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This thesis is concerned with the interaction between an axisymmetrically loaded circular
plate buried in a multi-layered poroelastic half-space by employing an energy method. The
assumed deflected shape is in the form of a set of undetermined constants. The total potential
energy functional consists of the strain energy of multi-layered media, the strain energy of the
circular plate and the potential energy of the applied loads. The unknown constants are obtained
from a linearly independent algebraic equation system obtained from the minimization of the total
potential energy functional. The accuracy of the present scheme is confirmed by comparing with
the existing results. Selected numerical results for displacement and bending moment of a plate as
well as stresses and pore pressure in a multi-layered poroelastic half-space are presented to
portray the influence of plate stiffness, types of loading and poroelastic material properties on the

interaction problem.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

The classical problem of determining stress and displacement distribution due to the interaction
between a plate and a half-space has been a subject of interest in civil engineering since the pioneer
work by Boussinesq (Boussinesq, 1885) due to its application in the analysis and design of
foundations. A variety of analytical, semi-analytical and numerical methods have been employed to
analyze the plate-half-space interaction problem. The deformations as well as the bending moment in
plate not only depend on the flexibility of the plate, but also on the half-space behavior. The actual
behavior of the half-space is very complex and several attempts have been made to develop a number
of idealised models to represent the half-space.

One of the most widely used models for soil is the elastic continuum in which the soil is
assumed to be homogeneous or nonhomogeneous isotropic elastic half-space. Several works on plate-
half-space problem have been presented (Butterfield and Banerjee, 1971; Carrier and Christian, 1973;
Chakravorty and Ghosh, 1975; Hemsley, 1987; Melerski, 1997, etc.). However, those researchers did
not take into account the realistic character of soil, which is solid skeleton filled with water,
commonly known as poroelastic effect. In this thesis, the interaction between a circular elastic plate

and a multi-layered poroelastic half-space under axisymmetric loading is considered.

1.2 OBJECTIVE AND SCOPE OF PRESENT STUDY

The objective of this research is to investigate the interaction between a circular elastic plate
and multi-layered poroelastic half-space by following a variational method developed by Rajapakse
(1988) and the exact stiffnes matrix scheme proposed by Senjuntichai and Rajapakse (1995). The
study is concentrated on the mechanical behavior of the plate-half-space system. The contact surface
between plate and medium is considered as either fully permeable or impermeable and assumed to be
smooth. The applied loading is restricted only to the axisymmetric case. A computer program is
developed to analyze the behavior of contact problem, i.e. displacement, bending moment, contact
stress, pore pressure, etc. A variety of parametric study is carried out, i.e. the influence of material

properties, rigidity of plate, type of applied loading, etc.



1.3 BASIC ASSUMPTIONS
The following assumptions are employed in the present study

1.) Each layer of the multi-layered half-space is a homogeneous poroelastic material and governed by
Biot’s theory of poroelasticy and all layer interfaces are assumed to be perfectly bonded, i.e. no
separation occur.

2.) The plate under consideration is resting on or buried in a multi-layer half-space and subjected to
axisymmetric loading.

3.) The contact surface between the plate and the multi-layered poroelastic half-space is assumed to

be smooth and either fully permeable or impermeable.



CHAPTER 11

LITERATURE REVIEWS

The study of interaction between a circular elastic plate and the medium has useful
applications in civil engineering. For example, the plate-elastic medium model can be used to
simulate the working load response of surface or embedded foundations, circular columns or the
shafts of water towers, anchor plates resisting uplift loads and theoretical modeling of some in-

situ testing methods.

In the analysis, it is necessary to choose a suitable soil model for the foundation. Even in
the elastic range, there are a number of proposed soil models. The simplest among them is the
Winkler’s model, in which the deformation of a surface point is directly proportional to the
intensity of the vertical stress at the point, resulting in only one material parameter in the model
equation. Although the Winkler’s model is very simple and convenient in applications, the
simulated result to the practice is not good. Another idealization assumes continuum behaviour of
the soil, and the soil medium is thus represented by an elastic half-space. The basic solution for
this model can be found in the work of Boussinesq (1855), who analyzed the problem of a semi-
infinite homogeneous isotropic elastic solid subjected to a concentrated force that acts normal to
the plane boundary. There are two models which have also been used in the analysis of plate-soil

interaction problem, i.e. non-homogeneous elastic soil and poroelastic soil.

The characteristic of non-homogeneous- elastic soil is its Young’s modulus increases
linearly with depth. Gibson (1967) presented a fundamental study on the response of a linearly
non-homogeneous incompressible elastic soil subjected to a vertical load at the surface level and
the several researchers have employed Gibson’s soil model to analyze the interaction problem
(e.g. Rajapakse and Selvadurai, 1991; Wang, Ni and Cheung, 2000). The theory of poroelasticity
has its origin in the one-dimensional theory of soil consolidation proposed by Terzaghi (1923).
Biot (1941) developed a general theory of three-dimensional consolidation of fluid-saturated
porous elastic solids by adopting Terzaghi’s concepts. Later, Rice and Cleary (1976) reformulated

Biot’s work in terms of material constants which are more easily identified. Over the last forty



years, Biot’s theory has been the basis for analysis of a variety of geotechnical problems related

to poroelastic regions.

A comprehensive review of elastic methods of analysis applied the present class of
problems was presented by Selvadurai (1979). Pickett and McCormick (1951) analyzed the
contact problem of circular/rectangular plates and the elastic foundation by employing double
Fourier series techniques. Palmov (1960) and Popov (1971) solved the interaction problem by
using integral equation methods. Brown (1969a, b) studied the interaction of a circular raft,
subjected to an axisymmetrical load, resting on an isotropic elastic layer of finite thickness by
making use of Burmister’s solution for point loads (Burmister, 1956) and Sneddon’s solution
(Sneddon, 1951). Hooper (1974, 1975) used a total finite element method to solve the interaction
of a circular raft bonded to elastic foundation and transversely isotropic medium. Rajapakse and
Selvadurai (1991) investigated the response of circular footings and anchor plates in non-
homogeneous elastic soils by using variational technique. Yue and Selvadurai (1995) considered
an interaction between a rigid circular plate and a homogeneous poroelastic half-space by
employing the integral transform techniques. Recently, Wang, et al. (2000) and Wang and
Cheung (2001) used the Finite Element method to examine behaviour of a square plate resting on
the non-homoegneous elastic half-space and on the cross-anisotropic foundation, respectively.
The interaction of ring plate and a multi-layered transversely isotropic elastic half-space were also

considered by Antony and Chandreshekhara (2000) by using FEM.

