CHAPTER VI

RESULTS, DISCUSSIONS AND CONCLUSION

As mentioned earlier, the polaron mass defined by Feynman is somewhat
questionable. Firstly, he substituted the distance between two polaron end points by an-
imaginary velocity U multiplied by imaginary time as X, -X = Ur and used it to
determine the generating functional and find the effective mass from this functional.
This means that he neglected all the quantum fluctuation since the distance between
two points are replaced by a straight line. The reason that can support this idea, as
pointed out by Sa-yakanit [16], is that the distance and the momentum of the polaron
must be small. Secondly, the numerical values of the effective masses which obtained
by using variational parameters were determined from minimization of the ground
'state'enelrgy. At this point; the correct way should be cktension of Imin_imizing the
energy for each momentum of the polaron but, as pointed out by Feynman himself, we

have not found the expected extension [14].

The first discrepancy can be fixed by the result that Sa-yakanit has shown. The
polaron effective mass can be determined rigorously from the off-diagonal part of the
density matrix at zero temperature limit and the result corresponds to that of Feynman.
For the second one, there is still no variational principle for this definition. The aim of

this work is to find a more physical definition of the effective mass. The variational
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parameters that determine mass assumed to be obtained from a different argument of

Feynman,

From the results in previous chapter, the ground state wave function of the
polaron was found from the plaron density matrix and we obtained a condition that if
we demand the wave function to be normalized the two definition of the effective

mass, i.e. the definition by' Feynman and by Krivoglaz and Pekar should be equal. By

setting
mge(v,w) = m, (v, w), | (6.1)
we obtain
av’ 7, xle” (v)2 w wal't, xle
l+—F=|dx——5=|—| expl~5+-1+—7 dx 6.2
3‘/;_!_ F(x)':' 2 P[vz v 31/1?'! 3] (6.2)

2
where F(x) =w’x+v[l—--v-:-,-) (1-e7=).

We use equation (6.2) to determine one of the parameters and use the other to
minimize the ground state energy. The numé;ical results is presented in iable 6.1 (see
Appendix ). It is noted that the new parameters satisfy our assumption, i.e. these
parameters satisfy the equation (6.2) and at the same time minimize the energy. For
comparison we present also the values calculated from the expressions by Feynman
and Krivoglaz af:d Pekar in table 6.2. Comparison between our results and Feynman’s

results are presented in tables 6.3 and 6.4. The effective masses will be plotted in

figure 6.1.
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Table 6.1 The variational parameters obtained from the minimization of the ground

state energies and then the effective mass was re-calculated.

o v w Mpew Enew

1 2716 248 1.19819 -1.01293
2 2.841 233 . 1.48568 -2.05494
3 3,028 2.18 1.93148 -3,13234
4 3.264 199 2.68936 -4.25447
5 3.663 180 4.13918 -5.43697
6 4.396 1.61 7.45220 -6.70704
7 5.575 1.43 15.2030 -8.10945
8 7414 1.30 35.5344 -9.69335
9 9.877 1.22 65.5548 -11.4846
10 | 1272 | w7 | 118221 ~13.4888
11 15.34 1.13 184.296 -15.7094
12 1900 1.11 293.163 -18.1419
13 22.40 1.09 422.105 -20.7901
14 2551 1.07 568.366 -23.6497
15 29.62 1.06 781014 -26.7234
16 < Yy /] 1.05 1031.17 -30.0085
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Table 6.2 The ground state energies and the cffective masses of the polaron by the
definition of Krivoglaz-Pekar and Feynman. The variational parameter
comes from minimizing the ground state energy’.

o v w Mip mr Er

1 3.06 2.83 1.19494 1.19466 | -1.01302
2 3.237 2.716 1.47361 1.47264 -2.05536
3 | 342 2.56 1.89153 1.88846 -3.13333
4 3.663 2.368 2.38875 2.57774 -4.25648
5 4.04 2.14 3.90995 3.89417 -5.44014
6 4.667 1.874 6.87053 6.83690 -6.71087
7 5.81 1.604 14.4544 14.3908 -8.11269
8 7.588 1.403 31.6807 31.5851 9.69537
9 9,851 1.283 - 62.8567 62.7329 -11.4858
10 1248 1.210 111,992 111.849 -13.4904
11 15.41 1.162 183.215 183.066 -15.7098
12 18.67 1.136 281.742 281.499 -18.1434
13 22.17 1.110 412.442 412218 -20.7907
14 25.99 1.090 582.859 582.681 -23.6513
15 30.08 1.077 797.441 797.250 -26.7249
16 34,46 1067 | 106422 1064.28 -30.0114

