CHAPTER II

POSITIVE ORDERED 0-SEMIFIELDS

In this chapter, we shall give some fundamental theorems of a theory of positive ordered semifields.

Definition 2.1. Let \leq be a partial order on a semiring S. \leq is said to be compatible iff it satisfies the following property for every x, y, $z \in S$, $x \leq y$ implies that 1) $x + z \leq y + z$ and 2) $xz \leq yz$ and $zx \leq zy$ if $z \geq 0$.

Definition 2.2. A system $(R, +, ., \le)$ is said to be a <u>partially_ordered</u> semiring iff (R, +, .) is a semiring and \le is a compatible partial order on R. If $0 \le x$ for all $x \in R$ then we say that R is a <u>positive_ordered</u> semiring.

Examples 2.3. (1) Z_0^+ is a positive ordered semiring.

(2) Z₀⁺[√2] = { a + b√2 } a, b ∈ Z₀⁺ } is a positive ordered.
semiring where a + b√2 ≤ c + d√2 iff a ≤ c and b ≤ d for all a, b, c, d ∈ Z₀⁺.
(3) From (2), Z₀⁺[√2] has a natural partial order as a subset of IR₀⁺ is a positive ordered semiring.

Definition 2.4. Let $(R, +, ., \le)$ be a positive ordered semiring. R is said to be a <u>positive_ordered_semifield</u> iff (R, .) is a group.

Remark 2.5. Let K be a positive ordered semifield. Then the following statements hold :

(1) for every nonzero elements $x, y \in K$, $x \le y$ implies $y^{-1} \le x^{-1}$. (2) for every $x, y, z \in K$, $xz \le yz$ implies that z = 0 or $x \le y$.

Examples 2.6. (1) Q_0^+ , \mathbb{IR}_0^+ are positive ordered semifields.

(2) Let K be a semifield such that 1 + 1 = 1. Define a relation \leq on K by $x \leq y$ if and only if x + y = y for all $x, y \in K$. Then we have that \leq is a partial order on K. To show that \leq is a compatible, let $x, y \in K$ be such that $x \leq y$. Then x + y = y. Let $z \in K$. Then (x + z) + (y + z) = (x + y) + z = y + z and xz + yz = (x + y)z = yz which imply that $(x + z) \leq (y + z)$ and $xz \leq yz$. Thus \leq is a compatible. Since 0 + x = x for all $x \in K$, $0 \leq x$ for all $x \in K$.

Therefore K is a positive ordered semifield.

(3) Let K be a semifield which is additively cancellative.

Define a relation \leq on K by $x \leq y$ if and only if there exists $z \in K$ such that x + z = y. To show that \leq is a compatible partial order, clearly \leq is reflexive since x + 0 = x for all $x \in K$. Let $x, y \in K$ be such that $x \leq y$ and $y \leq x$. Then there are $u, v \in K$ such that x + u = y and y + v = x. Hence y = x + u = (y + v) + u = y + (u + v). By A.C., u + v = 0 which implies that u = v = 0, so x = y. Let $x, y, z \in K$ be such that $x \leq y$ and $y \leq z$. Then there are $u, v \in K$ such that x + u = y and y + v = z. Hence x + (u + v) = (x + u) + v = y + v = z, so $x \leq z$. Next, let $x, y \in K$ be such that $x \leq y$. Then there exists $u \in K$ such that x + u = y. Let $z \in K$. Thus x + z + u = y + z and xz + uz = (x + u)z = yz, so $x + z \leq y + z$ and $xz \leq yz$. Therefore \leq is a compatible partial order on K. Obviously, $0 \leq x$ for all $x \in K$. Hence K is a positive ordered semifield.

(4) Let K and L be positive ordered semifields. Define a relation \leq on $K \times L \cup \{(0, 0)\}$ by

 $(x, y) \le (z, w)$ if and only if $x \le z$ and $y \le w$ for all (x, y), $(z, w) \in K \times L \cup \{(0, 0)\}$. Then $K \times L \cup \{(0, 0)\}$ is a positive ordered semifield.

(5) Let K and L be positive ordered semifields such that K which is additively cancellative. Define a relation \leq on $K \times L \cup \{(0, 0)\}$ by $(x, y) \leq (z, w)$ if and only if x < z or x = z and $y \leq w$ for all $(x, y), (z, w) \in K \times L \cup \{(0, 0)\}$. Then $K \times L \cup \{(0, 0)\}$ is a positive ordered semifield.

Note that the partial order \leq defined in Example 2.6. (5), is called the <u>lexicographic</u> order.

Theorem 2.7. Let S be a positive ordered commutative semiring with multiplicative zero 0 having the M.C. property. If S satisfies that for every $x, y, z \in S$, xz < yz implies that x < y then S can be embedded into a positive ordered semifield.

