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CHAPTER I 
 

INTRODUCTION 
 
1.1 GENERAL 
 The classical problem of determining stress and displacement distribution due to the interaction 
between a plate and a half-space has been a subject of interest in civil engineering since the pioneer 
work by Boussinesq (Boussinesq, 1885) due to its application in the analysis and design of 
foundations. A variety of analytical, semi-analytical and numerical methods have been employed to 
analyze the plate-half-space interaction problem. The deformations as well as the bending moment in 
plate not only depend on the flexibility of the plate, but also on the half-space behavior. The actual 
behavior of the half-space is very complex and several attempts have been made to develop a number 
of idealised models to represent the half-space. 
 One of the most widely used models for soil is the elastic continuum in which the soil is 
assumed to be homogeneous or nonhomogeneous isotropic elastic half-space. Several works on plate-
half-space problem have been presented (Butterfield and Banerjee, 1971; Carrier and Christian, 1973; 
Chakravorty and Ghosh, 1975; Hemsley, 1987; Melerski, 1997, etc.). However, those researchers did 
not take into account the realistic character of soil, which is solid skeleton filled with water, 
commonly known as poroelastic effect. In this thesis, the interaction between a circular elastic plate 
and a multi-layered poroelastic half-space under axisymmetric loading is considered. 
 
1.2 OBJECTIVE AND SCOPE OF PRESENT STUDY 
 The objective of this research is to investigate the interaction between a circular elastic plate 
and multi-layered poroelastic half-space by following a variational method developed by Rajapakse 
(1988) and the exact stiffnes matrix scheme proposed by Senjuntichai and Rajapakse (1995). The 
study is concentrated on the mechanical behavior of the plate-half-space system. The contact surface 
between plate and medium is considered as either fully permeable or impermeable and assumed to be 
smooth. The applied loading is restricted only to the axisymmetric case. A computer program is 
developed to analyze the behavior of contact problem, i.e. displacement, bending moment, contact 
stress, pore pressure, etc. A variety of parametric study is carried out, i.e. the influence of material 
properties, rigidity of plate, type of applied loading, etc. 



 2

1.3 BASIC ASSUMPTIONS 
 The following assumptions are employed in the present study 
1.) Each layer of the multi-layered half-space is a homogeneous poroelastic material and governed by 

Biot’s theory of poroelasticy and all layer interfaces are assumed to be perfectly bonded, i.e. no 
separation occur. 

2.) The plate under consideration is resting on or buried in a multi-layer half-space and subjected to 
axisymmetric loading. 

3.) The contact surface between the plate and the multi-layered poroelastic half-space is assumed to 
be smooth and either fully permeable or impermeable. 

 



CHAPTER II 
 

LITERATURE REVIEWS 
 

The study of interaction between a circular elastic plate and the medium has useful 
applications in civil engineering. For example, the plate-elastic medium model can be used to 
simulate the working load response of surface or embedded foundations, circular columns or the 
shafts of water towers, anchor plates resisting uplift loads and theoretical modeling of some in-
situ testing methods.  

 
In the analysis, it is necessary to choose a suitable soil model for the foundation. Even in 

the elastic range, there are a number of proposed soil models. The simplest among them is the 
Winkler’s model, in which the deformation of a surface point is directly proportional to the 
intensity of the vertical stress at the point, resulting in only one material parameter in the model 
equation. Although the Winkler’s model is very simple and convenient in applications, the 
simulated result to the practice is not good. Another idealization assumes continuum behaviour of 
the soil, and the soil medium is thus represented by an elastic half-space. The basic solution for 
this model can be found in the work of Boussinesq (1855), who analyzed the problem of a semi-
infinite homogeneous isotropic elastic solid subjected to a concentrated force that acts normal to 
the plane boundary. There are two models which have also been used in the analysis of plate-soil 
interaction problem, i.e. non-homogeneous elastic soil and poroelastic soil. 

 
The characteristic of non-homogeneous elastic soil is its Young’s modulus increases 

linearly with depth. Gibson (1967) presented a fundamental study on the response of a linearly 
non-homogeneous incompressible elastic soil subjected to a vertical load at the surface level and 
the several researchers have employed Gibson’s soil model to analyze the interaction problem 
(e.g. Rajapakse and Selvadurai, 1991; Wang, Ni and Cheung, 2000). The theory of poroelasticity 
has its origin in the one-dimensional theory of soil consolidation proposed by Terzaghi (1923). 
Biot (1941) developed a general theory of three-dimensional consolidation of fluid-saturated 
porous elastic solids by adopting Terzaghi’s concepts. Later, Rice and Cleary (1976) reformulated 
Biot’s work in terms of material constants which are more easily identified. Over the last forty 
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years,  Biot’s theory has been the basis for analysis of a variety of geotechnical problems related 
to poroelastic regions.  

 
A comprehensive review of elastic methods of analysis applied the present class of 

problems was presented by Selvadurai (1979). Pickett and McCormick (1951) analyzed the 
contact problem of circular/rectangular plates and the elastic foundation by employing double 
Fourier series techniques. Palmov (1960) and Popov (1971) solved the interaction problem by 
using integral equation methods.  Brown (1969a, b) studied the interaction of a circular raft, 
subjected to an axisymmetrical load, resting on an isotropic elastic layer of finite thickness by 
making use of Burmister’s solution for point loads (Burmister, 1956) and Sneddon’s solution 
(Sneddon, 1951). Hooper (1974, 1975) used a total finite element method to solve the interaction 
of a circular raft bonded to elastic foundation and transversely isotropic medium. Rajapakse and 
Selvadurai (1991) investigated the response of circular footings and anchor plates in non-
homogeneous elastic soils by using variational technique. Yue and Selvadurai (1995) considered 
an interaction between a rigid circular plate and a homogeneous poroelastic half-space by 
employing the integral transform techniques. Recently, Wang, et al. (2000) and Wang and 
Cheung (2001) used the Finite Element method to examine behaviour of a square plate resting on 
the non-homoegneous elastic half-space and on the cross-anisotropic foundation, respectively. 
The interaction of ring plate and a multi-layered transversely isotropic elastic half-space were also 
considered by Antony and Chandreshekhara (2000) by using FEM. 

 
The present study is concerned with the analysis of the elastic circular plate/multi-layered  

poroelastic half-space system resisting axisymmetric load as shown in Figure 1. A variational 
solution scheme (Rajapakse, 1988) is presented in a matrix form. The displacement of the plate is 
represented by a power series of radial co-ordinate containing a set of generalized co-ordinates, 
together with a term corresponding to the particular solution of a centrally loaded circular plate. 
The strain energy of the plate is derived as a quadratic function of generalized co-ordinates. 

