CHAPTER III SUM AND PRODUCTS

In this chapter, we shall give some definitions and theorems of sums and products of skewrings. For example, direct sum, subdirct sum, semi-direct sum, subdirect product, subdirectly irreducible and subdirectly reducible. Moreover, we shall generalize the Krull-Schmidt Theorem of group theory to skewrings.

Definition 3.1. Let R be a skewring and $\left\{R_{\alpha} / \alpha \in I\right\}$ be a family of normal ideals of R. Then R is called a direct sum of $\left\{R_{d} / \alpha \in I\right\}$ which is denoted by $R=\underset{\alpha \in I}{\oplus} R_{\alpha}$ if and only if
(1) for every $x \in R$, there exists $x_{\alpha_{i}} \in R_{\alpha_{i}}$ where $i=1, \ldots, n$ such that $x=$ $x_{\alpha_{l}}+\ldots+x_{\alpha_{n}}$ and
(2) for all $\alpha, \beta \in I$, if $\alpha \neq \beta$ implies $R_{\alpha \cap}\left(\sum_{\beta \neq \alpha} R_{\beta}\right)=\{0\}$.

Remark 3.2. Let a skewring R be a direct sum of R_{l}, \ldots, R_{n} which are normal ideals of R. Then for all $x, y \in R$,
(1) $x+y=x_{1}+y_{1}+\ldots+x_{n}+y_{n}$ and
(2) $x y=x_{1} y_{1}+\ldots+x_{n} y_{n}$.
where $x=x_{1}+\ldots+x_{n}$ and $y=y_{1}+\ldots+y_{n}$. for some $x_{i}, y_{i} \in R_{i}$ such that $i \in\{1, \ldots, n\}$.

Proof. It is well-known that (1) is true. We will prove (2) by math induction on n .

Let $n=2$. Let $R=R_{1} \oplus R_{2}$. Let $x, y \in R$. Then there exist $x_{1}, y_{1} \in R_{1}$ and $x_{2}, y_{2} \in R_{2}$ such that $x=x_{1}+x_{2}$ and $y=y_{1}+y_{2}$. Thus $x y=\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)=$ $x_{1} y_{1}+x_{2} y_{1}+x_{1} y_{2}+x_{2} y_{2}$. Since R_{1}, R_{2} are normal ideals, $x_{2} y_{1}+x_{1} y_{2} \in R_{1} \cap R_{2}=\{0\}$
which implies that $x y=x_{1} y_{1}+x_{2} y_{2}$.

Let $k \geq 2$. Assume that if $R=R_{1} \oplus \ldots \oplus R_{k}$, then (2) is true. Suppose that $R=R_{1} \oplus \ldots \oplus R_{k} \oplus R_{k+1}$. Let $x, y \in R$. Then there exist $x_{i} y_{i} \in R_{i}$ where $i \in\{1, \ldots, k+1\}$ such that $x=x_{1}+\ldots+x_{k+1}$ and $y=y_{1}+\ldots+y_{k+1}$. Then

$$
\begin{aligned}
x y & =\left(x_{1}+\ldots+x_{k+1}\right)\left(y_{1}+\ldots+y_{k+1}\right) \\
& =\left(\left(x_{1}+\ldots+x_{k}\right)+x_{k+1}\right)+\left(\left(y_{1}+\ldots+y_{k}\right)+y_{k+1}\right) \\
& =\left(x_{1}+\ldots+x_{k}\right)\left(y_{1}+\ldots+y_{k}\right)+x_{k+1} y_{k+1}, \text { by basic step } \\
& =\left(x_{1} y_{1}+\ldots+x_{k} y_{k}\right)+x_{k+1} y_{k+1}, \text { by induction hypothesis. }
\end{aligned}
$$

By math induction we have (2). \#

Remark 3.3. Let R be a skewring which is a direct sum of normal ideals $R_{l}, . ., R_{n}$. Then for all $i j \in\{1, \ldots, n\}$ such that $i \neq j$, if $a \in R_{i}, b \in R_{j}$ implies $a+b=$ $b+a$.

Definition 3.4. A skewring R is said to be decomposable if and only if $R=$ $H \oplus K$ where H, K are nontrivial normal ideals of R.

A skewring $R \neq\{0\}$ is said to be Indecomposable if and only if $R=$ $H \oplus K$ where H, K are normal ideals of R implies $H=R$ or $K=R$.

Remark 3.5. Let H, K be normal ideals of a skewring R such that $R=H \oplus K$. If N is a normal ideal of H, then N is a normal ideal of R.

Proof. Suppose N is a normal ideal of H . It is well-known that N is a normal subgroup of $(R,+)$. Let $x \in N, r \in R$. Then there exist $h \in H, k \in K$ such that $r=h+k$. Then $r x=(h+k) x=h x+k x$. Since H, K are normal ideals of R, $r x-h x=k x \in H \cap K$. Since $R=H \oplus K, H \cap K=\{0\}$ and $r x=h x$. Since N is a normal ideal of $H, h x \in N$ and so $r x \in N$. Similarly, $x r \in N$. Hence N is a normal ideal of R. \#

Definition 3.6. Let R be a skewring.
A decreasing sequence of left[right, two-sided] normal ideals of $R, R=$ $R_{0}>R_{l} \geq \ldots$ is called a descending chain of left[right, two-sided]normal ideal in R.
R satisfies the descending chain condition (DCC) for left/right, two-sided] normal ideals if and only if for any decreasing chain of left[right, two-sided] normal ideals of $R, R=R_{0} \geq R_{l} \geq \ldots$, there exists a positive integer N such that $R_{N}=R_{N+1}=$

An increasing sequence of lef[right, two-sided] normal ideals of R, $R_{0} \leq R_{l} \leq \ldots$ is called an ascending chain of left[right, two-sided] normal ideal in R.
R satisfies the ascending chain condition (ACC) for leftright, two-sided] normal ideals if and only if for any an ascending chain of left [right, two-sided] normal ideal in $R, R_{0} \leq R_{I} \leq \ldots$, there exists a positive integer N such that $R_{N}=R_{N+1}=\ldots$.

Remark 3.7. Every finite skewring satisfies the DCC for left[right, two-sided] normal ideals.

Proposition 3.8. Let R be a skewring. Then R satisfies the ACC for left[right, two-sided] normal ideals if and only if every nonempty family of left [right, two-sided] normal ideals has a maximal element.

Propositin 3.9. Let R be a skewring. Then R satisfies the $A C C$ for left[right, two-sided] normal ideals if and only if every left[right, two-sided] normal ideals is finitely generated.

Remark 3.10. Let H, K be normal ideals of a skewring R such that $R=H \oplus K$. If R satisfies the $A C C[D C C]$ for normal ideals, then so do H and K.

Proof. We shall show that if R satisfies the ACC for normal ideals, then so do H and K. Suppose R satisfies the $A C C$ on normal ideals. Let H_{0} ㄷ $H_{1} \subset \ldots$ be an increasing sequence of subskewrings of H such that for each i, H_{i} is a normal ideal in H. By Remark 3.5, H_{i} is a normal ideal in R for every i. Then this sequence is an ascending chain in R. Since R satisfies the ACC for normal ideals, there exists $n \in Z^{+}$such that $H_{n}=H_{n+1}=\ldots$. Hence H is satisfies the ACC for normal ideal. For K is similarly.

If R satisfies the DCC for normal ideals, we can prove similarly.\#

Lemma 3.11. For any skewring $R \neq\{0\}$ that satisfies the DCC for normal ideals has an indecomposable nonzero subskewring and $R=P \oplus K$ for some indecomposable normal ideal P of R and normal ideal K of R.

Proof. If R is indecomposable, then we are done. Otherwise, there exist R_{1}, R_{1}^{\prime} which are nontrivial normal ideals of R such that $R=R_{1} \oplus R_{1}^{\prime}$.

If R_{1} is indecomposable, then we are done. Otherwise, there exist R_{2}, R_{2}^{\prime} which are nontrivial normal ideals of R_{1} such that $R_{1}=R_{2} \oplus R_{2}^{\prime}$. By Remark 3.5, R_{2}, R_{2}^{\prime} are normal ideals of R. Then $R=R_{2} \oplus R_{2}^{\prime} \oplus R_{1}^{\prime}$, and $R>R_{1}>R_{2}$. By Corollary 2.9 (4), $R_{2}^{\prime} \oplus R_{1}^{\prime}$ is a normal ideal of R. Continue in this way. Then we have that $R \geq R_{1} \geq R_{2} \geq \ldots$ such that for each i, R_{i} is a normal ideal in R and $R=\ldots \oplus R_{n}^{\prime} \oplus R_{n-1}^{\prime} \oplus \ldots \oplus R^{\prime}$, . Since R satisfies the $D C C$ for normal ideals, there exists $m \in \mathbf{Z}^{+}$such that $R_{m}=R_{m+1}=\ldots$. Then $R=R_{m} \oplus R_{m}^{\prime} \oplus R_{m-i}^{\prime} \oplus \ldots \oplus R_{1}^{\prime}$ such that R_{m} is indecomposable. By Remark 3.5, R_{m}, R^{\prime} are normal ideals of R for every $\mathrm{i} \in\{1, \ldots, \mathrm{~m}\}$. By Corollary $2.9(4), \mathrm{R}_{\mathrm{m}}^{\prime} \oplus \mathrm{R}_{\mathrm{m}-1}^{\prime} \oplus \ldots \oplus \mathrm{R}_{1}^{\prime}$ is a normal ideal of R. Hence the proof is finished. \#

Theorem 3.12. Any nontrivial skewring R that satisfies the DCC for normal ideals can be expressed as a direct sum of a finite number of indecomposable normal ideals of R.

Proof. If R is indecomposable, then we are done. Otherwise, by Lemma 3.11, there exist an indecomposable nonzero normal ideal R_{t} of R and a proper normal ideal R_{1}^{\prime} of R such that $R=R_{1} \oplus R_{1}^{\prime}$.

If R^{\prime}, is indecomposable, then we are done. Otherwise, by Lemma 3.11, there exist an indecomposable nonzero normal ideal R_{2} of R_{1}^{\prime} and proper normal ideal R_{2}^{\prime} of R_{1}^{\prime} such that $R_{1}^{\prime}=R_{2} \oplus R^{\prime}$. By Remark $3.5, R_{2}$ and R_{2}^{\prime} are normal ideals in R and we have $R=R_{1} \oplus R_{2} \oplus R_{2}^{\prime}$ such that $R \supset R_{1}^{\prime} \supset R_{2}^{\prime}$. Continue in this way.

If there exists $n \in Z^{\dagger} \backslash\{1\}$ such that R_{n}^{\prime} is indecomposable in R_{n-1}^{\prime}, then $R=R_{1} \oplus \ldots \oplus R_{n} \oplus R_{n}^{\prime}$ such that R_{i}, R_{n}^{\prime} are normal ideals in R, R_{i+1} is indecomposable in $\mathrm{R}_{\mathrm{i}}^{\prime}$ for every $\mathrm{i} \in\{1, \ldots, \mathrm{n}-1\}$. By Remark 3.5, $\mathrm{R}_{\mathrm{i}}, \mathrm{R}_{\mathrm{n}}$ are indecomposable in R. Otherwise, we have $R \supset R_{1}^{\prime} \supset R_{2}^{\prime} \supset \ldots$ which is a contradiction since R satisfies the DCC for normal ideals. \#

Definition 3.13. Let R be a skewring and let f be an endomorphism on R. Then f is a normal ideal endomorphism if and only if for all $x, y \in R, f(x+y-x)$ $=x+f(y)-x, \quad x f(y)=f(x y)$ and $f(y) x=f(y x)$.

Example 3.14. The zero fuction and the identity function on a skewring R are normal ideal endomorphisms.

Lemma 3.15. Let f and g be normal ideal endomorphisms of ${ }^{\circ}$ a skewring R. Then $f \circ g$ is a normal ideal endomorphism.

Lemma 3.16. Let a skewring $R=R_{l} \oplus \ldots \oplus R_{n}$ where R_{i} is a normal ideal of R for every $i \in\{1, \ldots, n\}$. For each $i \in\{1, \ldots, n\}$, let $\pi_{i}: R \rightarrow R_{i}$ be a projection map and define $\varphi_{i}: R \rightarrow R$ by $\varphi_{i}(x)=\pi_{i}(x)$ for every $x \in R$. Then the sum $\varphi_{i,}+\ldots+\varphi_{i_{k}}$ of any distinct $\varphi_{i_{1}}, \ldots, \varphi_{i_{k}}$ where $i_{j}, \ldots, i_{k} \in\{1, \ldots, n\}$, is a normal ideal endomorphism on R.

Proof. First, we shall show that φ_{i} is a normal ideal endomorphism of R for every $i \in\{1, \ldots, n\}$. It is well-known that φ_{i} is a normal endomorphism in $(R,+)$ and clearly, φ_{i} is an endomorphism on R. Let $x, y \in R$. Then there exist $x_{i}, y_{i} \in R$ where $i \in\{1, \ldots, n\}$ be such that $x=x_{1}+\ldots+x_{n}$ and $y=y_{1}+\ldots+y_{n}$. Let $i \in$ $\{1, \ldots, n\}$. Then $x \varphi_{i}(y)=\left(x_{1}+\ldots+x_{n}\right) \pi_{i}(y)=\left(x_{1}+\ldots+x_{n}\right)\left(0+\ldots+0+y_{i}+0+\ldots+0\right)=x_{i} y_{i}=$ $\pi_{i}(x y)=\varphi_{i}(x y)$. Similarly, $\left(\varphi_{i}(x)\right) y=\varphi_{i}(x y)$. Hence φ_{i} is a normal ideal endomorphism in R.