The present study is concerned with the analysis of the elastic circular plate/multi-layered
poroelastic half-space. system resisting axisymmetric load as-shown-in Figure 1. A variational
solution scheme (Rajapakse, 1988) is presented in a matrix form. The displacement of the plate is
represented by a-power series. of radial co-ordinate containing a set of generalized co-ordinates,
together with a term corresponding to the particular solution of a centrally loaded circular plate.

The strain energy of the plate is derived as a quadratic function of generalized co-ordinates.

The next step is to establish a total potential energy functional which consists of the strain
energy of the plate, the strain energy of the half-space and the potential energy of the external
loading. The minimization of the energy functional with respect to generalized co-ordinates yields

a system of linear simultaneous equations. Numerical solution of the equation system yields the



values of the generalized co-ordinates for a system shown in Figure 1. Selected numerical results
are presented to illustrate the convergence and numerical stability of the proposed variational

formulation and the response of the elastic plate.

Z—Zl I ) .
z=1z, I
2

z=17,

e ’

P _H(® g H(D
ircular plat

[TIITITTITT] o cireularplae ||

" n I 2a |

Figure 1. Geometry of plate-multi-layered poroelastic medium system
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CHAPTER III

THEORETICAL CONSIDERATIONS

3.1 BASIC EQUATIONS
The quasi-static governing equations (Rice and Cleary, 1976) of a poroelastic medium for an

axisymmetric problem can be expressed in cylindrical co-ordinate, (r, z), system and time, t, as

2 1 o6g u, 2B(l+v,) ¢

VOt T e 2 sy ar W
"k B
A s )

where
v2 < 8_3;2« +%% + a% )
§ aaurr = uTr aauzZ ©)
o ukBA=v)1+v,)° ©

9 -(I=2W, - V)

In which u_and u, are displacements in the r and z direction, respectively, and § denotes the
variation of fluid volume per unit reference volume. The five material parameters in the above
equations are the drained and undrained Poisson’s ratios v and v , respectively; the shear modulus
u(> 0); Skempton’s (1954) pore pressure coefficient B and k = k/y, where k is the coefficient of
permeability, y, is the unit weight of pore fluid and k > 0. It isnoted that 0<B<1landv<v <0.5
for all poroelastic materials. The limiting cases of a poroelastic ‘solid with incompressible
constituents and a dry elastic material are obtained when V= 0.5 and B =1, and B — 0,
respectively.

The constitutive relations for a poroelastic material can be expressed by using standard

indicial notations as
3(v, —V)
T BA-2v)@+v,) i P

S V_ 5 ¢) iLj=r,z @)

ij 1-2v i
In eqn (7), Ojj and & denote the total stresses and strains component of the bulk material,

respectively; € is the dilatation of solid matrix which is defined in eqn (5); 8ij is the Kronecker 9.



In addition, p is the excess pore fluid pressure (suction is considered negative) and can be

expressed in terms of dilatation and variation of fluid volume as

P B@+v,) +BZ(1—2v)(1+vu)2

20 30-2v,) " 9l-2vy)(v, V) ®

At this stage, it is convenient to nondimensionalize all quantities including the co—ordinate
frame with respect to length and time by selecting the radius of a circular plate “a” as a unit
length and “a?/c” as a unit of time, respectively. All variables will be replace by appropriate
nondimensional variables, but the previous notations will be used for convenience.

In the following manipulation, the integral transforms technique is used to solve the partial

differential equations (1)-(3). The Laplace-Hankel transform (mth order) of function ¢(r, z, t) with

respect to the variables t and r, respectively, is defined by (Sneddon, 1951)

6(&, z,8) = j o(r, z, t) g™ Jm(ﬁr) r dr dt )
0

O — 8

In eqn (9), s and & denote the Laplace and Hankel transform parameters respectively, and I

denotes the Bessel function of the first kind of order m. The inverse relationship is given by

®+io o

bz = 5= [ [ Gzt (&) Ededs (10)

w—ioo 0

where © is greater than the real part of all singularities of ¢ (&, z, s) and i is the imaginary

number.

It can be shown that (Senjuntichai and Rajapakse, 1995) the general solution of solid and
fluid displacements, pore pressure and stresses in the Laplace-Hankel transform space can be

expressed in the following matrix form

{vi = [RI{C} (an
{f} = [SHC} (12)

The element v, (i = 1,2, 3) of {v} and f, of {f } are given by
vy z5) = Ur, v,(6,2,5) = Ugz, vy, z8) = P (13)
(G679 = 0w, GEZY - oz, LGEZY = W (14)

and the matrices R(E, z, s) and S(E, z, s) are defined in the Appendix. The elements of {C} = {A
B C D E F} are the arbitrary functions to be determined by employing appropriate boundary

and/or continuity conditions.



3.2 STIFFNESS MATRICES
Consider a multi-layered poroelastic medium with a total of N poroelastic layers overlying
a poroelastic half-space with layers and interfaces being numbered as shown in Figure 1. A

superscript “n” is used to denote quantities associated with the " layer (n=1,2, ..., N). For an

n" layer, the following relationships can be established by using eqns (11) and (12).