 
The next step is to establish a total potential energy functional which consists of the strain 

energy of the plate, the strain energy of the half-space and the potential energy of the external 
loading. The minimization of the energy functional with respect to generalized co-ordinates yields 
a system of linear simultaneous equations. Numerical solution of the equation system yields the 
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values of the generalized co-ordinates for a  system shown in Figure 1. Selected numerical results 
are presented to illustrate the convergence and numerical stability of the proposed variational 
formulation and the response of the elastic plate. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Geometry of plate-multi-layered poroelastic medium system 
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Figure 2. (a) Forces and displacements of nth layer. (b) Free body diagram of the interaction 

problem. (c) Model used to discretize traction into unit annular ring load. 
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CHAPTER III 
 

THEORETICAL CONSIDERATIONS 
 
3.1 BASIC EQUATIONS 

The quasi-static governing equations (Rice and Cleary, 1976) of a poroelastic medium for an 
axisymmetric problem can be expressed in cylindrical co-ordinate, (r, z),  system and time, t, as 
 ∇2ur + 

u21
1
ν− r∂

ε∂  – 2
r

r
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)21(3
)1(B2

u

u
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In which ur and uz are displacements in the r and z direction, respectively, and  ζ denotes the 
variation of fluid volume per unit reference volume. The five material parameters in the above 
equations are the drained and undrained Poisson’s ratios ν and νu, respectively; the shear modulus 
µ(> 0); Skempton’s (1954) pore pressure coefficient B and κ = k/γw where k is the coefficient of 
permeability, γw is the unit weight of pore fluid and κ > 0. It is noted that 0 ≤ B ≤ 1 and ν ≤ νu ≤ 0.5 
for all poroelastic materials. The limiting cases of a poroelastic solid with incompressible 
constituents and a dry elastic material are obtained when νu = 0.5 and B = 1, and B → 0, 
respectively. 

The constitutive relations for a poroelastic material can be expressed by using standard 
indicial notations as 
 σij  =  2µ (εij  + 

ν−
ν
21

 δij ε) – 
)1)(21(B

)(3

u

u
ν+ν−

ν−ν
δij p,      i, j = r, z  (7) 

In eqn (7), σij and εij denote the total stresses and strains component of the bulk material, 
respectively; ε is the dilatation of solid matrix which is defined in eqn (5); δij is the Kronecker δ. 
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In addition, p is the excess pore fluid pressure (suction is considered negative) and can be 
expressed in terms of dilatation and variation of fluid volume as 

 
µ2
p   =  

)21(3
)1(B

u

u
ν−
ν+

− ε  + 
))(21(9

)1)(21(B

uu

2
u

2

ν−νν−
ν+ν−

ζ  (8) 

 
At this stage, it is convenient to nondimensionalize all quantities including the co−ordinate 

frame with respect to length and time by selecting the radius of a circular plate “a” as a unit 
length and “a2/c” as a unit of time, respectively. All variables will be replace by appropriate 
nondimensional variables, but the previous notations will be used for convenience. 

In the following manipulation, the integral transforms technique is used to solve the partial 
differential equations (1)-(3). The Laplace-Hankel transform (mth order) of function φ(r, z, t) with 
respect to the variables t and r, respectively, is defined by (Sneddon, 1951) 

 φ (ξ, z, s)  =  ∫
∞

0
∫
∞

0

φ(r, z, t) e−st Jm(ξr) r dr dt  (9) 

In eqn (9), s and ξ denote the Laplace and Hankel transform parameters respectively, and Jm 
denotes the Bessel function of the first kind of order m. The inverse relationship is given by 

 φ(r, z, t)  =  
i2

1
π ∫

∞+ω

∞−ω

i

i
∫
∞

0

φ  (ξ, z, s) est Jm(ξr) ξ dξ ds  (10) 

where ω is greater than the real part of all singularities of  φ (ξ, z, s) and i is the imaginary 
number. 
 

It can be shown that (Senjuntichai and Rajapakse, 1995) the general solution of solid and 
fluid displacements, pore pressure and stresses in the Laplace-Hankel transform space can be 
expressed in the following matrix form  
 {v}  =  [R]{C}  (11) 
 {f}  =  [S]{C}  (12) 
The element vi (i = 1, 2, 3) of {v} and fi of {f } are given by 
 v1(ξ, z, s)  =  ru ,  v2(ξ, z, s)  =  zu ,  v3(ξ, z, s)  =  p  (13) 
 f1(ξ, z, s)  =  zrσ ,  f2(ξ, z, s)  =  zzσ ,  f3(ξ, z, s)  =  zw  (14) 
and the matrices R(ξ, z, s) and S(ξ, z, s) are defined in the Appendix. The elements of {C} = {A  
B  C  D  E  F} are the arbitrary functions to be determined by employing appropriate boundary 
and/or continuity conditions.  
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3.2 STIFFNESS MATRICES 
Consider a multi-layered poroelastic medium with a total of N poroelastic layers overlying 

a poroelastic half-space with layers and interfaces being numbered as shown in Figure 1. A 
superscript “n” is used to denote quantities associated with the nth layer (n = 1, 2, . . . , N). For an 
nth layer, the following relationships can be established by using eqns (11) and (12). 

 U(n)  =  
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

ξ

ξ

+ )s,z,(
......................
)s,z,(

1n
)n(

n
)n(

R

R
C(n)  (15) 

 F(n)  =  
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

ξ

ξ−

+ )s,z,(
......................
)s,z,(

1n
)n(

n
)n(

S

S
C(n)  (16) 

where  
 U(n)  =  {v(n)(ξ, zn, s)      v(n)(ξ, zn+1 , s)}   (17) 
 F(n)  =  {–f (n)(ξ, zn, s)      f (n)(ξ, zn+1 , s)}   (18) 
In eqns (15)–(18), U(n) denotes a vector of generalized co-ordinates for the nth layer whose 
elements are related to the Laplace-Hankel transforms of displacements and pore pressure of the 
top and bottom surfaces of the nth layer. Similarly, F(n) denotes a generalized force vector whose 
elements are related to the Laplace-Hankel transforms of tractions and fluid displacements of the 
top and bottom surfaces of the nth layer. The matrices R(n) and S(n) in eqns (15) and (16) are 
identical to R and S defined in Appendix except that the material properties of the nth layer are 
used in the definition and z = zn and zn+1. The vector C(n) is the arbitrary coefficient vector 
corresponding to the nth layer. 

