CHAPTER II

QUOTIENTS AND JORDAN-HOLDER THEOREM

We refer the reader to Chapter I (Definition 1.30) for the definition of a quotient skewring. In this chapter we shall give some theorems of quotients. Moreover, we shall generalize the five basic isomorphism theorems of group and ring theory, and the Jordan-Holder Theorem of group theory to skewrings.

Theorem 2.1. (First Isomorphism Theorem)

Let R,S be skewrings and $f:R \rightarrow S$ be a homomorphism. If f is surjective, then $\frac{R}{Ker(f)} \cong S$.

Proof. Define $\varphi: \frac{\mathbb{R}}{\mathrm{Ker}(f)} \to S$ by $\varphi(x + \mathrm{Ker}(f)) = f(x)$ for every $x + \mathrm{Ker}(f) \in \frac{\mathbb{R}}{\mathrm{Ker}(f)}$. By definition of quotient skewring and f is an epimorphism, φ is a homomorphism and an isomorphism from $(\frac{\mathbb{R}}{\mathrm{Ker}(f)}, +)$ to (S, +). Hence

 $\frac{R}{Ker(f)} \cong S. \#$

Theorem 2.2. (Second Isomorphism Theorem)

Let R,S be skewrings and $f:R \rightarrow S$ be an epimorphism. Let I be a normal ideal in S. Then $\frac{R}{f^{-1}[I]} \cong \frac{S}{I}$.

Proof. Define $\varphi: \mathbb{R} \to \frac{S}{I}$ by $\varphi(x) = f(x)+I$ for every $x \in \mathbb{R}$. By definition of quotient skewring and f is an epimorphism, φ is an epimorphism. By group theory, $\operatorname{Ker}(\varphi) = f^{-1}[I]$. By First Isomorphism Theorem, $\frac{\mathbb{R}}{f^{-1}[I]} \cong \frac{S}{I}$. # **Proposition 2.3.** Let R be a skewring and I,J be normal ideals of R such that $I \subseteq J$. Define $\varphi: \frac{R}{I} \rightarrow \frac{R}{J}$ by $\varphi(x+I) = x+J$ for every $x+I \in \frac{R}{I}$. Then φ is an epimorphism with $Ker(\varphi) = \frac{J}{I}$.

Proof. Let $x+I,y+I \in \frac{R}{I}$ such that x+I = y+I. Then $x-y \in I \subseteq J$ and x+J = y+J, so φ is well-defined. By definition of quotient skewring, φ is a homomorphism. Clearly, φ is surjective. By group theory, $Ker(\varphi) = \frac{J}{I}$.#

Theorem 2.4. (Third Isomorphism Theorem)

Let R be a skewring and I_{1}, I_{2} be normal ideals of R such that $I_{1} \subseteq I_{2}$. Then $\frac{R}{I_{1}} = \frac{R}{I_{2}}$.

Proof. Define $\varphi: \frac{R}{I_1} \rightarrow \frac{R}{I_2}$ by $\varphi(x+I_1) = x+I_2$ for every $x+I_1 \in \frac{R}{I_1}$. By Proposition 2.3, φ is an epimorphism and $\text{Ker}(\varphi) = \frac{I_2}{I_1}$. By the First Isomorphism Theorem, $\frac{R}{I_1}_{I_2} \cong \frac{R}{I_2}$. #

Let R be a skewring and K be a subskewring of R.

Define $RI_R(K) = \{x \in R \mid kx \in K \text{ for every } k \in K\}$ and

 $LI_R(K) = \{x \in R / xk \in K \text{ for every } k \in K\}.$

Since $0 \in RI_R(K) \cap LI_R(K)$, $RI_R(K)$ and $LI_R(K)$ are nonempty sets. We shall show that $RI_R(K)$ and $LI_R(K)$ are normal subskewrings of R. Let $x,y \in RI_R(K)$ and $r \in R$. Then $kx, ky \in K$ for every $k \in K$. Let $k \in K$. Then k(x-y) = kx-ky, $k(xy) = (kx)y \in K$, since K is a skewring. Therefore $RI_R(K)$ is a subskewring of R. By Remark 1.5(2), $k(r+x-r) = kr+kx-kr = kx \in K$. So $RI_R(K)$ is normal. Hence $RI_R(K)$ is a normal subskewring of R and is also true for $LI_R(K)$. Let $I_R(K) = RI_R(K) \cap LI_R(K)$. Clearly, $I_R(K)$ is a normal subskewring of R.

Proposition 2.5. Let R be a skewring and K be a subskewring of R. Then $I_R(K)$ is the largest subskewring of R having K as an ideal.

Proof. Clearly, $K \subseteq RI_R(K) \cap LI_R(K) = I_R(K)$. Then K is a subskewring of $I_R(K)$. Let $r \in I_R(K)$ and $k \in K$. Then $r \in RI_R(K)$ and $r \in LI_R(K)$. Therefore $rk, kr \in K$ which implies that K is an ideal in $I_R(K)$.

Let J be a subskewring of R such that K is an ideal in it. Let $x \in J$. Then $kx,xk \in K$ for every $k \in K$ which implies that $x \in RI_R(K) \cap LI_R(K) = I_R(K)$. Hence this proposition holds. #

Definition 2.6. Let R be a skewring and S be a subskewring of R. The normalizer of S in R; denoted by $N_R(S) = \{x \in R/x + s - x \in S \text{ for every } s \in S\}$. Hence every normal subskewring S of R, $N_R(S) = R$.

Remark 2.7. $N_R(S)$ is an additive subgroup of R which contains S as an additive subgroup and is the largest additive subgroup of R containing S as a normal subgroup.

Theorem 2.8. (Fourth Isomorphism Theorem)

Let R be a skewring and H,K be subskewrings of R such that $N_R(K) \cap I_R(K)$ contains H. Then the following statements hold:

(1) H+K is a subskewring of R.