B R(n) Z..S

v = (én) c® =
_R(n)(g,ZnH,S)
__S(n) ,Z ,S

" = (&n) c® (1o
_S(n) (iv Zn+1's)

where
U(n) = {V(n)(éa Zn’ S) V(n)(é’ Zn+1 \ S)} (17)
F(n) = {7f(n)(an er S) f (n)(a’ ZI'1+l ; S)} (18)

In eqns (15)—(18), U™ denotes a vector of generalized co-ordinates for the o layer whose
elements are related to the Laplace-Hankel transforms of displacements and pore pressure of the
top and bottom surfaces of the i layer. Similarly, F" denotes a generalized force vector whose
elements are related to the Laplace-Hankel transforms of tractions and fluid displacements of the
top and bottom surfaces of the okl layer. The matrices r™ and S(n) in eqns (15) and (16) are
identical to R and S defined in Appendix except that the material properties of the . layer are
used in the definition and z = z_and z_ . The vector ™ is the arbitrary coefficient vector
corresponding to the ath layer.

The eqn (15) can be inverted to express C™ in terms of U™ and the substitution in eqn
(16) yields

FO = KOu® n=12,. 0N (19)

where K" is an exact stiffness matrix in’ the Laplace-Hankel transform space of the nh layer
describing the relationship between the generalized displacement vector U™ and the force vector
F™. It is noted that the layer stiffness matrix K™ is a function of the layer thickness, the layer
material properties and the Laplace and Hankel transform parameter s and &. For the underlying

A(n+1)’ C(n+1) and E(n+1)

half-space, the arbitrary function are set to be zero to gaurantee the

regularity of the solutions at infinity.
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3.3 GLOBAL STIFFNESS MATRIX

The global stiftness matrix of a multi-layered half-space is assembled by using the layer
and half-space stiffness matrices together with the continuity conditions of tractions and fluid
flow at layer interfaces. For example, the continuity conditions at the n™ interface can be

expressed as

£00¢ 2.9tV @Ez,9 = TO (20)

f (n)

where is identical to f defined in eqn (12) with superscript “n” denoting the layer number and

H @1

where Ti(n) i=r, z) and G(n) denote the Laplace and Hankel transform of tractions and fluid
source which applied at the " interface, respectively.
The consideration of eqn (20) at each layer interface together with eqn (19) results in the

following global equation system

~ -
K u® T®
K® U@ T®
R (22)
K () Wi T
= N+) U(N+1) -I-(N+l)

The solutions of eqn (22) are the influence functions required to establish the flexibility

equation for the derivation of the strain energy of a multi-layered poroelastic half-space..

3.4 BOUNDARY CONDITION OF MULTI-LAYERED HALF-SPACE
The plate under this consideration is either fully permeable and impermeable. In order
to compute traction and pore pressure which generated between the process of consolidation,

eqn (22) is employed together with the following boundary condition
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The boundary conditions corresponding to a fully permeable top surface (z=0, 0 < r < 00)

can be expressed as

Gzi(l)(r, 0) =0, 1i=r,z (23a)
P, 0 = 0 (23b)
The continuity conditions at the layer “n” for the case of applied vertical load are given by
ui(nfl) (r, zn) - ui(n) (r, zn) =0, 1i=r1z (24a)
6, " z)-0,"z) = F0 (24b)
Gzr(n—l) (r,z) - Gzr(n) 20N P (24¢)
p"P.z)-p"z) = 0 (24d)
Wz(n—l) (r, zn) - Wz(n) (r, zn) =0 (24e)

where Fz(r) denotes the intensity of the vertical load applied to a multi-layered half-space.

In order to simulate the pore pressure discontinuity across an impermeable plate, it is
necessary to consider the discontinuity of fluid pressure together with vertical stress. Such a

problem is described by the following conditions.

w" e z)cu®wz) = 0, i-nz (252)
(n-1) (m — M) _(n) (n-1)_(n-1)
o, '(tz)-o, (tz) = B7p (rz)-p" 7p "(rz) (25b)
czr(nfl) (r, zn)fczr(n) (r, zn) =—0 (25¢)
p™z)-p" Y z) = PO (25d)
Wz(nfl) (r, zn)fwz(n) (r, zn) =0 (25¢)

where P(r) denotes the intensity of fluid pressure discontinuity.

3.5 STRAIN ENERGY OF CIRCULAR PLATE
The deflection of the circular plate in the z-direction denoted by w(r, t) can be represented

in the following form:
NT

wr,t) = a®fhr+a,®+ > o®rf, 0<r<1 (26a)
n=2
where
ao(t) = P 0H(t)/87[D (26b)
D - Eph3/12(1 ~v2) (26¢)
In eqn (26a), o n(t) (n=1,2,...,NT) denotes a set of generalized co-ordinates, P is the

magnitude of a concentrated force acting at the center of the plate; H(t) is the Heaviside step
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function; h is the thickness of the plate and Ep and v, are Young’s modulus and Poisson’s ratio of
the plate material respectively. It may be noted that the term Intin eqn (26a) is included to
simulate the singular stress resultants at the plate origin due to the presence of the concentrated
force POH(t). In the case of a plate subjected only to distributed loading, the first term in eqn (26a)

vanishes. By using Laplace transform, eqn (26a) can be expressed in Laplace domain as

NT
w(,s) = ao(s)r2 Inr+ al(s)+ Z an(s) r, 0<r<l1 27
n=2

where s denotes the Laplace transform parameter.
The bending moments per unit length denoted by M, and M, which act on a circumferential

and diametral section of the plate, respectively, can be expressed as

NT
D[a [ +2mn)(1 +v)+20+ Y n-1+v)a "] (28)
n=2

M

r

NT
D[af@+2m (1 +v) =21+ > nln= Dy +1]a "] (29)
is2

M,

and the shear force per unit length, denoted by Q, is given by

NT
Q = D[4ao/r+ Z nz(nf2) o rnfa] (30)
n=3
The strain energy, Up, of a thin elastic plate undergoing axisymmetric flexural
deformations is given by (Timoshenko and Woinowsky, 1959)
tl(dPw 1w’ dw d2
U = | |[SW LW ooy )W AW g G1)
P ! dr? rdr Plrdr g2

The substitution of eqn (27) into eqn (31) yields an expression for U o in terms of generalized co-

ordinates o, o a7 For the purpose of convenient and efficient numerical implementation

3

of the present formulation; the resulting expression for U : is written in the following matrix form:

U, = G+v)rD a2 +(Q")a} + ()K" ot} (32)
The elements Qip of {QP) of order N'F; and KE of [KP}of order NTxNT-are given by,
P=0 (33a)
QP = 2nmDa [i(3 + v) —4] (33b)
Kj = Kjp =0 (34a)
KP = mDij [ij_z(i_l)(l_vp)], 2<i,j<NT (34b)

i T - 2)
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3.6 STRAIN ENERGY OF MULTI-LAYERED POROELASTIC MEDIUM

The vertical loading applied to the plate (see Figure 1) is resisted by contact traction, T r, 2),
and pore pressure jumps, T p(r, z), of unknown intensities acting on a circular disc surface S with
0 <r <1 in the interior of the medium as shown in Figure 2. The contact tractions in radial
directions, which are considered to be of secondary importance, are neglected due to the

assumption of smooth contact surface.

