Chapter 5

Summary and Conclusion

5.1 Summary of results

The results of these experiments were concluded as follows:

- (A) Weight Loss and Density
- 1. Weight loss of $Ba_{1-x}Sr_xTiO_3$ solid solution when $0 \le x \le 0.3$ was less than 2% and weight loss of Pb doped $Ba_{0.8}Sr_{0.2}TiO_3$ was higher than 2%.
- 2. Density was approximately 96-97% for Ba_{0.8}Sr_{0.2}TiO₃ and 94-95% for 5-10%Pb doped Ba_{0.8}Sr_{0.2}TiO₃.
- 3. The weight loss increased with an increase of %Pb doped Ba_{0.8}Sr_{0.2}TiO₃.

(B) Microstructure

(B.1) Grain size

- 1. The addition of Sr up to 30% decreased the grain size of BaTiO₃.
- 2. The grain size of Pb doped Ba_{0.8}Sr_{0.2}TiO₃ was larger than that of undoped Ba_{0.8}Sr_{0.2}TiO₃.
- 3. Grain size of all compositions increased when the sintering temperature and soaking time increased.

(C) The Crystal Structure and Phase by XRD

- 1. BST with %Sr up to 10% had the tetragonal structure and Pb doped Ba_{0.8}Sr_{0.2}TiO₃ increased to 10% a cubic structure transform to the tetragonal structure.
- 2. XRD patterns of Ba_{1-x}Sr_xTiO₃ and Pb doped Ba_{0.8}Sr_{0.2}TiO₃ system showed only single phase.

3. The c/a ratio decreased as %Sr increased for BaTiO₃. In other word, the tetragonal structure tended to transform to a cubic as %Sr increased. In contrast, as %Pb increased for Ba_{0.8}Sr_{0.2}TiO₃ the c/a ratio increased so that the tetragonal structure was more stable. The c/a ratio effected to the Curie point.

(D) Dielectric Properties

- 1. k depended on %Sr and %Ba, the trend of Curie temperature shifted to a lower temperature as %Sr increased as %Sr increased for BST system.
 - 2. k' at room temperature of BST system increased as %Sr increased.
- 3. Doped with Pb, Ca or Zr maximum k of BST decreased and also gave a broad phase transition.
- 4. For Pb doped BST, the Curie temperature of BST shifted to higher temperature but for Ca doped BST and Zr doped BST, it unchanged.
- 5. Maximum k increased as %Pb increased up to 10% for Ba_{0.8}Sr_{0.2}TiO₃ system.
- 6. k' was also affected by sintering temperature and soaking time in which maximum k' increased as the sintering temperature and soaking time increased for undoped BST.
- 7. The dissipation factor depended on the composition, sintering temperature and measurement frequency for undoped and doped BST system. But it was nearly independent on soaking time.
- 8. The dissipation factor of BaTiO₃ decreased as %Sr increased up to 30% and further decreased as Pb was doped into Ba_{0.8}Sr_{0.2}TiO₃.

5.2 Conclusions

- 1. For undoped BST system, Sr can control grain growth.
- 2. The addition of Sr with less than 10% into BaTiO₃ exhibits a tetragonal structure.
- 3. The maximum dielectric constant of Sr doped BaTiO₃ is higher than that of undoped BaTiO₃.
 - 4. Pb increases grain size of Ba_{0.8}Sr_{0.2}TiO₃.
- 5. The addition of Pb with more than 5% into Ba_{0.8}Sr_{0.2}TiO₃ exhibits a tetragonal structure.
- 6. Pb decreases the maximum dielectric constant and dissipation factor of Ba_{0.8}Sr_{0.2}TiO₃.
 - 7. The Curie temperature shifts to a higher temperature as %Pb increases.
- 8. Higher density depending on sintering temperature and soaking time increases the dielectric constant and decreases the dissipation factor.
- 9. With Ca or Zr dopants, the maximum dielectric constant of Ba_{0.8}Sr_{0.2}TiO₃ is very lower as compared to undoped Ba_{0.8}Sr_{0.2}TiO₃.

พาลงกรณมหาวทยาลย