(2) K is a normal ideal in H+K.

$$(3) \stackrel{H}{/}_{(H \cap K)} \cong \stackrel{(H+K)}{/}_{K}.$$

Proof. (1) Let $h_1, h_2 \in H$, $k_1, k_2 \in K$. We shall show that $(h_1+k_1)-(h_2+k_2)$, $(h_1+k_1)(h_2+k_2)\in H+K$. Since $H\subseteq N_R(K)$, $h_2+k_1-k_2-h_2\in K$. Then $(h_1+k_1)-(h_2+k_2)=$. $h_1+k_1-k_2-h_2 = (h_1-h_2)+(h_2+k_1-k_2-h_2) \in H+K$. Since $H \subseteq I_R(K)$, $k_1h_2, h_1k_2 \in K$. Then $(h_1+k_1)(h_2+k_2) = h_1h_2+(k_1h_2+h_1k_2+k_1k_2) \in H+K$. Hence H+K is a subskewring of R.

(2) Clearly, K is a subskewring of H+K. Let $h \in H$ and $x,k \in K$. Since $H \subseteq I_R(K)$, $xh,hx \in K$ which implies that x(h+k) = xh+xk, $(h+k)x = hx+kx \in K$. Since $H \subseteq N_R(K)$, $(h+k)+x-(h+k) = h+(k+x-k)-h \in K$. Hence K is a normal ideal of H+K.

(3) Define $\varphi:H \rightarrow \stackrel{(H+K)}{K}$ by $\varphi(x) = x+K$ for every $x \in H$. Clearly, φ is a homomorphism. Since $\stackrel{(H+K)}{K} = \{h+k+K/h\in H, k\in K\} = \{h+K/h\in H\}, \varphi$ is surjective. By group theory, $Ker(\varphi) = H \cap K$. By First Isomorphism Theorem, $\stackrel{H}{H}(H \cap K) \cong \stackrel{(H+K)}{K}$

Corollary 2.9. Let R be a skewring, H a subskewring of R and K a normal ideal of R. Then the following statements hold:

(1) H+K = K+H is a subskewring of R.
(2) K is a normal ideal of H+K.
(3) H∩K is a normal ideal of H.
(4) H is a normal ideal of R implies that H+K is a normal ideal of R.

Proof. Since K is a normal ideal of R, $N_R(K) = R$ and $I_R(K) = R$. Therefore $H \subseteq N_R(K) \cap I_R(K)$.

(1) It is well-known that H+K = K+H. By Theorem 2.8 (1), H+K is a subskewring of R.

(2) and (3) follow from Theorem 2.8 (2) and (3) respectively.

(4) Suppose that H is a normal ideal of R. By (1), H+K is a subskewring of R. It is well-known that H+K is normal in (R,+). Let $h \in H$, $k \in K$, $r \in R$. Then rh, $hr \in H$ and rk, $kr \in K$. Therefore r(h+k) = rh+rk, $(h+k)r = hr+kr \in H+K$ which imply that H+K is a normal ideal of R. #

Corollary 2.10. Let R be a ring. Let H,K be subrings of R such that $H \subseteq I_R(K)$. Then (1) H+K is a subring of R, (2) K is an ideal in H+K, (3) $H \cap K$ is an ideal in H and (4) $\frac{H}{(H \cap K)} \cong \frac{(H+K)}{K}$.

Proposition 2.11. Let R be a skewring. Then for all left[right, two-sided] ideals $I_1, I_2, \{\sum_{i=1}^n x_i / n \in \mathbb{Z}^n, x_i \in I_1 \cup I_2 \text{ for every } i \in \{1, 2, ..., n\}\}.$

Proof. Let $I = \{\sum_{i=1}^{n} x_i / n \in \mathbb{Z}^+, x_i \in I_1 \cup I_2 \text{ for every } i \in \{1, 2, ..., n\}\}$. Then (I, +) is a subgroup of R. Let $r \in \mathbb{R}$. Since I_1 and I_2 are ideals, $rx_1, ..., rx_m \in I_1 \cup I_2$. Thus $rx = r(\sum_{i=1}^{m} x_i) = rx_1 + ... + rx_m \in I$ which implies that $rx \in I$, so (I, \cdot) is a semigroup. Similarly, $xr \in I$. Then I is an ideal.

Let R be a skewring and J(R) be the set of all ideals in R. For all $I_1, I_2 \in J(R)$, we define

 $I_1 \leq I_2$ if and only if $I_1 \subseteq I_2$.

Then $(J(\mathbf{R}), \leq)$ is a partially ordered set.

Let $NJ(\mathbf{R})$ be a set of all normal ideals in \mathbf{R} . Similarly, we have $(NJ(\mathbf{R}), \leq)$ is a partially ordered set.

Proposition 2.12. Let R be a skewring. Then

(1) for all left[right, two-sided] ideals I_1, I_2 , $lub(I_1, I_2) = \{\sum_{i=1}^n x_i / n \in \mathbb{Z}^+, x_i \in \mathbb{Z}^+,$

 $I_1 \cup I_2$ for every $i \in \{1, 2, ..., n\}$ and $glb(I_1, I_2) = I_1 \cap I_2$ and

(2) for all left[right, two-sided] normal ideals I_1, I_2 , $lub(I_1, I_2) = I_1 + I_2$ and $glb(I_1, I_2) = I_1 \cap I_2$.

Proof. (1) By Proposition 2.11, I and $I_1 \cap I_2$ are ideals in R. Clearly, I and $I_1 \cap I_2$ are an upper bound and a lower bound of $\{I_1, I_2\}$ respectively. Let J be an ideal of R such that $I_1, I_2 \leq J$. Then $(I_1 \cup I_2) \leq J$ which implies that $I \leq J$. Therefore $lub(I_1, I_2) = I$. Let J be an ideal of R such that $J \leq I_1$ and $J \leq I_2$. Clearly, $J \leq I_1 \cap I_2$. Therefore $glb(I_1, I_2) = I_1 \cap I_2$.

(2) Similarly, we have $glb(I_1, I_2) = I_1 \cap I_2$. Let J be a normal ideal of R such that $I_1, I_2 \leq J$. By definition of $I_1 + I_2$, $I_1 + I_2 \leq J$. Therefore $lub(I_1, I_2) = I_1 + I_2$. #

Theorem 2.13. For any skewring R, J(R) and NJ(R) are lattices.

Proof. It follows from Proposition 2.12. #

Theorem 2.14. Let R be a skewring, I be a normal ideal of R. Let N be the set of all normal ideals of R contains I and

N'be the set of all normal ideals of R_{I} . Then there exists an order-isomorphism $\varphi: N \rightarrow N'$.

