CHAPTER III

SUM AND PRODUCTS

In this chapter, we shall give some definitions and theorems of sums and products of skewrings. For example, direct sum, subdirect sum, semi-direct sum, subdirect product, subdirectly irreducible and subdirectly reducible.

Moreover, we shall generalize the Krull-Schmidt Theorem of group theory to skewrings.

Definition 3.1. Let R be a skewring and $\{R_{\alpha}/\alpha \in I\}$ be a family of normal ideals of R. Then R is called a **direct sum** of $\{R_{\alpha}/\alpha \in I\}$ which is denoted by $R = \bigoplus_{\alpha \in I} R_{\alpha}$ if and only if

- (1) for every $x \in \mathbb{R}$, there exists $x_{\alpha_i} \in \mathbb{R}_{\alpha_i}$ where i = 1,...,n such that $x = x_{\alpha_i} + ... + x_{\alpha_n}$ and
 - (2) for all $\alpha, \beta \in I$, if $\alpha \neq \beta$ implies $R_{\alpha} \cap (\sum_{\beta \neq \alpha} R_{\beta}) = \{0\}$.

Remark 3.2. Let a skewring R be a direct sum of $R_1, ..., R_n$ which are normal ideals of R. Then for all $x,y \in R$,

(1)
$$x+y = x_1+y_1+...+x_n+y_n$$
 and

$$(2) xy = x_1 y_1 + \dots + x_n y_n.$$

where $x = x_1 + ... + x_n$ and $y = y_1 + ... + y_n$. for some $x_i, y_i \in R_i$ such that $i \in \{1, ..., n\}$.

Proof. It is well-known that (1) is true. We will prove (2) by math induction on n.

Let n=2. Let $R=R_1\oplus R_2$. Let $x,y\in R$. Then there exist $x_1,y_1\in R_1$ and $x_2,y_2\in R_2$ such that $x=x_1+x_2$ and $y=y_1+y_2$. Thus $xy=(x_1+x_2)(y_1+y_2)=x_1y_1+x_2y_1+x_1y_2+x_2y_2$. Since R_1,R_2 are normal ideals, $x_2y_1+x_1y_2\in R_1\cap R_2=\{0\}$ which implies that $xy=x_1y_1+x_2y_2$.

Let $k \ge 2$. Assume that if $R = R_1 \oplus ... \oplus R_k$, then (2) is true. Suppose that $R = R_1 \oplus ... \oplus R_k \oplus R_{k+1}$. Let $x,y \in R$. Then there exist $x_i, y_i \in R_i$ where $i \in \{1,...,k+1\}$ such that $x = x_1 + ... + x_{k+1}$ and $y = y_1 + ... + y_{k+1}$. Then

$$xy = (x_1 + ... + x_{k+1})(y_1 + ... + y_{k+1})$$

- $= ((x_1 + \ldots + x_k) + x_{k+1}) + ((y_1 + \ldots + y_k) + y_{k+1})$
- $= (x_1 + ... + x_k)(y_1 + ... + y_k) + x_{k+1}y_{k+1}$, by basic step
- = $(x_1y_1+...+x_ky_k)+x_{k+1}y_{k+1}$, by induction hypothesis.

By math induction we have (2). #

Remark 3.3. Let R be a skewring which is a direct sum of normal ideals $R_1,...,R_n$. Then for all $i,j \in \{1,...,n\}$ such that $i \neq j$, if $a \in R_i$, $b \in R_j$ implies a+b=b+a.

Definition 3.4. A skewring R is said to be **decomposable** if and only if $R = H \oplus K$ where H,K are nontrivial normal ideals of R.

A skewring $R \neq \{0\}$ is said to be Indecomposable if and only if $R = H \oplus K$ where H, K are normal ideals of R implies H = R or K = R.

Remark 3.5. Let H,K be normal ideals of a skewring R such that $R = H \oplus K$. If N is a normal ideal of H, then N is a normal ideal of R.

Proof. Suppose N is a normal ideal of H. It is well-known that N is a normal subgroup of (R,+). Let $x \in N$, $r \in R$. Then there exist $h \in H$, $k \in K$ such that r = h+k. Then rx = (h+k)x = hx+kx. Since H,K are normal ideals of R, $rx-hx = kx \in H \cap K$. Since $R = H \oplus K$, $H \cap K = \{0\}$ and rx = hx. Since N is a normal ideal of H, $hx \in N$ and so $rx \in N$. Similarly, $xr \in N$. Hence N is a normal ideal of R. #

Definition 3.6. Let R be a skewring.

A decreasing sequence of left[right, two-sided] normal ideals of R, $R = R_0 \ge R_1 \ge ...$ is called a descending chain of left[right, two-sided]normal ideal in R.

R satisfies the descending chain condition (DCC) for left[right, two-sided] normal ideals if and only if for any decreasing chain of left[right, two-sided] normal ideals of R, $R = R_0 \ge R_1 \ge ...$, there exists a positive integer N such that $R_N = R_{N+1} = ...$

An increasing sequence of left[right, two-sided] normal ideals of R, $R_0 \le R_1 \le ...$ is called an ascending chain of left[right, two-sided] normal ideal in R.

R satisfies the ascending chain condition (ACC) for left[right, two-sided] normal ideals if and only if for any an ascending chain of left [right, two-sided] normal ideal in R, $R_0 \le R_1 \le ...$, there exists a positive integer N such that $R_N = R_{N+1} = ...$

Remark 3.7. Every finite skewring satisfies the DCC for left[right, two-sided] normal ideals.

Proposition 3.8. Let R be a skewring. Then R satisfies the ACC for left[right, two-sided] normal ideals if and only if every nonempty family of left[right, two-sided] normal ideals has a maximal element.

Propositin 3.9. Let R be a skewring. Then R satisfies the ACC for left[right, two-sided] normal ideals if and only if every left[right, two-sided] normal ideals is finitely generated.

Remark 3.10. Let H,K be normal ideals of a skewring R such that $R = H \oplus K$. If R satisfies the ACC[DCC] for normal ideals, then so do H and K. **Proof.** We shall show that if R satisfies the ACC for normal ideals, then so do H and K. Suppose R satisfies the ACC on normal ideals. Let $H_0 \subseteq H_1 \subseteq ...$ be an increasing sequence of subskewrings of H such that for each i, H_i is a normal ideal in H. By Remark 3.5, H_i is a normal ideal in R for every i. Then this sequence is an ascending chain in R. Since R satisfies the ACC for normal ideals, there exists $n \in \mathbb{Z}^+$ such that $H_n = H_{n+1} = ...$ Hence H is satisfies the ACC for normal ideal. For K is similarly.

If R satisfies the DCC for normal ideals, we can prove similarly.#

Lemma 3.11. For any skewring $R \neq \{0\}$ that satisfies the DCC for normal ideals has an indecomposable nonzero subskewring and $R = P \oplus K$ for some indecomposable normal ideal P of R and normal ideal K of R.

Proof. If R is indecomposable, then we are done. Otherwise, there exist R_1,R'_1 which are nontrivial normal ideals of R such that $R=R_1\oplus R'_1$.

If R_1 is indecomposable, then we are done. Otherwise, there exist R_2,R'_2 which are nontrivial normal ideals of R_1 such that $R_1 = R_2 \oplus R'_2$. By Remark 3.5, R_2,R'_2 are normal ideals of R. Then $R = R_2 \oplus R'_2 \oplus R'_1$ and $R \ge R_1 \ge R_2$. By Corollary 2.9 (4), $R'_2 \oplus R'_1$ is a normal ideal of R. Continue in this way. Then we have that $R \ge R_1 \ge R_2 \ge ...$ such that for each i, R_i is a normal ideal in R and $R = ... \oplus R'_n \oplus R'_{n-1} \oplus ... \oplus R'_1$. Since R satisfies the DCC for normal ideals, there exists $m \in \mathbb{Z}^+$ such that $R_m = R_{m+1} = ...$ Then $R = R_m \oplus R'_m \oplus R'_{m-1} \oplus ... \oplus R'_1$ such that R_m is indecomposable. By Remark 3.5, R_m, R'_i are normal ideals of R for every $i \in \{1, ..., m\}$. By Corollary 2.9 (4), $R'_m \oplus R'_{m-1} \oplus ... \oplus R'_1$ is a normal ideal of R. Hence the proof is finished. #

Theorem 3.12. Any nontrivial skewring R that satisfies the DCC for normal ideals can be expressed as a direct sum of a finite number of indecomposable normal ideals of R.

Proof. If R is indecomposable, then we are done. Otherwise, by Lemma 3.11, there exist an indecomposable nonzero normal ideal R_t of R and a proper normal ideal R_1' of R such that $R = R_1 \oplus R_1'$.

If R'_1 is indecomposable, then we are done. Otherwise, by Lemma 3.11, there exist an indecomposable nonzero normal ideal R_2 of R'_1 and proper normal ideal R'_2 of R'_1 such that $R'_1 = R_2 \oplus R'_2$. By Remark 3.5, R_2 and R'_2 are normal ideals in R and we have $R = R_1 \oplus R_2 \oplus R'_2$ such that $R \supset R'_1 \supset R'_2$. Continue in this way.

If there exists $n \in \mathbb{Z}^+ \setminus \{1\}$ such that R'_n is indecomposable in R'_{n-1} , then $R = R_1 \oplus \ldots \oplus R_n \oplus R'_n$ such that R_i, R'_n are normal ideals in R, R_{i+1} is indecomposable in R'_i for every $i \in \{1, \ldots, n-1\}$. By Remark 3.5, R_i, R'_n are indecomposable in R. Otherwise, we have $R \supset R'_1 \supset R'_2 \supset \ldots$ which is a contradiction since R satisfies the DCC for normal ideals. #

Definition 3.13. Let R be a skewring and let f be an endomorphism on R. Then f is a normal ideal endomorphism if and only if for all $x,y \in R$, f(x+y-x) = x+f(y)-x, xf(y) = f(xy) and f(y)x = f(yx).