Next, we shall show that the $\operatorname{sum} \varphi_{i_{1}}+\ldots+\varphi_{i_{k}}$ of any distinct $\varphi_{i_{1}}, \ldots, \varphi_{i_{k}}$ where $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$, is a normal ideal endomorphism on R. It is wellknown that $\varphi_{i_{1}}+\ldots+\varphi_{i_{k}}$ is a normal endomorphism in ($\mathrm{R},+$). Consider,
$(0)(x y)=\varphi_{i_{1}}(x y)+\ldots+\varphi_{i_{k}}(x y)=\varphi_{i_{1}}(x) \varphi_{i_{1}}(y)+\ldots+\varphi_{i_{k}}(x) \varphi_{i_{k}}(y)=$ $x_{i_{1}} y_{i_{1}}+\ldots+x_{i_{k}} y_{i_{k}}=\left(x_{i_{1}}+\ldots+x_{i_{k}}\right)\left(y_{i_{1}}+\ldots+y_{i_{k}}\right)$ $=\left(\pi_{i_{1}}(x)+\ldots+\pi_{i_{1}}(x)\right)\left(\pi_{i_{1}}(y)+\ldots+\pi_{i_{k}}(y)\right)$ $=\left(\varphi_{i_{1}}(x)+\ldots+\varphi_{i_{1}}(x)\right)\left(\varphi_{i_{1}}(y)+\ldots+\varphi_{i_{k}}(y)\right)=\left(\varphi_{i_{1}}+\ldots+\varphi_{i_{k}}\right)(x)\left(\varphi_{i_{1}}+\ldots+\varphi_{i_{k}}\right)(y)$ and $x\left(\varphi_{i_{1}}+\ldots+\varphi_{i_{k}}\right)(y)=x\left(\varphi_{i_{1}}(y)+\ldots+\varphi_{i_{k}}(y)\right)=x \varphi_{i_{1}}(y)+\ldots+x \varphi_{i_{k}}(y)=$ $\varphi_{i_{1}}(x y)+\ldots+\varphi_{i_{k}}(x y)=\left(\varphi_{i_{1}}+\ldots+\varphi_{i_{k}}\right)(x y)$. Similarly, $\left(\left(\varphi_{i_{1}}+\ldots+\varphi_{i_{k}}\right)(x)\right)(y)=$ $\left(\varphi_{i_{1}}+\ldots+\varphi_{i_{k}}\right)(x y)$. Hence $\varphi_{i_{1}}+\ldots+\varphi_{i_{k}}$ is a normal ideal endomorphism. $\#$

Lemma 3.17. Let R be a skewring that satisfies the $A C C[D C C]$ for normal ideals and f is an [normal ideal] endomorphism of R. Then f is an automorphism if and only if f is an epimorphism[monomorphism].

Proof. Step1. Assume that R satisfies the ACC for normal ideals and f is an endomorphism. We shall show that f is an automorphism if and only if f is an epimorphism.

Suppose f is an epimorphism. It is well-known that that for every $n \in$ $\mathbf{Z}^{+}, \operatorname{Ker}\left(\mathrm{f}^{\mathrm{n}}\right) \subseteq \operatorname{Ker}\left(\mathrm{f}^{\mathrm{n+1}}\right)$ where $\mathrm{f}^{\mathrm{n}}=\mathrm{f} \circ \mathrm{f} \circ \ldots \mathrm{f}(\mathrm{n}$ terms). By Remark 1.34, $\{0\} \leq$ $\operatorname{Ker}(f) \leq \operatorname{Ker}\left(\mathrm{f}^{\circ}\right) \leq \ldots$ is an ascending chain in R. By assumption, there exists $n \in \mathbf{Z}^{+}$
such that $\operatorname{Ker}\left(f^{\prime}\right)=\operatorname{Ker}\left(\mathbf{f}^{+1}\right)$. Since f is an epimorphism, f^{f} is an epimorphism.
To show that f is a monomorphism. Let $x \in \operatorname{Ker}(f)$. Since f^{n} is an epimorphism, there exists $y \in R$ such that $f^{\prime \prime}(y)=x$, that is $0=f(x)=f^{n+1}(y)$. Thus $y \in \operatorname{Ker}\left(f^{+1}\right)=\operatorname{Ker}\left(f^{\prime \prime}\right)$ which implies that $x=f^{\prime \prime}(y)=0$. Thus $\operatorname{Ker}(f)=\{0\}$. By Remark 1.33 (1), f is a monomorphism and hence f is an automorphism.

Step2. Assume that R satisfies the DCC for normal ideals and f is a normal ideal endomorphism. We shall show that f is an automorpism if and only if f is an monomorphism.

Suppose that f is a monomorphism. Let $n \in \mathbf{Z}^{+}$. By Lemma 3.15, f^{f} is a normal ideal endomorphism of R. By definition of normal ideal endomorphism, $\operatorname{Im}\left(f^{n}\right)$ is a normal ideal of R. Thus we have $R \geq \operatorname{Im}(f) \geq \operatorname{Im}\left(f^{f}\right) \geq \ldots$ is a descending chain in R. By assumption, there exists $n \in \mathbf{Z}^{+}$such that $\operatorname{Im}\left(f^{n}\right)=$ $\operatorname{Im}\left(\mathrm{f}^{n+1}\right)=\ldots$

To show that f is an epimorphism. Let $x \in R$. Then $f^{\prime}(x) \in \operatorname{Im}\left(f^{f}\right)=\operatorname{Im}\left(f^{+1}\right)$ and there exists $y \in R$ such that $f^{n+1}(y)=f^{\prime \prime}(x)$. Since f is a monomorphism, so is f^{n} and $f^{n}(x)=f^{n+1}(y)=f^{n}(f(y))$ implies $x=f(y)$. Therefore f is an epimorphism and hence f is an automorphism. \#

The following Lemma is generalized from Fitting's Lemma.

Lemma 3.18. If R is a skewring that satisfies both the $A C C$ and DCC for normal ideals and f is a normal ideal endomorphism, then there exists an $n \in$ Z^{+}such that $R=\operatorname{Ker}\left(f^{n}\right) \oplus I m\left(f^{n}\right)$.

Proof. By the proof in Lemma 3.17, we have $R \geq \operatorname{Im}(f) \geq \operatorname{Im}\left(f^{\ell}\right) \geq \ldots$ and $\{0\} \leq \operatorname{Ker}(f) \leq \operatorname{Ker}\left(\mathrm{f}^{2}\right) \leq \ldots$ are descending and ascending chains respectively. By assumption, there exists $n \in \mathbf{Z}^{+}$such that $\operatorname{Im}\left(f^{k}\right)=\operatorname{Im}\left(f^{\prime}\right)$ and $\operatorname{Ker}\left(f^{k}\right)=\operatorname{Ker}\left(f^{\prime \prime}\right)$ for every $\mathrm{k} \geq \mathrm{n}$.

Let $a \in \operatorname{Ker}\left(f^{\prime}\right) \cap \operatorname{Im}\left(f^{\prime}\right)$. Then there exists $b \in R$ such that $f^{\prime}(b)=a$ and
$f^{\rho_{n}}(b)=f^{\prime}\left(f^{n}(b)\right)=f^{\prime}(a)=0$. Consequently, $b \in \operatorname{Ker}\left(f^{2 n}\right)=\operatorname{Ker}\left(f^{\prime}\right)$, so that $a=f^{\prime}(b)=$ 0 . Hence $\operatorname{Ker}\left(f^{f}\right) \cap \operatorname{Im}\left(f^{\prime}\right)=\{0\}$.

Let $c \in R$. Then $f^{\prime}(c) \in \operatorname{Im}\left(f^{\prime}\right)=\operatorname{Im}\left(f^{R^{n}}\right)$. There exists a $d \in R$ such that $f^{q^{n}(d)}=f^{\prime \prime}(c)$. Therefore $f^{\prime}\left(c+f^{n}(-d)\right)=f^{\prime}(c)+f^{n}(-d)=f^{\prime}(c)-f^{\prime}(c)=0$ and hence $c+f^{(}(-d) \in \operatorname{Ker}\left(f^{f}\right)$. Since $c=\left(c+f^{(}(-d)\right)+f^{(d)}$, we conclude that $R=\operatorname{Ker}\left(f^{f}\right)+\operatorname{Im}\left(f^{f}\right)$. Hence $R=\operatorname{Ker}\left(\mathrm{f}^{\mathrm{f}}\right) \oplus \operatorname{Im}\left(\mathrm{f}^{\mathrm{f}}\right)$. \#

Definition 3.19. An endomorphism f of a skewring R is said to be nulpotent if there exists a positive integer n such that $f^{n}(x)=0$ for every $x \in R$.

Lemma 3.20. If $R \neq\{0\}$ is an indecomposable skewring that satisfies both the ACC and DCC for normal ideals and f is a normal ideal endomorphism of R, then either f is a nilpotent endomorphism or f is an automorphism.

Proof. By Lemma 3.18, there exists $n \in Z^{+}$such that $R=\operatorname{Ker}\left(f^{f}\right) \oplus \operatorname{Im}\left(f^{f}\right)$. Since R is indecomposable, $\operatorname{Ker}\left(f^{f}\right)=\{0\}$ or $\operatorname{Im}\left(f^{f}\right)=\{0\}$. If $\operatorname{Im}\left(f^{f}\right)=\{0\}$, then $f^{\prime}(x)=0$ for every $x \in R$, so that f is nilpotent. If $\operatorname{Ker}\left(f^{\prime \prime}\right)=\{0\}$, then f is a monomorphism, since $\operatorname{Ker}(f) \subseteq \operatorname{Ker}\left(f^{\prime}\right)$. By Lemma 3.17, f is an automorphism. \#

Lemma 3.21. Let f and g be normal ideal endomorphisms of a skewring R. If $f+g$ is an endomorphism, then it is a normal ideal endomorphism.

Proof. Suppose that $f+g$ is an endomorphism. It is well-known that $f+g$ is a normal endomorphism of $(R,+)$. Let $x, y \in R$. Then $x(f+g)(y)=x(f(y)+g(y))=$ $x f(y)+x g(y)=f(x y)+g(x y)=(f+g)(x y)$. Similarly, $((f+g)(x))(y)=(f+g)(x y)$. Hence $\mathrm{f}+\mathrm{g}$ is a normal ideal endomorphism.\#

Lemma 3.22. Let $R \neq\{0\}$ be an indecomposable skewring that satisfies both the ACC and the DCC for normal ideals.

If $f_{1} f_{2}$ are nilpotent normal ideal endomorphisms of R such that $f_{1}+f_{2}$
is an edomorphism, then $f_{1}+f_{2}$ is nilpotent.

Proof. Let f_{1}, f_{2} be nilpotent normal ideal endomorphisms of R such that $f_{1}+f_{2}$ is an endomorphism. By Lemma 3.21, $f_{1}+f_{2}$ is a normal ideal endomorphism. Suppose $f_{1}+f_{2}$ is not nilpotent. By Lemma 3.20, $f_{1}+f_{2}$ is an automorphism. Then $\left(f_{1}+f_{2}\right)^{-1}$ is an automorphism. We shall show that $\left(f_{1}+f_{2}\right)^{-1}$ is a normal ideal automorphism. By group theory, $\left(f_{1}+f_{2}\right)^{-1}$ is a normal automorphism of $(R,+)$. Let $x, y \in R$. Then

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)\left(x\left(f_{1}+f_{2}\right)^{-1}(y)\right) & =f_{1}\left(x\left(f_{1}+f_{2}\right)^{-1}(y)\right)+f_{2}\left(x\left(f_{1}+f_{2}\right)^{-1}(y)\right) \\
& =x f_{1}\left(f_{1}+f_{2}\right)^{-1}(y)+x f_{2}\left(f_{1}+f_{2}\right)^{-1}(y) \\
& =x\left(f_{1}+f_{2}\right)\left(f_{1}+f_{2}\right)^{-1}(y)=x y .
\end{aligned}
$$

Then $\left(f_{1}+f_{2}\right)^{-1}(x y)=x\left(f_{1}+f_{2}\right)^{-1}(y)$. Similarly, $\left(f_{1}+f_{2}\right)^{-1}(y x)=y\left(f_{1}+f_{2}\right)^{-1}(x)$. Therefore $\left(f_{1}+f_{2}\right)^{-1}$ is a normal ideal automorphism.

Let $g=\left(f_{1}+f_{2}\right)^{-1}$ and define $g_{1}=f_{1} \circ g, g_{2}=f_{2} \circ g$. Then $g_{1}+g_{2}=f_{1} \circ g+f_{2} \circ g=$ $\left(f_{1}+f_{2}\right) \circ g=\operatorname{Id}_{R}$ and for every $x \in R,-x=\operatorname{Id}_{R}(-x)=\left(g_{1}+g_{2}\right)(-x)=g_{1}(-x)+g_{2}(-x)$.
Hence $x=-\left(g_{1}(-x)+g_{2}(-x)\right)=-g_{2}(-x)-g_{1}(-x)=g_{2}(x)+g_{1}(x)=\left(g_{2}+g_{1}\right)(x)$ which implies that $\mathrm{g}_{2}+\mathrm{g}_{1}=\mathrm{Id}_{\mathrm{R}}$. Therefore $\mathrm{g}_{1}+\mathrm{g}_{2}=\mathrm{g}_{2}+\mathrm{g}_{1}$ and $\mathrm{g}_{1} \circ\left(\mathrm{~g}_{1}+\mathrm{g}_{2}\right)=\mathrm{g}_{1} \circ \mathrm{Id}_{\mathrm{R}}=\mathrm{Id}_{\mathrm{R}} \circ \mathrm{g}_{1}=$ $\left(g_{1}+g_{2}\right) \circ g_{1}$ which imply that $g_{1} \circ g_{2}=g_{2} \circ g_{1}$. Thus for each $m \geq 1,\left(g_{1}+g_{2}\right)^{m}=g_{1}{ }^{m}+$ $\binom{m}{1} g_{1}^{m-1} \circ g_{2}+\ldots+\binom{m}{m-1} g_{1} \circ g_{2}^{m-1}+g_{2}^{m}$. Since f_{1} is a nilpotent normal ideal endomorphism, by Lemma 3.20, f_{1} is not an automorphism. By Lemma 3.17, f_{1} is not an epimorphism and not a monomorphism.
Then $g_{1}=f_{1} \circ g$ is not an automorphism. $9 \ldots \ldots . .(1)$
Since f_{1} and g are normal ideal endomorphisms, by Lemma 3.15, $g_{1}=f_{1} \circ g$ is a normal ideal endomorphism.
By (I),(ii) and Lemma 3.20, g_{1} is nilpotent. Similarly, g_{2} is nilpotent. Then there exist $m, n \in Z^{+}$such that $g_{1}{ }^{m}=0$ and $g_{2}{ }^{n}=0$. Then $\left(g_{1}+g_{2}\right)^{m+n}=g_{1}{ }^{m+n}+$ $\binom{m+n}{1} g_{1}^{m+n-1} \circ g_{2}+\ldots+\binom{m+n}{m+n-1} g_{1} \circ g_{2}^{m+n-1}+g_{2}^{m+n}=0$. Thus for every $x \in R$, $\left(g_{1}+g_{2}\right)^{m+n}(x)=0$ which contradicts $g_{1}+g_{2}=I d_{R}$ and $R \neq\{0\}$. Hence $f_{1}+f_{2}$ is
nilpotent.\#

The following theorem is generalized from Krull-Schmidt Theorem.