By using basic relationship from classical elasticity theory (Fung, 1965), the strain energy

U, can be expressed in the form
2n 1

U, = [ | T@wowerdrde (35)
2
0 0
where T (r, ) is the resultant of both TZ and Tp.
The unknown tractions and pore pressure can be expressed in terms of the generalized co-

ordinates o, as

NT
T, = T,o, + z Tinocn+a0Ti , i=zp 36)

i
n=2

In the present study, the unknown tractions and pore pressure on S are solved by
discretizing the surface S into M annular ring elements (Figure 2). It is assumed that T,and T .
within each ring element are constant and can be evaluated by solving a flexibility equation based
on the influence function derived earlier in eqn (22). A coupled flexibility equation can be
expressed as

[Fzz] {Tzn} {wzn}, n=1,2, ...,NT for a permeable plate (37a)

and

F F
HFEE} EFEEH {{Ts:%} = {{WOZ”}} , n=1,2,...,NT foranimpermeable plate (37b)

where F 1 denotes the displacement influence function in the i-direction due'to a generalized ring
load of unit intensity applied in the j-direction. These influence functions are obtained by solving
flexibility influence function given in eqn (22).
The elements Wi of {Wzn} is given by
Wi = 1 (38a)
w .= I, n=273...,NT (38b)

zni 1
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The tractions TZ* and pressure T, p* acting on the it ring elements is determined by solving
eqn (37) with W, = ri2 In T,
The total traction T is considered as a resultant of TZ and Tp
T N Tzni * I3Tpni (39)
From eqns (26) and (39), U, in eqn (35) can be expressed as
U, = (R){D,} (40)

The elements of R and D, of (RZ> and {D,} are given by

NT
R, = 7triAri(Z:1 anTni+aoTi) (41)
n=
NT - )
D, = o+ Z o, i +a rInr, (42)
o -

In eqn (41)-(42), r, and Ari denote the radial co-ordinate at the centre and width of the i'" ring
element.

From eqn (40)-(42), the following representation can be established for Uh in terms of {ot}
M
U, = (a)[Kh]{oc} + (Qh>{(x} & nag kz Ar, T k* rlf Inr, (43)
=1

The elements Kijh of [Kh], of order NTXNT is given by

h = :

Klj =1 kzl rkArijk’ j=1,2,...,NT (44a)
h L i+1 =

Ky = nkzl AR Too j=1L2, NT;i=2,3, ... NT (44b)

The elements Qih of <Qh> ineqn (43) are given by

M
th = TCaOZ rkArk[Tk*+ rk2 L (45a)
k=1
h M i = 2 =
Q' = naokz r A [ T+ e Inn Tl i=2,3, ... NT (45b)
=1

3.7 VARIATIONAL FORMULATION OF INTERACTION PROBLEM
The analysis presented in this thesis is based on the principle of minimum potential energy

which state as follows:

“Of all the displacements which satisfy the boundary conditions of a structural
system, those corresponding to stable equilibrium configurations make the total

potential energy a relative minimum.”
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For the system of plate-multi-layered medium as shown in Figure 1, we can express the
total potential energy functional, Il, in the form of quadratic function of the generalized co-

ordinates a, (n=1,2,...,NT)as

* I’E In r,

11 = (3+vp)nDa§+na§z Arka
k

=1

+ (@) + (@M 4t + (ad[[KP1+ K" ] foul

o, NT 1
—PO(X.l—ZTl:qO(? + ZZ n+20cn) (47)
n=
The generalized co-ordinates o (n=1,2,...,NT) are determined by using the principle of

minimum potential energy, which requires that

oll

oo,

= 0, n=ladeSNT (48)

The substitution of eqn (47) into eqn (48) yields the following linear simultaneous equation

system:
[Kl{a} = {F} (49)
where
K] = [K"]+ KPP K] +K"]T (50)
The elements Fis of {F°} are given by
FlS = P +mq, (51a)
F° = 2mq/(i+2),i=2,3,...,NT (51b)

This system can be solved numerically for a specified geometric configuration and material
parameters of the system shown in Figure 1. Thereafter, the plate deflection profile, the plate
stress resultants and the net contact stress and pressure acting on the plate can be determined from

eqn (26), eqn (27)-(29) and eqn(36), respectively.



CHAPTER IV

NUMERICAL SOLUTIONS

4.1 NUMERICAL SOLUTION SCHEME

Since the present scheme involves the Laplace-Hankel transforms, the time-domain
solution is then obtained by numerically evaluating the integrals appearing in eqn (10). The
integral with respect to & in eqn (10) is evaluated by replacing upper limit with a large number and
employing the trapezoidal rule. A review of literature indicates that the Laplace inversion can be
carried out very accurately (Piessens, 1975) by using the numerical Laplace inversion method

proposed by Stehfest (1970). The formula due to Stehfest is given by
N
iy ~ N2% ¢ f(n'”—zj (52)
t o’ n t

where f denotes the Laplace transform of f(t) and

_ n+N/2
¢ = D k[(nzﬂ.)/Z] (N/2~K)!K!(k —1)i(n —k)!(2k —n)!

