

การจัดตารางการผลิตแบบไหลเลื่อนยืดหยุนชนิดเครื่องจกัรขนานที่ไมสัมพันธกันและเวลาปรับตั้ง
เครื่องขึ้นกับลําดับงานกอนหนา

นายจิตติ จึงวฒันกิจ

วิทยานพินธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมอุตสาหการ ภาควิชาวิศวกรรมอุตสาหการ

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวทิยาลัย
ปการศึกษา 2550

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

A SCHEDULING IN FLEXIBLE FLOW SHOP PROBLEM WITH UNRELATED

PARALLEL MACHINES AND SEQUENCE-DEPENDENT SETUP TIMES

Mr. Jitti Jungwattanakit

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Industrial Engineering

Department of Industrial Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2007

Copyright of Chulalongkorn University

Thesis Title

By

Field of Study

Thesis Advisor

Thesis Co-advisor

A SCHEDULING IN FLEXIBLE FLOW SHOP PROBLEM

WITH UNRELATED PARALLEL MACHINES AND

SEQUENCE.DEPENDENT SETUP TIMES

Mr. Jitti Jungwattanakit

Industrial Engineering

Assistant Professor Manop Reodecha, Ph.D.

Assistant Professor Paveena Chaovalitwongse, Ph.D.

Accepted by the Faculty of Engineedng, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctoral Degree

(Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)

THESIS COMMITTEE

1'rrz-V----
Chairman

(Professor Sirichan Thongprasert, Ph.D.)

''.Thesis Advisor

(Assisfant Profifssor Manop Reodecha, Ph.D.)

P""r.r-',^Y{1rp* 17.>= Thesis Co-advisor

(Assistant Professor Paveena Chaovalitrvongse, Ph.D.)

...*:. W. .Dean of the Faculty of Engineering

t\

11 - / r1/-
f-/IL LzU-eY**r-"'r ' External Member

(Associate Professor Singha Chiamsiri, Ph.D.)

/-P Member

(Assistant Professor Rein Boondiskulchok, D.Eng.)

 iv

จิตติ จึงวัฒนกิจ : การจัดตารางการผลิตแบบไหลเลื่อนยืดหยุนชนิดเครื่องจักรขนานที่ไม

สัมพันธกันและเวลาปรับตั้งเครื่องขึ้นกับลําดับงานกอนหนา. (A SCHEDULING IN
FLEXIBLE FLOW SHOP PROBLEM WITH UNRELATED PARALLEL
MACHINES AND SEQUENCE-DEPENDENT SETUP TIMES). อ.ที่ปรึกษา :

ผศ.ดร.มานพ เร่ียวเดชะ, อ.ที่ปรึกษารวม : ผศ.ดร.ปวีณา เชาวลิตวงศ 199 หนา.

 วิทยานพินธฉบับนี้ศึกษาปญหาการจัดตารางการผลิตแบบไหลเลื่อนยืดหยุน (flexible

flow shop) โดยมีขั้นตอนการผลิตอยางนอยหนึ่งขั้นตอนที่ใชเครื่องจักรขนานกันที่ไมสัมพันธกนั

เวลาที่ใชเพื่อการปรับตั้งเครื่องจักรจะขึน้กบัลําดับงานกอนหนาและเครือ่งจักร โดยมีวัตถุประสงค

เพื่อจัดตารางการผลิตที่ทําใหเวลาปดงานของระบบและจาํนวนงานลาชามีคานอยที่สุด ภายใตภาวะ

ของการจัดตารางการผลิตแบบสถิต (static) งานวิจัยนี้ไดสรางโปรแกรมเชิงเสนจํานวนเต็มแบบ

ผสมและแบบทวิภาคสําหรบัการแกปญหา แตดวยปญหานี้ถือเปนปญหาการหาคําตอบที่ดีที่สุดเชิง

การจัด (combinatorial optimization problem) ที่ยากเกินไปที่จะใชแกปญหาทีม่ีขนาดใหญได

ดังนั้นจึงไดพฒันาฮิวริสติก เพื่อหาคําตอบที่ดีโดยใชเวลาที่สมเหตุสมผล โดยฮิวริสติกนี้มีทั้งหมด 3

ขั้นในการหาคาํตอบ ขั้นที่หนึ่งใชวิธีสรางเสริม (constructive algorithm) โดยเริ่มตนจากการ

สรางตัวแทนเวลาของแตละกระบวนการ แลวนําแนวคิดของกฎการจายงาน (dispatching rules)

หรือฮิวริสติกสําหรับระบบการผลิตแบบไหลเลื่อนสามัญ (simple flow shop heuristics) มาใช

เพื่อสรางคําตอบเบื้องตน ขั้นที่สองใชวิธีการเลื่อนงานหรือการสับเปลี่ยนงานมาปรับปรุงคําตอบ

จากนั้นเปนการนําวิธีเมตาฮิวริสติกมาใชเพือ่ปรับปรุงคําตอบอีกครั้งในขั้นสุดทาย ไดมีการทดสอบ

สมรรถนะของฮิวริสติกที่ใชในแตละขั้น ดวยการเปรียบเทียบกบัคําตอบที่ดีที่สุดจากกลุมปญหา

ทดสอบที่มีจํานวนงานมากสุด 50 งาน และ ขั้นตอนมากสุด 20 ขั้นตอน ผลการทดลองชี้ใหเห็นวา

วิธีของ Nawaz Enscore และ Ham ที่เรียกวาวิธี NEH เปนวิธีที่เหมาะสมที่สุดในการหาคําตอบ

เร่ิมตน และวธีิการสับเปลี่ยนงานแบบ all-pairwise-interchanges เปนวิธีการที่ดีสําหรับปรับปรุง

คําตอบ และวธีิ simulated annealing เปนวิธีเมตาฮวิริสติกที่ดีที่สุดสําหรับการปรับปรุงคําตอบ

ใหดีขึ้นอกี

ภาควิชา……………………………………… ลายมือช่ือนิสิต...………………………………
สาขาวิชา…………………………………..… ลายมือช่ืออาจารยที่ปรึกษา……………………
ปการศึกษา…………………………………... ลายมือช่ืออาจารยที่ปรึกษา……………………

วิศวกรรมอุตสาหการ

2550
วิศวกรรมอุตสาหการ

 v

467 18069 21: MAJOR INDUSTRIAL ENGINEERING
KEYWORD; FLEXIBLE FLOW SHOP / CONSTRUCTIVE ALGORITHMS /
METAHEURISTICS.

JITTI JUNGWATTANAKIT : A SCHEDULING IN FLEXIBLE FLOW
SHOP PROBLEM WITH UNRELATED PARALLEL MACHINES AND
SEQUENCE-DEPENDENT SETUP TIMES. THESIS ADVISOR : ASST.
PROF. MANOP REODECHA, Ph.D., THESIS COADVISOR : ASST. PROF.
PAVEENA CHAOVALITWONGSE, Ph.D., 199 pp.

 This dissertation studies a scheduling problem of flexible flow shop, where at

least one production stage is made up of unrelated parallel machines, and setup times

are sequence- and machine-dependent. The objective is to find a schedule that

minimizes the makespan and the number of tardy jobs in a static scheduling

environment. For this problem, a 0-1 mixed integer programming is formulated. The

model is, however, a combinatorial optimization problem which is too difficult to be

solved for large-sized problems, and hence, a heuristic is developed to obtain good

solutions in reasonable time. The heuristic has three phases. The first phase uses a

constructive algorithm. It starts with the generation of the operating time

representative for each operation. Then, it uses a dispatching rule or a simple flow

shop makespan heuristic to determine an initial solution. The improvement algorithm

based on shift moves or pairwise interchanges of jobs is applied to improve the

solution in the second phase. After that, a metaheuristic is used to refine the solution

in the final phase. Several well-known heuristics are tested in each phase. The

performances of the heuristics are compared to one another based on a set of test

problems with up to 50 jobs and 20 stages and with an optimal solution for small-

sized problems. The computational results indicate that the Nawaz, Enscore, and

Ham (NEH) algorithm is most suitable for determining the initial solution, the all-

pairwise-interchange approach is good for improving the solution, and the simulated

annealing algorithm is best metaheuristic for refining the solution.

Department……………………………. Student’s signature…………………………

Field of study………………………….. Advisor’s signature………………..………

Industrial Engineering

Industrial Engineering

Academic year………………………… Co-advisor’s signature…….……………… 2007

 vi

ACKNOWLEDGEMENTS

I am deeply indebted to my advisors, Assistant Professor Manop

Reodecha, Ph.D., and Assistant Professor Paveena Chaovalitwongse, Ph.D., for their

useful advice, constant guidance, continuous encouragement, and endless patience

throughout my Ph.D. study. I wish to express my first sincere thanks for their strong

commitment to assisting me achieve my research goals. Special thanks are also

extended to Professor Frank Werner, Ph.D. from Faculty of Mathematics, Otto-von-

Guericke-University, Germany, for his great encouragement, continuous suggestions,

and unconditional helps while I was working on my research. This dissertation would

not have been possible without them.

I am also grateful for the useful suggestions, valuable comments, and

positive criticisms that Professor Sirichan Thongprasert, Ph.D., Assistant Professor

Rein Boondiskulchok, D.Eng., and Associate Professor Singha Chiamsiri, Ph.D. as

members of the examination committee provided me during my study.

I wish to acknowledge Mr.Geoffrey Philip Hattersley for his advice,

guidance, and encouragement during my study.

There are many people at industrial engineering department, and I

really appreciate their helps. I would like to thank all my friends for their great

friendship, Mai, Cherry, Jarr, Arm, Big, Kae, Mee, Chang, P’Paitoon, P’Boy, and Ay.

At last but not least, I wish to express my deepest gratitude to my

parents (Nitipong and Tusana) and my grateful thanks to my sisters and brother

(Kanokporn, Umpai, and Buncha) and my girlfriend (Benjawan) for their

encouragement, warmness, love, belief, and pride in my study that have driven me to

become successful.

TABLE OF CONTENTS

Page

ABSTRACT (THAI)... iv

ABSTRACT (ENGLISH)... v

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS ... vii

LISTS OF TABLES.. xi

LISTS OF FIGURES.. xiii

CHAPTER I INTRODUCTION .. 1

 1.1 General Background .. 1

 1.1.1 Definition of Scheduling... 2

 1.1.2 The Scheduling Function in a Production System................ 3

 1.1.3 Classification of Scheduling Problems 4

 1.2 Importance of the Problem... 6

 1.2.1 Importance of Scheduling Problems..................................... 7

 1.2.2 Importance of a Flexible Flow Shop Problem 8

 1.2.3 Importance of Sequence-Dependent Setup Times................ 11

 1.2.4 Importance of Release Dates of Machines and Jobs............. 14

 1.2.5 Importance of Scheduling Objectives................................... 15

 1.3 Statement of the Problem... 16

 1.4 Dissertation Objectives .. 18

 1.5 Dissertation Scope ... 19

 1.5.1 Machine Environments and Job Characteristics 19

 1.5.1.1 Machine Environments .. 19

 1.5.1.2 Job Characteristics ... 20

 1.5.2 Processing Characteristics and a Set of Constraints 20

 1.5.3 Objective Function Characteristics 22

 1.6 Dissertation Contribution... 23

 1.7 Dissertation Methodology.. 25

viii

Page

 1.7.1 Common Solutions for Scheduling Problems....................... 26

 1.7.2 Solution Methodology for the Dissertation Problem............ 28

 1.7.3 Rational for the Solution Approaches................................... 30

 1.7.3.1 Importance of Exact Algorithms............................ 30

 1.7.3.2 Importance of Approximate Algorithms................ 31

 1.8 Dissertation Organization .. 33

CHAPTER II LITERATURE REVIEW... 35

 2.1 Machine Environments for Scheduling Problems 35

 2.1.1 Single Machine Problem... 36

 2.1.2 Parallel-Machine Problem .. 37

 2.1.3 Flow Shop Problem... 37

 2.1.4 Job Shop Problem ... 38

 2.2 Flexible Flow Shop Scheduling Problem .. 39

 2.3 Survey of the Flexible Flow Shop Problem... 40

 2.3.1 Flexible Flow Shop Environment Review............................ 40

 2.3.2 Setup Time Scheduling Problem Review 42

 2.3.3 Scheduling Objective function Review 44

 2.3.4 Flexible Flow Shop Scheduling Procedure Review.............. 46

 2.3.4.1 Exact Solution Procedures 46

 2.3.4.2 Approximate Solution Procedures 49

CHAPTER III A MATHEMATICAL PROGRAMMING SOLUTION

 APPORACH... 58

 3.1 Introduction.. 59

 3.2 Problem Description .. 60

 3.3 A Descriptive Example .. 63

 3.4 Mathematical Formulation... 67

 3.4.1 Assumptions.. 68

 3.4.2 Objective Function.. 69

ix

Page

 3.4.3 Constraint Functions ... 73

 3.4.4 A Numerical Example... 77

 3.5 Complexity of the Problem.. 81

 3.6 Conclusion ... 84

CHAPTER IV HEURISTIC SOLUTION CONCEPTS 86

 4.1 Introduction.. 86

 4.2 Conceptual Framework for Heuristics ... 87

 4.3 Schedule Construction Approach .. 97

 4.4 Constructive Algorithms.. 99

 4.4.1 Dispatching Rules ... 102

 4.4.2 Flow Shop Heuristics.. 105

 4.4.2.1 Palmer .. 107

 4.4.2.2 Campbell, Dudek, and Smith 109

 4.4.2.3 Gupta.. 111

 4.4.2.4 Dannenbring... 112

 4.4.2.5 Nawaz, Enscore, and Ham..................................... 113

 4.5 Improvement Algorithms... 114

 4.6 Iterative Algorithms ... 117

 4.6.1 Simulated Annealing Algorithm... 118

 4.6.1.1 Cooling Schedule ... 120

 4.6.1.2 Termination Condition... 122

 4.6.2 Tabu Search Algorithm... 122

 4.6.3 Genetic Algorithm .. 124

 4.6.3.1 Encoding Scheme... 126

 4.6.3.2 Crossover ... 126

 4.6.3.3 Mutation... 128

 4.6.3.4 Evaluation Policy .. 128

 4.6.3.5 Selection Policy .. 129

 4.6.3.6 Termination Condition... 130

x

Page

 4.7 Choice of an Initial Solution for the Iterative Algorithms................... 130

 4.8 Conclusion .. 131

CHAPTER V COMPUTATIONAL EXPERIMENTS 133

 5.1 Introduction.. 134

 5.2 Data Generation of the Test Instances ... 135

 5.3 Performance of Algorithms on Medium- and Large-Sized Test

 Problems ... 136

 5.3.1 Performance of the Constructive Algorithms 137

 5.3.2 Performance of the Improvement Algorithms 140

 5.3.3 Performance of the Iterative Algorithms 144

 5.3.4 Performance of a Choice of an Initial Solution for the

 Iterative Algorithms ... 162

 5.4 Performance of Algorithms on Small-Sized Test Problems 165

 5.5 The Recommended Heuristic Solution Algorithm 168

 5.6 Conclusion ... 171

CHAPTER VI CONCLUSION AND FUTURE RESEARCH 173

 6.1 Conclusion ... 173

 6.2 Future Research ... 180

 6.2.1 Theoretical Research... 181

 6.2.2 Computational Research ... 182

 6.2.3 Empirical Research ... 182

REFERENCES.. 184

VITA... 199

xi

LIST OF TABLES

Table Page

Table 2.1 The summary of the literature in the flexible flow shop problem 53
Table 3.1 The standard processing time (t

jps), release dates (rj), and due dates

 (dj) for job j... 63
Table 3.2 The relative machine speed of job j on machine i at stage t (t

ijv) 63

Table 3.3 The matrix of changeover time of job j on machine i at stage t (t
ijch) 63

Table 3.4 The matrix of setup time from job l to job j at stage t (t
ljs) 64

Table 3.5 The availability of machine i at stage t (t
ia) 64

Table 3.6 Possible feasible schedule results of an example problem 66
Table 3.7 The standard processing time at stage t (t

jps), release date (rj) and due

date (dj) for job j of a two-stage flexible flow shop 78
Table 3.8 The availability of machine i at stage t (t

ia) 78

Table 3.9 The relative machine speed of job j on machine i at stage t (t
ijv) 78

Table 3.10 The matrix of changeover time of job j on machine i at stage t (t
ijch) 79

Table 3.11 The matrix of setup time from job j to job l at stage t (t
jls) 79

Table 3.12 Results of calculations ... 80

Table 3.13 Total number of possible sequence combinations for any number of

 jobs of the problems with 5 stages and 5 machines per stage............ 83

Table 3.14 Total number of possible sequence combinations for any number of

stages of the problems with 5 jobs and 5 machines per stage............ 83

Table 4.1 Standard processing times and due date for every job of a three-stage

flow shop problem ... 108

Table 5.1 Average performance of the constructive algorithms of Group I

 and II .. 138

Table 5.2 Average overall performance of the constructive and polynomial

improvement heuristics.. 141

Table 5.3 Average performance of the fast polynomial improvement algorithms

 of Group III and IV.. 143

Table 5.4 Tested parameters for the SA, TS, and GA algorithms 145

xii

Table Page

Table 5.5 The effect of various initial temperatures on the performance of

 the SA algorithm.. 146

Table 5.6 The effect of various neighborhood structures on the performance

 of the SA algorithm.. 147

Table 5.7 The effect of various cooling schedules on the performance of

 the SA algorithm.. 148

Table 5.8 The effect of the various numbers of neighbors on the performance

 of the TS algorithm .. 151

Table 5.9 The effect of the various neighborhood structures on the performance

 of the TS algorithm .. 152

Table 5.10 The effect of the various sizes of tabu list on the performance of

 the TS algorithm .. 153

Table 5.11 The effect of various population sizes on the performance of

 the genetic algorithm.. 155

Table 5.12 The effect of various crossover types on the performance of the

 genetic algorithm ... 156

Table 5.13 The effect of various mutation types on the performance of the

 genetic algorithm ... 157

Table 5.14 The effect of various crossover rates on the performance of the

 genetic algorithm ... 158

Table 5.15 The effect of various mutation rates on the performance of the

 genetic algorithm ... 159

Table 5.16 Average performance of the constructive and iterative algorithms ... 161

Table 5.17 Average performance of the iterative algorithms with biased initial

solutions ... 163

Table 5.18 Average performance of iterative algorithms with biased initial

 Solutions .. 164

Table 5.19 Average performance of the constructive, fast improvement, and

metaheuristic algorithms for small-sized problems 167

xiii

LIST OF FIGURES

Figure Page

Figure 1.1 An information flow diagram in a manufacturing system................. 4

Figure 1.2 Classification of scheduling problems... 5

Figure 1.3 A schema of a flexible flow shop environment 9

Figure 1.4 A general schematic of the production process 17

Figure 1.5 The research methodology... 26

Figure 2.1 The flexible (hybrid) flow shop environment.................................... 39

Figure 2.2 Classification of the flexible flow shop environments 41

Figure 2.3 Classification of the setup time scheduling problems........................ 42

Figure 2.4 Classification of the flexible flow shop procedures........................... 46

Figure 3.1 The flexible flow shop environment .. 60

Figure 3.2 A Gantt chart for the example problem ... 65

Figure 4.1 Initial concept of the heuristic solution approach 88

Figure 4.2 A flow diagram of the schedule construction approach..................... 91

Figure 4.3 A flow diagram of the constructive algorithms 92

Figure 4.4 A flow diagram of the improvement algorithms................................ 94

Figure 4.5 A flow diagram of the iterative algorithms.. 96

Figure 4.6 The patterns of cooling schedules.. 121

Figure 4.7 Illustration of the selection performed on an enlarged sampling

 space... 130

Figure 5.1 Flow chart of the recommended heuristic solution algorithm 170

Figure 6.1 Research summary ... 178

CHAPTER I

INTRODUCTION

 Scheduling problems have long been considered as a part of production

planning and control, but they have been rarely found associated with the complex

scheduling problems frequently encountered in practice. Traditional scheduling

problems have been addressed in many specific forms such as single machine,

parallel-machine, flow shop, or job shop problems which are able to be taken by the

general forms which are more complex and beneficial than the specific forms (Pinedo

and Chao, 1999).

 The outline of this chapter is organized as follows: Firstly, the general

background is explained to provide the definition of scheduling problems, the

scheduling function, and the classification of the scheduling problems. Secondly, the

importance of scheduling problems, i.e. a flexible flow shop problem, sequence-

dependent setup times, release dates of machines, and schedule objectives, is

indicated. Thirdly, the statement of the problem is addressed. In this section, a

problem example is also illustrated. Next, the objectives of this dissertation are

proposed. The dissertation scope and the dissertation contribution are given in the

fifth and sixth sections of this chapter. Then, the dissertation methodology is

presented. In addition, the rational for the solution approaches is also introduced in

this section. The organization of the chapters of this dissertation is framed in the final

section.

1.1 General Background

 This section presents the general background of scheduling theory. It begins

with the definition of scheduling and the general conceptual scheme, providing a

useful framework for performing the scheduling function effectively. The scheduling

2

function in a production system and the classification of scheduling problems are also

stated in this section.

1.1.1 Definition of Scheduling

 Scheduling is the allocation of available and limited production

resources (i.e. workforce, machines, tools, etc.) to perform a number of jobs over time

and to meet certain objectives while respecting a set of constraints (Baker, 1974;

Pinedo, 1995; Pinedo and Chao, 1999). Another view of scheduling is defined as the

determination of the relative position of jobs with respect to a processing machine,

including the assignment of definite times at which processing occurs (Nawaz,

Enscore, and Ham, 1983).

 Scheduling problems, both practical and theoretical aspects, have

captured attention from researchers for several years. They involve the assignment of

machines to various jobs and the determination of the order in which the jobs will be

performed in order to best satisfy some single criterion or several optimization

criteria. Generally, there are two kinds of questions concerned in the fundamental

decision of the scheduling functions (Baker, 1974):

1. Which resources will be allocated to perform each job?

2. When will each job be performed?

In other words, the essence of scheduling problems has brought about (1) allocation

decisions and (2) sequencing decisions.

 In addition, two kinds of feasibility constraints are commonly found in

scheduling problems. Firstly, there are limits on the capacity of available resources,

and secondly, there are technological restrictions on the orders in which jobs can be

performed (Baker, 1974). The former generally refers to machine or workforce

capacities and limitations, whereas the latter includes machine eligibility restrictions

3

and precedence constraints. Machine eligibility restrictions mean that not all

machines can process all jobs, that is, some jobs can be processed only on some

machines. Precedence constraints require that one or more jobs may have to be

completed before another job is allowed to start its processing.

1.1.2 The Scheduling Function in a Production System

 The scheduling function in a production system has to interface with

various other important functions such as production planning, master scheduling,

material requirements planning, capacity planning and so on as illustrated in an

information flow diagram in Figure 1.1 (Pinedo and Chao, 1999).

In order to provide for departments in an organization to access the

necessary scheduling information and in order to enable departments to provide the

scheduling system with relevant information such as order quantities, job due dates,

release dates, machine status and so on, a management information system (MIS) or a

decision support system (DSS) is probably needed.

 The process of scheduling in manufacturing starts with capacity

planning (also called long-term planning) which involves facility and equipment

acquisition. Intermediate-term (or medium-term) planning includes aggregate

production planning and master production planning. The aggregate production

planning (also known as aggregate scheduling) is concerned with determining the

quantity and timing of production for the intermediate future to minimize cost over

the planning period by adjusting production rates, labor levels, inventory levels,

overtime work, sub contracting rates, and other controllable variables. The master

production schedule (MPS) then breaks down the aggregate plan and develops an

overall schedule for outputs. It specifies what is to be made (i.e. the number of

finished products or items) and when and must be in accordance with a production

plan. Material requirement planning (MRP) is one popular system which has to

interact with other decision-making procedures used within the shop floor. In short-

4

term planning, schedules translate capacity decisions, intermediate planning, and

master schedules into job sequences and specific assignments of personnel,

machinery, and materials (Heizer and Render, 2001).

Figure 1.1 An information flow diagram in a manufacturing system

1.1.3 Classification of Scheduling Problems

 To consider the classification of the major scheduling problems, it is

necessary to characterize the configuration of resources and the nature of tasks. For

example, a problem requires one processing step (also called a single-stage problem)

or several processing steps (called a multi-stage problem). A scheduling problem,

5

where the number of jobs to be considered and their release dates are available, is

called a static case. On the other hand, a scheduling problem, where the number of

jobs and related characteristics change over time, is called a dynamic case.

Figure 1.2 Classification of scheduling problems

 Let the number of jobs is denoted by n and the number of machines by

m. A schema for a classification of scheduling problems as depicted in Figure 1.2 is

presented by Day and Hottenstein (1970). It shows that the scheduling problems have

been categorized according to the following three components:

1. The nature of job arrivals, namely fixed batch size and continuous

arrivals which given by a probability density function,

6

2. The number of machines involved, namely single machine

production (m = 1) and multi-machine production (m > 1), and

3. The nature of the job route, namely same route and alternative

routes.

 The classification of scheduling problems is separated in two groups:

(1) m×n fixed-batch-size problems (or static cases) and (2) continuous job arrivals

(or dynamic cases). The nature of the job arrivals provides the distinction between

m×n fixed-batch-size problems (also called deterministic problems) and continuous

arrivals (also called stochastic problems). In m×n fixed-batch-size problems, the

number of machines and jobs is given in advance. A certain number of jobs arrive in

a shop at any time which is known in advance, that is, there are no further jobs

unexpectedly arriving, so attention can be focused on scheduling the completely

known and available set of jobs. In continuous arrivals, the shop is a continuous

process. Jobs arrive intermittently at time that is predictable only in a statistical sense,

and job arrivals will continue indefinitely into the future (Conway, Maxwell, and

Miller, 1967). Additionally, both the m × n fixed-batch-size problems and the

continuous-arrival problems can be divided into single-machine problems and multi-

stage problems. The single-machine problems are the pure sequencing problems in

which an ordering of the jobs completely determines a schedule. Moreover, they are

the simplest pure sequencing problems, where there is a single resource or machine.

The multi-stage problems are more than one machine. The simple problems are the

single-stage sequencing with several machines until the multi-stage problem. The

process of such problems in general requires both sequencing and resource allocation

decisions, and it is classified as the elementary multi-stage models: parallel machine,

flow shop, and job shop systems.

1.2 Importance of the Problem

 The importance of scheduling is obvious. It is one of the key functions in

modern manufacturing and service companies. Although other functions may be

7

optimized, the success of a company still depends heavily on the performance of

scheduling. The importance of scheduling problems is given first in this section.

Then, any other importance of scheduling problems related to this dissertation is

explained.

1.2.1 Importance of Scheduling Problems

 Nowadays, companies are encountered with market demands for a

variety of high quality products, and more customers than ever have become selective

with rapidly changing needs. The companies must, therefore, compete against these

phenomena by making their production systems more flexible, producing the high

quality products, and responding rapidly to demand fluctuations. Moreover, some

companies face such antagonist decisions as producing items with shorter and shorter

life cycles, in small quantities and with the lowest possible costs. Therefore, the

ability to make the right product at the right time and at the lowest possible cost

remains the key to success for the companies. Hence, the companies need to make

schedules that match their production to customer demands by satisfying certain

objectives and respecting their set of production constraints.

 Practical scheduling, an important decision making process in the

operation level, arises in a variety of situations; for example, consider the scheduling

of cars to be repaired in a garage, professors to classes in a university, planes to gates

at an airport, physicians and nurses to patients in a hospital, production resources to

jobs in a manufacturing plant, etc. Therefore, it plays an important role in both most

manufacturing and service industries (Pinedo and Chao, 1999).

 Due to limited resources existing along the scheduling function, the

resources always perform the jobs. However, when the number of jobs is more than

the number of resources, the job waiting time or job lateness may occur. Moreover,

scheduling programs which do away with an inefficient or inappropriate scheduling

process will waste resources and lead to confusion. Therefore, efficiency in

8

scheduling is essential. For example, some companies may use the mathematical

techniques or other heuristic methods to allocate scarce resources to a set of jobs. The

proper allocation of such resources enables the companies to optimize their objectives

in many forms, such as minimizing the time to complete all jobs or minimizing the

number of jobs completed after their committed due dates.

 Based on the above stated fact that scheduling problems appear in both

manufacturing and service industries, this dissertation is however concerned with

industrial scheduling problems, where one first has to assign jobs to limited resources

and then to sequence the assigned jobs on each resource over time. The scheduling

objective, for example, might consist in the building a schedule with the smallest

length (minimizing the makespan) and/or meeting job due dates (minimizing the

number of tardy jobs, minimizing total tardiness, etc).

1.2.2 Importance of a Flexible Flow Shop Problem

 The industrial scheduling problems are interesting in both practical and

theoretical viewpoints. The problems have been widely studied since the pioneering

work of Johnson (1954) who proposes efficient algorithms for a minimum makespan

two-stage flow shop scheduling problem with one machine at each stage and zero

release date. All jobs have to pass through a number of stages in the same order, i.e.

starting at the first stage, at completion going to the second stage and so on until the

last stage. Such a production process is called the classical flow shop environment.

 In the theoretical aspect, most studies concern many manufacturing

systems like a classical flow shop architecture which consists of a single machine on

each stage, while in most of practical manufacturing systems for every stage, a

number of machines are available that can operate in parallel. Hence, the scheduling

problem is more realistic to assume that, at every stage, a number of machines may be

available in that it can operate in parallel known as a flexible flow shop,

multiprocessor flow shop, or hybrid flow shop problem as depicted in Figure 1.3 (let

9

mt be the number of parallel machines at stage t). At each stage, a job needs to be

processed by only one of parallel machines. A flexible flow shop problem makes the

scheduling problem more complex such that the job processing sequence in each stage

may no longer be the same sequence.

Figure 1.3 A schema of a flexible flow shop environment

 For the past three decades, the flexible flow shop scheduling problem

has attracted many researchers. Numerous research articles have been published on

this topic, see the survey in Linn and Zhang (1999), Wang (2005), Quadt and Kuhn

(2007), and Allahverdi et al. (2008). There are two main reasons for this, among

many others (Wang, 2005). Firstly, a flexible flow shop environment is difficult to

solve (Garey and Johnson, 1979; Gupta, 1988; Pinedo, 1995). The flexible flow shop

problem which has two stages, with one stage having at least two machines, has

already been proved to be NP-hard (Hoogeveen, Lenstra, and Veltman, 1996). Thus,

it is unlikely that polynomial time algorithms exist for the exact solution of the

general problem. Secondly, such a machine scheduling problem can find applications

in many real-world applications.

10

 Precisely, this dissertation is mainly concerned with process industries

like e.g. a glass-container industry (Paul, 1979), a rubber plant (Yanney and Kuo,

1989), a photographic film manufacture (Tsubone et al., 1993), a steel industry (Finke

and Medeiros, 2002), a textile manufacture (Karacapilidis and Pappis, 1996), a

printed circuit board manufacture (Alisantoso, Khoo, and Jiang, 2003; Hsieh, Chang,

and Hsu, 2003) and so on. Such industries are established as multi-stage production

flow shop facilities, where at least one production stage is made up of parallel

production lines, machines or any other production facility. At some stages, the

facilities (i.e. machines, lines, etc) are duplicated in parallel to increase the overall

capacities of the shop floor, to balance the capacities of the stages, or to either

eliminate or reduce the impact of bottleneck stages on the overall shop floor

capacities.

 Most researchers on the flexible flow shop scheduling problems deal

with the two-stage flexible flow shop scheduling. For instance, see work of

Narasimhan and Mangiameli (1987), Gupta (1988), Deal and Hunsucker (1991),

Gupta and Tunc (1991, 1994, 1998), Lee and Vairaktarakis (1994), Chen (1995),

Guinet et al. (1996), Gupta, Hariri, and Potts (1997), Haouari and M’Hallah (1997),

Oguz, Lin, and Cheng (1997), Dessouky, Dessouky, and Verma (1998), Schuurman

and Woeginger (2000), Lin and Liao (2003), Guirchoun, Martineau, and Billaut

(2005), Haouari, Hidri, and Gharbi (2006), and Low, Hsu, and Su (2008).

 Although there are some studies which concern the parallel machines

in each stage, they have some non-practical assumptions; for example, they are

concentrated on problems with identical machines, that is, each job is processed on

any one of the machines in parallel for every stage in the same manner, see for

instance, Gupta et al. (2002), Alisantoso et al. (2003), Lin and Liao (2003), and Wang

and Hunsucker (2003). However, in the real world situation, it is common to find

newer or more modern machines running side by side with older and less efficient

machines. Even though the older machines are less efficient, they may be kept in the

production lines because of their high replacement costs. The older machines may

11

perform the same operations as the newer ones, but they would generally require

longer operating time for the same operation. In addition, it may be possible that

speeds of machines are still dependent on the jobs assigned. Such a problem is called

a flexible flow shop with unrelated parallel machines. Hence, in this dissertation, the

flexible flow shop problem with unrelated parallel machines is considered, that is,

there are different parallel machines at every stage, and speeds of machines are also

dependent on the jobs. It is a general form of all kinds of parallel machine problems.

1.2.3 Importance of Sequence-Dependent Setup Times

 In some cases where the operator needs to change the configuration of

the station in order to process the next job, the change of it may result in an additional

production cost or additional time, being necessary to realize the change in the

configuration. This process is known as a changeover or setup. Hence, setup time is

the time used to prepare the process of jobs on machines. This includes obtaining

tools, positioning work in process material, adjusting tools, returning tools, cleaning

up, and inspecting materials. It is very common in many real manufacturing systems.

Scheduling problems involving setup times can be divided into two

types. The first type is sequence-independent setup time, and the second type is

sequence-dependent setup time. Setup is sequence-dependent if its duration depends

on both the current and the immediately preceding job and is sequence-independent if

its duration depends only on the current job to be processed (Allahverdi, Gupta, and

Aldowaisan, 1999).

The usual assumption for most scheduling researches is that jobs are

sequence-independent. The result of this assumption is that capacity management in

these studies requires only the allocation of capacity over the specified time interval.

The sum of setup and processing times remains constant for instances of sequence

independence, and capacity utilization also remains constant. Such a setup, known as

12

sequence-independent setup, has for long been considered negligible and hence

ignored or considered as part of the processing time.

However, in some industries, setup is complicated by the fact that the

length of setup required depends on the job just completed and on the one about to be

started, known as sequence-dependent setup. This setup has most significant effects

on shop performance as follows: Firstly, the length of setup time directly affects the

throughput rate of a production system. Secondly, the cost of unit setup time is

usually higher than that of unit processing time since the cost of setup time includes

loss of productivity due to machine down-time and the cost of setup itself such as

labor cost of a setup technician. Thirdly, the setup change can often be made only by

a qualified technician since setup is often a complicated work requiring a higher level

of expertise. The qualified workers are limited resources that are not always

available.

 An example of the sequence-dependent setup operations is in dyeing

operations which require setups. Whenever a new color is needed, a dyeing machine

must be cleaned. The cleanup time often depends on the color just completed and the

color about to be started. In practice, the best sequence is to go from light to dark

colors because the cleanup process is easier. In chemical industry, to produce the

different chemical compounds may require that some amount of cleansing be carried

out between process runs on different compound to insure that tolerably low impurity

levels are maintained. In addition, in steel industry, the setup time for the roll

changing depends on the type of products just completed and the next type about to be

processed.

 The importance of setup times has been investigated in several studies.