Theorem 3.23. Let R be a skewring that satisfies both the ACC and DCC for normal ideals.

If $R=R_{l} \oplus \ldots \oplus R_{s}$ and $R=H_{l} \oplus \ldots \oplus H_{t}$ for some $s, t \in Z^{+}$and R_{i}, H_{j} are indecomposable normal ideals in R for all $i \in\{1, \ldots, s\}, j \in\{1, \ldots, t\}$. Then after reindexing $R_{i} \cong H_{i}$ for every $i \in\{1, \ldots, r\}$ and $R=R_{l} \oplus \ldots \oplus R_{r} \oplus H_{r+l} \oplus \ldots \oplus H_{t}$.

Proof. For cach $1 \leq r \leq \min \{s, t\}$, let $P(r)$ be the statement : there is a reindexing of H_{i}, \ldots, H_{t} such that $R_{i} \cong H_{i}$ for every $i \in\{1, \ldots, r\}$ and $R=R_{1} \oplus \ldots \oplus$ $R_{T} \oplus H_{r+1} \oplus \ldots \oplus H_{t}$ and (or $R=R_{1} \oplus \ldots \oplus R_{r}$ if $r=t$)

We will prove this by induction on r where $0 \leq r \leq \min \{s, t\}$.
If $r=0$, then $P(0)$ is the statement : $R=H_{1} \oplus \ldots \oplus H_{4}$ which is clear.
Let $r>0$. Assume that $P(r-1)$ is true. Thus after reindexing $R_{i} \cong H_{i}$ for every $i \in\{1, \ldots, r-1\}$ and $R=R_{1} \oplus \ldots \oplus R_{r-1} \oplus H_{r} \oplus \ldots \oplus H_{t}$. We shall show that $R(r)$ is true.

Let $\pi_{s}, \ldots, \pi_{s}\left[\right.$ resp. $\left.\pi_{1}^{\prime}, \ldots, \pi^{\prime}\right]$ be the projection determined by $R=R_{1} \oplus \ldots \oplus$ R_{s} [resp. $R=R_{1} \oplus \ldots \oplus R_{t-1} \oplus H_{t} \oplus \ldots \oplus H_{t}$]. For each $i \in\{1, \ldots, s\}$, let $\varphi_{i}: R \rightarrow R$ be defined by $\varphi_{i}(x)=\pi_{i}(x)$ for every $x \in R$ and for each $j \in\{1, \ldots, t\}$, let $\psi_{j} ; R \rightarrow R$ be defined by $\psi_{j}(x)=\pi_{j}^{\prime}(x)$ for every $x \in R$. Then we have $\left.\varphi_{i}\right|_{R_{i}}=\operatorname{Id}_{R_{i}}, \varphi_{i} \circ \varphi_{i}=\varphi_{i}$, $\varphi_{i} \circ \varphi_{j}=0($ where $i \neq j), \psi_{i}+\ldots+\psi_{j}=\operatorname{Id}_{R}, \psi_{j} \circ \psi_{j}=\psi_{j}, \psi_{i} \circ \psi_{j}=0($ where $i \neq j), \operatorname{Im}\left(\varphi_{i}\right)=$ $R_{i}, \operatorname{Im}\left(\psi_{i}\right)=R_{i}($ where $i<r)$ and $\operatorname{Im}\left(\psi_{i}\right)=H_{i}($ where $i \geq r)$

It follows that $\varphi_{r} \circ \psi_{i}=0$ for every $i<r$. (Since for every $x \in R, \psi_{i}(x) \in R_{i}$, $\varphi_{r} \circ \psi_{i}(x)=\varphi_{r} \circ \operatorname{Id}_{\mathrm{R}_{\mathrm{i}}} \circ \psi_{\mathrm{i}}(\mathrm{x})=\varphi_{\mathrm{r}} \circ \varphi_{\mathrm{i}} \circ \psi_{\mathrm{i}}(\mathrm{x})=0$.) The preceding identities show that $\varphi_{r}=\varphi_{r} \circ \mathrm{Id}_{\mathrm{R}}=\varphi_{\mathrm{r}} \circ\left(\psi_{1}+\ldots+\psi_{\mathrm{l}}\right)=\varphi_{\mathrm{r}} \circ \psi_{\mathrm{l}}+\ldots+\varphi_{\mathrm{r}} \circ \psi_{\mathrm{l}}$. By Lemma 3.16, φ_{r} is a normal ideal endomorphism of R. By Lemma 3.15 and Lemma 3.16, every sum of distinct $\left.\left(\varphi_{r} \circ \psi_{j}\right)\right|_{R_{r}}$ is a normal ideal endomorphism of R_{T}.

By Remark 3.10, R_{T} satisfies both the ascending and descending chain conditions for normal ideals.

Claim1. There exists an j such that $\mathrm{r} \mathrm{Ij} \leq \mathrm{t}$ and $\left.\left(\varphi_{\mathrm{r}} \circ \psi_{\mathrm{j}}\right)\right|_{\mathrm{R}_{\mathrm{r}}}$ is an automorphism of $R_{T} \neq\{0\}$. Suppose not.
Then for every $\mathrm{i} \in\{\mathbf{r}, \ldots, \mathrm{t}\},\left.\left(\varphi_{\mathrm{r}} \circ \psi_{i}\right)\right|_{\mathrm{R}_{r}}$ is not an automorphism.
By (i), for every $i \in\{r, \ldots, t\},\left.\left(\varphi_{r} \circ \psi_{i}\right)\right|_{R_{t}}$ is a normal ideal endomorphism of R_{T} By (ii) and Lemma 3.20, for every $i \in\{r, \ldots, t\},\left.\left(\varphi_{r} \circ \psi_{i}\right)\right|_{R_{r}}$ is nilpotent in R_{r}. Since $\varphi_{r}=\varphi_{r} \circ \psi_{r}+\ldots+\varphi_{r} \circ \psi_{n}$ by (i) and Lemma 3.22, $\left.\varphi_{r}\right|_{R_{r}}$ is nilpotent in R_{r}. Thus $\varphi_{r_{R_{r}}}$ is an automorphism and nilpotent on R_{T} which contradicts Lemma 3.20. Hence we have Claim1.

Therefore there exists $j \in \mathbf{Z}^{+}$such that $r \leq j \leq t$ and $\left.\left(\varphi_{f} \psi_{j}\right)\right|_{\mathbf{R}_{f}}$ is an automorphism.
So that, for each $n \in \mathbf{Z}^{+},\left(\varphi_{r}{ }^{\circ} \psi_{j}\right)^{n+1}$ is also an automorphism of R_{T}.
By assumption and Remark 3.10, H_{3}, satisfies the ACC and DCC for normal ideals for every $j \in\{1, \ldots, t\}$. By Lemma 3.15 and Lemma 3.16,
$\left.\left(\psi_{j} \circ \varphi_{r}\right)\right|_{H_{j}}: H_{j} \rightarrow H_{j}$ is a normal ideal endomorphism of H_{j}.
Claim2. $\left.\left(\psi_{j} \circ \varphi_{i}\right)\right|_{H_{j}}$ is an automorphism of H_{j}.
Suppose not. By Lemma 3.20, $\left(\psi_{j} \circ \varphi_{\mathrm{r}}\right)_{H_{j}}$ is nilpotent in H_{j}. Then there exists $m \in \mathbf{Z}^{+}$such that $\left(\left(\left.\psi_{j} \circ \varphi_{r}\right|_{H_{j}}\right)^{m}=0_{H_{j}}\right.$. Then $\left(\varphi_{r} \circ \psi_{j}\right)^{m+1}=\varphi_{r} \circ\left(\left(\psi_{j} \circ \varphi_{r}\right)\right)^{m} \circ \psi_{j}=$ $\varphi_{i} \circ 0_{H_{j}} \circ \psi_{j}=0_{\mathrm{R}}$, so that $\left(\varphi_{i} \circ \psi_{j}\right)^{m+1}$ is a nilpotent automorphism of R_{T} (by (iv)) which contradicts Lemma 3.20. Hence we have Claim2.

By (iii) and (v), $\left.\psi_{j}\right|_{R_{r}}: R_{T} \rightarrow H_{j}$ is an isomorphism and so is $\left.\varphi_{r}\right|_{H_{j}}: H_{j} \rightarrow R_{T}$. Reindexing the H_{k}, so that we may assume $j=r$ and $R_{T} \cong H_{r}$. We have proved the first half of statement $\mathrm{P}(\mathrm{r})$.

Since $R=R_{1} \oplus \ldots \oplus R_{r, t} \oplus H_{r} \oplus \ldots \oplus H_{1}$ by the induction hypothesis, the subskewring $R_{1}+\ldots+R_{r-1}+H_{r+1}+\ldots+H_{t}$ is the direct sum of $R_{1} \oplus \ldots \oplus R_{r-1} \oplus H_{r+1} \oplus \ldots \oplus$ H_{r}. Observe that for every $\mathrm{i}<\mathrm{r}, \psi_{\mathrm{r}}\left[\mathrm{R}_{\mathrm{i}}\right]=\psi_{\mathrm{r}} \circ \psi_{\mathrm{i}}[\mathrm{R}]=\{0\}$ and for every $\mathrm{i}>\mathrm{r}$,
$\psi_{\mathrm{r}}\left[\mathrm{H}_{\mathrm{i}}\right]=\psi_{\mathrm{r}} \circ \psi_{i}[\mathrm{R}]=\{0\}$. So $\psi_{\mathrm{r}}\left[\mathrm{R}_{1}+\ldots+\mathrm{R}_{\mathrm{r}-1}+\mathrm{H}_{\mathrm{r}+1}+\ldots+\mathrm{H}_{\mathrm{l}}\right]=\{0\}$. Let $\mathrm{x} \in \mathrm{R}_{\rho} \cap$ $\left(R_{t}+\ldots+R_{r-1}+H_{r+1}+\ldots+H_{4}\right)$. Since $\psi_{r}\left[R_{1}+\ldots+R_{r-1}+H_{r+1}+\ldots+H_{l}\right]=\{0\}, \psi_{r}(x)=\{0\}$.
Since $\psi_{r_{2}}$ is an isomorphism; $x=0$. Therefore $\mathrm{R}_{\mathrm{R}} \cap\left(\mathrm{R}_{1}+\ldots+\mathrm{R}_{r+1}+\mathrm{H}_{r+1}+\ldots+\mathrm{H}_{)}\right)=$ $\{0\}$. It follows that the skewring $\mathrm{R}^{*}=\mathrm{R}_{1}+\ldots+\mathrm{R}_{\mathrm{T}}+\mathrm{H}_{\mathrm{ct1}}+\ldots+\mathrm{H}_{\mathrm{t}}$ is the direct sum. Hence $\mathrm{R}^{*}=\mathrm{R}_{1} \oplus \ldots \oplus \mathrm{R} \oplus \mathrm{H}_{\mathrm{r}+1} \oplus \ldots \oplus \mathrm{H}_{\mathrm{r}}$.

