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Chapter 1

Introduction

Quantum dots (QDs) are structures that confine electrons three dimen-

sionally in small space. The dimensions of the dot structures are of the order of

an electron wavelength which is typically between 1 nm to 100 nm across. Scien-

tists and engineers are interested in QDs for technical applications, and also as

systems to test our understanding of quantum theory. Some applications include

lasers, transistors, solar cells, and quantum computing devices. The physics of

quantum dots shows many parallels with the behavior of atomic systems.

In atomic systems, electrons are confined by the attractive spherical sym-

metric potential. From quantum theory, this electrons are allowed to exist only

with certain discrete energies corresponding to the 1s, 2s, 2p, 3s, ... orbital. Sta-

bility of the electronic system will occur when a shell is fully occupied such as

in the nobel gas atoms. In the mid-shell levels, electrons normally keep spins

parallel according to Hund’s rules.

As in an atom, the energy levels in quantum dots become quantized due

to the confinement of electrons. An experimental result reported by Tarucha et

al (1996) shows that at zero magnetic field, the energy needed to add electrons

to a circular QD reveals a clear shell structure of 2D harmonic potential [1].

The addition energy was unusually large when the electron number coincides

with 2, 6, and 12. In addition, they also applied tunable magnetic fields to the

dots and found that the spin filling order could be explained in terms of Hund’s



2

rules. Experimental results on quantum dots of rectangular shapes have also been

observed by Austing et al (1999) [2].

Motivated by the experimental work, Ezaki, Mori and Hamaguchi (1997)

calculated electronic structures of quantum dots by numerically diagonalising

the N-electron Hamiltonian (N up to 11) using Slater determinants formed from

single-electron eigenfunction [3]. Since, the exact diagonalization is limited to a

small number of particles, other well-established methods are needed to study

quantum dots with a larger number of electrons. Recently, there have been a

number of techniques used to calculate the electronic structure of a quantum dot,

for example, Hartree-Fock approximation [4], Quantum Monte Carlo techniques

[5], and Density-Functional Approaches [6],[7],[8].

Using spin-density-functional theory (SDFT), Koskinen et al (1997) cal-

culated the ground-state electronic structures of circular parabolic quantum dots

[6]. To avoid symmetry restrictions, they expanded the wave function in a plane-

wave basis. Independently, Lee et al (1998) also studied 3D parabolic quantum

dots by using a real space method based on spin-denisty-functional theory [8] up

to N=12. Another different approach was also proposed by Hirose and Wingreen

(1999)[7]. They studied the electronic states of a 2D parabolic quantum dot with

up to N=58 electrons by expanding the eigenstates of the Kohn-Sham equation

in single-electron basis known as Fock-Darwin representation 1. All of the above

spin-density-functional approaches applied to quantum dots were implemented by

using the local-spin-density approximation (LSDA). Within LSDA, the exchange-

correlation energy functional are taken to be functions of the local spin densities,

which are defined by the requirement that the approximation be exact for the

1The case of a single electron in an isotropic 2D harmonic oscillator was solved independently
by Fock (1928) and Darwin (1930) (see ref. [9], [10]).
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homogeneous electron gas. The most used form of the exchange-correlation func-

tional is the parametrized form of Tanatar and Ceperley which based on diffusion

Quantum Monte Carlo (DMC) data at spin polarization ζ = 0 and ζ = 1 [11].

Recently, Attaccalite et al (2002) have presented new diffusion Quantum

Monte Carlo simulations for a wide range of electron densities rs and spin polar-

izations ζ[12]. This direct DMC calculation of ζ dependence is new and provides

a reliable basis for building an LSD energy functional for 2D systems. Note that

this new analytic representation is an extension to the most used parametrized

form of Tanatar and Ceperly.

The aim of this thesis was to study the ground-state electronic structures

of quantum dots. The calculations have been performed in real space by using a

method based on spin-density functional theory. The new analytic representation

of the exchange-correlation energy has been used instead of the most used form

of Tanatar and Ceperley. The effects of the confining potential and the electron-

electron interaction on the electronic structures were also discussed.



Chapter 2

Density-Functional Theory

In this chapter, we will introduce the principles of density-functional the-

ory which have been known as a powerful approach to the quantum many-body

problem. The introduction is given briefly in Sec 2.1. Some basic concepts in the

path of the Schrödinger equation and the multiparticle wavefunctions are pre-

sented in Sec 2.2. The Hohenberg-Kohn variational principle, where the electron

density n(r) is the variational variable, is described in Sec. 2.3. Then, in Sec

2.4, the Kohn-Sham scheme, which was introduced in 1965 as a way to combine

wavefunction and density approach, is presented. The extensions of the Kohn-

Sham formalism to spin-polarised systems are given in Sec 2.5. Finally, in the

last section, a brief discussion of the approximations for the exchange-correlation

energy (Exc[n(r)]) involved in the Kohn-Sham scheme is presented.

2.1 Introduction

For more than seven decades, after Schrödinger [13] proposed his wave equa-

tion in 1926, quantum systems have been considered as being described by state

vectors in Hilbert space (wavefunctions in coordinate or momentum space) and

observables by Hermitian operators. Principally, Schrödinger equation contains

all information about the quantum systems such as atoms, molecules, and solids

which comprise of electrons and nuclei. However, when one deals with realistic

quantum many-body systems, the equations may be far too complex to allow



5

solution. In such cases, one must introduce an approximation method to solve

the problem. Most of the methods are essentially based upon the variational

principle. In this approach one guesses the form of the wavefunction with a set of

parameters. The parameters are then varied to minimize the expectation value

of the observables, particularly the energy of the system. As one knows, this is

an extremely powerful approach, but it depends for its success upon a good para-

metric description of the problem in the first instance. That is, the better the

form of wavefunction we take, the better results we will get from the variational

approach.

The Hartree-Fock (1930, [14]) and Hartree (1928, [15]) methods are ex-

amples of formalism which can be derived from the variational principle 2. The

difference between them is the form of the trial wavefunction. The Hartree-Fock

antisymmetric wavefunction (determinantal wavefunction) allows one to describe

the exchange interaction, while the Hartree product wavefunction does not. How-

ever, another piece of Physics, called correlation effects, are still ignored in the

Hartree-Fock formalism. These effects are small compared to the exchange ef-

fects in the systems like atoms or molecules, but will be much more significant in

solid. To improve the approximation behind the Hartree-Fock method, a better

approach should be introduced. The fact that the Hartree-Fock wavefunction

is just a single configuration (Slater determinant) wave function leads us to an

approach known as configuration interaction (CI). In CI method, the many-body

wavefunction is described by the linear combination of single configurations (sin-

gle determinantal functions). This leads, in principle, to the exact wavefunction

2From, the assumption of no correlations, the Hartree-Fock equation can also be derived,
without recourse to the variational method, by assuming that the reduced density matrices
of second- and third-order are particular functionals of the electron density or the first-order
reduced density matrix [16].
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in which all possible combinations have to be taken into account. The increase in

the number of configurations or the dimension of the Hilbert space with increas-

ing electron number means that only systems with a limited number of electrons

can be calculated with high accuracy.

A different approach was taken by Thomas [17] and Fermi [18] in 1927-28.

They proposed a scheme based on the electron density n(r). The Thomas-Fermi

scheme assumed that the motions of the electrons are uncorrelated and the cor-

responding kinetic energy can be described by a local approximation based on

the results for free electrons [19]. The extensions of this scheme was suggested

by Dirac (1930) who proposed that this scheme could be improved by including

the exchange energy of a free electron gas. His work related the Hartree-Fock

theory and the Thomas-Fermi model. The Thomas-Fermi-Dirac method was a

true density functional method in which the system was characterized completely

by the electron density n(r). However, they did not demonstrate that ground-

state properties, particularly the total energy E, could be related in a rigorous

way to the density distribution. The theoretical justification for this scheme was

proposed by Hohenberg and Kohn [20] in 1964. The formalism is, in principle,

exact, and the Thomas-Fermi equation can be derived from it as an approxima-

tion. Its application to the total energy calculation is done in the context of the

variational principle.

2.2 Basic Concepts

The Schrödinger equation

The electrons in a molecule or a solid interact strongly both with the ions

and with each other. The challenge of modern electronic structure theory is to
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go beyond the independent electron approximation. So far, the foundation of the

theory is the nonrelativistic Schrödinger equation. For an isolated N -electron

system in the Born-Oppenheimer approximation, this is given by

Ĥ |Ψ〉 = E |Ψ〉 (2.1)

where |Ψ〉 called a state vector or state ket, represents quantum states of the

N -electron system and Ĥ is the Hamiltonian operator,

Ĥ = −
N∑

i=1

1

2
∇2

i +
1

2

N∑
i�=j

1

|ri − rj| −
N∑
i,l

Zl

|ri − Rl| (2.2)

where ri are the positions of the electron, and Rl are the positions of the nuclei.

The N -electron wave function in coordinate space is related to the state

vector in Hilbert space by

Ψ(x1,x2, ...,xN ) = 〈x1,x2, ...xN |Ψ〉 . (2.3)

The wave function Ψ depends on both the positions and spins of the N electrons.

x ≡ (r, s). The Pauli exclusion principle requires that

PijΨ = −Ψ (2.4)

where Pij permutes the space and spin coordinates of electrons i and j. In other

words, the wavefunction Ψ is antisymmetric.

The expectation value of an observable Ω in the quantum state Ψ is given

by the formular

〈Ω〉 = 〈Ψ| Ω̂ |Ψ〉 (2.5)
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where

〈Ψ| Ω̂ |Ψ〉 =

∫ N∏
i=1

dxiΨ
∗(x1,x2, ...,xN) Ω̂Ψ (x1,x2, ...,xN ) (2.6)

Rayleigh-Ritz variational principle

When a system is in the state |Ψ〉 which may or may not satisfy (2.1) the

expectation value of the energy is

E [Ψ] = 〈Ψ |H|Ψ〉 . (2.7)

The expectation value 〈Ψ |H|Ψ〉 is a functional; given Ψ one gets a number from

this prescription.

The Rayleigh-Ritz variational principle states that the expectation value

of E in any state is greater than the ground-state energy,

E [Ψ] ≥ E0. (2.8)

That is, the energy computed from a guessed Ψ is an upper bound to the ground-

state energy E0. The following is formal proof of the variational principle (2.8):

Expand the state |Ψ〉 in terms of the normalized eigenstates of Ĥ:

|Ψ〉 =
∑

n

an |Ψn〉 , (2.9)

the expectation value of the energy becomes
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E [Ψ] =

∑
nm

〈Ψn| Ĥ |Ψm〉 a∗
nam∑

n

|an|2
(2.10)

=

∑
n

En |an|2∑
n

|an|2
. (2.11)

Since, En is always greater than or equal to E0, we obtain

∑
n

En |an|2 ≥ E0

∑
n

|an|2 (2.12)

Thus,

E [Ψ] ≥ E0. (2.13)

To illustrate this principle, we will show how the Schrödinger equation

(2.1) is derived in this context. At the extremum, the energy functional E [Ψ] is

stationary with respect to the variation of Ψ:

δE [Ψ] = 0. (2.14)

That is,

0 = δ
[
〈Ψ| Ĥ |Ψ〉 − E 〈Ψ|Ψ〉

]
(2.15)

= 〈δΨ| Ĥ − E |Ψ〉 + 〈Ψ| Ĥ − E |δΨ〉 .

Since Ĥ is a Hermitian operator; H = H†, the condition (2.15) will be satisfied if

(Ĥ − E) |Ψ〉 = 0.
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This means when (2.14) is satisfied, so is (2.1).

Mutiparticle wavefunction-an exponential wall limiting the number of

particles

Traditional multiparticle wavefunction methods when applied to systems

of many particles encounter an exponential wall [21]. This conclusion can be

understood easily as follow. Let p be the number of parameters per variable

needed for the desired accuracy. For example, assume that the wavefunction we

are looking for is confined in an one-dimension region L. If we divide this region

into equidistant mesh points zi each separated in real space by a distance ∆z,

the number of parameters p needed will be equal to L/∆z + 1. Similarly, let

us consider the multiparticle wavefunction Ψ (r1, ..., rN ), the number of variables

of Ψ is 3N if we ignore symmetries and spin, which will not affect our general

conclusions. We can easily see that the number of parameters required for this

accuracy is

M = p3N . (2.16)

The energy needs to be minimized in the space of these parameters. Call

M the maximum value which is capable of being done by the available computer

software and hardware; and N the corresponding maximum number of electrons.