Corollary 2.15. Let R be a skewring and I be a normal ideal of R. Let N be the set of all normal ideals of R strictly contains I and

N'be the set of all normal ideals of $\frac{R}{I}$ except {I}. Then there exists an order-isomorphism from N to N'.

Corollary 2.16. Let R be a skewring and I be a normal ideal of R. Let M be the set of all maximal normal ideals of R containing I and

M' be the set of all maximal normal ideals of $\frac{R}{I}$. Then there exists an order-isomorphism from M to M'.

Theorem 2.17. Let R be a skewring and I be a normal ideal of R. Let P be the set of all prime ideals of R containing I and P' be the set of all prime normal ideals of $\frac{R}{I}$. Then there exists an order-isomorphism from P to P'.

Proof. Let φ be the function given in Theorem 2.14. Let $\Phi = \varphi|_{P}$. We shall show that Φ is a bijection from P to P'.

Suppose J is a prime normal ideal in R. Let A',B' be normal ideals in R_I such that $A'B'\subseteq \Phi(J) = J_I'$. By Theorem 2.14., there exists normal ideals A,B in R which containing I such that $A' = A_I'$ and $B' = B_I'$. Then $AB_I' = (A_I')(B_I') = A'B' \subseteq \Phi(J) = J_I'$ which implies that $AB\subseteq J$. Since J is prime, $A\subseteq J$ or $B\subseteq J$ which implies that $A'\subseteq \Phi(J)$ or $B'\subseteq \Phi(J)$. Hence $\Phi(J)$ is prime.

Conversely, suppose J' is a prime normal ideal in $\frac{R}{I}$. Similarly as above, $J' = \frac{J}{I}$ for some normal ideal J in R which contains I. Let A,B be normal ideals in R containing I such that $AB\subseteq \Phi^{-1}(J')$. Then $(\frac{A}{I})(\frac{B}{I}) = \Phi(AB)\subseteq J'$. Since J' is prime, $\frac{A}{I}\subseteq J' = \frac{J}{I}$ or $\frac{B}{I}\subseteq J' = \frac{J}{I}$. Since φ is an order-isomorphism A $\subseteq J$ or B $\subseteq J$, so that $A\subseteq \Phi^{-1}(J')$ or $B\subseteq \Phi^{-1}(J')$. Hence $\Phi^{-1}(J')$ is prime and this proof is finished. #

Theorem 2.18. Let R be a skewring. Let I, I', J, J' be subskewrings of R such that I' and J' are normal ideals of I and J respectively. Then the following statements hold:

(1) $(I \cap J')+I'$ is a normal ideal in $(I \cap J)+I'$. (2) $(I' \cap J)+J'$ is a normal ideal in $(I \cap J)+J'$. (3) $(I \cap J')+I' \not= (I \cap J')+J'/(I' \cap J)+J'$.

Proof. (1) By group theory, $(I \cap J')+I'$ is a normal subgroup in ($(I \cap J)+I',+$).Let $x \in I \cap J$, $t,z \in I'$ and $y \in I \cap J'$. Then $x+t \in (I \cap J)+I'$, $y+z \in (I \cap J')+I'$, $x,y \in I$, $x \in J$ and $y \in J'$. Then $xy, yx \in I \cap J'$ and $yt, ty, zx, xz, zt, tz \in I'$. Then $(y+z)(x+t) = y(x+t)+z(x+t) = yx+(yt+zx+zt) \in (I \cap J')+I'$ and (x+t)(y+z) = (x+t)y+(x+t) $z = xy+(ty+xz+tz) \in (I \cap J')+I'$. Therefore $(I \cap J')+I'$ is an ideal of $(I \cap J)+I'$.

(2) Similar proof in (1).

(3) By Corollary 2.9 (3), $((I \cap J')+I') \cap (I \cap J)$ is a normal ideal of $I \cap J$.

By Theorem 2.8 (3), $(I \cap J)/((I \cap J') + I') \cap (I \cap J) \cong ((I \cap J) + (I \cap J') + I')/((I \cap J') + I') \cap (I \cap J') + I') = ((I \cap J) + I')/((I \cap J') + I') \cap (I \cap J') + I' = ((I \cap J) + I')/((I \cap J') + I') \cap (I \cap J) \cong (((I \cap J) + I')/((I \cap J') + I') \cap (I \cap J)) \cong (((I \cap J') + I') \cap (I \cap J)) = (((I \cap J') + I') \cap J) = ((I \cap J') + I') \cap J)$ Clearly, $((I \cap J') + I') \cap (I \cap J) = ((I \cap J') + I') \cap J$(ii) Claim that $((I \cap J') + I') \cap J = ((I \cap J') + (I' \cap J))$(iii)

Let $y \in I \cap J'$, $z \in I'$ such that $y+z \in J$. Then $y+z \in ((I \cap J')+I') \cap J$. Then $z = -y+(y+z) \in J$, so that $z \in I' \cap J$. Thus $y+z \in (I \cap J')+(I' \cap J)$, that is $((I \cap J')+I') \cap J \subseteq (I \cap J')+(I' \cap J)$. Conversely, let $x \in I \cap J'$, $y \in I' \cap J$. Then $x+y \in (I \cap J')+(I' \cap J)$, $x \in I$, $x \in J'$, $y \in I'$ and $y \in J$. Then $x+y \in ((I \cap J')+I') \cap J$. Therefore $(I \cap J')+(I' \cap J) \subseteq ((I \cap J')+I') \cap J$ and hence we have the claim.

By (i), (ii) and (iii), $(I \cap J)/((I \cap J') + (I' \cap J)) \cong ((I \cap J) + I')/((I \cap J') + I' \cdot I')$ Similarly, $(I \cap J)/(((I \cap J') + (I' \cap J))) \cong (I \cap J) + J'/((I' \cap J) + J' \cdot I')$. Hence we have the theorem. #

Definition 2.19. Let R be a skewring and ρ an equivalence relation on R. Then ρ is called a congruence on R if and only if $x\rho y$ implies $(x+z)\rho(y+z)$, $(z+x)\rho(z+y)$, $(xz)\rho(yz)$ and $(zx)\rho(zy)$ for all $x,y,z \in \mathbb{R}$.