Define $\theta: R \rightarrow R$ as follows:
By the induction hypothesis, we have that $R=R_{1} \oplus \ldots \oplus R_{r-1} \oplus H_{1} \oplus \ldots \oplus H_{r}$. Then every element $x \in R$ may be written in the form $x=x_{1}+\ldots+x_{r-1}+h_{7}+\ldots+h_{1}$ with $\mathrm{x}_{\mathrm{i}} \in \mathrm{R}_{\mathrm{i}}$ and $\mathrm{h}_{\mathrm{j}} \in \mathrm{H}_{\mathrm{j}}$. Let $\theta(\mathrm{x})=\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{r}+1}+\varphi_{\mathrm{r}}\left(\mathrm{h}_{\mathrm{r}}\right)+\mathrm{h}_{\mathrm{rt}}+\ldots+\mathrm{h}_{\mathrm{h}}$. Since $\left.\varphi_{\mathrm{r}}\right|_{H_{r}}: \mathrm{H}_{\mathrm{r}} \rightarrow \mathrm{R}_{\mathrm{r}}$ is an isomorphism, $\operatorname{Im}(\theta)=R^{*}$ and θ is a monomorphism.
Claim3. θ is a normal ideal endomorphism.
It is well-known that θ is a normal endomorphism of $(R,+)$. Let $x, y \in R$. Then there exist $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}} \in \mathrm{R}_{\mathrm{i}}, \mathrm{h}_{\mathrm{j}}, \mathrm{k}_{\mathrm{j}} \in \mathrm{H}_{\text {; }}$ where $\mathrm{i} \in\{1, \ldots, \mathrm{r}-1\}$ and $\mathrm{j} \in\{\mathrm{r}, \ldots, \mathrm{t}\}$ such that

$$
\begin{aligned}
x= & x_{1}+\ldots+x_{r-1}+h_{1}+\ldots+h_{r} \text { and } y=y_{1}+\ldots+y_{r-1}+k_{1}+\ldots+k_{4} . \text { Then } \\
x \theta(y) & =\left(x_{1}+\ldots+x_{T-1}+h_{+}+\ldots+h_{2}\right)\left(y_{1}+\ldots+y_{r-1}+\varphi_{r}\left(k_{r}\right)+k_{r+1}+\ldots+k_{1}\right) \\
& =x_{1} y_{1}+\ldots+x_{r-1} y_{r-1}+h_{r} \varphi_{r}\left(k_{1}\right)+h_{r+1} k_{r+1}+\ldots+h_{2} k_{1} \\
& =x_{1} y_{1}+\ldots+x_{r-1} y_{r-1}+\varphi_{r}\left(h_{1} k_{1}\right)+h_{r+1} k_{r+1}+\ldots+h_{h} k_{1}=\theta(x y) .
\end{aligned}
$$

Similarly, $\theta(x) y=\theta(x y)$. Hence θ is a normal ideal endomorphism. So we have Claim3.

Since θ is a monomorphism, by Lemma 3.17, θ is an automorphism. So that $R=\operatorname{Im}(\theta)=R^{*}=R_{1} \oplus \ldots \oplus R \oplus H_{r+1} \oplus \ldots \oplus H_{r}$. This proves the second part of $\mathrm{P}(\mathrm{r})$ and complete the induction argument. Therefore, after reindexing we have that $R_{i} \cong H_{1}$ for every $1 \leq i \leq \min \{s, t\}$. If $\min \{s, t\}=s$, then $R, \oplus \propto \oplus R_{s}=R=$ $R_{1} \oplus \ldots \oplus R_{1} \oplus H_{s+1} \oplus \ldots \oplus H_{t}$ and if $\min \{s, t\}=t$, then $R_{1} \oplus \ldots \oplus R_{s}=R=R_{1} \oplus \ldots \oplus R_{1}$. Since $R_{i} \neq\{0\}$ and $H_{j} \neq\{0\}$ for all i, j, we must have $s=t$ in either case. \#

Definition 3.24. Let R be a skewring, S be a subskewring of R and I be a normal ideal of R. Then R is called a semi-direct sum of S and I if and only if $R=S+I$ and $S \curvearrowright I=\{0\}$. We denote this by $R=S \otimes I$.

Definition 3.25. Let R be a skewring. For any additive endomorphism f of R is called left[right] translation if and only if $f(x y)=f(x) y[f(x y)=x f(y)]$ for all $x, y \in R$ and we denote the set of all left[right] translations by $L T(R)[R T(R)]$.

Definition 3.26. Let R, S be skewrings, $f: R \rightarrow S$. Then f is called an additive antl-homomorphism if and only if $f(x+y)=f(y)+f(x)$ for all $x, y \in R$ and f is called a multiplicative anti-homomorphism if and only if $f(x y)=f(y) f(x)$ for all $x, y \in R$.

Theorem 3.27. Let $O \longrightarrow R \longrightarrow \mathrm{f} S \xrightarrow{\mathrm{~g}} T \longrightarrow 0$ be an exact sequence of skewrings. If there exists a homomorphism $h: T \rightarrow S$ such that $g \circ h=I d T$, then S $=f[R] \otimes h[T]$.

Proof. By definition of exact sequence, $f[R]=\operatorname{Im}(f)=\operatorname{Ker}(g)$ which is a normal ideal in S. Suppose that there exists a homomorphism $h: T \rightarrow S$ such that $\mathrm{g} \circ \mathrm{h}=\mathrm{Id}_{\mathrm{T}}$. Then h is injective. Moreover, $\mathrm{T} \cong \mathrm{h}[\mathrm{T}]$ which is a subskewring of S, by Proposition $1.36(1)$. We shall show that $S=f[R] \otimes h[T]$.

Claim1. $\mathrm{f}[\mathrm{R}] \cap \mathrm{h}[\mathrm{T}]=\{0\}$.
Let $x \in f[R] \cap h[T]$. Since $x \in f[R]=\operatorname{Ker}(g), g(x)=0$. Since $x \in h[T]$, there exists $y \in T$ such that $h(y)=x$. Therefore $0=g(x)=g(h(y))=I_{T}(y)=y$. Since h is a homomorphism, $0=h(y)=x$. Hence $f[R] \cap h[T]=\{0\}$ and we have Claiml. Claim2. $S=f[R]+h[T]$.

Clearly, $\mathrm{f}[\mathrm{R}]+\mathrm{h}[\mathrm{T}]$ is contained in S . Conversely, let $\mathrm{x} \in \mathrm{S}$. Then $\mathrm{g}(\mathrm{x}) \in \mathrm{T}$, so that $h(g(x)) \in h[T]$. We have that $x=x-h(g(x))+h(g(x))$. We shall show that $x-h(g(x)) \in f[R](=\operatorname{Ker}(g))$, consider $g(x-h(g(x)))=g(x)-g(h(g(x)))=g(x)-\operatorname{Id}_{T}(g(x))=$ $g(x)-g(x)=0$. Thus $x-h(g(x)) \in \operatorname{Ker}(g)=f[R]$ which implies that $x=x-h(g(x))+$ $h(g(x)) \in f[R]+h[T]$. So $S \subseteq f[R]+h[T]$. Hence $S=f[R]+h[T]$ and we have Claim2. By Claiml and Claim2, $S=f[R] \otimes h[T]$. \#

Theorem 3.28. Let S and I be skewrings. Then there exist $\alpha: S \rightarrow G A u t(I)$ ($=\{f: I \rightarrow I / f$ is an additive automorphism. $\}$) which is an additive anti-homomorphism, $l: S \rightarrow L T(I)$ which is a homomorphism, and $r: S \rightarrow R T(I)$ which is a multiplicative anti-homomorphism and additive homomorphism which have the following properties: for all $s_{1}, s_{2}, s_{3} \in S, i_{1}, i_{2}, i_{3} \in I$,
(l) $r\left(s_{1}\right) \circ l\left(s_{2}\right)=l\left(s_{2}\right) \circ r\left(s_{1}\right)$ and $\left[r\left(s_{1}\right)\right]\left(i_{1}\right)+\left[l\left(s_{2}\right)\right]\left(i_{2}\right)=\left[l\left(s_{2}\right)\right]\left(i_{2}\right)+\left[r\left(s_{1}\right)\right]\left(i_{1}\right)$,
(2) $\left[r\left(s_{1}\right)\right]\left(i_{1}\right)+i_{2} i_{3}=i_{2} i_{3}+\left[r\left(s_{l}\right)\right]\left(i_{1}\right)$ and $\left[l\left(s_{1}\right)\right]\left(i_{1}\right)+i_{2} i_{3}=i_{2} i_{3}+\left[l\left(s_{l}\right)\right]\left(i_{1}\right)$,
(3) $\left[\alpha\left(s_{1} s_{2}\right)\right] i_{1} i_{2}=i_{1} i_{2},\left[\alpha_{1}\left(s_{1} s_{2}\right)\right] \circ\left[l\left(s_{3}\right)\right]\left(i_{1}\right)=\left[l\left(s_{3}\right)\right]\left(i_{1}\right)$ and
$\left[\alpha\left(s_{1} s_{2}\right)\right] \circ\left[r\left(s_{3}\right)\right]\left(i_{1}\right)=\left[r\left(s_{3}\right)\right]\left(i_{1}\right)$,
(4) $i_{1}\left[\alpha\left(s_{1}\right)\right]\left(i_{2}\right)=i_{1} i_{2}$ and $\left[\alpha\left(s_{1}\right)\right]\left(i_{1}\right) i_{2}=i_{2}\left[\alpha\left(s_{1}\right)\right]\left(i_{1}\right)=i_{2} i_{1}$,
(5) $\left[l\left(s_{l}\right)\right] \circ\left[\alpha\left(s_{2}\right)\right]\left(i_{l}\right)=\left[l\left(s_{1}\right)\right]\left(i_{l}\right)$ and $\left[r\left(s_{1}\right)\right] \circ\left[\alpha\left(s_{2}\right)\right]\left(i_{l}\right)=\left[r\left(s_{1}\right)\right]\left(i_{l}\right)$ and
(6) $i_{l}\left[l\left(s_{l}\right)\right]\left(i_{2}\right)=\left[r\left(s_{1}\right)\right]\left(i_{1}\right) i_{2}$
if and only if there exists a skewring R such that S is isomorphic to some subskewring S^{\prime} of R, I is isomorphic to some normal ideal I^{\prime} of R and $R=$ $S^{\prime} \otimes I^{\prime}$. (i.e. R is a semi-direct sum of S^{\prime} and I^{\prime}.)

Proof. Let $\mathrm{R}=\mathrm{S} \times I$ and define the binary operations + , on R as follows : For all $\left(s_{1}, i_{1}\right),\left(s_{2}, i_{2}\right) \in R,\left(s_{1}, i_{1}\right)+\left(s_{2}, i_{2}\right)=\left(s_{1}+s_{2},\left[\alpha\left(s_{2}\right)\right]\left(i_{1}\right)+i_{2}\right)$ and

$$
\left(s_{1}, i_{1}\right)\left(s_{2}, i_{2}\right)=\left(s_{1} s_{2},\left[r\left(s_{2}\right)\right]\left(i_{1}\right)+\left[1\left(s_{1}\right)\right]\left(i_{2}\right)+i_{1} i_{2}\right) .
$$