Then, from Eq. 2.16 we get

N =
1

3

ln M

ln p
. (2.17)

Let us optimistically take M ≈ 1010 and p = 10. This gives the shocking result

N =
1

3

ln 1010

ln 10
=

10

3
−→ 3. (2.18)
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In practice, one can do better than this. But the exponential in 2.16 still repre-

sents a wall limiting N . This can lead us to the conclusion that traditional wave-

function methods, which provide the required physical and chemical accuracy,

are generally limited to systems with a small total number of active electrons.

Electron density

Unlike the wavefunction, electron density n(r) is an observable quantity

depending only on coordinates in real space. One can obtain the electron den-

sity for electron ith by integrating the total probability density |Ψ|2 over all the

coordinates of the other n − 1 electrons:

ni(xi) =

∫ N∏
j �=i

dxj |Ψ (x1,x2, ...,xN )|2 (2.19)

and the total electron density n(x) for the presence of all electrons is just the

sum of all ni(x)

n(x) =
N∑

i=1

ni(x). (2.20)

Since electrons are indistinguishable, all ni(x) must be the same. Therefore, we

can rewrite (2.20) as follows:

n(x) = N

∫ N∏
i=2

dxi |Ψ (x,x2, ...,xN)|2 . (2.21)

In many cases, operators of interest do not involve spin coordinates. This makes

further reduction of the electron density in (2.21) by summation over the spin

coordinates.
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n(r) = N

∫ N∏
i=1

dxids |Ψ (r,s,x2, ...,xN)|2 . (2.22)

Now, the relation between the electron density and the external potential

of which the electrons are moving under the influence will be derived. Consider

the external potential energy operators V̂ of the form:

V̂ =

N∑
i=1

v(ri). (2.23)

The contribution of V̂ to the total energy is

〈Ψ| V̂ |Ψ〉 =
N∑

i=1

∫ N∏
i=1

dxiΨ
∗(x1, ...,xN )v(ri)Ψ(x1, ...,xN ). (2.24)

Using the definition of ni(xi) in Eq. (2.19), and the fact that the operator v(ri) is

multiplicative; i.e. has no operator terms like differential operator, and dependent

only on the coordinates of electron ith:

〈Ψ| V̂ |Ψ〉 =
N∑

i=1

∫
v(ri)ni(xi)dxi. (2.25)

Similarly, by using (2.22), the above equation can be rewritten as

〈Ψ| V̂ |Ψ〉 =

∫
v(r)n(r)d3r. (2.26)

Eq. (2.26) leads us to the conclusion that an external potential energy is a

functional of electron density. The result is general; the expectation value of any

symmetrical sum of one-electron operators is the integral of any one of them with

the electron density. We can see that without the multiplicative property one

can not rearrange the integrand into the final form. So, it seems to be impossible
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to evaluate the expectation value of any observables with only a knowledge of

the electron density. However, the Density-Functional theory implies that it is

principally possible.

2.3 The Hohenberg-Kohn Theorem

The initial work on Density-Functional Theory (DFT) was reported in 1964 by

P. Kohenberg and W. Kohn [20] . They proved that the ground-state density

n(r) of a bound system of interacting electrons in some external potential V̂

determines this potential uniquely. More specifically, n(r) determines implicitly

all properties derived from Ĥ (Eq. 2.30).

Before Hohenberg and Kohn published their landmark paper[20], there

had existed the Thomas-Fermi (Thomas [17], 1927; Fermi [18], 1928) theory which

considered interacting electrons moving in an external potential v(r), and pro-

vided a one-to-one relation between v(r) and the density n(r):

n(r) = γ[µ − veff (r)]
3/2 (2.27)

in which

veff (r) ≡ v(r) +

∫
n(r′)
|r − r′|d

3r (2.28)

where µ is the r-independent chemical potential, and γ = 1
3π2

(
2m
h̄2

)3/2
. Eq. 2.27

is based on the expression

n = γ(µ − v)3/2 (2.29)

for the density of a uniform electron gas in constant external potential.
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The TF theory showed how to roughly express physical properties in

terms of n(r). But the use of electron density as a fundamental description of

the system was based on intuition rather than hard proof that this can be done.

However, the situation changed with the publication of the landmark paper by

Hohenberg and Kohn. They provided the fundamental theorems showing that for

ground states the TF theory may be regarded as an approximation to an exact

theory, the Density-Functional Theory. Hohenberg and Kohn have shown that it

is possible, in principle, to completely describe the electronic structure in terms

of n(r).

The basic lemma of HK.

The ground-state density n(r) of a bound system of interacting electrons

in some external potential v(r) determines this potential uniquely [20] ,[21].

Remark: 1. The term uniquely means: up to an uninteresting additive

constant. 2. In case of a degenerate ground state, the lemma refers to any

ground-state density n(r).

This lemma means there is a one-to-one correspondence between the

ground state density of the many-fermion system and the external potential act-

ing upon it. The proof of this is very simple. The N -electron systems under

consideration are characterized by a non-relativistic Hamiltonian

Ĥ = T̂ + Û + V̂ (2.30)

where T̂ is the kinetic energy operator, Û is the e-e interaction energy operator,

and V̂ is the external potential energy operator:

V̂ =
N∑

i=1

v(ri). (2.31)
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For a molecule or solid, v(ri) is the external potential acting on electron i, due

to nuclei.

Let n(r) be the nondegenerate ground-state density in the external po-

tential v1(r), corresponding to the nondegenerate ground state Ψ1 and the energy

E. Then,

E1 = 〈Ψ1| Ĥ1 |Ψ1〉 (2.32)

= 〈Ψ1| T̂ + Û |Ψ1〉 +

∫
v1(r)n(r)d3r.

Assume v2(r), not equal v1(r)+constant, to be another potential with the ground

state Ψ2 giving rise to the same ground-state density n(r). (Ψ1 �= Ψ2 since they

satisfy different Schrodinger equations.) Then,

E2 = 〈Ψ2| Ĥ2 |Ψ2〉 (2.33)

= 〈Ψ2| T̂ + Û |Ψ2〉 +

∫
v2(r)n(r)d3r.

Since Ψ1 is assumed to be nondegerate, the Rayleigh-Ritz minimal principle gives

the inequality:

〈Ψ1| Ĥ1 |Ψ1〉 < 〈Ψ2| Ĥ1 |Ψ2〉

E1 < 〈Ψ2| Ĥ2 |Ψ2〉 + 〈Ψ2| Ĥ1 − Ĥ2 |Ψ2〉

E1 < E2 +

∫
(v1(r) − v2(r)) n(r)d3r. (2.34)

Similarly,



16

〈Ψ2| Ĥ2 |Ψ2〉 ≤ 〈Ψ1| Ĥ2 |Ψ1〉

E2 ≤ 〈Ψ1| Ĥ1 |Ψ1〉 + 〈Ψ1| Ĥ2 − Ĥ1 |Ψ1〉

E2 ≤ E1 +

∫
(v2(r) − v1(r)) n(r)d3r, (2.35)

where we use ≤ since the non-degeneracy of Ψ2 was not assumed. Adding Eqs.

(2.34) and (2.35) leads to the contradiction

E1 + E2 < E1 + E2. (2.36)

We conclude that the assumption of the existence of a second poten-

tial v2(r) which is unequal to v1(r)+constant and gives the same n(r) must be

wrong. The lemma is thus proved for nondegenerate ground state. In the case of

degenerate-ground state, the proof can easily extended, see Ref. [22], [23].

It is clear now that the electron density determines the external potential

V̂ of which the system is under the influence. Hence, the value of E is fixed by

n(r) to within a constant, i.e., the total ground-state energy is a functional of

electron density n(r):

〈Ψ| (T̂ + Û + V̂ ) |Ψ〉 = E [n (r)]

= F [n (r)] +

∫
v(r)n(r)d3r, (2.37)

where

F [n (r)] ≡ 〈Ψ| (T̂ + Û) |Ψ〉 . (2.38)
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The functional F [n (r)] is universal in the sense that its form does not depend

on the external potential. So, once we have an explicit form of F [n (r)] we can

apply to any system under consideration.

It should be emphasized that the density n (r) in the Hohenberg-Kohn

theorems must be in the set of v-representable (VB) densities. This means n (r)

must be the density associated with the ground-state wavefunction of a Hamilto-

nian of the form (2.30) with some external potential v (r). The Hohenberg-Kohn

basic lemma can be restated as follows: The v-representable ground-state den-

sity n(r) of interacting electrons in some external potential v(r) determines this

potential uniquely.

The HK variational principle

For all v-representable trial density ñ (r) such that ñ (r) ≥ 0 ,

and
∫

ñ(r)d3r = N ,

E [ñ (r)] ≡ F [ñ (r)] +

∫
v(r)ñ(r)d3r ≥ E [n0 (r)] , (2.39)

where E [n0 (r)] is the ground-state energy of the Hamiltonian with v(r) as an

external potential, and n0 (r) its ground-state density.

That means the total energy calculated from a trial density ñ (r) can not

be lower than the true ground-state energy. The variational principle can be easily

proved, since each trial density ñ (r) is a ground-state density corresponding to

some external potential. As long as each trial density defines a Hamiltonian, one

can derive the corresponding ground-state Ψ̃.

ñ (r) → Ψ̃.
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According to the Rayleigh-Ritz variational principle, we obtain

〈
Ψ̃

∣∣∣ Ĥ ∣∣∣Ψ̃〉
≥ 〈Ψ0| Ĥ |Ψ0〉 (2.40)

E [ñ (r)] ≥ E [n0 (r)] , (2.41)

where n0 (r) is the real ground-state density of the system of interest.

The ground-state energy and density can be obtained by using the method

of Lagrange multiplier. The electron density is varied within the constraint

∫
ñ (r) d3r = N, (2.42)

and the energy is stationary for small variations δñ (r) around the exact ground

density n0 (r),

δE [ñ (r)] =

∫ [
v (r) +

δ

δñ (r)
F [ñ (r)] |ñ=n0 − µ

]
δñ (r) d3r = 0, (2.43)

which leads to

µ = v (r) +
δF [n (r)]

δn (r)
. (2.44)

The quantities µ is the undertermined Lagrange multiplier. If we knew the form

of F [n (r)], (2.44) would be an exact equation for the ground-state density.

The HK variational principle is verified only for v-representable den-

sity. So, one has to be sure that each trial density belongs to the domain

of v-representable densities. The first extension of HK formalism to non-v-

representable density was proposed by Levy [24] (1979) and the further inves-

tigation by Lieb [25] (1982) and Levy [26] (1982).
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The Levy-Lieb constrained-search formulation

Let us recall the Rayleigh-Ritz variational principle

〈
Ψ̃

∣∣∣ Ĥ
∣∣∣Ψ̃〉

≥ 〈Ψ0| Ĥ |Ψ0〉 .

We know that every trial wavefunction Ψ̃ corresponds to a trial density ñ (r), but

there exists an infinite number of antisymmetric wavefunctions that give the same

density. So, one may carry out the minimization in two steps: First fix a trial

density ñ (r) and search over the set of trial wavefunctions which corresponds to

this density ñ (r). The constrained energy mimimum with fixed ñ (r) is defined

as

E [ñ (r)] ≡ min
Ψ̃→ñ(r)

〈
Ψ̃

∣∣∣ Ĥ
∣∣∣Ψ̃〉

=

∫
v(r)ñ(r)d3r + FLL [ñ (r)] , (2.45)

where

FLL [ñ (r)] ≡ min
Ψ̃→ñ(r)

〈
Ψ̃

∣∣∣ T̂ + Û
∣∣∣Ψ̃〉

. (2.46)

In the second step, minimize (2.45) over all ñ (r),

E [ñ (r)] ≡ min
ñ

[∫
v(r)ñ(r)d3r + FLL [ñ (r)]

]
. (2.47)

Noting that, in this constrained search, trial densities ñ (r) are v-representable,

since they corresponds to some antisymmetric wavefunctions.

The Thomas-Fermi theory
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The variational principle may be considered as the exactification of Thomas-

Fermi theory. Consequently, one could easily rederive the Thomas-Fermi (2.27)

equation by taking

F [n (r)] = TTF [n (r)] + Ues [n (r)]

where

TTF [n (r)] = CF

∫
n5/3 (r) d3r, where CF =

3

10

h̄2

m
(3π2)2/3 (2.48)

and

Ues [n (r)] =
1

2

∫
n (r) n (r′)
|r − r′| d3rd3r′. (2.49)

The expression of Ues [n (r)] is the classical (mean-field) approximation.