Let $L(\mathbf{R})$ be the set of all congruence on a skewring \mathbf{R} . Define $\rho \leq \sigma$ if and only if $\rho \subseteq \sigma$ for all $\rho, \sigma \in L(\mathbf{R})$. Then $(L(\mathbf{R}), \leq)$ is a partially ordered set. **Remark 2.20.** Let R be a skewring. Then L(R) is clearly a lattice where for all $\rho, \sigma \in L(R)$, $lub(\rho, \sigma) = the$ intersection of all congruences containing $\rho \cup \sigma$ and $glb(\rho, \sigma) = \rho \cap \sigma$.

We shall show that the least upper bound of two congruences is easily computed.

Remark 2.21. Let R be a skewring. Let $\rho \in L(R)$ and $x, x', y, y' \in R$. Then the following statemants hold:

(1) xρy and x'ρy' imply xx'ρyy'.
(2) xρy and x'ρy' imply (x+x)ρ(y+y).
(3) xρy implies (-x)ρ(-y).

Theorem 2.22. Let R be a skewring. Then there exists an order-isomorphism Φ of L(R) to NJ(R) such that the congruence classes of ρ are the cosets of $\Phi(\rho)$.

Proof. Let $\rho \in L(\mathbf{R})$, define $I_{\rho} = \{x \in \mathbb{R}/x\rho 0\}$. Let $I \in \mathbf{NJ}(\mathbf{R})$, define $x\rho_i y$ if and only if $x \cdot y \in I$ for all $x, y \in \mathbb{R}$. Step1. We shall show that $I_{\rho} \in \mathbf{NJ}(\mathbf{R})$ and $\rho_i \in L(\mathbf{R})$.

Since $0 \in I_{\rho}$, $I_{\rho} \neq \emptyset$. Let $x, y \in I_{\rho}$ and $r \in \mathbb{R}$. Then $x \rho 0$ and $y \rho 0$. By Remark 2.21 (3) and (2), $-y \rho 0$ and $(x-y) \rho 0$ respectively, that is $x-y \in I_{\rho}$. Since $x \rho 0$, $(r+x-r)\rho(r+0-r)$, that is $(r+x-r)\rho 0$. Then $r+x-r \in I_{\rho}$. Since $x\rho 0$, $(rx)\rho(r0)$ and $(xr)\rho(x0)$, that is $(rx)\rho 0$ and $(xr)\rho 0$. Then $xr, rx \in I_{\rho}$ Therefore I_{ρ} is a normal ideal of R and hence $I_{\rho} \in NJ(\mathbb{R})$.

Let $x,y,z \in \mathbb{R}$. Since $x-x = 0 \in I$, $x\rho_t x$ which implies that ρ_t is reflexive. Suppose that $x\rho_t y$. Then $x-y \in I$, that is $y-x = -(x-y) \in I$. Thus $y\rho_t x$ which implies that ρ_t is symmetric. Suppose that $x\rho_t y$ and $y\rho_t z$. Then $x-y,y-z \in I$, so $x-z = (x-y)+(y-z)\in I$. Thus $x\rho_t z$ which implies that ρ_t is transitive. Therefore ρ_t is an equivalence relation. To show that ρ_t is a congruence. Suppose that $x\rho_t y$. Then x-y \in I. Since I is an ideal of R, xz-yz = (x-y)z, zx-zy = z(x-y) \in I, that is (xz) $\rho_I(yz)$ and (zx) $\rho_I(zy)$. Since I is normal in R, (z+x)-(z+y) = z+(x-y)-z, (x+z)-(y+z) = x+z-z-y = x-y \in I, that is (z+x) $\rho_I(z+y)$ and (x+z) $\rho_I(y+z)$. Therefore ρ_I is a congruence and hence $\rho_I \in L(\mathbf{R})$.

Define $\Phi: L(\mathbf{R}) \rightarrow NJ(\mathbf{R})$ by $\Phi(\rho) = I_{\rho}$ for every $\rho \in L(\mathbf{R})$ and

 Ψ :NJ(R) \rightarrow L(R) by Ψ (I) = ρ_I for every $I \in$ NJ(R).

Step2. We shall show that Φ and Ψ are bijections.

Claim1. $\Psi \circ \Phi = \mathrm{Id}_{L(\mathbf{R})}$.

Let $\sigma \in L(\mathbb{R})$. We shall show that $\sigma = \Psi \circ \Phi(\sigma) = \rho_{I_{\sigma}}$. Let $(x,y) \in \rho_{I_{\sigma}}$. Then $x \cdot y \in I_{\sigma}$, that is $(x \cdot y)\sigma 0$. Since σ is a congruence, $(x \cdot y + y)\sigma (0 + y)$, that is $x\sigma y$. So $\rho_{I_{\sigma}} \subseteq \sigma$. Conversely, let $(x,y) \in \sigma$. Since σ is a congruence, $(x \cdot y, y \cdot y) \in \sigma$, so $(x \cdot y, 0) \in \sigma$. Then $x \cdot y \in I_{\sigma}$. By definition of $\rho_{I_{\sigma}}$, $x \rho_{I_{\sigma}} y$. Therefore $\sigma \subseteq \rho_{I_{\sigma}}$. Hence $\sigma = \rho_{I_{\sigma}}$ and we have Claim1.

Claim2. $\Phi \circ \Psi = \mathrm{Id}_{NJ(R)}$.

Let $J \in NJ(R)$. We shall show that $J = \Phi \circ \Psi(J) = I_{\rho_J}$. Let $x \in J$. Since x-0 = $x \in J$, $x\rho_J 0$. By definition of I_{ρ_J} , $x \in I_{\rho_J}$, that is $J \subseteq I_{\rho_J}$. Conversely, let $x \in I_{\rho_J}$. Then $x\rho_J 0$, that is $x = x - 0 \in J$. Therefore $I_{\rho_J} \subseteq J$, so that $J = I_{\rho_J}$ and we have Claim2.

By Claim1 and Claim2, Φ and Ψ are bijections and $\Psi = \Phi^{-1}$.

Step3. We shall show that Φ and Ψ are order-isomorphisms.