Wilbrecht and Prescott (1969) find that sequence-dependent setup times are

significant when a shop is operated at or near full capacity. In a survey of industrial

managers, Panwalkar, Dudek, and Smith (1973) discover that about three quarters of

the managers have reported at least some operations their schedule requires sequence-

13

dependent setup times, whereas approximately 15 percent of the managers have

reported all operations requiring sequence-dependent setup times.

 Burns and Daganzo (1987) discuss a flow shop problem with setup

costs and distinguish between three different types of setup cost/time as follows:

1. Waste material resulting in additional cost owing to, for instance,

discard of the paint in the paint shop of an automobile production.

This setup cost has only impact on the objective function that

minimizes the production costs,

2. Station downtime or labor required to change the setup. This

occurs, for example, when the mounting or a tool needs to be

changed. In this case, the schedule of the jobs is directly

influenced; it means a sequence without setup time is not possible

because some job changes require additional time for preparation,

and

3. Product quality implications which affect the performance of the

station. For instance, the paint quality may temporarily decline

when a change of color occurs.

 In order to further improve the solution, the setup cost/time is

considered completely separated. Allahverdi et al. (1999) highlight that when setup

cost is directly proportional to setup time, a sequence that is optimal with respect to

setup cost is also optimal with respect to setup time. Their survey on setup

considerations furthermore considers sequencing problems in flow shop regarding the

following characteristics:

1. Batch setup: Jobs are grouped into batches and a major setup is

incurred when switching between jobs belonging to different

batches, whereas a minor setup is incurred for switching between

jobs within the batches,

14

2. Sequence dependent setup: Including setup cost/time that depends

on the succeeding job gives the possibility to further improve the

sequence. In the symmetric case, the appearance of setup cost/time

is the same for a change from model a to model b and for a change

from model b to model a, and

3. Setup time separable from processing time: The case in which

setup time is separable from processing time leads to the possibility

of further reducing the total processing time. This results from the

fact that once on a machine i a job j is finished, and the setup can

already be changed way before job j + 1 arrives.

1.2.4 Importance of Release Dates of Machines and Jobs

 The release date of the machine (or machine availability) is the time

indicating when the machine becomes available from the previous job in the previous

planning period and can start processing in the current planning period. In classical

scheduling problems, machines are assumed to be available at time zero onward.

However, in most real life industrial settings, a machine can be unavailable at time

zero for many different reasons. For instance, some machines may be tied up with

unfinished jobs that are carried over from the previous planning period. This machine

restriction can also arise from the overlapping of two consecutive planning periods in

a system with rolling horizons. It occurs when a new planning period is triggered

before all jobs of the previous planning period have been completed, and the

assignment of these uncompleted jobs cannot be altered anymore, e.g. due to process

preparation, To increase the real life situation, the machine availability at

nonnegative available time is hence considered in this dissertation.

 The release date of the job is also known as the ready time. It is the

time where a job arrives at the system, that is, the earliest time at which a job can start

its processing. Although in the real situation customer orders may not arrive

simultaneously, a few papers are devoted to scheduling problems with nonnegative

15

release dates of the jobs. Therefore, it is suitable to concern the job release date

where the date is known in advance in this dissertation.

1.2.5 Importance of Scheduling Objectives

 The scheduling objectives in such industries may vary. In real life

situations, decisions to be made are often constrained by specific requirements. More

importantly, these requirements are typically conflicting in nature. The decision

making process gets increasingly more complicated with increment in the number of

requirements. Modeling and development of the solution methodology for these

scenarios have been the challenge for operations researchers. Generally speaking,

scheduling problems in real life applications involve optimization of more than one

criterion. The due-date related criteria and the makespan criterion may be important

and have been used by many researchers, which they are included in this dissertation.

 The motivation to consider the problem of generating an efficient set

of schedules for the flexible flow shop environment comes from the variety of

industrial cases where the criteria related to efficiently utilizing resources and

completing orders by their due dates are important. For example, the makespan and

the number of tardy jobs are used as the scheduling criteria.

 Makespan is a traditional objective for much of the flexible flow-line

literature. In addition to its applicability to a periodic multiple product scheduling

environment, the makespan criterion can also be considered as a surrogate for

capacity maximization and flow time criterion. Pinedo (1995) explains that lower

makespan usually indicates an efficient utilization of resources. Moreover when

dealing with machines in parallel, the makespan becomes an objective of significant

interest. In practice, one often has to deal with the problem of balancing the load on

machines in parallel, and by minimizing the makespan the scheduler ensures a good

balance (Pinedo, 1995).

16

 The number of tardy jobs may at first appear somewhat artificial and of

no practical interest. However, in the real-world it is a performance measure that is

often monitored and used to rate managers’ performance. It is equivalent to the

percentage of on-time shipments (Pinedo, 1995). In many cases, a manufacturer

wants not only the conformity to schedule but also the minimization of the number of

tardy jobs in order to avoid the penalties that may incur. Thus, it is directly related to

improving the customer’s satisfaction, which is becoming a more critical issue for

management. In this criterion, changing any job’s completion time changes the value

of the objective, whereas in the makespan criterion, only one job defines the value of

the objective.

1.3 Statement of the Problem

 This dissertation addresses the job scheduling problem in a system, which is

called a flexible flow shop environment. There are customer orders (or jobs) to be

processed in this system. Customer orders may not arrive simultaneously, but their

arrival times, called the release dates, are known and fixed by customers. The due

dates of jobs are designated by customers. Each job is allowed to start its processing

whenever it is ready, that is, there are no precedence constraints and priority rules.

Each job is an entity, and it cannot split into sub-jobs, that is, job splitting is not

permitted.

 The system (or machine environment) consists of many production stages in

series, where jobs have to undergo multiple operations in the same order (referred to

as a flow shop environment). In addition, there are a number of machines in parallel

at each stage, where jobs have to be processed on any one of the parallel machines in

each stage (referred to as a flexible flow shop environment). Even though each

machine in each stage can perform all jobs, the time that each job spends on the

machines may be different. In this dissertation, the time to perform any job on the

machines depends on the jobs and the machines (referred to as unrelated parallel

machines). There are infinite buffers between all adjacent stages, as well as before

17

the first stage and after the last stage. Figure 1.4 shows a general schematic of the

production process under consideration.

Figure 1.4 A general schematic of the production process

 This problem considers only one planning period. The times for the

uncompleted jobs from the previous planning period are reserved on the machines

(referred to as machine release dates or machine availability). In other words,

machines in the current planning period are available from time non-negative

onwards. Moreover, it is assumed that there are no machine breakdowns as well as

scheduled or unscheduled maintenance. In addition, the problem is assumed to be a

static scheduling problem, that is, the current schedule will not change even though

there are new jobs that enter the system. Consequently, the new jobs and the jobs that

have never been performed in the current planning period will be scheduled in the

following planning periods.

 Setups need to be considered in the problem. They are the addition processes

where the operators need to change the configuration of the station in order to process

the next job, and they result in additional production costs and times. The setup of the

next job can start whenever the job arrives at the machine and the machine becomes

free to process the job (referred to as a non-anticipatory setup). In addition, the setup

18

time (cost) depends on the current job and the immediately preceding job (called

sequence-dependent setup time) during the current planning period. However, there

are hidden sequence-dependent setups that occur between the last unfinished job in

the previous planning period and the first job in the current planning period on the

same machine. Consequently, it seems that the setup time of the job that is processed

in the first position on any machines depends on the machine that the job is processed

(referred to as machine-dependent setup time). In this dissertation, such a machine-

dependent setup time is called changeover time.

All jobs must be completed without interruption in the system (known as non-

preemption) and cannot be cancelled before their completion. It is assumed that all

jobs are always processed without error and do not revisit the stage that they have

already visited. There is no transportation time between two consecutive stages, that

is, they are available for processing at a stage immediately after completing

processing at the previous stage. No two operations of the same job are processed

simultaneously, and no machine processes more than one job at a time.

 This problem is now to find a feasible solution consisting of a feasible

assignment and a feasible schedule, such that the completion time of the last job to

leave the system (called the makespan) and the number jobs that cannot be sent to the

customers by their due dates (called the number of tardy jobs) for the current planning

period is minimized by using the positively convex of combination.

1.4 Dissertation Objectives

1. To formulate a mathematical model to solve the problem of a flexible flow

shop problem with unrelated parallel machines and sequence-dependent setup times

and to produce an optimal schedule in order to minimize the makespan and the

number of tardy jobs, and

2. To develop constructive and iterative algorithms to find approximate

solutions for large-sized problems.

19

1.5 Dissertation Scope

 The scheduling problem considered is a flexible flow shop problem.

Specifically, this dissertation studies a problem that has unrelated parallel machines at

least one production stage. All data in this problem are assumed to be known

deterministically when scheduling is undertaken. The scheduling problem is

characterized by three components:

(1) The machine environments and job characteristics,

(2) The processing characteristics and a set of constraints that

must be satisfied for each schedule, and

(3) The objective function characteristics that must be

minimized.

Hence, the scope and assumptions of this study are classified in three

components as follows:

1.5.1 Machine Environments and Job Characteristics

 This section describes the details of machine environments and job

characteristics studied in this dissertation as follows:

1.5.1.1 Machine Environments

1) This is a flexible flow shop scheduling problem whose

system is a k-stage flexible flow shop (k≥ 2) environment.

A stage is a machine or set of machines that perform the

same operation, and

2) Some stages are made up of a number of machines (mt ≥ 2,

∃t ∈ {1, 2, …, k}, where mt be the number of machines at

stage t). It has a set of unrelated parallel machines, each of

20

which can process all jobs but the processing time of each

job on each machine may be not necessary to equal.

 Let denote the processing time of job j on machine i at

stage t, be the standard processing time of job j at stage t , and be the relative

speed of machine i for job j at stage t. In general, for each stage t, one can distinguish

among the following three cases:

t
ijp

t
jps t

ijv

a) Identical parallel machines: = for all i and j, t

ijp t
jps

b) Uniform parallel machines: t
i

t
jt

ij v
ps

p = for all i and j, where

 is the relative speed of machine i at stage t, and =

for all j, and

t
iv t

iv t
ijv

c) Unrelated parallel machines: t
ij

t
jt

ij v
ps

p = for all i and j.

1.5.1.2 Job Characteristics

 The number of jobs is known and fixed. Each job to be

scheduled in the current planning period comes from two sources, the new customer

orders in this planning period and the remaining jobs from the previous planning

period that are not carried out. Each of the n jobs is an entity. Even though the job is

composed of distinct operations, no two operations of the same job may be processed

simultaneously. There are own due dates (dj).

1.5.2 Processing Characteristics and a Set of Constraints

 This section provides detailed scope and assumptions of processing

characteristics and constraints as follows:

21

1) The release dates or arrival times of all jobs are nonnegative

release dates, that is, jobs cannot start their processing times before

their release dates (rj). However, they are assumed to be known

with certainty,

2) The sequence-dependent setup times may exist between two

consecutive jobs at each stage. Setup can only be preformed after

the machine is no longer processing any job and the job for which

setup is being performed is ready. Moreover, the length of time
required to do the setup of each stage t, , depends on both the

prior job l which the machine processes and the current job j to be

processed. However, it is also assumed that the setup times are

equal for all machines in the same stage when changing from one

job to another,

t
ljs

3) The machine-dependent setup times occur only when the job

assigned to each machine at the first position at each stage in the

studied period. It means that the length of setup time (or
changeover time,) of job j depends on the machine performing

it since each machine has different unfinished jobs in the pervious

planning period, so the length of changeover time depends on the

unfinished job in the previous planning period and the first new job

in the current planning period, which is the reason why the

changeover time depends on machines,

t
ijch

4) Preemption is not permitted; i.e. once operation is started, it must

be completed without interruption,

5) There are no precedence constraints and no job priority constraints,

that is, each job is allowed to start its processing whenever it is

ready,

6) Jobs cannot be cancelled before their completion,

7) Each job visits the stage in same order, but it does not revisit a

stage that it has already visited, and the process flow for each job is

known in advance,

22

8) Jobs are always processed without error and have no associated

priority values,

9) At any time, every job can be processed at most one machine, and

every machine can process at most one job,

10) There are infinite buffers between all two consecutive stages as

well as before the first stage and after the last stage, so there is no

blocking of machines, that is, in-process inventory is allowed,

11) There are no machine breakdowns and scheduled or unscheduled

maintenance. The machines are however continuously available
from time non-negative onwards. The machine release dates

() mean the times that machines are reserved to perform the

unfinished jobs carried over from the previous planning period,

t
ia

t
ia

12) There is no transportation time between stages; jobs are available

for processing at a stage immediately after completing processing

at the previous stage, and

13) All data used in this dissertation (i.e. standard processing time,

relative speed of machines, release date, due date, setup time and

so on) are randomly generated from the uniform distribution.

1.5.3 Objective Function Characteristics

 Let the completion time of job j at stage k, it means the time that job j
can leave the system, be . The criteria for considering the production

improvement in the scheduling method will be:

k
jC

a) The makespan (Cmax): The makespan, defined as { }, is

equal to the completion time of the last job to leave the system,

which is defined as:

}..1{
max

nj∈

k
jC

Cmax = { }

},...,1{
max

nj∈

k
jC (1.1)

23

b) The number of tardy jobs (ηT): The number of jobs whose

completion times are larger than their due dates.

Associated with each job j, a due date dj ≥ 0. Let Uj = 1 if the
completion time of job j is larger than due date for job j, otherwise Uj = 0. The

total number of tardy jobs (ηT) is defined as:

k
jC

ηT = ∑
=

n

j
jU

1

(1.2)

1.6 Dissertation Contribution

 According to stated details of the importance of problems in Section 1.2, this

problem is worth studying. This section addresses the contribution of this dissertation

based on two main attractions of this problem (Wang, 2005). Firstly, flexible flow

shop problem is a category of machine scheduling problems where most machine

scheduling problems are difficult to solve and have been proved to be NP-hard or NP-

complete. Secondly, most machine scheduling problems can find applications in the

real world.

 Gupta (1988) has studied the minimum makespan problem in a two-stage
flexible flow shop which m1 ≥ 2 and m2 = 1. He states that the minimum makespan

problem in a two-stage flexible flow shop is NP-hard when max {m1 and m2} > 1.

This result is very important because it shows that any minimum makespan problem

in a k-stage flexible flow shop is NP-hard since the k-stage flexible flow shop can

always be reduced to a two-stage flexible flow shop. Consequently, the flexible flow

shop problem is at least that difficult, and it is well worth studying.

Although the processing complexity is a major direction of development, it is

clearly shown in the literature review that most of the work is the two-stage flexible

flow shop problems. While interesting results have been obtained for these cases,

24

there has been less work done on the k-stage (k ≥ 3) ones. Thus, the complexity level

would significantly increase as it extends to three or higher number of stages.

Moreover, although the flexible flow shop problem has been widely studied in

the literature, most of the studies related to the flexible flow shop problem are

concentrated on the problem with identical processors, see for instance, Bratley,

Florian, and Robillard (1975), Brah and Hunsucker (1991), Deal and Hunsucker

(1991), Gupta and Tunc (1991, 1994, 1998), Rajendran and Chaudhuri (1992),

Santos, Hunsucker, and Deal (1995), Guinet and Solomon (1996), Gupta et al. (2002),

Alisantoso et al. (2003), Lin and Liao (2003), and Wang and Hunsucker (2003). In

this dissertation, the flexible flow shop problem with unrelated parallel machines is

however considered, that is, there are different parallel machines for every stage, and

speeds of the machines are also dependent on the jobs.

To simplify the problem, setup times are seldom considered in the scheduling.

They are fixed and included in processing times, see Negenman (2001) and Engin and

Döyen (2004). However, several industries encounter sequence-dependent setup

times which result in even more difficult scheduling problem. In this dissertation,

sequence-dependent setup time restriction is therefore taken into account as well.

Most researchers suppose that machines are always available at time zero. It

means that schedulers can assume that no jobs exist on every machine during

scheduling. However, in the real life of scheduling problem machines may be subject

to some unavailability periods due to uncompleted jobs on the machine. There has

been no serious research work reported on this subject despite the fact that it is the

realistic machine scheduling.

Moreover, customer orders may not arrive simultaneously in real-life

problems, so assuming that n independent jobs are available at zero is not an

acceptable assumption. Thus, this dissertation concerns the problem as the unequal

release date scheduling problem.

25

Scheduling criteria are the measures upon which schedules are to be evaluated.

Two board classes of criteria are the schedule cost and the schedule performance.

Such costs are often difficult to measures, so frequently an important cost-related

measure of system performance can be used as a substitute for total cost system

(Baker, 1974). In theoretical research, most researchers have addressed single

criterion problems. The minimization of makespan is the most widely used criterion,

see Moursli and Pochet (2000), Schuurman and Woeginger (2000), and Engin and

Döyen (2004). However, companies are usually faced with the problem of satisfying

several different groups of people. Thus, there is a need for further research in multi-

criteria scheduling problems.

It can conclude that this dissertation problem is also of great academic interest.

The scheduling literature has dedicated a great deal of attention to the flow shop

machine environment while basically ignoring the equally important flexible flow

shop machine environment. To simplify the problem, most researchers focus two-

stage or k-stage problems with identical machines, and the setup times are fixed and

included in processing times, in contrast to this problem. At the same time, most

scheduling models have concerned the makespan as the objective, while results for

models with dual criteria, number of tardy jobs and makespan, are rare, and most of

these are limited to very simple cases like the single machine problem or the two-

stage problem. To best of the knowledge, this is a brand new problem for serious

study in scheduling literature (Allahverdi et al., 2008).

1.7 Dissertation Methodology

After determining the context in which scheduling is being defined, the

methodology for selecting a “good” schedule solution is determined. This section

addresses the dissertation methodology.

26

Study a problem
in a setting

Using a 0-1 mixed integer
programming to find the optimality

Develop iterative algorithms
 to obtain a near-optimal solution

Formulate a mathematical
model of the problem

Develop constructive algorithms
 to obtain a best solution

Conduct computational experiments

Make conclusion and discuss future
research direction

Figure 1.5 The research methodology

Figure 1.5 shows the dissertation methodology. The common solutions to

solve the static scheduling problem are described first in this section. Then, a way of

dealing with this dissertation problem is presented. Finally, the rational for

approaches is addressed.

1.7.1 Common Solutions for Scheduling Problems

 Scheduling problems are typically represented as the combinatorial

optimization problems. They maximize or minimize functions of many variables

subject to some problem specific constraints and some integrality restrictions imposed

on all or some of the variables. Often, a combinatorial optimization problem can be

modeled as an integer program (Nemhauser and Wolsey, 1999). However, these

27

problems are often very difficult to solve, which is captured by the fact that many

such problems are NP-hard or NP-complete. Due to their difficulty and numerous

practical importance, a large number of solution techniques for attacking NP-hard

integer and combinatorial optimization problems have been developed. The available

algorithms can be classified into two main classes: exact and approximate algorithms.

 Exact algorithms are guaranteed to find the optimal solution and to

prove its optimality for every finite size instance of a combinatorial optimization

problem within an instance-dependent, finite run-time. If optimal solutions cannot be

computed efficiently in practice, the only possibility is to trade optimality for

efficiency. In other words, the guarantee of finding optimal solutions can be

sacrificed for the sake of getting very good solutions in polynomial time. A class of

approximate algorithms is that of heuristic methods, or simply heuristics, and seeks to

obtain this goal.

Two techniques from each class that have had significant success are

integer programming (IP), as an exact approach, and local search and extensions

thereof called metaheuristics, as an approximate approach. The IP approach is a class

of methods that relies on the characteristic of the decision variables of being integers.

Some well-known IP methods are branch-and-bound, branch-and-cut, dynamic

programming and so on, see e.g. Brah and Hunsucker (1991), Moursli and Pochet

(2000), Sawik (2000, 2002, 2007), and Lee and Asllani (2004). However, for most of

the available IP algorithms the size of the instances solved is relatively small, and the

computational time increases strongly with increasing instance size, whereas the local

search algorithm has been shown to be the most successful class of approximate

algorithms, i.e. Santos et al. (1995, 1996). It yields high-quality solutions by

iteratively applying small modifications (local moves) to a solution in the hope of

finding a better one. Embedded into metaheuristics designed to escape local optima

such as simulated annealing, tabu search, genetic algorithm, or iterated local search,

these approaches have been shown to be very successful in achieving near-optimal

28

(and sometimes optimal) solutions to a number of difficult problems, i.e. Lee and

Asllani (2004).

1.7.2 Solution Methodology for the Dissertation Problem

This section addresses the solution methodology for this dissertation

problem. According to the common solutions for scheduling problem in Section

1.7.1, the available algorithms for this dissertation problem can be classified into two

main categories: exact and approximate algorithms. In addition, the approximate

algorithms can be classified into two groups: constructive algorithms, and artificial

intelligence (iterative algorithms) search techniques (Wang, 2005). Hence, there are

three solution approaches used to solve this dissertation problem. These approaches

are described below:

(1) Exact algorithms

 This dissertation problem is able to take the form of a

mathematical model that expresses the desired objectives subject to the constraints set

forth in the problem. The most well-known general technique studied in this

dissertation is a 0-1 mixed integer programming method, where the solution can be

obtained by running the commercial mathematical programming software (Sawik,

2000, 2002, 2007).

(2) Constructive algorithms

 The NP-completeness of scheduling problem makes it

computationally expensive to use an exact solution technique (Lee and Asllani, 2004;

Nearchou, 2004), which gives the optimal solution of a problem. It is impractical for

most problems since the solution time would be unacceptably long. That is why an

approximate solution technique is needed. Approximate solution techniques, or

heuristics, may provide the optimal solution for a problem even though they do not

29

guarantee the optimal solution. This fact implies that there may be some spaces for a

heuristic to be improved.

In this dissertation, some dispatching rules, namely the Shortest

Processing Time (SPT), Longest Processing Time (LPT), Earliest Due Date first

(EDD), Earliest Release Date first (ERD), Minimum Slack Time first (MST), and

Slack time per Processing time (S/P) rules, and flow shop makespan heuristics, which

are the algorithms given by Palmer (1965), Campbell, Dudek, and Smith (1970),

Gupta (1971), and Dannenbring (1977) as well as the insertion heuristic by Nawaz et

al. (1983), will be used for flexible flow shop environment as the constructive

algorithms. Upon these heuristics, the starting job sequence for the first stage is

generated by using them. Then, use the greedy search policy to determine the relative

position of jobs with respect to any machines. In addition, the new job sequence for

the other stages will now be used, by using either permutation or First-In-First-Out

rules to construct a schedule for the problem. The solution is then set equal to the best

function value obtained by both rules.

 Moreover, after several constructive algorithms have been

adapted, several fast polynomial improvement heuristics will be applied to the

solutions to improve the quality of solution (called improvement algorithms).

(3) Iterative algorithms

To increase the near-optimal solution from the constructive

algorithms, iterative metaheuristic algorithms or artificial intelligence (AI) search

techniques are proposed to solve the flexible flow shop problem in this dissertation.

The AI search techniques are different from other heuristics. They search for a good

solution by using or learning certain knowledge (usually the knowledge is problem

specific), which belongs to the category of AI search techniques. However, they do

not guarantee optimal solutions. There are three types of the AI search techniques

30

commonly applied in solving optimization problems in this dissertation: simulated

annealing, tabu search, and genetic algorithms.

1.7.3 Rational for the Solution Approaches

 This section addresses the rational for solution approaches studied in

this dissertation. Thus, the important issue of the solution methodology for this

dissertation problem is given. The importance of exact algorithms is presented first.

Then, the importance of approximate algorithms (for both constructive and iterative

algorithms) is given.

1.7.3.1 Importance of Exact Algorithms

Although the flexible flow shop problem with unrelated parallel

machines and sequence-dependent setup times is difficult to solve optimally for a

large-sized problem, i.e. Brah and Hunsucker (1991) and Kurz and Askin (2004), an

exact procedure using a mathematical programming formulation is generally accepted

for solving small-sized problems.

 In recent years, remarkable improvements have been reported

for the integer program when it applies to some difficult problems, i.e. Sawik (2000,

2002, 2007). However, for most of the available integer programming algorithm the

size of the instances solved is relatively small, and the computational time increases

strongly with increasing instance size. Additional problems are often due to the facts

that:

1. The memory consumption of exact algorithms may lead to

the early abortion of a program,

2. High performing exact algorithms for one problem are often

difficult to extend if some details of the problem

formulation change, and

31

3. For many combinatorial problems, the best performing

algorithms are highly problem specific, and they require

large development times by experts on integer

programming.

 Nevertheless, there are some important advantages for

formulating the exact algorithm from the mathematical programming as follows:

1. Proven optimal solutions can be obtained if the algorithm

succeeds,

2. The mathematical programming provides a better

understanding of the problem, which will be useful in

formulating relaxed problems and in developing heuristic

procedures,

3. Even though existing computing devices cannot solve large

problems in an acceptable time, development of these

devices is improving with a fast pace. Faster computers are

developed with larger memories, and they may be able to

solve practical size problems in near future,

4. Valuable information on the upper/lower bounds to the

optimal solution is obtained even if the algorithm is stopped

before completion, and

5. A more practical advantage of mathematical methods is that

powerful, general-purpose tools such as CPLEX often reach

astonishingly good performance.

1.7.3.2 Importance of Approximate Algorithms

 In general, the computational effort required to find an optimal

solution grows exponentially with the size of the problem. The exact algorithms for

finding an optimal solution in polynomial time are therefore unlikely to exist. That is

32

why the approximate solution techniques are necessary. Advantages of the

approximate methods are that:

1. In practice, the approximate algorithms are found to be the

best performing algorithms for a large number of problems,

2. The approximate algorithms can examine an enormous

number of possible solutions in reasonable or acceptable

computation time,

3. The approximate algorithms are often more easily adapted

to variants of problems, so they are more flexible, and

4. The approximate algorithms are typically easier to

understand and implement than exact methods.

 However, disadvantages of the approximate algorithms are that

typically:

1. The approximate algorithms cannot prove optimality,

2. The approximate algorithms cannot provably reduce the

search space,

3. The approximate algorithms do not have well defined

stopping criteria (this is particularly true for

metaheuristics), and

4. The approximate algorithms often have problems with

highly constrained problems where feasible areas of the

solution space are disconnected.

 It concludes that this dissertation problem belongs to the class

of combinatorial optimization problems characterized as NP-hard, so the right way to

perform is with heuristic (Nearchou, 2004). According to the advantages of

approximate algorithms, several concepts of constructive algorithms, namely SPT,

LPT, ERD, EDD, MST, S/P, PAL, CDS, GUP, DAN, and NEH, are adapted as

constructive algorithms for this dissertation problem.

33

 The question raised for the constructive algorithms is whether it

is possible to improve the solution quality. Sticking into local optima is one

drawback of constructive algorithms, while most iterative algorithms (or AI search

techniques) always try to find a better solution or escape from a local optimal to find

the globally better solutions. This is why iterative algorithms can improve flexible

flow shop solutions. Jones, Mirrazavi, and Tamiz (2002) show that 70% of the

articles utilize the genetic algorithm as the primary metaheuristic, 24% simulated

annealing, and 6% tabu search. The genetic algorithm is so popular because of its

flexibility. Thus, to determine near-optimal solutions, the simulated annealing, tabu

search, and genetic algorithms are proposed as iterative algorithms.

1.8 Dissertation Organization

 This dissertation addresses a scheduling in flexible flow shop problem with

unrelated parallel machine and sequence-dependent setup times. It is organized as

follows:

Chapter I states the general background and introductory problem to provide

the definition of scheduling problems, the scheduling function and the classification

of the scheduling problems. The importance of scheduling problems, a flexible flow

shop problem, sequence-dependent setup times, release dates of machines, and

schedule objectives, is indicated. The statement of the problem and the objective of

this dissertation are addressed. The dissertation scope, the dissertation contribution,

and the dissertation methodology are presented.

At the beginning of Chapter II, the brief review of machine environments for

scheduling problems, which are single machine, parallel machines, flow shop, and job

shop, is explained. The survey of the flexible flow shop problem, which consists of

the flexible flow shop environment review, the setup time scheduling problem review,

the scheduling objective function review, and the flexible flow scheduling procedure

review, is presented.

34

In Chapter III, the mathematical model considering three main conditions,

namely unrelated parallel machines, sequence-dependent setup time between jobs,

and machine-dependent setup time of a job, is formulated to find the optimal

scheduling solution by using the a commercial algebraic modeling language AMPL

with CPLEX solver that runs on Windows platform. The total number of possible

sequence combinations that are generated by a complete enumeration method is

estimated to illustrate the complexity of the problem.

The heuristic solution concepts are proposed in Chapter IV. They will consist

of three main kinds of the heuristic approaches which are the constructive algorithms,

improvement algorithms, and iterative algorithms. The constructive algorithms

proposed are adapted the ideas of the dispatching rules and flow shop heuristic

algorithms. Then, the improvement algorithms are proposed by using the

neighborhood exchanges to improve the solution obtained from the constructive

algorithm. The iterative algorithms based on the artificial algorithms, namely tabu

search, simulated annealing, and genetic algorithms, are used to find the schedule

solution.

Chapter V provides the computational experiments of the heuristic algorithms

that are proposed in Chapter IV. The performance of each algorithm is compared to

the best heuristics that are found in these tests on medium- and large-sized test

problems, whereas the performance on small-sized test problems is compared to the

optimal solution obtained from the 0-1 mixed integer programming in Chapter III. In

addition, the recommended heuristic solution approach is proposed.

The research summary of this dissertation is provided in Chapter VI, where

conclusion is presented. The future research is briefly discussed in view of

theoretical, computational, and empirical research.

CHAPTER II

LITERATURE REVIEW

This chapter reviews the literature that is related to the dissertation problem,

whose topic is a scheduling problem in flexible flow shop environment. As stated in

Chapter I, the flexible flow shop environment can be seen as the combination of the

classical flow shop environment and the single stage parallel machine environment.

The classical machine environments for scheduling problems which are single

machine, parallel machines, flow shop, and job shop, as well as the complex machine

environment, namely the flexible flow shop environment, are explained in this

chapter. More other general scheduling studies are found in Baker (1974), Pinedo

(1995), and Pinedo and Chao (1999). More details of the flexible flow shop

scheduling problems are found in Linn and Zhang (1999), Wang (2005), Quadt and

Kuhn (2007), and Allahverdi et al. (2008).

This chapter is organized as follows: Firstly, the brief review of machine

environments for scheduling problems, which are single machine, parallel machines,

flow shop, and job shop problem, is explained. Secondly, the flexible flow shop

scheduling problem, which is the problem under consideration, is introduced. Finally,

the survey of the flexible flow shop problem is presented. It consists of the flexible

flow shop environment review, the setup time scheduling problem review, the

scheduling objective function review, and the flexible flow shop scheduling procedure

review.

2.1 Machine Environments for Scheduling Problems

 There are many important machine environments in the scheduling problems

presented in the literature such as single machine, parallel machines, flow shop, and

job shop. In this section, the definition of each machine environment is explained.

36

2.1.1 Single Machine Problem

 The single-machine model is the simplest pure sequencing problem;

there is one machine that can process at most one job at a time. It requires only the

sequencing decision. It has been the most popular of all scheduling problems.

 Numerous results exist for a large number of problem specifications.

The best known results are the procedures for minimizing a weighted sum of

completion times (Smith, 1956) and for minimizing the maximum tardiness (Jackson,

1955); both of these procedures ascertain the optimal job sequence by means of a

simple ordering of the jobs, WSPT (Weighted Shortage Processing Time sequencing),

which sequences the jobs in non-decreasing order of their ratios of processing time to

weight, and EDD (Earliest Due Date sequencing), which sequences the jobs in non-

decreasing order of deadlines.

 A slightly more complex procedure is that of Moore (1968) for

minimizing the number of late jobs. While the previous-mentioned problems have

proved to be quite easy, the problem of minimizing weighted tardiness has been

considerably more difficult because tardiness is not a linear function of completion

time. Wilkerson and Irwin (1971) introduce a suboptimal procedure for minimizing

the mean tardiness.

 In earlier literature, most researchers examine the basic single-machine

model with regular measures of performance, which are non-decreasing in job

completion times. However, the recent literature has begun to change with the

growing interest in Just-In-Time (JIT) production, which espouses the notation of

earliness and tardiness (known as an E/T problem), see Ventura and Radhakrishnan

(2003), Valente and Alves (2005), and Hino, Ronconi, and Mendes (2005).

37

2.1.2 Parallel-Machine Problem

 The one-stage parallel-machine problem is similar to the single-

machine model except that each job may be performed on any of the parallel

machines. It requires both sequencing and resource allocation decisions and is an

important generalization of the single-machine problem; however, the single-machine

problem is introductorily of theoretical interest.

 The parallel machine models are divided into three groups: identical

parallel machines, uniform parallel machines, and unrelated parallel machines. In the

identical parallel-machine case, there are m machines in parallel, that is, each job

requires a single operation and may be processed on any one of the machines. Under

uniform parallel-machine case, the machines in parallel have different processing

speeds. (A set of machines is uniform if the operation time to perform any job on a

particular processor is proportional to that machine’s speed. In other words, each

machine is a scale replica of some base unit.) The unrelated parallel-machine case is

another generalization of the parallel machine model. The operation time for every

job is dependent on the machines, and the speeds of machines are dependent on the

jobs.

 Unfortunately, most of the researchers assume that the machines are

identical, see Elmaghraby and Park (1974), Sarin, Ahn, and Bishop (1988), Belouadah

and Potts (1994), Ho and Chang (1995), Azizoğlu and Kirca (1999), and Lin and Jeng

(2004). The most common objective function studied for the problem is the

minimization of makespan, weighted flow time, or weighted tardiness.

2.1.3 Flow Shop Problem

 The flow shop model, which is the problem with multiple machines in

series, is assumed that all jobs are to be processed on the same route of which an

identical precedence ordering of the processing steps, which is unidirectional. It is the

38

simplest multistage scheduling problem, and it is to determine how to sequence the

jobs on each machine, where each job must visit each machine in the prescribed order.

 A common assumption made by most researchers is to restrict attention

to schedules for which the sequence of jobs is identical on each machine, see Reeves

(1995), Chung, Flynn, and Kirca (2002), and Iyer and Saxena (2004). Such schedules

are called permutation schedules and have been shown to be optimal for all two-stage

and three-stage problem with makespan; however, in general, permutation schedules

need not be optimal.

 Most of researches have also been limited to considering the makespan

criterion with nonpreemptive schedules. The best known result for scheduling in the

flow shop environment is that of Johnson (1954) for the two-stage problem. He

presents a simple list-scheduling algorithm for minimizing the makespan. While

numerous combinatorial optimization procedures have been proposed for solving the

general flow shop problem, work on heuristic procedures such as genetic algorithms,

simulated annealing, and tabu search has paralleled the work on optimal procedures

for the flow shop problem. Most noteworthy heuristics for the makespan criterion are

those of Campbell et al. (1970) and Nawaz et al. (1983).

2.1.4 Job Shop Problem

 The job shop model is the most general production scheduling problem

in the classification; here there are no restrictions on the processing steps for a job,

and alternative routes for a job may be allowed. Moreover, a job may visit a machine

more than once. Like the flow shop model, the job shop model has multiple machines

in series, but it often has different routes.

 Most researchers have assumed that all jobs are nonpreemptive and

that the criterion is to minimize the makespan, see Kumar and Srinivasan (1996), Sule

and Vijayasundaram (1998), and Park, Choi, and Kim (2003).