2.4 The Basic Kohn-Sham Scheme

Kohn and Sham (1965) introduced the idea of an auxiliary noninteracting-electron

system such that the corresponding electron density equals to the density of the

real interacting-electron system [27]. The idea enabled them to combine the

Hohenberg-Kohn variational principle with traditional wavefunction methods. In

this section, we present the Kohn-Sham scheme in the situation where the spin

degrees of freedom are neglected. The more difficult situation will be presented

in the following sections.

Consider an interacting-electron system described by the Hamiltonian as

in Eq. (2.30)
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Ĥ = T̂ + Û + V̂ .

According to the theorem of Hohenberg and Kohn, there exists the energy func-

tional (2.37)

E[n (r)] = F [n (r)] +

∫
v(r)n(r)d3r

where the universal functional F [n (r)] contains both kinetic and interaction en-

ergy.

Kohn and Sham proposed an approximation of F [n (r)], which after

applying the variational principle to the new energy functional, yields a self-

consistent single-particle Schrödinger equation with a local effective potential

veff (r). The scheme is analogous to the Hartree method but contains the part

of the exchange and correlation effects.

The HK universal functional F [n (r)] was seperated as follows:

F [n (r)] ≡ Ts [n (r)] +
1

2

∫
n (r) n (r′)
|r − r′| d3rd3r′ + Exc [n (r)] , (2.50)

where Ts [n (r)] is the kinetic energy of electrons in a system which has the same

density n (r) as the real system, but in which there is no electron-electron in-

teractions. Exc [n (r)] is called exchange-correlation energy (because of its origin

in the correlated motion of electrons and the quantum effects implied from the

Pauli exclusion principle). It has to be stressed that Exc [n (r)] also contains the

correction for self-interaction introduced by the classical electrostatic potential.

Eq. (2.50) leads us to a new expression for the energy functional
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E [n (r)] = Ts [n (r)]+
1

2

∫
n (r) n (r′)
|r − r′| d3rd3r′+Exc [n (r)]+

∫
v(r)n(r)d3r. (2.51)

If we define the exchange-correlation potential as

vxc (r; [n]) ≡ δExc [n (r)]

δn (r)
, (2.52)

the HK variational principle will lead us to the equation

δE [ñ (r)] =

∫ [
δ

δñ (r)
Ts [ñ (r)] |ñ=n0 + veff (r) − µ

]
δñ (r) d3r = 0 (2.53)

where we grouped all potential terms together into an effective potential:

veff (r) ≡ v (r) +

∫
n (r)

|r − r′|d
3r + vxc ([n] ; r) . (2.54)

It should be stressed here that the seperation in Eq. (2.50) was the only

approximation used for establishing the Kohn-Sham equations. This approxi-

mation is verified if the existence of an auxiliary system in which there is no

electron-electron interactions, such that the corresponding ground-state density

is equal to the ground-state density of the real interacting system, is assumed.

(See Ref. [23] for further discussion.)

Now what one has to do is just solving the auxiliary problem to get

the real ground-state density from which, according to the HK theorem, other

properties of the real system may be calculated.

Kohn and Sham observed that Eq. (2.53) is identical to the equation for

noninteracting electrons moving in the effective potential veff (r). Therefore, we

can solve Eq. (2.53) by using the single-particle equation
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[
−1

2
∇2 + veff (r)

]
ϕi(r) = εiϕi(r) (2.55)

with

n(r) =
N∑

i=1

|ϕi(r)|2 . (2.56)

The set of equations (2.54)-(2.56), are now called the Kohn-Sham equa-

tions. Since, the effective potential veff (r) depends on the density, the whole

equations have to be solved self-consistently: One begins with the assumed n(r),

constructs veff (r) and finds a new n(r) from (2.55) and (2.56). The ground-state

energy is given by

E =
N∑

i=1

εi − 1

2

∫
n (r) n (r′)
|r − r′| d3rd3r′ −

∫
vxc(r)n(r)d3r + Exc [n (r)] . (2.57)

2.5 Spin-Density Functional Theory

The formal justification of the Spin-Density Functional Theory (SDFT) as an

extension of the Hohenberg and Kohn formalism was firstly introduced simulta-

neously by von Barth and Hedin [28] and by Pant and Rajagopal [29] in 1972 (see

also Rajagopal and Callaway [30], 1973). The SDFT is a necessary generalization

for many-elecron systems in the presence of an external magnetic field.

In the presence of a magnetic field B (r) that interacts only with the

electron spins, the Hamiltonian of the system can be written as

Ĥ = T̂ + Û + V̂ + Êmag, (2.58)



24

where T̂ , Û and V̂ have been defined earlier in (2.30) and

Êmag = 2µB

N∑
B (r) · si, (2.59)

where µB = eh̄/2mec is the Bohr-magneton, and si is the spin for electron ith.

Here, for notational simplicity, we will consider the case where B (r) have only a

nonvanishing z-component

B (r) = (0, 0, BZ (r)) . (2.60)

The ground-state energy is given by

E0 = min
Ψ

〈Ψ| Ĥ |Ψ〉

= min
n↑,n↓

[
min

Ψ̃→ñ↑,ñ↓

〈
Ψ̃

∣∣∣ T̂ + Û
∣∣∣Ψ̃〉

+

∫
(v(r) + µBBZ (r))n↑(r)d3r

+

∫
(v(r) − µBBZ (r))n↓(r)d3r

]
= min

n↑,n↓

[
F [n↑, n↓] +

∫
(v(r) + µBBZ (r))n↑(r)d3r

+

∫
(v(r) − µBBZ (r))n↓(r)d3r

]
. (2.61)

The last equality of (2.61) is the basis of the spin-density functional theory: n↑,

and n↓ are all needed to describe the ground state of the many-electron system

in the presence of a magnetic field BZ (r). However, F [n↑, n↓] is unknown, and

approximation is necessary for the theory to be implemented.

The Kohn-Sham method can now be introduced to handle the kinetic

contribution to F [n↑, n↓]. In the manner of (2.50), define
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F [n↑, n↓] = Ts [n↑, n↓] +
1

2

∫
n (r) n (r′)
|r − r′| d3rd3r′ + Exc [n↑, n↓] , (2.62)

where Ts [n↑, n↓] is the Kohn-Sham kinetic energy functional corresponding to

a system of noninteracting electrons with density n↑, and n↓. Since, Ts [n↑, n↓]

can be expressed as a functional of one-electron wavefunctions ϕ
(α)
i (r), one can

find the spin-related Kohn-Sham equations by the variation of the total energy

functional with respect to ϕ
(α)
i (r), subject to normalization constraints, where α

(↑ or ↓) denotes the spin projection in the z-direction:

∫ ∣∣∣ϕ(α)
i (r)

∣∣∣2 d3r = 1. (2.63)

The resulting Kohn-Sham equations are

[
−1

2
∇2 + v

(α)
eff (r)

]
ϕ

(α)
i (r) = ε

(α)
i ϕ

(α)
i (r), (2.64)

where the spin-dependent effective potentials are

v↑
eff (r) = v (r) + µBB (r) +

∫
n (r)

|r − r′|d
3r +

δExc [n↑, n↓]
δn↑ (r)

v↓
eff (r) = v (r) − µBB (r) +

∫
n (r)

|r − r′|d
3r +

δExc [n↑, n↓]
δn↓ (r)

(2.65)

and

nσ (r) =
Nσ∑
i=1

∣∣∣ϕ(σ)
i (r)

∣∣∣2 , n (r) = n↑ (r) + n↓ (r) (2.66)

where
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v(α)
xc (r; [n↑, n↓]) ≡ δExc [n↑, n↓]

δnσ (r)
. (2.67)

The states ϕ
(α)
i (r) are ordered so that the energies ε

(α)
i are non-decreasing.

Now, similar to the expression in Eq. (2.57), the ground-state energy is given by

E0 =
∞∑
i=1

∑
σ

ε
(σ)
i −1

2

∫ ∫
n (r) n (r′)
|r − r′| d3r′d3r−

∑
σ

∫
v(σ)

xc ([n↑, n↓] ; r) nσ (r) d3r+Exc [n↑, n↓] .

(2.68)

2.6 The Exchange-Correlation-Energy Functional

One can see from the definition in Eq. (2.50)

Exc [n (r)] ≡ F [n (r)] − Ts [n (r)] − 1

2

∫
n (r) n (r′)
|r − r′| d3rd3r′

that Exc [n (r)] includes the energy contributions from three parts: first, the non-

classical part of electron-electron interaction energy. Second, correction from

self-interaction introduced by the electrostatic (mean field) potential, and third,

the difference between the exact kinetic energy of interacting system and the

Kohn-Sham noninteracting kinetic energy Ts [n (r)].

The most important approximations for Exc [n (r)] suggested by Kohn

and Sham [27], is known as the local density approximation, or LDA:

Exc [n (r)] �
∫

εxc (n (r)) n (r) d3r, (2.69)

where εxc (n (r)) is the exchange-correlation energy per electron in a uniform

electron gas. The non-uniform electron gas at r is therefore treated as if it were
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part of a uniform electron gas of constant density n = n (r). This quantity

is known exactly in the limit of high density, and can be computed accurately

at densities of interest, using Monte Carlo techniques. It is clear that LDA is

accurate when the electron density is almost uniform, but it also gives very good

results for many atomic, and molecular systems. In practice, one usually employs

parametric formulas for εxc (n (r)).

The extension of LDA to spin-polarized systems, known as the local spin-

density approximation (LSDA), has also proven very successful. In fact, the spin-

dependent exchange-correlation energy Exc [n↑, n↓] can be a better description of

the real system than the ordinary Exc [n (r)]. The spin dependence allows Hund’s

rule to be discussed within DFT.



Chapter 3

Quantum Dots

In this chapter, we will first present some selected experiments which

have been done so far on quantum-dot systems. Then, we will discuss how the

ground-state electronic structures of quantum dots can be described within the

single-electron model.

3.1 Experiments

With the development of microfabrication technology, there have been many

methods which can be used to produce quantum-dot structures. One of the most

direct and flexible way is to laterally pattern existing quantum well structures by

etching techniques.

Figure 3.1: A circular quantum dot of the etched type

This section is intended to provide an overview of achieved experimental

results showing the quantum-dot ground states under the influence of an external
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magnetic field. Many experiments, which have been done over the past decade,

used single-electron tunnelling spectroscopy to probe the electronic structures

of quantum dots. The achieved results revealed an existence of discrete energy

levels in quantum dot structures. However, a clear shell structure of the ground

states was first reported by Tarucha et al (1996) [1]. In their experiments, the

ground-state energy was measured by using the device as shown in Figure 3.2.

Figure 3.2: The schematic illustration of the experimental setup. The double-
barrier heterostructure (DBH) consists of an undoped 12.0 nm. In0.05Ga0.95As
well and undoped Al0.22Ga0.78As barriers of thickness 9.0 and 7.5 nm. The source
and drain contacts are made from n-GaAs [1].

The device was used to study the energy levels and properties of the

electrons which are confined vertically between two AlGaAs barriers and laterally

in the region of the pillar. The sample was cooled down to 50 mK, and the
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Figure 3.3: Experimental data of current vs gate voltage for a quantum dot with
diameter D = 0.5 µm measured by Tarucha et al [1].

tunnelling current I flowing through the dot was measured as a function of the

gate voltage Vg in response to a small dc voltage applied between the contacts.

In their paper, they pointed out that each peak in the I-V characteristics

corresponds to a change of exactly one electron in the dot and the clear Coulomb

oscillations are observed for Vg > −1.6 V. In other words, the number of electrons

N in the dot was varied one by one while the gate voltage was changed. For

example, N = 1 between the first and second peaks, N = 2 between the second

and third peaks, etc. We can see that the space between each peak is not constant,

the gap is wider when N = 2, 6, and 12. The spacing between the current peaks

gives the measure of the addition energy (see Figure 3.4). For example, the energy

to add the third electron to a 2-electron quantum dot can be derived from the

spacing between the second and third peaks.
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Figure 3.4: Addition energy measured by Tarucha et al[1].