Proof Using the construction of Theorem 1.28., we have that $K = \{S \times (S - \{0\})\}_{/\sim}$ is a semifield. Now define a relation \leq on K as follows : let $\alpha, \beta \in K$ $\alpha \leq \beta$ iff there exists $(a, b) \in \alpha$ and $(c, d) \in \beta$ such that $ad \leq bc$. To show that \leq is a partial order, clearly \leq is reflexive. Let $\alpha, \beta \in K$ be such that $\alpha \leq \beta$ and $\beta \leq \alpha$. Then there are $(a, b), (c, d) \in \alpha$ and $(e, f), (g, h) \in \beta$ such that $af \leq be$, $dg \leq ch$, ad = bcand eh = fg. Since $gd \leq ch$, $bcg = adg \leq ach$. Since $bcg \leq ach$, $bg \leq ah$. Since eh = fg, $bge \leq ahe = afg$. Then $be \leq af$. Since $af \leq be$ and $be \leq af$, be = af. Hence $\alpha = \beta$, so \leq is anti-symetric. Let α , β , $\gamma \in K$ be such that $\alpha \leq \beta$ and $\beta \leq \gamma$. Then there are $(a, b) \in \alpha$, (c, d), $(e, f) \in \beta$, $(g, h) \in \gamma$ such that $ad \leq bc$, $eh \leq fd$. Since $eh \leq fg$ and cf = de, $cfh = ehd \leq fgd$. Thus $ch \leq gd$, so $bch \leq bgd$. Since $ad \leq bc$ and $bch \leq bdg$, $adh \leq bch$. Therefore $ah \leq bg$. Hence $\alpha \leq \gamma$, so \leq is transitive. Therefore \leq is partial order. Let α , $\beta \in K$ be such that $\alpha \leq \beta$. Then there are $(a, b) \in \alpha$ and $(c, d) \in \beta$ such that $ad \leq bc$. Let $\gamma \in K$. Choose $(e, f) \in \gamma$. Since $ad \leq bc$, $adef \leq bcef$. Thus $\alpha\gamma = [(a, b)][(e, f)] =$ $[(ae, bf)] \leq [(ce, df)] = [(c, d)][(e, f)] = \beta\gamma$. Since $ad \leq bc$, $adf \leq bcf$. Then $f(adf + bde) \leq f(bcf + bde)$, $df(af + be) \leq bf(cf + de)$. It follows that $\alpha + \gamma = [(a, b)] + [(e, f)] = [(af+be, bf)] \leq [(cf + de, df)] = [(c, d)] + [(e, f)] =$ $\beta + \gamma$. Therefore \leq is compatible. Clearly, $0 \leq \alpha$ for all $\alpha \in K$.

Therefore K is a positive ordered semifield. Fix $a \in S - \{0\}$. Define $f: S \to K$ by f(x) = [(xa, a)] for all $x \in S$. Then f is a semiring homomorphism. To show that f is isotone, let $x, y \in S$ be such that $x \le y$. Then $(xa)a \le (ya)a$, so $f(x) = [(xa, a)] \le [(ya, a)] = f(y)$. Hence f is isotone. ___

Definition 2.8. Let C be a subset of a positive ordered semifield K. C is called a <u>convex subset</u> of K if is both an a-convex and o-convex subset of K.

Definiton 2.9. Let K be a positive ordered semifield.

The set $P = \{x \in K \mid x \ge 1\}$ is called the positive cone of K.

Remark 2.10. Let P be the positive cone of a positive ordered semifield K. Then the following statements hold:

(1) If $P = \{1\}$ then |K| = 2.

(2) P is a multiplicative subsemigroup of K.

(3) $1 + x \in P$ for all $x \in K$, hence P is an additive ideal of K, that is $K + P \subseteq P$.

(4) P is a conic subset of K where $P^{-1} = \{x^{-1} | x \in P\}$.

(5) P is a convex subset of K.

(6) For every $x \in K^*$, $x = ab^{-1}$ for some $a, b \in P$.

(7) For every $x, y \in P$, xy = 1 implies that x = y = 1.

(8) If H is a subsemifield of K then $P_H = P \cap H$ where $P_H = \{ x \in H \mid x \ge 1 \}$.

Proof (1) Assume that $P = \{1\}$. Let $x, y \in K$. Then $x \le x + y$ and $y \le x + y$. Thus $(x + y)x^{-1}$, $(x + y)y^{-1} \in P$. Since $P = \{1\}$, $(x + y)x^{-1} = (x + y)y^{-1} = 1$. Hence x = y.

(5) Let $x, y \in P$ and $a, b \in K$ be such that a + b = 1. Then $1 \le x$ and $1 \le y$, so $a \le ax$ and $b \le by$. Thus $1 = a + b \le ax + by$. Therefore $ax + by \in P$. Hence P is an a-convex subset of K. Clearly P is an o-convex subset of K.

(6) Let $x \in K$. Then there $y \in K$ such that $1 \le x$ and $x \le y$. Thus $y, yx^{-1} \in P$. Hence $x = y(yx^{-1})^{-1}$ has indicated form. #

Theorem 2.11. Let K be a semifield and $P \subseteq K$. Suppose that P satisfies that

(1) P is a multiplicative subsemigroup of K,

- (2) P is a conic subset of K,
- (3) $1 + x \in P$ for all $x \in K$ and
- (4) P is an a-convex subset of K.

Then there exists a unique positive compatible partial order on K induced by P such that P is the positive cone.

<u>Proof</u> Define \leq_{p} on K as follows: for every $x, y \in K$,

 $x \leq_{p} y$ if and only if x = 0 or $yx^{-1} \in P$.

Claim that \leq_p is a partial order. Since $l \in P$, \leq_p is reflexive. Let $x, y \in K$ be such that $x \leq_p y$ and $y \leq_p x$. Then x = 0 or $yx^{-1} \in P$ and y = 0 or $xy^{-1} \in P$.

<u>Case 1</u>. x = 0 and y = 0. Then x = y.

<u>Case 2</u>. x = 0 and $xy^{-1} \in P$, a contradiction.

<u>Case 3.</u> $yx^{-1} \in P$ and y = 0. Similar to Case 2. <u>Case 4.</u> yx^{-1} , $xy^{-1} \in P$. Then $xy^{-1} \in P \cap P^{-1}$. By (2), $xy^{-1} = 1$, so x = y. Therefore \leq_{p} is anti-symmetric. Let x, y, $z \in K$ be such that $x \leq_{p} y$ and $y \leq_{p} z$. Then x = 0 or $yx^{-1} \in P$ and y = 0 or $zy^{-1} \in P$. If x = 0 then done. Suppose that $x \neq 0$. Thus $yx^{-1} \in P$. If y = 0 then $0 = yx^{-1} \in P$, a contradiction. So $y \neq 0$, thus $zy^{-1} \in P$. By (1), $zx^{-1} = (zy^{-1})(yx^{-1}) \in P$. Hence $x \leq_{p} z$, so \leq_{p} is transitive. So we have the claim.

To show that \leq_p is a compatible, let $x, y \in K$ be such that $x \leq_p y$. Then x = 0 or $yx^{-1} \in P$. Let $z \in K$. Case 1. x = 0.