Example 3.14. The zero fuction and the identity function on a skewring R are normal ideal endomorphisms.

Lemma 3.15. Let f and g be normal ideal endomorphisms of a skewring R. Then $f \circ g$ is a normal ideal endomorphism.

Lemma 3.16. Let a skewring $R = R_1 \oplus ... \oplus R_n$ where R_i is a normal ideal of R for every $i \in \{1,...,n\}$. For each $i \in \{1,...,n\}$, let $\pi_i: R \to R_i$ be a projection map and define $\varphi_i: R \to R$ by $\varphi_i(x) = \pi_i(x)$ for every $x \in R$. Then the sum $\varphi_{i_1} + ... + \varphi_{i_k}$ of any distinct $\varphi_{i_1},...,\varphi_{i_k}$ where $i_1,...,i_k \in \{1,...,n\}$, is a normal ideal endomorphism on R.

Proof. First, we shall show that φ_i is a normal ideal endomorphism of R for every $i \in \{1, ..., n\}$. It is well-known that φ_i is a normal endomorphism in (R,+) and clearly, φ_i is an endomorphism on R. Let $x,y \in R$. Then there exist $x_i,y_i \in R$ where $i \in \{1,...,n\}$ be such that $x = x_i + ... + x_n$ and $y = y_1 + ... + y_n$. Let $i \in \{1,...,n\}$. Then $x\varphi_i(y) = (x_1 + ... + x_n)\pi_i(y) = (x_1 + ... + x_n)(0 + ... + 0 + y_i + 0 + ... + 0) = x_iy_i = \pi_i(xy) = \varphi_i(xy)$. Similarly, $(\varphi_i(x))y = \varphi_i(xy)$. Hence φ_i is a normal ideal endomorphism in R.

Next, we shall show that the sum $\phi_{i_1} + ... + \phi_{i_k}$ of any distinct $\phi_{i_1}, ..., \phi_{i_k}$ where $i_1, ..., i_k \in \{1, ..., n\}$, is a normal ideal endomorphism on R. It is well-known that $\phi_{i_1} + ... + \phi_{i_k}$ is a normal endomorphism in (R,+). Consider, $(0)(xy) = \phi_{i_1}(xy) + ... + \phi_{i_k}(xy) = \phi_{i_1}(x)\phi_{i_1}(y) + ... + \phi_{i_k}(x)\phi_{i_k}(y) = x_{i_1}y_{i_1} + ... + x_{i_k}y_{i_k} = (x_{i_1} + ... + x_{i_k})(y_{i_1} + ... + y_{i_k})$ $= (\pi_{i_1}(x) + ... + \pi_{i_1}(x))(\pi_{i_1}(y) + ... + \pi_{i_k}(y))$ $= (\phi_{i_1}(x) + ... + \phi_{i_1}(x))(\phi_{i_1}(y) + ... + \phi_{i_k}(y)) = (\phi_{i_1} + ... + \phi_{i_k})(x)(\phi_{i_1} + ... + \phi_{i_k})(y)$ and $x(\phi_{i_1} + ... + \phi_{i_k})(y) = x(\phi_{i_1}(y) + ... + \phi_{i_k}(y)) = x \phi_{i_1}(y) + ... + x \phi_{i_k}(y) = \phi_{i_1}(xy) + ... + \phi_{i_k}(xy) = (\phi_{i_1} + ... + \phi_{i_k})(xy).$ Similarly, $((\phi_{i_1} + ... + \phi_{i_k})(x))(y) = (\phi_{i_1} + ... + \phi_{i_k})(xy).$ Hence $\phi_{i_1} + ... + \phi_{i_k}$ is a normal ideal endomorphism. #

Lemma 3.17. Let R be a skewring that satisfies the ACC[DCC] for normal ideals and f is an [normal ideal] endomorphism of R. Then f is an automorphism if and only if f is an epimorphism[monomorphism].

Proof. Step1. Assume that R satisfies the ACC for normal ideals and f is an endomorphism. We shall show that f is an automorphism if and only if f is an epimorphism.

Suppose f is an epimorphism. It is well-known that that for every $n \in \mathbb{Z}^+$, $Ker(f^n) \subseteq Ker(f^{n+1})$ where $f^n = f \circ f \circ \dots \circ f$ (n terms). By Remark 1.34, $\{0\} \subseteq Ker(f) \le Ker(f^n) \le \dots$ is an ascending chain in R. By assumption, there exists $n \in \mathbb{Z}^+$

such that $Ker(f^n) = Ker(f^{n+1})$. Since f is an epimorphism, f^n is an epimorphism.

To show that f is a monomorphism. Let $x \in \text{Ker}(f)$. Since f^n is an epimorphism, there exists $y \in R$ such that $f^n(y) = x$, that is $0 = f(x) = f^{n+1}(y)$. Thus $y \in \text{Ker}(f^{n+1}) = \text{Ker}(f^n)$ which implies that $x = f^n(y) = 0$. Thus $\text{Ker}(f) = \{0\}$. By Remark 1.33 (1), f is a monomorphism and hence f is an automorphism.

Step2. Assume that R satisfies the DCC for normal ideals and f is a normal ideal endomorphism. We shall show that f is an automorphism if and only if f is an monomorphism.

Suppose that f is a monomorphism. Let $n \in \mathbb{Z}^+$. By Lemma 3.15, f^* is a normal ideal endomorphism of R. By definition of normal ideal endomorphism, $Im(f^*)$ is a normal ideal of R. Thus we have $R \ge Im(f) \ge Im(f^*) \ge ...$ is a descending chain in R. By assumption, there exists $n \in \mathbb{Z}^+$ such that $Im(f^*) = Im(f^{n+1}) = ...$

To show that f is an epimorphism. Let $x \in \mathbb{R}$. Then $f''(x) \in \text{Im}(f'') = \text{Im}(f^{n+1})$ and there exists $y \in \mathbb{R}$ such that $f^{n+1}(y) = f''(x)$. Since f is a monomorphism, so is f'' and $f''(x) = f^{n+1}(y) = f''(f(y))$ implies x = f(y). Therefore f is an epimorphism and hence f is an automorphism. #

The following Lemma is generalized from Fitting's Lemma.

Lemma 3.18. If R is a skewring that satisfies both the ACC and DCC for normal ideals and f is a normal ideal endomorphism, then there exists an $n \in \mathbb{Z}^+$ such that $R = Ker(f^n) \oplus Im(f^n)$.

Proof. By the proof in Lemma 3.17, we have $R \ge Im(f) \ge Im(f^2) \ge ...$ and $\{0\} \le Ker(f) \le Ker(f^2) \le ...$ are descending and ascending chains respectively. By assumption, there exists $n \in \mathbb{Z}^+$ such that $Im(f^k) = Im(f^n)$ and $Ker(f^k) = Ker(f^n)$ for every $k \ge n$.

Let $a \in Ker(f'') \cap Im(f'')$. Then there exists $b \in R$ such that f''(b) = a and

 $f^{2n}(b) = f^n(f^n(b)) = f^n(a) = 0$. Consequently, $b \in Ker(f^{2n}) = Ker(f^n)$, so that $a = f^n(b) = 0$. Hence $Ker(f^n) \cap Im(f^n) = \{0\}$.

Let $c \in R$. Then $f''(c) \in Im(f'') = Im(f^{2n})$. There exists a $d \in R$ such that $f^{2n}(d) = f''(c)$. Therefore $f''(c+f''(-d)) = f''(c)+f^{2n}(-d) = f''(c)-f''(c) = 0$ and hence $c+f''(-d) \in Ker(f'')$. Since c = (c+f''(-d))+f''(d), we conclude that R = Ker(f'')+Im(f''). Hence $R = Ker(f'')\oplus Im(f'')$. #

Definition 3.19. An endomorphism f of a skewring R is said to be nilpotent if there exists a positive integer n such that $f^n(x) = 0$ for every $x \in R$.

Lemma 3.20. If $R \neq \{0\}$ is an indecomposable skewring that satisfies both the ACC and DCC for normal ideals and f is a normal ideal endomorphism of R, then either f is a nilpotent endomorphism or f is an automorphism.

Proof. By Lemma 3.18, there exists $n \in \mathbb{Z}^+$ such that $R = \text{Ker}(f^n) \oplus \text{Im}(f^n)$. Since R is indecomposable, $\text{Ker}(f^n) = \{0\}$ or $\text{Im}(f^n) = \{0\}$. If $\text{Im}(f^n) = \{0\}$, then $f^n(x) = 0$ for every $x \in \mathbb{R}$, so that f is nilpotent. If $\text{Ker}(f^n) = \{0\}$, then f is a monomorphism, since $\text{Ker}(f) \subseteq \text{Ker}(f^n)$. By Lemma 3.17, f is an automorphism. #

Lemma 3.21. Let f and g be normal ideal endomorphisms of a skewring R. If f+g is an endomorphism, then it is a normal ideal endomorphism.

Proof. Suppose that f+g is an endomorphism. It is well-known that f+g is a normal endomorphism of (R,+). Let $x,y \in R$. Then x(f+g)(y) = x(f(y)+g(y)) = xf(y)+xg(y) = f(xy)+g(xy) = (f+g)(xy). Similarly, ((f+g)(x))(y) = (f+g)(xy). Hence f+g is a normal ideal endomorphism.#

Lemma 3.22. Let $R \neq \{0\}$ be an indecomposable skewring that satisfies both the ACC and the DCC for normal ideals.

If f_1f_2 are nilpotent normal ideal endomorphisms of R such that f_1+f_2

is an edomorphism, then f_1+f_2 is nilpotent.