Let $\rho, \sigma \in \mathbf{L}(\mathbf{R})$ be such that $\rho \leq \sigma$. Then $\rho \subseteq \sigma$. We shall show that $\Phi(\rho) \subseteq \Phi(\sigma)$. Let $\mathbf{x} \in \Phi(\rho) = \mathbf{I}_{\rho}$. Then $\mathbf{x}\rho 0$. Since $\rho \subseteq \sigma$, $\mathbf{x}\sigma 0$, that is $\mathbf{x} \in \mathbf{I}_{\sigma} = \Phi(\sigma)$. Therefore, $\Phi(\rho) \subseteq \Phi(\sigma)$, that is $\Phi(\rho) \leq \Phi(\sigma)$.

Let $I,J \in NJ(\mathbb{R})$ be such that $I \leq J$. Then $I \subseteq J$. We shall show that $\Psi(I) \subseteq \Psi(J)$. Let $(x,y) \in \Psi(I) = \rho_I$. Then $x - y \in I \subseteq J$. Thus $x \rho_J y$, so $(x,y) \in \rho_J = \Psi(J)$. Therefore, $\Psi(I) \subseteq \Psi(J)$, that is $\Psi(I) \leq \Psi(J)$. Hence Φ and Ψ are both orderisomorphisms. Next, we shall show that the equivalence classes of ρ_1 are the cosets of I. Note that $x\rho_1 y$ if and only if $x-y \in I$ if and only if $x \in I+y$. Thus we see that if we know one equivalence class of a congruence on R then we know a coset. If we know one coset on R then we know the whole congruence.

To summarize, if we know one equivalence class of a congruence on a skewring then we know all equivalence classes of the congruence. #

Theorem 2.23. For any skewring R, L(R) is commutative with respect to composition of binary relations.

Proof. By Theorem 2.22, there exists an order-isomorphism $\Psi:NJ(R)\rightarrow L(R)$.

Claim that $\rho_{I_1+I_2} = \rho_{I_2} \circ \rho_{I_1}$ for all $I_1, I_2 \in NJ(R)$.

Let $I_1, I_2 \in NJ(R)$ and $(x,y) \in \rho_{I_1+I_2}$. Then $x-y \in I_1+I_2$. Thus there exist $i_1 \in I_1$ and $i_2 \in I_2$ such that $x-y = i_1+i_2$. Then $x-(i_2+y) = x-y-i_2 = i_1 \in I_1$ and $(i_2+y)-y = i_2 \in I_2$. Then $(x,i_2+y) \in \rho_{I_1}$ and $(i_2+y,y) \in \rho_{I_2}$ and hence $(x,y) \in \rho_{I_2} \circ \rho_{I_1}$. So that $\rho_{I_1+I_2} \subseteq \rho_{I_2} \circ \rho_{I_1}$.

Conversely, let $(x,y) \in \rho_{I_2} \circ \rho_{I_1}$. Then there exists a $z \in \mathbb{R}$ such that $(x,z) \in \rho_{I_1}$ and $(z,y) \in \rho_{I_2}$. Then $x-z \in I_1$ and $z-y \in I_2$. Thus $x-y = (x-z)+(z-y) \in I_1+I_2$, that is $(x,y) \in \rho_{I_1+I_2}$ and $\rho_{I_2} \circ \rho_{I_1} \subseteq \rho_{I_1+I_2}$. Hence we have the claim.

Let $\rho_1, \rho_2 \in L(\mathbb{R})$. Since Ψ is surjective, there exist $I_1, I_2 \in NJ(\mathbb{R})$ such that $\rho_1 = \Psi(I_1) = \rho_{I_1}$ and $\rho_2 = \Psi(I_2) = \rho_{I_2}$. Then $\rho_1 \circ \rho_2 = \rho_{I_1} \circ \rho_{I_2} = \rho_{I_2+I_1} = \Psi(I_2+I_1) =$ $\Psi(I_1+I_2) = \rho_{I_1+I_2} = \rho_{I_2} \circ \rho_{I_1} = \rho_2 \circ \rho_1$, by Corollary 2.9 (1). Hence $L(\mathbb{R})$ is commutative. #

From Theorem 2.23, we see that the composition of congruences is always a congruence and given two congruences ρ_1, ρ_2 , $lub(\rho_1, \rho_2) = \rho_1 \circ \rho_2$. Note. Using the facts that in group theory $HK = H \lor K$ for normal subgroups in a group G and $AB = A \lor B$ (see[3]) for a-convex subgroups of a semifield K, we get that the above theorem is true for groups and semifields.

Definition 2.24. A finite sequence of skewring homomorphisms,

 $R_0 \xrightarrow{f_1} R_1 \xrightarrow{\dots} R_{n-1} \xrightarrow{f_n} R_n, \text{ is exact provided } Im(f_i) = Ker(f_{i+1})$ for every $i \in \{1, \dots, n-1\}.$

For every normal ideal I of a skewring R, by Proposition 1.35, $0 \longrightarrow I \xrightarrow{i} R \xrightarrow{\pi} R_{I} \longrightarrow 0$ is an exact sequence where i is the natural injection map and π is a canonical epimorphism.

For any skewring R, define $[R,R] = \langle \{x+y-x-y/x, y \in R\} \rangle_n$.

Consider an element in [R,R]. Let $z \in [R,R]$. Then there exist $m \in \mathbb{Z}^+$, $x_i, y_i, z_i \in \mathbb{R}$ and $r_i, r'_i \in \mathbb{R} \cup \mathbb{Z}$ for every $i \in \{1, ..., m\}$ such that z = $\sum_{i=1}^{m} (z_i + r_i(x_i + y_i - x_i - y_i)r'_i - z_i) = \sum_{i=1}^{m} (z_i + r_i x_i r'_i + r_i y_i r'_i - r_i x_i r'_i - r_i y_i r'_i - z_i)$. If $r_i \in \mathbb{R}$ or $r'_i \in \mathbb{R}$ for some i, by Remark 1.5 (2), $z_i + r_i x_i r'_i + r_i y_i r'_i - r_i x_i r'_i - r_i y_i r'_i - z_i = 0$. Thus $[\mathbb{R}, \mathbb{R}] = \{\sum_{i=1}^{m} (z_i + r_i(x_i + y_i - x_i - y_i) - z_i) / m \in \mathbb{Z}^+, x_i, y_i, z_i \in \mathbb{R}, r_i, \in \mathbb{Z} \text{ for every } i \in \{1, ..., m\}\}.$

Theorem 2.25. For every skewring R, [R,R] is a normal ideal with the trivial multiplication. Moreover, $\frac{R}{\lceil R,R \rceil}$ is a ring.

