| Chapter IT
Theoretical Background

Most coronal phenomena (including loop structures and solar flares) which
astrophysicists can observe are generated by the magnetic field on the Sun and
its dynamics. Thus, astrophysicists try to find and simulate many models and
theories to explain these types of behavior. Because the Sun has very high tem-
peratures, most of the matter is in the form of positive ions and negative electrons.
Such a substance is called a plasma. The pressure of plasma in the magnétic loops
is denser than that in its surroundings. The horizontal equilibrium of the loops
is given by

P.—P = e (2.1)

where P, and F, are the external and internal plasma pressures and B is the
magnetic field intensity, taken to be uniform across the flux tube (Foukal, 1990).

- The vertical force balance is maintained by the usual hydrostatic relation

dP

? = -pg,. (22)

where p is the plasma density and g is the gravitational acceleration.

In general, the plasma and the magnetic field are tied to each other to
some extent, depending on the bulk flow ram pressure (ov?) of the plasma. If the
plasma ram pressure < B2/(87), then the plasma will be held by the magnetic

tension force and confined to flow parallel to the field. If the plasma ram pressure



> B?/(8r), then the magnetic field line will be pulled to follow the plasma
motion.

In the inner corona, the magnetic field is very strong so the plasma is
held in the flux tube, or possibly flowing along the magnetic field, allowing us see
the loop in special filters or wavelengths. Magnetohydrodynamics (MHD) is the
most general theory for explaining how the solar magnetic field and plasma flow
interact.

In our model, we try to explain coronal magnetic loop structures on the
solar corona which were observed during the total solar eclipse in Thailand on
October 24, 1995. We are interested in the magnetic loops in a active region
(ART912) observed in a photograph (figure 1.2) during the total solar eclipse.
MHD is used to explain the morpholdgy of the plasma and loops in dynamic
situations. In our work we used magnetohydrostatics only, in a simpler case of
the “force-free” condition, which is a reasonable model for describing quiescent

loops.

2.1 Magnetohydrodynamics (MHD)

MHD is the study Qf the interactions between a magnetic field and a
plasma. It incorporates fluid dynamics and electromagnef.ism which explain the
behavior of the fluid and electrically charged material moving in electromagnetic |
fields.

Therefore, the basic equations of MHD are the equations of slow electro-

magnetism and fluid mechanics. The Maxwell equations are

oB
V*E = % (2.3)
V-D = [ (2-4)
VxH = j+§E (2.5)

at H




V-B =0, (2.6)

where B = yH, D = ¢E (using MKSA units; Jackson, 1975). Here H is the
magnetic field, B is the magnetic induction, ¢ is the magnetic permeability, E is
the electric field, D is the electric displacement, ¢ is the electric permeability, p.

is the charge density, and j is the electric current density. Also Ohm’s law is

E==, | (2.7)

Q fe

where ¢ is the electrical conductivity.

The conservation equations of fluid mechanics include

dv

E wn —vp 3 (2'8)
dp
a‘;+pv-v = 0, (2.9)

p = RT, (2.10)

and an energy equation, where p is the plasma density (the mass per unit volume),
v is the plasma velocity, p is the plasma pressure, T is the temperature, and R
is the gas constant per mean molecula.f weight, {.

We can modify the previous equation by adding the Lorentz force and
gravitational force on the right hand side, after which we get the equation of
motion

dv
pp=-Vp+jxB+og, (211)

where g is the gravitational acceleration and
. B
i=Vx e (2.12)

Next we will consider the magnetostatic case of the MHD model.
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2.2 Magnetdhydrostatics

The equilibrium of coronal gas within each magnetic flux tube is hydro-
static. The pressure from flux tube to flux tube will vary, the difference being
compensated.by slight deformation of the magnetic field. We have force balance
if the first term in eq. (2.11) is much smaller than the third. Then eq. (2.11)

reduces to the equation for magnetohydrostatic force balance
0=-Vp+jxB+pg, (2.13)

where j = V x (B/4), V- B =0, and p = P/(RT).

In this equation, when gravity is negligible we have magnetostatic balance
0=-Vp+jxB. (2.14)

If the fourth term in eq. (2.11) is much smaller than third, then eq. (2.14) reduces
_to the equation

jx B =0, (2.15)

This equation describes a “force-free” condition as will be explained below.

2.2.1 Force-free field condition

Under the force-free condition, the magnetic field is in equilibrium under
a balance between the magnetic and kinetic pressure and magnetic tension force,

i.e., is at & minimum energy configuration of the field.

dv
dt
eq. (2.15). Since j = V x B, and in such a tenuous plasma u & p to a good

If pressure gradients and gravity are negligible, and p— = 0, we can use

approximation, we must have V x B || B (the corona can only carry an electric

current parallel to the magnetic field), and can write (Priest, 1994)

V x B = aB, (2.16)
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where a is a scalar function of position. Such a magnetic field is called force-free.