39

2.2 Flexible Flow Shop Scheduling Problem

The flexible flow shop environment –– also commonly referred to as hybrid

flow shop, flow shop with parallel machines, or multiprocessor flow shop –– is one

complicated type of the machine environments which can be seen as the combination

of the parallel-machine and flow shop machine environments. The flexible flow shop

model is a generalization of the classical flow shop model and the parallel machine

environments which are explained in the previous section. Each job has to be

processed first at stage 1, then at stage 2 and so on. Each stage functions as a bank of

parallel machines; at each stage job j requires only one machine, and usually, any

machine can process any job (Pinedo, 1995).

Figure 2.1 The flexible (hybrid) flow shop environment

 In the most general problem in a setting of a flexible flow shop environment,

there are multiple stages (t ∈ {1, …, k}, k ≥ 2) in series. At least one production stage

is made up of mt parallel machines (mt > 1; ∃ t). Each job has to be processed in stage

1 through stage k, in that order. A simple schematic representation of the flexible

flow shop environment is illustrated in Figure 2.1.

The parallel machines in each stage may be identical, uniform, or unrelated

parallel machines. Under identical parallel machines, the processing time to process a

job on each machine in the same stage is similar. Machines are uniform if the

40

processing time to process a job on any machine in the same stage is a constant ratio

of its processing time on any other machine (i.e. new machines versus old machines).

In other words, uniform machines are identical processors that do not have equal

speeds. Unrelated machines are machines for which the time to process a job on any

machine has not only particular relationship of its processing time on any other

machine, but the time also depends on the job that are processed on such a machine.

The flow of jobs through the shop is unidirectional (Linn and Zhang, 1999). The

survey of the flexible flow shop problem is presented in the next section.

2.3 Survey of the Flexible Flow Shop Problem

 Only in the last decade or so, with the rapidly growing interest in the field of

flexible manufacturing systems, the flexible flow shop problem has recently received

attention because of its importance from both theoretical and practical points of view

(Jin, Yang, and Ito, 2006). Flexible flow shop scheduling problems with the

makespan criterion are NP-hard as Gupta has showed in 1988. He proves that the

problem is NP-hard when, at any stage, there exist more than one processor.

Consequently, the flexible flow shop problem is difficult and is well worth studying.

In this section, the survey of the flexible flow shop problem are divided into four

subsections, namely the flexible flow shop environment review, the setup time

scheduling problem review, the scheduling objective function review, and the flexible

flow shop scheduling procedure review. At the end of this section, the summary of

the literature in the flexible flow shop problem is presented in Table 2.1.

2.3.1 Flexible Flow Shop Environment Review

Firstly, the review of the flexible flow shop environments is provided.

As seen in Figure 2.2, the flexible flow shop environments are divided into two

groups, namely 2-stage cases and k –stage (k > 2) cases. In earlier studies, the simple

two-stage flexible flow shop environments have been considered; for example, Gupta

(1988) has studied a two-stage flexible flow shop problem when there are multiple

41

machines at stage 1 (m1≥2), and there is only one machine at stage 2 (m2=1).

Sriskandarajah and Sethi (1989) has considered the two-stage flexible flow shop

problem with m1≥2 and m2=1 and with m1≥2 and m2≥2. Few papers have been

published on the k-stage flexible flow shop scheduling problem (Grangeon, Tanguy,

and Tchernev, 1999), see e.g. Salvador (1973), Brah and Hunsucker (1991), and

Rajendran and Chaudhuri (1992).

Figure 2.2 Classification of the flexible flow shop environments

For both the 2-stage and k-stage cases, the problems can still be

divided into three groups, namely identical parallel machines, uniform parallel

machines, and unrelated parallel machines (see Section 1.5.1.1). Certainly, the earlier

literature has studied the flexible flow shop environment with identical parallel

machines; for example, Gupta (1988) has studied the two-stage flexible flow shop

problem with identical parallel machines at stage 1. Sriskandarajah and Sethi (1989)

have concerned the two-stage flexible flow shop problem with identical parallel

machines for both stages. Other two-stage flexible flow shop problems with identical

parallel machines are, for example, found in Deal and Hunsucker (1991), Gupta and

Tunc (1991, 1994), Guinet, Echalier, and Dussauchoy (1992), Uetake, Tsubone, and

Ohba (1995), Kim, Kang, and Lee (1997), Lin and Liao (2003), Guirchoun et al.

(2005), and Haouari et al. (2006). Soewandi and Elmaghraby (2003) study the two-

stage flexible flow shop with uniform parallel machines. Low et al. (2008) propose

42

the heuristics to solve the two-stage flexible flow shop problem with unrelated

parallel machines.

For the k-stage (k > 2) flexible flow shop problem, most researchers

have studied in the case of identical parallel machines, see e.g. Brah and Hunsucker

(1991), Santos et al. (1995, 1996), Negenman (2001), Ruiz and Maroto (2006), and

Janiak et al. (2007). Little literature has studied in the field of the flexible flow shop

problem with uniform parallel machines, see Kyparisis and Koulamas (2006). Very

few studies have considered the flexible flow shop problem with unrelated parallel

machines, see Low (2005), Jenabi et al. (2007), and Ruiz, Şerifoğlu, and Urlings

(2008).

In this dissertation, the problem under consideration is in the case of

the k-stage problem with unrelated parallel machines, where is the general

environment form of all cases of the flexible flow shop environments.

2.3.2 Setup Time Scheduling Problem Review

 Secondly, this section provides the setup time flexible flow shop

scheduling problem review. The classification of the setup time scheduling problems

is shown in Figure 2.3.

Figure 2.3 Classification of the setup time scheduling problems

43

Most earlier literature has not concerned the setup time in the flexible

flow shop problems, see e.g. Deal and Hunsucker (1991), Lee and Vairaktarakis

(1994), Santos et al. (1995, 1996), Moursli and Pochet (2000), and Sawik (2000,

2002, 2007).

For the literature considering the setup time, it can be divided into two

groups, the anticipatory setup cases and the non-anticipatory setup cases. When setup

time is separable from the processing time, it could be anticipatory, meaning that the

setup of the next job can start as soon as a machine becomes free to process the job

since the shop floor control system can identify the next job in the sequence. In such

a situation, the idle time of a machine can be used to complete the setup of a job on a

specific machine, see Ruiz et al. (2008). In another situation, setup time is non-

anticipatory, that is, the setup operation can start only when the job arrives at a

machine as the setup is attached to the job. Most researchers have assumed their

setup time as non-anticipatory setup time, see e.g. Zandieh, Fatemi Ghomi, and

Moattar Husseini (2006), Jenabi et al. (2007), and Ruiz et al. (2008).

For both anticipatory and non-anticipatory setup cases, the setup time

cases can still be divided into two groups: non-batch cases and batch cases. In a non-

batch processing environment, a setup time (cost) is incurred prior to the processing

of each job, see Lin and Liao (2003) and Zandieh et al. (2006). For a batch setup

processing environment, a setup time (cost) occurs when jobs, e.g. machine parts, are

processed in batches (pallets, containers, or boxes), and a setup of a certain time or

cost precedes the processing of each batch. The definition of a batch is as follows.

The jobs are supposed to be partitioned into F, F ≥ 1, families. A batch is a set of jobs

of the same family (Allahverdi et al., 2008), see Logendran, deSzoeke, and Barnard

(2006).

The batch setup time (cost) can be sequence-dependent setup between

consecutive families if its duration (cost) depends on the families of both the current

and the immediately preceding batches or between two consecutive jobs in the family

44

if its duration (cost) depends on the current job and the immediately preceding job in

the family. Likewise, the non-batch setup time can also be sequence-dependent setup

if the setup time depended on the current job and the immediately preceding job. For

the sequence-independent setup time, the duration (cost) depends only on the current

job or the current batch to be processed, so all setup times are assumed to be zero by

adding the setup times to the processing times of their jobs or families.

For the non-batch sequence-independent setup time case, see e.g.

Allaoui and Artiba (2004), and Low (2005). For the non-batch sequence-dependent

setup time case, see e.g. Kurz and Askin (2003 and 2004), Ruiz and Maroto (2006),

and Ruiz et al. (2008). In this dissertation, the non-bath sequence-dependent setup

time problem is considered.

2.3.3 Scheduling Objective function Review

Majority of studies for the flexible flow shop scheduling problem has

been considered to the optimization of a single criterion focusing on the minimum

makespan problem, see e.g. Brah and Hunsucker (1991), Santos et al. (1995, 1996),

Engin and Döyen (2004), and Logendran et al. (2006). However, there exist other

several objectives such as minimizing total flow time, see Rajendran and Chaudhuri

(1992) and Low (2005), minimizing maximum lateness, see Botta-Genoulaz (2000),

minimizing weighted maximal tardiness, see Lin and Liao (2003), or minimizing total

setup time, see Liu and Chang (2000).

However, scheduling problems often involve more than one aspect and

therefore require multiple criteria analysis (Loukil, Teghem, and Tuyttens, 2005).

Despite their importance, scant attention has been given to multiple criteria

scheduling problems, see Paul (1979) and Gupta et al. (2002). In the literature

concerning multi-objective scheduling problems, the five main approaches for the

multi-objective can be distinguished as follows (Loukil et al., 2005):

45

(a) Hierarchical approach: the objectives considered are ranked in a

priority order and optimized in this order; for example, Sawik

(2007) proposes a hierarchical approach to complete all the jobs

with minimum number of tardy orders as a primary criterion and

to level the aggregate production or the total capacity utilization

over a planning horizon as a secondary criterion,

(b) Utility approach: a utility function or weighting function––often

a weighted linear combination of the objectives––is used to

aggregate the considered objectives in a single one, see Gupta et

al. (2002). The problem considered in this dissertation belongs

to this class,

(c) Goal programming (or satisficing approach): all the objectives

are taken into account as constraints which express some

satisficing levels (or goals), and the objective is to find a solution

which provides a value as close as possible of the pre-defined

goal for each objective. Sometimes one objective is chosen as

the main objective and is optimized under the constraint related

to other objectives, see Markland, Darby-Dowman, and Minor

(1990),

(d) Simultaneous (or Pareto) approach: the aim is to generate––or to

approximate in case of a heuristic method––the complete set of

efficient solutions, see Mansouri (2006), and

(e) Interactive approach: at each step of the procedure, the decision-

maker expresses his preferences in regard to one (or several)

solutions proposed so that the method will progressively

converge to a satisfying compromise among the considered

objectives, see Bernardo and Lin (1994).

Each approach has its own advantages and drawbacks as described in

general literature on multi-objective optimization; for example, the hierarchical

approach, utility approach, and goal programming approach require more parameters

46

or the priori information. The hierarchical approach and utility approach are more

pragmatic, but they are unable to generate some efficient solutions. The simultaneous

(or pareto) approach is more general or theoretical. The goal programming approach

and interactive approach are more oriented to real case studies.

2.3.4 Flexible Flow Shop Scheduling Procedure Review

 In this section, the flexible flow shop scheduling procedures are

reviewed. Figure 2.4 shows the classification of the flexible flow shop scheduling

procedures that are adapted from Winston and Venkataramanan (2003), Wang (2005),

and Quadt and Kuhn (2007).

Figure 2.4 Classification of the flexible flow shop procedures

2.3.4.1 Exact Solution Procedures

 The majority of optimal procedures for scheduling flexible flow

lines are based on a branch and bound approach. Salvador (1973) is among the first

to consider a flexible flow shop scheduling problem by using a branch and bound

method, which guarantees optimal solutions. His procedure generates a permutation

schedule, i.e. the same sequence of jobs is used on all stages. A permutation schedule

simplifies the problem substantially, as only one sequence of jobs has to be

determined. In Brah and Hunsucker (1991), a new branch and bound method, which

is able to generate non-permutation schedules with machine idle times between jobs,

47

is developed to minimize the makespan of a flexible flow shop problem. They have

adapted the “Enumeration Method” proposed by Bratley et al. (1975) for scheduling

the single stage parallel machine problem. Their algorithm consists of three parts:

lower bound calculation, branching, and node elimination. Their algorithm is very

fast for very small instances but already time consuming for small ones. However,

the computation time of the suggested procedure is rather long when the problem size

increases. They solved a 6-job configuration with 5 stages; all stages are made up of

two machines except the middle stage which was made up of 3 machines, in 12 hours

running time on a PC XT computer.

Rajendran and Chaudhuri (1992) consider the minimizing total

flow time by using a branch and bound algorithm for obtaining a permutation

schedule for the flexible flow shop environment. They solve the problem by

generating a single sequence of jobs that is valid for all production stages. Portmann

et al. (1998) also study the flexible flow shop scheduling problem to minimize the

makespan. They improve the lower bounds of Brah and Hunsucker (1991) and reduce

the number of branches used in the search tree by coupling it with a genetic algorithm

(GA), which is employed to derive upper bounds (i.e. schedules) during the branch

and bound procedure. Their computational experiments is indicated that optimal

solutions using their branch and bound approach are more often reached using the GA

approach. They could solve problems with up to five stages (3, 3, 1, 2, and 2

machines in stages one through five, respectively) and 15 jobs with an average

deviation of 3% from the results of the branch and bound algorithm.

Moursli and Pochet (2000) use a branching scheme that is an

extension of a method for a parallel machine scheduling problem. The schedule is

generated in one stage at a time. An approach based on a branch-and-bound approach

coupled with constraint propagation is presented. Unlike the above mentioned

procedures, it considers the stages simultaneously. The search tree is generated by

consecutively selecting a stage and the next job to be scheduled on that stage. Néron,

48

Baptiste, and Gupta (2001) use the so-called concepts of ‘energetic reasoning’ and

‘global operations’ to reduce the computation time of the procedure.

Sawik (2000, 2002) addressed his problems by formulating the

flexible flow shop problems with limited buffers in a mixed integer programming

format and solving the problems with a CPLEX solver. The mixed integer

programming is to minimize makespan for both batch and non-batch scheduling. Of

course, only small problems can be solved in this way to get optimal solutions.

Research on optimal procedures with objectives other than

makespan minimization is sparse. Again, mostly a branch-and-bound method is

employed. Rajendran and Chaudhuri (1992) consider the objective of minimizing

mean flow time. They develop a branch-and-bound procedure that generates an

optimal permutation schedule.

Azizoğlu, Cakmak, and Kondakci (2001) consider the mean

flow time flexible flow shop problem but allow non-permutation schedules. They

compare the branching scheme of Brah and Hunsucker (1991) with one that does not

generate certain sub-problems because of proven sub-optimality under the mean flow

time objective. With the new branching scheme, the algorithm has a substantially

lower computation time. A different approach is considered by Harjunkoski and

Grossmann (2002). They develop a method that generates an optimal solution by

iteratively solving the loading and the sequencing problem consecutively. The

objective is to minimize job assignment costs and one-time machine-initialization

costs. Setup times are included, but are only dependent on the machine and not on the

job. Thus, batching decisions are not made. The algorithm is based on the hybrid

mixed integer and constraint programming approach. The loading problem is solved

using mixed integer programming. A subsequent constraint programming procedure

solves the sequencing part and iteratively adds cuts to the loading problem until an

optimal schedule is found.

49

2.3.4.2 Approximate Solution Procedures

 Even though the exact solution approach as stated in the

previous section gives the optimal solution, it is impractical for the large-sized

problems since the solution time would be unacceptably long. That is why an

approximate solution technique is needed. Approximate solution techniques may

provide the optimal solution for a problem even though they do not guarantee it. This

fact implies that there may be some space for a heuristic to be improved. In this

section, the review of the approximate solution procedures is divided into two groups:

heuristic approaches and metaheuristic approaches.

 The former, heuristic approaches, is first reviewed. Paul (1979)

demonstrates that some scheduling theory results can probably be extended to the

real-life problem of scheduling the parallel production lines in the glass-container

industry. By means of computer simulation, the results indicate that the Shortest

processing time (SPT) rule is relatively effective in this special case of scheduling

machines in parallel subject to the resource constraints. Wittrock (1985) develops a

periodic heuristic algorithm for maximizing the throughput (or minimizing the

makespan) by focusing on job loading and time allocating. He also presents a more

flexible non-periodic heuristic algorithm for the same problem by taking three steps:

machine allocation, job sequencing, and timing (Wittrock, 1988).

Gupta (1988) has studied the minimum makespan problem in a

heuristic algorithm for a two-stage flow shop problem. He proposes a heuristic to

solve the minimum makespan problem. Computational experiments show that the

effectiveness of the proposed heuristic increases as the problem size increases.

Sriskandarajah and Sethi (1989) develop simple heuristic algorithms for two-stage

flexible flow shop problem. They discuss the worst and average case performance of

algorithms of finding minimum makespan schedules; their solutions are based on

Johnson’s rule. Deal and Hunsucker (1991) study the two-stage flow shop scheduling

50

problem. A lower bound calculation for the makespan is introduced, and the

performance of a Johnson’s type ordering is evaluated.

Gupta and Tunc (1991) develop two polynomial bounded

heuristic algorithms to determine an acceptable solution to minimize the makespan for

two-stage flexible flow shop problem. Their results show that when the number of

machines at stage two is greater than or equal to the total number of jobs, the Longest

Processing Time (LPT) scheduling rule yields optimal solutions. For the case in

which the total number of jobs is greater than the number of machines in stage two,

they develop two heuristics to minimize the makespan. Their first heuristic based on

the premise that Johnson’s rule coupled with an appropriate assignment rule should

produce an acceptable schedule for the problem. In their second heuristic, they

arrange jobs in a non-increasing order according to their processing times at stage

two. Computational results indicate that the effectiveness of the algorithms increases

with the increase of the total number of jobs. The deviations of the heuristic

makespan are relatively large from the lower bounds, and an improved branch and

bound algorithm is developed. The maximum number of jobs reported in their work

is only eight jobs.

 Guinet et al. (1992) propose a heuristic for the minimum

makespan problem in a two-stage flexible flow shop based on Johnson’s rule. They

compare this heuristic with the Shortest Processing Time (SPT) and Longest

Processing Time (LPT) dispatching rules. They conclude that the LPT rule gives

good results for the minimum makespan problem in a two-stage hybrid flow shop

environment.

Adler et al. (1993) describe the Bagpack Production

Scheduling system (BPSS) whose machine environment is a three-stage flexible flow

shop. The production process consists of three stages, but not all orders have to go

through all the three stages. There are three objectives to minimize the sum of

tardiness, the sum of setup times, and the work-in-process inventory. They identify

51

the bottleneck stage, and they schedule the jobs at the bottleneck stage and schedule

the jobs at the non-bottleneck stages, respectively. However, the procedure is very

application-specific, and no computational experience is reported. Gupta and Tunc

(1994) consider the two-stage flow shop scheduling problem. The setup and removal

times of each job at each stage are separated from the processing times. They propose

heuristic algorithms that are empirically tested to determine the effectiveness in

finding an optimal.

Global lower bounds for the flow shop problem with multiple

processors are proposed by Santos et al. (1995). In the absence of a known optimal

solution for NP-complete problems, strong lower bounds can be effective tools when

used to evaluate the quality of sub-optimal solution methodologies. For example,

suppose a lower bound on the unknown optimal solution is developed for an NP-

complete flexible flow shop scheduling problem. Further suppose that a feasible

solution is found for this problem which lies within 5% of the lower bound.

Obviously, it can be said that the solution obtains within 5% of the optimal solution.

This allows the practitioner to decide if a possible improvement of at most 5% is

worth the further expenditure of time and effort. Santos et al. (1996) investigate

scheduling procedures which seek to minimize the makespan in the static flow shop

with multiple processors scheduling environment. Their method is to generate an

initial permutation schedule based on the Palmer, CDS, Gupta, and Dannenbring flow

shop heuristics, and that would then be followed by the application of First in First out

(FIFO).

Gupta et al. (1997) consider a non-preemptive two-stage hybrid

flow shop problem. The objective is to find a schedule which minimizes the

maximum completion time or makespan. Several lower bounds are derived and are

tested in a branch and bound algorithm so as to limit the size of the search tree. They

propose several heuristics, all based on Johnson’s algorithm. Kyparisis and Koulamas

(2006) deal with the multistage flexible flow shop scheduling problem with uniform

52

parallel machines in each stage and the objective of minimizing makespan. They

develop several well-known heuristics to solve the problems.

The later, metaheuristic approaches, is reviewed. To obtain a

near-optimal solution, the metaheuristic algorithms (or the artificial intelligent

techniques) have also been proposed. The most well-known metaheuristic algorithms

are the simulated annealing, tabu search, and genetic algorithms (Jones et al., 2002).

Gourgand, Grangeon, and Norre (1999) present several simulated annealing (SA)-

based algorithms for the flexible flow shop problem. A specific neighborhood is

used, and the authors apply the methods to a realistic industrial problem. Jin et al.

(2006) consider the flexible flow shop with identical parallel machines. They propose

two approaches to generate the initial job sequence and use a simulated annealing

algorithm to improve it. It can be seen that a simulated annealing algorithm has been

successfully applied to various combinatorial optimization problems. For an

extensive survey of the theory and applications of the simulated annealing algorithm,

see Koulamas, Antony, and Jaen (1994).

Furthermore, Nowicki and Smutnicki (1998) propose a tabu

search (TS) algorithm for the flexible flow shop makespan problem. Logendran et al.

(2006) tackle with a flexible flow scheduling problem within the context of sequence

dependent setup times in shops. Their objective is to minimize the makespan on the

shop floor. Three different algorithms based on tabu search are developed.

A genetic algorithm (GA) has been widely used in many

previous works for the flowshop makespan problem, see Werner (1984) and Reeves

(1995). Cheng, Gen, and Tozawa (1995) address the earliness/tardiness scheduling

problem with identical parallel machines, and they apply a GA approach to solve this

problem. Ruiz, Maroto, and Alcaraz (2005) use a GA approach to deal with the

permutation flow shop scheduling problem with sequence-dependent setup times. For

the flexible flow shop problem, see Bertel and Billaut (2004), Kurz and Askin (2004),

53

Bolat, Al-Harkan, and Al-Harbi (2005), Ruiz and Maroto (2006), and Jenabi et al.

(2007).

For other metaheuristics, for example, Engin and Döyen (2004)

deal with the flexible flow shop with identical parallel machines by using the artificial

immune system. Artificial immune system (AIS) is computational systems inspired

by theoretical immunology, observed immune functions, principles and mechanisms

in order to solve problems. Their objective is to minimize the makespan.

Table 2.1 The summary of the literature in the flexible flow shop problem

References # of

stages

Parallel

machines

Setup Objectives Approaches

Salvador (1973) k Identical - Makespan Branch-and-bound

Paul (1979) k Identical - Total tardiness, number of

tardy jobs

Simulation

Wittrock (1985) k Identical - Makespan Heuristics

Gupta (1988) 2 Identical - Makespan Heuristics

Wittrock (1988) k Identical - Makespan, queuing Heuristics

Sriskandarajah and

Sethi (1989)

2 Identical - Makespan Heuristics

Brah and Hunsucker

(1991)

k Identical - Makespan Branch-and-bound

Deal and Hunsucker

(1991)

2 Identical - Makespan Heuristics

Gupta and Tunc (1991) 2 Identical - Makespan Heuristics

Guinet, Echalier, and

Dussauchoy (1992)

2 Identical - Makespan Heuristics, mixed

integer

programming

Rajendran and

Chaudhuri (1992)

k Identical - Mean flow time Branch-and-bound

54

Table 2.1 The summary of the literature in the flexible flow shop problem (cont.)

References # of

stages

Parallel

machines

Setup Objectives Approaches

Adler, Fraiman,

Kobacker, Pinedo,

Plotnicoff, and Wu

(1993)

3 Identical Yes Tardiness, setup time,

work-in-process inventory

Heuristics

Gupta and Tunc (1994) 2 Identical Yes Makespan Heuristics

Lee and Vairaktarakis

(1994)

2 Identical - Makespan Heuristics

Santos, Hunsucker, and

Deal (1995)

k Identical - Makespan Lower bound

Uetake, Tsubone, and

Ohba (1995)

2 Identical - Total flow time,

makespan

Heuristics

Santos, Hunsucker, and

Deal (1996)

k Identical - Makespan Heuristics

Gupta, Hariri, and Potts

(1997)

2 Identical - Makespan Branch-and-bound,

heuristics

Haouari and M’Hallah

(1997)

2 Identical - Makespan Simulated annealing,

tabu search

Kim, Kang, and Lee

(1997)

2 Identical Yes Makespan Heuristics

Nowicki and Smutnicki

(1998)

k Identical - Makespan Tabu search

Portmann, Vignier,

Dardilhac, and

Dezalay (1998)

k Identical - Makespan Branch-and-bound

Riane, Artiba, and

Elmaghraby (1998)

3 Identical - Makespan Branch-and-bound

55

Table 2.1 The summary of the literature in the flexible flow shop problem (cont.)

References # of

stages

Parallel

machines

Setup Objectives Approaches

Brah and Loo (1999) k Identical - Makespan, mean flow

time

Heuristics

Gourgand, Grangeon,

and Norre (1999)

k Identical - Makespan Simulated annealing

Botta-Genoulaz (2000) k Identical - Maximum lateness Heuristics

Liu and Chang (2000) k Identical Yes Setup time Lagrangian

relaxation

Moursli and Pochet

(2000)

k Identical - Makespan Branch-and-bound

Sawik (2000) k Identical - Makespan Mixed integer

programming

Azizoğlu, Cakmak, and

Kondakci (2001)

k Identical - Mean flow time Branch-and-bound

Negenman (2001) k Identical - Makespan Simulated annealing,

tabu search

Néron, Baptiste, and

Gupta (2001)

k Identical - Makespan Branch-and-bound

Soewandi and

Elmaghraby (2001)

3 Identical - Makespan Heuristics

Gupta, Krüger, Lauff,

Werner, and

Sotskov (2002)

k Identical - Earliness and tardiness

penalties, weighted

completion time, and the

costs of due date

assignment.

Heuristics

Harjunkoski and

Grossmann (2002)

k Identical - Assignment and

initialization costs

Mixed integer

programming

Sawik (2002) k Identical - Makespan Mixed integer

programming

56

Table 2.1 The summary of the literature in the flexible flow shop problem (cont.)

References # of

stages

Parallel

machines

Setup Objectives Approaches

Alisantoso, Khoo, and

Jiang (2003)

k Identical - Makespan Immune algorithm

Kurz and Askin (2003) k Identical Yes Makespan Heuristics

Lin and Liao (2003) 2 Identical Yes weighted maximal

tardiness

Heuristics

Soewandi and

Elmaghraby

(2003)

2 Uniform - Makespan Heuristics

Wang and Hunsucker

(2003)

k Identical - Makespan Heuristics

Allaoui and Artiba

(2004)

k Identical - Makespan, maximum

tardiness, flow time,

number of tardy jobs

Heuristics, simulated

annealing

Bertel and Billaut

(2004)

k Identical - Weighted number of

tardy jobs

Greedy algorithm,

genetic algorithm

Engin and Döyen

(2004)

k Identical - Makespan Immune algorithm

Kurz and Askin (2004) k Identical Yes Makespan Greedy algorithm,

genetic algorithm

Wardono and Fathi

(2004)

k Identical - Makespan Tabu search

Bolat, Al-Harkan, and

Al-Harbi (2005)

3 Identical - Makespan Branch-and-bound,

genetic algorithm

Guirchoun, Martineau,

and Billaut (2005)

2 Identical - Total completion time Mixed integer

programming

Low (2005) k Unrelated - Makespan Simulated annealing

Haouari, Hidri, and

Gharbi (2006)

2 Identical - Makespan Branch-and-bound

57

Table 2.1 The summary of the literature in the flexible flow shop problem (cont.)

References # of

stages

Parallel

machines

Setup Objectives Approaches

Jin, Yang, and Ito

(2006)

k Identical - Makespan Simulated annealing

Kyparisis and Koulamas

(2006)

k Uniform - Makespan Heuristics

Logendran, deSzoeke,

and Barnard (2006)

k Identical Yes Makespan Tabu search

Ruiz and Maroto (2006) k Identical Yes Makespan Genetic algorithm

Zandieh, Fatemi Ghomi,

and Moattar

Husseini (2006)

k Identical Yes Makespan Immune algorithm

Janiak, Kozan,

Lichtenstein, and

Oğuz (2007)

k Identical - Total weighted earliness,

total weighted tardiness,

total weighted waiting

time

Tabu search,

simulated annealing

Jenabi, Fatemi Ghomi,

Torabi, and Karimi

(2007)

k Unrelated Yes Setup costs, inventory

holding costs

Genetic algorithm,

simulated annealing

Sawik (2007) k Identical - Number of tardy jobs, the

total capacity utilization

Mixed integer

programming

Low, Hsu, and Su (2008) 2 Unrelated - Makespan Heuristics

Ruiz, Şerifoğlu, and

Urlings (2008)

k Unrelated Yes Makespan Mixed integer

programming,

heuristics

CHAPTER III

A MATHEMATICAL PROGRAMMING
SOLUTION APPORACH

This chapter provides the mathematical programming formulation for

scheduling the flexible flow shop problem with unrelated parallel machines that

minimizes both objective functions of makespan (Cmax) and number of tardy jobs (ηT).

The model formulation considers three main conditions, namely unrelated parallel

machines, sequence-dependent setup time between two consecutive jobs, and

machine-dependent setup time of a job. The formulation can be used to find the

optimal schedule by using commercially available software for the mixed integer

programming. A numerical example is also illustrated. The example problem has

been modeled by using an advanced algebraic modeling language AMPL with

CPLEX solver that runs on Windows platform. AMPL enables the complete

separation to be kept between the model file and the data file, and the model is written

in a form very close to the mathematical formulation (Sawik, 2000, 2002, 2007).

This chapter is organized as follows: Firstly, the introduction is explained to

give the definition and importance of the mathematical programming. Secondly, the

problem under consideration is described. Thirdly, a descriptive example is used to

explain the problem under consideration. The 0-1 mixed integer programming

formulation is presented in the next section, which consists of the assumptions,

objective function, and constraints as well as a numerical example that is presented to

illustrate the application of the proposed model. Then, the total number of possible

sequence combinations that are generated by a complete enumeration method is

estimated to illustrate the complexity of the problem. Finally, a conclusion will be

presented.

59

3.1 Introduction

Two fundamental decisions of a scheduling problem are allocation and

sequencing decisions (Baker, 1974). The former answers the question what machine

should be allocated to which job, and the latter answers the question how to sequence

the jobs. The aim of these decisions is to obtain a best schedule that satisfies some

measures of effectiveness (such as minimization of the makespan, mean flow time,

tardiness, or number of tardy jobs), called the model’s objective function(s), and

satisfies the production constraints (such as production requirement, resource

capacities, or operation procedures), called constraint functions. The variables whose

values are able to control and influence the performance of the system are called

decision variables. The scientific approach to decision making usually involves the

use of one or more mathematical models. A mathematical model is a mathematical

representation of an actual situation that may be used to make better decisions or

simply to understand the actual situation better (Winston, 2004).

In recent years, most researches have been reported for the mathematical

model; for example, Sawik (2000) presents a mixed integer programming formulation

for scheduling a flexible flow line with the finite intermediate buffers and uses the

commercial software to solve the problem. Sawik (2002) still presents a mixed

integer programming model for the same problem in 2000, but all parts are scheduled

in batches of parts of the same type, and within the batch individual parts are

processed consecutively part-by-part. Damodarn and Srihari (2004) propose a mixed

integer programming formulation for the flow shop problem with no buffers. Tang

and Liu (2007) present a mixed integer programming model for a real-life order

scheduling problem for the production of steel sheets. Bhattacharya and Bose (2007)

develop the mathematical model for scheduling the continuous processing units and

test the model by using the commercial software.

In general, mathematical programming models ensure the optimal schedules,

but the CPU time required to find proven optimal schedules for realistic large-sized

60

problems still can be very high. However, the mathematical models are worth

formulating because the proven optimal solutions obtained for small-sized problems

can also be used to evaluate the performance of various heuristics that are developed

to find the approximate solution (Sawik, 2000, 2002, 2007; Lee and Asllani, 2004).

Moreover, the development of the computer devices is improving with a fast pace, in

which they are developed with larger memories and may be able to solve practical

problems in near future. In addition, the mathematical model can be used to

understand the actual situation better (Winston, 2004).

3.2 Problem Description

In this dissertation, the flexible flow shop system consists of k stages in series,

as shown in Figure 3.1. Each stage t (t = 1, …, k) is made up of mt unrelated parallel

machines. Each job j (j = 1,…, n) must be processed without preemption on exactly

one machine in each of the stages sequentially, that is, each job must be processed in

stage 1 through stage k in that order. There are infinite buffers between all adjacent

stages as well as before the first stage and after the last stage. The order of processing

the jobs in every stage is identical, that is, all jobs have the same routing and do not

revisit a stage the jobs have already visited.

Figure 3.1 The flexible flow shop environment

At the beginning of a current planning period, there are a fixed number of jobs

that must be ordered to be processed on this flexible flow shop system so that the

makespan and the number of tardy jobs are minimized. It is presumed that the

61

schedule is static in that the decision variables do not involve sequences of decisions

over multiple planning periods, that is, the current schedule will not change even

though there are new jobs that enter the system. Those new jobs will be scheduled in

the following planning period. This implies that it is possible that there are jobs

scheduled in the previous planning period that are not yet finished; they must be

processed as scheduled before the jobs that are scheduled in the current planning

period.

Let t

jps be the standard processing time for job j at stage t, which is usually

measured on the average processor. Their actual processing times of jobs may be

lesser than the standard processing times, when jobs operate at a higher efficiency

machine, and the actual processing times may be greater than the standard processing

times, when jobs operate at the lower efficiency machines.

Let be the relative speed of machine i on which job j is processed at stage t,

which is a relative machine speed that is compared to the average speed machine in
the system. The value of a relative machine speed of job j on machine i () is equal

to 1, when the machine i that processes job j is an average efficiency machine for the
job j in the system. The value is lesser than 1, when the machine i that processes

job j is the lower efficiency machine for the job j, whereas such a value is greater than

1 if the machine i that processes job j is the higher efficiency machine for the job j. In

this dissertation, it is assumed that the actual processing time of job j on machine i at

stage t is equal to the standard processing time of job j at stage t, whenever the

relative machine speed of job j on machine i at stage t is equal 1. Hence, the

processing time of job j that must be processed on machine i at stage t is equal to

t
ijv

t
ijv

t
ijv

t
jps / . t

ijv

Let be the “sequence-dependent” setup time between job l and job j, where

job j is to be processed directly after job l on the same machine at stage t. The

sequence-dependent setup time is the time needed on any machine to install, clean, or

remove something before the next job is processed, which the length of setup required

t
ljs

62

depends on the job just completed and on the one about to be started. Thus, the total
operating time of job j (t

jO) that is processed directly after job l on machine i at stage

t is equal to +t
ljs t

jps / . t
ijv

Moreover, it is possible that there are some unfinished jobs on each machine

from the previous planning period, so to take into account of the sequence-dependent

setup time between a unfinished job in the previous planning period and a new job in
the current planning period, the machine-dependent setup time of job j () that is

processed on machine i in the first position at stage t is used in this research, this is,
the total operating time of job j (

t
ijch

t
jO) that is processed on machine i in the first

position at stage t is equal to +t
ijch t

jps / . To avoid the confusion between the words

of sequence-dependent setup time and machine-dependent setup time, in this

dissertation, the sequence-dependent setup time is called “setup time” and the

machine-dependent setup time is called “changeover time”.

t
ijv

Also, the unfinished jobs still affect the availability of machine i at stage t, ,

which is the time that the pervious jobs are still processed on each machine. In other

words, job j that is ready in the system to be assigned on machine i in stage t cannot

start its processing before the machine availability. Moreover, each job j still has two

information, a release date (r

t
ia

j) that is the time the job will arrive in the system (in

other words, job j cannot start its processing before its release date) and a due date (dj)

that is the time the job is promised to the customer.

