Chapter Vv

Numerical Techniques

4.1 Forward and Inverse Fourier Transforms in
Two Dimensions

We consider magnetohydrostatics in the case where « is a constant in thé
force-free magnetic field modeling. The techniques which we used to solve this
problem involve two-dimensional Fourier transforms (Bracewell, 1986), so we use
the fast Fourier transform as a numerical technique. The Fourier transform (FT)
is a very useful and simple method for solving linear equations.

A two-dimensional function f(z,y) has a two-dimensional transform F(u, v),

and the relations between the two are

F(u,v) = f_m f.mf(:c, y)e st W drdy, (4.1)

which is called the (forward) Fourier transform and -

fz,y) = j_ ‘: j_ :F(u,u)eﬂﬂ"=+"v)dudu, (4.2)

the inverse Fourier transform.

These equations explain the analysis of the two-dimensional function
f(z,y) in the form of waves e2"*+%) In our thesis work, we use both for-
ward and inverse Fourier transforms and use functions f(x,y) and F(u,v) as

B(z,y) and B(u,v), which represent the magnetic field in 2-y space and u-v




33

space, respectively. First, we use the forward Foﬁrier transform to transform
the boundary condition By(z,y,0) to Bi(u,v,0). Then we solve the force-free
field equation by our generalized equations, as described in Chapter II. Then we
will have the solution in three di:ﬁensions, and finally we use the inverse Fourier
transforms to convert B back to B in rectangular spatial coordinates. For the
numerical technique we approximated these integrals discretely and used the fast

Fourier transform method, which is a standard, efficient method for this problem.

4.2 Discrete Fourier Transform in Two Dimen-
sions

In the previous section we showed the Fourier integral, but in our work
the input data (from a magnetogram) are represented by a finite set of discrete
values. Thus eq. (4.1) can be approximated by a discrete Fourier transform of a

finite number of data points Ny x N; (Press et al, 1992):

Nyg=1 M—~1 )
F(uﬂnvﬂn) ~ Z E f(mj:yk) e—m(unlzj-'-u"’“)AlA% (4'3)

k=0 j=0
and similarly, the inverse Fourier transform becomes

1 Ni—1 Ni-1

Fl@s,u) & NN, mzzﬂ nlZzn_F(r.cm,vu,) e2milun A Ay (4.4) |
where
z; = jA;, j=0,1,2...,N -1
e = kB, k=0,1,2,...,No—1
U, = F:%:, n=0...,N—1
v, = N':IAQ ,ng=0,...,Ny—1
and

F(um, Unz) B Fm,nzAlA2 )
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s0 we can rewrite eq. (4.3) as

N3—1 N;-1

Fam= Y X f(zj ) e 2mmd/Nitnak/Na) (4.5)
k=0 j=0
and eq. (4.4) Bs.
1 N3=1 Ni~1 o '
f(a:,-,yk) T z Z F(un“vm) g2ri(m1j/Ni4nak/Na) (4.6)
Nl N2 na=0 n;=0

For_ our work we use A; = 1/ éoscp and A; = 1, where ¢ is the angle
between the line of sight and the vertical direction, so A; depends on the line of
sight angle. The input data have 1 pixel per arc second, so we are using length
units of 1” or .about 3288 km at the solar surface. We assume that F' and f are
periodic with period N A,, NoAg, 1/A;, and 1/A; in z, y, u and v, respectively.
Thus a problem which occurs when we use the discrete FT is called aliasing,
which means that the periodicity can affect our results (a numerical artifact).
We resolved this problem by expanding the boundaries to a width of twice the
width of the region of interest, and setting the data outside the region of interest
to zero to essentially eliminate the effect of the periodicity assumption in our

program.