The eqn (15) can be inverted to express C(n) in terms of U(n) and the substitution in eqn 
(16) yields 
 F(n)  =  K(n) U(n),      n = 1, 2, . . . , N  (19) 
where K(n) is an exact stiffness matrix in the Laplace-Hankel transform space of the nth layer 
describing the relationship between the generalized displacement vector U(n) and the force vector 
F(n). It is noted that the layer stiffness matrix K(n) is a function of the layer thickness, the layer 
material properties and the Laplace and Hankel transform parameter s and ξ. For the underlying 
half-space, the arbitrary function A(n+1), C(n+1) and E(n+1) are set to be zero to gaurantee the 
regularity of the solutions at infinity. 
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3.3 GLOBAL STIFFNESS MATRIX 
The global stiffness matrix of a multi-layered half-space is assembled by using the layer 

and half-space stiffness matrices together with the continuity conditions of tractions and fluid 
flow at layer interfaces. For example, the continuity conditions at the nth interface can be 
expressed as  

 f (n−1)(ξ, zn , s) – f (n) (ξ, zn , s)  =  T(n)   (20) 

where f (n) is identical to f defined in eqn (12) with superscript “n” denoting the layer number and 

 T(n) =  { )n(
rT      )n(

zT      
s

Q )n(
}  (21) 

where )n(
iT  (i = r, z) and )n(Q  denote the Laplace and Hankel transform of tractions and fluid 

source which applied at the nth interface, respectively. 
The consideration of eqn (20) at each layer interface together with eqn (19) results in the 

following global equation system 
 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+ )1N(

)N(

)2(

)1(

......

K
K

K

K

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+ )1N(

)N(

)2(

)1(

:
:

U
U

U

U

  =  

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+ )1N(

)N(

)2(

)1(

:
:

T
T

T

T

  (22) 

 
The solutions of eqn (22) are the influence functions required to establish the flexibility 

equation for the derivation of the strain energy of a multi-layered poroelastic half-space.. 
 
3.4 BOUNDARY CONDITION OF MULTI-LAYERED HALF-SPACE 

The plate under this consideration is either fully permeable and impermeable. In order 
to compute traction and pore pressure which generated between the process of consolidation, 
eqn (22) is employed together with the following boundary condition 
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The boundary conditions corresponding to a fully permeable top surface (z = 0, 0 ≤ r < ∞) 
can be expressed as 
 σzi

(1)(r, 0)  =  0,      i = r, z  (23a) 
 p(1)(r, 0)  =  0  (23b) 
The continuity conditions at the layer “n” for the case of applied vertical load are given by 
 ui

(n−1) (r, zn) – ui
(n) (r, zn)  =  0,      i = r, z  (24a) 

 σzz
(n−1) (r, zn) – σzz

(n) (r, zn)  =  Fz(r)  (24b) 
 σzr

(n−1) (r, zn) – σzr
(n) (r, zn)  =  0  (24c) 

 p(n−1) (r, zn) – p(n) (r, zn)  =  0  (24d) 
 wz

(n−1) (r, zn) – wz
(n) (r, zn)  =  0  (24e) 

where Fz(r) denotes the intensity of the vertical load applied to a multi-layered half-space. 
 
In order to simulate the pore pressure discontinuity across an impermeable plate, it is 

necessary to consider the discontinuity of fluid pressure together with vertical stress. Such a 
problem is described by the following conditions. 
 ui

(n−1) (r, zn) – ui
(n) (r, zn)  =  0,      i = r, z  (25a) 

 σzz
(n−1) (r, zn) – σzz

(n) (r, zn)  =  β(n)p(n) (r, zn) – β(n−1)p(n−1) (r, zn)  (25b) 
 σzr

(n−1) (r, zn) – σzr
(n) (r, zn)  =  0  (25c) 

 p(n) (r, zn) – p(n−1) (r, zn)  =  P(r)  (25d) 
 wz

(n−1) (r, zn) – wz
(n) (r, zn)  =  0  (25e) 

where P(r) denotes the intensity of fluid pressure discontinuity. 
 
3.5 STRAIN ENERGY OF CIRCULAR PLATE 

The deflection of the circular plate in the z-direction denoted by w(r, t) can be represented 
in the following form: 
 w(r, t)  =  ao(t) r2 ln r + α1(t) + ∑

=

NT

2n
αn(t) rn,      0 ≤ r ≤ 1  (26a) 

where  
 ao(t)  =  PoH(t)/8πD (26b) 
 D  =  Eph3/12(1 – 2

pν ) (26c) 
In eqn (26a), αn(t) (n = 1, 2, . . . , NT) denotes a set of generalized co-ordinates, Po is the 

magnitude of a concentrated force acting at the center of the plate; H(t) is the Heaviside step 
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function; h is the thickness of the plate and Ep and νp are Young’s modulus and Poisson’s ratio of 
the plate material respectively. It may be noted that the term r2 ln r in eqn (26a) is included to 
simulate the singular stress resultants at the plate origin due to the presence of the concentrated 
force PoH(t). In the case of a plate subjected only to distributed loading, the first term in eqn (26a) 
vanishes. By using Laplace transform, eqn (26a) can be expressed in Laplace domain as 
 w (r, s)  =  a o(s) r2 ln r + α 1(s)+ ∑

=

NT

2n
α n(s) rn,      0 ≤ r ≤ 1  (27) 

where s denotes the Laplace transform parameter. 
The bending moments per unit length denoted by Mr and Mt which act on a circumferential 

and diametral section of the plate, respectively, can be expressed as 
 Mr  =  –D[ao[(1 + 2ln r)(1 + νp) + 2] + ∑

=

NT

2n
n(n – 1 + νp) αn rn−2]  (28) 

 Mt  =  –D[ao[(3 + 2ln r)(1 + νp) – 2] + ∑
=

NT

2n
n[(n – 1)νp + 1] αn rn−2]  (29) 

and the shear force per unit length, denoted by Q, is given by 
 Q  =  D[4ao/r + ∑

=

NT

3n
n2(n – 2) αn rn−3]  (30) 

The strain energy, Up, of a thin elastic plate undergoing axisymmetric flexural 
deformations is given by (Timoshenko and Woinowsky, 1959) 

 Up   =  πD ∫
r

0 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ν−−⎟

⎠
⎞

⎜
⎝
⎛ + 2

2

p

2

2

2

dr
wd

dr
dw

r
1)1(2

dr
dw

r
1

dr
wd  r dr  (31) 

 
The substitution of eqn (27) into eqn (31) yields an expression for Up in terms of generalized co-
ordinates α2, α3, . . . , αNT. For the purpose of convenient and efficient numerical implementation 
of the present formulation, the resulting expression for Up is written in the following matrix form: 
 Up   =  (3 + νp)πD 2

oa  + 〈Qp〉{α} + 〈α〉[Kp]{α}  (32) 
The elements p

iQ  of 〈Qp〉 of order NT, and p
ijK of [Kp] of order NT×NT are given by,  

 p
1Q   =  0  (33a) 

 p
iQ   =  2πDao [i(3 + νp) – 4]  (33b) 

 p
j1K   =  p

1iK    =   0  (34a) 

 p
ijK   =  πDij

)2ji(
)]1)(1i(2ij[ p

−+

ν−−− ,      2 ≤ i, j ≤ NT  (34b) 
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3.6 STRAIN ENERGY OF MULTI-LAYERED POROELASTIC MEDIUM 
The vertical loading applied to the plate (see Figure 1) is resisted by contact traction, T z(r, z), 

and pore pressure jumps, T p(r, z), of unknown intensities acting on a circular disc surface S with 
0 ≤ r ≤ 1 in the interior of the medium as shown in Figure 2. The contact tractions in radial 
directions, which are considered to be of secondary importance, are neglected due to the 
assumption of smooth contact surface. 