For simplicity, we set & to & constant since this is a case where B(r) can
be computed numerically from observational data of the line-of-sight component
of B at the photosphere. Eq. (2.16) is a linear equation so we can solve this equa-
tion by a Fourier transform (FT) technique. This computational technique was
explained by Alissandrakis (1981), and similar methods were used by Nakagawa
‘et al. (1972) and Sechafer (1978). They solved the constant-a force-free field by
using a Fourier traﬁsfo_rm and found the input data from the vertical component
 B,. In another method, Semel (1988) used a Green’s function method to ana-
lytically generalize the existing solutions for the constant-a force free field to the
oblique case. Cuperman et al. (1989) numerically integrated for the constant-a
force-free magnetic fields using boundary conditions in three dimer.lsions. Antio-
chos (1987), Wu et al. (1990), and Cuperman et &l. (1990) considered the case

of a nonlinear force-free field.

2.2.2 Fourier transform technique to solve this problem

We will solve the boundary value problem for a constant ¢, force-free

magnetic field by using the Fourier transform in 2 dimensions, which is
‘ - o0 00 .
Buv,2)= [ [ Blay,z) e dzdy. (2.17)
—00 /=00
Thus the Fourier transforms of the components of the field with respect to the
variables = and y at a height 2 in 2 dimensions are
B.(z,y,z) — B,(u,v, z)
By(z,y,2) = B,(u,v,z)
B.(z,y,z2) = By(u,v,2).

Let the z-axis be perpendicular to the solar surface and set the boundary

condition at the z = 0 plane (photosphere). Then we are only interested in
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the solution in the upper half-space (z > 0). Applying the boundary condition
that B — 0 as z — 00, we only consider solutions with the FT decreasing
exponentially with z:

B(u,v,2) = B(u,v,0) e™**, (2.18)

80
Bi(u,v,2) = B.(u,v,0)e™
B,(u,v,2) = By(u,v,0)e**
B,(u,v,2) = B,(u,v,0)e**

From the force-free- magnetic field in eq. (2.16),

V x B = aB,

[ —

g &8 &

37 “a; % = aB,

B, B,—=5
then we have:
X-axis:

3B, 0B,

R = aB;, (2.19)
y-axis:

BB, 0B,

0z Oz =B, (2'20)
Z-axXis:

0B, 6B,

ax ay -'aBZ' (2.21)

The Fourier transform equations are

- o0 poo .
Beu,v,2) = ./ f B.(,y,2) e =) dygy,
Bﬂ’(u’a u, Z) = f f y(x ¥,z —121r(u1+uy)dzdy’
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Taking the Fourier transform of both sides of eqs. (2.19)-(2.21) and we get

aB,(u,v,0) - kB, (u,v,0) — 2rvB, = 0, (2.22)
" kB(u,v,0) + aB,(u,v,0) + 2muB, = 0, (2.23)
i21vB.(u,v,0) — 27uB,(u,v,0)+aB, = 0. . (2.24)

For a non-trivial solution, we require the a determinant of the coefficient matrix

to be zero |

o -~k —i2rv

k a i2ry | =0

i2nv —i2ntu  «
o® + drkuy — 4nkuv = 4n°vo — dr%ula + ko = 0
@ - an’v’a —dn’ula + ko =0
ala® —ar’(ul+0®) + k) =0,

but o # 0 so

o — Ar*(ul+ v+ k=0
kK = 4ni(u?+v?) - o
ko= +(4r?(u? +1?) - o?)}
ko= :I:(tl.m'zq2 - o)} (2.25)

where ¢* = u? + 2. We choose k = +(4n%¢* — o®)} since:

Ifq<| ol

then k is imaginary for a small scale,
Ifg> — l ] then k is real for a large scale.
In the case in which k is real, we can get the well-known solution (Nak-

agawa and Raadu, 1972, cited by Alissandrakis, 1981) from eq. (2.18) and egs.
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(2.22)-(2.25). If we can express B, ﬁ, and B, in terms of the FT of the vertical
component of the field at the boundary, we get

B(u, v, 2) = B,(x,v,0)G(x, v, 2). (2.26)

Comparing with eq. (2.18),

X-axis:
 By(u,v,0)e™ = G.(u,v, 2)B.(u,v,0), (2.27)
;-aﬁis:
By(u,v,0)e** = Gy (u,v,2)B:(u,v,0), (2.28)
z-axis: |
e“‘f" = G, (u,v, 2). (2.29)

Substituting these equations in eqsl.' (2.22)-(2.24), we will get

aGz(u, v, 2) By (u, v,0) ¥ = kG, (u,v,2)B,(u,v,0) ¥
—i27vB,(u,v,0) = 0,

kGz(u,v, 2)B,(u,v,0) & + aGy(u, v, 2) B;(u,v,0) **
| +i2ruB,(v,v,0) = 0,

127vG (1, v, 2) By (u, v,0) e — i21ru@,(u,v,z)§,(u,'u, 0) e*

+i27uB,(u,v,0) = 0.