4.3 Magnetic Field Line Visualization

When we obtained the magnetic field in three dimensions from the Fourier

| transform, next we created a magnetic field line which is defined as a curve which
is tangent at any point to the direction of the field. There is no limit‘ to the
number of lines which may be drawn in a given flow field, since they are lines and

have no thickness. The differential equation determining these lines is

dl x B =0, (4.7)
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where dl is a small displacement vector along the magnetic field with components

(dz, dy and dz) and B is the magnetic field vector. Then

(dzi+dyj+dzk) x (B;i+B,j+B.k) =0, (4.8)
i 3 k|
dz dy dz |=0
‘B: By BZ -

(B:dy — Bydz)i + (B.dz — B,dz)j + (B,dz — B dy)k = 0.

The solution of this equation is

D . i . (49)

where B;, B, and B, are the z, y and z components of the magnetic field.

For our thesis, we set

e Vel WML (4.10)

where ds = v/dz* + dy* + dz* and |B| = ,/B2 + B2 + B2, This equation will give
us the magnetic field line, starting from each initial point on the solar surface
(photosphere). For this work, we choose ds = 0.01 arc second as the step size

near the spot and use 0.1 arc second as the step far from the boundary.

4.4 Selection of Initial Points of Visualized Mag-
netic Field Lines

The initial points of visualized magnetic field lines are chosen so that the
density of the points is proportional to the magnitude of the magnetic field. To
accomplish this, we have developed a novel technique. We start with an initial

_distribution of n points in a plane, and move the points in order to minimize the

functional

V= $(@; - 30)?, (4.11)

i=1

1132 A NOA4
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where ®; is the estimated magnitude of the flux of B, through a triangle including
point ¢ and its two nearest neighbors, and &, is the total flux divided by n. The
goal is to achieve a spacing of points such that each triangle contains a flux close

to Qo.

4.5 Interpolation and Image Drawing Method

4.5.1 Linear interpolation

Linear interpolation is the simplest way to find an unknown value between
two known data points in one dimension (Figure 4.1).

’

Fp(x)
® 03 ‘ *
F(x;) P F (x;+ 1)

Figure 4.1: Linear interpolation

We have data at two points, F(z;) and F(z,1), and we can estimate F

at the point P by using the following formula:

Tiy) — T T = I

Fp(z) F(z;) +

Titl — Iy Titl — Ty
= (1= f2)F(zi) + foF(zin1)

F(ziy)

where f. is the fractional distance of P from z; to z;,,,

r—x;
fz'_ :

C Tig1 — i .
and f; should be between 0 and 1 for interpolation and < 0 or > 1 for extrapo-

lation.
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4.5.2 Bilinear interpolation

_ For our work, we use bilinear interpolation when we rotate the magnetic
field on the boundary to the center of disk, and also to find the magnetic field at

the points we want. Bilinear interpolation is shown in Figure 4.2.

Fxyi) Q F (Xie1Yj41)
¢ ’
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F (xi,y) P F (xie1,y5)

Figure 4.2: Bilinear interpolation.

The figure shows the known data at four points, F(z;,¥;), F(%it1,%;),
F(zi,y;+1), and F(%iy1,¥5+1). The unknown function value at point S can be
estimated by projection of the points to points P and Q and using linear inter-

polation to find Fp and Fj.

At point P:
Tigy =% T—= T
Fp(z,y;) = =X " Pz, 9:) + ———F(%i11, ¥s
p(z,y;) Tig ~ T (xnyg) + Torl 2 (Tig1 y:)
= (1 - fz)F(xhyj) + f:F($£+1:yj)'
At point Q:
Tiv1 — X I =T ‘
Fo(z,y; = N7 i . = 2 F(zi1, Y
o(z y:-i‘-l) Tirt — T (i, Yj) + Tirt — i (Zis1s Yj+1)

(= f2)F(@i, Y1) + o F(Zigr, Ys11)-



At point S:

Yi+1 — Y = Vi
Fs(&?,y) = "EL"_FP(:E,VJ') + LLFQ(I:V_‘HI)
Yie1 — Y5 Yit1— Y

= (1- f)Fp(z,4;) + fyFQ(T, Y41,

where
_ Y-y
Yoy -y
Thus the function at point S is given by
Fy(z,y) = (1= f)(1 = fo)F(zi, y5)
+(1 = f) faF(Zis1, 5)
+fy(1 = f2)F (25, Y541)

+fysz($i+1)yj+l)'
4.5.3 Linear interpolation in three dimensions

Linear interpolation in 3D was used while we were creating the magnetic
field line in 3D to find the direction of the vector field which helps us to visualize
the magnetic loops from our simulations. Linear interpolation in 3D is shown in
Figure 4.3.