(53)

and N is even. It is found that accurate time-domain solutions are obtained from eqn (52) with
N > 6 for poroelasticity problems (Detournay and Cheng, 1988; Rajapakse and Senjuntichai,
1993). It is important to note that the Stehfest method is computationally quite demanding
although it is accurate. A-more simple and computationally efficient scheme is given by Schapery
(1962) which can be expressed as

0 ~ [sF1_ g, (54)

where f denotes the Laplace transform of f(t) and s is the Laplace transform parameter.

4.2 COMPARISON WITH EXISTING SOLUTIONS

The convergence and stability of the proposed solution scheme is studied by varying the
number of terms NT used in displacement representation given by eqn (26a) and the number of
ring elements M used to discretize the circular area S. The following relative rigidity parameter
K, is used in the numerical study,

E
K = (1-v3H)chy (55)
r E, a

S
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where E and v, are Young’s modulus and Poission’s ratio of a medium, respectively and h
denotes the thickness of a circular plate. Since each layer of multi-layered medium has its own
parameter constants, for convenience, all quantities parameters are normalized by corresponding

to the top layer of the multi-layered poroelastic half-space.

Table 1. Convergence of solution, W*(0), with NT and M for a centrally loaded plate compare

with Rajapakse(1988); H/a = 0.0, v =0.25K =05, Vo= 0.3

W*(0)

Present Study Rajapakse

NT (| M=10 | M=15 | M=20 | M=25 | M=30 | M=35 (1988)

1 0.9420 | 0.9426 | 0.9429 | 0.9431 | 0.9432 | 0.9433

2 0.8501 | 0.8506 | 0.8508 | 0.8509 | 0.8510 | 0.8509

4 0.8467 | 0.8473 | 0.8475 | 0.8475 | 0.8476 | 0.8474

0.8478
6 0.8466 | 0.8472 | 0.8474 | 0.8474 | 0.8475 | 0.8473

8 0.8466 | 0.8472 | 0.8473 | 0.8474 | 0.8474 | 0.8473

10 0.8466 | 0.8471 | 0.8473 | 0.8474 | 0.8474 | 0.8473

Table 2. Convergence of solution, M r*(O.Sa), with N and M for a centrally loaded plate compare

with Rajapakse(1988); H/a = 0.0, v, =025,K =05, i 0.3

Mr*(O.Sa)

Present Study Rajapakse

NT || M=10 | M=15|M=20 | M=25|M=30 | M=35| (1988)

1 0.0225 | 0.0225 | 0.0225 | 0.0225 | 0.0225 | 0.0225

2 0.0092 | 0.0093 | 0.0094 | 0.0094 | 0.0094 | 0.0096

4 0.0115 | 0.0115 | 0.0116 | 0.0116 | 0.0116 | 0.0118

0.0116
6 0.0114 | 0.0115 | 0.0115 | 0.0116 | 0.0116 | 0.0118

8 0.0114 | 0.0114 | 0.0115 | 0.0115 | 0.0116 | 0.0118

10 || 0.0114 | 0.0114 | 0.0115 | 0.0115 | 0.0116 | 0.0118
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Table 1 and 2 give the influence of NT and M on the dimensionless central displacement
W*(0) = aw(O)Es/P0 and moment at r = 0.5a (Mr*(O.Sa) = Mr(O.Sa)/aPO), respectively, for a
centrally loaded plate resting on the surface of an homogeneous elastic half-space. It appears from
Table 1 and 2 that the accurate computation of stress resultants requires NT = 6 terms. For a
number of ring elements used to discretize S, the convergence is achieved with M = 20. Similar
convergence characteristics are also observed for plates subjected to a uniformly distributed load.

Subsequence numerical results are presented for NT = 10 and M = 20.

Table 3 shows a comparison of dimensionless displacements of a rigid permeable plate
resting on a free surface of a poroelastic half-space under a concentrated force P at the center of
the plate. Results give by Yue and Selvadurai (1995) are also presented for comparison. Two
numerical Laplace inversion schemes namely Stehfest and Schapery, are used to obtain time-
domain solutions. It is evident that the solutions obtained from Stehfest scheme agree more

closely with the results presented by Yue and Selvadurai (1995).

0.0 —
. TR — Pr. Study, per.
14 S — — Pr. Study, imper.
\ ® Y&S (1995), per.
2 7] -\ ®m  Y&S (1995), imper.

log,, (ct/a’)

Figure 3. Comparison between degree of consolidation settlement of a centrally loaded rigid plate

from present study ( H/a = 0.0, v = 0.0, v, = 0.5).
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Figure 3 illustrates a comparison between the degree of consolidation displacement from
the present study with the one given by Yue and Selvadurai (1995). The degree of consolidation
(UZ) is defined as

W-—-W.
U = —b (56)
z W, —W.
f i
where w in eqn (56) denotes the deflection at the centre of the plate and the subscripts i and f
denote initial and final solutions. It is evident that the present solutions are consistent with the

existing results.

Table 4 shows a comparison of dimensionless radial bending moment Mr(r)/qa2 and
tangential bending moment Mt(r)/qa2 along radius of a circular plate with the results
presented by Brown (1969) who analyzed a uniformly loaded circular rafts on deep elastic
foundations by using power series techniques. Closely agreement between the two solutions is
observed for both flexible and relatively rigid plates. In addition, it can be seen that in the case
of extremely flexible plate (i.e. K = 0.01) the maximum bending moment does not occur at the

center of the plate.

Figure 4 and 5 show comparison of solution with the results given by Rajapakse and
Selvadurai (1991) who considered the interaction between circular footing/anchor plate and non-
homogeneous elastic soil. The shear modulus of non-homogeneous soil varies linearly with the
depth in the following manner

wiz) = p,+mz, m>0 (57)
It can be seen from the two figures that the present solutions agree very closely with those
presented by Rajapakse and Selvadurai (1991) for both. of circular surface footing and anchor

plate.