Proof. Let f_1, f_2 be nilpotent normal ideal endomorphisms of R such that f_1+f_2 is an endomorphism. By Lemma 3.21, f_1+f_2 is a normal ideal endomorphism. Suppose f_1+f_2 is not nilpotent. By Lemma 3.20, f_1+f_2 is an automorphism. Then $(f_1+f_2)^{-1}$ is an automorphism. We shall show that $(f_1+f_2)^{-1}$ is a normal ideal automorphism. By group theory, $(f_1+f_2)^{-1}$ is a normal automorphism of (R,+). Let $x,y \in R$. Then

$$(f_1+f_2)(x(f_1+f_2)^{-1}(y)) = f_1(x(f_1+f_2)^{-1}(y))+f_2(x(f_1+f_2)^{-1}(y))$$

$$= xf_1(f_1+f_2)^{-1}(y)+xf_2(f_1+f_2)^{-1}(y)$$

$$= x(f_1+f_2)(f_1+f_2)^{-1}(y) = xy.$$

Then $(f_1+f_2)^{-1}(xy) = x(f_1+f_2)^{-1}(y)$. Similarly, $(f_1+f_2)^{-1}(yx) = y(f_1+f_2)^{-1}(x)$. Therefore $(f_1+f_2)^{-1}$ is a normal ideal automorphism.

Let $g = (f_1 + f_2)^{-1}$ and define $g_1 = f_1 \circ g$, $g_2 = f_2 \circ g$. Then $g_1 + g_2 = f_1 \circ g + f_2 \circ g = (f_1 + f_2) \circ g = Id_R$ and for every $x \in R$, $-x = Id_R(-x) = (g_1 + g_2)(-x) = g_1(-x) + g_2(-x)$. Hence $x = -(g_1(-x) + g_2(-x)) = -g_2(-x) - g_1(-x) = g_2(x) + g_1(x) = (g_2 + g_1)(x)$ which implies that $g_2 + g_1 = Id_R$. Therefore $g_1 + g_2 = g_2 + g_1$ and $g_1 \circ (g_1 + g_2) = g_1 \circ Id_R = Id_R \circ g_1 = (g_1 + g_2) \circ g_1$ which imply that $g_1 \circ g_2 = g_2 \circ g_1$. Thus for each $m \ge 1$, $(g_1 + g_2)^m = g_1^m + g_2^m = g_1^m + g_1^m =$

$$\binom{m}{1}g_1^{m-1}\circ g_2+\ldots+\binom{m}{m-1}g_1\circ g_2^{m-1}+g_2^{m}$$
. Since f_1 is a nilpotent normal ideal

endomorphism, by Lemma 3.20, f_1 is not an automorphism. By Lemma 3.17, f_1 is not an epimorphism and not a monomorphism.

Then $g_1 = f_1 \circ g$ is not an automorphism.(1)

Since f_1 and g are normal ideal endomorphisms, by Lemma 3.15, $g_1 = f_1 \circ g$ is a normal ideal endomorphism.(ii)

By (i),(ii) and Lemma 3.20, g_1 is nilpotent. Similarly, g_2 is nilpotent. Then there exist $m,n \in \mathbb{Z}^+$ such that $g_1^m = 0$ and $g_2^n = 0$. Then $(g_1 + g_2)^{m+n} = g_1^{m+n} +$

$$\binom{m+n}{1} g_1^{m+n-1} \circ g_2 + \ldots + \binom{m+n}{m+n-1} g_1 \circ g_2^{m+n-1} + g_2^{m+n} = 0. \text{ Thus for every } x \in \mathbb{R},$$

 $(g_1+g_2)^{m+n}(x) = 0$ which contradicts $g_1+g_2 = Id_R$ and $R \neq \{0\}$. Hence f_1+f_2 is

nilpotent.#

The following theorem is generalized from Krull-Schmidt Theorem.

Theorem 3.23. Let R be a skewring that satisfies both the ACC and DCC for normal ideals.

If $R = R_1 \oplus ... \oplus R_s$ and $R = H_1 \oplus ... \oplus H_t$ for some $s, t \in \mathbb{Z}^+$ and R_i, H_j are indecomposable normal ideals in R for all $i \in \{1, ..., s\}, j \in \{1, ..., t\}$. Then after reindexing $R_i \cong H_i$ for every $i \in \{1, ..., r\}$ and $R = R_1 \oplus ... \oplus R_r \oplus H_{r+1} \oplus ... \oplus H_t$.

Proof. For each $1 \le r \le \min\{s,t\}$, let P(r) be the statement: there is a reindexing of $H_1, ..., H_t$ such that $R_i \cong H_i$ for every $i \in \{1, ..., r\}$ and $R = R_1 \oplus ... \oplus R_r \oplus H_{r+1} \oplus ... \oplus H_t$ and (or $R = R_1 \oplus ... \oplus R_r$ if r = t)

We will prove this by induction on r where 0≤r≤min{s,t}.

If r = 0, then P(0) is the statement: $R = H_1 \oplus ... \oplus H_t$ which is clear.

Let r>0. Assume that P(r-1) is true. Thus after reindexing $R_i \cong H_i$ for every $i \in \{1, ..., r-1\}$ and $R = R_1 \oplus ... \oplus R_{r-1} \oplus H_r \oplus ... \oplus H_t$. We shall show that R(r) is true.

Let $\pi_1, ..., \pi_s[\text{resp. } \pi'_1, ..., \pi'_t]$ be the projection determined by $R = R_1 \oplus ... \oplus R_s$ [resp. $R = R_1 \oplus ... \oplus R_{r-1} \oplus H_r \oplus ... \oplus H_t$]. For each $i \in \{1, ..., s\}$, let $\phi_i : R \to R$ be defined by $\phi_i(x) = \pi_i(x)$ for every $x \in R$ and for each $j \in \{1, ..., t\}$, let $\psi_j : R \to R$ be defined by $\psi_j(x) = \pi_j'(x)$ for every $x \in R$. Then we have $\phi_i|_{R_i} = Id_{R_i}$, $\phi_i \circ \phi_i = \phi_i$, $\phi_i \circ \phi_j = 0$ (where $i \neq j$), $\psi_1 + ... + \psi_j = Id_R$, $\psi_j \circ \psi_j = \psi_j$, $\psi_i \circ \psi_j = 0$ (where $i \neq j$), $Im(\phi_i) = R_i$, $Im(\psi_i) = R_i$ (where i < r) and $Im(\psi_i) = H_i$ (where $i \ge r$)

It follows that $\varphi_r \circ \psi_i = 0$ for every i < r. (Since for every $x \in R$, $\psi_i(x) \in R_i$, $\varphi_r \circ \psi_i(x) = \varphi_r \circ Id_{R_i} \circ \psi_i(x) = \varphi_r \circ \varphi_i \circ \psi_i(x) = 0$.) The preceding identities show that $\varphi_r = \varphi_r \circ Id_R = \varphi_r \circ (\psi_1 + \ldots + \psi_r) = \varphi_r \circ \psi_1 + \ldots + \varphi_r \circ \psi_r$. By Lemma 3.16, φ_r is a normal ideal endomorphism of R. By Lemma 3.15 and Lemma 3.16, every sum of distinct $(\varphi_r \circ \psi_j)|_{R_r}$ is a normal ideal endomorphism of R_r(i)

By Remark 3.10, R, satisfies both the ascending and descending chain conditions for normal ideals.

Claim1. There exists an j such that $r \le j \le t$ and $(\phi_r \circ \psi_j)|_{R_r}$ is an automorphism of $R_r \ne \{0\}$. Suppose not.

Then for every $i \in \{r,...,t\}$, $(\phi_r \circ \psi_i)|_{R_r}$ is not an automorphism.(ii)

By (i), for every $i \in \{r,...,t\}$, $(\phi_r \circ \psi_i)|_{R_r}$ is a normal ideal endomorphism of R_r .

By (ii) and Lemma 3.20, for every $i \in \{r,...,t\}$, $(\phi_r \circ \psi_i)|_{R_r}$ is nilpotent in R_r .

Since $\phi_r = \phi_r \circ \psi_r + ... + \phi_r \circ \psi_t$, by (i) and Lemma 3.22, $\phi_r|_{R_r}$ is nilpotent in R_r .

Thus $\phi_r|_{R_r}$ is an automorphism and nilpotent on R_r which contradicts Lemma 3.20. Hence we have Claim1.

Therefore there exists $j \in \mathbb{Z}^+$ such that $r \leq j \leq t$ and $(\phi_r \circ \psi_j)|_{R_r}$ is an automorphism.(iii)

So that, for each $n \in \mathbb{Z}^+$, $(\phi_r \circ \psi_j)^{n+1}$ is also an automorphism of R_r(iv)

By assumption and Remark 3.10, H_j satisfies the ACC and DCC for normal ideals for every $j \in \{1, ..., t\}$. By Lemma 3.15 and Lemma 3.16, $(\psi_j \circ \phi_r)|_{H_j} : H_j \to H_j$ is a normal ideal endomorphism of H_j .

Claim2. $(\psi_j \circ \phi_r)|_{H_j}$ is an automorphism of H_j(v)

Suppose not. By Lemma 3.20, $(\psi_j \circ \phi_r)|_{H_j}$ is nilpotent in H_j . Then there exists $m \in \mathbb{Z}^+$ such that $((\psi_j \circ \phi_r)|_{H_j})^m = 0_{H_j}$. Then $(\phi_r \circ \psi_j)^{m+1} = \phi_r \circ ((\psi_j \circ \phi_r))^m \circ \psi_j = \phi_r \circ 0_{H_j} \circ \psi_j = 0_R$, so that $(\phi_r \circ \psi_j)^{m+1}$ is a nilpotent automorphism of R_r (by (iv)) which contradicts Lemma 3.20. Hence we have Claim2.