To estimate the unknown function value at point S is analogous to finding

the unknown function value in linear and bilinear interpolation:

At point A:
' Tir1— T -z
Fa(z,ys,2) = ———F(Ti,¥j, 2) ¥ —————F(Zis1, Y5, %)
Titl — T4 Tipl — g
= (1= fo)F(zi,y5, 26) + [oF(Zit1, U5, 2)-
At point B:
Ty —Z I—1;
Fo(z, vz =—i——-—FJ:-,-z 4+ — F(x; ;
B( s Y5 k+l) Tit1 — Z; ( is Yjs k+1) Tirl — Ti ( 1+1;yj:zk+1)

I

(1 - fz)F(Iis Yi» zk+1) + f:F(Ii+1:yj’ zk+1)-
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F (xb)’ﬁl:lk-u)
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Figure 4.3: Linear interpolation in three dimensions.
At point Q:

2l — 2 Z = Zk
. = ..............._F T c2 +_............._F T : 2
FQ(.’L‘, Vi, z) 2ol — Zk A( v Yis k) Zer1 — 2 B( s ¥is k+l)

- (1 - f;)FA(:E, Vi, zk) + szB(xy Vi, zk+1)
= (1 . f:)(l — fz)F(xi,y‘j, zk)
+f:r.(1 - fz)F(Ii+1:yj:zk)

=l = fm)sz(xi:yj:ZkM)

+f=sz(Ii+1: Y zk+1):

where
| Z— 2
3=
Zk41 — 2k
For points D, C and P, we calculate in the same way as at points A, B
and Q, respectively, so we get:

At point D:

Fp(z,yis1,2e) = (1 = f2) F(z, Vi1, 26) + o F (Tit1, Yiprs 2k)-
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At point C:
Fo(2, 9541, ze41) = (1 = fo)F(Ti, Yi415 Zit1) + Lo F(Tit1, Y Zkt1)-

At point P:

Folt,Uys1sd) = (L folFol@ byan ) + fuF@ uyens 20)
= (1= f2)(1 = fo) F (@i, yj1, 2)
L~ LV E Garts Ui, )
(1~ f2)fuFlas gy 20

+ f2 fiF (it1, Yj+1, 2041)-
Thus the function value at point S is

Fs(z,y,2) = HFQ(::, yj,z)+yj’+l‘_y"w
= (1- A)Folz, 5, 2) + £,Fp(z,0541,2)
= (1= f)(1 = f)(1 = f)F(zi,u5, 2)
ol = £)(0 = )P (@i, 13,2
(1= £o)(L~ Fy) foF (i v5, 200)
+fo = ) FF (@1, U5y 2en)
(1= f2) £y (1~ fo)F (2o, Y, %)
-Ffzfy(l — O F (Tit1, Vi1, 24)
(L= SV foF (i Yo 2h41)

+ 2y o F (Ti1y Yit1, 1)

Fp(z.yj4+1,2)

4.5.4 Image drawing method

To input magnetogram data, we had to figure out the format of FITS

image files, and how to read the data into our program. In the program before
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data are procéssed by the forward Fourier transform routine, we fotated the data
counter-clockwise by 8 = 26° so that the region of interest was in the equatorial
plane of the éqlar disk to make it easier for us to calculate the magnetic field
in three dimensions. We selected only a small area, including the active region,
for our simulation. In this case, for the original magnetogram image, we let the
y1-axis be along the vertical, the z;-axis in the horizontal direction, and the 2;-
axis in the direction toward the observer, as shown in Figure 4.4; we call this
coordinate system 1. (Note that magnetogram data are always taken with the

solar North pole oriented along %, in projection.)