Figures 6(a) and 6(b) show a comparison of axial displacement of the rigid plate with the
results from Selvadurai and Yue (1994). The finite layers resting in bonded contact with a rigid
impermeable base and the surface of the layer is considered to be either permeable or
impermeable. Several combinations of v and v, are used. These results are applicable for h/a = 1.
The results in those figures show that the difference between the undrained and drained Poissons

ratios plays a key role in the consolidation of the plate. The initial response of the non-
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dimensional settlements is governed by the undrained Poisson’s ratio v . The final response of the

non-dimensional settlement is governed by the drained Poisson’s ratio v.

Figures 7(a) and 7(b) illustrate the influence of the hydraulic drainage boundary condition
at top and bottom surface. It can be seen from these two figures that the final solution are reached

earlier when the bottom surface is permeable.

4.3 NUMERICAL RESULTS AND DISCUSSOION

In this section, three examples of interaction between a plate and a multi-layered
poroelastic half-space are presented. The following non-dimensional time factor is employed in
the case of multi-layer poroelastic half-space

@
= 0—2 t (58)
a

t*

where the superscript (1) denotes the top most layer of the half-space.

The general behavior of plate-multi-layer poroelastic half-space is illustrated in Problem 1.
A layered system consists of two poroelastic layers bonded to an underlying poroelastic half-
space, as shown in Figure 8, is considered. Each of layer has thickness equal to radius of a
circular plate, “a”. The circular plate is resting on the surface of the second layer. The two types
of applied loading are considered, i.e., a point load and a uniform distributed load. The numerical

results of Problem 1 are shown in Figures 9-22.

Figure 9-shows. time-histories of dimensionless displacements-(W* = W(O)au(l)/Po) and
radial bending moments at r =0.01a (M r* =M Ir(O.Ola)/aP 0) of a centrally loaded plate. For initial
time, an impermeable plate has smaller, displacement and bending; moment than a permeable
plate. It is evidence that final solutions of two types of drainage condition are the same. This is
due to the fact that for larger time, pore pressure is already dissipated and the consolidation
process then finishes. It is also found that the maximum values of displacements and bending

moment occur at the end of the consolidation process.

Figure 10 and 11 present dimensionless central displacement histories and dimensionless

radial bending moment at r = 0.01a , respectively, with various relative rigidity parameter K (Kr
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=1, 2,5, 10, 50, 100, 1000). Again, both of permeable and impermeable plates have different
initial displacement and bending moment but have the same final solutions. It is found that the
values of K, have no effect on the rate of consolidation, i.e. all of displacement histories curve
almost parallel. But they have a significant influence on the magnitude of the plate displacement.
It is also found that magnitude of displacement decreases with increasing the value of K| and a
stiffer plate yields smaller displacement but larger bending moment.

Figure 12 and 13 show variation of displacement profile of flexible plate (Kr = 1) and rigid
plate (Kr = 10000), respectively. For both cases, the deflection profile gradually approaches static
condition for larger time, i.e. t¥ = 1000. For a flexible plate, the maximum value of displacement
occurs at the center of the plate and the profiles between 0.2a <r < 1 appear almost straight line.
For a rigid plate, the displacement profiles are flat. It is clear that the highest rate of consolidation

process occurs for 0.01 <t* <1,

Figure 14 shows variation of final solution (t* = 1000) of displacement and radial bending
moment profiles of a centrally loaded plate with relative rigidity K (K = 1,2,5,10, 50, 1000). It

is observed that a flexible plate yields larger deflection and bending moment than a stiff plate.

The effect of type of loading is investigated by changing the applied load from a point load
P to be a uniform load q distributed over an area of plate surface as shown in Figure 15-22. The
dimensionless displacement (W* = W(r)p,(l)/aqo) and radial bending moment (Mr* = Mr(r)/qoaz)
are used in the numerical study. Figure 20(b) shows the variation of a bending moment profile
with varying relative rigidity parameter K. The smooth curves of a bending moment profile is
observed with the maximum value occurs at the center-of plate. At-the edge of the plate, the

bending moment converges to zero as in the case of the point load.

Figures 21(a)-and 21(b) present the variation of final solution (t* = 1000) of contact stress
profiles for both a centrally loaded plate (q* = q(r)aZ/PO) and a uniformly loaded plate (q* =
q(r)/qo), respectively, with relative rigidity parameter K. It can be seen that the magnitude of
contact stress adjacent to the center of plate decreases before increasing near the plate edge, when
the value of K increases. For the case of a point load acting on a flexible plate (Kr > 2), the
magnitude of contact stress adjacent to center of plate is larger than those near the plate edge. In

other cases, the contact stress near the plate edge is much higher than that near the plate center.
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Figure 22(a) shows the variation of pore pressure with time of a uniformly loaded plate at
position r = 0 and z = a. The interesting phenomenon can be observed that the pore pressure is not

decreased immediately but gradually increased for a moment and disappeared rapidly.

Figure 22(b) illustrate the contact stress profiles at bottom surface of the first layer and the
top surface of the second layer due to a rigid circular plate subjected a uniform load. It is evidence

that the upper interface obtained a small tension and lower interface yield compression.

Figure 23 shows the geometry of problem 2, which is the finite layer problem. The system
consists of three poroelastic layers and a circular plate with a point load P | acting at the center of
plate with K = 1.0. The thickness of the first and the second layer are equal to the radius of a
plate “a”. The thickness of the third layer is varied as h3 =0.5a, a, 2a, 5a, 10a and infinity for the

extreme case of a half-space. The boundary condition of bottom base is specified as an

: op
impermeable-rough base (u, = u, = —

, p = (). The solution of this problem, i.e. central
VA

displacement and radial bending moment at r = 0.01a for permeable and impermeable plate, is

given in Figures 24 and 25. The trend of the solutions is consistence with the results given before.

Both displacement and radial bending moment increase with increasing the thickness of the third

layer.

The problem 3, which studies the effect of depth of embedment is shown in Figure 26. This
type of problem can be considered as the analysis of a deep foundation. The thickness of second
layer is varied as h2 = 0.5a, a, 2a, 5a, 10a;:50a, 100a, 1000a. The solution of this problem is given
in Figure 27-30. The result of this problem shows that deeper footing experiences smaller
deflection and bending moment. It is noted that when h, > 50a the results (both displacement and

bending moment) are almost the same.