By (iii) and (v), $\psi_j|_{R_r}: R_r \to H_j$ is an isomorphism and so is $\phi_r|_{H_j}: H_j \to R_r$. Reindexing the H_k , so that we may assume j = r and $R_r \cong H_r$. We have proved the first half of statement P(r).

Since $R = R_1 \oplus ... \oplus R_{r-1} \oplus H_r \oplus ... \oplus H_t$ by the induction hypothesis, the subskewring $R_1 + ... + R_{r-1} + H_{r+1} + ... + H_t$ is the direct sum of $R_1 \oplus ... \oplus R_{r-1} \oplus H_{r+1} \oplus ... \oplus H_t$. Observe that for every i < r, $\psi_r[R_i] = \psi_r \circ \psi_i[R] = \{0\}$ and for every i > r,

 $\psi_r[H_i] = \psi_r \circ \psi_i[R] = \{0\}. \text{ So } \psi_r[R_1 + \ldots + R_{r-1} + H_{r+1} + \ldots + H_t] = \{0\}. \text{ Let } x \in R_r \cap \{R_1 + \ldots + R_{r-1} + H_{r+1} + \ldots + H_t\} = \{0\}. \text{ Let } x \in R_r \cap \{R_1 + \ldots + R_{r-1} + H_{r+1} + \ldots + H_t\} = \{0\}, \ \psi_r[x] = \{0\}.$ Since $\psi_r[x]_r$ is an isomorphism, x = 0. Therefore $R_r \cap (R_1 + \ldots + R_{r-1} + H_{r+1} + \ldots + H_t) = \{0\}.$ It follows that the skewring $R^* = R_1 + \ldots + R_r + H_{r+1} + \ldots + H_t$ is the direct sum. Hence $R^* = R_1 \oplus \ldots \oplus R_r \oplus H_{r+1} \oplus \ldots \oplus H_t$.

Define $\theta: R \rightarrow R$ as follows:

By the induction hypothesis, we have that $R = R_1 \oplus ... \oplus R_{r-1} \oplus H_r \oplus ... \oplus H_t$. Then every element $x \in R$ may be written in the form $x = x_1 + ... + x_{r-1} + h_r + ... + h_t$ with $x_i \in R_i$ and $h_j \in H_j$. Let $\theta(x) = x_1 + ... + x_{r-1} + \phi_r(h_r) + h_{r+1} + ... + h_t$. Since $\phi_r|_{H_r} : H_r \to R_r$ is an isomorphism, $Im(\theta) = R^*$ and θ is a monomorphism.

Claim3. θ is a normal ideal endomorphism.

It is well-known that θ is a normal endomorphism of (R,+). Let $x,y \in R$. Then there exist $x_i, y_i \in R_i$, $h_j, k_j \in H_j$ where $i \in \{1, ..., r-1\}$ and $j \in \{r, ..., t\}$ such that $x = x_1 + ... + x_{r-1} + h_r + ... + h_r$ and $y = y_1 + ... + y_{r-1} + k_r + ... + k_t$. Then $x\theta(y) = (x_1 + ... + x_{r-1} + h_r + ... + h_t)(y_1 + ... + y_{r-1} + \phi_r(k_r) + k_{r+1} + ... + k_t)$ $= x_1 y_1 + ... + x_{r-1} y_{r-1} + h_r \phi_r(k_r) + h_{r+1} k_{r+1} + ... + h_t k_t$ $= x_1 y_1 + ... + x_{r-1} y_{r-1} + \phi_r(h_r k_r) + h_{r+1} k_{r+1} + ... + h_t k_t = \theta(xy).$

Similarly, $\theta(x)y = \theta(xy)$. Hence θ is a normal ideal endomorphism. So we have Claim3.

Since θ is a monomorphism, by Lemma 3.17, θ is an automorphism. So that $R = Im(\theta) = R^* = R_1 \oplus \ldots \oplus R_r \oplus H_{r+1} \oplus \ldots \oplus H_t$. This proves the second part of P(r) and complete the induction argument. Therefore, after reindexing we have that $R_i \cong H_1$ for every $1 \le i \le \min\{s,t\}$. If $\min\{s,t\} = s$, then $R_1 \oplus \ldots \oplus R_s = R = R_1 \oplus \ldots \oplus R_s \oplus H_{s+1} \oplus \ldots \oplus H_t$ and if $\min\{s,t\} = t$, then $R_1 \oplus \ldots \oplus R_s = R = R_1 \oplus \ldots \oplus R_t$. Since $R_i \ne \{0\}$ and $H_j \ne \{0\}$ for all i,j, we must have s = t in either case. #

Definition 3.24. Let R be a skewring, S be a subskewring of R and I be a normal ideal of R. Then R is called a **semi-direct sum** of S and I if and only if R = S+I and $S \cap I = \{0\}$. We denote this by $R = S \otimes I$.

Definition 3.25. Let R be a skewring. For any additive endomorphism f of R is called **left**[right] **translation** if and only if f(xy) = f(x)y[f(xy) = xf(y)] for all $x,y \in R$ and we denote the set of all left[right] translations by LT(R)[RT(R)].

Definition 3.26. Let R,S be skewrings, $f:R \rightarrow S$. Then f is called an additive anti-homomorphism if and only if f(x+y) = f(y) + f(x) for all $x,y \in R$ and f is called a multiplicative anti-homomorphism if and only if f(xy) = f(y)f(x) for all $x,y \in R$.

Theorem 3.27. Let $0 \longrightarrow R \xrightarrow{f} S \xrightarrow{g} T \longrightarrow 0$ be an exact sequence of skewrings. If there exists a homomorphism $h: T \to S$ such that $g \circ h = IdT$, then $S = f[R] \otimes h[T]$.

Proof. By definition of exact sequence, f[R] = Im(f) = Ker(g) which is a normal ideal in S. Suppose that there exists a homomorphism $h:T\to S$ such that $g \circ h = Id_T$. Then h is injective. Moreover, $T \cong h[T]$ which is a subskewring of S, by Proposition 1.36 (1). We shall show that $S = f[R] \otimes h[T]$. Claim 1. $f[R] \cap h[T] = \{0\}$.

Let $x \in f[R] \cap h[T]$. Since $x \in f[R] = Ker(g)$, g(x) = 0. Since $x \in h[T]$, there exists $y \in T$ such that h(y) = x. Therefore $0 = g(x) = g(h(y)) = Id_T(y) = y$. Since h is a homomorphism, 0 = h(y) = x. Hence $f[R] \cap h[T] = \{0\}$ and we have Claim1. Claim2. S = f[R] + h[T].

Clearly, f[R]+h[T] is contained in S. Conversely, let $x \in S$. Then $g(x) \in T$, so that $h(g(x)) \in h[T]$. We have that x = x-h(g(x))+h(g(x)). We shall show that $x-h(g(x)) \in f[R]$ (= Ker(g)), consider $g(x-h(g(x))) = g(x)-g(h(g(x))) = g(x)-Id_T(g(x)) = g(x)-g(x) = 0$. Thus $x-h(g(x)) \in Ker(g) = f[R]$ which implies that $x = x-h(g(x))+h(g(x)) \in f[R]+h[T]$. So $S \subseteq f[R]+h[T]$. Hence S = f[R]+h[T] and we have Claim2. By Claim1 and Claim2, $S = f[R] \otimes h[T]$. #

Theorem 3.28. Let S and I be skewrings. Then there exist $\alpha:S \rightarrow GAut(I)$ $(=\{f:I \rightarrow I/f \text{ is an additive automorphism.}\})$ which is an additive anti-homomorphism, $l:S \rightarrow LT(I)$ which is a homomorphism, and $r:S \rightarrow RT(I)$ which is a multiplicative anti-homomorphism and additive homomorphism which have the following properties: for all $s_1, s_2, s_3 \in S$, $i_1, i_2, i_3 \in I$,

- $(1) \ r(s_1) \circ l(s_2) = l(s_2) \circ r(s_1) \ \ and \ [r(s_1)](i_1) + [l(s_2)](i_2) = [l(s_2)](i_2) + [r(s_1)](i_1),$
- (2) $[r(s_l)](i_l) + i_2i_3 = i_2i_3 + [r(s_l)](i_l)$ and $[l(s_l)](i_l) + i_2i_3 = i_2i_3 + [l(s_l)](i_l)$,
- (3) $[\alpha(s_1s_2)]i_1i_2 = i_1i_2$, $[\alpha(s_1s_2)] \circ [l(s_3)](i_1) = [l(s_3)](i_1)$ and $[\alpha(s_1s_2)] \circ [r(s_3)](i_1) = [r(s_3)](i_1)$,
 - (4) $i_1[\alpha(s_1)](i_2) = i_1i_2$ and $[\alpha(s_1)](i_1)i_2 = i_2[\alpha(s_1)](i_1) = i_2i_1$,
 - (5) $[l(s_1)] \circ [\alpha(s_2)](i_1) = [l(s_1)](i_1)$ and $[r(s_1)] \circ [\alpha(s_2)](i_1) = [r(s_1)](i_1)$ and
 - (6) $i_1[l(s_1)](i_2) = [r(s_1)](i_1)i_2$

if and only if there exists a skewring R such that S is isomorphic to some subskewring S' of R, I is isomorphic to some normal ideal I' of R and $R = S' \otimes I'$. (i.e. R is a semi-direct sum of S' and I'.)

Proof. Let $R = S \times I$ and define the binary operations $+, \cdot$ on R as follows: For all $(s_1, i_1), (s_2, i_2) \in R$, $(s_1, i_1) + (s_2, i_2) = (s_1 + s_2, [\alpha(s_2)](i_1) + i_2)$ and $(s_1, i_1)(s_2, i_2) = (s_1 s_2, [r(s_2)](i_1) + [l(s_1)](i_2) + i_1 i_2)$.