 
By using basic relationship from classical elasticity theory (Fung, 1965), the strain energy 

Uh can be expressed in the form 

 Uh   =  
2
1 ∫

π2

0
∫
1

0

T (r, z) w(r) rdr dθ   (35) 

where T (r, z) is the resultant of both Tz and Tp. 
The unknown tractions and pore pressure can be expressed in terms of the generalized co-

ordinates αn as 
 Ti   =  Ti1α1 + ∑

=

NT

2n
Tin αn + ao

*
iT ,      i = z, p  (36) 

In the present study, the unknown tractions and pore pressure on S are solved by 
discretizing the surface S into M annular ring elements (Figure 2). It is assumed that Tz and Tp 
within each ring element are constant and can be evaluated by solving a flexibility equation based 
on the influence function derived earlier in eqn (22). A coupled flexibility equation can be 
expressed as 
 [Fzz] {Tzn}  =  {wzn},      n = 1, 2,  . . . , NT   for a permeable plate (37a) 
and 
 ⎥

⎦

⎤
⎢
⎣

⎡
]F[]F[
]F[]F[

pppz

zpzz

⎭
⎬
⎫

⎩
⎨
⎧

}T{
}T{

pn

zn   =  
⎭
⎬
⎫

⎩
⎨
⎧

0
}w{ zn ,      n = 1, 2,  . . . , NT  for an impermeable plate (37b) 

 
where Fij denotes the displacement influence function in the i-direction due to a generalized ring 
load of unit intensity applied in the j-direction. These influence functions are obtained by solving 
flexibility influence function given in eqn (22). 
The elements wzni of {wzn} is given by 
 wz1i   = 1  (38a) 
 wzni   =  n

ir ,      n = 2, 3, . . . , NT  (38b) 
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The tractions Tz
* and pressure Tp

* acting on the ith ring elements is determined by solving 
eqn (37) with  wzni = 2

ir ln ri  
The total traction T is considered as a resultant of Tz and Tp   
 T ni  =  Tzni + βTpni  (39) 
From eqns (26) and  (39), Uh in eqn (35) can be expressed as 
 Uh   =   〈Rz〉{Dz}  (40) 
The elements of Rzi and Dzi of 〈Rz〉 and {Dz} are given by 
 Rzi  =  π ri ∆ri (∑

=

NT

1n
αn T ni + ao T i

*)  (41) 

 Dzi  =  α1 + ∑
=

NT

2n
αn n

ir  + ao ri
2 ln ri  (42) 

In eqn (41)-(42), ri and ∆ri denote the radial co-ordinate at the centre and width of the ith ring 
element. 
From eqn (40)-(42), the following representation can be established for Uh in terms of {α} 
 Uh  =  〈α〉[Kh]{α} + 〈Qh〉{α} + π 2

oa ∑
=

M

1k
∆rk T k

* 3
kr  ln rk  (43) 

The elements Kij
h of [Kh], of order NT×NT is given by 

 K1j
h   =  π ∑

=

M

1k
rk ∆rk T jk,      j = 1, 2, . . . , NT  (44a) 

 Kij
h   =  π ∑

=

M

1k

1i
kr
+ ∆rk T jk,      j = 1, 2, . . . , NT; i = 2, 3,  . . . , NT  (44b) 

The elements Qi
h of 〈Qh〉 in eqn (43) are given by 

 Q1
h  =  πao∑

=

M

1k
rk ∆rk [ T k

* +  2
kr  ln rk T 1k]  (45a) 

 Qi
h  =  πao∑

=

M

1k
rk ∆rk [rk

i T k
* +  2

kr  ln rk T ik],      i = 2, 3,  . . . , NT  (45b) 

 
3.7 VARIATIONAL FORMULATION OF INTERACTION PROBLEM 

The analysis presented in this thesis is based on the principle of minimum potential energy 
which state as follows: 

“Of all the displacements which satisfy the boundary conditions of a structural 
system, those corresponding to stable equilibrium configurations make the total 
potential energy a relative minimum.” 
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For the system of plate-multi-layered medium as shown in Figure 1, we can express the 
total potential energy functional, Π, in the form of quadratic function of the generalized co-
ordinates αn (n = 1, 2, . . . , NT) as 
 Π   =  (3 + νp)πD 2

oa  + π 2
oa ∑

=

M

1k
∆rk T k

* 3
kr  ln rk  

   + [〈Qp〉 + 〈Qh〉]{α} + 〈α〉[[Kp] + [Kh]]{α}  
   – Poα1 – 2πqo( 2

1α  + ∑
=

NT

2n 2n
1
+

αn)  (47) 

The generalized co-ordinates αn (n = 1, 2, . . . , NT) are determined by using the principle of 
minimum potential energy, which requires that 
 

nα∂
∏∂   =  0,      n = 1, 2, . . . , NT  (48) 

The substitution of eqn (47) into eqn (48) yields the following linear simultaneous equation 
system: 
 [Ks]{α}  =  {Fs}  (49) 
where 
 [Ks]  =  [Kp] + [Kp]T +[Kh] +[Kh]T  (50) 
The elements Fi

s of {Fs} are given by 
 F1

s  =  Po + πqo  (51a) 
 Fi

s  =  2πqo/(i + 2),      i = 2, 3, . . . , NT (51b) 
This system can be solved numerically for a specified geometric configuration and material 
parameters of the system shown in Figure 1. Thereafter, the plate deflection profile, the plate 
stress resultants and the net contact stress and pressure acting on the plate can be determined from 
eqn (26), eqn (27)-(29) and eqn (36), respectively. 



CHAPTER IV 
 

NUMERICAL SOLUTIONS 
 
4.1 NUMERICAL SOLUTION SCHEME 

Since the present scheme involves the Laplace-Hankel transforms, the time-domain 
solution is then obtained by numerically evaluating the integrals appearing in eqn (10). The 
integral with respect to ξ in eqn (10) is evaluated by replacing upper limit with a large number and 
employing the trapezoidal rule. A review of literature indicates that the Laplace inversion can be 
carried out very accurately (Piessens, 1975) by using the numerical Laplace inversion method 
proposed by Stehfest (1970). The formula due to Stehfest is given by 
 f(t)  ≈  

t
2ln ∑

=

N

1n
cn f ⎟

⎠
⎞

⎜
⎝
⎛

t
2lnn  (52) 

where f  denotes the Laplace transform of f(t) and 

 cn  =  (–1)n+N/2  ∑
+=

)2/N,nmin(

]2/)1n[(k )!nk2()!kn()!1k(!k)!k2/N(
)!k2(k 2/N

−−−−
 (53) 

and N is even. It is found that accurate time-domain solutions are obtained from eqn (52) with 
N ≥ 6 for poroelasticity problems (Detournay and Cheng, 1988; Rajapakse and Senjuntichai, 
1993). It is important to note that the Stehfest method is computationally quite demanding 
although it is accurate. A more simple and computationally efficient scheme is given by Schapery 
(1962) which can be expressed as 
 f(t)  ≈  [s f ]s = 0.5 / t  (54) 
where f  denotes the Laplace transform of f(t) and s is the Laplace transform parameter. 
 