As a conclusion, Tarucha et al have investigated the ground-state of N-

electron quantum dot weakly coupled to the contacts by monitoring the current

flowing vertically through the dot at or below 0.3 K as the gate voltage was

varied. They pointed out that N can be increased one-by-one starting from zero

by making the gate voltage more positive.

3.2 Theoretical Explanation

In order to study the energy levels or other properties of the electrons confined in

quantum dots, most theoretical calculations use the effective-mass approximation

to simplify the problem. Within this approximation, the electron mass me is

replaced by the effective mass m∗
e and the effect of the ion cores in crystal structure

is taken into account via m∗
e (See Appendix A). The remaining part which have
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not been included, is the background confining potential and other external field.

What is the confining potential seen by electrons in the quantum dot?

To answer this question, it may be helpful to analyze the quantum-dot structure

in details again. As noted briefly in the previous section, quantum dots are made

of semiconductor layers, the electrons of interest are confined in the InGaAs

well. We know that electrons in semiconductor have energies that are limited

to allowed bands separated from each other by band gaps. The highest energy

bands containing electrons are of greatest interest. At 0 K the electron density is

such that the highest band containing electrons is completely filled up. The next

band is completely empty, and the two bands are separated by a band gap. The

highest occupied band is called the valence band, while the upper unfilled band

is called the conduction band. Electrons in the valence band can be excited to

the conduction band by gaining energy from the environment. Both the electrons

in the conduction band and the vacant orbitals (holes) left behind in the valence

band contribute to the electrical conductivity.

In the vertical quantum dot studied by Tarucha et. al., the heterostruc-

ture was created in such a way that a double barrier is formed in the conduction

bands (see Figure 3.5). The electrons in the conduction band are therefore con-

fined in the well region. In other words, they are unable to move freely in the

crystal growth (vertical) direction.

To model quantum dots of this type, we assume that the confining poten-

tial can be separated into a vertical (z) component and a lateral (r = (x,y) = (r, φ))

component. The confining potential in the vertical direction can be thought of as

being a narrowed infinite square well so that the energy level of the first excited

state in the z direction is much greater than many of the low energy states in
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Figure 3.5: Schematic of the double-barriers formed in the conduction band.

the x-y plane. This allows us to model electron motion in a quantum dot as

two-dimensional.

Until now, quantum dots of various geometries have been created and

studied, for example, rectangular, triangular and circular dots. However, we will

focus, for now, on circular quantum dots. Most of theoretical calculations often

assume the lateral confining potential V (r) to be parabolic in order to study the

electronic structure of a circular dot.

3.2.1 Single-Electron Models

Of course, there are many electrons in the quantum dot system. But, if we

ignore, for the moment, the interaction between electrons in the dot, we can gain

a lot of information from the analytic solutions of the single-electron Schrodinger

equation. The case of a single electron in an isotropic 2D harmonic confining

potential under a B field was dealt with many years ago by Fock (1928) [9] and
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Darwin (1930) [10]. If the confining potential is written in the form V (r) =

1
2
mω2

0r
2, the energy levels of the electron is given by

En,m = (2n + |m| + 1)h̄(
1

4
ω2

c + ω2
0)

2 − 1

2
lωc, (3.1)

where ωc is the Cyclotron frequency, n the radial quantum number (= 0, 1, 2, ...),

and m = 0,±1,±2, .... Spin is neglected so each states is twofold degenerate. In

the absence of the B field, the energy of electron can be simply written as

En,m = (2n + |m| + 1)h̄ω0. (3.2)

Therefore, the first state has energy E0,0 = h̄ω0, the second and third states have

energy E0,1 = E0,−1 = 2h̄ω0, and so on. This leads to a complete filling of shells

for 2, 6, 12, ... electrons. The experiments of Tarucha et al [1] also shows a

maximum in the addition energies when the electron number coincides with N =

2, 6, 12, ....

3.2.2 Single Electron Tunnelling

One may ask now what is the correspondence between the peaks occur in the I-V g

characteristic and the energy levels of the electrons confined in the quantum dot

region. To answer this question, it is useful to recall the knowledge of tunnelling

phenomena particularly in the case of double barriers.

Normally the tunnelling problems involve the propagation of a particle

with energy E through a region of potential V , where E < V . The particle of

interest may initially occupy a free state on the first region, and the tunnelling

problem involves the particle coming from this region from the left of a potential

barrier and tunnelling through the barrier with a finite probability.
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In the well region between two potential barriers, one has quasi-bound

states with energies E1, E2, ... (see Figure 3.6 [31].). If the barriers were infinitely

thick, these states would simply be the bound states in a quantum well. However,

because of the finite barrier thickness, an electron can still transmit into or out

of the well region. But, The transmission can occur only when the energy of

the electron (approaching from the region A) approaches one of the quasi-bound

energies.

Figure 3.6: Schematic of a double-barrier potential. In the well formed between
the two barriers, one has quasi-bound states with energies E1, E2, .... As the
energy of an electron in region A approaches these energies, the tunnelling prob-
ability approaches unity

Similarly, an electron can tunnel into a quantum dot only if the Fermi

energy of an electron in the contact region lines up with an energy level of the

quantum-dot system. In practice, the energy levels were shifted by tuning the

external electrostatic potential from the side gate. For example, by increasing the

gate voltage, the levels of the quantum dot are shifted in energy relative to the

Fermi level of the contact region. This allows the number of electrons confined

in the quantum dot to increase one by one. Tunnelling through excited states of
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a quantum dot was observed for various tunnelling barriers many years ago by

Weis et al (1993) [32].



Chapter 4

N-Electron Models:

Density Functional Approach

The single-electron model which was reviewed in chapter 3 can give us

only a simple qualitative explanation of real quantum dots. To describe the elec-

tronic structure of quantum-dot systems, one must go beyond the non-interacting

electron model.

In this chapter, we will briefly describe how the density functional the-

ory presented in chapter 2 can give us a better explanation of the ground-state

electronic structures of N-electron quantum dots. The methodology based on

the spin-polarized Kohn-Sham scheme will be presented and used as a basis for

numerical calculations.

4.1 Methodology

To obtain the ground-state energies and densities of the N-electron quantum dot,

we solve the self-consistent spin-polarized Kohn-Sham equations (Eq. 2.64)[
−1

2
∇2 + v

(σ)
eff (r)

]
ϕ

(σ)
i (r) = ε

(σ)
i ϕ

(σ)
i (r), (4.1)

where r = (x, y) and the index σ accounts for the spin (↑ or ↓). Here, the

rescaled atomic units are used, with lengths in units of the effective Bohr radius

a∗
0 = 4πεh̄2/m∗

ee
2 and energy in effective atomic units of energy called Hartree∗

(see Appendix B).
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The spin-dependent effective potentials v
(σ)
eff (r) contains contributions

from the external confining potential v (r), the classical electrostatic (Hartree)

potential of the electrons, and the exchange-correlation potential v
(σ)
xc .

vσ
eff (r) = v (r) +

∫
n (r′)
|r − r′|d

2r′ + vσ
xc (r; [n↑, n↓]) , (4.2)

where

nσ (r) =
Nσ∑
i=1

∣∣∣ϕ(σ)
i (r)

∣∣∣2 , n (r) = n↑ (r) + n↓ (r) . (4.3)

4.1.1 Local-Spin Density Functional Approximation

The approximate exchange-correlation energy functional used in this thesis is the

so-called local-spin-density approximation (LSDA).

ELSDA
xc [n↑, n↓] =

∫
εxc ([n↑, n↓] ; r) n (r) d2r, (4.4)

where εxc ([n↑, n↓] ; r) is the exchange-correlation energy per particle of a uniform

electron gas of density n. This quantities can be computed accurately at densities

of interest using Monte Carlo techniques. Note that the exchange-correlation

potential defined in Eq. (2.67) is now given by

vσ
xc (r; [n↑, n↓]) =

∂ [nεxc]

∂nσ

(4.5)

and the corresponding expression for the ground-state energy is:

E [n↑, n↓] =
∞∑
i=1

∑
σ

ε
(σ)
i − 1

2

∫
n (r) n (r′)
|r − r′| d2rd2r′ −

∑
σ

∫
v(σ)

xc ([n↑, n↓] ; r) nσ (r) d2r

+

∫
εxc ([n↑, n↓] ; r) n (r) d2r, (4.6)
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where the second term subtracts half of the double counting of the electrostatic

energy, and the last term is a similar substraction for the exchange-correlation

energy. The numbers of electrons with ↑ spin and ↓ spin need to be varied to

achieve minimum total energy.

4.1.2 Analytic Parametization for εxc

In this thesis, we employ the new parametrized form of εxc recently proposed by

Attaccalite et al (2002) [12]. Note that this new parametrization is an extension

to the most used parametrized form of Tanatar and Ceperly [11] which based

on diffusion Quantum Monte Carlo (DMC) data at spin polarization ζ = 0 and

ζ = 1.3

Attaccalite et al [12] have presented new diffusion Quantum Monte Carlo

simulations for a wide range of electron densities rs and spin polarizations ζ. This

direct DMC calculation of ζ dependence is new and provides a reliable basis for

building an LSD energy functional for 2D systems. The new parametrization of

εxc is written as

εxc (rs, ζ) = εx (rs, ζ) + εc (rs, ζ)

= εx (rs, ζ) +
(
e−βrs − 1

)
ε(6)
x (rs, ζ) + α0 (rs) + α1 (rs) ζ2 + α0 (rs) ζ4,

(4.7)

where rs is the density parameter and

ε(6)
x (rs, ζ) = εx (rs, ζ) −

(
1 +

3

8
ζ2 +

3

128
ζ4

)
εx (rs, 0) (4.8)

3The two-dimensional (2D) electron gas at T=0 is characterized only by two parameters:
the spin polarization ζ = (n↑ − n↓) /n and the density parameter rs = 1/

√
πn (The radius of

the circle that encloses one particle on the average).
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is the Taylor expansion of εx beyond fourth order in ζ. The exchange term is

given by

εx (rs, ζ) = −2
√

2

3πrs

(
(1 + ζ)3/2 + (1 − ζ)3/2

)
. (4.9)

The density dependent function αi (rs) is a generalization of the Perdew-Wang

[33] form to the 2D case,

αi (rs) = Ai +
(
Birs + Cir

2
s + Dir

3
s

)
ln

(
1 +

1

Eirs + Fir
3/2
s + Gir2

s + Hir3
s

)
.

(4.10)

The optimal values of the parameters are listed in Table 4.1. This new functional

includes several known high- and low-density limits.

i=0 i=1 i=2
Ai -0.1925 0.117331 0.0234188
Bi 0.0863136 -3.394×10−2 -0.03709.
Ci 0.057234 -7.66765×10−3 0.0163618
Ei 1.0022 0.4133 1.424301
Fi -0.02069 0 0
Gi 0.340 6.68467×10−2 0
Hi 1.747×10−2 7.799×10−4 1.163099

Table 4.1: Optimal fit parameters for the correlation energy as parametrized in
Eq. (4.7) and (4.10). The parameter Di = −AiHi, and β is equal to 1.3386.

4.1.3 LSD Correlation Potential

The LSD correlation potential vσ
c for electrons of spin σ is given by

vσ
c (rs, ζ) =

∂ [nεc]

∂nσ

= εc (rs, ζ) − rs

2

∂εc (rs, ζ)

∂rs

− (ζ − sgn σ)
∂εc (rs, ζ)

∂ζ
. (4.11)
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where sgn σ is +1 for spin-up electrons and -1 for spin-down electrons. From the

analytic representations of εxc in Eq. (4.7)-(4.9), one can rewrite the expression

for εc (rs, ζ) as follows

εc (rs, ζ) =
2
√

2

3πrs

F (ζ)
(
1 − e−βrs

)
+ α0 (rs) + α1 (rs) ζ2 + α2 (rs) ζ4, (4.12)

where

F (ζ) = (1 + ζ)3/2 + (1 − ζ)3/2 −
(

2 +
3

4
ζ2 +

3

64
ζ4

)
. (4.13)

Therefore, the derivative with respect to rs is

∂εc (rs, ζ)

∂rs

=
2
√

2

3π
F (ζ)

[
e−βrs (1 + βrs) − 1

]
r2
s

+ α′
0 (rs) + α′

1 (rs) ζ2 + α′
2 (rs) ζ4,

(4.14)

where

α′
i (rs) =

dαi (rs)

drs

(4.15)

=
(
Bi + 2Cirs + 3Dir

2
s

)
ln

(
1 +

1

fi (rs)

)
− (Birs + Cir

2
s + Dir

3
s) f ′

i (rs)

fi (rs) (fi (rs) + 1)

fi (rs) = Eirs + Fir
3/2
s + Gir

2
s + Hir

3
s (4.16)

f
′
i (rs) = Ei +

3

2
Fir

1/2
s + 2Girs + 3Hir

2
s . (4.17)

The derivative w.r.t. ζ is simply

∂εc (rs, ζ)

∂ζ
=

2
√

2

3πrs

(
1 − e−βrs

)
F ′ (ζ) + 2α1 (rs) ζ + 4α2 (rs) ζ3 (4.18)

F ′ (ζ) =
3

2

(
(1 + ζ)1/2 + (1 − ζ)1/2

)
− 3

2
ζ − 3

16
ζ3. (4.19)
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4.2 Procedure

In order to minimize the energy functional E [n↑, n↓], the spin-polarized Kohn-

Sham equations have to be solved self-consistently. The general procedure is

decribed as followed:

1. Define mesh on 2D region, boundary conditions, and the coefficients.

2. Start from an initial guess of the effective potential which was chosen

to be the confining potentials.