Subcase 1.1 z = 0. Then $0 = x + z \leq_p y + z$ and $0 = xz \leq_p yz$.

Subcase 1.2 $z \neq 0$. Then $0 = xz \leq_p yz$. By (3), $1 + yz^{-1} \in P$.

So $(y + z)z^{-1} \in P$, hence $x + z = z \le_p y + z$.

<u>Case 2</u>. $x \neq 0$. Then $yx^{-1} \in P$.

Subcase 2.1 z = 0. Then $0 = xz \le_p yz$ and $x + z = x \le_p y = y + z$. Subcase 2.2 $z \ne 0$. Then $(yz)(xz)^{-1} = yx^{-1} \in P$, so $xz \le_p yz$. By (4), $(y + z)(x + z)^{-1} = [x(x + z)^{-1}](yx^{-1}) + z(x + z)^{-1} \in P$. Hence $x + z \le_p y + z$. Therefore \leq_P is a compatible. Clearly, $0 \leq_P x$ for all $x \in K$ and P is the positive cone of K.

Hence K is a positive ordered semifield having P as a positive cone. To prove the uniqueness, let \leq^* be a compatible partial order of K such P is the positive cone. Let x, y \in K be such that $x \leq^* y$. If x = 0then done. Suppose that $x \neq 0$, so $1 \leq^* yx^{-1}$. Thus $yx^{-1} \in P$, so $x \leq_P y$. Hence $\leq^* \subseteq \leq_P$. Similarly, $\leq_P \subseteq \leq^*$. Therefore $\leq_P = \leq^*$, so \leq_P is the unique compatible partial order on K having P as its positive cone. # Corollary 2.12. Let K be a semifield. Let \mathscr{A} be the set of all subsets of K which satisfy (1) - (4) in the Theorem 2.11. and \mathscr{B} the set of all positive compatible partial orders on K. Then there exists an order isomorphism from \mathscr{A} onto \mathscr{B} .

Proof Define $\varphi : \mathscr{A} \to \mathscr{B}$ as follows : let $P \in \mathscr{A}$. Then Theorem 2.11. determines a unique positive compatible partial order \leq_p induced by P on K, define $\varphi(P) \equiv \leq_p$. Clearly φ is a bijection. To prove that φ is isotone, let P, $Q \in \mathscr{A}$ be such that $P \subseteq Q$. Then there exist compatible partial orders \leq_p and \leq_Q such that $P = \{x \in K \mid 1 \leq_p x\}$ and Q = $\{x \in K \mid 1 \leq_Q x\}$, respectively. Let $x, y \in K$ be such that $x \leq_p y$. If x = 0then done. Suppose that $x \neq 0$. Then $yx^{-1} \in P$. Since $P \subseteq Q$, $yx^{-1} \in Q$. Then $x \leq_Q y$. This prove that $\leq_p \subseteq \leq_Q$, so $\varphi(P) \subseteq \varphi(Q)$. Hence φ is isotone. It remains to prove that φ^{-1} is isotone, let $\leq, \leq^* \in \mathscr{B}$ be such that $\leq \subseteq \leq^*$. Let $x \in \varphi^{-1}(\leq)$. Then $1 \leq x$ since $\varphi^{-1}(\leq) = \{y \in K \mid 1 \leq y\}$. Since $\leq \subseteq$ \leq^* , $1 \leq^* x$. Thus $x \in \varphi^{-1}(\leq^*)$ where $\varphi^{-1}(\leq^*) = \{y \in K \mid 1 \leq^* y\}$. Therefore $\varphi^{-1}(\leq) \subseteq \varphi^{-1}(\leq^*)$, so φ^{-1} is isotone. Hence φ is an order isomorphism.

Definition 2.13. Let C be a convex subset of a positive ordered semifield K. C is said to be a convex subgroup of K if C is a multiplicative subgroup of K^* .

<u>Definition 2.14.</u> Let K and M be positive ordered semifields. A function $f: K \rightarrow M$ is called an <u>order homomorphism</u> of K into M if f is an isotone homomorphism of semifields.

An order homomorphism $f: K \to M$ is called an <u>order</u> monomorphism iff f is injection and $f(P_K) = P_{f(K)}$, an <u>order epimorphism</u> if f is onto and $f(P_K) = P_M$ and an <u>order isomorphism</u> if f is bijection and f^{-1} is isotone. If there exists an order isomorphism of K onto M then we say that K and M are <u>order isomorphic</u>, denoted by $K \cong_0 M$.

Remark 2.15. Let $f: K \rightarrow M$ be an order homomorphism of positive ordered semifields. Then the following statements hold :

(1) $f(P_K) \subseteq P_M$.

(2) ker f is a convex subgroup of K.

(3) If C' is a convex subgroup of M then $f^{-1}(C')$ is a convex subgroup of K containing ker f.

Proof (1) Obviously.

(2) By Remark 1.37 (2), ker f is an a-convex subgroup of K. Let x, y \in ker f and $z \in K$ be such that $x \le z \le y$. Since f is isotone, $1 = f(x) \le f(z) \le f(y) = 1$. Hence f(z) = 1, so $z \in$ ker f. Therefore ker f is a convex subgroup of K.

(3) By Remark 1.37 (3), $f^{-1}(C')$ is an a-convex subgroup of K. Let $x \in f^{-1}(C')$ and $z \in K$ be such that $x \le z \le y$. Since f is isotone,

 $f(x) \le f(z) \le f(y)$. By the o-convexity of C', $f(z) \in C'$. So $z \in f'(C')$, hence $f^{-1}(C')$ is a convex subgroup of K. #

<u>Proposition 2.16.</u> Let $f: K \to M$ be an order homomorphism of positive ordered semifields and f is a bijection. Then f^{-1} is isotone iff $f(P_K) = P_M$.

