[10][3]=0.1472210;

RR[11}[3]
RR{12] [3]
RR[13][3]
RR[14] [3]

OO o O

RR[15]{3]=0C.
RR[1&][3]=0.
RR[17][3]1=0.
RR[18][3]=0.

RR[19] [3]=0.
RR{20] [31=0.
RR[21][3]=0.
RR[22] [3]=0.

.2083452;
.2313033;
.2686688;
.3282973;

3596077;
4039711:;
4042451;
3976083;
3883172;
2112020;
1311914;
0987516;

RR{23][3]=-0.1163744;
RR[24][3]=-0.3664981;

r[11=R[i-1]}[1};r[2)=R[1-11[2);r[3])=R[i~1](3];
v[i1]=v{i-1][1];v[2}=V{i-1][2];v[3}=V[i-1]{3];

for {(k=1;k<=3;k=k+1}

do
{

for

t{i]=al;
de=t[(i]-t[i-1]:
f=findfg{r,v,dt,M, K, 1};
g=ftindfg{r,v,dt,M, K, 2});
fp=findfg(r,v,dt,MK, 3);
gp=findfg{r,v,dt,M, K, 4});
for (j=1;j<=3;j=j+1)

{

plkl=0.0;

{k=1;k<=3;k=k+1) plikl=plk];



R{1)[JI=(£*R[i-1)[J1}+(g*V[i-11[]]);
VL) [3)={fp*R(1-1]1 [3))+{gp*V{i-1] [§1}; 167
pl3]1=RI1J[J}+RR[1][]]:
}
pp=sqrt{(p(l1*p (1) +{pl2]1*p[2])+{p[3]1*p[(3]}});
ap=ab*pp;
al=tal[i]-ap;
lwhile{t[i]l-al>le-5;};
ac[i] [z]l=findad{pl,Ql,1};
de[i][z]l=findad({pl,Cl,2};

if {z==0)
{
for (k=1;k<=NP;k=k+1}
{
dalfkl=a0lk]-aclkl[z];
ddlk]=d0[k]-dea[k]) [2]:;
printf("ta{%d)=%1f da{%d)=%.51f dd{%d)=%.51f\n",k,talk].k,
dafkl, k,ddikl);
}
printf {"Continue? ") ;
scanf ["%s", &c) ;
printf{"\n"};
)
zz=1;
else
{
zzZ=NM;
z=NM;

}
for {(i=1;i<=NP;i=i+1}
{
for (j=1;j<=NM;j=j+1}
{
palil [J1=01*15.0* (ac[i] [J]-ac[i][0]})/pel]il:
pd[1](31=Q1* {dc[i] {j]-de[i] [0))/pel]};
}
1
for {(1=1;i<=NP;i=i+1}
{
for (m=1;m<=NM;m=m+l)}
{
x[i} [m]l=pa[i] [m]:
X[1+NPV[m]l=pd[i] [m];
}
X[(1]{7]=Q1*15.0*da[i] ;
X[1+NPI[7])=01*ad[1];
}
for {i=1;i<=NM;i=i+1)
{
xu(i)=finddec{x, i,NM,NP);
eol[i]=eofil+xuli];
1f {c=="y")
{
printf("de[%d]=%.101f\n", i, xuiil};
}
}
printf{("\n"):
if {c=='y")
{
for (i=1;i<=NM;i=i+l) printf{"eo(s%d)=%.71f\n",i,eoli]};
1
twhilef{zz<=NM-1};
return{0};
}
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