! This data are taken from the results calculated by Lu and Rosenfelder [25].
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Table 6.3 Comparison of Feynman’s energies, Er with our results, E,, at various

coupling constants.
o Er Enew %different
1 ©oa01302 | -1.01293 0.008885
2 -2.05536 -2.05494 0.020436
3 -3.13333 -3.13234 0.031601
4 4.25648 -4.25447 0.047233
5 -5.44014 -5.43697 0.058288
6 -6.71087 -6.70704 0.057088
7 -8.11269 -8.10945 0.039945
8 -9.69537 -9.69335 0.020837
9 -11.4858 -11.4846 0.010448
10 134904 | 134888 0.011861
11 -15.7098 -15.7094 0.002546
12 -18.1434 -18.1419 0.008268
13 -20.7907 -20.7901 0.002886
14 -23.6513 -23.6497 © 0.006765
15 -26.7249 -26.7234 0.005613
16 -30.0114 -30.0085 0.009663
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Table 64 Comparison of Feynman’s masses, my with our results, my,,. at various

coupling constants.

o mr Mpew %different
1 11.19466 1.19819 0.29
2 1.47361 1.48568 082
3 1.89153 1.93148 2.25
4 2.38875 2.68936 4.24
5 3.90995 4.13918 6.09
6 6.83690 7.45220 8.61
7 14.3908 15.2030 5.49
8 31.5851 35.5344 11.77
9 62.7329 65.5548 4.39
10 111.849 118.221 554
11 183.066 184,296 0.50
12 281.499 293,163 4.06
13 412218 422.105 2.37
14 582.681 568.366 2.49
15 797.250 781.014 2.06
16 1064.28 1031.17 3.16
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Figure 6.1 The polaron effective massed plotting versus the coupling constants. The
dashed line denotes the result by Feynman. The solid line is our resuit.
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We can see from the graphs that the numerical values of our effective masses
are a little greater than the results calculated from Feynman’s definition. The
differences grow more in the intcfmediatc coupling. The most difference is not more
than 12 %. At the ground state energies, the differences between our results and
Feynman's are very small. This is not an improvement since the energies must be as
low as possible. Our results. are slightly higher than Feynman’s energies. For all
coupling, the differences do not exceed approximately 0.06 % which can be improved

by the more accurate calculation (minimization).

In fact, we cannot judge which definitions are right. Feynman's definition is
better in the sense that the energies are lower, which following the Feynman-Jansen
inequality. Our definition is superior for it satisfying the normalized-wave function
condition that we impose. The very small deviations in energies make us claim that
our definition is consistent with the theory and is an alternative way to define the

effective mass.

Another aspect of the effective mass of the polaron we have considered is the
momentum dependence of the mass. In the process that we obtained the Feynman’s
effective mass from the finite-temperature density matrix, we have collected only the
terms up to the 2™ order of the coordinates of the electron which is enough for the
6a$e of low momentum linﬁt Whii:h is Feynman’s work. It is interesting to investigate

the higher order terms and we may proceed by expanding the exponential involving

the coordinates, (ﬁz - ﬁ,) in the equation (5.5). The 3™ order term will vanish since it

is an odd function under integration over &, and the 4™ order term will be kept. The

mass depends on the momentum as

(6.3

As mentioned previously, the effective mass can be defined from the coefficients of
the coordinates squared. So this 4™ order term can be added up to the effective mass
by separating out the 4™ power to be 2™ power terms. Remark that this can be done by
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assuming that we can neglect the correlation of the momentum. The result is the

effective mass that depends on the momentum as

vxe a vxe

Fe B L Fi(x)

——_1 N—Idx P2, (6.4)

For low momenta, we can neglect this correction term and the expression of the
effective mass reduces to the case of Feynman. We have performed the numerical
calculation of the effective mass and the relation between this mass and the polaron

momentum can be shown in figure 6.2
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Figure 6.2 Relations between the polaron effective mass and its momentum plotting

for various coupling constant (alpha means the coupling constant).
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‘We can see that for weak 'coupling, the mass is nearly independent on the momentum
(the dashed curve is nearly straight line). This is also true for the higher momentum.
For the strong coupling, the masses depend quadratically to the momentum. We have
tried to seck for the physical description of these results but we have not found it yet
and later we will quote the work by other authors to compare their results to ours.
Before going to that materials, we will present the relation between the energy and the -

momentum of the polaron as followed,

We know from the concepts of the quasi-particle that its self energy can be
defined in the form of excitation energy like
P2

E(P)=E, +-2—’;. (6.5)

where E, is the ground state energy and m 4 is an effective mass

So if the quasi-particle behaves like a free particle then its total energy must depend
on its momentum quadratically. In our case, instead of regarding the effective mass as
a constant, we may substitute our effective mass in equation (6.4) into equation (6.5).