Step1. We shall show that R is a skewring.

Clearly, (R,+) and (R,\cdot) are closed. Let $(s_1,i_1),(s_2,i_2),(s_3,i_3) \in R$. Then $(s_1,i_1)+[(s_2,i_2)+(s_3,i_3)]=(s_1,i_1)+(s_2+s_3), [\alpha(s_3)](i_2)+i_3)$ $=(s_1+(s_2+s_3), [\alpha(s_2+s_3)](i_1)+[\alpha(s_3)](i_2)+i_3)$ $=((s_1+s_2)+s_3, [\alpha(s_3)]\circ[\alpha(s_2)](i_1)+[\alpha(s_3)](i_2)+i_3)$ $=((s_1+s_2)+s_3, [\alpha(s_3)]([\alpha(s_2)](i_1)+i_2)+i_3)$ $=(s_1+s_2, [\alpha(s_2)](i_1)+i_2)+(s_3,i_3)$ $=[(s_1,i_1)+(s_2,i_2)]+(s_3,i_3)$

Therefore the associative law is true for (R,+). Since $(s_1,i_1)+(0,0) = (s_1+0, \lceil \alpha(0) \rceil (i_1)+0) = (s_1, Id_1(i_1)) = (s_1,i_1)$. Therefore (0,0) is a right identity of

```
(R_1+). Since (s_1,i_1)+(-s_1,-[\alpha(-s_1)](i_1))=(s_1-s_1,[\alpha(-s_1)](i_1)+(-[\alpha(-s_1)](i_1)))=(0,0),
(-s_1, -[\alpha(-s_1)](i_1)) is a right inverse of (s_1, i_1). Hence (R, +) is a group. Consider
(s_1,i_1)[(s_2,i_2)(s_3,i_3)] = (s_1,i_1)(s_2s_3, [r(s_3)](i_2) + [l(s_2)](i_3) + i_2i_3)
= (s_1(s_2s_3), [r(s_2s_3)](i_1) + [l(s_1)]([r(s_3)](i_2) + [l(s_2)](i_3)) + i_2i_3) +
            i_1([r(s_1)](i_2)+[l(s_2)](i_3)+i_2i_3))
= ((s_1s_2)s_3, [r(s_3)] \circ [r(s_2)](i_1) + [l(s_1)] \circ [r(s_3)](i_2) + [l(s_1)] \circ [l(s_2)](i_3) + [l(s_1)](i_2i_3) + [l(s_1)](
            i_1[r(s_1)](i_2) + i_1[l(s_2)](i_3) + i_1(i_2i_3)
= ((s_1s_2)s_3, [r(s_3)] \circ [r(s_2)](i_1) + [r(s_3)] \circ [l(s_1)](i_2) + [l(s_1s_2)](i_3) + [l(s_1)](i_2)i_3 
             [r(s_1)](i_1i_2) + [r(s_2)](i_1)i_3 + (i_1i_2)i_3
= ((s_1s_2)s_3, [r(s_3)] \circ [r(s_2)](i_1) + [r(s_3)] \circ [l(s_1)](i_2) + [r(s_3)](i_1i_2) + [l(s_1s_2)](i_3) +
             [r(s_2)](i_1)i_3+[l(s_1)](i_2)i_3+(i_1i_2)i_3
= ((s_1s_2)s_3, [r(s_3)]([r(s_2)](i_1) + [l(s_1)](i_2) + (i_1i_2)) + [l(s_1s_2)](i_3) + [r(s_2)](i_1)i_3 + [l(s_1)](i_2)i_3
             +(i_1i_2)i_3
 = (s_1s_2, [r(s_2)](i_1) + [l(s_1)](i_2) + i_1i_2)(s_3,i_3).
  Therefore (R.) is a semigroup.
  (s_1,i_1)[(s_2,i_2)+(s_3,i_3)] = (s_1,i_1)(s_2+s_3, [\alpha(s_3)](i_2)+i_3)
  = (s_1(s_2+s_3), [r(s_2+s_3)](i_1) + [l(s_1)]([\alpha(s_3)](i_2)+i_3) + i_1([\alpha(s_3)](i_2)+i_3))
  = (s_1 s_2 + s_1 s_3, [r(s_2) + r(s_3)](i_1) + [l(s_1)] \circ [\alpha(s_3)](i_2) + [l(s_1)](i_3) + i_1[\alpha(s_3)](i_2) + i_1i_3)
  = (s_1s_2+s_1s_3, [r(s_2)](i_1) + [r(s_2)](i_1) + [l(s_1)](i_2) + [l(s_1)](i_3) + i_1i_2 + i_1i_3)
  = (s_1s_2+s_1s_3, [r(s_2)](i_1) + [l(s_1)](i_2) + i_1i_2 + [r(s_3)](i_1) + [l(s_1)](i_2) + i_1i_3)
  = (s_1s_2 + s_1s_3, [\alpha(s_1s_3)] \circ [r(s_2)](i_1) + [\alpha(s_1s_3)] \circ [l(s_1)](i_2) + [\alpha(s_1s_3)](i_1i_2) + [r(s_3)](i_1) + [r(s_3)](i_2) + [r(s_3)](i_1) + [r(s_3)](i_2) + [r(s_3)](i_3) + [r(s_3
                 [l(s_1)](i_3) + i_1i_3
  = (s_1s_2 + s_1s_3, [\alpha(s_1s_3)]([r(s_2)](i_1) + [l(s_1)](i_2) + i_1i_2) + [r(s_3)](i_1) + [l(s_1)](i_3) + i_1i_3)
   = (s_1s_2, [r(s_2)](i_1)+[l(s_1)](i_2)+i_1i_2)+(s_1s_2, [r(s_2)](i_1)+[l(s_1)](i_2)+i_1i_2)
   = (s_1,i_1)(s_2,i_2) + (s_1,i_1)(s_3,i_3) and
   [(s_1,i_1)+(s_2,i_2)](s_3,i_3) = (s_1+s_2, [\alpha(s_2)](i_1)+i_2)(s_3,i_3)
   = ((s_1+s_2)s_1, [r(s_1)]([\alpha(s_2)](i_1)+i_2) + [l(s_1+s_2)](i_3) + ([\alpha(s_2)](i_1)+i_2)i_3)
   =(s_1s_3+s_2s_3\,,\,[r(s_3)]\circ[\alpha(s_2)](i_1)+[r(s_3)](i_2)+[l(s_1)+l(s_2)](i_3)+[\alpha(s_2)](i_1)i_3+i_2i_3)
   = (s_1s_2+s_2s_3, [r(s_1)](i_1) + [r(s_2)](i_2) + [l(s_1)](i_3) + [l(s_2)](i_3) + i_1i_2 + i_2i_3)
    = (s_1s_1+s_2s_3, [r(s_3)](i_1) + [l(s_1)](i_3) + i_1i_3 + [r(s_3)](i_2) + [l(s_2)](i_3) + i_2i_3)
```

$$= (s_1s_3 + s_2s_3, [\alpha(s_2s_3)] \circ [r(s_3)](i_1) + [\alpha(s_2s_3)] \circ [l(s_1)](i_3) + [\alpha(s_2s_3)](i_1i_3) + [r(s_3)](i_2) + [l(s_2)](i_3) + i_2i_3)$$

$$=(s_1s_3+s_2s_3, [\alpha(s_2s_3)]([r(s_3)](i_1)+[l(s_1)](i_3)+i_1i_3)+[r(s_3)](i_2)+[l(s_2)](i_3)+i_2i_3)$$

=
$$(s_1s_3, [r(s_3)](i_1)+[l(s_1)](i_3)+i_1i_3)+(s_2s_3, [r(s_3)](i_2)+[l(s_2)](i_3)+i_2i_3)$$

$$= (s_1,i_1)(s_3,i_3) + (s_2,i_2)(s_3,i_3).$$

Therefore the distributive law is true for (R,+,·) and hence R is a skewring.

Step2. We shall show that S isomorphic to some subskewring of R and I isomorphic to some normal ideal of R.

Let $S' = \{(s,0) / s \in S\}$ and let $(s_1,0),(s_2,0) \in S'$. Then $(s_1,0)-(s_2,0) = (s_1-s_2, [\alpha(-s_2)](0)-0) = (s_1-s_2, 0) \in S'$ and $(s_1,0)(s_2,0) = (s_1s_2, [r(s_2)](0)+[l(s_1)](0)+0) = (s_1s_2,0) \in S'$. Therefore S' is a subskewring of R and hence $S \cong S \times \{0\}$.

Let $I' = \{(0,i) / i \in I\}$ and let $(0,i_1),(0,i_2) \in I'$, $(s,i) \in R$. Then $(0,i_1)-(0,i_2) = (0, [\alpha(-0)](i_1)-i_2)$, $(0,i_1)(0,i_2) = (0, [r(0)](i_1) + [l(0)](i_2) + i_1i_2)$, $(s,i)(0,i_1) = (0, [r(0)](i) + [l(s)](i_1) + ii_1)$, $(0,i_1)(s,i) = (0, [r(s)](i_1) + [l(0)](i) + i_1i) \in I'$ and $(s,i)+(0,i_1)-(s,i) = [(s,i)+(0,i_1)]-(s,i) = (s, [\alpha(0)](i)+i_1)-(s,i) = (s, i+i_1)-(s,i) = (0, [\alpha(-s)](i+i_1)-i) \in I'$. Therefore I' is a normal ideal of R hence $I \cong \{0\} \times I$ and clearly, $R = S' \otimes I'$. Hence we have the first statement.