4.2 COMPARISON WITH EXISTING SOLUTIONS 

The convergence and stability of the proposed solution scheme is studied by varying the 
number of terms NT used in displacement representation given by eqn (26a) and the number of 
ring elements M used to discretize the circular area S. The following relative rigidity parameter 
Kr is used in the numerical study,  

 Kr  =  (1 – 2
sν )

s

p

E
E (

a
h )3     (55) 
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where Es and νs are Young’s modulus and Poission’s ratio of a medium, respectively and h 
denotes the thickness of a circular plate. Since each layer of multi-layered medium has its own 
parameter constants, for convenience, all quantities parameters are normalized by corresponding 
to the top layer of the multi-layered poroelastic half-space. 
 

Table 1. Convergence of  solution, W*(0),  with NT and M for a centrally loaded plate compare 
with Rajapakse(1988); H/a = 0.0, νs = 0.25, Kr = 0.5, νp = 0.3 

  W*(0) 
  Present Study 

NT  M = 10 M = 15 M = 20 M = 25 M = 30 M = 35 
Rajapakse 

(1988) 
1  0.9420 0.9426 0.9429 0.9431 0.9432 0.9433 
2  0.8501 0.8506 0.8508 0.8509 0.8510 0.8509 
4  0.8467 0.8473 0.8475 0.8475 0.8476 0.8474 
6  0.8466 0.8472 0.8474 0.8474 0.8475 0.8473 
8  0.8466 0.8472 0.8473 0.8474 0.8474 0.8473 
10  0.8466 0.8471 0.8473 0.8474 0.8474 0.8473 

0.8478 

 
Table 2. Convergence of  solution, Mr*(0.5a),  with N and M for a centrally loaded plate compare 

with Rajapakse(1988); H/a = 0.0, νs = 0.25, Kr = 0.5, νp = 0.3 
  Mr*(0.5a) 

  Present Study 
NT  M = 10 M = 15 M = 20 M = 25 M = 30 M = 35 

Rajapakse 
(1988) 

1  0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 
2  0.0092 0.0093 0.0094 0.0094 0.0094 0.0096 
4  0.0115 0.0115 0.0116 0.0116 0.0116 0.0118 
6  0.0114 0.0115 0.0115 0.0116 0.0116 0.0118 
8  0.0114 0.0114 0.0115 0.0115 0.0116 0.0118 
10  0.0114 0.0114 0.0115 0.0115 0.0116 0.0118 

0.0116 
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Table 1 and 2 give the influence of NT and M on the dimensionless central displacement 
W*(0) = aw(0)Es/Po and moment at r = 0.5a (Mr*(0.5a) = Mr(0.5a)/aPo), respectively, for a 
centrally loaded plate resting on the surface of an homogeneous elastic half-space. It appears from 
Table 1 and 2 that the accurate computation of stress resultants requires NT ≥ 6 terms. For a 
number of ring elements used to discretize S, the convergence is achieved with M = 20. Similar 
convergence characteristics are also observed for plates subjected to a uniformly distributed load. 
Subsequence numerical results are presented for NT = 10 and M = 20.  

 
Table 3 shows a comparison of dimensionless displacements of a rigid permeable plate 

resting on a free surface of a poroelastic half-space under a concentrated force Po at the center of 
the plate. Results give by Yue and Selvadurai (1995) are also presented for comparison. Two 
numerical Laplace inversion schemes namely Stehfest and Schapery, are used to obtain time-
domain solutions. It is evident that the solutions obtained from Stehfest scheme agree more 
closely with the results presented by Yue and Selvadurai (1995). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Comparison between degree of consolidation settlement of a centrally loaded rigid plate 

from present study ( H/a = 0.0, ν = 0.0, νu = 0.5). 
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Figure 3 illustrates a comparison between the degree of consolidation displacement from  
the present study with the one given by Yue and Selvadurai (1995). The degree of consolidation 
(Uz) is defined as 
 Uz  =  

if

i
ww

ww
−

−  (56) 

where w in eqn (56) denotes the deflection at the centre of the plate and the subscripts i and f 
denote initial and final solutions. It is evident that the present solutions are consistent with the 
existing results. 

 
Table 4 shows a comparison of dimensionless radial bending moment Mr(r)/qa2 and 

tangential bending moment Mt(r)/qa2 along radius of a circular plate with the results 
presented by Brown (1969) who analyzed a uniformly loaded circular rafts on deep elastic 
foundations by using power series techniques. Closely agreement between the two solutions is 
observed for both flexible and relatively rigid plates. In addition, it can be seen that in the case 
of extremely flexible plate (i.e. Kr = 0.01) the maximum bending moment does not occur at the 
center of the plate. 

 
Figure 4 and 5 show comparison of solution with  the results given by Rajapakse and 

Selvadurai (1991) who considered the interaction between circular footing/anchor plate and non-
homogeneous elastic soil. The shear modulus of non-homogeneous soil varies linearly with the 
depth in the following manner 
 µ(z)  =  µo + mz,     m > 0  (57) 
It can be seen from the two figures that the present solutions agree very closely with those 
presented by Rajapakse and Selvadurai  (1991) for both of circular surface footing and anchor 
plate. 
 

Figures 6(a) and 6(b) show a comparison of axial displacement of the rigid plate with the 
results from Selvadurai and Yue (1994). The finite layers resting in bonded contact with a rigid 
impermeable base and the surface of the layer is considered to be either permeable or 
impermeable. Several combinations of ν and νu are used. These results are applicable for h/a  = 1. 
The results in those figures show that the difference between the undrained and drained Poissons 
ratios plays a key role in the consolidation of the plate. The initial response of the non-
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dimensional settlements is governed by the undrained Poisson’s ratio νu. The final response of the 
non-dimensional settlement is governed by the drained Poisson’s ratio ν. 

 
Figures 7(a) and 7(b) illustrate the influence of the hydraulic drainage boundary condition 

at top and bottom surface. It can be seen from these two figures that the final solution are reached 
earlier when the bottom surface is permeable. 
 
4.3 NUMERICAL RESULTS AND DISCUSSOION 

In this section, three examples of interaction between a plate and a multi-layered 
poroelastic half-space are presented. The following non-dimensional time factor is employed in 
the case of multi-layer poroelastic half-space 

 t*   =  
2

)1(

a
c t  (58)  

where the superscript (1) denotes the top most layer of the half-space. 
 
The general behavior of plate-multi-layer poroelastic half-space is illustrated in Problem 1. 