Machines are available from time non-negative onwards, without breakdowns

and scheduled or unscheduled maintenance. At any time, every machine can process

at most one job. Each job is always processed at most one machine at any time and

cannot be interrupted during its processing. Each job does not require any other job to

be completed before such a job is allowed to start its processing. Each job cannot be

split. Jobs are always processed without error and cannot be cancelled before their

completion.

63

3.3 A Descriptive Example

 Now suppose that there is a two-stage flexible flow shop environment, which

consists of two unrelated parallel machines in stage 1 and one machine in stage 2.

Two jobs will be scheduled in such an environment. The standard processing time
(t

jps), release dates (rj), and due dates (dj) of two jobs are given in Table 3.1. The

relative machine speed of machine i at stage t () is listed in Table 3.2. The

changeover time () and setup time () are given in Table 3.3 and Table 3.4

respectively. The machine availability () is shown in Table 3.5.

t
ijv

t
ijch t

ljs
t
ia

Table 3.1 The standard processing time (t

jps), release dates (rj), and due dates (dj) for

job j

job j 1 2
1
jps 5 7
2
jps 7 4

rj 1 2

dj 20 22

Table 3.2 The relative machine speed of job j on machine i at stage t () t

ijv

Stage t

job j

machine i

1 2

1 1 1.25 1.00

 2 1.00 0.70

2 1 1.00 1.00

Table 3.3 The matrix of changeover time of job j on machine i at stage t () t

ijch

Stage t

job j

machine i

1 2

1 1 3 1

 2 1 2

2 1 2 1

64

Table 3.4 The matrix of setup time from job l to job j at stage t () t
ljs

Stage t

to job j

from job l

1 2

1 1 - 2

 2 1 -

2 1 - 1

 2 3 -

Table 3.5 The availability of machine i at stage t () t

ia

 1
1m 1

2m 2
1m

t
ia 2 1 7

For this problem, each job has to be processed at stage 1 first and then at stage

2, and at each stage job j requires only one machine. This assumes that job 1 is

processed on machine 1 () and job 2 is processed on machine 2 () at stage 1.

Then, at stage 2, job 1 is processed on the machine () at stage 2 before job 2 is

processed on the same machine (). The schedule can be generated as follows:

Firstly, although job 1 arrives at the system at unit time 1 (see r

1
1m 1

2m
2
1m

2
1m

1 = 1), job 1 starts its

processing at unit time 2, because there are some unfinished jobs from the previous
planning period on machine 1 at stage 1 (see = 2). Before job 1 starts its

processing, the changeover (see) such as clean-up process is hold. Hence, job 1

can start at unit time 5 (+ , = 2 and =3). Due to the unrelated problem,

the processing time of job 1 is equal to 4 time units (/ , = 5 and = 1.25),

so the completion time of job 1 at stage 1 is unit time 9. Let

1
1a

1
11ch

1
1a 1

11ch 1
1a 1

11ch
1
1ps 1

11v 1
1ps 1

11v
t
jC be the completion

time of job j at stage t, so = 9. Similarly, job 2 arrives at the system at unit time 2

(max{ r

1
1C

2 , }, r1
2a 2 = 2 and = 1). The changeover time is hold about 2 time units

(see = 2), so job 2 starts its processing at unit time 4 (max{ r

1
2a

1
22ch 2 , } + , r1

2a 1
22ch 2 = 2,

 = 1, and = 2). Again, due to the unrelated problem, the processing time of job

2 is equal to 10 time units (/ , = 7 and = 0.70), so the completion

time of job 2 at stage 1 is unit time 14 (see Figure 3.2).

1
2a 1

22ch
1
2ps 1

22v 1
2ps 1

22v
1
2C

65

Figure 3.2. A Gantt chart for the example problem

For stage 2, the system has one machine at this stage, so only a sequencing

function is considered. Now, job 1 is assumed to be processed at the first position of

the machine at stage 2, but job 1 cannot start its processing before it finishes at stage
1, that is, job 1 at stage 2 can start after unit time 9 (see = 9). However, since job

1 is processed on the machine at the first position, it is able to start whenever all jobs
from the previous planning period complete (see). Hence, job 1 arrives at stage 2

at unit time 9 (max{ , }, = 9 and = 7), and job 1 can start after the

changeover process of job 1 on machine 1 at stage 2 (see), so it starts its

processing at unit time 11 (max{ , }+ , = 9, = 7, and = 2). Then,

job 1 spends 7 time units (/ , = 7 and = 1.00), and it completes at unit

time 18 (=). Next, job 2 is assigned to the same machine, and it arrives at stage 2

whenever it completes its processing at stage 1. Hence job 2 arrives at stage 2 at unit
time 14 (see), but it cannot start any process because at that time job 1 is still

processed on the machine, so it must wait until unit time 18 (see = 18). At the

point of unit time 18, before job 2 starts its processing, the setup time between job 1

and job 2, called sequence-dependent setup time, such as a cleaning process occurs
and spends 1 time unit (see = 1). Thus job 2 starts its processing at unit time 19

(+ , = 18 and = 1). Then, job 2 spends 4 time units (/ , = 4

and = 1.00), and it completes at unit time 23 (=).

1
1C

2
1a

1
1C 1

2a 1
1C 1

2a
2

11ch
1
1C 1

2a 2
11ch 1

1C 1
2a 2

11ch
2
1ps 2

11v 2
1ps 2

11v
2

1C

1
2C

2
1C

2
12s

2
1C 2

12s 2
1C 2

12s 2
2ps 2

12v 2
2ps

2
12v 2

2C

In this dissertation, two performance measures, which are the makespan and

number of tardy jobs, are considered. The makespan is equivalent to the completion

time of the last job to leave the system. In this example, job 2 is the last job to leave
the system, so the makespan (Cmax) is equal to 23 time units (see = 23). To 2

2C

66

consider the due dates compared to the completion time of both jobs, there are one job
that is tardy (i.e. Job 2, d2 = 22 unit time and = 23 unit time, completes after its

due date, so job 2 is a tardy job). Thus, the number of tardy jobs (η

2
2C

T) is equal to 1.

Table 3.6 Possible feasible schedule results of an example problem

Schedule No. Schedule results 2
1C 2

2C Cmax ηT

1 Stage 1: 1 – 2 // -

Stage 2: 1 – 2

18 23 23 1

2 Stage 1: 1 – 2 // -

Stage 2: 2 – 1

34 24 34 2

3 Stage 1: 2 – 1 // -

Stage 2: 1 – 2

24 29 29 2

4 Stage 1: 2– 1 // -

Stage 2: 2 – 1

30 20 30 1

5 Stage 1: 1 // 2

Stage 2: 1 – 2

18 23 23 1

6 Stage 1: 1 // 2

Stage 2: 2 – 1

29 19 29 1

7 Stage 1: 2 // 1

Stage 2: 1 – 2

16 21 21 0

8 Stage 1: 2 // 1

Stage 2: 2 – 1

22 12 22 1

9 Stage 1: – // 1 – 2

Stage 2: 1 – 2

16 21 21 0

10 Stage 1: – // 1 – 2

Stage 2: 2 – 1

34 24 34 2

11 Stage 1: – // 2 – 1

Stage 2: 1 – 2

29 34 34 2

12 Stage 1: – // 2 – 1

Stage 2: 2 – 1

29 19 29 1

67

However, the above detailed example is one of all 12 schedules that can be

generated for a given example problem. In this dissertation, a result of a schedule can

be presented by using a job code. For example, the result from Figure 3.2 is

represented as stage 1: 1 // 2 and stage 2: 1 – 2, that is, at stage 1, job 1 is processed

on machine 1 and job 2 is processed on machine 2, and at stage 2, job 1 is processed

before job 2 on the same machine. For another example, 1 – 2 // -, it means that there

are 2 machines in the stage where job 1 and job 2 are processed on machine 1 and no

job is processed on machine 2. Table 3.6 shows all possible feasible schedules

generated under such machine and job environments. It is found that only 2

schedules, a schedule No.7 and a schedule No.9, generate a good solution both

criteria, Cmax and ηT. However, if the problem size increases, it is impossible to

generate all schedules since the number of schedules generated will exponentially rise

(see Section 3.5).

3.4 Mathematical Formulation

This section presents a 0-1 mixed integer linear programming model with the

objectives of minimizing both criteria, namely the makespan and the number of tardy

jobs. Before proceeding with the mathematical formulation, the notations of

parameters and decision variables used in formulating model are defined. The

mathematical formulation is then provided.

Indices:

t Stage index, t = 1, 2, 3, . . . , k

i Machine index, i = 1, 2, 3, . . . , mt

j, l Job index, j, l = 1, 2, 3, . . . , n

Parameters:

rj Release date of job j
tm Number of parallel machines at stage t

dj Due date of job j

68

t
ljs Setup time between job l and job j at stage t

t
ijch Changeover time of job j if job j is assigned to machine i at the first

position at stage t
t
jps Standard processing time of job j at stage t

t
ijv Relative machine speed of machine i at stage t for job j
t
ia Time when machine i at stage t becomes available

Variables:
t
ijlX 1 if job j is scheduled immediately before job l on machine i at stage t,

and 0 otherwise
t
jO Operating time of job j at stage t
t
jC Completion time of job j at stage t

Cmax The makespan is equivalent to the completion time of the last job to

leave the system

Uj A Boolean variable; 1 if job j is tardy, and 0 otherwise

Tj Tardiness of job j

ηT The total number of tardy jobs in the schedule

 Before formulating the model, the assumptions of the model are first given.

Then, the objective function of the optimization model is presented. Then, the given

constraints are addressed. Finally, a numerical example is also illustrated.

3.4.1 Assumptions

The problem is formulated under the following assumptions:

1. The problem is assumed to be a static and deterministic scheduling

environment,

2. Machines are available from time non-negative onwards, with no

breakdowns and scheduled or unscheduled maintenance,

3. The ready times for all jobs are non-negative,

69

4. Non-anticipatory sequence-dependent setup times exist between

two consecutive jobs at each stage. After completing processing of one job and

before beginning processing of the next job, some sort of setup must be performed,

5. Machine-dependent setup times occur only when the job assigned

to each machine at the first position at each stage in a period studied,

6. Job processing cannot be interrupted (i.e. no preemption is

allowed) and jobs have no associated priority values,

7. There are no precedence constraints, that is, any job can be allowed

to start without any other job completion condition,

8. Jobs are always processed without error and cannot be cancelled

before their completion,

9. Each job visits the stages in same order but does not revisit a stage

that it has already visited,

10. At any time, every job can be processed at most one machine, and

every machine can process at most one job,

11. There are infinite buffers between all stages as well as before the

first stage and after the last stage, and

12. There is no travel time between stages; jobs are available for

processing at a stage immediately after departing at previous stage.

3.4.2 Objective Function

 The need to consider multiple criteria in scheduling is widely

recognized (Loukil et al., 2005). Either a hierarchical (also called Lexicographic) or a

simultaneous approach can be adopted (Gupta and Ruiz-Torres, 2005). Under a

hierarchical or lexicographic approach, the criteria are ranked in order of importance;

the first criterion is optimized first, the second criterion is then optimized, subject to

achieving the optimum with respect to the first criterion and so on. For simultaneous

optimization, there are two approaches. Firstly, a single objective function can be

constructed by forming a linear combination of the various criteria, which is then

optimized. Secondly, all efficient (also called Pareto Optimal) schedules can be

70

generated, where an efficient schedule is one in which any improvement to the

performance with respect to one of the criteria causes deterioration with respect to one

of the other criteria.

 For a linear combination of the various criteria, some researchers deal

with the mutli-criteria by minimizing the positively weighted convex sum of multi-

objectives in form ƒ(x) = w1×ƒ1(x) + w2×ƒ2 (x) + wn×ƒn (x), where = 1 and

w

∑
=

n

h
hw

1

h ≥ 0 , h ∈ {1,..., n}. It is used to aggregate the considered objectives in a single

one. For example, Murtadi and Taboun (2001) study the bicriteria of the makespan

and the number of tardy jobs for scheduling on identical parallel machines. They

develop the solution techniques for multi-objective problems (MOP) to minimize the

positively weighted convex sum of their objective in form ƒ (x) = w1×ƒ1 (x) + w2×ƒ2

(x), where w2 = (1- w1). Rajendran and Ziegler (2003) study a static flow shop

problem to minimize the sum of flow time and tardiness of jobs by using the weighted

sum of both objectives. This technique corresponds to weighted decision making,

where the weight values are determined by the truth values. Lee and Asllani (2004)

study the single machine problem with dual criteria. They minimize the flow time

and the tardiness by using the weighted sum of both objectives. They choose the

weight values by using the holding cost for job j per unit time in the flow time criteria

and the tardiness cost for job j per unit time in tardiness criteria as the weight values.

For this dissertation, the motivation to consider the problem of

generating an efficient set of schedules for the flexible flow shop environment comes

from the variety of industrial cases, where the criteria related to efficiently utilizing

resources and completing orders by their due date are important. In the case that if

there are many optimal solutions from one criterion, considering the other criteria

may assist to choose the best solution better than randomly selecting from them.

Therefore, the makespan and the number of tardy jobs are used as the scheduling

criteria.

71

The first objective

 According to the dissertation objectives, the first goal is to

minimize the makespan Cmax, i.e. the completion time of the last job at the last stage.

 Let the completion time of job j at stage k, it means the time
that job j can leave the system, be , then. k

jC

Cmax = { }

},...,1{
max

nj∈

k
jC (3.1)

The second objective

 The second goal is to minimize the number of tardy jobs.
Associated with each job j is a due date dj ≥ 0, let Uj = 1 if the completion time of

job j is larger than due date for job j, and otherwise U

k
jC

j = 0. The total number of tardy

jobs (ηT) is defined as:

ηT = ∑
=

n

j
jU

1

(3.2)

 A simplest method to combine multiple objective functions into a

scalar fitness solution (Z1) is the following weighted sum approach:

Z1 = w1× Cmax + w2×ηT (3.3)

where w1 and w2 are constant weights of each objective criterion. The constant

weight w1 may represent the holding cost per time unit, whereas the constant weight

w2 may represent the penalty cost per tardy-job unit.

For example, it can also apply a single-objective function, where the

weights w1 and w2 are fixed as follows (Murata, Ishibuchi, and Tanaka, 1996), e.g.

w1: w2 = 100:1, 50:1, 20:1, 15:1, 10:1, 5:1, 2:1, 1:1, 1:2, 1:5, 1:10, 1:15, 1:20, 1:50,

72

and 1:100. Hence, if the w1: w2 is set as 1:100, it means that the constant weight w2 is

one-hundred times as high as the constant weight w1. Moreover, it can use w1: w2 as

1:0 or 0:1, that is, it means that the problem is considered as a makespan problem or a

number-of-tardy-job problem, respectively.

However, from the data generations in this dissertation, the first

criterion Cmax mostly dominates the second criterion ηT. It will not concern the ratio

of w1: w2 that the constant weight w1 is greater than the constant weight w2, since it

seems to be considered only one criterion Cmax. When the w1: w2 is set as 1:1, it

seems that the value of Cmax greatly dominates the value of ηT, but it can get a benefit

from such a ratio, that is, assuming that the two best schedules of the Cmax problems

are generated as a schedule 1 (Cmax = 23 time units and ηT = 1 job unit) and a schedule

2 (Cmax = 23 time units and ηT = 2 job units), so the schedule 1 will be chosen.

Similarly, if the objective (Z2) is set to seek a schedule that minimizes

a positively weighted convex sum of the makespan and the number of tardy jobs, the

objective function value for this dissertation is defined by:

Z2 = λCmax + (1 – λ)ηT (3.4)

where 0 ≤ λ ≤ 1. λ denotes the weight (or relative importance) given to Cmax and ηT.

 The relative importance (λ) and the constant weights (w) are

interchangeable, that is, if it sets the relative importance (λ) to be 0.01, it means that

the w1: w2 is set as 0.01: 099 (λ : 1 – λ) or 1: 99. The meaning of 1:99 is that, for

example, the users consider that the penalty cost for the tardy jobs is more significant

than the holding cost in their system. As stated above, it does not concern the ratio of

w1: w2 that the constant weight w1 is greater than the constant weight w2 expect for the

ratio of w1: w2 as 1:0, so the weight (or relative importance, λ) will be set to be 0,

0.001, 0.005, 0.01, 0.05, 0.1, 0.5, or 1.0 (, or w1: w2 = 0:1, 1: 999, 1:199, 1:99, 1:19,

1:9, 1:1, or 1:0, respectively). For the application of this objective function, users can

73

choose arbitrarily w1 and w2. Then they are only scaled into a convex combination.

This is equivalent (because only the objective function value is multiplied by a

constant — this does not influence the optimal solution) for both variants.

3.4.3 Constraint Functions

 From the above idea of scheduling the flexible flow shop example

problem in Section 3.3, it can construct the constraint functions as follows:

The variable = 1 if the job l is sequenced as the first job on

machine i at stage t, and = 1 if job j is sequenced as the last job on machine i

at stage t.

t
liX 0

t
nijX)1(+

 Constraints about job sequencing on all k stages:

 These constraints, Constraints (1) through Constraints (7), need to ensure that

the partial schedule on each machine at each stage is feasible.

 Constraints (1) ensure that a job l at stage t scheduled on a machine i must be

immediately preceded by exactly one different job j.

1
1 0
∑∑
= =

=
tm

i

n

j

t
ijlX t = 1, . . . , k ; l = 1, . . . , n (1)

Constraints (2) ensure that a job j at stage t scheduled on a machine i must be

immediately followed by exactly one different job l.

1
1

1

1
∑∑
=

+

=

=
tm

i

n

l

t
ijlX t = 1, . . . , k ; j = 1, . . . , n (2)

 Hence, Constraints (1) and Constraints (2) ensure that only one job is assigned

to each sequence position at each stage.

74

 Constraints (3) ensure that only one job l will be assigned to the first position

on each machine at each stage.

1
1

1
0 =∑

+

=

n

l

t
liX t = 1, . . . , k ; i = 1, . . . , mt (3)

 Constraints (4) ensure that only one job j will be assigned to the last position

on each machine at each stage.

1
0

)1(=∑
=

+

n

j

t
nijX t = 1, . . . , k ; i = 1, . . . , mt (4)

 Constraints (5) assure that, after the job has been finished at any stage, it

cannot be reprocessed at the same stage.

0=t

ijjX t = 1, . . . , k ; i = 1, . . . , mt;

 j = 1, . . . , n

(5)

 Constraints (6) force the construction of a consistent sequence at every stage.

It means that if job l at stage t scheduled on a machine i is immediately preceded by

job j then a job that is immediately preceded by job l at the same stage must be on

same machine i.

∑∑
+

==

=
1

10

n

j

t
ilj

n

j

t
ijl XX t = 1, . . . , k ; i = 1, . . . , mt ;

l = 1, . . . , n

(6)

 Constraints (7) specify the decision variables as binary variables. t

ijlX

}1,0{∈t

ijlX t = 1, . . . , k ; i = 1, . . . , mt;

 j = 0, . . . , n; l = 1, . . . , n+1

(7)

75

 Constraints about finding the operating time:

 Constraints (8) determine the operating time for every job j, which is

dependent on the machine and stage, where the job is processed. Due to the machine

eligibility restrictions, the processing speed of a machine which cannot operate a job j

at stage t is equal to the very small constant, i.e. lesser than the reciprocal value of

sum of all job processing times and setup times to specify that job j cannot be

processed on machine i of stage t.

t
jO

∑∑
=

+

=

=
tm

i

n

l

t
ijlt

ij

t
jt

j X
v
ps

O
1

1

1

 t = 1, . . . , k ; j = 1, . . . , n (8)

 Completion time forcing constraints:

 Constraints (9) are a set of disjunctive constraints. It states that, if job j and

job l are scheduled on the same machine at a particular stage with job j scheduled

before job l, then job j must complete the processing before job l can begin. This

constraint set forces job l to follow job j by at least the processing time of job l plus

the setup time from j to l if job l is immediately scheduled after job j. The value of B

is set to a very big constant, i.e. greater than the sum of all job processing times and

setup times.

∑
=

−++≥−
tm

i

t
ijl

t
l

t
jl

t
j

t
l BXOsCC

1

)1)((t = 1, . . . , k ; j = 1, . . . , n;

l = 1, ... , n ; j ≠ l
(9)

 Constraints (10) ensure that the completion time of every job at each stage is a

non-negative value.

0≥t

jC t = 1, . . . , k; j = 1, . . . , n (10)

76

 Constraints (11) specify the conjunctive precedence constraints for the jobs,

which states that a job cannot start its processing at stage t + 1 before it finishes at

stage t, that is, job l at stage t to complete after it completes at stage t-1, plus its

processing time at stage t, plus the setup time from its predecessor to l or the

changeover time if job l is assigned to machine i at the first position at stage t.

t
l

m

i

t
li

t
il

m

i

n

j

t
jl

t
ijl

t
l

t
l OXchsXCC

tt

++≥− ∑∑∑
== =

−

1
0

1 1

1 t = 1, . . . , k; l = 1, . . . , n (11)

 Constraints (12) apply only to stage one, stating that a job j cannot start its

processing at stage one before its release date.

jj rC =0 j = 1, . . . , n (12)

 Constraints (13) apply only to jobs that are processed at the first sequence on

each machine; that is, the job cannot start its processing before machine availability.

t
j

m

i

t
li

t
il

m

i

t
ji

t
i

t
j OXchXaC

tt

++≥ ∑∑
== 1

0
1

0 t = 1, . . . , k; j = 1, . . . , n

(13)

 Constraints (14) link the makespan decision variable.

k
jCC ≥max j = 1, . . . , n (14)

 Tardiness forcing constraints:

 Constraints (15) determine the correct value of the lateness (Lj)

j
k
jj dCT −≥ j = 1, . . . , n (15)

77

 Constraints (16) specify only the positive lateness as the tardiness (Tj = max
{0, }). dCk

j −

0≥jT j = 1, . . . , n (16)

Hence, Constraints (15) and Constraints (16) determine the correct value of

the tardiness (Tj).

 The value of B is set to a very large constant, i.e. greater than the sum of all

job processing times and setup times.

 Constraints (17) assure that if the tardiness (Tj) value is greater than zero the

value of Uj must be greater than zero as well, otherwise the value of Uj is zero.

BUj ≥ Tj j = 1, . . . , n (17)

Constraints (19) specify the decision variables Uj as binary variables.

Uj ∈ {0,1} j = 1, . . . , n (18)

 Hence, Constraints (17) through Constraints (18) link the decision variable of

the number of tardy jobs; that is, if tardiness is larger than zero, the job is tardy;

otherwise this job is not tardy.

3.4.4 A Numerical Example

 In this section, the simple problem is illustrated. Due to the positively

weighted convex sum of objectives, the weights λ for each problem can be 0, 0.001,

0.005, 0.01, 0.05, 0.1, 0.5, or 1.0. They are solved by using AMPL and CPLEX8.0.0.

This example consists of five jobs and three stages. The first stage has two unrelated

parallel machines, and others have three unrelated parallel machines. Thus, set t to be

78

3, m1 to be 2, and m2 and m3 to be 3. Table 3.7 shows the standard processing times,
the release date, and the due date for every job. Machine availability () is given in

Table 3.8. Table 3.9 gives the information about the relative machine speed () of

the machines which is dependent on the job. Table 3.10 and Table 3.11 show the

matrix of changeover and setup times, respectively.

t
ia

t
ijv

Table 3.7 The standard processing time at stage t (t

jps), release date (rj) and due date

(dj) for job j of a two-stage flexible flow shop

job i 1 2 3 4 5
1
jps 71 47 74 14 88
2
jps 89 28 19 52 73
3
jps 23 47 40 35 35

rj 3 130 166 52 69

dj 275 302 313 204 315

Table 3.8 The availability of machine i at stage t () t

ia

 1
1m 1

2m 2
1m 2

2m 2
3m 3

1m 3
2m 3

3m
t
ia 16 54 77 67 71 137 139 143

Table 3.9 The relative machine speed of job j on machine i at stage t () t

ijv

Stage t

job j

machine i

1 2 3 4 5

1 1 0.976 0.826 0.760 1.120 1.270

 2 1.042 0.796 0.754 1.186 0.706

2 1 0.868 0.772 1.228 0.850 0.958

 2 1.102 1.168 1.192 0.730 0.904

 3 0.916 1.180 0.844 1.246 1.234

3 1 0.910 1.024 0.910 0.898 1.174

 2 1.192 1.006 1.258 0.982 1.144

 3 1.180 0.970 1.288 1.018 0.922

79

Table 3.10 The matrix of changeover time of job j on machine i at stage t () t
ijch

Stage t

job j

machine i

1 2 3 4 5

1 1 35 44 35 20 33

 2 45 20 46 25 27

2 1 44 19 40 34 13

 2 30 27 28 43 47

 3 7 23 41 15 26

3 1 41 50 5 14 9

 2 7 13 39 44 29

 3 17 5 43 17 28

Table 3.11 The matrix of setup time from job j to job l at stage t (t

jls)

Stage t

to job l

from job j

1 2 3 4 5

1 1 - 17 16 43 3

 2 30 - 9 0 10

 3 14 48 - 35 30

 4 0 19 11 - 39

 5 23 44 34 25 -

2 1 - 24 18 50 7

 2 37 - 49 2 23

 3 49 45 - 49 35

 4 12 31 13 - 43

 5 15 4 50 11 -

3 1 - 43 17 18 19

 2 19 - 18 47 5

 3 43 35 - 45 10

 4 26 50 4 - 17

 5 3 26 29 27 -

80

Table 3.12 Results of calculations

λ Schedule Value Cmax ηT

0 Stage 1: 1 – 5 – 3 // 4 – 2

Stage 2: 5 – 2 // 1 – 3 // 4

Stage 3: 4 – 3 // 5 – 2 // 1

3 1166.76 3

0.001 Stage 1: 5 – 2 // 4 – 1 – 3

Stage 2: - // 1 – 3 // 4 – 5 – 2

Stage 3: 5 – 1 // 2 // 4 – 3

3.358 360.897 3

0.005 Stage 1: 5 – 2 // 4 – 1 – 3

Stage 2: - // 1 – 3 // 4 – 5 – 2

Stage 3: 5 – 1 // 2 // 4 – 3

4.789 360.897 3

0.01 Stage 1: 5 – 2 // 4 – 1 – 3

Stage 2: - // 1 – 3 // 4 – 5 – 2

Stage 3: 5 – 1 // 2 // 4 – 3

6.579 360.897 3

0.05 Stage 1: 5 – 2 // 4 – 1 – 3

Stage 2: - // 1 – 3 // 4 – 5 – 2

Stage 3: 5 – 1 // 2 // 4 – 3

20.895 360.897 3

0.1 Stage 1: 5 – 2 // 4 – 1 – 3

Stage 2: 1 // 3 // 4 – 5 – 2

Stage 3: 5 – 1 // 2 // 4 – 3

38.790 360.897 3

0.5 Stage 1: 5 – 2 // 4 – 1 – 3

Stage 2: 4 // 1 – 3 // 5 – 2

Stage 3: 5 – 1 // 4 – 3 // 2

178.687 353.374 4

1 Stage 1: 5 – 2 // 4 – 1 – 3

Stage 2: 4 – 3 // 1 // 5 – 2

Stage 3: 5 – 1 // 4 – 3 // 2

353.374 353.374 5

 From these input data, the results are found by using a modeling

language AMPL with CPLEX solver that runs on Windows platform. The results of

the calculations are shown in Table 3.12. The CPU time for finding the solution is

81

about 60 seconds, but the CPU time is up to 30,000 seconds for the six jobs, see

Jungwattanakit et al. (2005).

3.5 Complexity of the Problem

 In this section, the complexity of the problem is discussed. As can be

described in the previous section, there is a queue at each stage of the flexible flow

shop, and all of n jobs can be processed on any one of the mt machines at stage t (t=

1, …, k). When the job has been performed through the last stage k, it is complete and

can finish the system at this point.

Considering only one stage, there are two decision functions to generate the

schedules, assigning the jobs to machines and sequencing those jobs on each machine.

For the first part, the total possible solutions (TPS1) generated to assign the n jobs to

mt machines at stage t (remember that mt is the number of machines at stage t) that are

equal to:

TPS1 = (mt)n (3.5)

 Assuming that there are jobs that are processed on machine i at stage t, and

the summation of jobs for all machine i in each stage t is equal to n jobs. Hence the

total possible solutions (TPS

t
in

t
in

2) to sequence the jobs on each machine at stage t are

equal to:

t
in

TPS2 =
1

!
tm

t
i

i

n
=
∏ (3.6)

 Consequently, the total possible solutions (TPS3) generated of two functions,

allocation and sequencing functions, are equal to:

82

TPS3 = TPS1 ×TPS2

 = (mt)n
1

!
tm

t
i

i

n
=
∏

(3.7)

 From Equation (3.7), it can be noticed that the maximum number of the total
possible solutions TPS3 will occur when there is an = n and otherwise zero. Thus

the total maximum possible solutions (TPS

t
in

3max) generated are equal to:

TPS3max = (mt)nn! (3.8)

 Moreover, it can be noted that the minimum value of the total possible
solutions TPS3 will occur when each value of is nearly equal. Thus the total

minimum possible solutions (TPS

t
in

3min) generated are equal to:

TPS3min = (mt)n

1

!
tm

t
i

n
m=

⎢ ⎥
⎢ ⎥⎣ ⎦

∏ (3.9)

where t

n
m
⎢
⎢⎣ ⎦

⎥
⎥ is the largest integer number that is lesser than or equal to t

n
m

 Consequently, considering all k stages, the total possible sequence

combinations (TPC) of the problem under consideration are equal to:

()
1 1

!
tk mnt

t
t i

nm
m= =

⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∏ ∏ ≤ TPC ≤ ()()
1

!
k nt

t

m n
=
∏ (3.10)

 From Equation (3.10), it is found that the total possible sequence combinations

depend on the number of jobs (n), the number of stages (k), and the number of

machines (mt) of each stage.

Table 3.13 shows the total number of possible sequence combinations of the

problems with 5 stages and 5 machines per stage, when the number of jobs increases.

83

Although the given machine environment is quite small, the total number of possible

sequence combinations is so large when the number of jobs increases.

Table 3.13 Total number of possible sequence combinations for any number of jobs

of the problems with 5 stages and 5 machines per stage

Number of jobs Total possible sequence combinations of the problem

 minimum maximum

5 2.98E+17 7.42E+27

10 2.98E+42 5.59E+67

15 7.53E+71 1.01E+113

20 2.53E+104 6.72E+161

Table 3.14 shows the total number of possible sequence combinations of the

problems with 5 jobs and 5 machines per stage, when the number of stages increases.

Similarly, although the given machine environment is quite small, the total number of

possible sequence combinations is so large when the number of stages increases.

Table 3.14 Total number of possible sequence combinations for any number of stages

of the problems with 5 jobs and 5 machines per stage

Number of stages Total possible sequence combinations of the problem

 minimum maximum

5 2.98E+17 7.42E+27

10 8.88E+34 5.50E+55

15 2.65E+52 4.08E+83

20 7.89E+69 3.02E+111

A highest current computer technology, an Intel Core 2 Dual Core processor,

has upped its clock speed to 3.16 GHz (or 3.16E+09 Hz), that is, the computer can

generate its clocks to 3.16E+09 cycles per second. With an optimistic assumption

that one clock cycle generates one solution, the computer can generate 3.16E+09

solutions per second, so it would be at least 2.99 years to solve the 5-job 5-stage 5-

84

machine-per-stage problems for the minimum total possible sequence combinations,

at least 7.92E+52 years to solve the 5-job 20-stage 5-machine-per-stage problem, or at

least 2.53E+87 years to solve the 20-job 5-stage 5-machine-per-stage problem.

Hence, the difficulty of a problem rises when the number of jobs and/or the number of

stages and/or the number of machines per stage becomes large.

It is not practical to evaluate all possible sequence combinations to find the

optimal sequence. This means there is a need for a method or an algorithm which can

make it possible to avoid extensive computations and find a quick solution. Of

course, there is drawback to such algorithms; they do not guarantee optimally.

For the above reason, although the problem under consideration is difficult to

solve optimally for large-sized problems, an exact solution using mathematical

programming formulation is still generally necessary for solving small-sized

problems. Some important advantages for formulating the exact algorithm from the

mathematical programming are shown in Chapter I (Section 1.7.3.1).

3.6 Conclusion

This chapter develops the mathematical model to minimize a positively

weighted convex sum of the makespan and the number of tardy jobs for the flexible

flow shop problem with unrelated parallel machines and sequence dependent setup

time. This chapter begins with the introduction section that gives the definition and

the importance of the mathematical programming. It says that even though the CPU

time required to find an optimal schedule by using the mathematical programming is

very high, the mathematical models are worth formulating because the optimal

solutions obtained for small-sized problems can also be used to evaluate the

performance of various heuristics that are developed to find the approximate solution.

Moreover, the large-sized problem may be able to solve in near future since the

development of the computer devices is improving with a fast pace.

85

 Then, this chapter follows with a descriptive example problem that is a two-

stage flexible flow shop environment, which consists of two unrelated parallel

machines in stage 1 and one machine in stage 2 in Section 3.3. In that section, a detail

of scheduling process of one possible solution is presented. The total number of

possible sequence combinations generated from such a problem is equal to 12.

Next, in Section 3.4, the mathematical formulation is presented. It starts with

the assumptions of the model. The objective function, why a positively weighted

convex sum of makespan and the number of tardy jobs as performance measure of the

schedules is used in this dissertation, is presented. It concludes the meaning of the

constant weights (w) and the relative importance (λ) that are interchangeable, that is,

users can choose arbitrarily w1 and w2, then they are only scaled into a convex

combination in terms of the relative importance (λ). However, the limitation of this

model is that users have to choose their suitable values of w1 and w2 for their

environment before using the model. A numerical example to illustrate a use of the

mathematical model for the problem under consideration by using an AMPL/CPLEX

solver, which is a commercial solver, is given. Although the AMPL/CPLEX solver is

considered one of the fastest commercial solvers available and is faster than an

enumerative search, it still requires tremendous computational time.

In Section 3.5, under an intuitive method that is called a complete

enumeration, the total number of possible sequence combinations that will be

generated by such an approach is estimated. It is concluded that the total number of

possible sequence combinations is so large when the number of jobs and/or number of

machines per stage and/or number of stages increases. Attempts to find all solutions

are unsuccessful as they require too much CPU time. Thus, it is hard to find the

optimal solution or even best solution by using either a complete enumeration or a

mathematical model. Hence, in the next chapter, the development of some heuristics

to obtain a good solution in acceptable time will be proposed.

CHAPTER IV

HEURISTIC SOLUTION CONCEPTS

This chapter provides the heuristic solution concepts that are used to find the

approximation solution of the flexible flow shop problem with unrelated parallel

machines. The proposed heuristic solution concepts consist of three main kinds of the

heuristic algorithms, which are the constructive, improvement, and iterative

algorithms (Winston and Venkataramanan, 2003).

The outline of this chapter is as follows: The introduction gives the definition

and importance of the heuristic solution approach. Then, the conceptual framework

for heuristics is explained. The next section proposes the schedule construction

approach, where a starting job sequence for the first processing stage is known. Then,

the constructive algorithms are proposed for the determination of the starting job

sequence for the first stage for the flexible flow shop problem in the next section. The

improvement algorithms are proposed in the next section. Some iterative algorithms

are proposed, namely simulated annealing, tabu search, and genetic algorithms as well

as other variants with choices of an initial solution for the iterative algorithms.