Proof Assume that f^{-1} is isotone. Clearly, $f(P_K) \subseteq P_M$. Let $y \in P_M$. Then $y \ge 1$. Since f is onto, f(x) = y for some $x \in K$. Since f^{-1} is isotone, $1 = f^{-1}(1) \le f^{-1}(y) = f^{-1}(f(x)) = x$. Thus $x \in P_K$, so $y \in f(P_K)$, it follows that $P_M \subseteq f(P_K)$. Therefore $f(P_K) = P_M$.

Conversely, assume that $f(P_K) = P_L$. Let x, $y \in L$ be such that $x \leq y$. If x = 0 then done. Suppose that $x \neq 0$. Then $yx^{-1} \in P_L$. By assumption, there exists $p \in P_K$ such that $f(p) = yx^{-1}$. Since f is onto, there are a, $b \in K$ such that f(a) = x and f(b) = y. Then $f(p) = yx^{-1} = f(b)f(a)^{-1} = f(ba^{-1})$. Since f is 1-1, $ba^{-1} \in P_K$. So $b \geq a$. Therefore $f^{-1}(x) = f^{-1}(f(a)) = a \leq b = f^{-1}(f(b)) =$ $f^{-1}(y)$. Hence f^{-1} is an isotone.

Let C be a convex subgroup of a positive ordered semifield K. Then $K_{/C}$ is a semifield. Define a relation \leq on $K_{/C}$ as follows: for $\alpha, \beta \in K_{/C}$, define $\alpha \leq \beta$ if and only if there are $a \in \alpha$ and $b \in \beta$ such that $a \leq b$. To show that \leq is a partial order, it is clear that \leq is reflexive. Let $\alpha, \beta \in K_{/C}$ be such that $\alpha \leq \beta$ and $\beta \leq \alpha$. Then there are $a, d \in \alpha$ and $b, c \in \beta$ such that $a \leq b$ and $c \leq d$. Case 1. c = 0. Then b = 0 since $b \in \beta = \{0\}$, so a = 0. Therefore $\alpha = aC = \{0\} = bC = \beta$. Case 2. d = 0. Hence c = 0, so $\alpha = \{0\} = \beta$.

<u>Case 3.</u> $c \neq 0$ and $d \neq 0$. By definition of α and β , bc^{-1} , $ad^{-1} \in C$. Thus $ad^{-1} \leq bd^{-1} \leq bd^{-1} \leq bc^{-1}$. Since C is o-convex, $bd^{-1} \in C$. Hence $\beta = bC = dC = \alpha$. Therefore \leq is anti-symmetric.

Let α , β , $\gamma \in K_{/C}$ be such that $\alpha \leq \beta$ and $\beta \leq \gamma$. Then there exists $a \in \alpha$, b, $c \in \beta$ and $d \in \gamma$ such that $a \leq b$ and $c \leq d$. If c = o then b = 0, so a = 0. Hence $\alpha = [0] \leq \gamma$. Suppose that $c \neq 0$. By definition of β , $bc^{-1} \in C$. Then $(bd)c^{-1} \in dC = \gamma$. Since $a \leq (bc)c^{-1} \leq (bd)c^{-1}$, $\alpha = aC \leq dC = \gamma$. Therefore \leq is transitive, hence \leq is a partial order.

Next, to show that \leq is compatible, let α , $\beta \in K_{/C}$ be such that $\alpha \leq \beta$. Then there exists $a \in \alpha$ and $b \in \beta$ such that $a \leq b$. Let $\gamma \in K_{/C}$. Choose $c \in \gamma$. Then we have that $a + c \leq b + c$ and $ac \leq bc$. So $\alpha + \gamma = aC + cC = (a + c) C \leq (b + c)C = bC + cC = \beta + \gamma$ and $\alpha\gamma = (aC)(cC) = (ac) C \leq (bc)C = (bC)(cC) = \beta\gamma$. Thus \leq is a compatible on $K_{/C}$. Clearly, $\{0\} \leq \alpha$ for all $\alpha \in K_{/C}$. Therefore $K_{/C}$ is a positive ordered semifield.

From the above, we define \leq^* on $K_{/C}$ as follows: let $\alpha, \beta \in K_{/C}$ define by $\alpha \leq \beta$ if and only if for every $a \in \alpha$, there exists $b \in \beta$ such that $a \leq b$. Then we get that \leq^* is a positive compatible partial order on $K_{/C}$.

Remark 2.17. (1) The two definitions of compatible partial order of $K_{/C}$ as above are equivalent.

(2) Every element of $K_{/C}$ is a convex subset of K.

Proof (1) Obviously, $\leq^* \subseteq \leq$. Let $\alpha, \beta \in K_{/C}$ be such that $\alpha < \beta$. If $\alpha = 0$ then done. Suppose that $\alpha \neq 0$. Then there exist $a \in \alpha$ and $b \in \beta$ such that $a \leq b$. Since $\alpha \neq 0, a \neq 0$. Let $c \in \alpha$. By the definition of α , $ca^{-1} \in C$. Since $a \leq b, 1 \leq ba^{-1}$. So $c \leq c(ba^{-1})$ and $c(ba^{-1}) = b(ca^{-1}) \in bC = \beta$, hence $\alpha \leq^* \beta$. Therefore $\leq^* \subseteq \leq$, so $\leq^* = \leq$.

To prove (2), let $\alpha \in K/C$. If $\alpha = [0]$ then done. Suppose that $\alpha \neq [0]$. Let x, y $\in \alpha$ and $z \in K$ be such that $x \leq z \leq y$. Since $\alpha \neq [0]$, $x \neq 0$. So $1 \leq zx^{-1} \leq yx^{-1}$. By the definition of α , $yx^{-1} \in C$. Since C is o-convex, $zx^{-1} \in C$. Thus $z = x(zx^{-1}) \in xC = \alpha$. Let a, b $\in K$ be such that a + b = 1. Since C is a-convex, $a + b(yx^{-1}) \in C$. So $ax + by = x[(ax + by)x^{-1}]$ $= x[a + b(yx^{-1})] \in xC = \alpha$. Therefore α is a convex subset of K. #

Proposition 2.18. Let K be a positive ordered semifield and C a convex subgroup of K. Then there exists a positive compatible partial order on $K_{/C}$ such that the projection map Π is an order epimorphism of K onto $K_{/C}$.