The result can be summarized by figure 6.3.
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Figure 6.3 Relations between the energy and momentum of the polaron at various

coupling constants.
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This results correspond to previous figure involving mass since for weak coupling the
energy dispersion looks like that of a free particle but for the larger coupling the

momentum dependence decreases,

Recently, there is a work by Wang et. al. [29] concerning the properties of
the moving polaron. By using the method of Lee, Low and Pines [5] they came to the
results that are similar to ours which are presented in figures 6.4 and 6.5. Note that

these figures are taken from reference [29].
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Figure 6.4 Total energy E(Q) versus the total momentum @ of the electron and

phonon with different coupling constants for Q < 10.
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Figure 6.5 The effective mass as a function of total momentum with various coupling

constants.
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When we compare these figures to our results in figures 6.2 and 6.3 at the
same range of momenta, we will see some similarity. Although we cannot say that
these are the equivalent results but this reminds us for its implication. The work by
Wang et. al. was concerned only the weak coupling regime (remember that Lee, Low
and Pines method is a perturbation theory) so it could be applied to some values of
momenta and coupling constants. In that work, they introduced the phonon momenta
together with electron momentum which constitute to the total momentum of the

system as we mentioned above. This is different from ours which the polaron
| coordinates was eliminated at the first step, then the momentum Jeft is the momentum
of the polaron itself. So we may interpret our momentum as the total momentum of

the polaron system. They remarked further that, if we take the total momentum Q =0,

we are able to return to the case of the static polaron. This is consistent with our
result, as mentioned previously, if we let the momentum to be small, the correction
term can be neglected and the mass reduces to that of Feynman. We have questioned
earlier about the physical implication of the momentum dependent mass. From the
view of path integral formulation we cannot see anything but if we compare it to the
work by Wang ct. al., and presume that it is equivalent to the path integration method
we may‘ﬁnd the interpretation from this work. Wang et. al. pointed out that when the
momentum increases the total phonon number will increase, as does the binding
enefgy of the system, thus, it will prevent increasing 6f the kinetic energy and make
the total energy to be a constant with momentum. However, we cannot insist that our
theory are equivalent to that of Wang et. al. since there is no rigorous proof for this

similarity.

So far, we can summarize all the material we have presented as follow. By
starting from the simplified model of the polaron, we can write down the Lagrangian.
In order to evaluate the ground state energy and the effective mass of the polaron from
this Lagrangian, we choose to follow the method of path integration which is superior
than other methods as it can be applied for all ranges of the coupling constants. This
method is based on the variation principle so the ground state energies we calculated

are only the estimated upper bound of the real energies. In finding the effective mass,
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there is no variation principle to define this quantity so an ad hoc assumption was
made. Although the numerical values of the effective mass defined by Feynman are in
accord with the values obtained by other methods, we still want to find a better

definition.

Our aim in this work is to look for a new definition of the effective mass that is
consistent with the basic principle of quantum mechanics, i.e. the normalization
condition of the wave functions of the polaron. These wave functions were extracted
from the polaron density matrix at zero temperature limit. Together with this, we -
obtained the expression for energy excited state as well. We have found that if we
demand the wave functions are normalizable, the mass defined from two different
places of the density matrix must be equal and we can use this equality to be the
condition that leads to the desired déﬁnition.

The numerical results of the masses and energies that have been re-minimized
are very close to the values calculated from Feynman’s expressions, especially the
energies differ by no more than 0.06 % which can be improved further by a more
accurate minimization. The masses deviate more but there is no criterion to judge
which ones is correct. We may say that our definition is superior since it satisfied the
condition proposed above. Demanding of an accurate numerical vales of the mass
made us invcstightc further. If we consider the higher order terms of expansion‘ of an
exponential in density matrix, we will find that the first survived term depends on the
momentum. If we substitute this mass into the energy excited states, we will obtain a
dispersion relation that is similar to the one obtain by Wang et. al. {29]. If we suspect

that this result is equivalent to the result by Wang et. al. or not, a rigorous proof is
needed.
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