Finally, a conclusion will be drawn.

4.1 Introduction

The main limitation of the exact solution approach is the high memory

consumption of finding the optimal solution, so the heuristic approach the behind idea

of which is easy to find the good solution is appeared. In combinatorial optimization

(Cook et al., 1998), the heuristic approach is the technique designed to solve a

problem that ignores whether the output can be proven to be correct, but which

usually produces a good result. It is intended to gain computational performance or

conceptual simplicity at the cost of accuracy or precision. The aim is to achieve a

good enough output rather than exact output, but this is rewarded with a great

87

computational performance able to turn intractable problems into tractable ones

(Gagliardi, 2007).

As stated in Chapter I (see Section 1.2.2), a flexible flow shop problem is a

category of machine scheduling problems which is difficult to solve (Garey and

Johnson ,1979; Gupta, 1988; Pinedo, 1995); even though the problem has two stages

with one stage having at least two machines, it has already been proved to be NP-hard

(Hoogeveen et al., 1996). From the previous chapter, the complexity of the problem

makes it computationally expensive to use an exact solution technique, which gives

an optimal solution of the problem. Consequently, it is impractical to find the optimal

solution. This means there is a need for an algorithm which can make it possible to

avoid extensive computations and find a quick solution. That is why an approximate

solution technique (or a heuristic solution approach) is needed. A heuristic solution

approach may provide the optimal solution for the problem even though such an

approach does not guarantee the optimality of its solution. This fact implies that there

may be some space for a heuristic solution approach to be improved (Wang, 2005).

Consequently, various types of approximation algorithms have been proposed. Some

importance advantages and disadvantages are stated in Chapter I (see Section 1.7.3.2).

4.2 Conceptual Framework for Heuristics

 Solving a flexible flow shop problem requires finding a good schedule that

satisfies both some measures of effectiveness and the production controls. The main

idea of the proposed algorithm framework comes from the following questions:

1. Which machines will be allocated to perform each job?

2. When will each job be processed?

Figure 4.1 shows the initial concept of the heuristic solution approach. The

concept used in this dissertation is proposed in three phases, which are the initial

solution generation, the solution improvement, and the solution refinement.

88

Phase 1: Initial Solution Generation

Task 1: Determination of the Representatives of Operating Times
- Determine the representatives of operating times by using the combination of setup

times and machine relative speeds.

Task 2: Arrangement of a Starting Job Sequence
- Arrange the jobs in a starting job sequence by using one of some selected rules,

which are dispatching rules or flow shop heuristics.
- Treat the order in a starting job sequence as an initial priority seed for the first

processing stage.

Task 3: Construction of the Schedule
- Assign the jobs in order of the job sequence to the machines by using the greedy

search approach.
- Create a new job sequence for the next production stage by using either First-In-

First-Out or permutation rules.

Task 1: Neighborhood Exchanges
- Improve a starting job sequence for a current best solution by

using the ideas of a shift move approach or a pairwise interchange approach.
- Treat the order in a new starting job sequence as an initial priority

seed for the first processing stage.

Task 2: Construction of the Schedule
- Assign the jobs in order of the job sequence to the machines by

using the greedy search approach.
- Create a new job sequence for the next production stage by using

either First-In-First-Out or permutation rules.

Phase 2: Solution Improvement

Task 1: Initialization
- Determine the good parameters for the iterative algorithms (SA, TS, and GA)
- Choose an initial starting job sequence obtained by random or the current best

solution from the solution in Phase 1 or Phase 2.

Task 2: Neighborhood Exchanges
- Improve a starting job sequence by using the iterative algorithms
- Treat the order in a new starting job sequence as an initial priority seed for the first

processing stage.

Task 3: Construction of the Schedule
- Assign the jobs in order of the job sequence to the machines by using the greedy

search approach.
- Create a new job sequence for the next production stage by using either First-In-

First-Out or permutation rules.

Phase 3: Solution Refinement

Figure 4.1 Initial concept of the heuristic solution approach

89

The initial solution generation phase is to generate the initial feasible solution.

It consists of three tasks. Firstly, it has to determine the representatives of operating

times, since the processing and setup times for every job are unknown until all jobs

have already been assigned to machines. Secondly, a starting job sequence is

constructed. All jobs are arranged by using one of some selected rules which are

adapted from dispatching rules or flow shop heuristics. The order in a starting job

sequence is treated as an initial priority seed for scheduling in the first production

stage. Finally, the construction of the schedule is carried on to find the schedule

solution. In this task, there are two main approaches. The first approach is the greedy

search approach that is used to assign the jobs to the machines in the stage, and the

second approach is the use of either First-In-First-Out (FIFO) or permutation rules to

create a new job sequence for the next production stage. All tasks of this phase are

made up of the constructive algorithms in this dissertation.

Next, the solution improvement phase is proposed to improve the current

solution obtained from the initial solution generation in Phase 1. Two tasks are

implemented in this phase. The first task is the neighbor exchanges. It is applied on

the starting job sequence, that is, it considers first only the current starting job

sequence that is obtained from the particular constructive algorithm and exchanges

the job order in such a current starting job sequence. Then, the second task is to

construct the schedule output. Again, two approaches of assigning the jobs to the

machines and determining the new job sequence are used. The improvement

algorithms proposed in this dissertation are followed in this phase.

The solution refinement in Phase 3 is applied. This phase is used as the

iterative algorithm in this dissertation. Its tasks are the initialization, neighborhood

exchanges, and construction of the schedule. The initialization in this phase consists

of determining the good parameter for the iterative algorithms (namely, the simulated

annealing, tabu search and genetic algorithms) and choosing an initial starting job

sequence obtained by random or the best solution from either the constructive

algorithms in Phase 1 or the improvement algorithms in Phase 2. Then, the

90

neighborhood exchanges are applied to improve the initial starting job sequence.

They use the idea of the iterative algorithms (known as artificial intelligent

algorithms) to function as the neighborhood exchanges. Finally, in each iteration of

the neighborhood exchanges, the schedule construction approach is still used to

determine the schedule output in order to evaluate the fitness or improvement of the

new starting job sequence.

That is all the initial concept of the heuristic solution approach. Then, more

details of the conceptual framework based on the initial concept of the heuristic

solution approach are explained. On the ideas of heuristic procedures (Winston and

Venkataramanan, 2003), the heuristic techniques are characterized by using a

particular approach for obtaining a good solution in efficient time (called a

constructive algorithm) and for incrementally improving to an existing solution by

neighborhood exchanges or local search (called an improvement algorithm). As a

result, they tend to get trapped in a local optimal solution until next attempts to

develop other general heuristics that can work on a variety of problems have met with

the development of solution methodologies based on an artificial intelligence method

(called an iterative algorithm). Consequently, three kinds of heuristics, namely

constructive, improvement, and iterative algorithms, are proposed in this dissertation.

Before concerning the heuristic algorithms, the schedule construction

approach is presented to construct the schedule output (see Section 4.3). The

proposed schedule construction approach is based on the idea of Santos et al. (1996).

It starts with a starting job sequence, which may be randomly generated. The starting

job sequence is represented by a permutation-based code (or job code) using integers;

for example, the nine jobs can be coded as the starting job sequence [9 3 6 5 8 7 2

4 1]. The stages are scheduled separately. Considering the jobs in the order of the

starting job sequence, each job is loaded on the machine with the minimum

completion time in the first considered production stage (referred to as a greedy

search). The idea is to balance evenly the workload in a heuristic way as much as

possible. Then, the schedule construction approach uses the particular rules (i.e. the

91

FIFO and permutation rules) to generate a new job sequence for the next production

stage. Again, considering the jobs in the new job sequence, each job is loaded on the

machine with the minimum completion time in the next considered production stage.

Repeat the steps of the algorithms until all production stages are considered (see

Approach 1). Figure 4.2 shows a flow diagram of the schedule construction approach.

Figure 4.2 A flow diagram of the schedule construction approach

Firstly, the constructive algorithms are proposed (see Section 4.4). From the

schedule construction approach, it is noticed that the schedule output depends on the

starting job sequence. Santos et al. (1996) and Wang and Hunsucker (2003) conclude

their studies that the quality of a schedule is improved by using some particular rules

to determine a starting job sequence for the first stage. Consequently, in this

dissertation, a starting job sequence is created by using some particular rules. The job

operating times are required to find a starting job sequence for the first stage, but, due

to the unrelated parallel machines and sequence-dependent setup times, the processing

and setup times for every job are dependent on the machine and the previous job.

This means that job operating times is not known until an assignment of jobs to

machines for the corresponding stage has been done. Thus, before finding the staring

job sequence for the first stage, a approach for finding the representatives of the

relative machine speeds and the setup times will be proposed (see Algorithm 1).

92

Figure 4.3 A flow diagram of the constructive algorithms

93

After generating the representatives of operating times, the algorithms will

generate a starting job sequence and use the schedule construction approach to

construct a schedule solution. Now, this step will consider how to arrange the jobs in

a starting job sequence for the first stage. For the first idea, it will concern the

information of the job operating times as a whole, that is, each representative of

operating time of all stages will be added to the total representative of operating time

of each job to find a starting job sequence for the first stage. Then, it will apply some

simple dispatching rules, namely SPT, LPT, ERD, EDD, MST, and S/P, to arrange all

jobs in the starting job sequence (see Section 4.4.1).

However, the problem under consideration is a combination of the parallel

machine problem and the flow shop problem, so the idea of the well-known flow shop

heuristics should be adapted in this problem; for example, the ideas of using the

priority of the different operating times at each stage in the Palmer, CDS, Gupta, and

Dannenbring heuristics should be considered for sequencing jobs in the starting job

sequence. Moreover, the probably best flow shop heuristic, called the NEH

algorithm, based on the idea of the insertion algorithm is also adapted to find the

starting job sequence. Consequently, this dissertation will investigate the influence of

using the adapted flow shop heuristics, namely Palmer, CDS, Gupta, Dannenbring,

and NEH, for determining the starting job sequence (see Section 4.4.2). Figure 4.3

shows a flow diagram of the constructive algorithms.

The computational efficiency of the constructive algorithms will be tested in

the next chapter. The result will show the performance of the constructive algorithms

by comparing with the best solution that is found in the tests for the medium-and

large-sized test problems (see Section 5.3.1) and the optimal solution for the small-

sized test problems (see Section 5.4). It will conclude which algorithm gives the good

performance in average.

94

Set the dummy starting job sequence to be the best
starting job sequence

Start

Consider the best starting job sequence that gives the
best schedule from the constructive algorithm

Choose the job j from the first job in the best starting job
sequence

Is job j (in the dummy starting
 job sequence) tardy?

Apply neighborhood exchanges for job j in the dummy
starting job sequence

Delete the job j from in the best starting job sequence

Is there an improved schedule ?

Update the dummy starting job sequence

Is there job j (in the best starting job
sequence)?

Use THE SCHEDULE CONSTRUCTION APPROACH
to find the schedule result

Yes

Yes

No

No

Apply A CONSTRUCTIVE ALGORITHM

No

Yes

Stop

Figure 4.4 A flow diagram of the improvement algorithms

95

Next, after obtaining a good solution from the constructive algorithms, it can

obtain incremental improvement (called an improvement algorithm) to an existing

solution by neighborhood exchanges (Winston and Venkataramanan, 2003). Now, it

is noticed that the constructive algorithms do not consider the minimization of the

number of tardy jobs, so this phase will provide the idea of improving the current

solution by using some approaches, namely pairwise interchange and shift move

strategies, for jobs that are tardy. The first improvement idea (called a shift move

approach or an insertion approach) is based on the fact that the tardy job should be

shifted to perform earlier or later if the solution can improve. The next improvement

idea (called a pairwise interchange approach) is based on the fact that the tardy job

may be exchanged with a job that is assigned ahead or later.

Figure 4.4 shows the flow diagram of the improvement algorithms, where the

idea will apply on a starting job sequence that obtains from the constructive algorithm

and still use the schedule construction approach to find the schedule solution (see

Section 4.5). Again, the performance of the improvement algorithms is provided in

Chapter V. It will compare with the best solution that is found in the tests for the

medium-and large-sized test problems (see Section 5.3.2) and the optimal solution for

the small-sized test problems (see Section 5.4). It will conclude which algorithm

gives the good performance in average.

As a result, those algorithms tend to get trapped in a local optimal solution, but

they can apply other general heuristics with the development of solution

methodologies based on an artificial intelligence method (called an iterative

algorithm). Jones et al. (2002) show that 70% of the articles utilize a genetic

algorithm as the primary metaheuristic, 24% a simulated annealing, and 6% a tabu

search. Thus, to determine near-optimal solutions, the simulated annealing, tabu

search, and genetic algorithms are proposed in this dissertation as the iterative

algorithms (see Section 4.6). Again, it will apply the iterative algorithms on a starting

job sequence and use the schedule construction approach to construct a schedule

solution in order to evaluate the fitness of each solution generated in each iteration.

96

Use THE SCHEDULE CONSTRUCTION APPROACH
to find the schedule result

Generate an initial starting job sequence

Is it terminated?

Start

Yes

No

Stop

Neighborhood Exchanges on the starting job sequence by
using the iterative algorithms

Figure 4.5 A flow diagram of the iterative algorithms

However, it is noted that each iterative algorithm firstly generates a starting

job sequence as an initial solution by random. Reeves (1995), Wang and Zheng

(2003), and Grabowski and Wodecki (2004) have used the NEH algorithm as the

initial solution instead of a random initial solution for their iterative methods, namely

a tabu search and a genetic algorithm. Janiak et al. (2007) have used the best solution

among their constructive algorithms such ECT, EDD, and EDP as an initial solution

for the simulated and tabu search algorithms. These imply that a better initial solution

gives a better schedule solution. Consequently, it will apply this idea on the iterative

algorithms by using a solution that is found by both constructive algorithms and

improvement algorithms as a biased initial solution (or a part of the initial population

for the genetic algorithm) (see Section 4.7). Figure 4.5 shows all concepts of the

iterative algorithms. The performance of the iterative algorithms which is compared

with the best solution is shown in Section 5.3.3 and which is compared with the

optimal solution is shown in Section 5.4.

 After all algorithms are tested in Chapter V, each algorithm will be concluded

under the data generation that is given in Section 5.2. Then, one heuristic solution

algorithm that gives the good performance in average will be recommended to use for

solving the problem under consideration (see Section 5.5).

97

4.3 Schedule Construction Approach

 In this section, the algorithm of the schedule construction approach is

proposed. As stated in Section 4.2, such an approach is based on the idea of the

greedy search approach (see Figure 4.2). The purpose of the schedule construction

approach is to construct a schedule that answers two questions, which machine will be

allocated to process each job and when each job will be processed. This approach is

also developed to evaluate the performance of the schedule which is given by a

starting job sequence at the first stage and to evaluate the fitness of the solution in

each iteration of the iterative algorithms in Section 4.6.

 The idea of the greedy search approach is used in many researches of the

flexible flow shop problem, see Sundararaghavan, Kunnathur, and Viswantha (1997),

Santos et al. (1996), and Lin and Liao (2003), that is, jobs are assigned as soon as

possible to the machines at every stage using the starting job sequence determined for

the first stage. For other stages, a new job sequence is constructed, and it still uses the

greedy search approach to distribute jobs to one of machines. There are basically two

approaches for constructing the new job sequence for other stages. The first way is

that for the other stages, i.e. from stage two to stage k, jobs are ordered according to

their completion times at the previous stage. This means that the First-In-First-Out

(FIFO) rule is used to find the new job sequence for the next stage by means of the

job sequence of the previous stage. The advantages of the FIFO rule are simple and

easy to understand, that is, any jobs come first, and then they should serve first.

However, because of this nonpreemptive scheduling, short processes which are at the

back of the queue have to wait for the long process at the front to finish, so if short

processes are sometime yielded to process first, it may be possible to improve the

solution. Consequently, to omit the idea of the FIFO rule and to believe that the jobs

in the starting job sequence should use all stages, the second way proposed is to

sequence the jobs for other stages by using the same job sequence as for the first

stage, called the permutation rule (Pinedo, 1995).

98

 In this dissertation, the ideas stated above are made for the modifications for

the problem under consideration. Approach 1 shows the steps of the schedule

construction approach, where a starting job sequence for the first processing stage is

known. It consists of a greedy approach which constructs a schedule for n jobs at a

particular stage and particular rules (i.e. either the FIFO or permutation rules) to find

the new job sequence for the next production stage. The objective of this greedy

approach is to minimize the flow time and the idle time of the machines. The idea is

to balance evenly the workload in a heuristic way as much as possible.

Approach 1: Schedule construction

Input: Assume now that a starting job sequence (ω1) for the first stage has already

been determined, ω1 = [ω1[1] ω1[2] … ω1[n]], where ω1[q] is a job at position q, q

∈ {1, … , n}, in a starting job sequence (ω1) for stage 1, i.e. ω1 = [2 1 3], it means

that job number 2 is the first job to be scheduled on any machines or ω 1[1] = 2, and

job number 1 and 3 are followed respectively.

Step 1: Set stage t to be 1.

Step 2: Let a job sequence π be ωt; ωt is a job sequence for stage t.

Step 3: Initialize the machine available time avt[i] = , i ∈ {1, …, mt}. t
ia

Step 4: Assign the first job j in the job sequence π to the machine i at stage t that

has the minimum completion time by using the following formula.

 Case1 Job j is assigned to the machine i at the first position:
/ max{ , [] }

t t
j jt t t t

ij j ij ijt t
ij ij

ps ps
C r ch av i ch

v v
= + + + + ;

 Case 2 Job j is assigned to the machine i at any other position:
/ max{ , [] }

t t
j jt t t t

ij j lj ljt t
ij ij

ps ps
C r s av i s

v v
= + + + + .

Step 5: If there is only machine i* that gives the minimum completion time Ct*
= of job j then assign job j on machine i* at stage t, and then go to

Step 8.

/
*
t
i jC

99

Step 6: For every machine i* that gives the minimum completion time of job

j, calculate the waiting time of these machines if job j is assigned on

it by using calculation:

/
*
t
i jC

jiw *

 Case1 Job j is assigned to the machine i at the first position, for every

machine i*:
/ []

t
jt t

ij ij ijt
ij

ps
w C av i

v
= − − − tch ;

 Case2 Job j is assigned to the machine i at any other position for every

machine i*:
/ []

t
jt t

ij ij ljt
ij

ps
w C av i

v
= − − − ts .

Step 7: Select only one machine i* where the smallest idle time of job j. jiw *

Step 8: Update the available time of machine i*; avt[i*] = . *
/t

i j
C

Step 9: Store the completion time t
jC of job j be equal to . *

/t
i j

C

Step 10: Let 1t
jr + be t

jC

Step 11: Update unscheduled job sequence π = π – {j}. If π ≠ φ then go to Step 4.

Step 12: Case1 First-In-First-Out Approach:

Update ωt+1 such that current completion time of job ωt+1[n] at stage t ≤

current completion time of job ωt+1[n +1] at stage t;

 Case2 Permutation Approach:

Update ωt+1 = ω1.

Step 13: If t < k (k is the total number of stages), then t = t +1, and go to Step 2.

Step 14: Return the best solution.

4.4 Constructive Algorithms

 From the previous section, it is noticed that the starting job sequence used for

the first stage is important for the schedule construction approach. In order to

determine the starting job sequence for the first stage by some heuristics, remember

that the processing and setup times for every job are dependent on the machine and

the previous job. This means that they are not fixed until an assignment of jobs to

machines for the corresponding stage has been done. Thus, for applying a schedule

100

construction approach for fixing the starting job sequence for stage one, finding the

representatives of the relative machine speeds and the setup times is necessary (see

Algorithm 1).

 The representatives of relative machine speed () and setup time () for

stage t, t = 1, … , k, use the minimum, maximum, and average values of the data.

Thus, the representative of operating time of job j at stage t is the sum of the
processing time

t
ijv / t

ljs /

t
ij

t
j vps / plus the representative of the setup time . Nine

combinations of relative machine speeds and setup times will be used in the suggested

algorithm. The starting job sequence for the first stage is then fixed as the starting job

sequence with the best function value obtained by all combinations of the nine

different relative machine speeds and setup times.

t
ljs /

 The idea of these combinations is to deal with unknown processing and setup

times before assigning jobs to machines by using the expected time, the pessimistic

time, and the optimistic time. Firstly, it is assumed that each job has an equal chance

to assign on each machine at each stage, so the expected values are used to apply, that

is, the algorithm uses the average values of both relative machine speeds and setup

times to generate the representatives of the operating times. However, there are some

chances that some jobs will assign to any machines that spend the operating times

longer or shorter than the average values (especially, they should assign to the

machine that spends time shorter). This means that the results are better than using

only the average values as the representative values. To take these uncertainties into

account and to find tune the value of the operating time, this idea will use the nine

combinations of the both relative machine speeds and setup times to generate any

operating time values that are in the ranges of the possible operating times and to

increase the search space of the algorithms presented in this dissertation.

Then, the determination of the starting job sequence for the first stage for the

problem is proposed. For the first idea, it will concern the information of the job

operating times as a whole, that is, each representative of operating time of every

101

stage is summed as the total representative of operating time of each job to find a

starting job sequence for the first stage. It concerns the problem as a single model and

uses the simple dispatching rules to determine the starting job sequence; for example,

Kurz and Askin (2004) propose their starting job sequence by using the SPT rules and

then follow by the greedy approach to distribute the jobs to the machines.

For another idea, it can use the well-known flow shop heuristics to create the

starting job sequence, by a reason that it should concern the priority of the different

operating times at each stage; for example, Santos et al. (1996) have used the Palmer,

CDS, Gupta, and Dannenbring heuristics to determine their starting job sequence, and

Wang and Hunsucker (2003) have used the CDS algorithm to determine their starting

job sequence, as well.

Consequently, in this dissertation, the constructive algorithms are adapted and

developed by using one of several basic dispatching rules and flow shop heuristics to

determine the starting job sequence and then using the schedule construction approach

to find the schedule solution (see Figure 4.3).

Algorithm 1: Constructive algorithm

Input: Relative machine speeds () and setup times (and). t

ijv t
ijch t

ljs

Step 1: Determine the representatives of relative machine speeds and setup

times for t=1,…,k.

t
ijv /

t
ljs /

If speed =1 then = min{ ; ∀i = {1, …, mt} }, ∀j = {1,

…, n};

t
ijv / t

ijvStep 1(a):

If speed =2 then = max{ ; ∀i = {1, …, mt} }, ∀j = {1,

…, n};

t
ijv / t

ijv

If speed =3 then = average{ ; ∀i = {1, …, mt} }, ∀j =

{1, …, n}.

t
ijv / t

ijv

102

If setup = 1 then = min{ ; ∀l = {1, …, n}, ; ∀i =

{1, …, mt} }, ∀j = {1, …, n};

t
ljs / t

ljs t
ijchStep 1(b):

If setup = 2 then = max{ ; ∀l = {1, …, n}, ; ∀i =

{1, …, mt} }, ∀j = {1, …, n};

t
ljs / t

ljs t
ijch

If setup = 1 then = average{ ; ∀l = {1,…, n}, ; ∀i =

{1,…, mt} }, ∀j = {1, …, n}.

t
ljs / t

ljs t
ijch

Step 2: Set speed to be 1.

Step 3: Set setup to be 1.

Step 4: Determine the representatives of operating time () of each job and

each stage by using equation:

t
jO /

t
ljt

ij

t
jt

j s
v
ps

O /
/

/ +=

(4.1)

Step 5: Determine the starting job sequence ω1 of the first stage, by using the
representatives of operating time to find such a job sequence with

one of some modified particular rules (dispatching rules and flow shop

heuristics).

t
jO /

Step 6: Construct a schedule output by using the schedule construction

approach (see Approach 1)

Step 7: If setup < 3, then setup = setup + 1, and go to Step 4.

Step 8: If speed < 3, then speed = speed + 1, and go to Step 3.

Step 9: Return the best solution.

4.4.1 Dispatching Rules

The dispatching rules are the simple algorithms to construct the

solution. They can be classified in a number of ways. One such classification is as

follows (Holthaus and Rajendran, 1997):

103

1. Process-time based rules,

2. Due-date based rules,

3. Combined rules, and

4. Rules that are neither process-time based nor due-date based.

 The algorithms that cover four types of dispatching rules are chosen.

The Shortest Processing Time (SPT) is an example of a process-time based rule that

ignores the due-date information of jobs. The SPT rule has been found to minimize

the mean flow time and a good performance with respect to the mean tardiness

objective and has also been observed under highly loaded conditions in the shop

(Baker, 1974). Another method of a process-time based rule is the Longest

Processing Time (LPT) rule, the advantage of which is to keep jobs with short

processing times for later because these jobs are useful at the end for balancing the

workload under the parallel-machine problem (Pinedo, 1995). The reason is to keep

jobs with short processing times to be assigned and sequenced without affecting the

workload balance. However, for the flexible flow shop problems with unrelated

parallel machine, it is necessary to adapt the SPT and LPT rules by using the

representatives of the operating times as stated above. Then, the best solution is

selected among the nine combinations of relative machine speeds and setup times (see

Approach 2 that is Step 5 in Algorithm 1)

Approach 2: Process-time based rule

Input: Representative of operating time from Step 4 in Algorithm 1. t

jO /

Step 1: For each job j, j = 1,…, n, determine its total representatives of operating

time = . /
jTO ∑

=

k

t

t
jO

1

/

Case1 The Shortest Processing Time (SPT) rule:
Sort the jobs in ascending order of the values, if any two jobs have

the same values, sort them in an arbitrary order, and set it to be ω1,

where ω1 is a starting job sequence for the first stage.

/
jTO

/
jTO

Step 2:

104

Case2 The Longest Processing Time (LPT) rule:
Sort the jobs in descending order of the values, if any two jobs have

the same values, sort them in an arbitrary order, and set it to be ω1,

where ω1 is a starting job sequence for the first stage.

/
jTO

/
jTO

For due-date based rules, the Earliest Due Date (EDD) rule is

proposed. Followed by the EDD rule, the next job to be processed is the one with the

earliest due date. Consequently, the jobs in the starting job sequence ω1 for the first

stage are sorted according to non-decreasing due dates of the jobs.

Rules can be combined to make use of both process-time and due-date

information, e.g. the Minimum Slack Time rule, etc. The Minimum Slack Time first

(MST) rule is a variation of the EDD rule. This rule concerns the remaining slack of

each job, defined as its due date minus the processing time required to process a job.

Similar to the MST rule, another rule concerned in this problem is the Slack time per

Processing time (S/P), where its slack time is divided by the processing time required

as well (see Approach 3 that is Step 5 in Algorithm 1)

Approach 3: Combined rule

Input: Representative of operating time from Step 4 in Algorithm 1. t

jO /

Step 1: For each job j, j = 1,…, n, determine its total representatives of operating

time = . /
jTO ∑

=

k

t

t
jO

1

/

Case1 The Minimum Slack Time first (MST) rule:
Sort the jobs in a non-decreasing order of the (dj –) values, if any

two jobs have the same (dj –) values, sort them in an arbitrary order,

and set it to be ω1, where ω1 is a starting job sequence for the first stage.

/
jTO

/
jTO

Step 2:

105

Case2 The Slack time per Processing time (S/P) rule:
Sort the jobs in a non-decreasing order of the (dj –)/ values, if

any two jobs have the same (dj –)/ values, sort them in an

arbitrary order, and set it to be ω1, where ω1 is a starting job sequence for

the first stage.

/
jTO /

jTO
/
jTO /

jTO

Finally, a rule that is neither process-time based nor due-date based

concerned in this research is the Earliest Release Date first (ERD) rule which is

equivalent to the well-known the First-In-First-Out (FIFO) rule. The ERD rule, in a

sense, minimizes the variation in the waiting times of the jobs at a machine (Pinedo

and Chao, 1999). Thus, the jobs in the starting job sequence ω1 for the first stage are

sorted according to non-decreasing release dates of the jobs.

Consequently, the basic dispatching rules given by Shortest Processing

Time (SPT), Longest Processing Time (LPT), Earliest Release Date first (ERD),

Earliest Due Date first (EDD), Minimum Slack Time first (MST), and Slack time per

Processing time (S/P) rules are considered to arrange the jobs in the staring job

sequence for the first stage in the constructive algorithms. Moreover, they are used

mainly for comparison purposes and to have a broad spectrum of solutions in the

initial solution (or population) of the iterative algorithm as proposed in Section 4.7.

4.4.2 Flow Shop Heuristics

From Section 4.4.1, it is noticed that the dispatching rules concern the

total operating times for all stages instead of the operating times in each stage.

Consequently, now it has moved the dispatching rules to the flow shop heuristics that

concern the operating time in each stage.

The flow shop heuristics can be classified into four groups as follows

(Hejazi and Saghafian, 2005):

106

1. Heuristics based on slope indices,

2. Heuristics based on Johnson’s Rule,

3. Heuristics based on both slope indices and Johnson’s Rules, and

4. Otherwise.

The Palmer Rule is an approach that assigns a weight or “index” to

every job and then arranges the sequence by sorting the jobs according to the assigned

index. His idea is to give priority to jobs that have a tendency of progressing from

short times to long times as they move through the stages. It is noted that his

algorithm behinds the concept of the LPT algorithm at the last stage and the SPT

algorithm at the first stage. This idea has been used in later papers; for example,

Gupta proposes a modification of Palmer's slope index which exploits some

similarities between scheduling and sorting problems.

For the CDS rule, it is in the class of heuristics based on Johnson’s

algorithm. In this case, several schedules are constructed, and the best one is given as

a result. The heuristic is known as CDS and builds k−1 schedules (where k is the total

number of stages) by clustering the k original machines into two virtual machines and

solving the generated two machine problem by repeatedly using Johnson’s rule.

Dannenbring’s heuristic is a method that mixes the previous ideas of

Johnson’s algorithm and Palmer's slope index. In this case, a virtual two machine

problem is defined as it is in the CDS heuristic, but instead of directly applying

Johnson’s algorithm over the processing times, two weighting schemes are calculated,

and then Johnson’s algorithm is applied. The weighting schemes give the processing

times for the jobs in the two virtual machines.

The NEH heuristic is based neither on Johnson's algorithm nor on

slope indexes. It is based on the idea that jobs with high processing times on all the

machines should be scheduled as early in the sequence as possible.

107

Notice that the first four algorithms of flow shop makespan heuristics,

namely the Palmer, CDS, Gupta, and Dannenbring methods, try to minimize

makespan while the insertion heuristic, the NEH algorithm, can be used for any

regular optimization criterion and for the multi-criteria problem under consideration

as well. Consequently, the well-known flow-shop makespan heuristics, which are

Palmer, CDS, Gupta, and Dannenbring as well as the insertion heuristic by Nawaz,

Enscore, and Ham, are adapted.

4.4.2.1 Palmer

 A heuristic developed by Palmer (1965), in an effort to use

Johnson’s rule, proposes a slop order index to sequence the jobs on the machines

based on the processing times. The idea is to give priority to jobs that have a

tendency of progressing from short times to long times as they move through the

stages. It means that the first stage sequence can be generated based upon a non-

increasing order of the slope indices.

 Let S (j) be the slope index for job j and be the operating

time of job j at stage t. Palmer’s slope index is calculated as follows:

t
jO

{ }∑
=

−−−=
k

t

t
jOtkjS

1
)]12([)((4.2)

 To illustrate Palmer’s method for use in the flow shop

environment, the example given in Table 4.1 will be utilized.

108

Table 4.1 Standard processing times and due date for every job of a three-stage flow

shop problem

Job j 1 2 3 4 5
1
jps 11 13 20 9 11
2
jps 12 15 10 12 18
3
jps 20 18 12 20 15

dj 40 40 75 45 60

 Since there is only one machine for every stage, the operating
times for every job are equal to its standard processing times (). The slope

indices for the five jobs are now calculated as follows:

t
j

t
j psO =

S(j) = - [2 + 0 – 2], i.e. 1

jO 2
jO 3

jO

1. S(1) = -2(11) - 0(12) + 2(20) = 18;

2. S(2) = -2(13) - 0(15) + 2(18) = 10;

3. S(3) = -2(20) - 0(10) + 2(12) = -16;

4. S(4) = -2(9) - 0(12) + 2(20) = 22;

5. S(5) = -2(11) - 0(18) + 2(15) = 8.

Palmer’s heuristic sequences the jobs in non-increasing order of

the slope indices. For the job set in Table 4.1, this heuristic yields the starting job

sequence ω1 = [4 1 2 5 3] for the first stage. Palmer’s heuristic yields a makespan

value of 106. Using a 0-1 mixed integer programming formulation, one can confirm

that 106 is the optimal makespan value as well.

 Now, the modified Palmer’s method (in the following denoted

by PAL) for the flexible flow shop problem with unrelated parallel machines and

sequence-dependent setup times is developed as follows.

 Let be the standard processing time of job j at stage t,

be the representative of the relative machine speeds on machine i at stage t for job j,

t
jps t

ijv /

109

and be the representative of the setup time between job l and job j at stage t.

Then, denotes the slope index for job j at the relative machine speed

and setup time . PAL’s slope index for the flexible flow shop problem with

unrelated parallel machines and setup times is calculated as follows:

t
ljs /

),,(// t
lj

t
ij svjS

t
ijv / t

ljs /

∑
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−−−=
k

t

t
ljt

ij

t
jt

lj
t

ij s
v

ps
tksvjS

1

/
/

//))](12([),,((4.3)

 Since the processing times and the setup times for every job are

dependent on the machine and the previous job, respectively, the representative of the
operating time of job j at stage t in Palmer’s method adaptation is the sum of the

processing time

t
jO /

t
ij

t
j vps / plus the setup time . To construct a schedule for the

overall problem, set to be the minimum, maximum, and average relative machine

speeds and to be the minimum, maximum, and average setup times regardless for

the machine and the previous job. All these nine combinations of relative machine

speeds and setup times will be used as described in Algorithm 1, and finally, the

solution with the best objective function value obtained by all different relative

machine speeds and setup times is taken.

t
ljs /

t
ijv /

t
ljs /

4.4.2.2 Campbell, Dudek, and Smith

 Campbell et al. (1970) develop one of the most significant

heuristic methods for the makespan flow shop scheduling problem, known as the CDS

algorithm. Its strength lies in two properties: (1) it uses Johnson’s rule in a heuristic

fashion and (2) it generally creates several schedules from which a “best” schedule

can be chosen. In so doing, k – 1 subproblems are created, and Johnson’s rule is

applied to each of the subproblems. Thus, k – 1 job sequences are generated. Since

Johnson’s algorithm is a two-stage algorithm, a k-stage problem must be collapsed

into a two-stage problem. Let g be a counter for the k – 1 sub-problems, the operating

times for the “first” stage are denoted as a(j, g), where j denotes the job, and g denotes

the g-th subproblem. Similarly, b(j, g) denotes the “second” stage operating times of

110

job j and sub-problem g. Given these notations, the operating times are calculated by

the following two formulas:

∑
=

=
g

t

t
jOgja

1

),((4.4)

and

∑
+−=

=
k

gkt

t
jOgjb

1
),((4.5)

 For each of the subproblems, Johnson’s algorithm provides a

job sequence using the values a(j, g) and b(j, g). Once Johnson’s sequence is created,

the problem is then returned to the consideration of all k stages.