A layered system consists of two poroelastic layers bonded to an underlying poroelastic half-
space, as shown in Figure 8, is considered. Each of layer has thickness equal to radius of a 
circular plate, “a”. The circular plate is resting on the surface of the second layer. The two types 
of applied loading are considered, i.e., a point load and a uniform distributed load. The numerical 
results of Problem 1 are shown in Figures 9-22.  

 
Figure 9 shows time histories of dimensionless displacements (W* = W(0)aµ(1)/Po) and 

radial bending moments at r = 0.01a (Mr* = Mr(0.01a)/aPo) of a centrally loaded plate. For initial 
time, an impermeable plate has smaller displacement and bending moment than a permeable 
plate. It is evidence that final solutions of two types of drainage condition are the same. This is 
due to the fact that for larger time, pore pressure is already dissipated and the consolidation 
process then finishes. It is also found that the maximum values of displacements and bending 
moment occur at the end of the consolidation process. 

 
Figure 10 and 11 present dimensionless central displacement histories and dimensionless 

radial bending moment at r = 0.01a , respectively, with various relative rigidity parameter Kr (Kr 
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= 1, 2, 5, 10, 50, 100, 1000). Again, both of permeable and impermeable plates have different 
initial displacement and bending moment but have the same final solutions. It is found that the 
values of Kr have no effect on the rate of consolidation, i.e. all of displacement histories curve 
almost parallel. But they have a significant influence on the magnitude of the plate displacement. 
It is also found that magnitude of displacement decreases with increasing the value of Kr and a 
stiffer plate yields smaller displacement but larger bending moment. 

Figure 12 and 13 show variation of displacement profile of flexible plate (Kr = 1) and rigid 
plate (Kr = 10000), respectively. For both cases, the deflection profile gradually approaches static 
condition for larger time, i.e. t* = 1000. For a flexible plate, the maximum value of displacement 
occurs at the center of the plate and the profiles between 0.2a < r < 1 appear almost straight line. 
For a rigid plate, the displacement profiles are flat. It is clear that the highest rate of consolidation 
process occurs for 0.01 < t* < 1. 

 
Figure 14 shows variation of final solution (t* = 1000) of displacement and radial bending 

moment profiles of a centrally loaded plate with relative rigidity Kr (Kr = 1, 2, 5, 10, 50, 1000). It 
is observed that a flexible plate yields larger deflection and bending moment than a stiff plate. 

 
The effect of type of loading is investigated by changing the applied load from a point load 

Po to be a uniform load qo distributed over an area of plate surface as shown in Figure 15-22. The 
dimensionless displacement (W* = W(r)µ(1)/aqo) and radial bending moment (Mr* = Mr(r)/qoa2) 
are used in the numerical study. Figure 20(b) shows the variation of a bending moment profile 
with varying relative rigidity parameter Kr. The smooth curves of a bending moment profile is 
observed with the maximum value occurs at the center of plate. At the edge of the plate, the 
bending moment converges to zero as in the case of the point load. 

 
Figures 21(a) and 21(b) present the variation of final solution (t* = 1000) of contact stress 

profiles for both a centrally loaded plate (q* = q(r)a2/Po) and a uniformly loaded plate (q* = 
q(r)/qo), respectively, with relative rigidity parameter Kr. It can be seen that the magnitude of 
contact stress adjacent to the center of plate decreases before increasing near the plate edge, when 
the value of Kr increases. For the case of a point load acting on a flexible plate (Kr > 2), the 
magnitude of contact stress adjacent to center of plate is larger than those near the plate edge. In 
other cases, the contact stress near the plate edge is much higher than that near the plate center. 
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Figure 22(a) shows the variation of pore pressure with time of a uniformly loaded plate at 

position r = 0 and z = a. The interesting phenomenon can be observed that the pore pressure is not 
decreased immediately but gradually increased for a moment and disappeared rapidly.  

 
 
Figure 22(b) illustrate the contact stress profiles at bottom surface of the first layer and the 

top surface of the second layer due to a rigid circular plate subjected a uniform load. It is evidence 
that the upper interface obtained a small tension and lower interface yield compression. 

 
Figure 23 shows the geometry of problem 2, which is the finite layer problem. The system 

consists of three poroelastic layers and a circular plate with a point load Po acting at the center of 
plate with Kr = 1.0. The thickness of the first and the second layer are equal to the radius of a 
plate “a”. The thickness of the third layer is varied as h3 = 0.5a, a, 2a, 5a, 10a and infinity for  the 
extreme case of a half-space. The boundary condition of bottom base is specified as an 
impermeable-rough base (ur = uz = 

z
p

∂
∂  = 0). The solution of this problem, i.e. central 

displacement and radial bending moment at r = 0.01a for permeable and impermeable plate, is 
given in Figures 24 and 25. The trend of the solutions is consistence with the results given before. 
Both displacement and radial bending moment increase with increasing the thickness of the third 
layer. 
 

The problem 3, which studies the effect of depth of embedment is shown in Figure 26. This 
type of problem can be considered as the analysis of a deep foundation. The thickness of second 
layer is varied as h2 = 0.5a, a, 2a, 5a, 10a, 50a, 100a, 1000a. The solution of this problem is given 
in Figure 27-30. The result of this problem shows that deeper footing experiences smaller 
deflection and bending moment. It is noted that when h2 > 50a the results (both displacement and 
bending moment) are almost the same. 

 
Figure 29(b) shows an interesting result that radial bending moment at edge of plate 

converge to zero although the depth of embedment is equal to 1000a. From this result it can be 
concluded that the depth of embedment does not effect the plate edge boundary condition. 
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Figure 30 presents the effect of relative rigidity parameter Kr to the displacement and radial 
bending moment. It is evidence that when Kr > 1000, both the plate deflection and bending 
moment are constant. It can then be concluded that rigid plate behavior can be obtained by setting 
Kr > 1000. 
 



 

CHAPTER V 
 

CONCLUSIONS 
 

The quasi-statics response of an axisymmetric-loaded circular plate buried in a multi-
layered poroelastic half-space is analyzed by using a variational method of analysis. The assumed 
deflected shape is indeterminated with a set of arbitrary constants. The total potential energy 
functional consists of the strain energy of multi-layered media, the strain energy of the circular 
plate and the potential energy of the applied loads. The unknown constants are obtained from the 
linearly independent algebraic equations generated from the minimization of the total potential 
energy functional. The accuracy of the present scheme is confirmed by comparing with the 
existing results.  

Numerical solutions presented in the chapter IV demonstrate the applicability of the 
present solution scheme. Selected numerical results for different layered systems indicate that the 
behavior of the plate is governed by various parameters. The influence of these parameters on the 
plate and a multi-layered poroelastic half-space system can be summarized as follows: 

 
1.) The deflection of the circular plate decreases rapidly with increasing values of the relative 

rigidity parameter Kr of the plate, and a plate with Kr ≥ 1000 can be considered as a rigid plate. 
 
2.) The final solution is obtained when t* > 100. 
 