3. Compute the spin-polarized Kohn-Sham equations.

[
−1

2
∇2 + v

(σ)
eff (r)

]
ϕ

(σ)
i (r) = ε

(σ)
i ϕ

(σ)
i (r)

4. Calculate new density

nσ (r) =
Nσ∑
i=1

∣∣∣ϕ(σ)
i (r)

∣∣∣2 , n (r) = n↑ (r) + n↓ (r)

and effective potential,

vσ
eff (r) = v (r) +

∫
n (r′)
|r − r′|d

2r′ + vσ
xc (r; [n↑, n↓]) .

5. Calculate total energy

E [n↑, n↓] =
∞∑
i=1

∑
σ

ε
(σ)
i − 1

2

∫
n (r) n (r′)
|r − r′| d2rd2r′ −

∑
σ

∫
v(σ)

xc ([n↑, n↓] ; r) nσ (r) d2r

+

∫
εxc ([n↑, n↓] ; r) n (r) d2r,

If energy changed substantially, go to step 3.

6. If energy converged calculate addition energy and other properties
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In the calculation we used a mixing scheme where the new effective po-

tential V i+1 is obtained from the input and output potentials according to

V i+1
in = (1 − a)V i

in + aV i
out. (4.20)

Implementation of this procedure was performed with Matlab version 5.3.1 pde-

toolbox4 which is based on finite-element method (FEM).

4A user-friendly interface based on Matlab v.4.2 pde-toolbox for simulating time-dependent
problems and time-independent eigenvalue problems of single electron in two dimensions can
be found in Ref [34].



Chapter 5

Results and Discussion

5.1 Harmonic Confinement

We first present calculated results for 2D harmonic potential Vp = 1
2
k2r2. The at-

traction of this model is that an analytic solution to the single electron Schrodinger

equation exists. So, the single electron solution can serve as a basis for study-

ing of N-electron systems. In addition, it can be a good test case to gauge the

accuracy of different approaches.

5.1.1 Addition Energy Spectrum

The addition energy is the change of chemical potential:

∆µ (N) = µ (N + 1) − µ (N) (5.1)

where µ (N) is the chemical potential. The chemical potential which is defined

as µ (N) ≡ E (N) − E (N − 1) is the energy required to add one electron to the

system with N − 1 electrons.

Experimentally, Tarucha et al [1] found that the addition energy was

unusually large for N = 2, 6, and 12 for the circular quantum dot with D = 0.44

and 0.5 µm. They also observed a relatively large addition energy for N=4 in

most devices.

In our calculation, we obtain the expected peaks at N = 2, 6, and 12

(Figure 5.1). In addition, at N = 4, and 9 the smaller peaks can also be noticed.
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Figure 5.1: The calculated addition energy (µ(N +1)−µ(N)) of a circular quan-
tum dot with the confining potential specified by k = 0.3 (effective atomic unit)
or h̄ω = 3.19 meV.

By comparison with the experimental results of Tarucha et al (1996)

(Figure 3.4), the energy range of the real quantum dot is lower when the number

of electrons is higher, but there is no such effect in Figure 5.1. To understand this,

we present here the calculated results for the quantum dots of different widths

and depths (k = 0.3, 0.6, and 0.9). We can see from Figure 5.2 that the range of

the addition energies are shifted down when the values of confinement parameter

k are decreased. The cause of this effect is the change in the diameter of the

quantum dot while a negative voltage is applied to the side gate. In other words,

the diameter of the dot becomes smaller which corresponds to the increasing in

the value of k.
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Figure 5.2: The effect of the confinement parameter k on the addition energy
spectra.

If we ignore the interaction of electrons for the moment, it is clear that

the energy differences between each single-particle states become smaller when

the depth of a quantum dot is decreased (Eq. 3.2). We decrease the confinement

parameter (k) further to see the effect of the energy-level spacing. The calculated

results of the addition energy spectra are shown in Figure 5.3. One can see that

the peak at N = 2 begins to disappears at k = 0.2. This shows the effect of

the electron interaction which becomes more important when the energy-level

spacing is small compared to the total energy.
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Figure 5.3: The addition energy (µ(N + 1) − µ(N)) of a quantum dot with the
confining potential specified by k = 0.3, 0.2, and 0.1.

5.1.2 Electron Density

As shown in Figure 5.1-5.2, the addition energy will be unusually large at N=2,

6, and 12. We find that this corresponds to the zero total spin electronic states

(N↑ = N↓). The electron densities of these states are shown in Fig 5.4. We

can see that the electrons in a circularly shaped confinement form rotationally

symmetric distribution. At N=2, the electron densities have the maximum value

at the center of the confinement. While at N=6, the electron densities are small

in the center of the dot due to the increasing of the electron-electron interaction.
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Figure 5.4: The electron densities at N = 2, 6, and 12 through the center of a
harmonic quantum dot with k = 0.3.
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5.1.3 Spin Polarization

To see how an electron fills in a quantum dot, we plot the spin polarization

((N↑−N↓)/(N↑ +N↓)) as a function of N (see Figure 5.5). The zero polarization

at N = 2, 6, 12 corresponds to the full-shells, while the local maximum values at

N = 1, 4, 9 corresponds to half-filled shells.
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Figure 5.5: The spin polarization of the electronic states defined as a ratio
(N↑ − N↓)/(N↑ + N↓) of electrons with spins up (N↑) and down (N↓).

By analogy to atoms, we find that Hund’s rule also apply in a quantum-

dot as well as in an atom. According to Hund’s rule, as degenerate states are

filled, electrons enter the dot with parallel spins until the degenerate states is half-

full resulted in the maximum value of total spin (see Table 5.1). For example, the

total energy of the spin configuration (N↑, N↓) = (6,3) is lower than that of the

spin configuration (5,4) at electron number N=9. That means the electronic state
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Energy h̄ω0 2h̄ω0 3h̄ω0

N E0,0 E0,1 E0,−1 E0,2 E0,−2 E1,0

1 ↑
2 ↑↓
3 ↑↓ ↑
4 ↑↓ ↑ ↑
5 ↑↓ ↑↓ ↑
6 ↑↓ ↑↓ ↑↓
7 ↑↓ ↑↓ ↑↓ ↑
8 ↑↓ ↑↓ ↑↓ ↑ ↑
9 ↑↓ ↑↓ ↑↓ ↑ ↑ ↑
10 ↑↓ ↑↓ ↑↓ ↑↓ ↑ ↑
11 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑
12 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

Table 5.1: Filling order for electrons in a two-dimensional harmonic confinement.
The full-shell filling is corresponding to N=2, 6, 12, .... The electrons will occupy
all different degenerate states until the shell is half-full before entering opposite
spins.
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Figure 5.6: The spin-densities of electrons with the spin configuration (N↑, N↓)
= (6,3) in the harmonic dot defined by k = 0.3.
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with spin configuration (6,3) is more stable than the (5,4) state. However, for

N=15, we found that the total energy of the spin configuration (N↑, N↓)=(8,7) is

slightly lower (0.1 meV) than that of the spin configuration (9,6). The densities

of spin-up and spin-down electrons at N=9 are shown in Figure 5.6.

5.2 Energy Contribution

To be able to see quantitatively how much the electron-electron interaction con-

tributes to the total energy, we plot the values of different components of the total

energy as a function of N (see Figure 5.7). The leading effect of the interaction

is the Hartree energy. By comparison, the correlation energy is obviously smaller

than the other components. This can be one of the reason why our calculated

results presented in the previous sections are all in a very good agreement with

results which have been previously calculated by other groups using the most

used form of Tanatar and Ceperley of the exchange-correlation functional [8], [7].

(Note that both forms has the same contribution for the exchange energy, but

the correlation part is different: the new representation proposed by Attacalite

et al [12] was fitted by using the diffusion Quantum Monte Carlo simulations for

a wide range of electron densities and spin polarization.)

It is clear that the exchange-correlation effect reduces the total energy

values. We find that most of the spin-polarized states (N↑ �= N↓) has a larger

exchange-correlation effect than the spin-compensated states. For example, the

calculated exchange-correlation energy Exc of the spin configuration (3,1)is -15.11

meV, while the exchange-correlation energy of the state (2,2) is equal to -15.10

meV.
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Figure 5.7: Contributions to the ground-state energy of a 2D hamonic dot

5.3 Anisotropic Parabolic Confinement

In this section we present the calculated results of a quantum dot defined by

anisotropic parabolic confinement. The main purpose was to examine the ef-

fect of geometrically distorting on quantum-dot structures. The 2D anisotropic

parabolic confinement is described by the confinement parameters kx and ky:

V (x, y) =
1

2
(k2

xx
2 + k2

yy
2) =

1

2
k2(δx2 +

1

δ
y2) (5.2)

In order to conserve the area of the quantum dot when the confinement

parameters are changed, the ratio of the confinement parameters δ = kx/ky will

be used instead.

We now make a comparison between the addition energy spectra of anisotropic
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and harmonic confinements. The calculated result for the quantum dot with

δ = 1.1 and k = 0.3 is shown in Figure 5.8 with circles connected by solid lines.

The dotted lines plotted is the addition energy spectra of a harmonic confinement

with k = 0.3. One can see that the small peak at N = 9 is disappeared in this

case. This effect may be explained in terms of the single-electron states. When

a circular quantum dot is deformed, the cylindrical symmetry will be removed.

As a result, we lose some of the degeneracy associated with the isotropic confine-

ment. The calculated spectra shows that the clear shell structure corresponding

to N = 2, 6, 12 still occurs for the slightly deformed quantum dot with δ = 1.1.
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Figure 5.8: The calculated addition energies (µ(N +1)−µ(N)) of an anisotropic
parabolic confinement with δ = 1.1(solid lines) compared with the calculated
results of a harmonic confinement (dotted line).

As we increase δ further, the shell structure begins to disappeared. At
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δ = 1.2, the peaks in addition energy spectra at N = 2, 4, 9, and 12 are no longer

to exist (Figure 5.9). One can see small peaks at N = 6, and 11 instead.
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Figure 5.9: The calculated addition energies (µ(N +1)−µ(N)) of an anisotropic
parabolic confinement with δ = 1.2(solid lines) compared with the calculated
results of a harmonic confinement (dotted line).

In Sec. 5.1, we have seen that the spin-configuration of electrons in har-

monic confinement satisfy Hund’s rule. In other words, there is maximum spin

polarization for half-filled shells (N = 4, 9). Since, some of the degeneracy associ-

ated with the circular symmetry may be removed in an anisotropic confinement.

The maximum spin polarization at N = 4, 9 may not be found. To illustrate, we

plot in Figure 5.10 the spin polarization ((N↑−N↓)/(N↑+N↓)) as a function of N

for the anisotropic confinement with δ = 1.1 and 1.2. The results show that the
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slightly distorting (δ = 1.1) of the dot geometry does not change the shell-filling

order of electrons in a circular quantum dot. The maximum spin polarization

at N = 9 begins to disappear when δ = 1.2. Our results agree well with the

numerical calculations in Ref. [2].
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Figure 5.10: The spin polarization ((N↑−N↓)/(N↑+N↓)) of anisotropic quantum
dots defined by δ = 1.1 (circles) and δ = 1.2 (triangles).