Proof Define $\Pi: K \to K_{/C}$ by $\Pi(x) = xC$ for all $x \in K$. Then Π is an onto homomorphism, let $x, y \in K$ be such that $x \le y$. So $\Pi(x) = xC \le yC$ $= \Pi(y)$. Hence Π is an isotone, so $\Pi(P_K) \subseteq P_{K_{/C}}$.

Let $\alpha \in P_{K_{/C}}$. Then $\alpha \ge C$, so there are $c \in C$ and $a \in \alpha$ such that $c \le a$. Thus $ac^{-1} \in P_{K}$. Hence $\prod(ac^{-1}) = (ac^{-1})C = aC = \alpha \in \prod(P_{K})$, hence $P_{K_{/C}} \subseteq \prod(P_{K})$. Therefore \prod is an order epimorphism. #

Corollary 2.19. An a-convex subgroup C of a positive ordered semifield K. Then C is the kernel of some order homomorphism iff it is an o-convex subset of K.

4()

Proof Assume that C is the kernel of some order homomorphism. By Remark 2.15. (2), C is an o-convex subset of K.

The converse follows from Proposition 2.18., "

Theorem 2.20. (First Isomorphism Theorem)

Let $f: K \to M$ be an order epimorphism of positive ordered semifields. Then $K_{\text{kerf}} \cong M$.

Proof Let φ be the isomorphism defined in the proof of Theorem 1.45..

To show that φ is isotone, let $x, y \in K$ be such that $x \ker f \le y \ker f$. Then there are $a, b \in \ker f$ such that $xa \le yb$. If y = 0 then done. Suppose that $y \ne 0$. So $xy^{-1} \le ba^{-1}$. Since f is isotone and $ba^{-1} \in \ker f$, $f(xy^{-1}) \le f(ba^{-1}) = 1$. Thus $f(x) \le f(y)$, so φ is isotone.

Next, we shall prove that φ^{-1} is isotone. Since f is an order epimorphism, $f(P_K) = P_M$. Let $y \in P_M$. Then there exists $x \in P_K$ such that f(x) = y. So xker $f \in P_{K_{/ker} f}$. Then $\varphi(xker f) = f(x) = y \in \varphi(P_{K_{/ker} f})$. This show that $P_M \subseteq \varphi(P_{K_{/ker} f})$. By Proposition 2.16., φ^{-1} is isotone. Therefore φ is an order isomorphism, so $K_{/ker} f \cong M$.

Lemma 2.21. Let K be a positive ordered semifield, H a subsemifield of K and C a convex subgroup of K. Then $H \cap C$ is a convex subgroup of H. And HC is a subsemifield of K.

<u>Proof</u> By Lemma 1.46., we shown that $H \cap C$ and HC are a-convex subgroup of H and a subsemifield of K, respectively. It remains to prove

that $H \cap C$ is an o-convex of subgroup H, let $x, y \in H \cap C$ and $z \in H$ be such that $x \le z \le y$. By the o-convexity of C, $z \in C$. Then $H \cap C$ is a convex subgroup of H, as required. #

Theorem 2.22. (Second Isomorphism Theorem)

Let H be a subsemifield of a positive ordered semifield K. Let C be a convex subgroup of K such that $P_{HC} \subseteq P_{H}$. Then $H_{H \cap C} \cong HC_{C}$.

Proof Let φ be the epimorphism given in the proof of Theorem 1.47. To show that $\varphi(P_H) = P_{HC_{/C}}$, let $x \in P_H$. Then $x \in H$ and $x \ge 1$. So $\varphi(x) = xC \ge C$, hence $\varphi(P_H) \subseteq P_{HC_{/C}}$. Let $\alpha \in P_{HC_{/C}}$. Then there exists an $a \in P_{HC}$ such that $aC = \alpha$. Since $P_{HC} \subseteq P_H$, $a \in P_H$. Therefore $\varphi(a) = aC =$ $\alpha \in \varphi(P_H)$. Hence $P_{HC_{/C}} \subseteq \varphi(P_H)$. Therefore $\varphi(P_H) = P_{HC_{/C}}$, so φ is an order epimorphism and we have that ker $\varphi = H \cap C$. By Theorem 2.20., $H_{/H} \cap C \cong HC_{/C} : \#$

Lemma 2.23. Let D and H be convex subgroups of a positive ordered semifield K such that $H \subseteq D$. Then $D_{/H}$ is a convex subgroup of $K_{/H}$.

Proof By Lemma 1.48. we proved that $D_{/H}$ is an a-convex subgroup of $K_{/H}$. Let α , $\beta \in D_{/H}$ and $\gamma \in K_{/H}$ be such that $\alpha \leq \gamma \leq \beta$. Then there are $a \in \alpha$, $b, c \in \gamma$ and $d \in \beta$ such that $a \leq b$ and $c \leq d$. By the definition of γ , $cb^{-1} \in H$, since $H \subseteq D$, $cb^{-1} \in D$. Claim that $a, d \in D$. There is $x \in D$ such that $\alpha = xH$. Since $a \in \alpha$, there exists $h \in H$ such that a = xh. Since $H \subseteq D$, $a = xh \in D$. Similarly, $d \in D$. So we have the claim. Thus $da^{-1} \in D$. Since $a \leq b$ and $c \leq d$, $cb^{-1} \leq ca^{-1} \leq da^{-1}$. By the o-convexity of D,

ca⁻¹ \in D. Since $a \in D$, $c \in D$, $\gamma = cH \in D_{/H}$, so $D_{/H}$ is a convex subgroup of $K_{/H}$.

Theorem 2.24. (Third Isomorphism Theorem)

Let K be a positive ordered semifield, D and H are convex subgroups of K such that $H \subseteq D$. Then $(K/H)/(D/H) \cong K/D$.