Step1. We shall show that R is a skewring.
Clearly, $(R,+)$ and (R, \cdot) are closed. Let $\left(s_{1}, i_{1}\right),\left(s_{2}, i_{2}\right),\left(s_{3}, i_{3}\right) \in R$. Then $\left(s_{1}, i_{1}\right)+\left[\left(s_{2}, i_{2}\right)+\left(s_{3}, i_{3}\right)\right]=\left(s_{1}, i_{1}\right)+\left(s_{2}+\sigma_{3},\left[\alpha\left(s_{3}\right)\right]\left(i_{2}\right)+i_{3}\right)$
$=\left(s_{1}+\left(s_{2}+s_{3}\right),\left[\alpha\left(s_{2}+s_{3}\right)\right]\left(i_{1}\right)+\left[\alpha\left(s_{3}\right)\right]\left(i_{2}\right)+i_{3}\right) \quad 6$.
$=\left(\left(s_{1}+s_{2}\right)+s_{3},\left[\alpha\left(s_{3}\right)\right] \circ\left[\alpha\left(s_{2}\right)\right]\left(i_{1}\right)+\left[\alpha\left(s_{3}\right)\right]\left(i_{2}\right)+i_{3}\right)$
$=\left(\left(\mathrm{s}_{1}+\mathrm{s}_{2}\right)+\mathrm{s}_{3},\left[\alpha\left(\mathrm{~s}_{3}\right)\right]\left(\left[\alpha\left(\mathrm{s}_{2}\right)\right]\left(\mathrm{i}_{1}\right)+\mathrm{i}_{2}\right)+\mathrm{i}_{3}\right)$
$=\left(s_{1}+\mathrm{s}_{2},\left[\alpha\left(\mathrm{~s}_{2}\right)\right]\left(\mathrm{i}_{4}\right)+\mathrm{i}_{2}\right)+\left(\mathrm{s}_{3}, \mathrm{i}_{3}\right)$
$=\left[\left(s_{1}, i_{1}\right)+\left(s_{2}, i_{2}\right)\right]+\left(s_{3}, i_{3}\right)$
Therefore the associative law is true for ($R,+$). Since $\left(s_{1}, i_{1}\right)+(0,0)=$ $\left(\mathrm{s}_{1}+0,[\alpha(0)]\left(\mathrm{i}_{1}\right)+0\right)=\left(\mathrm{s}_{1}, \mathrm{Id}_{1}\left(\mathrm{i}_{1}\right)\right)=\left(\mathrm{s}_{1}, \mathrm{i}_{1}\right)$. Therefore $(0,0)$ is a right identity of
$(R,+)$. Since $\left(s_{1}, i_{1}\right)+\left(-s_{1},-\left[\alpha\left(-s_{1}\right)\right]\left(i_{1}\right)\right)=\left(s_{1}-s_{1},\left[\alpha\left(-s_{1}\right)\right]\left(i_{1}\right)+\left(-\left[\alpha\left(-s_{1}\right)\right]\left(i_{1}\right)\right)\right)=(0,0)$, $\left(-s_{1},-\left[\alpha\left(-s_{1}\right)\right]\left(i_{1}\right)\right)$ is a right inverse of $\left(s_{1}, i_{1}\right)$. Hence ($R,+$) is a group. Consider $\left(s_{1}, i_{1}\right)\left[\left(s_{2}, i_{2}\right)\left(s_{3}, i_{3}\right)\right]=\left(s_{1}, i_{1}\right)\left(s_{2} s_{3},\left[r\left(s_{3}\right)\right]\left(i_{2}\right)+\left[1\left(s_{2}\right)\right]\left(i_{3}\right)+i_{2} i_{3}\right)$ $=\left(\mathrm{s}_{1}\left(\mathrm{~s}_{2} \mathrm{~s}_{3}\right),\left[\mathrm{r}\left(\mathrm{s}_{2} \mathrm{~s}_{3}\right)\right]\left(\mathrm{i}_{1}\right)+\left[1\left(\mathrm{~s}_{1}\right)\right]\left(\left[\mathrm{r}\left(\mathrm{s}_{3}\right)\right]\left(\mathrm{i}_{2}\right)+\left[1\left(\mathrm{~s}_{2}\right)\right]\left(\mathrm{i}_{3}\right)\right)+\mathrm{i}_{2} \mathrm{i}_{3}\right)+$ $\left.\mathrm{i}_{1}\left(\left[\mathrm{r}\left(\mathrm{s}_{3}\right)\right]\left(\mathrm{i}_{2}\right)+\left[1\left(\mathrm{~s}_{2}\right)\right]\left(\mathrm{i}_{3}\right)+\mathrm{i}_{2} \mathrm{i}_{3}\right)\right)$
$=\left(\left(s_{1} s_{2}\right) s_{3},\left[r\left(s_{3}\right)\right] \circ\left[r\left(s_{2}\right)\right]\left(i_{1}\right)+\left[l\left(s_{1}\right)\right] \circ\left[r\left(s_{3}\right)\right]\left(i_{2}\right)+\left[1\left(s_{1}\right)\right] \circ\left[l\left(s_{2}\right)\right]\left(i_{3}\right)+\left[l\left(s_{1}\right)\right]\left(i_{2} i_{3}\right)+\right.$ $\left.\mathrm{i}_{1}\left[\mathrm{r}\left(\mathrm{s}_{3}\right)\right]\left(\mathrm{i}_{2}\right)+\mathrm{i}_{1}\left[1\left(\mathrm{~s}_{2}\right)\right]\left(\mathrm{i}_{3}\right)+\mathrm{i}_{1}\left(\mathrm{i}_{2} \mathrm{i}_{3}\right)\right)$
$=\left(\left(s_{1} s_{2}\right) s_{3},\left[r\left(s_{3}\right)\right] \circ\left[r\left(s_{2}\right)\right]\left(i_{1}\right)+\left[r\left(s_{3}\right)\right] \circ\left[1\left(s_{1}\right)\right]\left(i_{2}\right)+\left[1\left(s_{1} s_{2}\right)\right]\left(i_{3}\right)+\left[1\left(s_{1}\right)\right]\left(i_{2}\right) i_{3}+\right.$ $\left.\left[r\left(s_{3}\right)\right]\left(i_{1} i_{2}\right)+\left[r\left(s_{2}\right)\right]\left(i_{1}\right) i_{3}+\left(i_{1} i_{2}\right) i_{3}\right)$
$=\left(\left(\mathrm{s}_{1} \mathrm{~s}_{2}\right) \mathrm{s}_{3},\left[\mathrm{r}\left(\mathrm{s}_{3}\right)\right] \circ\left[\mathrm{r}\left(\mathrm{s}_{2}\right)\right]\left(\mathrm{i}_{1}\right)+\left[\mathrm{r}\left(\mathrm{s}_{3}\right)\right] \circ\left[\mathrm{l}\left(\mathrm{s}_{1}\right)\right]\left(\mathrm{i}_{2}\right)+\left[\mathrm{r}\left(\mathrm{s}_{3}\right)\right]\left(\mathrm{i}_{1} \mathrm{i}_{2}\right)+\left[1\left(\mathrm{~s}_{1} \mathrm{~s}_{2}\right)\right]\left(\mathrm{i}_{3}\right)+\right.$ $\left.\left[r\left(s_{2}\right)\right]\left(i_{1}\right) i_{3}+\left[1\left(s_{1}\right)\right]\left(i_{2}\right) i_{3}+\left(i_{1} i_{2}\right) i_{3}\right)$
$=\left(\left(\mathrm{s}_{1} \mathrm{~s}_{2}\right) \mathrm{s}_{3},\left[\mathrm{r}\left(\mathrm{s}_{3}\right)\right]\left(\left[\mathrm{r}\left(\mathrm{s}_{2}\right)\right]\left(\mathrm{i}_{1}\right)+\left[1\left(\mathrm{~s}_{1}\right)\right]\left(\mathrm{i}_{2}\right)+\left(\mathrm{i}_{1} \mathrm{i}_{2}\right)\right)+\left[1\left(\mathrm{~s}_{1} \mathrm{~s}_{2}\right)\right]\left(\mathrm{i}_{3}\right)+\left[\mathrm{r}\left(\mathrm{s}_{2}\right)\right]\left(\mathrm{i}_{1}\right) \mathrm{i}_{3}+\left[1\left(\mathrm{~s}_{\mathrm{i}}\right)\right]\left(\mathrm{i}_{2}\right) \mathrm{i}_{3}\right.$ $\left.+\left(\mathrm{i}_{1} \mathrm{i}_{2}\right) \mathrm{i}_{3}\right)$
$=\left(s_{1} s_{2},\left[r\left(s_{2}\right)\right]\left(i_{1}\right)+\left[l\left(s_{1}\right)\right]\left(i_{2}\right)+i_{1} i_{2}\right)\left(s_{3}, i_{3}\right)$.
Therefore (R,) is a semigroup.

$$
\begin{aligned}
& \left(s_{1}, i_{1}\right)\left[\left(s_{2}, i_{2}\right)+\left(s_{3}, i_{3}\right)\right]=\left(s_{1}, i_{1}\right)\left(s_{2}+s_{3},\left[\alpha\left(s_{3}\right)\right]\left(i_{2}\right)+i_{3}\right) \\
& =\left(s_{1}\left(s_{2}+s_{3}\right),\left[r\left(s_{2}+s_{3}\right)\right]\left(i_{1}\right)+\left[1\left(s_{1}\right)\right]\left(\left[\alpha\left(s_{3}\right)\right]\left(i_{2}\right)+i_{3}\right)+\mathrm{i}_{1}\left(\left[\alpha\left(\mathrm{~s}_{3}\right)\right]\left(\mathrm{i}_{2}\right)+\mathrm{i}_{3}\right)\right) \\
& =\left(s_{1} s_{2}+s_{1} s_{3},\left[r\left(s_{2}\right)+r\left(s_{3}\right)\right]\left(i_{1}\right)+\left[1\left(s_{1}\right)\right] \cdot\left[\alpha\left(s_{3}\right)\right]\left(i_{2}\right)+\left[1\left(s_{1}\right)\right]\left(i_{3}\right)+i_{1}\left[\alpha\left(s_{3}\right)\right]\left(i_{2}\right)+i_{1} i_{3}\right) \\
& =\left(\mathrm{s}_{1} \mathrm{~s}_{2}+\mathrm{s}_{1} \mathrm{~s}_{3},\left[\mathrm{r}\left(\mathrm{~s}_{2}\right)\right]\left(\mathrm{i}_{1}\right)+\left[\mathrm{r}\left(\mathrm{~s}_{3}\right)\right]\left(\mathrm{i}_{1}\right)+\left[1\left(\mathrm{~s}_{1}\right)\right]\left(\mathrm{i}_{2}\right)+\left[1\left(\mathrm{~s}_{1}\right)\right]\left(\mathrm{i}_{3}\right)+\mathrm{i}_{1} \mathrm{i}_{2}+\mathrm{i}_{1} \mathrm{i}_{3}\right) \\
& =\left(s_{1} s_{2}+s_{1} s_{3},\left[r\left(s_{2}\right)\right]\left(i_{1}\right)+\left[l\left(s_{1}\right)\right]\left(i_{2}\right)+i_{1} i_{2}+\left[r\left(s_{3}\right)\right]\left(i_{1}\right)+\left[l\left(s_{1}\right)\right]\left(i_{3}\right)+i_{1} i_{3}\right) \\
& =\left(\mathrm{s}_{1} \mathrm{~s}_{2}+\mathrm{s}_{1} \mathrm{~s}_{3},\left[\alpha\left(\mathrm{~s}_{1} \mathrm{~s}_{3}\right)\right] \circ\left[\mathrm{r}\left(\mathrm{~s}_{2}\right)\right]\left(\mathrm{i}_{1}\right)+\left[\alpha\left(\mathrm{s}_{1} \mathrm{~s}_{3}\right)\right] \circ\left[1\left(\mathrm{~s}_{1}\right)\right]\left(\mathrm{i}_{2}\right)+\left[\alpha\left(\mathrm{s}_{1} \mathrm{~s}_{3}\right)\right]\left(\mathrm{i}_{1} \mathrm{i}_{2}\right)+\left[r\left(\mathrm{~s}_{3}\right)\right]\left(\mathrm{i}_{1}\right)+\right. \\
& \left.\left[1\left(s_{1}\right)\right]\left(i_{3}\right)+i_{1} i_{3}\right)
\end{aligned}
$$

$=\left(s_{1} s_{2}+s_{1} s_{3},\left[\alpha\left(s_{1} s_{3}\right)\right]\left(\left[r\left(s_{2}\right)\right]\left(i_{1}\right)+\left[l\left(s_{1}\right)\right]\left(i_{2}\right)+i_{1} i_{2}\right)+\left[r\left(s_{3}\right)\right]\left(i_{1}\right)+\left[l\left(s_{1}\right)\right]\left(i_{3}\right)+i_{1} i_{3}\right)$
$=\left(s_{1} s_{2},\left[r\left(s_{2}\right)\right]\left(i_{1}\right)+\left[1\left(s_{1}\right)\right]\left(i_{2}\right)+i_{1} i_{2}\right)+\left(s_{1} s_{3},\left[r\left(s_{3}\right)\right]\left(i_{1}\right)+\left[1\left(s_{1}\right)\right]\left(i_{3}\right)+i_{1} i_{3}\right)$
$=\left(s_{1}, i_{1}\right)\left(s_{2}, i_{2}\right)+\left(s_{1}, i_{1}\right)\left(s_{3}, i_{3}\right)$ and
$\left[\left(s_{1}, i_{1}\right)+\left(s_{2}, i_{2}\right)\right]\left(s_{3}, i_{3}\right)=\left(s_{1}+s_{2},\left[\alpha\left(s_{2}\right)\right]\left(i_{1}\right)+i_{2}\right)\left(s_{3}, i_{3}\right)$
$=\left(\left(s_{1}+s_{2}\right) s_{3},\left[r\left(s_{3}\right)\right]\left(\left[\alpha\left(s_{2}\right)\right]\left(i_{1}\right)+i_{2}\right)+\left[1\left(s_{1}+s_{2}\right)\right]\left(i_{3}\right)+\left(\left[\alpha\left(s_{2}\right)\right]\left(i_{1}\right)+i_{2}\right) i_{3}\right)$
$=\left(s_{1} s_{3}+s_{2} s_{3},\left[r\left(s_{3}\right)\right] \circ\left[\alpha\left(s_{2}\right)\right]\left(i_{1}\right)+\left[r\left(s_{3}\right)\right]\left(i_{2}\right)+\left[l\left(s_{1}\right)+l\left(s_{2}\right)\right]\left(i_{3}\right)+\left[\alpha\left(s_{2}\right)\right]\left(i_{1}\right) i_{3}+i_{2} i_{3}\right)$
$=\left(\mathrm{s}_{1} \mathrm{~s}_{3}+\mathrm{s}_{2} \mathrm{~s}_{3},\left[\mathrm{r}\left(\mathrm{s}_{3}\right)\right]\left(\mathrm{i}_{1}\right)+\left[\mathrm{r}\left(\mathrm{s}_{3}\right)\right]\left(\mathrm{i}_{2}\right)+\left[\mathrm{l}\left(\mathrm{s}_{1}\right)\right]\left(\mathrm{i}_{3}\right)+\left[\mathrm{l}\left(\mathrm{s}_{2}\right)\right]\left(\mathrm{i}_{3}\right)+\mathrm{i}_{1} \mathrm{i}_{3}+\mathrm{i}_{2} \mathrm{i}_{3}\right)$
$=\left(s_{1} s_{3}+s_{2} s_{3},\left[r\left(s_{3}\right)\right]\left(i_{4}\right)+\left[l\left(s_{1}\right)\right]\left(i_{3}\right)+i_{1} i_{3}+\left[r\left(s_{3}\right)\right]\left(i_{2}\right)+\left[1\left(s_{2}\right)\right]\left(i_{3}\right)+i_{2} i_{3}\right)$

$$
\begin{aligned}
= & \left(s_{1} s_{3}+s_{2} s_{3},\left[\alpha\left(s_{2} s_{3}\right)\right] \circ\left[r\left(s_{3}\right)\right]\left(i_{1}\right)+\left[\alpha\left(s_{2} s_{3}\right)\right] \circ\left[l\left(s_{1}\right)\right]\left(i_{3}\right)+\left[\alpha\left(s_{2} s_{3}\right)\right]\left(i_{1} i_{3}\right)+\left[r\left(s_{3}\right)\right]\left(i_{2}\right)+\right. \\
& {\left.\left[1\left(s_{2}\right)\right]\left(i_{3}\right)+i_{2} i_{3}\right) } \\
= & \left(s_{1} s_{3}+s_{2} s_{3},\left[\alpha\left(s_{2} s_{3}\right)\right]\left(\left[r\left(s_{3}\right)\right]\left(i_{1}\right)+\left[l\left(s_{1}\right)\right]\left(i_{3}\right)+i_{1} i_{3}\right)+\left[r\left(s_{3}\right)\right]\left(i_{2}\right)+\left[l\left(s_{2}\right)\right]\left(i_{3}\right)+i_{2} i_{3}\right) \\
= & \left(s_{1} s_{3},\left[r\left(s_{3}\right)\right]\left(i_{1}\right)+\left[1\left(s_{1}\right)\right]\left(i_{3}\right)+i_{1} i_{3}\right)+\left(s_{2} s_{3},\left[r\left(s_{3}\right)\right]\left(i_{2}\right)+\left[1\left(s_{2}\right)\right]\left(i_{3}\right)+i_{2} i_{3}\right) \\
= & \left(s_{1}, i_{1}\right)\left(s_{3}, i_{3}\right)+\left(s_{2}, i_{2}\right)\left(s_{3}, i_{3}\right) .
\end{aligned}
$$

Therefore the distributive law is true for $(R,+, \cdot)$ and hence R is a skewring.