[
i
Y &

o > £
%, = line of sight
a®
ART912
Figure 4.4: Coordinate system 1.
Therefore, the equations for the first rotation are
T2 = x1c08 3 — ¥, 8in F,
Y2 = y1c0s f +z, 8in f, (4.12)

2 =2y,
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and now, in terms of (Za,y2,22), coordinate system 2, AR7912 lies near y, = 0
and z; > 0. At this point we transform to coordinate system 3, where x5 and y;
are individually, linearly rescaled so that 3 = y3 = 0 at the lower left corner of
the simulation region, £3 and ¢ are axes projected onto the solar surface, and
z3 is perpendicular to the solar surface. After this, we perform other numerical
processes: FT, solution of egs. (2.41) - (2.43), inverse FT’s, minimization, and
field line tracing. When we have coordinates (z3,ys,2s) for the field lines, we
transform back to coordinates as in Figure 4.4 (coordinate system 4) with z4 and ,

¥4 in the plane of the solar disk by using these equations:

T4 = Rsinty + x3 cos g + 23 sin g,
Va =13y (4.13)
z4 = Rcosy — x38in g + 23 cos Y.
where )y is the angle from the disk center to the active region in equatorial plane
(about 30°), and R is the solar radius (about 697,000 km).
Next, we reversed the first rotation in order return AR7912 back to the

same position as in the initial input data by the inverse of eq. (4.12):

Ty = T4c08 0 + y45in B,

Ys = Y4 cos f — z45in §, (4.14)

25 = 24.

The angle between the pole of the Sun and the yQaJcis is called the angle of
inclination, -y (about 6°). This can also be thought of as the Earth’s latitude with
respect to the‘ solar equator. We therefore transformed into coordinate system 6
with yg along the solar North pole (axis of rotation) using

Tg = I,
Y6 = Y5 COS Y -+ 25 Sin v, (4.15)

%6 = =Yy 8iny + 25 €05 .
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Then we transformed the data to the date and time of interest by taking

into account the angular velocity of the Sun, w; or more precisely, the angular

velocity at the latitude of AR7912, which could be found from the magnetogram

. pictures shown in section 3.2. We measured the change in positioﬁ of the sunspots
between the times of the pictures. In this work we chose the magnetic data on

15t and 18t Qctober, 1995 to calculate the angular velocity, and found that the

synodic angular velocity of the Sun at this latitude was about 1.39 % 10™* degrees

per second. Then we got the change in the azimuthal angle by multiplying the

angular velocity and time difference as
) = wAt, _ | (4.16)

where At is the time difference between the starting date and the date of interest.
The rotation equations are

T7 = Tg €05 {1 + 26 sin £,

Y1 = Ye, (4.17)

27 = —xg 510 §) + 2 COs 1.

Finally, we transformed the North pole to the same position as in images

taken from Earth by '

Tg = I7y
Ys = y7€0O8 %y — z78in%y, (4.18)

2g = Yy78in+y + 27 CO8 7.

These were all the steps to trace the simulation images; after that we

used these data to plot with a commercial plotting program such as gnuplot.

4.6  Summary of Simulation Procedure

For our simulations, we can separate our program into steps as shown in

Figure 4.5. First, to read source data into our program, the program will read



44

thé data at the region we are interested in into a variable N; x N, array where
"Ny = 2™ and N, = 2™ for integral n and m. We had the program automatically
read in data from only the region of interest for October 15", 18%, 20¢* and 21, |
1995. For other days we will input it by ourselves. Then the complete analysis

procedure is as described in earlier subsections. A flow chart is shown in Figure

4.5.

Read sonrcé data
from input files and

Forward ‘Foulcr

Calcufate the
magnetic fleld in 3D

rotaie transform (8,,8,0nd 5 ) as
fenction of (u,v,z)
|
Inverse Fourier S:I:clfttial inili:: Adjustpgnts m
Transforms paltsteraaghciic " DuUmmize 9 ysmg
fleld line tracing Powell's method
|
Trace the magnetlc Rotate {he magaetic _
field llaes loops for the time of Plot
ineresi

Figure 4.5: Overall flow chart of the Simulation procedure.
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