Proof First, we shall show that [R,R] is a normal ideal with the trivial multiplication.

Claim1.
$$(x_1+y_1-x_1-y_1)(x_2+y_2-x_2-y_2) = 0$$
 for all $x_1, x_2, y_1, y_2 \in \mathbb{R}$.
Let $x_1, x_2, y_1, y_2 \in \mathbb{R}$. Then $(x_1+y_1-x_1-y_1)(x_2+y_2-x_2-y_2) = x_1(x_2+y_2-x_2-y_2) + x_2(x_2+y_2-x_2-y_2) = x_1(x_2+y_2-x_2-y_2) + x_2(x_2+y_2-x_2-y_2) = x_2(x_2+y_2-x_2-y_2) x_2(x_2+y_2-x_2-x_2-y_2) = x_2(x_2+y_2-x_2-x_2-x_2-x_2-x_2-x_2-x_2)$

$$y_1(x_2+y_2-x_2-y_2) - x_1(x_2+y_2-x_2-y_2) - y_1(x_2+y_2-x_2-y_2) = 0$$
, by Remark 1.5 (2).

Hence we have Claim 1.

Claim2. zz' = 0 for all $z, z' \in [R,R]$.

Let
$$z, z' \in [R, R]$$
. Then there exist $m, n \in Z^+$, $x_i, x'_j, z_i, z'_j \in R$, $r_i, s_j \in Z$ where $x_i = a_i + b_i - a_i - b_i$, $x'_j = a'_j + b'_j - a'_j - b'_j$ for some $a_i, a'_j, b_i, b'_j \in R$ for all $i \in \{1, ..., m\}$, $j \in \{1, ..., n\}$
be such that $z = \sum_{i=1}^{m} (z_i + r_i x_i - z_i)$ and $z' = \sum_{j=1}^{n} (z'_j + s_j x'_j - z'_j)$. Then
 $zz' = \sum_{i=1}^{m} (z_i + r_i x_i - z_i) \sum_{j=i}^{n} (z'_j + s_j x'_j - z'_j)$
 $= \sum_{i=i}^{m} \sum_{j=i}^{n} (z_i z'_j + z_i s_j x'_j - z_i z'_j + r_i x_i s_j x'_j - r_i x_i z'_j - z_i s_j x'_j + z_i z'_j)$, by Remark 1.5(2)
 $= \sum_{i=i}^{m} \sum_{j=i}^{n} (r_i x_i s_j x'_j)$, by Remark 1.5 (2)
 $= \sum_{i=i}^{m} \sum_{j=i}^{n} (r_i a_i + b_i - a_i - b_i) s_j (a'_j + b'_j - a'_j - b'_j)$
 $= \sum_{i=i}^{m} \sum_{j=i}^{n} (r_i a_i + r_i b_i - r_i a_i - r_i b_i) (s_j a'_j + s_j b'_j - s_j a'_j - s_j b'_j) = 0$, by Claim 1.

Hence we have Claim2. Therefore [R,R] is a normal ideal with the trivial multiplication and $R_{[R,R]}$ is a ring. #

Corollary 2.26. If R is a skewring which is not a ring, then R contains a normal ideal with the trivial multiplication of order>1.

Proof Let R be a skewring which is not a ring. Then there exist $x,y \in \mathbb{R}$ such that $x+y \neq y+x$. Therefore $x+y-x-y = (x+y)-(y+x) \neq 0$. By Theorem 2.25, $\langle \{x+y-x-y\} \rangle_n$ is a nonzero normal ideal of R with the trivial multiplication. #

Theorem 2.27. [R,R] is the smallest normal ideal in a skewring R such that the quotient is a ring.

Proof. By Theorem 2.25, $\mathbb{R}_{[R,R]}$ is a ring. Let I be a normal ideal of

R such that $\frac{R}{I}$ is a ring. Then $(\frac{R}{I}, +)$ is an abelian group. Let $x, y \in \mathbb{R}$. Then (x+I)+(y+I) = (y+I)+(x+I) and (x+y)-(y+x)+I = I which implies that $x+y-x-y \in I$. Therefore $\{x+y-x-y \mid x, y \in \mathbb{R}\} \subseteq I$ and hence $[\mathbb{R},\mathbb{R}] \subseteq I$. #

Definition 2.28. A ring S is called a quotient ring of a skewring R if and only if there exists an epimporphism $f:R \rightarrow S$. (i.e. $\frac{R}{Ker(f)} \cong S$.)

Corollary 2.29. Let R be a skewring. If $\frac{R}{[R,R]} = 0$, then R has the trivial multiplication.

Proof. Consider the exact sequence $0 \longrightarrow [R,R] \xrightarrow{i} R \xrightarrow{\pi} R'_{[R,R]} \longrightarrow 0$ where i is the natural injection map and π is a canonical epimorphism. By Theorem 2.25, $R'_{[R,R]}$ is a quotient ring of R. By assumption, $R'_{[R,R]} = 0$ which implies that $0 \longrightarrow$ $[R,R] \xrightarrow{i} R \xrightarrow{\pi} 0$ is an exact sequence. Therefore [R,R] is isomorphic to R. Since [R,R] has the trivial multiplication, R has the trivial multiplication. #

Theorem 2.30. Every quotient ring S of a skewring R is a quotient ring of the ring $\frac{R}{[R,R]}$.

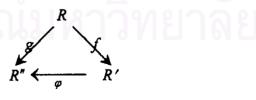
Proof. Let S be a quotient ring of a skewring R. Then there exists an epimorphism f:R \rightarrow S and so $\frac{R}{Ker(f)} \cong$ S. Since S is a ring, $\frac{R}{Ker(f)}$ is a ring. By Theorem 2.27, $[R,R] \subseteq Ker(f)$. Define $\varphi: \frac{R}{[R,R]} \rightarrow \frac{R}{Ker(f)}$ by $\varphi(x+[R,R]) = x+Ker(f)$ for every $x+[R,R] \in \frac{R}{[R,R]}$. By Proposition 2.3, φ is an epimorphism. Since $S \cong \mathbb{R}'_{Ker(f)}$, there exists an isomorphism $\psi: \mathbb{R}'_{Ker(f)} \to S$. Hence $\psi \circ \phi: \mathbb{R}'_{[R,R]} \to S$ is an epimorphism. Therefore S is a quotient ring of ring $\mathbb{R}'_{[R,R]}$.