Step2. We shall show that S isomorphic to some subskewring of R and I isomorphic to some normal ideal of R.

Let $S^{\prime}=\{(s, 0) / s \in S\}$ and let $\left(s_{1}, 0\right),\left(s_{2}, 0\right) \in S^{\prime}$. Then $\left(s_{1}, 0\right)-\left(s_{2}, 0\right)=$ $\left(\mathrm{s}_{1}-\mathrm{s}_{2},\left[\alpha\left(-\mathrm{s}_{2}\right)\right](0)-0\right)=\left(\mathrm{s}_{1}-\mathrm{s}_{2}, 0\right) \in \mathrm{S}^{\prime}$ and $\left(\mathrm{s}_{1}, 0\right)\left(\mathrm{s}_{2}, 0\right)=\left(\mathrm{s}_{1} \mathrm{~s}_{2},\left[\mathrm{r}\left(\mathrm{s}_{2}\right)\right](0)+\left[1\left(\mathrm{~s}_{1}\right)\right](0)+0\right)=$ $\left(s_{1} s_{2}, 0\right) \in S^{\prime}$. Therefore S^{\prime} is a subskewring of R and hence $S \cong S \times\{0\}$.

Let $I^{\prime}=\{(0, i) / i \in I\}$ and let $\left(0, i_{1}\right),\left(0, i_{2}\right) \in I^{\prime},(s, i) \in R$. Then $\left(0, i_{1}\right)-\left(0, i_{2}\right)=$ $\left(0,[\alpha(-0)]\left(i_{1}\right)-i_{2}\right),\left(0, i_{1}\right)\left(0, i_{2}\right)=\left(0,[r(0)]\left(i_{1}\right)+[1(0)]\left(i_{2}\right)+i_{1} i_{2}\right),(s, i)\left(0, i_{1}\right)=$ $\left(0,[r(0)](\mathrm{i})+[1(\mathrm{~s})]\left(\mathrm{i}_{1}\right)+\mathrm{ii}_{1}\right),\left(0, \mathrm{i}_{1}\right)(\mathrm{s}, \mathrm{i})=\left(0,[\mathrm{r}(\mathrm{s})]\left(\mathrm{i}_{1}\right)+[1(0)](\mathrm{i})+\mathrm{i}_{\mathbf{i}} \mathrm{i}\right) \in \mathrm{I}^{\prime}$ and $(\mathrm{s}, \mathrm{i})+\left(0, \mathrm{i}_{1}\right)-(\mathrm{s}, \mathrm{i})=\left[(\mathrm{s}, \mathrm{i})+\left(0, \mathrm{i}_{1}\right)\right]-(\mathrm{s}, \mathrm{i})=\left(\mathrm{s},[\alpha(0)](\mathrm{i})+\mathrm{i}_{1}\right)-(\mathrm{s}, \mathrm{i})=\left(\mathrm{s}, \mathrm{i}+\mathrm{i}_{1}\right)-(\mathrm{s}, \mathrm{i})=$ $\left(0,[\alpha(-s)]\left(i+i_{1}\right)-i\right) \in I^{\prime}$. Therefore I^{\prime} is a normal ideal of R hence $I \cong\{0\} \times I$ and clearly, $\mathrm{R}=\mathrm{S}^{\prime} \otimes \mathrm{I}^{\prime}$. Hence we have the first statement.

Conversely, suppose there exists a skewring R such that S is isomorphic to some subskewring S^{\prime} of R, and I is isomorphic to some normal ideal I^{\prime} of R and $\mathrm{R}=\mathrm{S}^{\prime} \otimes \mathrm{I}^{\prime}$. Let $\varphi: \mathrm{S} \rightarrow \mathrm{S}^{\prime}$ and $\psi: \mathrm{I} \rightarrow \mathrm{I}^{\prime}$ be such that φ and ψ are isomorphisms. For any $s^{\prime} \in S^{\prime}$, define $\alpha_{s^{\prime}}: I^{\prime} \rightarrow I^{\prime}$ by $\alpha_{s^{\prime}}\left(i^{\prime}\right)=-s^{\prime}+i^{\prime}+s^{\prime}, l_{s^{\prime}}: I^{\prime} \rightarrow I^{\prime}$ by $l_{s^{\prime}}\left(i^{\prime}\right)=s^{\prime} i^{\prime}$ and $r_{s^{\prime}}: I^{\prime} \rightarrow I^{\prime}$ by $r_{s^{\prime}}\left(i^{\prime}\right)=i^{\prime} s^{\prime}$ for every $i^{\prime} \in I^{\prime}$. Then we have $\psi^{-1} \circ \alpha_{s^{\prime}} \circ \psi \in \operatorname{GAut}(\mathrm{I}), \psi^{-1} \circ 1_{s^{\prime}} \circ \psi \in \mathrm{LT}(\mathrm{I}), \psi^{-1} \circ \mathrm{r}_{s^{\prime}} \circ \psi \in \mathrm{RT}(\mathrm{I})$ for every $\mathrm{s}^{\prime} \in \mathrm{S}^{\prime}$. Define $\alpha: \mathrm{S} \rightarrow \mathrm{GAut}(\mathrm{I})$ by $\alpha(\mathrm{s})=\psi^{-1} \circ \alpha_{\varphi(\mathrm{s})} \circ \psi, \mathrm{l}: \mathrm{S} \rightarrow \mathrm{LT}(\mathrm{I})$ by $\mathrm{l}(\mathrm{s})=\psi^{-1} \circ \mathrm{l}_{\varphi(\mathrm{s})} \circ \psi$ and $r: S \rightarrow R T(I)$ by $r(s)=\psi^{-1} \circ r_{\varphi(s)} \circ \psi$ for every $s \in S$. Hence we have the converse. \#

Corollary 3.29. Let S and I be rings. Suppose that there exist maps $l: S \rightarrow L T(I)$ which is a ring homomorphism and a multiplicative anti-homomorphism $r: S \rightarrow R T(I)$ which is also an additive homomorphism which satisfy (l) $r\left(s_{1}\right) \circ l\left(s_{2}\right)=l\left(s_{2}\right) \circ r\left(s_{1}\right)$ and (2) $i_{l}\left[l\left(s_{l}\right)\right]\left(i_{2}\right)=\left[r\left(s_{1}\right)\right]\left(i_{1}\right) i_{2}$ for all $s_{l}, s_{2} \in S$, $i_{1}, i_{2} \in I$. Then there exists a ring R such that S is isomorphic to some subring S^{\prime} of R, I is isomorphic to an ideal I^{\prime} of R and R is the semi-direct sum of S^{\prime} and I^{\prime}.

Theorem 3.30. Let S and I be skewrings. Suppose that there exist $\alpha_{1} \alpha^{\prime}: S \rightarrow G A u t(I)$ which are additive anti-homomorphisms, l, l': $S \rightarrow L T(I)$ which are homomorphisms, and $r, r^{\prime}: S \rightarrow R T(I)$ which are multiplicative anti-homomorphisms and additive homomorphisms which satisfy the same properties as those in Theorem 3.28. By Theoem 3.28, we get skewrings $R_{a, l, r}$ and $R_{\alpha^{\prime}, l^{\prime}, r^{\prime}}$. Let $\varphi: S \rightarrow S$ and $\psi: I \rightarrow I$ be isomorphisms. If the following conditions hold:

For every $s \in S, \quad$ (1) $\alpha(s)=\psi^{-1} \circ \alpha^{\prime}(\varphi(s)) \circ \psi$,
(2) $l(s)=\psi^{-1 \circ} \circ l^{\prime}(\varphi(s)) \circ \psi$ and
(3) $r(s)=\psi^{-1 \circ r^{\prime}(\varphi(s)) \circ \psi \text {. } ~}$
then $\varphi \times \psi: R_{a, l, r} \rightarrow R_{\alpha^{\prime}, l^{\prime}, r^{\prime}}$ is an isomorphism where $\varphi \times \psi(x, y)=(\varphi(x), \psi(y))$ for all $(x, y) \in R_{a, l, r}$.

Proof. Assume the conditions. Let $\left(s_{1}, i_{1}\right),\left(s_{2}, i_{2}\right) \in R_{\alpha, 1, r}$. Then

$$
\begin{aligned}
\varphi \times & \psi\left(\left(s_{1}, i_{1}\right)+\left(s_{2}, i_{2}\right)\right)=\varphi \times \psi\left(\left(s_{1}+s_{2},\left[\alpha\left(s_{2}\right)\right]\left(i_{1}\right)+i_{2}\right)\right) \\
& =\left(\varphi\left(s_{1}+s_{2}\right), \psi\left(\left[\alpha\left(s_{2}\right)\right]\left(i_{1}\right)+i_{2}\right)\right) \\
& =\left(\varphi\left(s_{1}\right)+\varphi\left(s_{2}\right), \psi\left(\left[\alpha\left(s_{2}\right)\right]\left(i_{1}\right)\right)+\psi\left(i_{2}\right)\right) \\
& =\left(\varphi\left(s_{1}\right)+\varphi\left(s_{2}\right), \psi\left(\left(\psi^{-1} \circ \alpha^{\prime}\left(\varphi\left(s_{2}\right)\right) \circ \psi\right)\left(i_{1}\right)\right)+\psi\left(i_{2}\right)\right) \\
& =\left(\varphi\left(s_{1}\right)+\varphi\left(s_{2}\right),\left(\alpha^{\prime}\left(\varphi\left(s_{2}\right)\right) \circ \psi\right)\left(i_{1}\right)+\psi\left(i_{2}\right)\right) \\
& =\left(\varphi\left(s_{1}\right)+\varphi\left(s_{2}\right),\left[\alpha^{\prime}\left(\varphi\left(s_{2}\right)\right)\right]\left(\psi\left(i_{1}\right)\right)+\psi\left(i_{2}\right)\right) \\
& =\left(\varphi\left(s_{1}\right), \psi\left(i_{1}\right)\right)+\left(\varphi\left(s_{2}\right), \psi\left(i_{2}\right)\right) \\
& =\varphi \times \psi\left(\left(s_{1}, i_{1}\right)\right)+\varphi \times \psi\left(\left(s_{2}, i_{2}\right)\right) \text { and }
\end{aligned}
$$

$$
\begin{aligned}
\varphi \times & \psi\left(\left(s_{1}, i_{1}\right)\left(s_{2}, i_{2}\right)\right)=\varphi \times \psi\left(\left(s_{1} s_{2},\left[r\left(s_{2}\right)\right]\left(i_{1}\right)+\left[l\left(s_{1}\right)\right]\left(i_{2}\right)+i_{1} i_{2}\right)\right. \\
& =\left(\varphi\left(s_{1} s_{2}\right), \psi\left(\left[r\left(s_{2}\right)\right]\left(i_{1}\right)+\left[1\left(s_{1}\right)\right]\left(i_{2}\right)+i_{1} i_{2}\right)\right) \\
& =\left(\varphi\left(s_{1}\right) \varphi\left(s_{2}\right), \psi \circ\left[r\left(s_{2}\right)\right]\left(i_{1}\right)+\psi \circ\left[l\left(s_{1}\right)\right]\left(i_{2}\right)+\psi\left(i_{1} i_{2}\right)\right) \\
& =\left(\varphi\left(s_{1}\right) \varphi\left(s_{2}\right), \psi\left(\left(\psi^{-1} \circ r^{\prime}\left(\varphi\left(s_{2}\right)\right) \circ \psi\right)\left(i_{1}\right)\right)+\psi\left(\left(\psi^{-1} \circ l^{\prime}\left(\varphi\left(s_{1}\right)\right) \circ \psi\right)\right)\left(i_{2}\right)+\psi\left(i_{1}\right) \psi\left(i_{2}\right)\right) \\
& \left.=\left(\varphi\left(s_{1}\right) \varphi\left(s_{2}\right),\left(r^{\prime}\left(\varphi\left(s_{2}\right)\right) \circ \psi\right)\left(i_{1}\right)\right)+\left(l^{\prime}\left(\varphi\left(s_{1}\right)\right) \circ \psi\right)\left(i_{2}\right)+\psi\left(i_{1}\right) \psi\left(i_{2}\right)\right) \\
& =\left(\varphi\left(s_{1}\right) \varphi\left(s_{2}\right),\left[r^{\prime}\left(\varphi\left(s_{2}\right)\right]\left(\psi\left(i_{1}\right)\right)+\left[l^{\prime}\left(\varphi\left(s_{1}\right)\right]\left(\psi\left(i_{2}\right)\right)+\psi\left(i_{1}\right) \psi\left(i_{2}\right)\right)\right.\right. \\
& =\left(\varphi\left(s_{1}\right), \psi\left(i_{1}\right)\right)\left(\varphi\left(s_{2}\right), \psi\left(i_{2}\right)\right) \\
& =\varphi \times \psi\left(\left(s_{1}, i_{1}\right)\right) \varphi \times \psi\left(\left(s_{2}, i_{2}\right)\right) .
\end{aligned}
$$

Therefore $\varphi \times \psi$ is a homomorphism. Since φ and ψ are isomorphisms, $\varphi \times \psi$ is an isomorphism. \#

Corollary 3.31. Let S and I be rings. Suppose that there exist l, l ' $: S \rightarrow L T(I)$ which are homomorphisms, and $r, r^{\prime}: S \rightarrow R T(I)$ which are multiplicative anti-homomorphisms and additive homomorphisms which satisfy the same properties as those in Corollary 3.29. By Corollary 3.29, we get rings $R_{l, r}$ and $R_{l^{\prime}, r^{\prime}}$. Let $\varphi: S \rightarrow S$ and $\psi: I \rightarrow I$ be isomorphisms. If the following conditions
 Then $\varphi \times \psi: R_{l, r} \rightarrow R^{\prime}, r^{\prime}$ is an isomorphism where $\varphi \times \psi(x, y)=(\varphi(x), \psi(y))$ for all $(x, y) \in R_{l, r}$.