Figure 29(b) shows an interesting result that radial bending moment at edge of plate
converge to zero although the depth of embedment is equal to 1000a. From this result it can be

concluded that the depth of embedment does not effect the plate edge boundary condition.
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Figure 30 presents the effect of relative rigidity parameter K to the displacement and radial
bending moment. It is evidence that when K > 1000, both the plate deflection and bending
moment are constant. It can then be concluded that rigid plate behavior can be obtained by setting

K, >1000.



CHAPTER V

CONCLUSIONS

The quasi-statics response of an axisymmetric-loaded circular plate buried in a multi-
layered poroelastic half-space is analyzed by using a variational method of analysis. The assumed
deflected shape is indeterminated with a set of arbitrary constants. The total potential energy
functional consists of the strain energy of multi-layered media, the strain energy of the circular
plate and the potential energy of the applied loads. The unknown constants are obtained from the
linearly independent algebraic equations generated from the minimization of the total potential
energy functional. The accuracy of the present scheme is confirmed by comparing with the
existing results.

Numerical solutions presented in the chapter IV demonstrate the applicability of the
present solution scheme. Selected numerical results for different layered systems indicate that the
behavior of the plate is governed by various parameters. The influence of these parameters on the

plate and a multi-layered poroelastic half-space system can be summarized as follows:

l.)The deflection of the circular plate decreases rapidly with increasing values of the relative

rigidity parameter K_of the plate, and a plate with K= 1000 can be considered as a rigid plate.
2 .)The final solution is obtained when t* > 100.

3.)The hydraulic boundary conditions at the plate-half-space interface, i.e. permeable and
impermeable plate surface, have significant influence-on the consolidation process. However,

the final solution of both cases are equal.

The present method can also be extended to analyze the various types of interaction
problems, for example, the problem of arbitrary axisymmetric loads, the problem of a ring plate

and the problem of multiple anchor plates, etc.
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Table 3. Comparison of dimensionless displacements, apuw/P , of a rigid circular plate.

v=0.0 v=0.1 v=0.2
a2 Current Study Yue & Current Study Yue & Current Study Yue &
ct/a
Selvadurai Selvadurai Selvadurai
Schapery | Stehfest Schapery | Stehfest Schapery | Stehfest
(1995) (1995) (1995)

0.04 0.162 0.157 0.156 0.157 0.153 0.152 0.151 0.148 0.147

0.16 0.183 0.178 0.177 0.173 0.170 0.168 0.163 0.160 0.159

0.36 0.196 0.193 0.191 0.184 0.181 0.180 0.171 0.169 0.168

0.64 0.205 0.203 0.202 0.191 0.190 0.188 0.176 0.175 0.174

1.00 0.212 0.211 0.210 0.196 0.196 0.194 0.180 0.180 0.178

1.44 0.217 0.217 0.215 0.200 0.200 0.199 0.183 0.183 0.181

1.96 0.221 0.221 0.220 0.203 0.204 0.202 0.185 0.185 0.184

v=0.3 v=04
ct/a? Current Study Yue & Current Study Yue &
Selvadurai Selvadurai
Schapery | Stehfest Flooss Schapery | Stehfest (1995) lP o \/— rigid plate
0.04 0.144 0.142 0.141 0.136 0.134 0.134 homogeneou:s
0.16 || 0.152 [ .0.150 | 0.149 || 0.140 | 0.139 | 0.138 poroelastic

036 || 0.157 | 0.155 | 0.155 0142 0,142 0,141 half-space

v, = 0.5

0.64 0.161 0.160 0.159 0.144 0.143 0.143

1.00 0.163 0.163 0.162 0.145 0.145 0.144

1.44 0.165 0.165 0.164 0.146 0.146 0.145

1.96 0.166 0.166 0.165 0.147 0.146 0.145




Table 4(a). Comparison of dimensionless radial bending moment (Mr”< = Mr(r)/qoaz).

K =0.01 K =0.1 K=1 K =10
r r r r

Present | Brown || Present | Brown || Present | Brown || Present | Brown
r/a
study | (1969) study | (1969) study | (1969) study | (1969)

0.0 0.0012 | 0.0012 || 0.0145 | 0.0146 || 0.0554 | 0.0567 || 0.0726 | 0.0747

0.1 0.0012 | 0.0012 || 0.0145 | 0.0146 || 0.0548 | 0.0561 || 0.0717 | 0.0737

0.2 0.0013 | 0.0013 || 0.0145 | 0.0146 || 0.0528 | 0.0541 || 0.0688 | 0.0708

0.3 0.0014 | 0.0014 || 0.0143 | 0.0145 || 0.0495 | 0.0508 || 0.0640 | 0.0659

0.4 0.0016 | 0.0016 || 0.0140 | 0.0142 || 0.0448 | 0.0461 || 0.0574 | 0.0593

0.5 0.0018 | 0.0018 || 0.0133 | 0.0136 || 0.0389 | 0.0401 || 0.0492 | 0.0509

0.6 0.0021 | 0.0021 || 0.0121 | 0.0125 || 0.0316 | 0.0329 || 0.0394 | 0.0411

0.7 0.0023 | 0.0024 || 0.0101 | 0.0106 || 0.0234 | 0.0246 || 0.0286 | 0.0301

0.8 0.0023 | 0.0024 || 0.0071 | 0.0076 || 0.0143 | 0.0154 || 0.0171 | 0.0184

0.9 0.0015 | 0.0017 || 0.0032 | 0.0037 || 0.0055 | 0.0063 || 0.0063 | 0.0072

1.0 0.0000 0 -0.0001 0 -0.0001 0 -0.0001 0

Table 4(b). Comparison of dimensionless tangential bending moment (M,* = Mt(r)/qoaz)

K =0.01 K=l K. =1 K =10

Present | Brown || Present | Brown || Present | Brown || Present | Brown
r/a
study (1969) study (1969) study (1969) study (1969)