Moreover, we shall show that $f = (\psi \circ \phi) \circ \pi$ where $\pi: R \to R'_{[R,R]}$ is the canonical epimorphism. Let $x \in R$. Then $(\psi \circ \phi)(\pi(x)) = \psi(\phi(x+[R,R])) = \psi(x+Ker(f)) = f(x)$, by the proof of First Isomorphism Theorem. Hence $f = (\psi \circ \phi) \circ \pi.#$

Remark 2.31. By the proof of Theorem 2.30, there exists a unique epimorphism φ from $\frac{R}{[R,R]}$ to S such that $f = \varphi \circ \pi$.

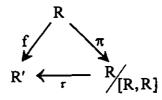
Proof. Let φ and ψ be epimorphism of to S such that $\psi \circ \pi = f = \varphi \circ \pi$. Let $x+[R,R] \in \frac{R}{[R,R]}$. Then $\psi(x+[R,R]) = \psi(\pi(x)) = f(x) = \varphi(\pi(x)) = \varphi(x+[R,R])$. Hence $\psi = \varphi$. #

Theorem 2.32. Let R be a skewring. Let R' be a quotient ring of R by an epimorphism f. Suppose that for every quotient ring R" of R by an epimorphism g, there exists a unique epimorphism $\varphi: R' \rightarrow R$ " such that the the following diagram is commutative.

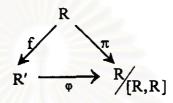


Then $R' \cong \frac{R}{[R,R]}$.

Proof. By Theorem 2.30 and Remark 2.31, there exists a unique epimorphism τ such that the following diagram is commutative.

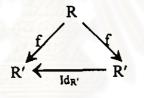


By assumption, there exists a unique epimorphism $\varphi: \mathbb{R}' \to \mathbb{R}'_{[\mathbb{R},\mathbb{R}]}$ such that the following diagram is commutative.

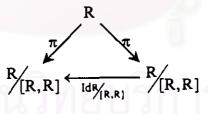


That is $\tau \circ \pi = f$ and $\varphi \circ f = \pi$. Then $(\tau \circ \varphi) \circ f = \tau \circ (\varphi \circ f) = \tau \circ \pi = f$ (i) and $(\varphi \circ \tau) \circ \pi = \varphi \circ (\tau \circ \pi) = \varphi \circ f = \pi$ (ii)

Consider the commutative diagram,



By assumption and (i), $Id_{R'} = \tau \circ \varphi$(iii) Consider the commutative diagram,



Consider Remark 2.31 and (ii), $IdR_{[R,R]} = \phi \circ \tau$(iv) By (iii) and (iv), ϕ and τ are isomorphisms. Hence $R' \cong R_{[R,R]}^{\prime}$. #

For any skewring R, define $(R,R) = \langle \{xy-yx/x, y \in R\} \rangle_n$.

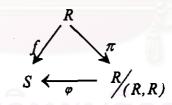
Remark 2.33. $\frac{R}{(R,R)}$ is a skewring with commutative multiplication.

Proof. Let $x,y \in \mathbb{R}$. Then $xy-yx+(\mathbb{R},\mathbb{R}) = (\mathbb{R},\mathbb{R})$ which implies that $(x+(\mathbb{R},\mathbb{R}))(y+(\mathbb{R},\mathbb{R})) = xy+(\mathbb{R},\mathbb{R}) = yx+(\mathbb{R},\mathbb{R}) = (y+(\mathbb{R},\mathbb{R}))(x+(\mathbb{R},\mathbb{R}))$. Hence $\mathbb{R}/(\mathbb{R},\mathbb{R})$ has commutative multiplication. #

Remark 2.34. (R,R) is the smallest normal ideal in a skewring R such that its quotient skewring has a commutative multiplication.

Proof. Suppose that I is a normal ideal of a skewring R such that R_{I} has the commutative multiplication. Let $x,y \in R$. Then xy+I = (x+I)(y+I) = (y+I)(x+I) = yx+I, so that $xy-yx \in I$. Thus $(R,R) \subseteq I$. By Remark 2.33, this remark is true. #

Theorem 2.35. Let R be a skewring and S be a skewring which has commutative multiplication. If there exists an epimorphism f of R to S, then there exists a unique epimorphism $\varphi: \frac{R}{(R,R)} \rightarrow S$ such that the following diagram is commutative.

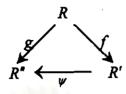


where π is the canonical epimorphism.

Proof. Suppose that there exists an epimorphism $f:R\rightarrow S$. By the First Isomorphism Theorem, $S \cong \frac{R}{Ker(f)}$. Similarly the proof of Theorem 2.30 and Remark 2.31, there exists a unique $\varphi: \frac{R}{(R,R)} \rightarrow S$ such that $f = \varphi \circ \pi.\#$

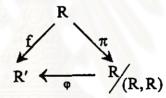
Theorem 2.36. Let R be a skewring and (R'f) be a quotient skewring of R with commutative multiplication. Suppose that for every quotient skewring

 $(R^{"},g)$ of R with the commutative multiplication, there exists a unique epimorphism $\psi:R' \rightarrow R^{"}$ such that the following diagram is commutative.



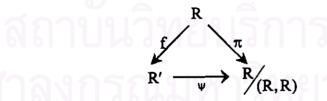
Then $R' \cong \frac{R}{(R,R)}$.

Proof. Since (R',f) is a quotient skewring of R with a commutative multiplication, by Theorem 2.35, there exists a unique epimorphism φ : $\frac{R'}{(R,R)} \rightarrow R'$ such that the following diagram is commutative.



where π is a canonical epimorphism.

By Remark 2.33, $\frac{R}{(R,R)}$ is a quotient skewring of R with a commutative multiplication. By assumption, there exists a unique epimorphism $\psi: R' \rightarrow \frac{R}{(R,R)}$ such that the following diagram is commutative.



That is $\varphi \circ \pi = f$ and $\psi \circ f = \pi$. Similar to the proof of Theorem 2.32, φ and ψ are isomorphisms. Hence $R' \cong \frac{R}{(R,R)}$.#

Definition 2.37. A subnormal series of a skewring R to $\{0\}$ is a finite chain of subskewrings

 $R = R_0 \ge R_1 \ge \dots \ge R_n = \{0\} \text{ such that for each } i \in \{0, 1, \dots, n-1\}, R_{i+1} \triangleleft_n R_i \dots \dots (*)$

A subnormal series is a normal series if and only if $R_i \triangleleft_n R$ for all i.