Definition 3.32. Let R be a skewring and $\left\{R_{\alpha} / \alpha \in A\right\}$ be a family of skewrings. Then R is said to be a subdirect sum of $\left\{R_{\alpha} / \alpha \in A\right\}$ if and only if there exists a monomorphism $f: R \rightarrow \prod_{\alpha \in A} R_{\alpha}$ such that for each $\alpha \in A, \pi_{\alpha \circ} f: R \rightarrow R_{\alpha}$ is an epimorphism where π_{α} is the projection map.

Definition 3.33. Let R be a subskewring of a direct product of family of skewrings $\left\{R_{\alpha} / \alpha \in A\right\} . R$ is said to be subdirect product of $\left\{R_{\alpha} / \alpha \in A\right\}$ if and only if for every $\alpha \in A, \pi_{\alpha}(R)=R_{\alpha}$ where π_{α} is the projection map.

Definition 3.34. Let $\left\{R_{\alpha} / \alpha \in A\right\}$ be a family of skewrings, and R a skewring. A representation of R as a subdirect product of $\left\{R_{\alpha} / \alpha \in A\right\}$ is a homomorphism $g: R \rightarrow \prod_{\alpha \in A} R_{\alpha}$ such that for each $\alpha \in A, \pi_{\alpha \circ} g: R \rightarrow R_{\alpha}$ is an epimorphism where π_{α} is a projection map. Then $\operatorname{Im}(g)$ is a subdirect product of $\left\{R_{\alpha} / \alpha \in A\right\}$.

Definition 3.35. Let R be a skewring. Then R is said to be a subdirectly irreduclble if and only if for every family of skewrings $\left\{R_{\alpha} / \alpha \in A\right\}$ and for every monomorphism representation $g: R \rightarrow \prod_{\alpha \in A} R_{\alpha}$ there exists $\beta \in A$ such $\pi_{\beta \circ g}: R \rightarrow R_{\beta}$ is an isomorphism where π_{β} is the projection map. If R is not a subdirectly irreducible, we shall call R a subdirectly reducible skewring.

Theorem 3.36. Let R be a skewring, $\left\{R_{\alpha} / \alpha \in A\right\}$ be a family of skewrings. Then R is a subdirect sum of $\left\{R_{\alpha} / \alpha \in A\right\}$ if and only if for each $\beta \in A$, there exists an epimorphism $g_{\beta} \cdot R \rightarrow R_{\beta}$ such that $\bigcap_{\alpha \in A} \operatorname{Ker}\left(g_{\alpha}\right)=\{0\}$.

Proof. Suppose that R is a subdirect sum of $\left\{R_{\alpha} / \alpha \in A\right\}$. Then there exists a monomorphism $f: R \rightarrow \prod_{\alpha \in A} R_{\alpha}$ such that for each $\beta \in A, \pi_{\beta} \circ f: R \rightarrow R_{\beta}$ is an epimorphism. For each $\beta \in A$, det $g_{\beta}=\pi_{\beta} \circ f$. Let $r \in \bigcap \operatorname{Ker}\left(g_{\alpha}\right)$. Suppose $r \neq 0$. $\alpha \in A$
Then $f(r) \neq 0$ which implies that there exists $\alpha_{0} \in A$ such that $0 \neq \pi_{\alpha_{0}} \circ f(r)=$ $\mathrm{g}_{\alpha_{0}}(\mathrm{r})$. Therefore $\mathrm{r} \notin \operatorname{Ker}\left(\mathrm{g}_{\alpha_{0}}\right)$, so $\mathrm{r} \notin \bigcap_{\alpha \in \mathrm{A}} \operatorname{Ker}\left(\mathrm{g}_{\alpha}\right)$ which is a contradiction.

Hence $\bigcap_{\alpha \in A} \operatorname{Ker}\left(g_{\alpha}\right)=\{0\}$.
Conversely, assume that for each $\beta \in A$, there exists an epimorphism $g_{\beta}: R \rightarrow R_{\beta}$ such that $\bigcap_{\alpha \in A} \operatorname{Ker}\left(g_{\alpha}\right)=\{0\}$. We define $f: R \rightarrow \prod_{\alpha \in A} R_{\alpha}$ by $f(r)=\left\{g_{\alpha}(r)\right\}_{\alpha \in A}$ for every $r \in R$. From the above, for each $\beta \in A, \pi_{\beta} \circ f=g_{\beta}$. Since g_{β} is
surjective, $\pi_{\beta} \circ f$ is surjective. Let $r, s \in R$. Then $f(r s)=\left\{g_{\alpha}(r s)\right\}_{\alpha \in A}=\left\{g_{\alpha}(r) g_{\alpha}(s)\right\}_{\alpha \in A}$ $=\left\{g_{a}(r)\right\}_{a \in A}\left\{g_{\alpha}(s)\right\}_{a \in A}=f(r) f(s)$ and similarly, $f(r+s)=f(r)+f(s)$. Therefore f is a homomorphism. Let $r \in \operatorname{Ker}(f)$. Then $0=f(r)=\left\{g_{a}(r)\right\}_{\alpha \in A}$. Then $g_{a}(r)=0$ for every $\alpha \in A$. Therefore $r \in \bigcap \bigcap_{\alpha \in A} \operatorname{Ker}\left(g_{\alpha}\right)=\{0\}$, so that $\operatorname{Ker}(f)=\{0\}$. Therefore f is a monomorphism and hence R is a subdirect sum of $\left\{R_{\alpha} / \alpha \in A\right\}$. \#

Corollary 3.37. Let R be a skewring and $\left\{I_{\alpha} / \alpha \in A\right\}$ be a family of normal ideals of R. If $\bigcap_{\alpha \in A} I_{\alpha}=\{0\}$, then R is a subdirect sum of the family of skew rings $\left\{R / I_{\alpha} / \alpha \in A\right\}$.

Proof. For each $\alpha \in A$, let $\pi_{\alpha}: R \rightarrow R / I_{\alpha}$ be the canonical epimorphism. Since for each $\beta \in A, \pi_{\beta}$ is an epimorphism and $\cap \operatorname{Ker}\left(\pi_{\alpha}\right)=\bigcap_{\alpha \in A} \mathrm{I}_{\alpha}=\{0\}$, by Theorem 3.36, R is a subdirect sum of $\left\{\mathrm{R} / \mathrm{I}_{\alpha} / \alpha \in \mathrm{A}\right\}$. \#

Theorem 3.38. Let R be a subskewring of the Cartesian product $\prod_{\alpha \in A} R_{\alpha}$ of skewrings. Then there exists a natural epimorphism θ from R to a subdirect product of the family of skewrings $\left\{R^{\prime}, / \alpha \in A\right\}$ where $R^{\prime} \alpha^{\prime}=R /\left(R \cap j_{\alpha}\left[R_{\alpha}\right]\right)$ and for every $\alpha \in A, j_{\alpha}: R \rightarrow \prod_{\alpha \in A} R_{\alpha}^{\sigma}$ which is defined by $j_{\alpha}(r)=\left(r_{\beta}\right)_{\beta \in A}$ where $r_{\beta}=\left\{\begin{array}{l}0 \text { if } \beta \neq \alpha, \\ r \text { if } \beta=\alpha,\end{array}\right.$
sufficient that $\bigcap_{\alpha \in A}\left(R \cap j_{\alpha}\left[R_{\alpha}\right]\right)=\{0\}$.

Proof. For every $r \in R$, we define $\theta(r)=\left(r_{\alpha}\right)_{\alpha \in A}$ where $r_{\alpha}=r+\left(R \cap_{\alpha}\left[R_{\alpha}\right]\right)$
is the coset of r in $R /\left(R \cap j_{\alpha}\left[R_{\alpha}\right]\right)$ for every $\alpha \in A$. Then θ is a homomorphism and $\theta[R]$ is a subdirect product of $\left\{R_{\alpha}^{\prime} / \alpha \in A\right\}$. The $\operatorname{Ker}(\theta)=$ $\bigcap_{\alpha \in A}\left(R \cap j_{\alpha}\left[R_{\alpha}\right]\right)$. If θ is an isomorphism, then $\bigcap_{\alpha \in A}\left(R \cap j_{\alpha}[R \alpha]\right)=\{0\}$. \#

Theorem 3.39. Let R be a skewring and $\left\{R_{\alpha} / \alpha \in A\right\}$ be a family of skewrings. Let $g: R \rightarrow \prod_{\alpha \in A} R_{\alpha}$ be a representation of R as a subdirect product of $\left\{R_{\alpha} / \alpha \in A\right\}$. Then $\operatorname{Im}(g) \cong R / \bigcap_{\alpha \in A} \operatorname{Ker}\left(\pi_{\alpha} \circ g\right)^{.}$

Proof. Define $\varphi: R \rightarrow \operatorname{Im}(g)$ by $\varphi(x)=g(x)$ for every $x \in R$. Then φ is an epimorphism. We shall show that $\operatorname{Ker}(\varphi)=\bigcap \bigcap_{\alpha \in A} \operatorname{Ker}\left(\pi_{\alpha}{ }^{\circ} \mathrm{g}\right)$. Let $\mathrm{x} \in \operatorname{Ker}(\varphi)$. Then $\varphi(x)=\left(0_{\alpha}\right)_{\alpha \in A}$, so $g(x)=\left(0_{\alpha}\right)_{\alpha \in A}$. For each $\alpha \in A, \pi_{\alpha} \circ g(x)=0_{\alpha}$, then $x \in \operatorname{Ker}\left(\pi_{\alpha} \circ g\right)$. Hence $x \in \bigcap_{\alpha \in A} \operatorname{Ker}\left(\pi_{\alpha} \circ \mathrm{g}\right)$. Thus $\operatorname{Ker}(\varphi) \subseteq \bigcap_{\alpha \in \mathrm{A}} \operatorname{Ker}\left(\pi_{\alpha} \circ \mathrm{g}\right)$.

Next, let $x \in \bigcap_{\alpha \in A} \operatorname{Ker}\left(\pi_{\alpha} \circ g\right)$. Then $\pi_{\alpha} \circ g(x)=0_{\alpha}$ for every $\alpha \in A$ which implies that $g(x)=\left(0_{\alpha}\right)_{\alpha \in A}$. Since $\varphi(x)=g(x)=\left(0_{\alpha}\right)_{\alpha \in A}, x \in \operatorname{Ker}(\varphi)$. Hence

Theorem, $\operatorname{Im}(\mathrm{g}) \cong \mathrm{R} / \bigcap_{\alpha \in \mathrm{A}} \operatorname{Ker}\left(\pi_{\alpha} \circ \mathrm{g}\right)^{\circ \#} \mathrm{C} \| \mathrm{G}$)

Corollary 3.40. Let R be a skewring and $\left\{R_{\alpha} / \alpha \in A\right\}$ be a family of skewrings. Let $g: R \rightarrow \prod_{\alpha \in A} R_{\alpha}$ be a monomorphic representation of R as a subdirect product of $\left\{R_{\alpha} / \alpha \in A\right\}$. Then $\bigcap_{\alpha \in A} \operatorname{Ker}\left(\pi_{\alpha} \circ g\right)=\{0\}$, hence $\operatorname{Im}(g) \cong R$.

Proof. We shall show that $\bigcap_{\alpha \in \mathrm{A}} \operatorname{Ker}\left(\pi_{\alpha}{ }^{\circ} \mathrm{g}\right)=\{0\}$, let $\mathrm{x} \in \bigcap_{\alpha \in \mathrm{A}} \operatorname{Ker}\left(\pi_{\alpha}{ }^{\circ} \mathrm{g}\right)$. Then $\pi_{\alpha} \mathrm{g}(\mathrm{x})=0_{\alpha}$ for every $\alpha \in \mathrm{A}$. This implies that $g(x)=\left(0_{\alpha}\right)_{\alpha \in A^{\prime}}$. Since g is a
monomorphism, $x=0$ and $\cap \operatorname{Ker}\left(\pi_{\alpha}{ }^{\circ} \mathrm{g}\right)=\{0\}$. By Theorem 3.39, $\operatorname{Im}(\mathrm{g}) \cong \mathrm{R} . \#$ $\alpha \in \mathbf{A}$

Proposition 3.41. Let R be a skewring and $L=\left\{I_{\alpha} / \alpha \in A\right\}$ be a family of nonzero normal ideals of R. Define $f: R \rightarrow \prod_{\alpha \in A} R / I_{\alpha}$ by $f(x)=\left(x+I_{\alpha}\right)_{\alpha \in A}$ for every $x \in R$. Then f is a representation of R as a subdirect product of $\left\{R / I_{\alpha} / \alpha \in A\right\}$. Furthermore, if $\bigcap_{\alpha \in A}=\{0\}$, then f is a monomorphic representation of R.