Corollary 3.29. Let S and I be rings. Suppose that there exist maps $l:S \rightarrow LT(I)$ which is a ring homomorphism and a multiplicative anti-homomorphism $r:S \rightarrow RT(I)$ which is also an additive homomorphism which satisfy $(1) \ r(s_I) \circ l(s_2) = l(s_2) \circ r(s_I)$ and $(2) \ i_I[l(s_I)](i_2) = [r(s_I)](i_I)i_2$ for all $s_I, s_2 \in S$, $i_I, i_2 \in I$. Then there exists a ring R such that S is isomorphic to some subring S' of R, I is isomorphic to an ideal I' of R and R is the semi-direct sum of S' and I'.

Theorem 3.30. Let S and I be skewrings. Suppose that there exist $\alpha, \alpha': S \rightarrow GAut(I)$ which are additive anti-homomorphisms, $l, l': S \rightarrow LT(I)$ which are homomorphisms, and $r, r': S \rightarrow RT(I)$ which are multiplicative anti-homomorphisms and additive homomorphisms which satisfy the same properties as those in Theorem 3.28. By Theorem 3.28, we get skewrings $R_{\alpha,l,r}$ and $R_{\alpha',l',r'}$. Let $\varphi: S \rightarrow S$ and $\psi: I \rightarrow I$ be isomorphisms. If the following conditions hold:

For every
$$s \in S$$
, (1) $\alpha(s) = \psi^{-1} \circ \alpha'(\varphi(s)) \circ \psi$,
(2) $l(s) = \psi^{-1} \circ l'(\varphi(s)) \circ \psi$ and
(3) $r(s) = \psi^{-1} \circ r'(\varphi(s)) \circ \psi$.

then $\varphi \times \psi: R_{\alpha,l,r} \to R_{\alpha',l',r'}$ is an isomorphism where $\varphi \times \psi(x,y) = (\varphi(x), \psi(y))$ for all $(x,y) \in R_{\alpha,l,r}$.

Proof. Assume the conditions. Let $(s_1, i_1), (s_2, i_2) \in R_{\alpha, l, r}$. Then $\phi \times \psi((s_1, i_1) + (s_2, i_2)) = \phi \times \psi((s_1 + s_2, [\alpha(s_2)](i_1) + i_2))$ $= (\phi(s_1 + s_2), \psi([\alpha(s_2)](i_1) + i_2))$ $= (\phi(s_1) + \phi(s_2), \psi([\alpha(s_2)](i_1)) + \psi(i_2))$ $= (\phi(s_1) + \phi(s_2), \psi((\psi^{-1} \circ \alpha'(\phi(s_2)) \circ \psi)(i_1)) + \psi(i_2))$ $= (\phi(s_1) + \phi(s_2), (\alpha'(\phi(s_2)) \circ \psi)(i_1) + \psi(i_2))$ $= (\phi(s_1) + \phi(s_2), [\alpha'(\phi(s_2))](\psi(i_1)) + \psi(i_2))$ $= (\phi(s_1), \psi(i_1)) + (\phi(s_2), \psi(i_2))$ $= \phi \times \psi((s_1, i_1)) + \phi \times \psi((s_2, i_2)) \text{ and}$

```
\begin{split} \phi \times \psi((s_1,i_1)(s_2,i_2)) &= \phi \times \psi((s_1s_2\,,\,[r(s_2)](i_1) + [l(s_1)](i_2) +\,i_1i_2)) \\ &= (\phi(s_1s_2)\,\,,\,\psi([r(s_2)](i_1) + [l(s_1)](i_2) +\,i_1i_2)) \\ &= (\phi(s_1)\phi(s_2)\,\,,\,\psi \circ [r(s_2)](i_1) + \psi \circ [l(s_1)](i_2) + \psi(i_1i_2)) \\ &= (\phi(s_1)\phi(s_2)\,\,,\,\psi((\psi^{-1}\circ r'(\phi(s_2))\circ\psi)(i_1)) + \psi((\psi^{-1}\circ l'(\phi(s_1))\circ\psi))(i_2) + \psi(i_1)\psi(i_2)) \\ &= (\phi(s_1)\phi(s_2)\,\,,\,(r'(\phi(s_2))\circ\psi)(i_1)) + (l'(\phi(s_1))\circ\psi)(i_2) + \psi(i_1)\psi(i_2)) \\ &= (\phi(s_1)\phi(s_2)\,\,,\,[r'(\phi(s_2)](\psi(i_1)) + [l'(\phi(s_1))](\psi(i_2)) + \psi(i_1)\psi(i_2)) \\ &= (\phi(s_1),\psi(i_1))(\phi(s_2),\psi(i_2)) \\ &= \phi \times \psi((s_1,i_1))\phi \times \psi((s_2,i_2)). \end{split}
```

Therefore $\phi \times \psi$ is a homomorphism. Since ϕ and ψ are isomorphisms, $\phi \times \psi$ is an isomorphism. #

Corollary 3.31. Let S and I be rings. Suppose that there exist $l,l':S\rightarrow LT(l)$ which are homomorphisms, and $r,r':S\rightarrow RT(l)$ which are multiplicative anti-homomorphisms and additive homomorphisms which satisfy the same properties as those in Corollary 3.29. By Corollary 3.29, we get rings $R_{l,r}$ and $R_{l',r'}$. Let $\varphi:S\rightarrow S$ and $\psi:I\rightarrow I$ be isomorphisms. If the following conditions hold: For every $s\in S$, (1) $l(s)=\psi^{-1}\circ l'(\varphi(s))\circ \psi$ and (2) $r(s)=\psi^{-1}\circ r'(\varphi(s))\circ \psi$. Then $\varphi\times\psi:R_{l,r}\rightarrow R_{l',r'}$ is an isomorphism where $\varphi\times\psi(x,y)=(\varphi(x),\psi(y))$ for all $(x,y)\in R_{l,r}$.

Definition 3.32. Let R be a skewring and $\{R_{\alpha}/\alpha \in A\}$ be a family of skewrings. Then R is said to be a **subdirect sum** of $\{R_{\alpha}/\alpha \in A\}$ if and only if there exists a monomorphism $f:R \to \prod_{\alpha \in A} R_{\alpha}$ such that for each $\alpha \in A$, $\pi_{\alpha} \circ f:R \to R_{\alpha}$ is an epimorphism where π_{α} is the projection map.

Definition 3.33. Let R be a subskewring of a direct product of family of skewrings $\{R_{\alpha} \mid \alpha \in A\}$. R is said to be **subdirect product** of $\{R_{\alpha} \mid \alpha \in A\}$ if and only if for every $\alpha \in A$, $\pi_{\alpha}(R) = R_{\alpha}$ where π_{α} is the projection map.

Definition 3.34. Let $\{R_{\alpha}/\alpha \in A\}$ be a family of skewrings, and R a skewring. A representation of R as a subdirect product of $\{R_{\alpha}/\alpha \in A\}$ is a homomorphism $g:R \to \prod_{\alpha \in A} R_{\alpha}$ such that for each $\alpha \in A$, $\pi_{\alpha \circ}g:R \to R_{\alpha}$ is an epimorphism where π_{α} is a projection map. Then Im(g) is a subdirect product of $\{R_{\alpha}/\alpha \in A\}$.

Definition 3.35. Let R be a skewring. Then R is said to be a subdirectly irreducible if and only if for every family of skewrings $\{R_{\alpha}/\alpha \in A\}$ and for every monomorphism representation $g:R \to \prod_{\alpha \in A} R_{\alpha}$ there exists $\beta \in A$ such

 $\pi_{\beta \circ} g: R \to R_{\beta}$ is an isomorphism where π_{β} is the projection map.

If R is not a subdirectly irreducible, we shall call R a subdirectly reducible skewring.

Theorem 3.36. Let R be a skewring, $\{R_{\alpha}/\alpha \in A\}$ be a family of skewrings. Then R is a subdirect sum of $\{R_{\alpha}/\alpha \in A\}$ if and only if for each $\beta \in A$, there exists an epimorphism $g_{\beta}: R \to R_{\beta}$ such that $\bigcap_{\alpha \in A} Ker(g_{\alpha}) = \{0\}$.

Proof. Suppose that R is a subdirect sum of $\{R_{\alpha}/\alpha\in A\}$. Then there exists a monomorphism $f:R\to \prod_{\alpha\in A}R_{\alpha}$ such that for each $\beta\in A$, $\pi_{\beta}\circ f:R\to R_{\beta}$ is an epimorphism. For each $\beta\in A$, let $g_{\beta}=\pi_{\beta}\circ f$. Let $r\in \bigcap_{\alpha\in A} \mathrm{Ker}(g_{\alpha})$. Suppose $r\neq 0$. Then $f(r)\neq 0$ which implies that there exists $\alpha_0\in A$ such that $0\neq \pi_{\alpha_0}\circ f(r)=g_{\alpha_0}(r)$. Therefore $r\notin \mathrm{Ker}(g_{\alpha_0})$, so $r\notin \bigcap_{\alpha\in A} \mathrm{Ker}(g_{\alpha})$ which is a contradiction. Hence $\bigcap_{\alpha\in A} \mathrm{Ker}(g_{\alpha})=\{0\}$.

Conversely, assume that for each $\beta \in A$, there exists an epimorphism $g_{\beta}:R \to R_{\beta}$ such that $\bigcap_{\alpha \in A} \operatorname{Ker}(g_{\alpha}) = \{0\}$. We define $f:R \to \prod_{\alpha \in A} R_{\alpha}$ by $f(r) = \{g_{\alpha}(r)\}_{\alpha \in A}$ for every $r \in R$. From the above, for each $\beta \in A$, $\pi_{\beta \circ} f = g_{\beta}$. Since g_{β} is

surjective, $\pi_{\beta} \circ f$ is surjective. Let $r,s \in R$. Then $f(rs) = \{g_{\alpha}(rs)\}_{\alpha \in A} = \{g_{\alpha}(r)g_{\alpha}(s)\}_{\alpha \in A}$ $= \{g_{\alpha}(r)\}_{\alpha \in A} \{g_{\alpha}(s)\}_{\alpha \in A} = f(r)f(s)$ and similarly, f(r+s) = f(r)+f(s). Therefore f is a homomorphism. Let $r \in Ker(f)$. Then $0 = f(r) = \{g_{\alpha}(r)\}_{\alpha \in A}$. Then $g_{\alpha}(r) = 0$ for every $\alpha \in A$. Therefore $r \in \bigcap_{\alpha \in A} Ker(g_{\alpha}) = \{0\}$, so that $Ker(f) = \{0\}$. Therefore f is a monomorphism and hence R is a subdirect sum of $\{R_{\alpha} \mid \alpha \in A\}$.