3.) The hydraulic boundary conditions at the plate-half-space interface, i.e. permeable and 

impermeable plate surface, have significant influence on the consolidation process. However, 
the final solution of both cases are equal. 

 
The present method can also be extended to analyze the various types of interaction 

problems, for example, the problem of arbitrary axisymmetric loads, the problem of a ring plate 
and the problem of multiple anchor plates, etc. 
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Table 3. Comparison of dimensionless displacements, aµw/Po, of a rigid circular plate. 
 

 ν = 0.0  ν = 0.1  ν = 0.2 
 Current Study  Current Study  Current Study ct/a2 
 Schapery Stehfest 

Yue & 
Selvadurai 

(1995)  Schapery Stehfest 

Yue & 
Selvadurai 

(1995)  Schapery Stehfest 

Yue & 
Selvadurai 

(1995) 
0.04  0.162 0.157 0.156  0.157 0.153 0.152  0.151 0.148 0.147 
0.16  0.183 0.178 0.177  0.173 0.170 0.168  0.163 0.160 0.159 
0.36  0.196 0.193 0.191  0.184 0.181 0.180  0.171 0.169 0.168 
0.64  0.205 0.203 0.202  0.191 0.190 0.188  0.176 0.175 0.174 
1.00  0.212 0.211 0.210  0.196 0.196 0.194  0.180 0.180 0.178 
1.44  0.217 0.217 0.215  0.200 0.200 0.199  0.183 0.183 0.181 
1.96  0.221 0.221 0.220  0.203 0.204 0.202  0.185 0.185 0.184 

 
 

 ν = 0.3  ν = 0.4   
 Current Study  Current Study   ct/a2 
 Schapery Stehfest 

Yue & 
Selvadurai 

(1995)  Schapery Stehfest 

Yue & 
Selvadurai 

(1995)    
 

0.04  0.144 0.142 0.141  0.136 0.134 0.134     
0.16  0.152 0.150 0.149  0.140 0.139 0.138     
0.36  0.157 0.155 0.155  0.142 0.142 0.141     
0.64  0.161 0.160 0.159  0.144 0.143 0.143     
1.00  0.163 0.163 0.162  0.145 0.145 0.144     
1.44  0.165 0.165 0.164  0.146 0.146 0.145     
1.96  0.166 0.166 0.165  0.147 0.146 0.145     

 
 
 

rigid plate Po  

homogeneous 
poroelastic 
half-space 
νu = 0.5 
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Table 4(a). Comparison of dimensionless radial bending moment (Mr* = Mr(r)/qoa2).  

  Kr = 0.01  Kr = 0.1  Kr = 1  Kr = 10 

r/a  Present 
study 

Brown 
(1969)  Present 

study 
Brown 
(1969)  Present 

study 
Brown 
(1969)  Present 

study 
Brown 
(1969) 

0.0  0.0012 0.0012  0.0145 0.0146  0.0554 0.0567  0.0726 0.0747 
0.1  0.0012 0.0012  0.0145 0.0146  0.0548 0.0561  0.0717 0.0737 
0.2  0.0013 0.0013  0.0145 0.0146  0.0528 0.0541  0.0688 0.0708 
0.3  0.0014 0.0014  0.0143 0.0145  0.0495 0.0508  0.0640 0.0659 
0.4  0.0016 0.0016  0.0140 0.0142  0.0448 0.0461  0.0574 0.0593 
0.5  0.0018 0.0018  0.0133 0.0136  0.0389 0.0401  0.0492 0.0509 
0.6  0.0021 0.0021  0.0121 0.0125  0.0316 0.0329  0.0394 0.0411 
0.7  0.0023 0.0024  0.0101 0.0106  0.0234 0.0246  0.0286 0.0301 
0.8  0.0023 0.0024  0.0071 0.0076  0.0143 0.0154  0.0171 0.0184 
0.9  0.0015 0.0017  0.0032 0.0037  0.0055 0.0063  0.0063 0.0072 
1.0  0.0000 0  -0.0001 0  -0.0001 0  -0.0001 0 

 
 

Table 4(b). Comparison of dimensionless tangential bending moment (Mt* = Mt(r)/qoa2) 

  Kr = 0.01  Kr = 0.1  Kr = 1  Kr = 10 

r/a  Present 
study 

Brown 
(1969)  Present 

study 
Brown 
(1969)  Present 

study 
Brown 
(1969)  Present 

study 
Brown 
(1969) 

0.0  0.0012 0.0012  0.0145 0.0146  0.0554 0.0567  0.0726 0.0747 
0.1  0.0012 0.0012  0.0145 0.0146  0.0551 0.0564  0.0721 0.0741 
0.2  0.0012 0.0012  0.0145 0.0146  0.0539 0.0552  0.0705 0.0724 
0.3  0.0013 0.0013  0.0144 0.0146  0.0520 0.0533  0.0677 0.0696 
0.4  0.0014 0.0014  0.0143 0.0144  0.0493 0.0506  0.0639 0.0658 
0.5  0.0015 0.0015  0.0139 0.0142  0.0459 0.0472  0.0590 0.0609 
0.6  0.0017 0.0017  0.0134 0.0136  0.0417 0.0430  0.0533 0.0551 
0.7  0.0019 0.0019  0.0124 0.0127  0.0369 0.0381  0.0469 0.0486 
0.8  0.0019 0.0020  0.0110 0.0114  0.0315 0.0327  0.0399 0.0415 
0.9  0.0017 0.0018  0.0091 0.0095  0.0260 0.0271  0.0328 0.0343 
1.0  0.0011 0.0012  0.0072 0.0074  0.0214 0.0222  0.0271 0.0283 
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Figure 4. Comparison of variation of normalized central deflection of a uniformly loaded plate 
with relative rigidity Kr and degree of non-homogeneity, m*, (from present study with results 

from Rajapakse and Selvadurai, 1991). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Comparison of variation of normalized central deflection of anchor plates with relative 
rigidity Kr and depth of embedment for a soil with µo = 0, (from present study with results from 

Rajapakse and Selvadurai, 1991). 
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Figure 6. Comparison of axial displacement of the rigid plate. 
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Figure 7. Effect of Poisson’s ratios and surface drainage on the consolidation induced axial 
displacement of the rigid punch. 
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 B ν νu µ(i)/µ(1) κ(i)/ κ(1) 
1st layer 1.0 0.25 0.50 1 1 
2nd layer 0.8 0.20 0.35 2 10 

half-space 0.6 0.15 0.30 3 0.5 
 

Figure 8. Geometry of problem 1. 

Po qo 1 

2 

half-space 

h1 = a 

h2 = a 
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Figure 9. Variation of (a) dimensionless central displacement W*(0) and (b) radial bending 
moment Mr*(0.01a) of a centrally loaded plate with time and drainage boundary condition. 