Proof. Clearly, f is a homomorphism of R. We shall show that $\operatorname{Im}(f)$ is a subdirect product of $\left\{R / I_{\alpha} / \alpha \in A\right\}$. It is clear that for every $\alpha \in A$, $\pi_{\alpha}\left(\operatorname{Im}(f) \subseteq R / I_{\alpha}\right.$. Let $\alpha \in A, x \in R$. Then $x+I_{\alpha} \in R / I_{\alpha}$, so $f(x) \in \prod_{\alpha \in A} R / I_{\alpha}$ and $x+I_{\alpha}$ $=\pi_{\alpha}(f(x)) \in \pi_{\alpha}(\operatorname{Im}(f))$. Hence $R / I_{\alpha} \subsetneq \pi_{\alpha}(\operatorname{Im}(f))$. Therefore $\pi_{\alpha} \circ f[R]=\pi_{\alpha}(\operatorname{Im}(f))=$ R / I_{α}. Hence f is a representation of R as a subdirect product of $\left\{R / I_{\alpha} / \alpha \in A\right\}$. Next, assume that $\bigcap_{\alpha \in A} \mathrm{I}_{\alpha}=\{0\}$. We shall show that f is a monomorphism. Let $x \in R$ be such that $f(x)=\left(I_{\alpha}\right)_{\alpha \in A}$. Then $\left(x+I_{\alpha}\right)_{\alpha \in A}=\left(I_{\alpha}\right)_{\alpha \in A}$, so $x \in I_{\alpha}$ for all $\alpha \in A$. By assumption, $x=0$. Hence f is an injective and is a monomorphism. $\#$

Proposition 3.42. Let R be a skewring and L the set of all normal ideals of R except $\{0\}$. Then R is a subdirectly irreducible if and only if L has a minimum element.

Proof. Assume that R is a subdirectly irreducible. Suppose L has no minimum element. Then $\cap \mathrm{L}=\{0\}$. By Proposition 3.41, we have that $f: R \rightarrow \prod_{I \in L} R / I$ defined by $f(x)=(x+I)_{1 \in L}$ for every $x \in R$ which it is a
monomorphic representation of R as a subdirect product of $\{R / I / I \in L\}$. By assumption, there exists $\mathrm{I}_{0} \in \mathrm{~L}$ such that $\pi_{\mathrm{I}_{0}} \circ \mathrm{f}$ is an isomorphism. We shall show that $\mathrm{I}_{0}=\{0\}$. Let $\mathrm{x} \in \mathrm{I}_{0}$. Then $\pi_{\mathrm{I}_{0}} \circ \mathrm{f}(\mathrm{x})=\pi_{\mathrm{I}_{0}}\left((\mathrm{x}+\mathrm{I})_{\mathrm{I} \in \mathrm{L}}\right)=\mathrm{x}+\mathrm{I}_{0}$. Since $\mathrm{x} \in \mathrm{I}_{0}$, $x \in \operatorname{Ker}\left(\pi_{\mathrm{I}_{0}} \circ \mathrm{f}\right)$. Since $\pi_{\mathrm{I}_{0}} \circ \mathrm{f}$ is an isomorphism, $\mathrm{x}=0$. So $\mathrm{I}_{0}=\{0\}$ which is contradiction since $\{0\}=\mathrm{I}_{0} \in \mathrm{~L}$. Therefore L has a minimum element. Conversely, assume that L has a minimum element say I_{m}. Let $\left\{R_{\alpha} / \alpha \in A\right\}$ be a family of skewrings and $f: R \rightarrow \prod_{\alpha \in A} R_{\alpha}$ a monomorphic representation of R as a subdirect product of $\left\{R_{\alpha} / \alpha \in A\right\}$. By Corollary 3.40, $\bigcap_{\alpha \in A} \operatorname{Ker}\left(\pi_{\alpha} \circ f\right)=\{0\}$. Suppose that for every $\alpha \in A, \operatorname{Ker}\left(\pi_{\alpha} \circ f\right) \neq 0$. Then
$\left\{\operatorname{Ker}\left(\pi_{\alpha} \circ \mathrm{f}\right) / \alpha \in \mathrm{A}\right\} \subseteq L$. Therefore $I_{m} \subseteq \bigcap_{\alpha \in \mathrm{A}} \operatorname{Ker}\left(\pi_{\alpha} \circ \mathrm{f}\right)=\{0\}$ which is a contradiction. Therefore there exists a $\beta \in A$ such that $\operatorname{Ker}\left(\pi_{\alpha} \circ f\right)=0$, so $\pi_{\beta} \circ \mathrm{f}$ is an isomorphism. Hence R is a subdirectly irreducible. \#

Next, we want to show that every skewring is a subdirect product of subdirectly irreducible skewrings. First we need three Lemmas.

Lemma 3.43. Let R be a nontivial skewring and $x \in R \backslash\{0\}$. Then there exists a maximal normal ideal M of R such that $x \notin M$.

Proof. Let $L=\{I / I$ is a normal ideal of R and $x \notin I\}$. Since $\{0\} \in L, L$ is not empty. Let C be a nonempty chain in L. Clearly, $\cup C$ is a normal ideal of R and $\cup C$ is an upper bound of C. By Zorn's Lemma, L has a maximal element. \#

Lemma 3.44. Using the assumptions of Lemma 3.43, let $\mathfrak{J}=\{I / I$ is a normal ideal of R such that $M \subset I\}$. Then \mathfrak{J} has a minimum element.

Proof. Since $\operatorname{Re} \mathfrak{J}, \mathfrak{I}$ is not empty. If there exists $\mathrm{I} \in \mathfrak{I}$ and $\mathrm{x} \notin \mathrm{I}$, then this contradicts the maximality of M . Therefore for every $\mathrm{I} \in \mathfrak{I}, \mathrm{x} \in \mathrm{I}$. Then we have that $\cap \mathfrak{J}$ is a normal ideal of R which is the minimum element and $x \in \cap \mathfrak{I}$. Hence $\cap \mathfrak{I} \neq \mathrm{M}$. \#

Lemma 3.45. Using the assumptions of Lemma 3.43, R / M is a subdirectly irreducible skewring.

Proof. Let L be the set of normal ideals of R / M except (M \}. By Corollary 2.15, L is isomorphic to the set of normal ideals of R strictly containing M. By Lemma 3.44, L has a minimum element. By Proposition 3.42, R / M is a subdirectly irreducible skewring. \#

Theorem 3.46. Let R be a skewring. Then R is a subdirect product of subdirectly irreducible skewrings.

Proof. By Lemma 3.43, for all $x \in R \backslash\{0\}$, we have that I_{x} is a maximal normal ideal of R such that $X \notin I_{x}$. By Lemma $3.45, R / I_{x}$ is subdirectly irreducible. Let $L=\left\{I_{x} / x \in R \backslash\{0\}\right\}$. Let $x \in \cap L$. Suppose that $x \neq 0$. Then $x \notin I_{x}$ which is a contradiction since $x \in \cap L$. So $\cap L=\{0\}$. By Proposition 3.41, we have that $\mathrm{f}: \mathrm{R} \rightarrow \prod_{l \in L} \mathrm{R} / I$ is a monomorphic representation of R as a subdirect product of $\{R / I / I \in L\}$. Therefore $f[R]$ is a subdirect product of
$\{R / I / I \in L\}$. Since $R \cong f[R], R$ is a subdirect product of subdirectly irreducible skewrings. \#

Definition 3.47. A skewring R is semisimple if and only if it is a direct sum of simple normal ideals of R.

Remark 3.48. The Cartesian product of finite number of semisimple skewrings is a semisimple skewring.

Definition 3.49. A normal ideal I of a skewring R is a direct summand of R if and only if there exists a normal ideal J of R such that $R=I \oplus J$.

Definition 3.50. A skewring R is completely reducible if and only if every normal ideal of R is a direct summand of R.

Lemma 3.51. If U is a set of normal ideals of a skewring R and H is a normal ideal in R, then there exists a subset V of U which is maximal with respect to the existence of $H \in \mathcal{P}\{(K / K \in V\})$.

Proof. Denote the direct sum in the theorem by $X(V)$. Let L be the set of subsets V of U for which $X(V)$ exists. Since $X(\varnothing)=H, \varnothing \in L$ and L is not empty. Partially order P by inclusion. Let C be a nonempty chain in L. let W $=\cup C$. Then W is a subset of U and is an upper bound of C. We shall show that $W \in L$, that is we shall show that $X(W)$ exists.
Claim that for all $K, K^{\prime} \in W$ such that $K \neq K^{\prime}, K \cap K^{\prime}=\{0\}$ and for every $K \in W$ such that $\mathrm{K} \neq \mathrm{H}, \mathrm{K} \cap \mathrm{H}=\{0\}$.

If $K, K^{\prime} \in W$ and $K \neq K^{\prime}$, then there exists a $V \in C$ such that $K, K^{\prime} \in V$. Since $X(V)$ exists, $K \cap K^{\prime}=\{0\}$. If $K \in W$ and $K \neq H$, then there exists $V \in C$ such that $K \in V$. Since $X(V)$ exists, $H \cap K=\{0\}$. Therefore the claim is true

Hence $X(W)$ exists. Thus $W \in L$ and W is an upper bound of C in L. By Zorn's Lemma, L has a maximal element. \#

Lemma 3.52. let R be a skewring and I, J be normal ideals of R such that R $=I \oplus J$. If H is a normal ideal of R such that $I \subseteq H \subseteq R$, then $H=I \oplus(J \cap H)$.

Proof. Suppose thst H is a normal ideal of R such that $I \subseteq H \subseteq R$. Clearly, $\mathrm{I}+(\mathrm{J} \cap \mathrm{H}) \subseteq \mathrm{H}$. Let $\mathrm{h} \in \mathrm{H}$. Since $\mathrm{R}=\mathrm{I} \oplus \mathrm{J}$, there exist $\mathrm{x} \in \mathrm{I}$ and $\mathrm{y} \in \mathrm{J}$ such that $h=x+y$ and we have $x \in H$. Since $y=h-x \in H, h=x+y \in I+(J \cap H)$, so $H \subseteq I+$ $(\mathrm{J} \cap \mathrm{H})$. Therefore $\mathrm{H}=\mathrm{I}+(\mathrm{J} \cap \mathrm{H})$. Since $\mathrm{R}=\mathrm{I} \oplus \mathrm{J}, \mathrm{I} \cap(\mathrm{J} \cap \mathrm{H}) \subseteq \mathrm{I} \cap \mathrm{J}=\{0\}$ which implies that $\mathrm{H}=\mathrm{I} \oplus(\mathrm{J} \cap \mathrm{H}) . \mathrm{H}$

Theorem 3.53. A skewring R is completely reducible if and only if it is semisimple.

Proof. Let R be completely reducible. Let $L=\{S / S$ is a set of simple normal ideals of R such that $X(S)=\oplus\{H / H \in S\}$ exists $\}$. By Lemma 3.51, there exists a maximal set of simple normal ideals S such that $X(S)=\oplus\{H / H \in S\}$ exists. By completely reducibility, $\mathrm{R}=\mathrm{X}(\mathrm{S}) \oplus \mathrm{K}$ for some normal ideal K of R . If $K=\{0\}$, we are done. Suppose that $K \neq\{0\}$.

Claim that K is completely reducible.
Let M be a normal ideal in K . By Remark 3.5 and $\mathrm{R}=\mathrm{X}(\mathrm{S}) \oplus \mathrm{K}, \mathrm{M}$ is a normal ideal in R. Since R is a completely reducible, there exists a normal ideal P of R such that $R=M \oplus P$. Since $M \subseteq K \subseteq R$, by Lemma $3.52, K=$ $\mathrm{M} \oplus(\mathrm{P} \cap \mathrm{K})$. Hence K is completely reducible and the claim is true.

By the maximal property of S and Remark $3.5, \mathrm{~K}$ has no nontrivial simple normal ideal. Let $0 \neq \mathrm{x} \in \mathrm{K}$ and $\mathrm{M}=\langle\mathbf{x}\rangle_{\mathrm{r}}$. be a normal ideal in K which is generated by \mathbf{x}. Then M is not simple. Since K is completely reducible and Remark 3.5, there exists a normal ideal P of R such that $K=M \oplus P$. By Remark 3.5, every normal ideal of M is a normal ideal of K. Since K has no nontrivial simple normal ideal, this is true for M . Similarly, by the proof of the claim, M is completely reducible.

Let x^{M} be a smallest normal ideal in M which is generated by x .

Clearly, $M=\langle x\rangle_{n}=x^{M}$. Since M is not simple, there exists a nontrivial normal ideal A_{1} of M. Since M is completely reducible, there exists a nontrivial normal ideal B_{1} of M such that $M=A_{1} \oplus B_{1}$. Similarly, B_{1} has no simple normal ideal and so B_{1} is completely reducible. By induction, we have $M=$ $A_{1} \oplus B_{1}=A_{1} \oplus A_{2} \oplus B_{2}=A_{1} \oplus \ldots \oplus A_{\curvearrowleft} \oplus B_{n} \oplus \ldots$ where $A_{i} \neq\{0\}$ and $B_{i} \neq\{0\}$ for every $i \in \mathbf{Z}^{+}$. Then $\oplus A_{i}$ exists and it is a normal ideal in M. Since M is completely reducible, there exists a normal ideal D of M such that $M=\left(\oplus A_{i}\right) \oplus D$. Let $D=$ $A_{0}, M=\oplus A_{i}$. Then there exist an $r \in Z^{+}$and $a_{i} \in A_{i}$ such that $x=a_{0}+a_{1}+\ldots+a_{7}$. Hence $X^{M} \subseteq A_{1} \oplus \ldots \oplus A, \subset M$ which is a contradiction. Thus $K=\{0\}$.

Conversely, let S be the set of simple normal ideals of R such that R $=\oplus\{\mathrm{H} / \mathrm{H} \in \mathrm{S}\}$ and let M be a normal ideal of R. By Lemma 3.51, there exists a maximal subset T of S such that $X(T)=M \oplus(\oplus\{H / H \in T\})$ exists. Suppose $X(T)$ is a proper subskewring of R. If for every $H \in S, X(T) \cap H=H$, then $H \subseteq$ $X(T)$ for every $H \in S$ which implies that $X(T)=R$ which is a contradiction. Then there exists an $H \in S$ such that $X(T) \cap H$ is a proper normal ideal of H. Since H is simple, $X(T) \cap H=\{0\}$. Then $X(T \cup\{H\})$ exists which contradicts the maximal property of T. Therefore $X(T)=R$. Hence R is completely reducible. \#
สถาบันวิทยบริการ