Proof Let φ be the epimorphism given in the proof of Theorem 1.49. show that $\varphi(P_{K_{/_H}}) = P_{K_{/_D}}$, let $\alpha \in K_{/_H}$ be such that $H \leq \alpha$. Then there are $a \in \alpha$ and $h \in H$ be such that $h \leq a$. Since $H \subseteq D$, $h \in D$. Thus $\varphi(\alpha) = \varphi(aH) = aD$. Since $h \leq a$ and $h \in D$, $\varphi(\alpha) = aD \geq D$, so $\varphi(\alpha) \in P_{K_{/_D}}$. Let $\alpha \in P_{K_{/_D}}$. Then $\alpha \geq D$. Then there exist $x \in D$ and $a \in \alpha$ such that $a \geq x$. So $xH \leq aH$. Thus $(ax^{-1})H \in P_{K_{/_H}}$ and $\varphi((ax^{-1})H) = (ax^{-1})D = aD =$ $\alpha \in \varphi(P_{K_{/_H}})$. Hence $\varphi(P_{K_{/_H}}) = P_{K_{/_D}}$. Therefore φ is an order epimorphism and ker $\varphi = D_{/_H}$, by Theorem 2.20., $(K_{/_H})_{/(D_{/_H})} \cong K_{/_D}$.

Proposition 2.25 Let $f: K \to M$ be an epimorphism of positive ordered semifields. If C' is a convex subgroup of M then $K/f^{-1}(C) \cong M/C'$.

Proof By Remark 2.15. (3), f'(C') is a convex subgroup of K. Let φ be an epimorphism as the proof of Theorem 1.50.. To show that φ is isotone, let $x, y \in K$ be such that $x \leq y$. Since f is isotone, $f(x) \leq f(y)$. So $\varphi(x) = f(x)C' \leq f(y)C' = \varphi(y)$. Hence φ is isotone. Let $\alpha \in P_{M/C}$. Then $C' \leq \alpha$, so there are $a \in \alpha$ and $c \in C'$ such that $c \leq a$. Hence $ac^{-1} \in P_M$. Since $f(P_K) = P_M$, $f(p) = ac^{-1}$ for some $p \in P_K$. Then

 $\varphi(p) = f(p)C' = (ac^{-1})C' = aC' = \alpha \in \varphi(P_K)$. So $P_{M_{/C'}} \subseteq \varphi(P_K)$. By Proposition 2.16., φ^{-1} is isotone. Therefore φ is order isomorphism and we have that ker $\varphi = f^{-1}(C')$. By Theorem 2.20., $K_{/f}^{-1}(C') \cong M_{/C'}$. #

Proposition 2.26. Let K be a positively ordered semifield, C a convex subgroup of K, and P the positive cone of K. Let $\Pi: K \to K_{/C}$ be the projection map. Then $\Pi(P)$ is the positive cone of $K_{/C}$. Furthermore, if $P - C \neq \emptyset$ then P - C is a multiplicative subsemigroup of C.

Proof: Clear that $\Pi(P)$ is the positive cone of $K_{/C}$.

Let $x, y \in P - C$. Then $xy \in P$. Suppose that $xy \in C$. Then xyC = C. Since $x,y \in P$, xC and $yC \in \Pi(P)$. So (xC)(yC) = xyC = C. Since $\Pi(P)$ is the positive cone of $K_{/C}$, xC = yC = C. Thus $x, y \in C$, a contradiction.

Hence $xy \notin C$, so $xy \notin P - C$.

Theorem 2.27. Let P be a commutative semiring with 1. Then there exists a positive ordered semifield K having its the positive cone isomorphic to P iff P satisfies the following statements :

- (1) P is M.C. with zero,
- (2) for every $x, y \in P$, xy = 1 implies x = y = 1,
- (3) for every x, y, a, $b \in P$ there is $d \in P$ such that ax + by = da + db.

Proof Let K be the semifield as in Theorem 1.27.. Define a relation on K as follows: for $\alpha, \beta \in K$. $\alpha \leq \beta$ iff there exists $(a, b) \in \alpha$, $(c, d) \in \beta$ and $p \in P$ such that pad = bc and $0 \leq \alpha$ for all $\alpha \in K$.

To show that \leq is compatible on K, it is clear that \leq is reflexive. Let $\alpha, \beta \in K$ be such that $\alpha \leq \beta$ and $\beta \leq \alpha$. There exist (a, b), $(x, y) \in \alpha$, (c, d), $(z, w) \in \beta$ and $p, q \in P$ such that pad = bc and qyz =xw. Since ay = bx, (ay)w = (bx)w = b(xw) = b(qyz). By (1), aw = qbz. Then daw = dqbz. Since cw = zd, daw = cwbq. By (1), da = cbq. Since bc = pad, ad = padq. By (1), we have 1 = pq. By (2), p = q = 1. Thus ad = bc, hence $\alpha = \beta$. Thus \leq is anti-symmetric. Let $\alpha, \beta, \gamma \in K$ be such that $\alpha \leq \beta$ and $\beta \leq \gamma$. Then there are $(a, b) \in \alpha$, (c, d), $(e, f) \in \beta$, $(g, h) \in \gamma$ and $p, q \in P$ such that pad = bc and qeh = fg. Since qeh = fg, qehc = fgc. Then gehc = fgc. fgc = deg. By (1), qhc = dg. Then paqhc = padg. Since pad = bc, pahqc =bcg. By (1), alpq = bg. Hence $\alpha \leq \gamma$, so \leq is transitive. Let α , $\beta \in K$ be such that $\alpha \leq \beta$. Then there exist $(a, b) \in \alpha$, $(c, d) \in \beta$ and $p \in P$ such that pad = bc. Let $\gamma \in K$. Choose (e, f) $\in \gamma$. Then padef = bcef. Thus $\alpha \gamma \leq \beta \gamma$. And by (3), there exists $q \in P$ such that adfp + bde = qadf + qbde. Then qd(af + be) = bcf + bde = b(cf + de), so qdf(af + be) = bf(cf + de). Hence $\alpha + \gamma \leq \beta + \gamma$. Therefore \leq is a compatible partial order.