 Again, due to the unrelated parallel machines, the constructed
processing time for the “first” stage is denoted as , where j denotes the

job, g denotes the g-th subproblem, and and are the representatives of the

relative machine speed and setup time, respectively. Similarly,

denotes the “second” stage processing time. Given these definitions, the constructed

processing times are calculated according to the following two equations:

),,,(// t
lj

t
ij svgja

t
ijv / t

ljs /

),,,(// t
lj

t
ij svgjb

∑
=

+=
g

t

t
ljt

ij

t
jt

lj
t

ij s
v
ps

svgja
1

/
/

//)(),,,((4.6)

and

∑
+−=

+=
k

gkt

t
ljt

ij

t
jt

lj
t

ij s
v

ps
svgjb

1

/
/

//)(),,,((4.7)

 To generate the starting job sequence, Johnson’s ordering is

created, and the problem is then returned to the consideration of k stages by calling

Approach 1 for all nine combinations of relative machine speeds and setup times as

considered in Algorithm 1.

111

4.4.2.3 Gupta

 Gupta (1971) provides an algorithm, denoted by GUP, in a

similar manner as algorithm PAL by using a slope index. Denote G(j) as the slope

index generated by Gupta’s method for job j. Then G(j) is calculated as follows:

}{min
)(1

11

+

−≤≤
+

= g
j

g
jkg

j

OO
e

jG (4.8)

;where .
⎪⎩

⎪
⎨
⎧

≤−
>

= k
jj

k
jj

j OOif
OOif

e 1

1

1
1

 After calculating G(j) for all jobs, the jobs are subsequently

ranked in a non-decreasing order of the slope indices.

 Under the Gupta adaptation rule, let be the slope

index of algorithm GUP for job j at relative machine speed and setup time . The

slope index of algorithm GUP for the flexible flow shop with unrelated parallel

machines and setup times is then calculated from:

),,(// t
lj

t
ij svjG

t
ijv / t

ljs /

)}(){(min
),,(

1/
1/

1
/

/11

//

+
+

+

−≤≤
+++

=
g

ljg
ij

g
jg

ljg
ij

g
j

kg

jt
lj

t
ij

s
v
ps

s
v
ps

e
svjG (4.9)

;where

1
/1 /

/1 /

1
/1 /

/1 /

1 () (

1 () (

k
j j k

lj ljk
ij ij

j k
j j k

lj ljk
ij ij

ps ps
if s s

v v
e

ps ps
if s s

v v

⎧
+ > +⎪

⎪= ⎨
⎪− + ≤⎪
⎩

)

)+

112

4.4.2.4 Dannenbring

 Like PAL’s rule, Dannenbring (1977) develops a method by

using Johnson’s algorithm as the foundation. Furthermore, the CDS and PAL

algorithms are also exhibited. Dannenbring constructs only one two-stage problem,

but the processing times for the constructed jobs reflect the behavior of PAL’s slope

index. In the following, this method is denoted by DAN. Denote a(j) and b(j) as the

operating times for the constructed two-stage problem. The calculations of a(j) and

b(j) are as follows:

∑
=

+−=
k

t

t
jOtkja

1
))(1()((4.10)

and

∑
=

×=
k

t

t
jOtjb

1
)((4.11)

 After calculating a(j) and b(j) for all jobs, the jobs are

subsequently ranked by applying Johnson’s algorithm to generate the starting job

sequence for stage one.

 Under the DAN adaptation rule, the operating times for the

flexible flow shop problem with unrelated parallel machines and setup times are

calculated as follows:

∑
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++−=
k

t

t
ljt

ij

t
jt

lj
t

ij s
v

ps
tksvja

1

/
/

//))(1(),,((4.12)

and

∑
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+×=
k

t

t
ljt

ij

t
jt

lj
t

ij s
v

ps
tsvjb

1

/
/

//)(),,((4.13)

113

4.4.2.5 Nawaz, Enscore, and Ham

 Nawaz et al. (1983) develop probably the best constructive

heuristic method for the permutation flow shop makespan problem, called the NEH

algorithm. It is based on the idea that a job with a high total operating time on the

machines should be placed first at an appropriate relative order in the sequence. Thus,

jobs are sorted in non-increasing order of their total operating time requirements. The

final sequence is built in a constructive way, adding a new job at each step and

finding the best partial solution (see Approach 4).

Approach 4: Nawaz, Enscore, and Ham rule

Input: Representative of operating time from Step 4 in Algorithm 1. t

jO /

Step 1: The total operating times for job j is calculated using the formula :

/

1

k
t

j
t

P O
=

= j∑ , j = 1, …, n.

(4.14)

Step 2: The n jobs are sorted in non-increasing order of their total operating time

Pj on the machines. Then the first two jobs (those with largest Pj) are

taken, and the two possible schedules containing them are evaluated. The

sequence with better objective function value is taken for further

consideration.

Step 3: Take every remaining job in the sorted list calculated in Step 2 and find

the best schedule by placing it at all possible positions in the sequence of

jobs that are already scheduled. For example, if [j1 j2 j3] is the current

sequence of scheduled jobs, and job r is the remaining job with largest Pr

in the sorted list, then job r could be placed at four positions: [r j1 j2

j3], [j1 r j2 j3], [j1 j2 r j3] or [j1 j2 j3 r]. The sequence with best

objective function value among the four considered is selected for further

extension.

114

 For example, the NEH algorithm inserts a third job into the

previous partial solution in such a way that the resulting sequence gives the best

objective function value (i.e. the relative position of the previous job sequence

remains fixed). The algorithm repeats the process for the remaining jobs according to

the initial ordering of the total operating time requirements.

 Again, to apply the NEH algorithm to the flexible flow shop

problem with unrelated parallel machines, the total operating times for calculating the

starting job sequence for the first stage are calculated according to Step 4 of

Algorithm 1 for the nine combinations of relative machine speeds and setup times.

Contrary to the algorithms presented before, the NEH algorithm constructs job

sequences by considering the minimization of the convex combination of the

makespan and the number of tardy jobs.

4.5 Improvement Algorithms

 Unlike constructive algorithms, improvement heuristics start with an already

built schedule and try to improve it by some given procedures. As proposed the

algorithms in the previous section, after obtaining a good solution in efficient time, it

can obtain incremental improvement (called an improvement approach) to an existing

solution by neighborhood exchanges or local search (Winston and Venkataramanan,

2003). Their use is necessary since the constructive algorithms (especially some

algorithms that are adapted from pure makespan heuristics and some dispatching rules

such as the SPT and LPT rules) do not consider due dates (and therefore, they do not

consider the minimization of the number of tardy jobs).

This section proposes the improvement algorithms for the current solution by

using some algorithms, namely pairwise interchange and shift move strategies, to

improve the overall function value by dealing mainly with the due date criterion (see

Figure 4.4). The first improvement idea (called a shift move approach or an insertion

approach) is based on the fact that the tardy job should be shifted to perform earlier or

115

shifted to perform later if the solution can improve. The next improvement idea

(called a pairwise interchange approach) is based on the fact that the tardy job may

be exchanged with a job that is assigned ahead or later.

Consequently, in this dissertation, the iterative algorithms described in the

following and in Section 4.6 are based on the shift move (SM) and the pairwise

interchange (PI) neighborhoods.

The SM neighborhood repositions a chosen job. This means that an arbitrary

job πr at position r is shifted to position i, while leaving all other relative job orders

unchanged. If 1 ≤ r < i ≤ n, it is called a right shift and yields π′ = [π1 … πr-1 πr+1

… πi πr πi+1 … πn]. If 1 ≤ i < r ≤ n, it is called a left shift and yields π′ = [π1 …

πi-1 πr πI … πr-1 πr+1 … πn]. For instance, assume that randomly one starting job

sequence solution for the first stage in the current generation is selected, say [4 9 8 7

3 1 6 2 5], and then randomly a couple of job positions for performing the shift is

selected, e.g. positions 2 and 7 (in this case, it is a right shift). The new starting job

sequence solution will be [4 8 7 3 1 6 9 2 5]. However, if positions 7 and 2 are

randomly selected (i.e. it is a left shift), the new starting job sequence solution will be

[4 6 9 8 7 3 1 2 5]. In the SM neighborhood, the current starting job sequence

solution has (n–1)2 neighbors.

The PI neighborhood exchanges a pair of arbitrary jobs πr, and πi, where 1 ≤ i,

r ≤ n and i ≠ r. Such an operation swaps the jobs at positions r and i, which yields π′

= [π1 … πr-1 πI πr+1 … πi-1 πr πi+1 … πn]. For example, assume that the current

starting job sequence solution is [4 9 8 7 3 1 6 2 5], and then randomly the

couple of job positions to be exchanged is selected, e.g. positions 1 and 3. Thus, the

new starting job sequence solution will be [8 9 4 7 3 1 6 2 5]. In the PI

neighborhood, the current starting job sequence solution has n×(n-1)/2 neighbors.

In order to find a satisfactory solution of the due date problem, the fast

polynomial heuristics are applied on the starting job sequence that gives the best

116

schedule solution from the previous algorithms in Section 4.4 by investigating either

the above SM algorithm as an improvement mechanism based on the idea that it will

consider the jobs that are tardy in a left-to-right scan and move each of them left and

right or the PI algorithm, where a tardy job is selected and swapped to different job

positions left and right, and either to two randomly determined positions (denoted by

the number “2”) or to all n–1 possible positions (denoted by the letter “A”). The best

schedule among the generated neighbors is then taken as the result. The algorithm is

as follows:

Algorithm 2: Improvement algorithm

Input: The best starting job sequence solution ω1* from Algorithm 1; where ω1* =

[ω1* [1] … ω1* [n]]

Step 1: Set the dummy starting job sequence π to be ω1*

Step 2: Check the first job j in the best starting job sequence ω1*, if the job j is

not tardy in the dummy starting job sequence π, go to Step 5.

Step 3: Interchange (i.e. apply 2-PI or A-PI) or shift (i.e. apply 2-SM or A-SM)

the chosen job j in the dummy starting job sequence π and evaluate the

objective function values by using the schedule construction approach

(see Approach 1).

Step 4: Update the current dummy starting job sequence π, if the objective

function values improve.

Step 5: Update the job list ω* = ω* – {j}.

Step 6: Go to Step 2 until the best starting job sequence ω1* is empty.

Step 7: Return the best sequence solution π.

Since every tardy job in the job sequence is considered at most once, the

complexity of the 2-PI and 2-SM procedures is O(n), and the complexity of the A-PI

and A-SM procedures is O(n2).

117

4.6 Iterative Algorithms

 Those algorithms from both Section 4.4 and Section 4.5 tend to get trapped in

a local optimal solution, but it can apply other general heuristics with the development

of solution methodologies based on an artificial intelligence method (called an

iterative approach) (Winston and Venkataramanan, 2003) (see Figure 4.5).

 Hence, to obtain a near-optimal solution, iterative algorithms (or metaheuristic

algorithms), have also been proposed by many researchers; for example, Gourgand et

al. (1999) present several simulated annealing (SA)-based algorithms for the flexible

flow shop problem. A specific neighborhood is used, and the authors apply the

methods to a realistic industrial problem. Jin et al. (2006) consider the flexible flow

shop with identical parallel machines. They propose two approaches to generate the

initial job sequence and use an SA algorithm to improve it. It can be seen that an SA

algorithm has been successfully applied to various combinatorial optimization

problems. For an extensive survey of the theory and applications of the SA algorithm,

see Koulamas, Antony, and Jaen (1994). Furthermore, Nowicki and Smutnicki

(1998) propose a tabu search (TS) algorithm for the flexible flow shop makespan

problem. A genetic algorithm (GA) has been widely used in many previous works for

the flow shop makespan problem, see e.g. Werner (1984) and Reeves (1995). Cheng

et al. (1995) address the earliness/tardiness scheduling problem with identical parallel

machines, and they apply a GA to solve their problem. Ruiz et al. (2005) use a GA

approach to deal with the permutation flow shop scheduling problem with sequence-

dependent setup times. However, little research has been done for flexible flow shop

scheduling problems, especially for the general case with unrelated parallel machines

and setup times (see for instance the recent review on scheduling with setup times by

Allahverdi et al. (2008)).

In this dissertation, three well-known iterative algorithms for the heuristic

solution of the problem are considered, namely simulated annealing, tabu search, and

genetic algorithms. All these iterative algorithms work with the starting job sequence

118

for the first stage. If a new job sequence has been generated, the schedule

construction procedure described in Section 4.3 is applied, and the objective function

value of this schedule is used for evaluating the job sequence for the first stage.

4.6.1 Simulated Annealing Algorithm

 A simulated annealing (SA) algorithm is an enhanced version of local

optimization or an iterative search method, in which an initial solution is repeatedly

improved by making small local alterations until no such alteration yields a better

solution. It is developed by Kirkpatrick, Gelatt, and Vecchi (1983).

An SA algorithm is inspired by the annealing of metals, in which

annealing refers to the process which occurs when physical substances, such as metals,

are raised to a high energy level (melted) and then gradually cooled until some solid

state is reached. The goal of this process is to reach the lowest energy state. In this

process, physical substances usually move from higher energy states to lower ones if

the cooling process is sufficiently slow, so a minimization naturally occurs. Due to

natural variability, however, there is some probability at each stage of the cooling

process that a transition to a higher energy state will occur. As the energy state

naturally declines, the probability of moving to a higher energy state decreases.

 In general, an SA algorithm is a stochastic optimization method for

minimizing a function f over a discrete domain S. Starting from an initial solution s∈

S, an SA algorithm generates a new solution s'∈ S in the neighborhood of the initial

solution s by using a suitable operator. Concerning the neighborhood, both a shift

move (SM) neighborhood (i.e. a job at an arbitrary position is selected and reinserted

at some other position), and a pairwise interchange (PI) neighborhood (i.e. two

arbitrary jobs are selected and interchanged) are considered (see Section 4.5).

The objective function value f(s') of the new solution is then compared

to the objective function value f(s) of the initial solution (remember that the objective

119

function value of the full schedule generated from the starting job sequence for the

first stage is taken). The change in the objective function value, δ = f(s') – f(s), is

calculated. If the objective function value decreases (δ < 0), the new solution is

automatically accepted and it becomes the point from which the search will continue.

If the objective function value increases (δ ≥ 0), then a solution with a larger objective

function may also be accepted with a probability, usually determined by a function,

exp (–δ/T), where T ∈ ℜ is a control parameter of an SA algorithm called the

temperature. The probability of acceptance the higher values decrease as T decreases.

At high temperature, the search is almost random, whereas at low temperature the

search becomes almost greedy. At zero temperature, the search becomes totally

greedy, that is, only good moves are accepted. Consequently, the role of the

temperature T is significant in the operation of an SA algorithm. This temperature,

which is simply a positive number, is initialized to a value T0 at the beginning of the

procedure and is periodically reduced every NT iterations, where NT denotes the

epoch length, so that it moves gradually from a relatively high value to near zero as

the algorithm progresses according to a function referred to as the cooling schedule.

An SA approach is shown in Algorithm 3.

Algorithm 3: Simulated annealing

Input: The initial temperature T0, final temperature Tf, cooling temperature rate, and

epoch length NT.

Step 1: Select randomly an initial solution s0 = [s0[1] … s0[n]] and evaluate the

objective function value f(s0) by setting a starting job sequence ω1 for the

first stage in Algorithm 1 to a solution s0.

Step 2: Set a current solution s and a best solution sbest to an initial solution s0.

Step 3: Set a temperature control parameter T to T0.

Step 4: Generate a new solution s' in the neighborhood of the current solution s

by using a suitable operator (e.g. PI and SM neighborhoods) (see Section

4.5).

120

Step 5: Evaluate the objective function value f(s') by setting a starting job

sequence ω1 in the schedule construction approach (see Approach 1) to

a solution s'.

Step 6: Update a best solution sbest = s' if the objective function value f(s') <

f(sbest).

Step 7: Update a current solution s = s' and Go to Step 11 if δ < 0, where δ = f(s')

– f(s).

Step 8: Determine a probability function by using equation exp (–δ/T).

Step 9: Random a number uniformly distributed in the interval [0, 1].

Step 10: If RANDOM ~U[0,1] < a probability function exp (–δ/T), update a

current solution s = s'.

Step 11: Go to Step 4, until number of iteration is equal to an epoch length NT.

Step 12: Reduce the temperature by using cooling schedule (see Section 4.6.1.1)

given in a specific cooling rate.

Step 13: Reset number of iteration processed, and go to Step 4 again with a new

temperature control until the temperature drops bellow the final

temperature Tf or other stopping criteria.

4.6.1.1 Cooling Schedule

 The cooling schedule governs how likely the algorithm is to

accept a bad transition as a function of the temperature T at each iteration. At the

beginning of the search, the algorithm is eager to use randomness to explore the

search space widely, so the probability of accepting a negative transition is high by

using higher temperature. As the search progresses, the temperature is decreased,

thus the probability of accepting will gradually decrease, converging to a simple

iterative improvement algorithm.

121

Tnew= αTold

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Time

Temp α = 0.85
α = 0.90
α = 0.95
α = 0.99

Tnew = Told/(1+ β Told)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Time

Temp β = 0.001
β = 0.002
β = 0.003
β = 0.004

Tnew = Told – γT0

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time

Temp
γ = 0.05
γ = 0.10
γ = 0.15
γ = 0.2

Figure 4.6 The patterns of cooling schedules

122

There are three most widely used cooling schedules (Bräsel et

al., 2006): (1) the geometric reduction schedule using the function Tnew= αTold,

(Kirkpatrick et al., 1983); (2) the schedule suggested by Lundy and Mees (1986)

using the relation Tnew = Told/(1+ β Told); and (3) the linear reduction schedule using

the function Tnew = Told – γT0 (Winston and Venkataramanan, 2003). Figure 4.6

shows the three cooling schedules assuming the initial temperature to be 100.

The scheme that follows a geometric law, which one of the

most often used, corresponds to an exponential decay of the temperature. It is similar

to the cooling schedule suggested by Lundy and Mees (1986) in which it opposes to a

linear decay. However, the latter provides fast cooling in the early iterations and

slower cooling at latter iterations. Consequently, at the beginning the search will

explore the search space, while at the end the search will exploit to the local

minimum. Nearchou (2004) shows that the performance of the latter is found superior

to that of the first scheme. For the linear reduction, it is the basic of the cooling

schedule, but it will drop in temperature to below zero faster than the others, that is, it

probably entraps the local optimal as well.

4.6.1.2 Termination Condition

 In an SA approach, the temperature is reduced to a smaller

temperature when the best objective function value found so far is not updated for a

predetermined number of iterations, and it is also reduced when NT iterations have

been performed (i.e. at the end of an epoch length). The procedure is terminated

when the temperature becomes equal to or less than zero or when other criteria reach.

4.6.2 Tabu Search Algorithm

 A tabu search (TS) algorithm, initially developed by Glover (1986), is

an iterative improvement approach designed to avoid terminating prematurely at a

local optimum for solving combinatorial optimization problems. Similar to a

123

simulating annealing algorithm, a TS algorithm is based on the idea of exploring the

solution space of a problem by moving from one region of the search space to another

in order to look for a better solution. The function transforming a solution into

another solution is usually called a move. For any solution s∈ S, a subset of moves

applicable to it is defined. This subset of moves generates the neighborhood ℵ(s) of s

(see Section 4.5). Starting from an initial solution s, a TS algorithm iteratively moves

from the current solution s to the best solution s*∈ℵ(s) even though s* is worse than

the current solution s, until some stopping criterion is satisfied (see Algorithm 4).

 Selecting the best move s* (which may or may not improve the current

solution s) is based on the supposition that good moves are more likely to reach the

optimal or near-optimal solutions. The set of admissible solutions attempted at a

particular iteration forms a candidate list. A TS algorithm selects the best solution

from the candidate list. Candidate list size is a trade-off between quality and

performance.

 However, to escape from a local optimum, an SA algorithm accepts an

inferior solution, which may lead to better solutions later by using an acceptance

probability. In contrast, a TS algorithm allows the search to move to the best solution

s* among a set of candidate moves ℵ(s) as defined by the neighborhood structure,

although it can move to a neighbor with a worse objective function value.

Nevertheless, subsequent iterations may cause the search to move repeatedly back to

the same local optimum. In order to prevent cycling back to recently visited

solutions, it should be forbidden or declared tabu for a certain number of iterations.

This is accomplished by keeping the attributes of the forbidden moves in a list, called

the tabu list. The size of the tabu list, called the tabu tenure, must be large enough to

prevent cycling, but small enough not to forbid too many moves.

 Additionally, an aspiration criterion is defined to deal with the case in

which a move leading to a new best solution is tabu. If a current tabu move satisfies

the aspiration criterion, its tabu status is canceled, and it becomes an allowable move.

124

The use of the aspiration criterion allows the TS algorithm to lift the restrictions and

intensify the search into a particular solution region.

Algorithm 4: Tabu search

Input: The candidate size (or size of neighborhoods) and tabu list size.

Step 1: Select randomly an initial solution s0 = [s0[1] … s0[n]] and evaluate the

objective function value f(s0) by setting a starting job sequence ω1 for the

first stage in Algorithm 1 to a solution s0.

Step 2: Set a current solution s and a best solution sbest to an initial solution s0.

Step 3: Generate a set of candidate solutions ℵ(s) in the neighborhood of the

current solution s by using a suitable operator (e.g. PI and SM

neighborhoods) (see Section 4.5).

Step 4: Evaluate the objective function value f(s') by setting a starting job

sequence ω1 for the first stage in the schedule construction approach

(see Approach 1) to a solution s', where s' ∈ ℵ(s) – L and L is a set of

tabu list.

Step 5: Select a best solution s* among a set of candidate moves ℵ(s).

Step 6: Update a best solution sbest = s* if the objective function value f(s*) <

f(sbest).

Step 7: Update a current solution s = s*.

Step 8: Declare a current solution s in a tabu list L for a certain number of

iterations.

Step 9: Go to Step 3, until the stopping criteria reach.

4.6.3 Genetic Algorithm

 A genetic algorithm (GA) approach is an iterative heuristic based on

Darwin’s evolutionary theory about “survival of the fittest and natural selection”. It

belongs to the evolutionary class of artificial intelligent (AI) techniques. Holland

125

(1975) proposes some basic principles of natural evolution as a methodology to solve

decision-making problems. For the classical flow shop problem, the first genetic

algorithm has been given by Werner (1984).

 The GA approach is characterized by a parallel search of the state

space in contrast to a point-by-point search by conventional techniques. The parallel

search is achieved by keeping a set of possible solutions, called a population. An

individual in the population is a string of symbols. The GA starts with the initial

generation of artificial individuals which are often created randomly (see Algorithm

5). Each symbol is called a gene, and each string of genes is termed as a

chromosome. The individuals in the population are evaluated by a measure, called the

fitness, to describe quantitatively how well the individual masters its task. The initial

population is then evolved into different populations over a number of generations

through the use of two types of genetic operators: (1) unary operators, i.e. mutation

and inversion, which change the genetic structure of a single chromosome, and (2) a

higher-order operator, referred to as crossover which consists of obtaining new

individual(s) by combining the genetic material from two selected parent

chromosomes. When applying crossover, two individuals (parents) are selected from

the population, and new solution(s), called the offspring, is (are) created. Mutation

creates a new solution by a random change on a selected individual. The genetic

operators are applied to randomly selected parents to generate new offspring. Then

the new population is selected out of the individuals of the current population and the

new generated chromosomes (Gen and Cheng, 1997)

Algorithm 5: Genetic algorithm

Input: Number of population pop_size, Crossover rates pc, and Mutation rates pm.

Step 1: Generate randomly a number of solutions Ρ (s) and evaluate the objective

function value f(s) by setting a job list ω0 in Algorithm 1 to a solution s,

where s ∈ Ρ (s).

126

Step 2: Create offspring solutions Oc(s) by using crossover operator (see Section

4.6.3.2).

Step 3: Create offspring solutions Om(s) by using mutation operator (see Section

4.6.3.3).

Step 4: Evaluate the objective function value offspring O(s) by setting a job list

ω0 in the schedule construction approach (see Approach 1) to a solution

s, where s ∈ O (s) and O(s) = Om(s) ∪ Oc(s).

Step 5: Update a best solution sbest = s* if the objective function value f(s*) <

f(sbest), where s* ∈ Ρ (s) ∪ O(s).

Step 6: Selection a new population from a current population Ρ (s) and offspring

solution O(s).

Step 7: Go to Step 2, until the stopping criteria reach.

 The application of the GA approach requires the representation of a

solution, the choice of genetic operators (crossover and mutation), an evaluation

function, a selection mechanism, and the determination of genetic parameters

(population size as well as crossover and mutation rates).

4.6.3.1 Encoding Scheme

 For the representation, consideration of a job permutation is

straightforward and widely used in many previous works on the GA approach for the

flow shop problem, see Werner (1984). Thus, in this dissertation, a permutation-

based code (or a job code) using integers as the chromosome coding scheme is

applied. For instance, one chromosome of an example with nine jobs can be coded as

the job sequence [9 3 7 8 2 6 5 1 4].

4.6.3.2 Crossover

 A crossover operation is a mechanism for probabilistic

inheritance of useful information from two fit individuals to offspring. The main idea

127

is that the genetic information of a good solution is spread over the entire population.

Thus, the best solution can be obtained by thoroughly combining the chromosomes in

the population. Crossover operation achieves recombination of the genetic material.

The recombination process includes domain specific knowledge to enforce the

inheritance of desirable features from individuals of current population.

 The PMX (partially mapped crossover) method may be the

most popular crossover operator when operating with permutations. Firstly, choose

two parents P1 and P2, e.g. P1 = [1 2 3 4 5 6 7 8 9] and P2 = [9 3 7 8 2 6 5 1

4], and two cutting sites along the string are randomly chosen, e.g. 3 and 7. The

substrings defined by the two cutpoints are called the mapping sections. Secondly,

exchange the two substrings between the parents to produce protochildren, which

yields [1 2 3 |8 2 6 5| 8 9] and [9 3 7 |4 5 6 7| 1 4]. It is clear that protochildren

will often lead to infeasible solutions. Then, one needs to determine the mapping

relationship between the two mapping sections, and finally, it legalizes the offspring

using this mapping relationship. In the first protochild, it can map the two infeasible

genes 2 and 8 outside the mapping section, by using the mapping swaps, for instance,

2 in the first protochild’s mapping section can be mapped to 5 in the second

protochild’s mapping section corresponding to the position. It does however not

finish, because 5 is in the first protochild’s mapping section as well. Again, 5 in the

first protochild can be mapped to 7 in a similar way. At last, 2 in the first protochild

can be swapped to 7. Similarly, 8 in the first protochild can be mapped to 4.

Consequently, the first offspring is [1 7 3 | 8 2 6 5| 4 9]. Then, the second

offspring is analogously created as [9 3 2 | 4 5 6 7| 1 8].

 The OPX (combined order and position-based crossover)

method may be a good crossover choice, in which it creates feasible solutions like

PMX and combines the characteristics of OX and PBX as well. It will create the first

offspring based on OX, whereas the second offspring is characterized by PBX. Again

two parents P1 and P2 are randomly selected, and consider the same example as for

PMX above. Then, randomly select a substring from the first parent, e.g. [1 2 3 |4 5

128

6 7| 8 9]. Copy the substring into the first protochild corresponding to the first

parent position, e.g. [_ _ _ |4 5 6 7| _ _]. Then, delete all the symbols from the

second parent which are already in the substring and place its symbols into the

unfixed positions in the first protochild from left to right according to the second

parent order, e.g. [9 3 8 |4 5 6 7| 2 1]. To create the second offspring, the second

protochild is created by copying the symbols from the second parent, where the jobs

are the same as the symbols in the substring in the corresponding position, e.g. [_ _ 7

_ _ 6 5 _ 4]. Then, place the symbols from the first parent into the unfixed

positions in the second protochild from left to right according to the order of the first

parent regarding the substring symbols to produce the second offspring, [1 2 7 3 8

6 5 9 4].

4.6.3.3 Mutation

 The mutation operation is a means of introducing new

information into the population. For this dissertation, the mutations are based again

on either pairwise interchange move or shift move (see Section 4.5).

4.6.3.4 Evaluation Policy

 During each generation, chromosomes are evaluated using

some measure of fitness. In most optimization applications, the fitness function is

constructed based on the original objective function. The fitness value of each

chromosome is a key measure to guide the direction of search in the GA. Due to the

minimization problem, the fitness value must be in inverse proportion to the objective

function value so that a fitter chromosome has a larger fitness value.

sizepopulationz
vf

vfitness
z

z _,...,2,1,
)(

1)(== (4.15)

129

 where fitness(vz) is the fitness value, and f(vz) is the objective function value of the z-

th chromosome for the complete schedule generated from the corresponding job

sequence for the first stage using Approach 1 (see Section 4.3).

 According to this research objective, the objective is to

minimize a positively weighted convex sum of makespan and number of tardy jobs.

Thus, the fitness value of a chromosome, fitness(vz) is given by:

max
1

1()
() (1) () 1

, 1,2,..., _

z n

z j z
j

fitness v
C v U v

z population size

λ λ
=

=
+ − +

=

∑
(4.16)

 where Cmax(vz) is the makespan of the z-th chromosome (resp. of the resulting

complete schedule) ,Uj(vz) is a Boolean variable for job j of the z-th chromosome

which is equal to 1 if job j is tardy, and 0 otherwise, and λ denotes the weight (or

relative importance) given to makespan and number of tardy jobs. The largest value

of the fitness function is the lowest value of the positively weighted convex sum of

makespan and number of tardy jobs. In the denominator value one is added in order

to prevent a division by zero when the weight λ and the number of tardy jobs are zero.

4.6.3.5 Selection Policy

 An elitist policy and enlarged sampling space technique are

used. Both parents and the offspring have the same chance of competing for survival.

Figure 4.7 illustrates the selection based on an enlarged sampling space. Then

Holland’s proportionate selection or roulette wheel selection is employed to

reproduce the next generation based on the current enlarged population. The idea is

to determine a selection probability (also called survival probability) for each

chromosome proportional to its fitness value. For chromosome vz with fitness

fitness(vz), its selection probability prob(vz) is calculated as follows:

130

∑
+

=

= sizeoffspringsizepopulation

z
z

z
z

vfitness

vfitnessvprob __

1
)(

)()((4.17)

Figure 4.7 Illustration of the selection performed on an enlarged sampling space

4.6.3.6 Termination Condition

 In the implementation of a GA approach, the search procedure

is terminated when the best objective function value found so far is not updated for a

predetermined number of generations. It can also be terminated when the number of

generations exceeds the predetermined number of generations or when it reaches the

other criteria.

4.7 Choice of an Initial Solution for the Iterative Algorithms

 For the original iterative algorithms as stated in the previous section, their

initial solution is generated by random. However, many researchers try to combine

some local search with the iterative algorithms; for example, Reeves (1995), Wang

and Zheng (2003), and Grabowski and Wodecki (2004) have used the NEH algorithm

as the initial solution instead of a random initial solution for their iterative methods,

131

namely a tabu search and a genetic algorithm. Janiak et al. (2007) have used the best

solution among their constructive algorithms such ECT, EDD, and EDP as an initial

solution for the simulated and tabu search algorithms. These imply that a better initial

solution gives a better schedule solution as well. Hence, it is possible that the

iterative algorithm can use a solution that is found by both constructive algorithms

and improvement algorithms as a biased initial solution (or a part of the initial

population for the genetic algorithm).

To improve the quality of the solution finally obtained, the influence of the

choice of an appropriate initial solution for the SA and TS algorithms, and an initial

population for the GA algorithm by using the heuristic constructive and improvement

algorithms are also investigated. To this end, one or several constructive algorithm(s)

SPT, LPT, ERD, EDD, MST, S/P, PAL, CDS, GUP, DAN, and NEH as well as the

other selected polynomial improvement heuristics as initial solution(s), respectively

(for the GA algorithm, the remaining initial solutions are still randomly generated) are

employed. In addition, for the GA algorithm, all selected constructive algorithms in

parallel as a part of the initial population are used.

4.8 Conclusion

 In this chapter, the heuristic solution concepts for the flexible flow shop

problem with unrelated parallel machines are presented. Three kinds of heuristics,

namely constructive, improvement, and iterative algorithms, are developed. The

constructive algorithms are adapted from the idea of Santos et al. (1996). Then, the

improvement algorithms are proposed by using the neighborhood exchanges to

improve the solution obtained from the constructive algorithms. The iterative

algorithms based on the artificial algorithms are used to find the solution. The

computational results of these heuristic algorithms will be shown in the next chapter.

Firstly, the constructive algorithms are developed on the starting job sequence

for the first stage in Section 4.4. Such algorithms start with the generation of the

132

representatives for each operation of each job and each stage. The representatives of

the operating time are generated by using the combinations of the different relative

machine speeds and setup times. After creating the representatives of operating time,

some algorithms, namely dispatching rules and flow shop heuristic algorithms, are

adapted to determine a starting job sequence for the first stage by using the nine

combinations of the representative operating times. Next, use the greedy search

approach to distribute jobs into machines for the first stage, and use both the FIFO

and permutation rules to determine the new job sequence for other following stages,

and follow by the greedy search again to distribute jobs into machine on that stage.

With the nine combinations of the representatives of operating times, nine schedule

outputs are generated, so the best schedule is selected from them.

 Moreover, the improvement algorithms are proposed in Section 4.5. They

start with an already built schedule from the constructive algorithm and try to improve

the schedule by applying the ideas of the pairwise interchange and shift move

approaches on the jobs that are tardy.

Moreover, the iterative algorithms, namely simulated annealing, tabu search,

and genetic algorithms, are proposed on the starting job sequence in Section 4.6, and

the hybrid iterative algorithms that use the constructive algorithms’ solutions and/or

improvement’s solution as an initial solution (or a part of population) for the iterative

algorithms are proposed in Section 4.7.

CHAPTER V

COMPUTATIONAL EXPERIMENTS

This chapter provides the computational experiments of the heuristic

algorithms that are proposed in the previous chapter for the flexible flow shop

problem with unrelated parallel machines. The computational experiments have been

performed using a randomly generated set of test instances. From the heuristic

solution concepts in the previous chapter, three main types of heuristics, which are

constructive, improvement, and iterative algorithms, are proposed in this dissertation.

All proposed heuristic algorithms are applied to determine a starting job sequence for

the first stage of the flexible flow shop environment, and the greedy search approach

is then used to distribute jobs into machines for the first production stage. Next, both

the FIFO rule and the permutation rule are used to determine the new job sequence for

other further stages, and the greedy search approach is again used to distribute jobs

into machines for any stages. In this chapter, the results of the computational

experiments will show the performance of the proposed heuristic algorithms.

This chapter is organized as follows: Firstly, the introduction is explained to

give the definition and importance of the computational experiments. Secondly, the

data generation of the test instances is given. Next, the performance compared to the

best heuristics that are found in these tests on medium- and large-sized test problems

of the heuristic algorithms that are proposed in the Chapter IV is presented. The

performance on small-sized test problems that are compared to the optimal solution is

shown in the next section. From the results of the computational experiments, the

recommended heuristic solution approach is proposed. Finally, a conclusion will be

drawn.

134

5.1 Introduction

Two fundamental goals in computer science are finding algorithms with

provably good run times and with provably good or optimal solution quality.

However, a heuristic is an algorithm that may abandon one or both of these goals; for

example, it usually finds pretty good solutions, but there is no proof the solutions

could not get arbitrarily bad; or it usually runs reasonably quickly, but there is no

argument that this will always be the case (Pearl, 1984).