Corollary 3.37. Let R be a skewring and $\{I_{\alpha}/\alpha \in A\}$ be a family of normal ideals of R. If $\bigcap_{\alpha \in A} I_{\alpha} = \{0\}$, then R is a subdirect sum of the family of skew rings $\{R/I_{\alpha}/\alpha \in A\}$.

Proof. For each $\alpha \in A$, let $\pi_{\alpha}: R \to R / I_{\alpha}$ be the canonical epimorphism. Since for each $\beta \in A$, π_{β} is an epimorphism and $\bigcap_{\alpha \in A} \operatorname{Ker}(\pi_{\alpha}) = \bigcap_{\alpha \in A} I_{\alpha} = \{0\}$, by Theorem 3.36, R is a subdirect sum of $\{R / I_{\alpha} / \alpha \in A\}$. #

Theorem 3.38. Let R be a subskewring of the Cartesian product $\prod_{\alpha \in A} R_{\alpha}$ of skewrings. Then there exists a natural epimorphism θ from R to a subdirect product of the family of skewrings $\{R'_{\alpha}/\alpha \in A\}$ where $R'_{\alpha} = \frac{R}{(R \cap j_{\alpha}[R_{\alpha}])}$ and for every $\alpha \in A$, $j_{\alpha}: R \to \prod_{\alpha \in A} R_{\alpha}$ which is defined by $j_{\alpha}(r) = (r_{\beta})_{\beta \in A}$ where

$$r_{\beta} = \begin{cases} 0 & \text{if } \beta \neq \alpha, \\ & \text{in order that } \theta \text{ be an isomorphism, it is necessary and} \\ r & \text{if } \beta = \alpha, \end{cases}$$
sufficient that $\bigcap_{\alpha \in A} (R \cap j_{\alpha}[R_{\alpha}]) = \{0\}.$

Proof. For every $r \in \mathbb{R}$, we define $\theta(r) = (r_{\alpha})_{\alpha \in A}$ where $r_{\alpha} = r + (\mathbb{R} \cap j_{\alpha}[\mathbb{R}_{\alpha}])$

is the coset of r in $R(R \cap j_{\alpha}[R_{\alpha}])$ for every $\alpha \in A$. Then θ is a homomorphism and $\theta[R]$ is a subdirect product of $\{R'_{\alpha}/\alpha \in A\}$. The $Ker(\theta) = \bigcap_{\alpha \in A} (R \cap j_{\alpha}[R_{\alpha}])$. If θ is an isomorphism, then $\bigcap_{\alpha \in A} (R \cap j_{\alpha}[R_{\alpha}]) = \{0\}$. #

Theorem 3.39. Let R be a skewring and $\{R_{\alpha}/\alpha \in A\}$ be a family of skewrings. Let $g:R \to \prod_{\alpha \in A} R_{\alpha}$ be a representation of R as a subdirect product of

$$\{R_{\alpha} \mid \alpha \in A\}$$
. Then $Im(g) \cong R / \bigcap_{\alpha \in A} Ker(\pi_{\alpha} \circ g)$.

Proof. Define $\phi: R \to Im(g)$ by $\phi(x) = g(x)$ for every $x \in R$. Then ϕ is an epimorphism. We shall show that $Ker(\phi) = \bigcap_{\alpha \in A} Ker(\pi_{\alpha} \circ g)$. Let $x \in Ker(\phi)$. Then $\phi(x) = (0_{\alpha})_{\alpha \in A}$, so $g(x) = (0_{\alpha})_{\alpha \in A}$. For each $\alpha \in A$, $\pi_{\alpha} \circ g(x) = 0_{\alpha}$, then $x \in Ker(\pi_{\alpha} \circ g)$. Hence $x \in \bigcap_{\alpha \in A} Ker(\pi_{\alpha} \circ g)$. Thus $Ker(\phi) \subseteq \bigcap_{\alpha \in A} Ker(\pi_{\alpha} \circ g)$.

Next, let $x \in \bigcap_{\alpha \in A} \operatorname{Ker}(\pi_{\alpha} \circ g)$. Then $\pi_{\alpha} \circ g(x) = 0_{\alpha}$ for every $\alpha \in A$ which implies that $g(x) = (0_{\alpha})_{\alpha \in A}$. Since $\varphi(x) = g(x) = (0_{\alpha})_{\alpha \in A}$, $x \in \operatorname{Ker}(\varphi)$. Hence $\bigcap_{\alpha \in A} \operatorname{Ker}(\pi_{\alpha} \circ g) \subseteq \operatorname{Ker}(\varphi) \text{ and } \operatorname{Ker}(\varphi) = \bigcap_{\alpha \in A} \operatorname{Ker}(\pi_{\alpha} \circ g)$. By the First Isomorphism $\alpha \in A$ Theorem, $\operatorname{Im}(g) \cong \bigcap_{\alpha \in A} \operatorname{Ker}(\pi_{\alpha} \circ g)$. #

Corollary 3.40. Let R be a skewring and $\{R_{\alpha}/\alpha \in A\}$ be a family of skewrings. Let $g:R \to \prod_{\alpha \in A} R_{\alpha}$ be a monomorphic representation of R as a subdirect product of $\{R_{\alpha}/\alpha \in A\}$. Then $\bigcap_{\alpha \in A} Ker(\pi_{\alpha} \circ g) = \{0\}$, hence $Im(g) \cong R$.

Proof. We shall show that $\bigcap \operatorname{Ker}(\pi_{\alpha} \circ g) = \{0\}$, let $x \in \bigcap \operatorname{Ker}(\pi_{\alpha} \circ g)$. $\alpha \in A$ Then $\pi_{\alpha} \circ g(x) = 0_{\alpha}$ for every $\alpha \in A$. This implies that $g(x) = (0_{\alpha})_{\alpha \in A}$. Since g is a

monomorphism, x = 0 and $\bigcap_{\alpha \in A} \operatorname{Ker}(\pi_{\alpha} \circ g) = \{0\}$. By Theorem 3.39, $\operatorname{Im}(g) \cong R$. #

Proposition 3.41. Let R be a skewring and $L = \{I_{\alpha} / \alpha \in A\}$ be a family of nonzero normal ideals of R. Define $f:R \to \prod_{\alpha \in A} R / I_{\alpha}$ by $f(x) = (x+I_{\alpha})_{\alpha \in A}$ for every $x \in R$. Then f is a representation of R as a subdirect product of $\left\{R / I_{\alpha} / \alpha \in A\right\}$. Furthermore, if $\bigcap_{\alpha \in A} I_{\alpha} = \{0\}$, then f is a monomorphic representation of R.

Proof. Clearly, f is a homomorphism of R. We shall show that Im(f) is a subdirect product of $\left\{ \begin{matrix} R \\ I_{\alpha} \end{matrix} / \alpha \in A \right\}$. It is clear that for every $\alpha \in A$, $\pi_{\alpha}(Im(f)) \subseteq \begin{matrix} R \\ I_{\alpha} \end{matrix}$. Let $\alpha \in A$, $x \in R$. Then $x + I_{\alpha} \in \begin{matrix} R \\ I_{\alpha} \end{matrix}$, so $f(x) \in \prod_{\alpha \in A} \begin{matrix} R \\ I_{\alpha} \end{matrix}$ and $x + I_{\alpha} = \prod_{\alpha \in A} (f(x)) \in \pi_{\alpha}(Im(f))$. Hence $f(x) \in \prod_{\alpha \in A} (f(x)) \in \pi_{\alpha}(Im(f)) = \prod_{\alpha \in A} (f(x)) \in \pi_{\alpha}(Im(f))$. Hence f is a representation of R as a subdirect product of $f(x) \in A$.

Next, assume that $\bigcap_{\alpha \in A} I_{\alpha} = \{0\}$. We shall show that f is a monomorphism. Let $x \in R$ be such that $f(x) = (I_{\alpha})_{\alpha \in A}$. Then $(x+I_{\alpha})_{\alpha \in A} = (I_{\alpha})_{\alpha \in A}$, so $x \in I_{\alpha}$ for all $\alpha \in A$. By assumption, x = 0. Hence f is an injective and is a monomorphism.#

Proposition 3.42. Let R be a skewring and L the set of all normal ideals of R except $\{0\}$. Then R is a subdirectly irreducible if and only if L has a minimum element.

Proof. Assume that R is a subdirectly irreducible. Suppose L has no minimum element. Then $\bigcap L = \{0\}$. By Proposition 3.41, we have that $f:R \to \prod_{i \in L} R_i$ defined by $f(x) = (x+I)_{i \in L}$ for every $x \in R$ which it is a

monomorphic representation of R as a subdirect product of $\{R_I \mid I \in L\}$. By assumption, there exists $I_0 \in L$ such that $\pi_{I_0} \circ f$ is an isomorphism. We shall show that $I_0 = \{0\}$. Let $x \in I_0$. Then $\pi_{I_0} \circ f(x) = \pi_{I_0}((x+I)_{I \in L}) = x+I_0$. Since $x \in I_0$, $x \in Ker(\pi_{I_0} \circ f)$. Since $\pi_{I_0} \circ f$ is an isomorphism, x = 0. So $I_0 = \{0\}$ which is contradiction since $\{0\} = I_0 \in L$. Therefore L has a minimum element.