The quotient skewring $\frac{R_i}{R_{i+1}}$ are called the **factors** of the series.

A length of the series is the number of strict inclusion in the series (equal the number of nontrivial factors $\frac{R_i}{R_{i+1}}$).

A refinement of (*) is a subnormal series obtained by inserting a finite number of skewrings.

A refinement is proper if the length is larger.

A subnormal series $R = R_0 > R_1 > ... > R_n = \{0\}$ is a composition series (CS) if each factor is simple.

Definition 2.38. Two subnormal series of a skewring R, $R = R_0 \ge R_1 \ge ... \ge R_n =$ {0} and $R = P_0 \ge P_1 \ge ... \ge P_m =$ {0} are called equivalent if there exists a bijective correspondence between $\{\frac{R_i}{R_{i+1}}, \frac{R_i}{R_{i+1}}\}$ is nontrivial} and

 $\{ \frac{P_i}{P_{i+1}}, \frac{P_i}{P_{i+1}} \}$ is nontrivial} such that the corresponding factors are isomorphic.

Theorem 2.39. A subnormal series $R = R_0 \ge R_1 \ge ... \ge R_n = \{0\}$ is a composition series if and only if it has no proper refinement.

Proof. Suppose that $R = R_0 \ge R_1 \ge ... \ge R_n = \{0\}$ is a composition series and has a proper refinement. Then there exists $i \in \{0,...,n-1\}$ and a subskewring P of R such that $R_{i+1} \subset P \subset R_i$ and $R_{i+1} \triangleleft_n P \triangleleft_n R_i$. Therefore $\frac{P}{R_{i+1}}$ is a proper nontrivial normal ideal of $\frac{R_i}{R_{i+1}}$ which contradicts to the simplicity of $\frac{R_i}{R_{i+1}}$.

Conversely, suppose that $R = R_0 \ge R_1 \ge ... \ge R_n = \{0\}$ is not a composition.

Then there exists $i \in \{0, ..., n-1\}$ such that $\begin{array}{c} R_i \\ R_{i+1} \end{array}$ is not simple. Then there exists a subskewring P of R such that $R_{i+1} \subset P \subset R_i$ and $\begin{array}{c} P \\ R_{i+1} \end{array}$ is a nontrivial subskewring of $\begin{array}{c} R_i \\ R_{i+1} \end{array}$. So that $R = R_0 \ge R_1 \ge ... \ge R_i \ge P \ge R_{i+1} \ge ... \ge R_n = \{0\}$ is a proper refinement of $R = R_0 \ge R_1 \ge ... \ge R_n = \{0\}$. #

Theorem 2.40. If $R = R_0 \ge R_1 \ge ... \ge R_n = \{0\}$ is a composition series of a skewring R, then any refinement is equivalent to itself.

Proof. It follows from Theorem 2.39. #

The following theorem is generalized from Schreier's refinement Theorem

Theorem 2.41 Any two subnormal series for a skewring R have equivalent refinement.

Proof. Let $R = R_0 \ge R_1 \ge ... \ge R_{n+1} = \{0\}$ and $R = P_0 \ge P_1 \ge ... \ge P_{m+1} = \{0\}$ be subnormal series for skewring R. For all $k \in \{0,...,m+1\}$, $i \in \{0,...,n\}$, we set $R(i,k) = (R_i \cap P_k) + R_{i+1}$ and for all $k \in \{0,...,m\}$, $i \in \{0,...,n+1\}$, we set $P(k,i) = (R_i \cap P_k) + P_{k+1}$.

Claim that $R = R(0,0)_n \triangleright R(0,1)_n \triangleright \dots \square_n \triangleright R(0,m+1) = R(1,0)_n \triangleright R(1,1)_n \triangleright \dots \square_n \triangleright R(n,0)_n \triangleright \dots \square_n \triangleright R(n,m+1) = \{0\}.$ (i) and $R = P(0,0)_n \triangleright P(0,1)_n \triangleright \dots \square_n \triangleright P(0,n+1) = P(1,0)_n \triangleright P(1,1)_n \triangleright \dots \square_n \triangleright$

 $P(m,0)_{n} \triangleright \dots _{n} \triangleright P(m,n+1) = \{0\}.$ (ii)

Consider, $R(0,0) = (R_0 \cap P_0) + R_1 = (R \cap R) + R_1 = R + R_1 = R$ and $R(n,m+1) = (R_n \cap P_{m+1}) + R_{n+1} = (R_n \cap \{0\}) + \{0\} = \{0\} + \{0\} = \{0\}$. Let $k \in \{0,...,m\}, i \in \{0,...,n\}$, so we get that $R(i,k+1) = (R_i \cap P_{k+1}) + R_{i+1} \subseteq (R_i \cap P_k) + R_{i+1} = R(i,k)$. Let $i \in \{0,...,n-1\}$, so we get that $R(i,m+1) = (R_i \cap P_{m+1}) + R_{i+1} = (R_i \cap \{0\}) + R_{i+1} = R_{i+1} = (R_{i+1} \cap R) + R_{i+1}) = (R_{i+1} \cap P_0) + R_{i+2} = R(i+1,0)$. By the Fifth Isomorphism Theorem, $R(i,k+1) = (R_i \cap P_{n+1}) = (R_i \cap P_n) + R_{i+2} = R(i+1,0)$.

 $(R_i \cap P_{k+1}) + R_{i+1} \triangleleft_n (R_i \cap P_k) + R_{i+1} = R(i,k)$. Hence we have (i). Similarly, we have (ii). So we have the claim.

By Theorem 2.18, $\frac{R(i,k)}{R(i,k+1)} \cong \frac{P(k,i)}{P(k,i+1)}$. Hence we have the proof. #

The following theorem is generalized from Theorem Jordan-Holder Theorem.

Theorem 2.42. Any two composition series of a skewring R are equivalent.

Proof. By Theorem 2.41, any two composition series have equivalent refinements. By Theorem 2.40, every refinement of a composition is equivalent to itself. Hence any two composition series are equivalent. #