Consequently, the computational experiment is designed to evaluate the

performance of the heuristics. In the computational testing of the algorithm, the

experiment consists of solving a series of problem instances using a computer

implementation. The most prevalent computational experiment concerns the relative

effectiveness (in terms of stated performance measures such as computational effort

or quality of solutions) of different heuristic methods in solving specific classes of

problems (Barr et al., 1995).

For the solution quality, there are many methods to evaluate the performance

of the algorithms. Basically, the schedules generated are compared to the optimal

solution by calculating the percentage deviation of the heuristic solution from the

optimal solution as shown in the following equation:

% deviation from the optimal solution = 100sol sol

sol

Heu Opt
Opt

−
× (5.1)

where Heusol is the schedule solution obtained by a given algorithm, and Optsol is the

optimal schedule solution obtaining by using an exact algorithm.

 However, the determination of the optimal schedule solution may be

practically impossible for the large-sized problems, or can be difficult for even

medium-sized problem, so it is hard to evaluate the quality of the heuristic solution by

comparing to the optimal schedule solution. For this reason, an effective tool for

135

estimating the optimal solution, which is called the determination of a lower bound, is

created to evaluate the quality solution instead of the optimal schedule solution. The

quality of solution obtained is checked by calculating the percentage deviation of the

heuristic solution from the lower bound (LB) as shown in the following equation:

% deviation from the lower bound = 100sol sol

sol

Heu LB
LB

−
× (5.2)

where Heusol is the schedule solution obtained by a given algorithm, and LBsol is the

lower bound of the solution.

 Moreover, the benchmarks are available from the OR-Library (i.e.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html), which is a collection of test data

sets for a variety of operations research (OR) problems. Consequently, the quality

solution is compared to the best solution that is found in the OR-Library. However,

for the new problem that the benchmark cannot find in the OR-Library, the quality

solution can be compared to the best solution that is found in the tests by using the

following equation:

% deviation from the best solution = 100sol sol

sol

Heu Best
Best

−
× (5.3)

where Heusol is the schedule solution obtained by a given algorithm, and Bestsol is the

best solution found among the tests.

5.2 Data Generation of the Test Instances

The models are tested by using random generated data. For every experiment,

random instances with unrelated parallel machines, the standard processing times,

relative machine speeds, setup times, release dates, and due dates are generated as

follows. The standard processing times are generated uniformly from the interval

[10,100]. The relative speeds are distributed uniformly in the interval [0.7, 1.3]. The

136

setup times, both sequence- and machine-dependent setup times, are generated

uniformly from the interval [0, 50], whereas the release dates are generated uniformly

from the interval between 0 and half of their total standard processing time mean.

The due date of a job is set in a way that is similar to the approach presented by

Rajendran and Ziegler (2003) and is as follows:

dj = rj + + total of mean setup time of a job on all stages + ∑
=

k

t

t
jps

1

(n – 1) × (mean processing time of a job on one machine) ×U(0,1)

(5.4)

The random generated data are tested on medium- and large-sized problems

with 10 jobs × 5 stages, 30 jobs × 10 stages, and 50 jobs × 20 stages. For small-sized

problems with a number of jobs ranging from three to seven were investigated. For

all problem sizes, they were investigated with λ ∈ {0, 0.001, 0.005, 0.01 0.05, 0.1,

0.5, 1} in the objective function. The idea behind the λ values is to balance both

objectives. For a low value of λ, the tardy job problem will dominate the makespan

problem, whereas for a large value of λ, the makespan problem will dominate the

tardy job problem. Ten different instances for each problem size have been run.

All algorithms have been implemented in the C++ programming language on a

PC with an Intel Pentium 4 2.00GHz CPU and 256 MB of RAM. The optimal

solution obtained by means of the 0-1 mixed linear integer programming formulation

given in Chapter III is found by a commercial mathematical programming software.

5.3 Performance of Algorithms on Medium- and Large-
Sized Test Problems

 The purpose of these experiments is to valuate the performance of each

algorithm that are proposed in Chapter IV on the test problems whose sizes are

medium or large (see Section 5.2) that cannot find the optimal solution in an

acceptable time.

137

 The purpose of the first experiment is to test the computational

efficiency of constructive algorithms – the simple dispatching rules (see Section

4.4.1) and flow shop makespan heuristics (see Section 4.4.2). The simple dispatching

rules, namely SPT, LPT, ERD, EDD, MST, and S/P, are classified into the heuristic

“Group I”, whereas the flow shop makespan heuristics, namely PAL, CDS, GUP,

DAN, and NEH, are classified into the heuristic “Group II”.

where Heusol is the schedule solution obtained by a given algorithm, and Bestsol is the

best solution found among the tests.

For the problem with λ > 0, the performance of each test for each algorithm is

assessed by the percentage deviation of a particular algorithm from the best solution

in such a test among the heuristic groups I and II as well as groups III and IV stated in

Section 5.3.2 by using the following equation:

where Heusol is the schedule solution obtained by a given algorithm, and Bestsol is the

best solution found among the tests.

For the problem with λ = 0, the performance of each test for each algorithm is

assessed by the absolute deviation of a particular algorithm from the best solution in

such a test among the heuristic groups I and II as well as groups III and IV stated in

Section 5.3.2 by using the following equation:

percentage deviation from the best solution =

5.3.1 Performance of the Constructive Algorithms

absolute deviation from the best solution = Heusol - Bestsol (5.5)

100solHeu
Best

sol

sol

Best−
× (5.6)

138

138

Table 5.1 Average performance of the constructive algorithms of Group I and II
 Problem Group I Group II

λ size SPT LPT ERD EDD MST S/P PAL CDS GUP DAN NEH
10×5 3.000a 3.200 3.500 4.600 4.100 4.100 2.700 2.200 2.800 2.600 0.700

30×10 6.900 7.900 7.700 7.900 8.400 7.900 7.700 6.100 7.300 7.800 1.800
50×20 8.700 8.200 11.100 15.800 14.600 14.100 9.400 6.600 8.600 8.800 1.0000

Sum 18.600 19.300 22.300 28.300 27.100 26.100 19.800 14.900 18.700 19.200 3.500
10×5 90.920b 94.290 87.880 102.460 91.560 90.930 73.220 61.630 77.800 70.370 10.470

30×10 89.090 104.510 94.730 90.250 100.510 91.170 101.410 77.990 94.510 98.410 29.980
50×20 31.830 34.420 42.570 49.770 45.600 43.960 37.030 27.000 34.620 35.200 10.3200.001

Sum 211.840 233.220 225.180 242.480 237.670 226.060 211.660 166.620 206.930 203.980 50.770
10×5 45.290 44.130 44.710 58.240 52.180 52.520 38.870 31.010 41.540 36.150 6.250

30×10 42.140 45.420 43.800 43.640 46.770 41.540 44.290 34.330 42.650 43.740 11.500
50×20 18.812 18.338 23.140 28.685 26.281 25.233 20.046 15.791 18.867 18.902 4.4110.005

Sum 106.242 107.888 111.650 130.565 125.231 119.293 103.206 81.131 103.057 98.792 22.161
10×5 33.300 30.430 31.040 41.170 36.990 37.630 28.570 22.230 30.560 25.780 4.710

30×10 30.633 30.954 30.780 31.752 33.282 28.880 29.870 23.506 29.744 29.561 6.887
50×20 14.895 14.199 17.734 21.330 19.445 18.625 15.440 12.655 14.646 14.514 3.1600.01

Sum 78.828 75.583 79.554 94.252 89.717 85.135 73.880 58.391 74.950 69.855 14.757
10×5 22.154 16.778 17.176 21.889 20.413 19.662 18.069 12.421 19.019 15.633 2.399

30×10 20.477 17.413 19.306 21.227 21.110 16.986 16.766 13.394 17.207 15.928 2.386
50×20 10.406 9.721 11.872 12.748 11.476 10.838 10.355 8.400 9.898 9.457 0.7650.05

Sum 53.037 43.912 48.354 55.864 52.999 47.486 45.190 34.215 46.124 41.018 5.550
10×5 21.084 15.177 15.656 19.457 18.163 17.181 17.073 11.196 17.585 14.471 2.097

30×10 18.691 15.309 17.482 19.453 19.007 15.058 14.637 11.722 15.071 13.784 1.470
50×20 10.029 9.384 11.335 11.772 10.554 9.935 9.877 8.016 9.523 8.985 0.4790.1

Sum 49.804 39.870 44.473 50.682 47.724 42.174 41.587 30.934 42.179 37.240 4.046
10×5 21.203 14.852 15.456 18.446 17.310 16.114 17.373 11.176 17.221 14.448 2.700

30×10 18.759 15.021 17.524 19.528 18.653 14.916 14.368 11.768 14.794 13.488 0.869
50×20 9.985 9.394 11.181 11.244 10.068 9.446 9.754 7.933 9.489 8.866 0.4360.5

Sum 49.947 39.267 44.161 49.218 46.031 40.476 41.495 30.877 41.504 36.802 4.005
10×5 21.473 15.061 15.696 18.567 17.426 16.214 17.674 11.400 17.418 14.701 2.885

30×10 18.793 15.018 17.551 19.567 18.630 14.923 14.367 11.785 14.780 13.477 0.964
50×20 9.892 9.308 11.073 11.087 9.918 9.296 9.651 7.837 9.399 8.766 0.4281.0

Sum 50.158 39.387 44.320 49.221 45.974 40.433 41.692 31.022 41.597 36.944 4.277
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

139

The results of the first experiment are given in Table 5.1. The

performance of algorithms is assessed by the average performance of the (absolute for

λ = 0 resp. percentage for λ > 0) deviation of a particular algorithm from the best

solution in these tests (among the heuristic groups I and II as well as groups III and IV

stated in Section 5.3.2) for each three-problem size n×k (the best variant in each group

is given in italic underlined whereas the overall best variant is given in bold face

underlined).

The results of constructive algorithms show that among the simple

dispatching rules (heuristic Group I), the SPT, LPT, and ERD rules are good

dispatching rules. However, in general the SPT rule outperforms the other

dispatching rules for λ < 0.01, and the LPT rule is better than the other rules

otherwise. The results confirm earlier observations with the LPT algorithms, the

advantage of which is to keep jobs with shortage processing times for later because

these jobs are useful at the end for balancing the workload (Pinedo and Chao, 1999).

It coincides with a previous study by Guinet et al. (1992) where they conclude that the

LPT rule gives good results in a two-stage hybrid flow shop problem.

Among the adapted flow shop makespan heuristics in heuristic Group

II, the NEH algorithm is clearly the best algorithm among all of the studied

constructive heuristics (but, in fact, this algorithm takes the convex combination of

both criteria into account when selecting partial sequences). This is in

correspondence with Framinan, Gupta, and Leisten (2004) and Ruiz and Maroto

(2005), who have found that, among the constructive methods, the NEH algorithm is

regarded as the best one in practice. The CDS algorithm is certainly the algorithm on

the second rank (but it is substantially worse than the NEH algorithm, even if the

makespan portion in the objective function value is dominant, i.e. for large λ values).

However, the main drawback of the NEH algorithm is that a total of [n(n + 1)/2] − 1

partial schedules need to be evaluated. The running time of the NEH algorithm,

therefore, increases rapidly as the problem size increases.

140

5.3.2 Performance of the Improvement Algorithms

 The purpose of the second experiment is to test the computational

efficiency of the improvement algorithms that are proposed in Chapter IV (see

Section 4.6). The fast improvement algorithms based on the four cases, namely, 2-

random-position shift move, all shift move, 2-random-position pairwise interchange,

and all pairwise interchange, that are proposed to improve the quality of the

constructive algorithms in Chapter IV (see Section 4.5).

The average overall performance of the constructive algorithms

(denoted by the letter “CA”) and the fast improvement algorithms (denoted by the

letter “2-SM”, “A-SM”, “2-PI”, and “A-PI”, respectively) are shown in Table 5.2.

The average overall performance of the CA group is calculated by

finding the average performance of the average (absolute for λ = 0 resp. percentage

for λ > 0) deviation of the constructive algorithms, namely SPT, LPT, ERD, EDD,

MST, S/P, PAL, CDS, GUP, DAN, and NEH from Section 5.3.1.

For the average overall performance of the 2-SM group, which is

applied the 2-random shift move on the constructive algorithms (see Section 4.5), the

performance is calculated by finding the average performance of the average

(absolute for λ = 0 resp. percentage for λ > 0) deviation of such algorithms from the

best solution in these tests.

In the same method, the average overall performance of the A-SM, 2-

PI, and A-PI group, each performance is also calculated by finding the average

performance of the average (absolute for λ = 0 resp. percentage for λ > 0) deviation of

each group of such algorithms from the best solution in these tests (the overall best

variant is given in bold face).

141

Table 5.2 Average overall performance of the constructive and polynomial

improvement heuristics
λ Problem size CA 2-SM A-SM 2-PI A-PI

10×5 3.045a 1.527 1.173 1.691 1.209
30×10 7.036 3.927 2.982 4.264 2.045
50×20 9.718 5.773 4.591 5.591 2.236

0

Sum 19.799 11.227 8.746 11.546 5.490
10×5 77.410b 28.710 19.530 33.200 21.130
30×10 88.410 37.020 24.030 37.820 19.040
50×20 35.670 12.580 12.320 10.190 5.730

0.001

Sum 201.490 78.310 55.880 81.210 45.900
10×5 40.990 14.870 9.530 18.150 11.500
30×10 39.980 16.050 10.610 17.970 8.590
50×20 19.864 8.612 8.170 8.658 4.592

0.005

Sum 100.834 39.532 28.310 44.778 24.682
10×5 29.310 10.780 6.870 13.650 8.370
30×10 27.804 12.240 7.727 13.843 6.593
50×20 15.149 8.241 7.536 8.668 5.415

0.01

Sum 72.263 31.261 22.133 36.161 20.378
10×5 16.874 6.029 4.547 8.306 5.231
30×10 16.564 8.182 6.110 9.846 4.891
50×20 9.631 5.643 5.312 6.518 5.036

0.05

Sum 43.069 19.854 15.969 24.670 15.158
10×5 15.376 5.454 3.997 8.653 4.764
30×10 14.699 6.685 4.707 8.702 3.683
50×20 9.081 5.210 5.082 5.778 4.730

0.1

Sum 39.156 17.349 13.786 23.133 13.177
10×5 15.118 5.486 3.943 7.884 4.457
30×10 14.517 7.087 5.413 8.326 4.304
50×20 8.891 5.147 4.946 6.554 4.610

0.5

Sum 38.526 17.720 14.302 22.764 13.371
10×5 15.319 5.279 4.144 7.671 4.581
30×10 14.532 6.901 5.294 9.186 4.329
50×20 8.787 5.421 4.875 6.098 4.567

1.0

Sum 38.638 17.601 14.313 22.955 13.477
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

142

From these results, it is obvious that the fast polynomial improvement

heuristics 2-SM and 2-PT can improve the quality of the constructive algorithms by

about 40 – 60 percent, whereas the A-SM and A-PI heuristics can improve the quality

of the constructive algorithms even by 60 – 75 percent. In addition, it is noticed that

for the problem size 10 jobs × 5 stages the all-shift-move (A-SM) heuristic is slightly

better than the others, whereas the all-pairwise-interchange-based (A-PI)

improvement heuristic is the best algorithm otherwise. However, in general the A-PI

algorithm should be selected as the improvement algorithm. Consequently, in this

dissertation only the A-PI-based improvement heuristic is used as an improvement

algorithm. However, when comparing between the 2-SM and 2-PI algorithms whose

CPU time is smaller than the CPU time of both the A-SM and A-PI algorithms, it is

found that the 2-SM algorithm certainly behaves better than the 2-PI algorithm.

Next, the results for the A-PI improvement algorithms, heuristic

“Group III” and heuristic “Group IV”, are presented. They are generated from the

first two groups of heuristics, where the solutions are improved by the selected

polynomial improvement algorithm based on A-PI improvement heuristics, and they

are denoted by the first letter “I” in front of the letters describing the heuristics of the

first two groups.

The results for the fast polynomial improvement algorithms are given

in Table 5.3 (the best variant in each group is given in italic underlined while the

overall best variant is given in bold face underlined). From these results, it is obvious

that the algorithms in the fourth heuristic group (namely, IPAL, ICDS, IGUP, IDAN,

and INEH) improved the pure makespan heuristics from the second heuristic group

(i.e. PAL, CDS, GUP, DAN, and NEH), and they are better than the dispatching rules

in the first heuristic group (i.e. SPT, LPT, ERD, EDD, MST, and S/P) as well as the

third heuristic group improved from them.

143

Table 5.3 Average performance of the fast polynomial improvement algorithms of Group III and IV
 Problem Group III Group IV

λ size ISPT ILPT IERD IEDD IMST IS/P IPAL ICDS IGUP IDAN INEH
10×5 1.400a 1.300 1.200 1.000 1.300 1.300 1.400 1.300 1.100 1.300 0.700

30×10 2.100 2.500 2.400 1.500 1.200 1.800 2.500 2.300 2.100 2.300 1.800
50×20 1.300 2.300 3.000 3.000 4.900 3.300 1.700 0.700 2.000 1.400 1.000 0

Sum 4.800 6.100 6.600 5.500 7.400 6.400 5.600 4.300 5.200 5.000 3.500
10×5 16.220b 24.020 12.550 13.710 18.940 18.870 35.200 23.980 35.630 22.840 10.470

30×10 20.310 18.910 18.970 13.200 15.710 13.910 17.750 18.110 21.450 21.140 29.980
50×20 6.730 5.150 7.690 5.010 4.040 6.960 8.750 2.640 3.260 2.460 10.320 0.001

Sum 43.260 48.080 39.210 31.920 38.690 39.740 61.700 44.730 60.340 46.440 50.770
10×5 10.000 13.410 8.170 8.650 11.990 11.740 13.980 14.060 15.260 12.970 6.250

30×10 9.690 8.150 8.610 7.530 7.520 6.610 9.650 6.050 9.020 10.200 11.500
50×20 3.924 5.228 5.514 6.051 3.554 5.631 5.453 3.306 3.734 3.703 4.411 0.005

Sum 23.614 26.788 22.294 22.231 23.064 23.981 29.083 23.416 28.014 26.873 22.161
10×5 8.890 9.450 7.030 6.640 7.690 9.540 8.460 9.810 10.130 9.770 4.710

30×10 6.373 9.709 5.676 6.753 4.762 4.076 7.585 4.935 8.988 6.782 6.887
50×20 4.699 6.427 5.749 6.264 6.890 6.583 6.183 4.934 3.431 5.251 3.1600.01

Sum 19.962 25.586 18.455 19.657 19.342 20.199 22.228 19.679 22.549 21.803 14.757
10×5 5.476 5.281 4.900 6.629 5.643 5.620 6.322 4.229 5.675 5.365 2.399

30×10 4.820 6.313 2.768 6.397 5.431 4.893 5.865 4.227 5.282 5.419 2.386
50×20 4.778 5.247 5.438 7.221 6.010 6.711 5.486 3.139 5.538 5.064 0.7650.05

Sum 15.074 16.841 13.106 20.247 17.084 17.224 17.673 11.595 16.495 15.848 5.550
10×5 4.546 5.404 4.787 6.318 5.721 4.877 5.749 3.752 4.154 4.996 2.097

30×10 3.255 4.743 1.718 5.523 4.957 5.033 4.193 2.241 3.848 3.537 1.470
50×20 5.169 4.241 5.024 6.681 5.831 5.788 5.336 3.126 5.394 4.955 0.4790.1

Sum 12.970 14.388 11.529 18.522 16.509 15.698 15.278 9.119 13.396 13.488 4.046
10×5 4.969 4.932 5.195 5.707 6.287 4.629 4.327 2.790 4.147 3.346 2.700

30×10 3.929 5.283 2.404 6.727 5.135 6.897 4.936 2.812 4.611 3.745 0.869
50×20 5.453 4.244 5.090 6.215 5.900 4.725 5.163 3.450 5.125 4.906 0.4360.5

Sum 14.351 14.459 12.689 18.649 17.322 16.251 14.426 9.052 13.883 11.997 4.005
10×5 5.018 5.073 5.268 5.741 5.935 4.840 4.527 3.195 4.378 3.531 2.885

30×10 4.155 4.838 2.421 6.843 5.932 6.940 4.910 2.405 4.666 3.543 0.964
50×20 5.346 4.147 5.107 6.079 5.731 4.523 5.044 3.808 5.046 4.976 0.4281.0

Sum 14.519 14.058 12.796 18.663 17.598 16.303 14.481 9.408 14.090 12.050 4.277 143 a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

144

When applying a fast pairwise interchange (A-PI) algorithm (denoted

by the letter “I” first) to a dispatching rule and/or an adapted makespan heuristic, the

results show that the quality of the solution can be improved by about 60 – 80 percent

except for the NEH rule (for the problems with small positive λ value the percentage

improvements are often larger than for the remaining problems, e.g. for λ = 0.001 the

IEDD algorithm can improve the results of the EDD rule by about 87 percent on

average). It can be noted that the NEH rule is not improved by using the

improvement heuristics of algorithm INEH because both algorithms use a very similar

strategy (it confirms the excellent solution quality by algorithm NEH). However, the

improvement of the heuristics from the adapted pure makespan heuristics in the

heuristic Group IV is better than the improvement of the heuristics derived from the

dispatching rules in the heuristic Group III.

5.3.3 Performance of the Iterative Algorithms

Thirdly, the iterative algorithms, i.e. the SA, TS, and GA algorithms

with a random initial solution (or population), have been studied (see Section 4.6).

Before testing the performance of the iterative algorithms for the problem under

consideration, it is necessary to find the favorable parameters of each iterative

algorithm in order to reduce the effect of the parameters of each iterative algorithm on

the solution quality.

Consequently, the purpose of this study is to determine the favorable

parameters of the iterative algorithms for the problem under consideration. From the

preliminary tests, the CPU time is limited to one second for the problems with ten

jobs, ten seconds for the problems with 30 jobs, and 30 seconds for the problems with

50 jobs. Again, the algorithms are tested on the test instances with λ ∈ {0, 0.001,

0.005, 0.01, 0.05, 0.1, 0.5, 1}. Based on the preliminary tests, the tested parameters

are shown in Table 5.4.

145

Table 5.4 Tested parameters for the SA, TS, and GA algorithms

Algorithms Parameters Levels

SA Initial temperature 2, 4, 6, 8, 10 through 100, in steps of 10

 Neighborhood structures PI (= Pairwise Interchange), SM (= Shift Move)

 Cooling schedules 1 – 4 (geometric reduction with α ∈ {0.8, 0.85, 0.9,

0.95})

5 – 13 (LM reduction with β: 0.01 through 0.09, in

steps of 0.01)

14 – 23 (LM reduction with β: 0.1 through 1.0, in

steps of 0.1)

TS Number of neighbors 10 through 50, in steps of 10

 Neighborhood structures PI, SM

 Sizes of tabu list 5, 10, 15, and 20

GA Population sizes 10, 30, 50, 70

 Crossover types PMX, OPX

 Mutation types PI, SM

 Crossover rates 0.1 through 0.9, in steps of 0.1

 Mutation rates 0.1 through 0.9, in steps of 0.1

Given the above three different problem sizes, the SA parameter values

were tested. Table 5.5 through Table 5.7 present the effect of the initial temperatures,

neighborhood structures and cooling schedules by using the average (absolute resp.

relative) deviation from the best value as the performance measure.

From the full factorial experiment, the results are analyzed by means of

a multi-factor analysis of variance (ANOVA) technique using a 5% significance level.

The results give the average (absolute resp. percentage) deviation of a particular

iterative algorithm from the best solution obtained by the iterative algorithms. For the

SA algorithm, it is found that for the neighborhood structure and the cooling schedule,

there are statistically significant differences, whereas there are slightly statistically

significant differences in the initial temperature.

146

146

Table 5.5 The effect of various initial temperatures on the performance of the SA algorithm
 Problem Initial Temperature (T0)

λ size 2 4 6 8 10 20 30 40 50 60 70 80 90 100
10×5 0.017a 0.019 0.024 0.019 0.024 0.024 0.030 0.022 0.028 0.027 0.028 0.029 0.023 0.032
30×10 0.483 0.485 0.487 0.515 0.520 0.509 0.546 0.522 0.520 0.498 0.526 0.502 0.515 0.504
50×20 0.248 0.252 0.278 0.270 0.278 0.296 0.291 0.309 0.307 0.298 0.311 0.289 0.257 0.294 0

Sum 0.748 0.756 0.789 0.804 0.822 0.828 0.867 0.852 0.854 0.822 0.865 0.820 0.795 0.830
10×5 0.772b 0.963 0.987 1.003 1.168 1.181 0.894 1.243 1.154 1.058 1.193 1.315 1.076 1.161
30×10 9.480 9.540 9.570 9.740 9.680 9.510 9.640 10.100 9.830 9.970 10.020 10.130 10.010 9.940
50×20 2.438 2.582 2.617 2.583 2.655 2.670 2.769 2.711 2.756 2.745 2.723 2.810 2.825 2.794 0.001

Sum 12.690 13.085 13.174 13.326 13.503 13.361 13.303 14.054 13.740 13.773 13.936 14.255 13.911 13.895
10×5 0.649 0.783 0.796 0.783 0.784 0.857 0.893 0.909 0.936 0.924 0.876 0.972 0.923 0.966
30×10 6.766 7.164 6.989 7.203 7.079 7.038 7.132 7.135 7.068 7.294 7.326 7.280 7.309 7.437
50×20 2.863 2.968 3.012 3.085 3.085 3.105 3.164 3.130 3.118 3.177 3.162 3.196 3.243 3.245 0.005

Sum 10.278 10.915 10.797 11.071 10.948 11.000 11.189 11.174 11.122 11.395 11.364 11.448 11.475 11.648
10×5 0.531 0.657 0.654 0.710 0.729 0.736 0.778 0.753 0.749 0.735 0.741 0.831 0.783 0.814
30×10 6.111 6.193 6.392 6.416 6.477 6.506 6.432 6.588 6.491 6.434 6.285 6.481 6.616 6.559
50×20 2.676 2.793 2.808 2.819 2.851 2.918 2.798 2.921 2.900 2.887 2.911 2.928 3.001 2.964 0.01

Sum 9.318 9.643 9.854 9.945 10.057 10.160 10.008 10.262 10.140 10.056 9.937 10.240 10.400 10.337
10×5 0.178 0.202 0.204 0.247 0.244 0.250 0.272 0.270 0.292 0.283 0.274 0.269 0.297 0.278
30×10 4.644 4.525 4.761 4.705 4.883 4.560 4.855 4.916 4.879 4.774 4.776 4.910 4.901 4.805
50×20 1.931 1.942 1.993 1.959 2.004 1.999 2.022 2.002 2.031 2.092 2.057 2.070 2.088 2.094 0.05

Sum 6.753 6.668 6.958 6.911 7.131 6.809 7.149 7.188 7.201 7.149 7.107 7.250 7.286 7.176
10×5 0.129 0.162 0.155 0.176 0.167 0.164 0.180 0.189 0.188 0.182 0.205 0.196 0.208 0.186
30×10 4.129 3.967 4.184 4.154 4.001 4.112 4.169 4.220 4.359 4.358 3.929 4.193 4.168 4.140
50×20 1.648 1.636 1.654 1.699 1.721 1.709 1.743 1.752 1.726 1.820 1.743 1.769 1.785 1.796 0.1

Sum 5.906 5.764 5.993 6.030 5.890 5.985 6.092 6.161 6.273 6.360 5.876 6.158 6.161 6.122
10×5 0.309 0.287 0.340 0.322 0.321 0.275 0.310 0.314 0.348 0.336 0.340 0.330 0.329 0.307
30×10 4.645 4.425 4.089 4.322 4.598 4.422 4.366 4.179 4.484 4.557 4.481 4.690 4.690 4.514
50×20 2.136 1.728 1.707 1.562 1.551 1.738 1.920 1.957 1.681 1.877 1.884 1.686 1.863 1.844 0.5

Sum 7.090 6.440 6.136 6.206 6.470 6.435 6.596 6.450 6.513 6.770 6.705 6.706 6.882 6.665
10×5 0.511 0.479 0.451 0.425 0.417 0.412 0.456 0.430 0.479 0.477 0.462 0.458 0.469 0.467
30×10 5.162 4.936 4.614 4.123 4.009 4.286 4.617 4.366 4.520 4.428 4.762 4.512 4.394 4.373
50×20 3.535 2.291 1.567 1.924 1.681 1.677 2.019 1.761 2.350 1.904 2.412 2.505 2.283 2.126 1.0

Sum 9.208 7.706 6.632 6.472 6.107 6.375 7.092 6.557 7.349 6.809 7.636 7.475 7.146 6.966
a average absolute deviation for λ = 0, b average percentage deviation for λ >0

147

Table 5.6 The effect of various neighborhood structures on the performance of the

SA algorithm

 Problem Neighborhood Structure
λ size PI SM

10×5 0.029a 0.020
30×10 0.525 0.494
50×20 0.248 0.320

0

Sum 0.802 0.834
10×5 1.279b 0.888
30×10 10.040 9.560
50×20 2.640 2.742

0.001

Sum 13.959 13.190
10×5 0.973 0.748
30×10 7.561 6.757
50×20 3.196 3.026

0.005

Sum 11.730 10.531
10×5 0.830 0.628
30×10 6.900 5.954
50×20 3.048 2.691

0.01

Sum 10.778 9.273
10×5 0.377 0.131
30×10 5.306 4.250
50×20 2.299 1.741

0.05

Sum 7.982 6.123
10×5 0.312 0.043
30×10 4.591 3.707
50×20 2.009 1.449

0.1

Sum 6.912 5.198
10×5 0.549 0.089
30×10 4.810 4.113
50×20 1.974 1.617

0.5

Sum 7.333 5.819
10×5 0.721 0.193
30×10 4.750 4.264
50×20 2.143 2.148

1.0

Sum 7.614 6.605
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

148

Table 5.7 The effect of various cooling schedules on the performance of the SA algorithm
 Problem Cooling Schedules

size CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10 λ CS11 CS12
10×5 0.004a 0.001 0.011 0.043 0.221 0.087 0.060 0.035 0.029 0.019 0.021 0.005
30×10 0.207 0.221 0.282 0.536 1.539 0.961 0.800 0.693 0.632 0.639 0.575 0.532
50×20 0.043 0.046 0.079 0.400 2.107 1.011 0.686 0.439 0.311 0.229 0.207 0.196 0

Sum 0.254 0.269 0.371 0.979 3.868 2.058 1.545 1.167 0.971 0.887 0.804 0.733
10×5 1.229b 1.244 1.229 2.314 6.868 3.036 1.751 1.284 1.035 0.712 0.631 0.577
30×10 8.453 8.005 8.104 10.517 24.762 15.777 13.808 12.334 11.504 10.946 10.296 9.799
50×20 1.067 1.131 1.272 2.850 9.646 5.948 4.541 3.811 3.354 3.186 3.095 2.827 0.001

Sum 10.749 10.380 10.605 15.681 41.276 24.761 20.100 17.429 15.893 14.844 14.022 13.203
10×5 8.453 8.005 8.104 10.517 24.762 15.777 13.808 12.334 11.504 10.946 10.296 9.799
30×10 6.061 5.774 6.188 7.414 16.505 12.073 10.335 9.466 8.694 8.587 8.052 7.753
50×20 0.981 1.065 1.281 3.076 9.124 6.819 5.714 0.005 4.852 4.388 4.062 3.773 3.575
Sum 15.495 14.844 15.573 21.007 50.391 34.669 29.857 26.652 24.586 23.595 22.121 21.127
10×5 8.453 8.005 8.104 10.517 24.762 15.777 13.808 12.334 11.504 10.946 10.296 9.799
30×10 5.721 5.659 5.815 6.690 13.881 10.679 9.223 8.345 7.677 7.219 6.806 6.462
50×20 1.105 1.146 1.293 2.841 8.468 6.220 4.839 4.136 3.713 3.409 3.244 3.057 0.01

Sum 15.279 14.810 15.212 20.048 47.111 32.676 27.870 24.815 22.894 21.574 20.346 19.318
10×5 8.453 8.005 8.104 10.517 24.762 15.777 13.808 12.334 11.504 10.946 10.296 9.799
30×10 5.599 5.655 5.013 5.303 7.394 5.896 5.416 5.307 4.975 4.772 4.901 4.699
50×20 1.266 1.366 1.465 2.391 4.186 3.152 2.811 2.661 2.531 2.479 2.439 2.398 0.05

Sum 15.318 15.026 14.582 18.211 36.342 24.825 22.035 20.302 19.010 18.197 17.636 16.896
10×5 8.453 8.005 8.104 10.517 24.762 15.777 13.808 12.334 11.504 10.946 10.296 9.799
30×10 4.896 4.686 4.412 4.719 5.327 4.559 4.290 4.278 4.010 3.931 3.882 3.708 0.1 50×20 1.190 1.197 1.323 2.055 2.952 2.473 2.334 2.279 2.218 2.165 2.150 2.103
Sum 14.539 13.888 13.839 17.291 33.041 22.809 20.432 18.891 17.732 17.042 16.328 15.610
10×5 8.453 8.005 8.104 10.517 24.762 15.777 13.808 12.334 11.504 10.946 10.296 9.799
30×10 4.718 4.384 4.132 4.186 4.035 3.723 3.621 3.522 3.673 3.861 3.711 4.021
50×20 1.268 1.117 1.230 1.568 2.121 1.959 1.736 1.509 1.366 1.250 1.173 1.174 0.5

Sum 14.439 13.506 13.466 16.271 30.918 21.459 19.165 17.365 16.543 16.057 15.180 14.994
10×5 0.344 0.272 0.206 0.144 0.103 0.112 0.117 0.152 0.193 0.203 0.208 0.235
30×10 4.384 4.184 3.890 3.543 3.244 3.141 3.162 3.377 3.580 3.468 3.843 3.994
50×20 1.413 1.331 1.386 1.627 2.077 1.640 1.432 1.372 1.286 1.293 1.425 1.419 1.0

Sum 6.141 5.787 5.482 5.314 5.424 4.893 4.711 4.901 5.059 4.964 5.476 5.648 148 a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

149

Table 5.7 The effect of various cooling schedules on the performance of the SA algorithm (cont.)
 Problem Cooling Schedules

λ size CS13 CS14 CS15 CS16 CS17 CS18 CS19 CS20 CS21 CS22 CS23
10×5 0.012a 0.010 0.002 0.001 0.000 0.004 0.001 0.001 0.000 0.002 0.000
30×10 0.568 0.450 0.446 0.411 0.375 0.361 0.336 0.379 0.311 0.239 0.221
50×20 0.186 0.150 0.107 0.061 0.043 0.025 0.057 0.036 0.039 0.036 0.039 0

Sum 0.766 0.610 0.556 0.473 0.418 0.389 0.394 0.416 0.350 0.277 0.261
10×5 0.584b 0.431 0.334 0.191 0.323 0.208 0.265 0.105 0.064 0.351 0.152
30×10 10.012 9.363 8.688 7.832 7.388 7.318 6.535 6.224 6.195 6.033 5.475
50×20 2.797 2.754 2.287 1.973 1.743 1.589 1.326 1.299 1.236 1.118 1.051 0.001

Sum 13.393 12.548 11.309 9.996 9.454 9.115 8.126 7.628 7.495 7.502 6.678
10×5 10.012 9.363 8.688 7.832 7.388 7.318 6.535 6.224 6.195 6.033 5.475
30×10 7.627 7.315 5.749 5.399 5.253 4.653 4.530 4.369 4.384 4.239 4.227
50×20 3.334 3.214 2.418 2.123 1.929 1.869 1.704 1.668 1.637 1.495 1.448 0.005

Sum 20.973 19.892 16.855 15.354 14.570 13.840 12.769 12.261 12.216 11.767 11.150
10×5 10.012 9.363 8.688 7.832 7.388 7.318 6.535 6.224 6.195 6.033 5.475
30×10 6.451 6.506 5.364 5.058 4.688 4.555 4.288 4.211 3.946 4.460 4.120
50×20 2.905 2.789 2.327 2.157 2.077 1.946 1.816 1.775 1.664 1.584 1.494 0.01

Sum 19.368 18.658 16.379 15.047 14.153 13.819 12.639 12.210 11.805 12.077 11.089
10×5 10.012 9.363 8.688 7.832 7.388 7.318 6.535 6.224 6.195 6.033 5.475
30×10 4.437 4.362 4.094 3.964 3.977 4.067 3.941 3.853 3.846 4.301 4.127
50×20 2.375 2.357 2.125 1.784 1.583 1.349 1.336 1.164 1.101 1.066 1.081 0.05

Sum 16.824 16.082 14.907 13.580 12.948 12.734 11.812 11.241 11.142 11.400 10.683
10×5 10.012 9.363 8.688 7.832 7.388 7.318 6.535 6.224 6.195 6.033 5.475
30×10 3.623 3.693 3.597 3.686 3.517 3.846 3.984 4.061 4.003 4.230 4.488
50×20 2.079 1.996 1.552 1.281 1.166 1.091 1.051 1.097 1.232 1.376 1.403 0.1

Sum 15.714 15.052 13.837 12.799 12.071 12.255 11.570 11.382 11.430 11.639 11.366
10×5 10.012 9.363 8.688 7.832 7.388 7.318 6.535 6.224 6.195 6.033 5.475
30×10 4.013 4.114 4.291 4.520 4.747 5.277 5.340 5.490 5.609 5.743 5.886
50×20 1.043 1.046 1.433 1.756 2.067 2.347 2.587 2.743 2.843 2.964 2.990 0.5

Sum 15.068 14.523 14.412 14.108 14.202 14.942 14.462 14.457 14.647 14.740 14.351
10×5 0.249 0.261 0.462 0.542 0.706 0.778 0.885 1.013 1.052 1.129 1.136
30×10 3.866 4.012 4.550 5.066 5.383 5.734 5.895 6.267 6.267 6.345 6.471
50×20 1.458 1.617 2.490 2.728 2.978 3.241 3.260 3.359 3.461 3.517 3.536 1.0

Sum 5.573 5.890 7.502 8.336 9.067 9.753 10.040 10.639 10.780 10.991 11.143 149 a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

150

For the initial temperature, it is observed that a lower initial

temperature is effective for the problem under consideration. However, not all the

problem cases should use the same small initial temperature. For the problems with λ

< 0.5, the use of an initial temperature of two and of ten for the other problems can be

recommended.