Conversely, assume that L has a minimum element say I_m . Let $\{R_{\alpha}/\alpha\in A\}$ be a family of skewrings and $f:R\to\prod_{\alpha\in A}R_{\alpha}$ a monomorphic representation of R as a subdirect product of $\{R_{\alpha}/\alpha\in A\}$. By Corollary 3.40, $\bigcap Ker(\pi_{\alpha}\circ f)=\{0\}$. Suppose that for every $\alpha\in A$, $Ker(\pi_{\alpha}\circ f)\neq 0$. Then $\{Ker(\pi_{\alpha}\circ f)/\alpha\in A\}\subseteq L$. Therefore $I_m\subseteq\bigcap Ker(\pi_{\alpha}\circ f)=\{0\}$ which is a contradiction. Therefore there exists a $\beta\in A$ such that $Ker(\pi_{\alpha}\circ f)=0$, so $\pi_{\beta}\circ f$ is an isomorphism. Hence R is a subdirectly irreducible. #

Next, we want to show that every skewring is a subdirect product of subdirectly irreducible skewrings. First we need three Lemmas.

Lemma 3.43. Let R be a nontivial skewring and $x \in \mathbb{R} \setminus \{0\}$. Then there exists a maximal normal ideal M of R such that $x \notin M$.

Proof. Let $L = \{I/I \text{ is a normal ideal of } R \text{ and } x \notin I\}$. Since $\{0\} \in L$, L is not empty. Let C be a nonempty chain in L. Clearly, \cup C is a normal ideal of R and \cup C is an upper bound of C. By Zorn's Lemma, L has a maximal element. #

Lemma 3.44. Using the assumptions of Lemma 3.43, let $\Im = \{I/I \text{ is a normal ideal of } R \text{ such that } M \subset I\}$. Then \Im has a minimum element.

Proof. Since $R \in \mathcal{I}$, \mathcal{I} is not empty. If there exists $I \in \mathcal{I}$ and $x \notin I$, then this contradicts the maximality of M. Therefore for every $I \in \mathcal{I}$, $x \in I$. Then we have that $\cap \mathcal{I}$ is a normal ideal of R which is the minimum element and $x \in \cap \mathcal{I}$. Hence $\cap \mathcal{I} \neq M$. #

Lemma 3.45. Using the assumptions of Lemma 3.43, R_M is a subdirectly irreducible skewring.

Proof. Let L be the set of normal ideals of R_M except $\{M\}$. By Corollary 2.15, L is isomorphic to the set of normal ideals of R strictly containing M. By Lemma 3.44, L has a minimum element. By Proposition 3.42, R_M is a subdirectly irreducible skewring. #

Theorem 3.46. Let R be a skewring. Then R is a subdirect product of subdirectly irreducible skewrings.

Proof. By Lemma 3.43, for all $x \in R \setminus \{0\}$, we have that I_x is a maximal normal ideal of R such that $x \notin I_x$. By Lemma 3.45, $R \setminus I_x$ is subdirectly irreducible. Let $L = \{I_x / x \in R \setminus \{0\}\}$. Let $x \in \cap L$. Suppose that $x \neq 0$. Then $x \notin I_x$ which is a contradiction since $x \in \cap L$. So $\cap L = \{0\}$. By Proposition 3.41, we have that $f: R \to \prod_{I \in L} R \setminus I$ is a monomorphic representation of R as a subdirect product of $\left\{ R \setminus I \mid I \in L \right\}$. Therefore f[R] is a subdirect product of $\left\{ R \setminus I \mid I \in L \right\}$. Since $R \cong f[R]$, R is a subdirect product of subdirectly irreducible skewrings. #

Definition 3.47. A skewring R is semisimple if and only if it is a direct sum of simple normal ideals of R.

Remark 3.48. The Cartesian product of finite number of semisimple skewrings is a semisimple skewring.

Definition 3.49. A normal ideal I of a skewring R is a direct summand of R if and only if there exists a normal ideal J of R such that $R = I \oplus J$.

Definition 3.50. A skewring R is completely reducible if and only if every normal ideal of R is a direct summand of R.

Lemma 3.51. If U is a set of normal ideals of a skewring R and H is a normal ideal in R, then there exists a subset V of U which is maximal with respect to the existence of $H\mathcal{D}(\mathcal{D}\{K/K \in V\})$.

Proof. Denote the direct sum in the theorem by X(V). Let L be the set of subsets V of U for which X(V) exists. Since $X(\emptyset) = H$, $\emptyset \in L$ and L is not empty. Partially order P by inclusion. Let C be a nonempty chain in L. let W = \cup C. Then W is a subset of U and is an upper bound of C. We shall show that $W \in L$, that is we shall show that X(W) exists.

Claim that for all $K, K' \in W$ such that $K \neq K'$, $K \cap K' = \{0\}$ and for every $K \in W$ such that $K \neq H$, $K \cap H = \{0\}$.

If $K,K' \in W$ and $K \neq K'$, then there exists a $V \in C$ such that $K,K' \in V$. Since X(V) exists, $K \cap K' = \{0\}$. If $K \in W$ and $K \neq H$, then there exists $V \in C$ such that $K \in V$. Since X(V) exists, $H \cap K = \{0\}$. Therefore the claim is true

Hence X(W) exists. Thus W∈L and W is an upper bound of C in L. By Zorn's Lemma, L has a maximal element. #

Lemma 3.52. let R be a skewring and I, J be normal ideals of R such that $R = I \oplus J$. If H is a normal ideal of R such that $I \subseteq H \subseteq R$, then $H = I \oplus (J \cap H)$.

Proof. Suppose that H is a normal ideal of R such that $I \subseteq H \subseteq R$. Clearly, $I+(J \cap H) \subseteq H$. Let $h \in H$. Since $R = I \oplus J$, there exist $x \in I$ and $y \in J$ such that h = x+y and we have $x \in H$. Since $y = h-x \in H$, $h = x+y \in I+(J \cap H)$, so $H \subseteq I+(J \cap H)$. Therefore $H = I+(J \cap H)$. Since $R = I \oplus J$, $I \cap (J \cap H) \subseteq I \cap J = \{0\}$ which implies that $H = I \oplus (J \cap H)$.#

Theorem 3.53. A skewring R is completely reducible if and only if it is semisimple.

Proof. Let R be completely reducible. Let $L = \{S / S \text{ is a set of simple normal ideals of R such that <math>X(S) = \bigoplus \{H/H \in S\}$ exists}. By Lemma 3.51, there exists a maximal set of simple normal ideals S such that $X(S) = \bigoplus \{H/H \in S\}$ exists. By completely reducibility, $R = X(S) \bigoplus K$ for some normal ideal K of R. If $K = \{0\}$, we are done. Suppose that $K \neq \{0\}$.

Claim that K is completely reducible.

Let M be a normal ideal in K. By Remark 3.5 and $R = X(S) \oplus K$, M is a normal ideal in R. Since R is a completely reducible, there exists a normal ideal P of R such that $R = M \oplus P$. Since $M \subseteq K \subseteq R$, by Lemma 3.52, $K = M \oplus (P \cap K)$. Hence K is completely reducible and the claim is true.

By the maximal property of S and Remark 3.5, K has no nontrivial simple normal ideal. Let $0 \neq x \in K$ and $M = \langle x \rangle_n$ be a normal ideal in K which is generated by x. Then M is not simple. Since K is completely reducible and Remark 3.5, there exists a normal ideal P of R such that $K = M \oplus P$. By Remark 3.5, every normal ideal of M is a normal ideal of K. Since K has no nontrivial simple normal ideal, this is true for M. Similarly, by the proof of the claim, M is completely reducible.

Let x^M be a smallest normal ideal in M which is generated by x.

Clearly, $M = \langle x \rangle_n = x^M$. Since M is not simple, there exists a nontrivial normal ideal A_1 of M. Since M is completely reducible, there exists a nontrivial normal ideal B_1 of M such that $M = A_1 \oplus B_1$. Similarly, B_1 has no simple normal ideal and so B_1 is completely reducible. By induction, we have $M = A_1 \oplus B_1 = A_1 \oplus A_2 \oplus B_2 = A_1 \oplus \ldots \oplus A_n \oplus B_n \oplus \ldots$ where $A_i \neq \{0\}$ and $B_i \neq \{0\}$ for every $i \in \mathbb{Z}^+$. Then $\oplus A_i$ exists and it is a normal ideal in M. Since M is completely reducible, there exists a normal ideal D of M such that $M = (\oplus A_i) \oplus D$. Let $D = A_0$, $M = \oplus A_i$. Then there exist an $r \in \mathbb{Z}^+$ and $a_i \in A_i$ such that $x = a_0 + a_1 + \ldots + a_r$. Hence $x^M \subseteq A_1 \oplus \ldots \oplus A_r \subseteq M$ which is a contradiction. Thus $K = \{0\}$.

Conversely, let S be the set of simple normal ideals of R such that R $= \bigoplus \{H/H \in S\}$ and let M be a normal ideal of R. By Lemma 3.51, there exists a maximal subset T of S such that $X(T) = M \bigoplus (\bigoplus \{H/H \in T\})$ exists. Suppose X(T) is a proper subskewring of R. If for every $H \in S$, $X(T) \cap H = H$, then $H \subseteq X(T)$ for every $H \in S$ which implies that X(T) = R which is a contradiction. Then there exists an $H \in S$ such that $X(T) \cap H$ is a proper normal ideal of H. Since H is simple, $X(T) \cap H = \{0\}$. Then $X(T \cup \{H\})$ exists which contradicts the maximal property of T. Therefore X(T) = R. Hence R is completely reducible. #