Define $\varphi : P \to K$ by $\varphi(x) = [(x, 1)]$ for all $x \in P$. We have that φ is a monomorphism. To show that $\varphi(P) = \{\alpha \in K \mid \alpha \ge [(1, 1)]\}$, let $x \in P$. Then $\varphi(x) = [(x, 1)] \ge [(1, 1)]$. Thus $\varphi(x) \in \{\alpha \in K \mid \alpha \ge [(1, 1)]\}$. Let $\beta \in \{\alpha \in K \mid \alpha \ge [(1, 1)]\}$. Then there exists $(a, b) \in \beta$ and $p \in P$ such that pb = a. Thus $\varphi(p) = [(p, 1)] = [(bp, b)] = [(a, b)] = \beta \in \varphi(P)$. Hence $\varphi(P) = \{\alpha \in K \mid \alpha \ge [(1, 1)]\}$, $P \cong \varphi(P)$. This proves that $\varphi(P)$ is the positive cone of K.

Conversely, let P be a positive cone of some positive ordered semifield K. Then (1) and (2) clearly hold. Let x, y, a, $b \in P$. By the

a-convexity of P, $(ax + by)(a + b)^{-1} = [a(a + b)^{-1}]x + [b(a + b)^{-1}]y \in P$. Then $(ax + by)(a + b)^{-1} = p$ for some $p \in P$. Thus ax + by = pa + pb, (3) holds. # Definition 2.28. Let K be a semifield and C an a-convex subgroup of K. A compatible partial order on C is a partial order \leq on C such that for every x, y, z \in C, x \leq y implies xz \leq yz.

Proposition 2.29. Let C be an a-convex subgroup of semifield K. Let \leq be a compatible partial order on C and \leq * a compatible partial order on semifield K/_C. Suppose that

(1) for every x, $y \in P_C$ and a, $b \in K$ are such that a + b = 1, $ax + by \in P_C$ where $P_C = \{x \in C \mid x \ge 1\}$

(2) for every $x \in K$, $1 + x \in C$ implies $1 + x \in P_c$.

(3) for every $x \in C$, $y \in \bigcup_{\alpha \in P_{K,C}^{-\{C\}}} \alpha$ and $a, b \in K$ such that

a + b = 1 and $ax + by \in K - C$.

Then there exists a compatible partial order \leq on K such that \leq is the restriction of the partial order on C and the projection map Π is an order epimorphism.

Proof Let $P = P_C \cup \bigcup_{\alpha \in P_{K/C}^{-\{C\}}}$. We shall show that P satisfies (1) - (4) of Theorem 2.11. (1) Let x, y $\in P$

<u>Case 1</u>, $x, y \in P_C$. Then $xy \in P_C \subseteq P$.

<u>Case 2.</u> $x \in P_C$ and $y \in \beta$ for some $\beta \in P_{K/C} - \{C\}$. Thus $xy \in \bigcup_{\alpha \in P_{K/C} - \{C\}}^{\mathcal{O}}$.

<u>Case 3.</u> $x \in \alpha$ and $y \in \beta$ for some $\alpha, \beta \in P_{K_{/c}} - \{C\}$. Then (xy)C = (xC) $(yC) = \alpha\beta \in P_{K_{/C}}$. If $xy \in C$ then $C = (xy)C = \alpha\beta$. Thus $\alpha = \beta = C$, a contradiction. Thus $xy \notin C$, so $xy \in P_{K_{/r}} - \{C\}$. Hence $P^2 \subseteq P$. (2) Let $x \in P \cap P^{-1}$. Then $x, x^{-1} \in P$. <u>Case 1.</u> $x, x^{-1} \in P_C$. Thus $x, x^{-1} \ge 1$, so x = 1. <u>Case 2.</u> $x \in P_C$ and $x^{-1} \in \beta$ for some $\beta \in P_{K/C} - \{C\}$. Then $C = (xx^{-1})C =$ $(\mathbf{x}\mathbf{C})(\mathbf{x}^{-1}\mathbf{C}) = \mathbf{C}\boldsymbol{\beta} = \boldsymbol{\beta}$, a contradiction. <u>Case 3.</u> $x \in \alpha$ and $y \in \beta$ for some $\alpha, \beta \in P_{K/C} - \{C\}$. So $C = (xx^{-1})C = (xC)$ $(x^{-1}C) = \alpha\beta$. Thus $\alpha = \beta = C$, a contradiction. Therefore $P \cap P^{-1} = \{1\}$. (3) Let $x \in K$. <u>Case 1.</u> 1 + x \notin C. Then (1 + x)C = C + xC $\in P_{K_{/C}}$. Thus 1 + x $\in \bigcup_{\alpha \in P_{K_{/C}}} \alpha$ since $1 + x \notin C$ <u>Case 2.</u> $1 + x \in C$. Then $1 + x \in P_C$. Hence $1 + x \in P$ for all $x \in K$. (4) Let $x, y \in P$ and $a, b \in K$ be such that a + b = 1. So we have that aC + bC = C. <u>Case 1</u>, $x, y \in P_C$, so done. <u>Case 2.</u> x, y $\in P_c$ and y $\in \beta$ for some $\beta \in P_{K/c} - \{C\}$. Thus $y \in \bigcup_{\alpha \in P_{K/c}} \alpha$. so by assumption $ax + by \in K - C$. Since aC + bC = C and $\alpha, \beta \in P_{K_{lor}}$. $(ax + by)C = (aC)\alpha + (bC)\beta \in P_{K_{/C}}$. Therefore $(ax + by)C \in P_{K_{/C}} - \{C\}$, so $ax + by \in \bigcup_{\alpha \in P_{K,C}^{-\{C\}}}^{} \alpha.$