When B,(u,v,O) #0,

oG, e — ké, e —i2nv. = 0, (2.30)
kGy ¥ + oG, e +i271u = 0, (2.31)
2mvG; € — i2nuG, e +i2mu = 0. (2.32)

Eq. (2.30) xa:
a? G, e — kaG‘,, e* + 2mva = 0, (2.33)
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Eq. (2.31) xk;
kG, ¥ + aké, e + 2ruk =0, (2.34)
Eq. (2.33) + Eq. (2.34) yields

(0® + k?) G e** +i2r (uk — va) =0

o = —i27(uk — va) e~**
L a2 + k2
_ —i2n(uk —va) e~**
N 4rr2g?
_ —i(uk —va) e~k
" 2ng? .

where k2 = 47%(u? + v2) — a®. Substituting G, into eq. (2.30),

—ia(uk —va)

— kG, ¥ —i2my = 0

27q?
—tauk + iva? A ks
T — 127y = kGy ek
—iouk + o — idnig?y .
o = kGye
—tauk + va’ -; iv(k? + a?) = kG, o
2mg
—ik(ua + vk) -
T = ka e’
.\ —~i(ua + vk) _,,
G,,(u, v, Z) = ""—E;r?i'—— € .
Thus we get
| —i(uk ~va) _
G: (u, v’ z) — _(2_7',q-§—-)- e kl,
A —i(ua +vk) .
Gy(u.,v,z) = T e,
Ge(u,v,2) = e,
Then the solutions are
- ~i(uk — vo - :
B;(u,v,2) = «—(2;‘12——) e * B, (u,v, 0), (2.35)
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_i(vk + ua) =kt

B = —— B 2.36
Bz = T kg 0,0, (2.36)
B,(u,v,2) = e B, (u,v,0). (2'37).

So far, we have followed the derivation of Alissandrakis (1981}, which as-
sumes that the vertical component of the field at the boundery is available from
magnetogram observations. However, standard magnetograms, based on the Zee-
man effect, actually give the line-of-sight component of the magnetic field. There-
fore, Alissandrakis’s derivation is only applicable for magnetogram observations
of active regions near the disk center. -

For our thesis, we modified the boundary condition of Alissandrakis (1981)

to instead specify the line-of-sight component of the photospheric field:
sing Bz(z,y,0) + cosgp B,(z,y,0) = Bi(z,y,0), (2.38)

where B;(z,y,0) is the magnetic field in the line of sight direction, and  is the
angle between the line-of-sight and the z-direction, which is perpendicular to the
solar surface.

To solve this problem, we used the previous solutions as follows. Taking

Fourier transforms on the both sides, we get
Bi(u,v,0) = cos B, (u, v,0) +sin @B, (u, v, 0). (2.39)

Substituting B, (u, v, z) from eq. (2.35) into eq. (2.39) to find B,(u,v,0), then we

get'
< Bi(u,v, 0)
B,(u,v,0) = . .
+13 co8p — isin ——(Uk —va) 240
_ 7 v I

Then our solutions are

—i(uk — va) Bi(u, v, 0)
(uk - 'Ua))

2rg?

E‘,(u, v,2) =

o2mg? (cos<p e* —isingp
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(uk — va)? e~** sin pBi(u, v,0)
(41r2q" cos? i + sin® p(uk — va)’)

i2mq? cos p(uk — va) e By(u,v,0)
(47r2q4 cos? @ + sin? p(uk — va)’) ’

(2.41)

—i(vk + ua) e7** By(u,v,0)

(uk — va)
2rq? )

ﬁ,(u,v, z) =

omg? (cos @ —-ising

(uk — va)(vk + ue) e** sinBi(u, v,0)
(41r2q‘ cos? ¢ + sin? p{uk — va)’)

- 12mq” cos p(vk + ua) e~ Bi(u,v,0))
(41r2q‘ cos? o + sin® p(uk — va)’) ’

(2.42)

N 3 —kz
Bu(u,v,2) = Biu,v,0) e (2.43)

( . (uk—va))'
COS @ — ZSIHQDW

Finally, we use inverse Fourier transforms (see chapter IV) to transform

these solutions back into (z, y, z) coordinates.
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