(a)

log10 (t*)

-6 -5 -4 -3 -2 -1 0 1 2 3

W*

.110

.115

.120

.125

.130

.135

permeable plate
impermeable plate

Kr = 1.0

W* = W(0)aµ(1)/Po

point load

(b)

log10 (t*)

-6 -5 -4 -3 -2 -1 0 1 2 3

Mr*

.340

.345

.350

.355

.360

.365

.370

permeable plate
impermeable plate

Mr* = Mr(0.01a)/aPo

Kr = 1.0

point load



 32

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Variation of dimensionless central displacement W*(0) of a centrally loaded plate with 

time and relative rigidity parameter Kr. 
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Figure 11. Variation of radial bending moment Mr*(0.01a) of a centrally loaded plate with time 
and relative rigidity paraemter Kr. 
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Figure 12. Variation of displacement profile of a centrally loaded plate (Kr = 1.0) with times. 
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Figure 13. Variation of displacement profile of a centrally loaded rigid plate (Kr = 10000) with times. 
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Figure 14. Variation of (a) displacement profile and (b) radial bending moment profile of a 
centrally loaded plate with relative rigidity Kr. 
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Figure 15. Variation of (a) dimensionless central displacement W*(0) and (b) radial bending 
moment Mr*(0) of a uniformly loaded plate with time and drainage boundary condition. 
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Figure 16. Variation of dimensionless central displacement W*(0) of a uniformly loaded plate 
with time and relative rigidity parameter Kr. 
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Figure 17. Variation of dimensionless radial bending moment Mr*(0) of a uniformly loaded plate 

with time and relative rigidity parameter Kr. 
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Figure 18. Variation of displacement profile of a uniformly loaded plate (Kr = 1.0) with times. 
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Figure 19. Variation of displacement profile of a uniformly loaded rigid plate (Kr = 10000) with times. 
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Figure 20. Variation of (a) displacement profile and (b) radial bending moment profile of a 

uniformly loaded plate with relative rigidity Kr. 
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Figure 21. Variation of contact stress profile of (a) a centrally loaded plate and (b) a uniformly 
loaded plate with relative rigidity Kr. 
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Figure 22. (a) Pore pressure history beneath the plate (z = a, r = 0).  (b) Final solution of the 

contact stress profiles at the bottom surface of the first layer and the top surface of the second 
layer due to a circular plate subjected a uniform load.
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 B ν νu µ(i)/µ(1) κ(i)/ κ(1) 
1st layer 1.0 0.25 0.50 1 1 
2nd layer 0.8 0.20 0.35 2 0.1 
3rd layer 0.6 0.15 0.30 10 0.01 

 
h3 = 0.5a, a, 2a, 5a, 10a, infinity (half-space) 
boundary condition for impermeable rough base ur = uz = 0 and 

z
p

∂
∂  = 0 at bottom base 

 
Figure 23. Geometry of problem 2. 
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Figure 24. Variation of dimensionless central displacement W*(0) of a centrally loaded plate 
(Kr = 1.0) with time and depth of the 3rd layer. 
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Figure 25. Variation of radial bending moment at r = 0.01a of a centrally loaded plate (Kr = 1.0) 

with time and depth of the 3rd layer. 
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 B ν νu µ(i)/µ(1) κ(i)/ κ(1) 
1st layer 1.0 0.25 0.50 1 1 
2nd layer 0.8 0.20 0.35 2 0.1 

half-space 0.6 0.15 0.30 10 0.01 
 h2 = 0.5a, a, 2a, 5a, 10a, 50a, 100a, 1000a 
 

Figure 26. Geometry of problem 3. 
 

qo 

1 

2 

half-space 

h1 = a 

h2 = vary 



 49

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27. Variation of dimensionless central displacement of a uniformly loaded plate (Kr = 2.0)  

with time and thickness of the 2nd layer. 
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Figure 28. Variation of dimensionless radial bending moment Mr*(0) of a uniformly loaded plate 

(Kr = 2.0) with time and thickness of the 2nd layer. 
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Figure 29. Variation of final solution of (a) displacement profile and (b) radial bending moment 
profile of a uniformly loaded plate with depth of the 2nd layer. 
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Figure 30. Variation of (a) dimensionless central displacement W*(0) and (b) dimensionless 
radial bending moment Mr*(0) of a uniformly loaded plate with relative rigidity parameter Kr and 

thickness of the 2nd layer. 
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APPENDIX 
 

The matrices R and S in eqns (11) and (12), respectively, are given by 
 

R = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

µη−µη−ηµηµ

−
ξ

+−
ξ

−−γδ−γδ

−ξδ−ξδ−

ξ−ξγ−γ

ξ−ξξ−ξγ−γ

ξ−ξξ−ξγ−γ

00ea2ea2ea2ea2

eee)
a

za(e)
a

za(ee

eezeazeaee

z
4

z
4

z
3

z
3

zzz2
1

z2
1

zz

zzz
1

z
1

zz

 (A1) 

 

S =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

δκξ−δκξδκγδκγ−

ξ−ξ−ξ+ξ−δξδξ

ξ−ξ+ξ−ξγξδγξδ−

µ
ξ−ξγ−γ

ξ−ξξ−ξγ−γ

ξ−ξξ−ξγ−γ

00e
c

ae
c

ae
c

ae
c

a

eee)zaa(e)zaa(ee
eee)za(e)za(ee

2
z

4
z

4
z

3
z

3

zzz
14

z
14

z2z2

zzz
2
1

1
z

2
1

1
zz

(A2) 

 
a1 = 

)21(2
1

uν−
,     a2 = 

)21(2
)43(

u

u
ν−
ν− ,     a3 = 

)(3
)1)(1(B

u

u
ν−ν

ν−ν+ ,     a4 = 
)21(
)1(

u

u
ν−
ν−  (A3) 

 

η  = 
)1(3
)1(B

u

u
ν−
ν+ ,     c = 2µκηa3,     γ  = 

c
s2 +ξ ,     δ  = 

c/s
η  (A4) 

 
 
 
 



 58

BIOGRAPHY 
 
Mr. Songkran Siridejachai was born in Phitsanuloke in 1975. He graduated from Faculty 

of Engineering, Chulalongkorn University in 1997. He continued his education for Master Degree 
in Civil Engineering at Chulalongkorn University. 


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction 
	1.1 General 
	1.2 Objective and scope of present study 
	1.3 Basic assumptions 

	Chapter II Literature reviews 
	Chapter III Theoretical considerations 
	3.1 Basic equations 
	3.2 Stiffness matrices 
	3.3 Global stiffness matrices 
	3.4 Boundary conditions of multi-layered half-space 
	3.5 Strain energy of circular plate 
	3.6 Strain energy of multi-layered poroelastic medium 
	3.7 Variational formulation of interaction problem 

	Chapter IV Numerical solutions 
	4.1 Numerical scheme 
	4.2 Comparison with existing solutions 
	4.3 Numerical results and discussion 

	Chapter V Conclusions 
	References
	Appendix
	Biography