<u>Case 3.</u> $x \in \alpha$ and $y \in \beta$ for some $\alpha, \beta \in P_{K_{/C}} - \{C\}$. Then $x, y \in \bigcup_{\alpha \in P_{K,C}} \alpha$

so $(ax + by)(a + by)^{-1} = [a(a + b)^{-1}]x + [b(a + b)^{-1}]y \in K - C$ and $a + by = [b(a + b)^{-1}]y + a(a + b)^{-1} \in K - C$. If $ax + by \in C$ then $C = (ax + by)C = [(ax + by)(a + by)^{-1}]C(a + by)C$. Since $[(ax + by)(a + by)^{-1}]C$ and $(a + by)C \in P_{K/C}$, $[(ax + by)(a+by)^{-1}]C = (a + by)C = C$. So $a + by \in C$, a contradiction. Thus $ax + by \notin C$. Hence $ax + by \in \bigcup \alpha_{\alpha \in P_{K/C}}^{\alpha}$, so P is an a-convex subset of K. By Theorem 2.11., P is the positive cone of K. Let \leq' be a positive compatible partial order induced by P.

Next, to show that \leq is the restriction of \leq' on C, let $x, y \in C$ be such that $x \leq y$ in C. Then $yx^{-1} \in P$. Since $yx^{-1} \in C$, $yx^{-1} \in P_C$. Thus $y \geq x$. Hence \leq is the restriction of \leq' on C.

Finally, to prove that $\Pi(P) = P_{K_{/C}}$, let $x \in P$.

<u>Case 1.</u> $x \in P_C$. Then $x \in C$, $\Pi(x) = xC = C \in P_{K/C}$.

<u>Case 2.</u> $x \in \beta$ for some $\beta \in P_{K/C} - \{C\}$. So $\Pi(x) = xC = \beta \in P_{K/C} - \{C\} \subseteq P_{K/C}$. Therefore $\Pi(P) \subseteq P_{K/C}$. Let $\beta \in P_{K/C}$.

<u>Case 1.</u> $\beta = C$. Then $\Pi(1) = C = \beta \in \Pi(P_C) \subseteq \Pi(P)$.

<u>Case 2.</u> $\beta \neq C$. Then $\beta \in \bigcup_{\alpha \in P_{K_{C}}^{-\{C\}}} \alpha$. Choose $x \in \beta$. Then $\Pi(x) = xC =$

 $\beta \in \Pi(\bigcup_{\alpha \in P_{K/C}^{-\{C\}}}) \subseteq \Pi(P)$. Hence $P_{K/C} \subseteq \Pi(P)$, so $\Pi(P) = P_{K/C}^{-\{C\}}$. #

Definition 2.30. Let $\{K_i \mid i \in I\}$ be a family of positive ordered semifields. The direct product of a family $\{K_i \mid i \in I\}$, denoted by $\prod_{i \in I} K_i$, defined as a direct product semifield with natural partial order \leq , that is for every $(x_i)_{i \in I}$, $(y_i)_{i \in I} \in \prod_{i \in I} K_i$,

$$(x_i)_{i \in I} \leq (y_i)_{i \in I}$$
 iff $x_i \leq y_i$ for all $i \in I$.

Remark 2.31. Let $\{K_i \mid i \in I\}$ be a family of positive ordered semifields. Then $P_{\prod_{i \in I} K_i} = \prod_{i \in I} P_i$ where $P_i = \{x \in K_i \mid x \ge 1_i\}$ for all $i \in I$.

<u>Proposition 2.32.</u> Let $\{K_i \mid i \in I\}$ be a family of positive ordered semifields and C_i a convex subgroup of K_i for all $i \in I$. Then $\prod_{i \in I} C_i$ is a convex subgroup of $\prod_{i \in I} K_i$ and $\prod_{i \in I} K_i / \prod_{i \in I} C_i \cong \prod_{i \in I} (K_i/C_i)$.

Proof Let φ be an epimorphism as the proof of Proposition 1.53., To show that φ is isotone, let $(x_i)_{i \in P} (y_i)_{i \in I} \in \prod_{i \in I} K_i$ be such that $(x_i)_{i \in I} \leq (y_i)_{i \in I}$. Then $x_i \leq y_i$ for all $i \in I$, $x_iC_i \leq y_iC_i$ for all $i \in I$. Hence $\varphi((x_i)_{i \in I}) = (x_iC_i)_{i \in I} \leq (y_iC_i)_{i \in I} = \varphi((y_i)_{i \in I})$. Hence φ is isotone, so $\varphi(P_{\prod_{i \in I} K_i}) \subseteq P_{\prod_{i \in I} (K_{ij}C_i)}$. Next, let $(x_iC_i)_{i \in I} \in P_{\prod_{i \in I} (K_{ij}C_i)}$. Then $(x_iC_i)_{i \in I} \geq (C_i)_{i \in I}$ so $x_iC_i \geq C_i$ for all $i \in I$. Thus there exist c_i , $d_i \in C_i$ such that $x_ic_i \geq d_i$ for all $i \in I$. Thus $(x_ic_i)d_i^{-1} \in P_{K_i}$ for all I, so $((x_ic_i)d_i^{-1})_{i \in I} \in P_{\prod_{i \in I} K_i}$. Then $\varphi((((x_ic_i)d_i^{-1})_{i \in I})) = ([(x_ic_i)d_i^{-1}]C_i)_{i \in I} = (x_iC_i)_{i \in I} \in \varphi(P_{\prod_{i \in I} K_i})$, hence $P_{\prod_{i \in I} (K_i/C_i)} \subseteq \varphi(P_{\prod_i K_i})$. Therefore φ is an order epimorphism. Clearly ker $\varphi = \prod_{i \in I} C_i$, by Theorem 2.20., $\prod_{i \in I} K_i / \prod_{i \in I} C_i \cong \prod_{i \in I} (K_i/C_i)$. # Proposition 2.33. Let D be a partially ordered semiring. If (D_i) , is a group then D can be embedded into a positive ordered semifield iff for every x_i , $y \in D_i$, $x \leq x + y$.

Proof Obviously. #