Chapter 6

Conclusions

6.1 Summary

In this thesis, we have studied the electronic structures of a quantum dot by

using a numerical method based on the spin-density functional theory. In or-

der to avoid symmetry restriction, the calculations were performed in real space.

We developed a computer program based on the finite-element methods using

Matlab v5.3. Within the program, the spin-polarized Kohn-Sham equations are

solved self-consistently. For the local spin-density approximation of the exchange-

correlation energy, we used the recently proposed analytic representation of At-

taccalite et al instead of the most used form of Tanatar and Ceperley.

To compare with the previously observed experimental results and the-

oretical calculations, we examined the addition energy spectra (the changes of

the chemical potential) of quantum dots defined by harmonic and anisotropic

confinements. For Harmonic confinement, the addition energy spectra obtained

shows a clear shell structure as a function of N corresponding to the unusually

large peaks at N = 2, 6, 12, and the smaller peaks at N = 4, 9. Shell-filling and

spin configuration are found to determine mostly by Hund’s rule. These findings

are in very good agreement with previously observed experimental results. The

geometry deformation of the anisotropic parabolic confinement was studied by

changing the confinement parameter δ. The comparison between the isotropic
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dot with δ = 1 and the anisotropic parabolic dots with δ = 1.1 and 1.2 were

performed. The calculated results shows that there still exists the shell structure

corresponding to N = 2, 6, 12 for the slightly deformed quantum dot with δ =

1.1.

6.2 Future work

Because of the progress in micro-fabrication technology, quantum dots can be

created in various shapes and sizes. Further research efforts could attempt to

apply this real-space based method to other anisotropic-shaped quantum dots.
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Appendices



Appendix A

The Effective-Mass Approximation

Recall that, in classical physics, we interpret mass as inertial resistance

against acceleration per unit applied force (Newton’s law of motion). When we

treat the electron as a wave in Quantum mechanics we have to determine whether

we can still, in some way, use the convenient classical relation F = ma to describe

the motion of an electron under an applied force such as eE, and if so what should

be the apparent mass of the electron in crystal structures.

A theorem which enables us to apply classical law with quantum particle

such as electrons is the Ehrenfest theorem named after P. Ehrenfest (1927).

According to the theorem, the properties of a wavepacket representing a quantum

particle can be determined from classical equations:

m
d2

dt2
〈x〉 = −

〈
∂V

∂x

〉
(A.1)

The derivation of Eq. A.1 can be seen in quantum mechanic books. The Ehrenfest

theorem is an extremely useful theorem in applied quantum mechanics because

once the quantum problem is solved, the response of the particle to slowly varying

external forces can be treated as if the particle is obeying classical equation.

We will now consider and evaluate the velocity and acceleration of the

electron in conduction bands in response to an electric field, Ex, along −x di-

rection that imposes an external force Fext = eEx in +x direction, as shown in

Figure A.1 [35].
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Figure A.1: In the presence of a field in the -x direction, the electron gains energy
and increasing its k value along x until it is scattered to a random k value.

Our treatment will make use of the quantum mechanical E-k diagram

of a crystal. Consider a wavepacket made up of wavefunctions near a particular

k-value in a conduction band, the group velocity of this wavepacket representing

an electron is defined as υg = dω/dk where ω is the frequency associated with

the electron of energy E, i.e., ω = E/h̄, thus,

υg =
1

h̄

dE

dk
(A.2)

The group velocity is determined by the gradient of the E-k curve. In the presence

of an electric field, the electron experiences a force Fext = eEx from which it gains

energy and moves up in the E-k diagram until it collides with a lattice vibration.

During a small time interval, δt, between collisions, the electron moves a distance,

υgt, and hence gains energy, δE, which is
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δE = Fextυgδt (A.3)

We may also write, in general,

δE =
dE

dk
δk

= h̄υgδk (A.4)

Comparing the two equations for δE, we get

Fextδt = h̄δk (A.5)

giving us the relation

Fext = h̄
dk

dt
(A.6)

The term h̄k responds to the external forces as if it is the momentum of the

electron, although, it is clear that h̄k contains the effects of the internal crystal

potentials and is therefore not the true electron momentum [31].

The acceleration of the electron is defined as dυg/dt which is

a =
d

dt

(
1

h̄

dE

dk

)
=

1

h̄

d2E

dk2

dk

dt

=
Fext

h̄2

d2E

dk2
(A.7)

We know that the response of a free electron to the external force is Fext = mea,

where me is the mass of electron in vacuum. Therefore, it is clear that from the

last equality in Eq. A.7 that the effective mass of the electron in the crystal is
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m∗
e = h̄2

[
d2E

dk2

]−1

(A.8)

The electron responds to an external force and moves as if its mass were given by

Eq. A.8. The effective mass obviously depends on the E-k relation which depends

on the crystal structure. Its value is also different for electrons in the CB and for

those in the VB, and moreover, it depends on the energy of the electron since it

is related to the curvature of the E-k curve.

According to Eq. A.8 the effective mass of an electron can be both neg-

ative and positive quantities. When the electron is at the top of a band, i.e.

the E-k curve is a downward concave, the effective mass of an electron at these

energies in a band is then negative. That means the electron accelerate in the

opposite direction to the applied external force, Fext. On the other hand, the

electron at the bottom of the CB has positive effective mass which is normally

small compare to those at the middle of the band.

It should be stressed that Eq. A.8 defines the meaning of the effective

mass in quantum mechanics. Its usefulness lies in the fact that we can measure

it experimentally. This means we can simply replace me by m∗
e in equations that

describe the effect of an external field on electron transport in crystal structures.



Appendix B

Rescaled Atomic Units and
Conversion Factors

In this thesis, rescaled atomic units are used thoughout with lengths in

units of effective Bohr radius,

a∗
0 =

4πεh̄2

m∗e2
(B.1)

and energy in effective atomic units of energy called Hartree∗,

E∗
a =

e2

4πεa∗
0

(B.2)

where m∗ is the effective mass, ε is the dielectric constant. For a GaAs quantum

dot m∗ = 0.065me and ε = 12.9ε0.

B.1 Physical Constants

electron charge e 1.60217733 × 10−19C
permittivity of vacuum εo 8.854187817 × 10−12 C2N−1m−2

electron mass me 9.1093897 × 10−31kg
Planck s constant h 6.6260755 × 10−34Js
Planck s constant h̄ 1.05457266 × 10−34Js

B.2 Conversion factors

effective mass of electron m∗ 5.9211033 × 10−32 kg
effective Bohr radius a∗

0 10.502133 nm
effective Hartree energy E∗

a 1.7029243 × 10−21 J = 10.628812 meV

Bohr radius a0 0.529177249 × 10−10m

Hartree energy e2

4πε0a0
4.3597482 × 10−18J
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Matlab Code
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function [EtotN,Error] = KohnSham(N,Nup,eigmax,eigmax2) 
% 
% "KohnSham.m" solves Kohn-Sham equations 
% 
% Usage: [EtotN,Error] = KohnSham(N,Nup,eigenmax,eigmax2)  
% 
% N:   The number of electrons 
% Nup: The number of spin-up electrons  
% 
% eigmax:  the maximum eigenvalues to be counted in the first  
calculation 
% eigmax2: the maximum eigenvalues to be counted in the self- 
% consistent LOOP 
% 
% Examples: Harmonic Confinement with k = 0.3 
% If N<3, eigmax  = 1.3, eigmax2 = 1.8; 
% If N<7, eigmax  = 1.3, eigmax2 = 3.0; 
% If N<11, eigmax  = 1.5, eigmax2 = 4.0; 
% If N<15, eigmax  = 1.7, eigmax2 = 5.0; 
% 
% the maximum of the eigenvalue is needed to be specified  
% properly 
% A larger eigmax or eigmax2 need more CPU-time to solve the self- 
% consistent equations 
% 
% Confining potential can be changed in "potential.m"  
% This M-files uses pde-toolbox 
% Author: Khattiya Chalapat    
% Year: 2003 
 
Ndown = N-Nup; 
time=cputime;   % this counts used CPU-time 
stopplot = 9; 
 
[gx0,gy0,gx1,gy1,gd,b]=data(N); 
% define the coefficients of the Kohn-Sham equations 
c = 0.5;    
d = 1;  
 
% geometry composition 
dl      = decsg(gd);     % decompose geometry 
[p,e,t] = initmesh(dl);         % initialize mesh 
refine  = 2; 
for i=1:refine 
   [p,e,t]=refinemesh(dl,p,e,t);  % refine mesh 
end 
 
% Corner point indices 
it1 = t(1,:); 
it2 = t(2,:); 
it3 = t(3,:); 
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% Find midpoints of triangles 
x   = (p(1,it1)+p(1,it2)+p(1,it3))/3; 
y   = (p(2,it1)+p(2,it2)+p(2,it3))/3; 
% Initial Effective Potential 
vp1 = potential(x,y); 
% Vp2 can also be chosen to be different from vp1  
vp2 = vp1;  
[psiUp,EUp]=pdeeig1(b,p,e,t,c,vp1,d,[-Inf eigmax]); 
[psiDown,EDown]=pdeeig1(b,p,e,t,c,vp2,d,[-Inf eigmax]); 
 
% Find areas of triangles  
[ar,a1,a2,a3] = pdetrg(p,t); 
 
% Find normalization factor 
if N>stopplot,  
 Nnorm=N; 
else 
   Nnorm=stopplot; 
end 
normfac2Up   = NormFac(psiUp,Nnorm,ar,it1,it2,it3); 
normfac2Down = NormFac(psiDown,Nnorm,ar,it1,it2,it3); 
 
% Electron densities  
nUp = nMidpoint(psiUp,normfac2Up,Nup,it1,it2,it3); 
if Ndown ~= 0, 
 nDown = nMidpoint(psiDown,normfac2Down,Ndown,it1,it2,it3); 
else 
 nDown = 0 
end 
n = nUp+nDown; 
 
% classical electrostatic potential 
ves = Ves(n,ar,x,y); 
  
[vxUp,vxDown,Ex] = spinVx(nUp,nDown,n); 
% correlation energy  
[vcUp,Ec]   = spinVc(nUp,nDown,n,1); 
[vcDown,Ec] = spinVc(nUp,nDown,n,-1); 
 
%Confining potential 
vp = potential(x,y); 
 
%effective potential 
veffUp   = vp+ves+vcUp+vxUp; 
veffDown = vp+ves+vcDown+vxDown; 
 
% iteration 
iter  = 0; 
EtotO = 0; 
Err   = 1;  
Error = []; 
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stopiter=0.0001; 
checkdiv = 'converge'; 
while Err > stopiter 
   clear psi; 
   [psiUp,EnewUp]    =pdeeig1(b,p,e,t,c,veffUp,d,[-Inf eigmax2]); 
   [psiDown,EnewDown]=pdeeig1(b,p,e,t,c,veffDown,d,[-Inf eigmax2]); 
    
   EUp   = EnewUp; 
   EDown = EnewDown; 
    
   EesO  = sum(n(1,:).*ves(1,:).*ar(1,:)); 
   Vc   = sum(nUp(1,:).*vcUp(1,:).*ar(1,:))... 
    +sum(nDown(1,:).*vcDown(1,:).*ar(1,:)); 
   Vx   = sum(nUp(1,:).*vxUp(1,:).*ar(1,:))... 
    +sum(nDown(1,:).*vxDown(1,:).*ar(1,:)); 
 
   %Find normalization factor 
   normfac2Up   = NormFac(psiUp,Nnorm,ar,it1,it2,it3); 
   normfac2Down = NormFac(psiDown,Nnorm,ar,it1,it2,it3); 
 
   % electron density 
   nUp = nMidpoint(psiUp,normfac2Up,Nup,it1,it2,it3); 
    
   if Ndown==0;, 
    nDown=0;  
   else 
    nDown = nMidpoint(psiDown,normfac2Down,Ndown,it1,it2,it3); 
   end 
    
   n = nUp+nDown; 
    
   vesO   = ves; 
   vcUpO  = vcUp; 
   vcDownO = vcDown; 
   vxUpO  = vxUp; 
   vxDownO = vxDown; 
   % new correlation energy 
 [vcUp,Ec]   = spinVc(nUp,nDown,n,1); 
 [vcDown,Ec] = spinVc(nUp,nDown,n,-1);  
 % new exchange energy 
   [vxUp,vxDown,Ex] = spinVx(nUp,nDown,n); 
 
   Eexc = sum(n(1,:).*Ex(1,:).*ar(1,:)); 
   Ecor = sum(n(1,:).*Ec(1,:).*ar(1,:)); 
    