0.0 0.0012 | 0.0012 || 0.0145 | 0.0146 || 0.0554 | 0.0567 || 0.0726 | 0.0747

0.1 0.0012 | 0.0012 |[-0.0145-}-0.0146 || 0.0551.| 0.0564 || 0.0721 | 0.0741

0.2 0.0012 | 0.0012 || 0.0145 | 0.0146 || 0.0539 | 0.0552 || 0.0705 | 0.0724

0.3 0.0013 | 0.0013 || 0.0144 | 0.0146 || 0.0520-] 0.0533 || 0.0677 | 0.0696

0.4 0.0014 | 0.0014 || 0.0143 | 0.0144 || 0.0493 | 0.0506 || 0.0639 | 0.0658

0.5 0.0015 | 0.0015 || 0.0139 | 0.0142 || 0.0459 | 0.0472 || 0.0590 | 0.0609

0.6 0.0017 | 0.0017 || 0.0134 | 0.0136 || 0.0417 | 0.0430 || 0.0533 | 0.0551

0.7 0.0019 | 0.0019 || 0.0124 | 0.0127 || 0.0369 | 0.0381 || 0.0469 | 0.0486

0.8 0.0019 | 0.0020 || 0.0110 | 0.0114 || 0.0315 | 0.0327 || 0.0399 | 0.0415

0.9 0.0017 | 0.0018 || 0.0091 | 0.0095 || 0.0260 | 0.0271 || 0.0328 | 0.0343

1.0 0.0011 | 0.0012 || 0.0072 | 0.0074 || 0.0214 | 0.0222 || 0.0271 | 0.0283
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Figure 4. Comparison of variation of normalized central deflection of a uniformly loaded plate

with relative rigidity K ‘and degree of non-homogeneity, m*, (from present study with results
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Figure 5. Comparison of variation of normalized central deflection of anchor plates with relative

rigidity K and depth of embedment for a soil with u =0, (from present study with results from

Rajapakse and Selvadurai, 1991).
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Figure 6. Comparison of axial displacement of the rigid plate.
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Figure 7. Effect of Poisson’s ratios and surface drainage on the consolidation induced axial

displacement of the rigid punch.
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Figure 8. Geometry of problem 1.
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Figure 9. Variation of (a) dimensionless central displacement W*(0) and (b) radial bending

moment Mr*(0.0la) of a centrally loaded plate with time and drainage boundary condition.
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Figure 10. Variation of dimensionless central displacement W*(0) of a centrally loaded plate with

time and relative rigidity parameter K .
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Figure 11. Variation of radial bending moment Mr*(0.0la) of a centrally loaded plate with time

and relative rigidity paraemter K .
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Figure 12. Variation of displacement profile of a centrally loaded plate (Kr = 1.0) with times.
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Figure 13. Variation of displacement profile of a centrally loaded rigid plate (Kr = 10000) with times.
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Figure 14. Variation of (a) displacement profile and (b) radial bending moment profile of a

centrally loaded plate with relative rigidity K .
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Figure 15. Variation of (a) dimensionless central displacement W*(0) and (b) radial bending

moment Mr*(O) of a uniformly loaded plate with time and drainage boundary condition.
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Figure 16. Variation of dimensionless central displacement W*(0) of a uniformly loaded plate

with time and relative rigidity parameter K.
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Figure 17. Variation of dimensionless radial bending moment Mr*(O) of a uniformly loaded plate

with time and relative rigidity parameter K..
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Figure 18. Variation of displacement profile of a uniformly loaded plate (K = 1.0) with times.
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Figure 19. Variation of displacement profile of a uniformly loaded rigid plate (Kr = 10000) with times.
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Figure 20. Variation of (a) displacement profile and (b) radial bending moment profile of a

uniformly loaded plate with relative rigidity K .
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Figure 21. Variation of contact stress profile of (a) a centrally loaded plate and (b) a uniformly

loaded plate with relative rigidity K..
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Figure 22. (a) Pore pressure history beneath the plate (z=a, r = 0). (b) Final solution of the
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contact stress profiles at the bottom surface of the first layer and the top surface of the second

layer due to a circular plate subjected a uniform load.
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Figure 25. Variation of radial bending moment at r = 0.01a of a centrally loaded plate (Kr =1.0)

with time and depth of the 31 layer.
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Figure 26. Geometry of problem 3.
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Figure 27. Variation of dimensionless central displacement of a uniformly loaded plate (Kr =2.0)

with time and thickness of the 2™ layer.
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Figure 28. Variation of dimensionless radial bending moment Mr*(O) of a uniformly loaded plate

(Kr =2.0) with time and thickness of the o layer.



51

(@)

.045

1 —e— h2=0.5a
1 —o— h2=a

—v— h2=2a
.050 4 —%— h2=5a

{ —=— h2=10a
1 —o— h2=50a
1 —— h2=100a )
055 h2 = 1000a
W*
.060
* —
065 t* = 1000
w* = W(nu®/aq,
| impermeable plate, patch load, Kr = 2.0
.070 LA L B LN B L™ L L L LRNLES L LI P L B R L L B R L B B R
0.0 N 2 3 4 5 .6 v/ .8 9 1.0
r/a
(b)
.025
impermeable plate, patch load, K, = 2.0
--------- Mr* = Mr/g,a*
020 1 t* = 1000
.015 4
Mr* ]
.010 4
{1 —e— h2=0.5a
1 —o— h2=a
1 —— h2=2a
005 4 —— h2=>5a
1 —=— h2=10a
1 =#— h2=50a
| —e— h2=100a
0.000 § —>— h2 =1000a
Trrr[rrrrrrrrrrrrrrrrrr o rrr T e

0.0 1 .2 .3 A4 5 .6 7 .8 .9 1.0

r/a

Figure 29. Variation of final solution of (a) displacement profile and (b) radial bending moment

profile of a uniformly loaded plate with depth of the o layer.
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radial bending moment Mr*(O) of a uniformly loaded plate with relative rigidity parameter K and

thickness of the 2" layer.
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APPENDIX

The matrices R and S in eqns (11) and (12), respectively, are given by
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