   %electrostatic potential: direct integration 
   ves  = Ves(n,ar,x,y); 
   EesN = 0.5*sum(n(1,:).*ves(1,:).*ar(1,:)); 
    
   EtotN = sum(EUp(1:Nup))+sum(EDown(1:Ndown))-EesO-Vc+Vx+Ecor... 
+Eexc+EesN 
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 Err   = abs(EtotN-EtotO); 
 Error = [Error Err]; 
   EtotO = EtotN; 
 iter  = iter +1;          
 if iter>15, 
      break; 
      checkdiv = 'diverge'; 
   end 
    
 % new effective potential 
 ves    = 0.8*vesO+ 0.2*ves; 
 vcUp   = 0.8*vcUpO+0.2*vcUp; 
 vcDown = 0.8*vcDownO+0.2*vcDown; 
   vxUp   = 0.8*vxUpO+0.2*vxUp; 
   vxDown = 0.8*vxDownO+0.2*vxDown; 
 
 veffUp   = vp+ves+vcUp+vxUp; 
 veffDown = vp+ves+vcDown+vxDown;   
    
end 
 
% One-Particle Eigen Functions and Energies Plot 
EigenPlot(psiUp,EUp,normfac2Up,p,e,t,gx0,gx1,gy0,gy1,stopplot,time) 
EigenPlot(psiDown,EDown,normfac2Down,p,e,t,gx0,gx1,gy0,gy1,stopplot,time) 
myplot1(p,e,t,n,EtotN,N,Nup,checkdiv); 
 
figure; 
subplot(2,1,1) 
pdeplot(p,e,t,'zdata',nUp,'xydata',nUp,'mesh','on','colorbar','off','colormap',[1 1 1]);  
title(sprintf('nUp, Nup= %3.0f, Etot= %f',Nup,EtotN)); 
subplot(2,1,2) 
 
if N~=Nup, 
  pdeplot(p,e,t,'zdata',nDown,'xydata',nDown,'mesh','on','colorbar', 
'off','colormap',[1 1 1]);  
 title(sprintf('nDown, Ndown= %3.0f, Etot= %f',N-Nup,EtotN)); 
end 
 
% Save the values of each quantities in a text file 
Data = fopen('C:\MATLABR11\work\...\data1.txt','w'); % Set Path   
fprintf(Data,'\nN=%3.0f,  Nup=%3.0f, Etot=%f, Ees=%f, Ex=%f, ... 
Ecor =%f, Vx=%f, Vc=%f',N,Nup,EtotN,EesN,Eexc,Ecor,Vx,Vc); 
fclose(Data); 
 
return 
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function [gx0,gy0,gx1,gy1,gd,b]=data(N) 
 
% define rectangular GEOMETRY  
gx0=-15;     % left lower corner  
gy0=-15; 
gx1=15;    % right upper corner 
gy1=15; 
 
% geometry description matrix; counterclockwise ( see descg ) 
gd=[1 0 0 15]';  % circle xcenter ycenter radius 
 
% BOUNDARY conditions ( see assemb ) 
b=[1 1 1 1 1 1 '0' '0' '1' '0']'; % q g h r 
b=[b b b b]; 
 
return 
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function f = potential(x,y) 
%  
% potential.m determines the values of confining potential on 2D meshes 
% V = 0.5*k^2*(delta*x^2+(1/delta)*y^2) 
% k^2 -> k2  adjusting this parameter will change widths and depths of the confining potential 
% Harmonic Potential: delta = 1  
% Parabolic Potential: delta > 1 
% 
% f can be any analytic functions 
% 
% After changing the parameter values in this file,  
% the parameters in "data.m" may also needed to be changed. 
% 
% Author: K. chalapat 
% Year: 2003 
 
delta = 1; 
k2    = 0.09; 
f     = 0.5*k2*(delta*x.^2+(1/delta)*y.^2); 
 
return 
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function [v,l]=pdeeig1(b,p,e,t,c,a,d,r) 
% 
% "pdeeig1.m" is the same as "pdeeig.m" in pdetool 
% the difference is the function assema1 in line 32:  
% [K,M,unused3] = assema1(p,t,c,a,zeros(N,1)); 
% 
% by K. Chalapat 
% 2003 
% 
%PDEEIG Solve eigenvalue PDE problem. 
% 
% [V,L]=PDEEIG(B,P,E,T,C,A,D,R) produces the solution to the 
% FEM formulation of the PDE eigenvalue problem 
% -div(c grad(u))+a u=l d u, on a geometry described by  
% P, E, and T, and with boundary conditions given by B. 
% 
% R is a two element vector, indicating an interval on the  
% real axis. (The left-hand side may be -Inf.)  
% The algorithm returns all eigvalues in this interval in L. 
% 
% V is a matrix of eigenvectors. For the scalar case each  
% column in V is an eigenvector of solution values at the  
% corresponding node points from  P. For a system of dimension % N  
with NP node points, the first NP rows of V describe the  
% first component of v, the following NP rows of V describe  
% the second component of v, and so on. Thus, the components  
% of v are placed in blocks V as N blocks of node point rows. 
% 
 
if nargin==8, 
   np = size(p,2); 
   % Boundary contributions 
   [Q,unused1,H,unused2] = assemb(b,p,e); 
   % Number of variables 
   N = size(Q,2)/np; 
   [K,M,unused3] = assema1(p,t,c,a,zeros(N,1)); 
   [K,unused1,B,unused2] = assempde(K,M,unused3,Q,unused1,H,unused2); 
   [unused,M]    = assema(p,t,0,d,zeros(N,1)); 
elseif nargin==4, 
   K = b; 
   B = p; 
   M = e; 
   r = t; 
else 
   error('number of input argument must be 4 or 7'); 
end 
 
M=B'*M*B; 
 
if r(1)~=-Inf 
   spd  = 1; % We assume ... 
else 
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   spd = 0; 
end 
 
[v,l,ires] = sptarn(K,M,r(1),r(2),spd); 
 
if ires<0, 
   disp('Warning: there may be more eigenvalues in the interval'); 
end 
 
if ~isempty(v) 
   v = B*v; 
end 
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function normfac2 = NormFac(psi,Nnorm,ar,it1,it2,it3) 
% 
% "NormFac.m" calculate normalization factor for the 
%  eigenvectors: "psiUp" and "psiDown" 
% 
% (Normalization Factor)^2 = normfac2 
% 
% by K. Chalapat 
% 2003 
% 
for i = 1:Nnorm 
      temp(:,i)  = psi(:,i).^2; 
end 
temp2 = temp'; 
for i = 1:Nnorm 
   % values at midpoints of triangles 
   midpoint_psi2(i,:) = (temp2(i,it1)+temp2(i,it2)... 
           +temp2(i,it3))/3; 
   normfac2(i) = sum(ar.*midpoint_psi2(i,:)); 
   % normalized wavefunction = psi/sqrt(normfac2)   
end 
clear temp temp2 midpoint_psi2; 
 
return 
 



 77

function n2 = nMidpoint(psi,normfac2,N,it1,it2,it3) 
% 
% "nMidpoint.m" calculates the electron density at  
% the midpoints of triangles  
% 
% by K. Chalapat 
% 2003 
% 
n = 0; 
for i = 1:N 
   n = n + (psi(:,i).^2)/normfac2(i); 
end 
n = n'; 
% electron density at midpoints of triangles 
n2 = (n(1,it1)+n(1,it2)+n(1,it3))/3; 
    
return 
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function ves = Ves(n,ar,x,y) 
% 
% "Ves.m" calculates the Hartree (Classical Electrostatic)  
% potential  
% by using direct integration 
%   
% by K. Chalapat 
% 2003 
% 
Npoint = size(x,2); 
ves(1,1) = n(1,1)*3.53.*sqrt(ar(1,1))+sum((n(1,2:Npoint).* 
ar(1,2:Npoint))./sqrt( (x(1,2:Npoint)-x(1,1)).^2+(y(1,2:Npoint)- 
y(1,1)).^2 )); 
for j=2:Npoint-1 
   ves(1,j) = n(1,j)*3.53.*sqrt(ar(1,j))+sum((n(1,1:j-1).* 
ar(1,1:j-1))./sqrt( (x(1,1:j-1)-x(1,j)).^2 
+(y(1,1:j-1)-y(1,j)).^2 )); 
   ves(1,j) = ves(1,j)+sum((n(1,j+1:Npoint).*ar(1,j+1:Npoint))./ 
sqrt((x(1,j+1:Npoint)-x(1,j)).^2+(y(1,j+1:Npoint)-y(1,j)).^2 )); 
end 
ves(1,Npoint) = n(1,Npoint)*3.53.*sqrt(ar(1,Npoint))+ 
sum((n(1,1:Npoint-1).*ar(1,1:Npoint-1))./sqrt( (x(1,1:Npoint-1)- 
x(1,Npoint)).^2+(y(1,1:Npoint-1)-y(1,Npoint)).^2 )); 
 
return 
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function [VxUp,VxDown,Ex] = spinVx(nUp,nDown,n) 
% 
% "spinVx.m" defines the Exchange Energy on mesh points 
% 
% by K. Chalapat 
% 2003 
 
r = 1./sqrt(pi*n); % density parameter 
Pz = (nUp-nDown)./n; 
A      = 2*sqrt(2)/(3*pi); 
Ex     = -A*( (1+Pz).^(3/2)+(1-Pz).^(3/2) )./r; 
dExdrs = A*( (1+Pz).^(3/2)+(1-Pz).^(3/2) )./r.^2; 
dExdPz = -sqrt(2)*(sqrt(1+Pz)-sqrt(1-Pz))./(pi*r); 
VxUp   = Ex-0.5*r.*dExdrs-(Pz-1).*dExdPz; 
VxDown = Ex-0.5*r.*dExdrs-(Pz+1).*dExdPz; 
 
return 
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function [Vc,Ec] = spinVc(nUp,nDown,n,sgn) 
% 
% "spinVc.m" defines Correlation Potential  
% of Attaccalite et al (2002) on mesh points 
% 
% by K. Chalapat 
% 2003 
% 
 
rs = 1./sqrt(pi*n);  %density parameter 
Pz = (nUp-nDown)./n; %Polarization 
 
A0 = -0.1925; 
B0 = 0.0863136; 
C0 = 0.057234; 
E0 = 1.0022; 
F0 =-0.02069; 
G0 = 0.340; 
H0 = 1.747e-2; 
D0 = -A0*H0; 
 
A1 = 0.117331; 
B1 = -3.394e-2; 
C1 = -7.66765e-3; 
E1 = 0.4133; 
G1 = 6.68467e-2; 
H1 = 7.799e-4; 
D1 = -A1*H1; 
 
A2 = 0.0234188; 
B2 = -0.037093; 
C2 = 0.0163618; 
E2 = 1.424301; 
H2 = 1.163099; 
D2 = -A2*H2; 
 
Beta = 1.3386; 
a    = 2*sqrt(2)/(3*pi); 
 
Fn0    = E0*rs+F0*rs.^(1.5)+G0*rs.^2+H0*rs.^3; 
alpha0 = A0+(B0*rs+C0*rs.^2+D0*rs.^3).*log(1+1./Fn0);  
Fn1    = E1*rs+G1*rs.^2+H1*rs.^3; 
alpha1 = A1+(B1*rs+C1*rs.^2+D1*rs.^3).*log(1+1./Fn1); 
Fn2    = E2*rs+H2*rs.^3; 
alpha2 = A2+(B2*rs+C2*rs.^2+D2*rs.^3).*log(1+1./Fn2); 
 
%Correlation energy / Particle 
Fn     = (1+Pz).^(1.5)+(1-Pz).^(1.5)-2-0.75*Pz.^2-(3/64)*Pz.^4; 
Ec     = a*(1-exp(-Beta*rs)).*Fn./rs +alpha0+alpha1.*Pz.^2+alpha2.*Pz.^4; 
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dFn0    = E0+1.5*F0*sqrt(rs)+2*G0*rs+3*H0*rs.^2; 
dalpha0 = (B0+2*C0*rs+3*D0*rs.^2).*log(1+1./Fn0)-
(B0*rs+C0*rs.^2+D0*rs.^3).*dFn0./(Fn0.*(Fn0+1));  
dFn1    = E1+2*G1*rs+3*H1*rs.^2; 
dalpha1 = (B1+2*C1*rs+3*D1*rs.^2).*log(1+1./Fn1)-
(B1*rs+C1*rs.^2+D1*rs.^3).*dFn1./(Fn1.*(Fn1+1));  
dFn2    = E2+3*H2*rs.^2; 
dalpha2 = (B2+2*C2*rs+3*D2*rs.^2).*log(1+1./Fn2)-
(B2*rs+C2*rs.^2+D2*rs.^3).*dFn2./(Fn2.*(Fn2+1));  
dEcdrs  = (a./(rs.^2)).*Fn.*(exp(-Beta*rs).*(1+Beta*rs)-
1)+dalpha0+dalpha1.*Pz.^2+dalpha2.*Pz.^4; 
 
dFn     = 1.5*(sqrt(1+Pz)-sqrt(1-Pz))-(1.5)*Pz-3*(Pz.^3)/16; 
dEcdPz  = (a./rs).*dFn.*(1-exp(-Beta*rs))+2*alpha1.*Pz+4*alpha2.*Pz.^3; 
 
%Correlation Potential / Particle 
Vc      = Ec-0.5*rs.*dEcdrs-(Pz-sgn).*dEcdPz; 
 
return 
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function f = potential(x,y) 
%  
% potential.m determines the values of confining potential on 2D meshes 
% V = 0.5*k^2*(delta*x^2+(1/delta)*y^2) 
% k^2 -> k2  adjusting this parameter will change widths and depths of the confining potential 
% Harmonic Potential: delta = 1  
% Parabolic Potential: delta > 1 
% 
% f can be any analytic functions 
% 
% After changing the parameter values in this file,  
% the parameters in "data.m" may also needed to be changed. 
% 
% Author: K. chalapat 
% Year: 2003 
 
delta = 1; 
k2    = 0.09; 
f     = 0.5*k2*(delta*x.^2+(1/delta)*y.^2); 
 
return 
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function EigenPlot(psi,E,normfac2,p,e,t,gx0,gx1,gy0,gy1,... 
       stopplot,time) 
% 
% "EigenPlot.m" plots eigenstates and eigenvectors of  
% the Kohn-Sham equations 
% 
elapsed=cputime-time; 
fig1 = figure; 
set(fig1,'papertype','a4letter','paperorientation','landscape') 
if size(psi,2)>=9 
   stop=stopplot; 
else 
 stop=size(psi,2); 
end 
step=1; 
loop=1; 
for i=1:step:stop 
   subplot(3,3,loop) 
 pdeplot(p,e,t,'xydata',(psi(:,round(i)).^2)/normfac2(i),'mesh', 
'off','colormap','gray','colorbar','off'); 
 axis([gx0 gx1 gy0 gy1]) 
   %axis('square') 
   grid on 
 if i==1 
  title(sprintf('CPU-time %7.3f s, E = %6.5f', elapsed, 
E(round(i)))) 
   else 
  title(sprintf('E = # %3.0f = %6.5f',round(i),E(round(i)))) 
 end    
   loop=loop+1; 
end 
 
return 
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function myplot1(p,e,t,n,Etot,N,Nup,checkdiv); 
% 
% "myplot1.m" plots Electron Density in 3D and 2D space 
%  
% by K. Chalapat 
% 2003 
% 
figure;  
pdeplot(p,e,t,'zdata',n,'xydata',n,'mesh','on','colorbar','off', 
'colormap',[1 1 1]);  
title(sprintf('Electron Density, N = %3.0f, Nup = %3.0f, Etot = %f, "%s"',N,Nup,Etot,checkdiv)); 
figure; 
pdeplot(p,e,t,'xydata',n,'mesh','off'); 
title(sprintf('Electron Density, N = %3.0f, Nup = %3.0f',N,Nup)); 
 
return 
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function [ks,km,fm]=assema1(p,t,c,a,f,u,time,sdl) 
% 
% the difference between "assema1.m" and "assema.m" in pdetool  
% is the function: pdeasma1 in line 158 
% 
% by K. Chalapat 
% 2003 
% 
%ASSEMA Assembles area integral contributions in a PDE problem. 
% 
% [K,M,F1]=ASSEMA(P,T,C,A,F) assembles the stiffness matrix K, 
% the mass matrix M, and the right-hand side vector F1. 
% 
gotu    = 0; 
gottime = 0; 
gotsdl  = 0; 
 
if nargin==5 
    % No action 
elseif nargin==6 
   if size(u,1)>1 
     gotu = 1; 
   else 
     time    = u; 
     gottime = 1; 
   end 
elseif nargin==7 
   if size(u,1)>1 
     gotu    = 1; 
     gottime = 1; 
   else 
     sdl     = time; 
     time    = u; 
     gottime = 1; 
     gotsdl  = 1; 
   end 
elseif nargin==8, 
   gotu    = 1; 
   gottime = 1; 
   gotsdl  = 1; 
else 
   error('Wrong number of input arguments'); 
end 
 
% Choose triangles to assemble 
if gotsdl 
   it = pdesdt(t,sdl); 
   t  = t(:,it); 
end 
 
if ~gottime 
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   time = []; 
end 
 
nt = size(t,2); % Number of triangles 
np = size(p,2); % Number of points 
 
% Corner point indices 
it1 = t(1,:); 
it2 = t(2,:); 
it3 = t(3,:); 
 
% Triangle geometries: 
[ar,g1x,g1y,g2x,g2y,g3x,g3y] = pdetrg(p,t); 
 
% Find midpoints of triangles 
x  = (p(1,it1)+p(1,it2)+p(1,it3))/3; 
y  = (p(2,it1)+p(2,it2)+p(2,it3))/3; 
  
sd = t(4,:); 
 
if ~gotu, 
   uu=[]; 
   u=[]; 
   ux=[]; 
   uy=[]; 
else 
   uu = u; 
   N  = length(uu)/np; 
   uu = reshape(uu,np,N); 
   u  = (uu(it1,:).'+uu(it2,:).'+uu(it3,:).')/3; 
   ux = uu(it1,:).'.*(ones(N,1)*g1x)+uu(it2,:).'.*(ones(N,1)*g2x)+uu 
(it3,:).'.*(ones(N,1)*g3x); 
   uy = uu(it1,:).'.*(ones(N,1)*g1y)+uu(it2,:).'.*(ones(N,1)*g2y)+uu 
(it3,:).'.*(ones(N,1)*g3y); 
   uu = reshape(uu,np*N,1); 
end 
 
if ~gotu, 
   % The number of variables IS the number of rows in F 
   N = size(f,1); 
end 
 
% Stiffness matrix 
c = pdetfxpd(p,t,uu,time,c); 
 
if any(c(:)), 
   ks  = sparse(N*np,N*np); 
   nrc = size(c,1); 
   if nrc>=1 & nrc<=4, % Block scalar c 
     ks1 = pdeasmc(it1,it2,it3,np,ar,x,y,sd,u,ux,uy,time,g1x,g1y,g2x,g2y,g3x,g3y 
,c); 
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     [ii,jj,kss] = find(ks1); 
     for k=1:N, 
        ks = ks+sparse(ii+(k-1)*np,jj+(k-1)*np,kss,N*np,N*np); 
     end 
   elseif nrc==N | nrc==2*N | nrc==3*N | nrc==4*N, % Block diagonal c 
     nb = nrc/N; 
     m1 = 1; 
     m2 = nb; 
     for k=1:N, 
        ks1 =  
pdeasmc(it1,it2,it3,np,ar,x,y,sd,u,ux,uy,time,g1x,g1y,g2x,g2y,g3x,g3y 
,c(m1:m2,:)); 
        [ii,jj,kss] = find(ks1); 
        ks = ks+sparse(ii+(k-1)*np,jj+(k-1)*np,kss,N*np,N*np); 
        m1 = m1+nb; 
        m2 = m2+nb; 
     end 
   elseif nrc==2*N*(2*N+1)/2, % Symmetric c 
     m1 = 1; 
     m2 = 4; 
     for l=1:N, 
        for k=1:l-1, 
          ks1 =  
pdeasmc(it1,it2,it3,np,ar,x,y,sd,u,ux,uy,time,g1x,g1y,g2x,g2y,g3x,g3y 
,c(m1:m2,:)); 
          [ii,jj,kss] = find(ks1); 
          ks = ks+sparse(ii+(k-1)*np,jj+(l-1)*np,kss,N*np,N*np); 
          m1 = m1+4; 
          m2 = m2+4; 
        end 
        m1 = m1+3; 
        m2 = m2+3; 
     end 
     ks = ks+ks.'; 
     m1 = 1; 
     m2 = 3; 
     for k=1:N, 
        ks1 =  
pdeasmc(it1,it2,it3,np,ar,x,y,sd,u,ux,uy,time,g1x,g1y,g2x,g2y,g3x,g3y 
,c(m1:m2,:)); 
        [ii,jj,kss] = find(ks1); 
        ks = ks+sparse(ii+(k-1)*np,jj+(k-1)*np,kss,N*np,N*np); 
        m1 = m1+3+4*k; 
        m2 = m2+3+4*k; 
     end 
   elseif nrc==4*N*N, % General (unsymmetric) c 
     m1=1; 
     m2=4; 
     for l=1:N, 
        for k=1:N, 
 
 
 
 



 88

          ks1 =  
pdeasmc(it1,it2,it3,np,ar,x,y,sd,u,ux,uy,time,g1x,g1y,g2x,g2y,g3x,g3y 
,c(m1:m2,:)); 
          [ii,jj,kss]=find(ks1); 
          ks = ks+sparse(ii+(k-1)*np,jj+(l-1)*np,kss,N*np,N*np); 
          m1 = m1+4; 
          m2 = m2+4; 
        end 
     end 
   else 
     error('Wrong number of rows of c'); 
   end % nrc 
   clear c ks1; 
else 
   clear c; 
   ks = sparse(N*np,N*np); 
end 
 
% Mass matrix 
% a  
km  = sparse(N*np,N*np); 
km1 = pdeasma1(it1,it2,it3,np,ar,sd,u,ux,uy,time,a); 
[ii,jj,kmm] = find(km1); 
for k=1:N, 
   km = km+sparse(ii+(k-1)*np,jj+(k-1)*np,kmm,N*np,N*np); 
end 
clear a km1; 
 
% RHS 
f = pdetfxpd(p,t,uu,time,f); 
 
if any(f(:)), 
   fm  = zeros(N*np,1); 
   nrf = size(f,1); 
   if nrf==1, % Scalar f 
     fm1 = pdeasmf(it1,it2,it3,np,ar,x,y,sd,u,ux,uy,time,f); 
     for k=1:N, 
        fm((k-1)*np+1:k*np,:) = fm1; 
     end 
   elseif nrf==N, % Vector f 
     for k=1:N, 
       fm1 = pdeasmf(it1,it2,it3,np,ar,x,y,sd,u,ux,uy,time,f(k,:)); 
       fm((k-1)*np+1:k*np,:) = fm1; 
     end 
   else 
     error('Wrong number of rows of f'); 
   end % size(f,1) 
   clear f fm1; 
else 
   clear f; 
   fm = zeros(N*np,1); 
end 
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function M = pdeasma1(it1,it2,it3,np,ar,sd,u,ux,uy,time,a) 
% 
% The difference between "pdeasma1.m" and "pdeasma.m" in  
% pdetool is that there is no use of the function "pdetexpd"  
% in "pdeasma1.m" 
% 
% PDEASMA Assemble the A coefficient. 
% 
% by K. Chalapat 
% 2003 
% 
avoid_arithmetics_on_NaNs = 0; 
if ~isieee & any(isnan(time)) 
   % PARABOLIC and HYPERBOLIC probes with time=NaN for 
   % explicit time dependence. We must not cause any floating point 
   % exceptions in this case. 
   avoid_arithmetics_on_NaNs = 1; 
end 
 
if avoid_arithmetics_on_NaNs & any(isnan(a)) 
   M = sparse(1,1,NaN,np,np); 
   return 
end 
aod = a.*ar/12; % Off diagonal element 
ad  = 2*aod; % Diagonal element 
M   = sparse(it1,it2,aod,np,np); 
M   = M+sparse(it2,it3,aod,np,np); 
M   = M+sparse(it3,it1,aod,np,np); 
M   = M+M.'; 
M   = M+sparse(it1,it1,ad,np,np); 
M   = M+sparse(it2,it2,ad,np,np); 
M   = M+sparse(it3,it3,ad,np,np); 
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