For the neighborhood structure, it is clear that SMs are better than PI

moves for λ ≥ 0.001, especially for the problems whose makespan portion λCmax is

dominant in comparison with the tardiness portion (1–λ)ηT, whereas the PI moves are

slightly better than or nearly as good as the SMs for the other values. Consequently,

the neighborhood structures should be based on PIs for λ = 0 and on shifts of jobs

otherwise, or it can also be recommended to use SMs for the whole range of λ.

For the cooling schedule, the results show that the performance of a

geometric reduction is as good as the performance of the Lundy and Mees reduction

only for problems with λ = 0, whereas the Lundy and Mees reduction becomes better

when the value λ increases. Nevertheless, the parameter of the Lundy and Mees

reduction depends on the value λ. It is noted that for the problems with λ < 0.5, the

cooling rate of the Lundy and Mees reduction is suitable at a range from 0.5 through

1.0 (1.0 is recommended), whereas for the other problems it is suitable at a range from

0.05 through 0.2 (0.1 is recommended).

Next, the TS algorithm with a random initial solution is studied. Given

the above three different problem sizes, the effect of the number of neighbors,

neighborhood structure, and size of tabu list by using the average (absolute resp.

relative) deviation from the best value as the performance measure is shown in Table

5.8 through Table 5.10.

151

Table 5.8 The effect of the various numbers of neighbors on the performance of the

TS algorithm
 Problem The number of neighbors

λ size 10 20 30 40 50
10×5 0.029a 0.017 0.033 0.050 0.083

30×10 0.400 0.242 0.313 0.392 0.463
50×20 0.050 0.146 0.346 0.533 0.625

0

Sum 0.479 0.404 0.692 0.975 1.171
10×5 0.954b 0.989 0.943 1.477 3.281

30×10 7.912 5.236 4.940 5.640 6.250
50×20 0.981 0.945 2.040 3.409 4.250

0.001

Sum 9.847 7.170 7.923 10.526 13.781
10×5 1.136 0.648 0.618 0.799 1.282

30×10 6.057 3.942 3.611 4.134 4.195
50×20 1.875 1.663 2.623 3.493 4.099

0.005

Sum 9.068 6.253 6.852 8.426 9.576
10×5 0.781 0.419 0.474 0.730 1.099

30×10 5.264 3.653 3.549 3.931 4.390
50×20 2.171 1.807 2.783 3.744 4.161

0.01

Sum 8.216 5.879 6.806 8.405 9.650
10×5 0.535 0.176 0.166 0.191 0.332

30×10 4.585 3.727 3.632 3.777 4.119
50×20 2.410 1.734 2.793 3.338 3.905

0.05

Sum 7.530 5.637 6.591 7.306 8.356
10×5 0.381 0.119 0.158 0.154 0.344

30×10 4.067 3.542 3.458 3.773 3.714
50×20 2.174 1.491 2.313 2.925 3.555

0.1

Sum 6.622 5.152 5.929 6.851 7.613
10×5 0.331 0.164 0.108 0.228 0.282

30×10 3.705 2.962 3.168 3.182 3.569
50×20 2.008 1.304 2.098 2.860 3.510

0.5

Sum 6.044 4.43 5.374 6.269 7.36
10×5 0.358 0.127 0.152 0.218 0.327

30×10 3.523 2.805 2.877 3.169 3.299
50×20 2.129 1.415 2.321 2.861 3.551

1.0

Sum 6.011 4.347 5.351 6.249 7.177
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

152

Table 5.9 The effect of the various neighborhood structures on the performance of the

TS algorithm

 Problem Neighborhood Structures
λ size PI SM

10×5 0.033a 0.052
30×10 0.337 0.387
50×20 0.163 0.517

0

Sum 0.533 0.955
10×5 0.911b 2.146
30×10 5.923 6.068
50×20 2.050 2.600

0.001

Sum 8.884 10.814
10×5 0.826 0.967
30×10 4.650 4.125
50×20 2.635 2.867

0.005

Sum 8.111 7.959
10×5 0.667 0.735
30×10 4.413 3.903
50×20 2.759 3.108

0.01

Sum 7.839 7.746
10×5 0.379 0.181
30×10 4.298 3.638
50×20 2.839 2.834

0.05

Sum 7.516 6.653
10×5 0.324 0.138
30×10 4.004 3.418
50×20 2.407 2.576

0.1

Sum 6.735 6.132
10×5 0.283 0.162
30×10 3.561 3.073
50×20 2.310 2.402

0.5

Sum 6.154 5.637
10×5 0.290 0.183
30×10 3.341 2.928
50×20 2.345 2.566

1.0

Sum 5.976 5.677
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

153

Table 5.10 The effect of the various sizes of tabu list on the performance of the TS

algorithm
 Problem Tabu list sizes

λ size 5 10 15 20
10×5 0.057a 0.030 0.040 0.043
30×10 0.380 0.367 0.347 0.353
50×20 0.380 0.347 0.287 0.347

0

Sum 0.817 0.743 0.673 0.743
10×5 2.254b 1.152 0.924 1.786
30×10 6.046 5.912 6.412 5.612
50×20 2.511 2.221 2.339 2.228

0.001

Sum 10.811 9.285 9.675 9.626
10×5 1.036 0.707 0.894 0.949
30×10 4.325 4.354 4.341 4.532
50×20 2.837 2.746 2.711 2.710

0.005

Sum 8.198 7.807 7.946 8.191
10×5 0.855 0.534 0.552 0.863
30×10 4.097 4.165 4.238 4.131
50×20 2.933 3.134 2.687 2.979

0.01

Sum 7.885 7.833 7.477 7.973
10×5 0.261 0.239 0.257 0.364
30×10 3.939 4.019 3.989 3.926
50×20 2.667 2.905 2.903 2.869

0.05

Sum 6.867 7.163 7.149 7.159
10×5 0.278 0.150 0.230 0.267
30×10 3.684 3.769 3.682 3.708
50×20 2.513 2.444 2.427 2.582

0.1

Sum 6.475 6.363 6.339 6.557
10×5 0.219 0.190 0.217 0.264
30×10 3.379 3.219 3.375 3.295
50×20 2.369 2.340 2.431 2.283

0.5

Sum 5.967 5.749 6.023 5.842
10×5 0.290 0.167 0.207 0.283
30×10 3.171 3.105 3.085 3.177
50×20 2.434 2.451 2.521 2.416

1.0

Sum 5.895 5.723 5.813 5.876
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

154

For the number of neighbors, 20 and 30 non-tabu neighbors per

iteration are good choices, but 20 nontabu neighbors are still slightly better.

For the neighborhood structure, it is clear that PI moves are better than

SMs for λ < 0.005, whereas for λ = 0.005 and the problem sizes 10 jobs × 5 stages

and 50 jobs × 20 stages, there are no statistically significant differences in both

neighborhood structures, but they are statistically significant for the problem size 30

jobs × 10 stages. For the problem size 50 jobs × 20 stages and λ ≥ 0.1, although the

average main effect of PI moves is better than that of SMs, it is found that there is a

statistically significant interaction between the neighborhood structure and the

number of neighbors, that is, for 20 non-tabu neighbors the SMs become better than

PI moves. Hence, in general SMs should be selected as the neighborhood structure

for λ ≥ 0.005.

For the size of the tabu list, it can be seen that sizes of 10 and 15 works

good, but the size 10 of the tabu list is slightly superior.

Then, the GA approach with a random initial population is studied.

The purpose of this study is to determine the favorable GA parameters, i.e. population

size, crossover types, and mutation types, as well as crossover and mutation rates.

Table 5.11 through 5.13 present the effect of the population size,

crossover types, and mutation types by using the average (absolute resp. relative)

deviation from the best value as the performance measure.

155

Table 5.11 The effect of various population sizes on the performance of the genetic

algorithm
 Problem Population size

λ size 10 30 50 70
10×5 0.168a 0.058 0.045 0.053
30×10 1.366 0.786 0.600 0.948
50×20 1.034 0.550 0.514 0.752

0

Sum 2.568 1.394 1.159 1.753
10×5 1.366b 0.786 0.600 0.948
30×10 21.280 13.640 13.170 17.530
50×20 3.255 2.363 2.301 3.221

0.001

Sum 25.901 16.789 16.071 21.699
10×5 2.629 1.168 0.785 1.108
30×10 11.081 8.751 8.708 10.845
50×20 3.282 3.265 3.282 4.084

0.005

Sum 16.992 13.184 12.775 16.037
10×5 2.349 1.293 0.937 0.969
30×10 8.943 8.133 7.954 9.383
50×20 3.394 3.249 3.911 4.315

0.01

Sum 14.686 12.675 12.802 14.667
10×5 1.375 0.734 0.576 0.714
30×10 7.465 6.827 6.834 7.672
50×20 2.492 2.454 2.755 3.469

0.05

Sum 11.332 10.015 10.165 11.855
10×5 0.983 0.559 0.467 0.612
30×10 6.636 6.069 6.244 6.991
50×20 2.081 2.187 2.595 3.190

0.1

Sum 9.700 8.815 9.306 10.793
10×5 1.187 0.836 0.771 0.887
30×10 6.436 5.689 6.063 6.635
50×20 1.926 2.010 2.476 2.986

0.5

Sum 9.549 8.535 9.310 10.508
10×5 1.191 0.843 0.834 0.858
30×10 6.335 5.608 5.893 6.578
50×20 1.977 2.107 2.558 3.131

1.0

Sum 9.503 8.558 9.285 10.567
 a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

156

Table 5.12 The effect of various crossover types on the performance of the genetic

algorithm
 Problem Crossover types

λ size PMX OPX
10×5 0.132a 0.030
30×10 0.980 0.871
50×20 0.757 0.667

0

Sum 1.869 1.568
10×5 2.564b 0.794
30×10 16.960 15.850
50×20 2.994 2.575

0.001

Sum 22.518 19.219
10×5 1.924 0.922
30×10 10.051 9.642
50×20 3.605 3.351

0.005

Sum 15.580 13.915
10×5 1.698 1.077
30×10 8.889 8.318
50×20 3.840 3.595

0.01

Sum 14.427 12.990
10×5 0.954 0.745
30×10 7.411 6.988
50×20 2.839 2.746

0.05

Sum 11.204 10.479
10×5 0.748 0.563
30×10 6.597 6.373
50×20 2.590 2.437

0.1

Sum 9.935 9.373
10×5 1.071 0.770
30×10 6.353 6.059
50×20 2.431 2.268

0.5

Sum 9.855 9.097
10×5 1.104 0.759
30×10 6.238 5.969
50×20 2.514 2.372

1.0

Sum 9.856 9.100
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

157

Table 5.13 The effect of various mutation types on the performance of the genetic

algorithm
 Problem Mutation types

λ size PI SM
10×5 0.035a 0.127
30×10 0.906 0.944
50×20 0.650 0.775

0

Sum 1.591 1.847
10×5 0.828b 2.530
30×10 16.290 16.510
50×20 2.642 2.928

0.001

Sum 19.760 21.968
10×5 0.921 1.924
30×10 9.970 9.723
50×20 3.417 3.539

0.005

Sum 14.308 15.186
10×5 1.666 1.109
30×10 8.779 8.428
50×20 3.709 3.726

0.01

Sum 14.154 13.263
10×5 0.948 0.751
30×10 7.451 6.948
50×20 2.872 2.713

0.05

Sum 11.271 10.412
10×5 0.798 0.513
30×10 6.716 6.254
50×20 2.631 2.396

0.1

Sum 10.145 9.163
10×5 1.106 0.734
30×10 6.356 6.056
50×20 2.488 2.211

0.5

Sum 9.950 9.001
10×5 1.102 0.760
30×10 6.251 5.956
50×20 2.563 2.323

1.0

Sum 9.916 9.039
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

158

Table 5.14 The effect of various crossover rates on the performance of the genetic algorithm
 Problem Crossover rates

λ size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10×5 0.000a 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000

30×10 0.556 0.639 0.583 0.639 0.750 0.722 0.694 0.528 0.806
50×20 0.361 0.583 0.528 0.500 0.556 0.583 0.778 0.667 0.806 0

Sum 0.917 1.250 1.111 1.139 1.306 1.306 1.472 1.195 1.611
10×5 0.153b 0.179 0.253 0.715 0.199 0.227 0.199 0.274 1.628

30×10 15.320 12.570 12.400 13.310 11.400 10.090 14.570 10.460 9.050
50×20 2.085 2.139 1.925 3.082 2.324 2.669 2.588 2.195 2.725 0.001

Sum 17.558 14.888 14.578 17.107 13.923 12.986 17.357 12.929 13.403
10×5 0.607 0.446 0.423 0.812 0.951 0.897 0.351 0.941 1.248

30×10 9.401 9.544 8.485 8.513 7.896 7.968 7.379 8.885 8.432
50×20 3.513 3.193 3.542 3.336 3.618 3.341 3.341 3.131 3.771 0.005

Sum 13.521 13.183 12.450 12.661 12.465 12.206 11.071 12.957 13.451
10×5 0.639 0.821 1.042 1.022 1.163 1.361 1.211 1.476 1.747

30×10 8.457 7.774 7.775 7.711 8.401 7.730 7.691 8.623 7.104
50×20 3.200 2.629 3.226 3.976 3.174 2.554 3.337 3.130 2.090 0.01

Sum 12.296 11.224 12.043 12.709 12.738 11.645 12.239 13.229 10.941
10×5 0.744 0.636 0.937 0.921 0.537 0.839 0.557 0.816 0.876

30×10 7.126 6.407 6.503 7.325 6.823 6.986 6.727 6.201 6.063
50×20 2.175 2.798 1.524 2.249 2.271 2.383 2.516 2.375 2.111 0.05

Sum 10.045 9.841 8.964 10.495 9.631 10.208 9.800 9.392 9.050
10×5 0.327 0.515 0.640 0.874 0.383 0.562 0.377 0.442 0.471

30×10 6.302 5.832 5.347 5.387 6.127 5.813 5.533 6.000 6.174
50×20 1.812 2.141 2.297 1.696 1.875 1.874 2.432 2.252 2.142 0.1

Sum 8.441 8.488 8.284 7.957 8.385 8.249 8.342 8.694 8.787
10×5 0.549 0.700 0.587 0.785 0.725 0.718 0.613 0.503 0.706

30×10 5.813 5.576 6.004 5.308 5.361 4.808 5.811 5.529 5.472
50×20 1.786 1.443 1.406 1.767 2.038 2.238 1.931 1.834 2.127 0.5

Sum 8.148 7.719 7.997 7.860 8.124 7.764 8.355 7.866 8.305
10×5 0.434 0.536 0.843 0.856 0.746 0.501 0.776 0.484 0.466

30×10 5.543 5.162 5.679 4.407 6.076 5.421 5.583 5.916 5.359
50×20 1.884 1.799 1.492 1.880 2.230 2.360 2.349 1.726 2.081 1.0

Sum 7.861 7.497 8.014 7.143 9.052 8.282 8.708 8.126 7.906 158 a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

159

Table 5.15 The effect of various mutation rates on the performance of the genetic algorithm
 Problem Mutation rates

λ size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10×5 0.000a 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.000

30×10 0.778 0.639 0.778 0.667 0.583 0.639 0.611 0.583 0.639
50×20 0.806 0.806 0.528 0.472 0.583 0.500 0.361 0.528 0.778 0

Sum 1.583 1.445 1.306 1.139 1.167 1.167 0.972 1.111 1.417
10×5 0.736b 1.642 0.253 0.290 0.208 0.132 0.200 0.214 0.154

30×10 13.570 11.490 11.900 13.970 11.350 11.720 12.890 10.910 11.370
50×20 4.050 2.770 1.844 2.487 2.077 2.709 2.507 1.487 1.801 0.001

Sum 18.356 15.902 13.997 16.747 13.635 14.561 15.597 12.611 13.325
10×5 2.536 0.300 0.905 1.214 0.464 0.511 0.401 0.227 0.115

30×10 9.698 7.879 8.136 8.555 7.694 7.464 9.042 9.220 8.815
50×20 3.851 3.615 3.346 3.332 2.593 3.568 3.034 3.920 3.528 0.005

Sum 16.085 11.794 12.387 13.101 10.751 11.543 12.477 13.367 12.458
10×5 1.994 1.045 1.558 1.276 0.891 1.153 0.550 0.867 1.149

30×10 7.832 7.668 7.547 8.028 8.281 7.788 7.313 7.568 9.240
50×20 2.825 3.584 2.349 2.948 3.354 3.447 2.805 2.910 3.094
Sum 12.651 12.297 11.454 12.252 12.526 12.388 10.668 11.345 13.483
10×5 1.220 0.856 0.738 0.749 0.748 0.697 0.753 0.751 0.350

30×10 6.706 7.166 6.778 5.776 6.729 7.162 6.221 6.952 6.673
50×20 2.330 2.293 2.221 2.595 1.944 1.841 2.202 2.511 2.465 0.05

Sum 10.256 10.315 9.737 9.120 9.421 9.700 9.176 10.214 9.488
10×5 0.887 0.667 0.434 0.440 0.822 0.345 0.313 0.295 0.387

30×10 5.771 5.755 5.897 5.178 5.882 6.269 6.069 5.444 6.249
50×20 2.223 2.164 1.782 2.295 2.239 2.042 1.922 1.938 1.916 0.1

Sum 8.881 8.586 8.113 7.913 8.943 8.656 8.304 7.677 8.552
10×5 0.759 0.908 0.745 0.558 0.587 0.618 0.714 0.499 0.499

30×10 5.638 5.861 5.138 5.303 5.305 5.719 6.112 5.483 5.123
50×20 1.895 1.853 1.754 1.829 1.951 1.776 1.667 1.849 1.995 0.5

Sum 8.292 8.622 7.637 7.690 7.843 8.113 8.493 7.831 7.617
10×5 0.657 0.684 0.629 0.413 0.586 0.565 0.650 0.751 0.708

30×10 5.579 5.510 4.990 5.336 5.548 5.483 6.173 5.428 5.098
50×20 1.913 2.162 2.079 1.499 2.434 1.823 1.723 2.288 1.882 1.0

Sum 8.149 8.356 7.698 7.248 8.568 7.871 8.546 8.467 7.688 159 a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

0.01

160

For the GA, it is found that for the population size, crossover types,

and mutation types as well as crossover and mutation rates, there are statistically

significant differences. The population sizes of 30 and 50 are quite not statistically

different, but in general a population size of 30 is slightly better than a population size

of 50.

Considering the crossover types, the OPX crossover is obviously

superior to the PMX crossover. For the mutation type, it is clear that SMs are better

than PI moves for λ ≥ 0.01, whereas the PI moves are mostly better than SMs for the

other values. This means that the PI moves are suitable for problems whose tardiness

portion dominates the makespan portion. Consequently, the neighborhood structures

should be based on PIs for λ < 0.01, and on shifts of jobs otherwise.

Given the selected GA parameters, the crossover and mutation rates

are analyzed again. The results are shown in Table 5.14 through Table 5.15. There

are no significant differences for these parameters. However, in general a crossover

rate of 0.6 and a mutation rate of 0.3 are recommended.

Then, the recommended SA, TS, and GA parameters are used to test

the choice of an appropriate initial solution (or a part of the initial population for the

GA approach) (see Section 4.7). The letters before the letters SA (or TS, or GA)

denote the heuristic rule used for generating one initial solution for SA (or TS, or

GA). For example, LPTSA means that the LPT rule is used as an initial solution for

the SA algorithm, RNDTS means that an initial solution in TS is randomly generated,

or NEHGA means that one initial solution of the initial population in the GA

approach is generated by the NEH rule but the other initial solutions are still randomly

generated.

Next, the results compared the LPT, ILPT, NEH, and INEH rules as

well as the iterative algorithms with random initial solution or population denoted by

RNDSA, RNDTS, and RNDGA).

161

Table 5.16 Average performance of the constructive and iterative algorithms

λ
Problem

Size
LPT ILPT NEH INEH RNDSA RNDTS RNDGA

10×5 3.200a 1.300 0.700 0.700 0.000 0.040 0.100
30×10 8.400 3.000 2.300 2.300 0.300 0.260 0.680
50×20 8.400 2.500 1.200 1.200 0.040 0.040 0.400

0

Sum 20.000 6.800 4.200 4.200 0.340 0.340 1.180
10×5 99.380b 26.900 13.320 13.320 0.030 0.060 3.430
30×10 115.570 24.880 36.810 36.810 6.320 5.880 9.460
50×20 35.302 5.650 10.921 10.921 0.748 0.917 1.694

0.001

Sum 250.252 57.430 61.051 61.051 7.098 6.857 14.584
10×5 46.353 15.036 7.862 7.862 0.031 0.946 1.067
30×10 56.309 16.126 19.711 19.711 3.899 4.167 7.785
50×20 19.539 6.237 5.427 5.427 0.946 1.617 2.512

0.005

Sum 122.201 37.399 33.000 33.000 4.876 6.730 11.364
10×5 31.949 10.704 5.944 5.944 0.160 0.565 1.359
30×10 40.655 17.738 14.730 14.730 3.497 4.214 6.731
50×20 15.380 7.504 4.199 4.199 0.923 1.669 2.079

0.01

Sum 87.984 35.946 24.873 24.873 4.580 6.448 10.169
10×5 17.358 5.831 2.936 2.936 0.015 0.039 0.701
30×10 24.011 12.349 8.167 8.167 3.054 4.059 6.164
50×20 11.311 6.766 2.218 2.218 0.806 2.187 2.650

0.05

Sum 52.680 24.946 13.321 13.321 3.875 6.285 9.515
10×5 15.885 6.054 2.720 2.720 0.082 0.077 0.747
30×10 21.987 10.890 7.440 7.440 4.098 3.705 6.333
50×20 10.779 5.565 1.755 1.755 1.099 1.880 2.266

0.1

Sum 48.651 22.509 11.915 11.915 5.279 5.662 9.346
10×5 15.493 5.523 3.284 3.284 0.013 0.052 0.630
30×10 21.179 10.949 6.291 6.291 3.089 3.682 5.769
50×20 10.547 5.337 1.492 1.492 0.888 2.076 2.432

0.5

Sum 47.219 21.809 11.067 11.067 3.990 5.810 8.831
10×5 15.486 5.474 3.279 3.279 0.041 0.075 0.607
30×10 21.079 10.419 6.324 6.324 3.965 3.365 5.692
50×20 10.591 5.365 1.605 1.605 1.021 2.012 2.666

1.0

Sum 47.156 21.258 11.208 11.208 5.027 5.452 8.965
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

162

In Table 5.16, the results give the average (absolute resp. percentage)

deviation of a particular algorithm from the best solution in these tests. It is found

that iterative metaheuristic algorithms can improve the quality of the LPT rule by

about 90 percent or even more. Among the iterative algorithms, the results show that

for the RNDSA and RNDTS algorithms there are no statistically significant

differences, but in general, the RNDSA algorithm is slightly better than the RNDTS

algorithm.

5.3.4 Performance of a Choice of an Initial Solution for the
Iterative Algorithms

Fourthly, to improve the quality of the solution finally obtained by the

iterative algorithms, the initial solution of the iterative algorithms has used the biased-

initial solution instead of the random initial solution (see Section 4.7). Consequently,

the purpose of this experiment is to investigate the influence of the choice of an

appropriate initial solution for the SA and TS algorithms and an initial population for

the GA algorithm by using the heuristic constructive and improvement algorithms. In

addition, for the GA approach, all selected constructive algorithms in parallel as a part

of the initial population are used to investigate the influence of the biased parallel

initial solutions in the population.

In Table 5.17, the SPT, LPT, S/P, ISPT, ILPT, IS/P, PAL, CDS, NEH,

IPAL, ICDS, and INEH rules are selected as the initial solution under consideration.

The letter CA denotes the whole group of constructive algorithms considered. The

letter C before the letters SA, TS, and GA denote the SA, TS, and GA algorithms

using the best of the constructive algorithms as an initial solution. In addition, for the

GA approach, some selected algorithms in parallel as a part of the initial population

are used. Based on each heuristic group, all solutions in each heuristic group stated

above as a part of the initial population (the other initial solutions are still randomly

generated) are used. Consequently, there are four new choices of initial populations

tested (denoted by MIX1GA, MIX2GA, MIX3GA, and MIX4GA, respectively).

163

Table 5.17 Average performance of the iterative algorithms with biased initial

solutions

λ
Problem

size
CA C-SA C-TS C-GA MIX1GA MIX2GA MIX3GA MIX4GA

10×5 1.943a 0.001 0.006 0.089 0.120 0.100 0.040 0.060
30×10 4.829 0.274 0.237 0.794 0.520 0.360 0.780 0.720
50×20 5.050 0.014 0.056 0.474 0.460 0.200 0.160 0.080

0

Sum 11.821 0.290 0.299 1.357 1.100 0.660 0.980 0.860
10×5 51.554b 0.096 0.421 2.487 3.600 2.560 2.630 3.010
30×10 59.438 5.719 4.909 9.640 8.270 3.080 10.540 8.710
50×20 19.131 0.854 0.923 2.410 2.481 0.488 1.286 0.344

0.001

Sum 130.123 6.668 6.253 14.537 14.351 6.128 14.456 12.064
10×5 26.798 0.206 0.791 1.433 1.778 1.271 1.303 1.431
30×10 32.128 4.198 3.834 7.380 6.433 4.945 6.990 6.122
50×20 12.033 0.894 1.463 3.070 3.400 0.564 1.557 0.973

0.005

Sum 70.958 5.298 6.088 11.883 11.611 6.780 9.850 8.526
10×5 19.264 0.205 0.502 1.044 1.445 0.904 1.233 1.595
30×10 24.923 3.781 4.030 7.693 6.412 5.147 8.697 6.042
50×20 10.475 0.924 1.532 3.362 2.431 1.382 1.515 1.013

0.01

Sum 54.662 4.910 6.064 12.099 10.288 7.433 11.445 8.650
10×5 11.247 0.051 0.047 0.844 0.756 0.277 0.547 0.696
30×10 16.360 3.745 4.100 6.521 6.499 5.042 4.872 4.525
50×20 8.117 0.891 2.064 3.207 3.037 2.686 1.484 1.131

0.05

Sum 35.725 4.687 6.210 10.572 10.292 8.005 6.903 6.352
10×5 10.408 0.049 0.025 0.608 0.855 0.659 0.476 0.294
30×10 14.940 4.107 3.868 5.762 6.160 4.905 4.527 4.647
50×20 7.573 1.107 1.963 3.019 2.827 2.983 1.105 1.103

0.1

Sum 32.921 5.263 5.856 9.389 9.842 8.547 6.108 6.044
10×5 10.134 0.020 0.034 0.640 0.646 0.688 0.418 0.449
30×10 14.625 3.316 3.636 5.808 5.941 4.942 3.647 3.724
50×20 7.249 0.757 1.820 2.764 2.331 2.724 0.961 0.811

0.5

Sum 32.008 4.093 5.490 9.212 8.918 8.354 5.026 4.984
10×5 10.181 0.036 0.051 0.582 0.691 0.566 0.492 0.408
30×10 14.565 3.764 3.554 5.696 5.292 4.530 3.732 3.255
50×20 7.312 0.993 1.809 2.987 2.366 2.861 0.950 0.875

1.0

Sum 32.058 4.792 5.414 9.264 8.349 7.957 5.174 4.538
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0

164

164

Table 5.18 Average performance of iterative algorithms with biased initial solutions
 SA-Based Algorithms TS-Based Algorithms GA-Based Algorithms (1) GA-Based Algorithms (2)

λ Problem
size

L
PT

SA

IL
PT

SA

C
D

SS
A

N
E

H
SA

IC
D

SS
A

IN
E

H
SA

L
PT

T
S

IL
PT

T
S

C
D

ST
S

N
E

H
T

S

IC
D

ST
S

IN
E

H
T

S

L
PT

G
A

IL
PT

G
A

C
D

SG
A

N
E

H
G

A

IC
D

SG
A

IN
E

H
G

A

M
IX

1G
A

M
IX

2G
A

M
IX

3G
A

M
IX

4G
A

10×5 0.000a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.100 0.120 0.120 0.060 0.120 0.060 0.120 0.040 0.100 0.060
30×10 0.260 0.280 0.260 0.300 0.300 0.300 0.220 0.220 0.340 0.180 0.300 0.160 0.760 0.900 0.780 0.880 0.880 0.880 0.520 0.780 0.360 0.720
50×20 0.000 0.000 0.000 0.000 0.040 0.000 0.060 0.120 0.020 0.000 0.040 0.000 0.580 0.960 0.580 0.240 0.340 0.240 0.460 0.160 0.200 0.0800

Sum 0.260 0.280 0.260 0.300 0.340 0.300 0.280 0.340 0.360 0.180 0.360 0.160 1.440 1.980 1.480 1.180 1.340 1.180 1.100 0.980 0.660 0.860
10×5 0.520b 0.010 0.030 0.020 0.510 0.030 0.090 0.570 0.100 0.170 1.060 0.530 2.160 2.990 2.480 2.070 3.660 2.070 3.600 2.630 2.560 3.010
30×10 5.380 6.050 5.600 5.870 5.220 5.880 5.470 4.640 4.520 4.220 5.760 4.220 10.680 9.310 8.230 10.340 8.430 10.340 8.270 10.540 3.080 8.710
50×20 0.954 0.778 0.831 0.844 0.802 0.940 1.211 1.287 0.817 0.615 0.652 0.622 1.839 3.610 1.933 1.323 2.114 1.259 2.481 1.286 0.488 0.344

0.001

Sum 6.854 6.838 6.461 6.734 6.532 6.850 6.771 6.497 5.437 5.005 7.472 5.372 14.679 15.910 12.643 13.733 14.204 13.669 14.351 14.456 6.128 12.064
10×5 0.115 0.236 0.531 0.041 0.060 0.259 0.984 1.279 1.179 1.076 1.103 0.721 1.134 1.275 1.437 1.374 1.899 1.374 1.778 1.303 1.271 1.431
30×10 3.999 4.203 4.249 4.264 4.727 4.320 3.897 3.785 3.687 4.075 4.051 4.183 8.038 7.726 7.481 7.055 6.482 7.055 6.433 6.990 4.945 6.122
50×20 0.969 0.866 0.799 0.888 0.923 0.917 1.524 2.046 1.175 0.838 0.975 0.842 2.464 4.560 2.157 1.426 3.183 1.426 3.400 1.557 0.564 0.973 0.005

Sum 5.083 5.305 5.579 5.193 5.710 5.496 6.405 7.110 6.041 5.989 6.129 5.746 11.636 13.561 11.075 9.855 11.564 9.855 11.611 9.850 6.780 8.526
10×5 0.084 0.163 0.212 0.382 0.086 0.324 0.551 0.481 0.779 0.664 0.387 0.706 1.283 1.111 0.859 0.873 1.273 0.873 1.445 1.233 0.904 1.595
30×10 3.701 3.957 3.450 4.103 4.064 4.104 4.389 4.172 3.677 3.892 3.934 3.819 7.098 8.423 7.383 8.586 7.142 8.586 6.412 8.697 5.147 6.042
50×20 0.965 0.969 0.895 0.936 0.933 0.957 1.245 2.171 1.767 0.931 1.517 0.931 2.706 5.873 2.239 1.498 4.247 1.498 2.431 1.515 1.382 1.0130.01

Sum 4.750 5.089 4.557 5.421 5.083 5.385 6.185 6.824 6.223 5.487 5.838 5.456 11.087 15.407 10.481 10.957 12.662 10.957 10.288 11.445 7.433 8.650
10×5 0.038 0.032 0.054 0.049 0.040 0.049 0.033 0.052 0.029 0.042 0.054 0.029 0.567 0.793 0.926 0.625 0.859 0.625 0.756 0.547 0.277 0.696
30×10 4.176 3.369 3.903 4.016 3.301 4.005 4.654 3.823 4.165 3.250 4.378 3.356 6.440 8.122 6.803 4.730 7.754 4.730 6.499 4.872 5.042 4.525
50×20 0.896 0.852 0.918 0.748 0.881 0.740 1.963 2.152 2.430 1.491 1.894 1.491 3.133 5.216 3.199 1.382 3.472 1.382 3.037 1.484 2.686 1.1310.05

Sum 5.110 4.253 4.875 4.813 4.222 4.794 6.650 6.027 6.624 4.783 6.326 4.876 10.140 14.131 10.928 6.737 12.085 6.737 10.292 6.903 8.005 6.352
10×5 0.033 0.064 0.038 0.070 0.047 0.070 0.057 0.035 0.025 0.030 0.021 0.012 0.688 0.523 0.669 0.504 0.540 0.504 0.855 0.476 0.659 0.294
30×10 4.794 3.305 4.647 3.581 3.705 3.581 4.067 4.061 3.724 3.260 3.786 3.254 5.945 6.834 5.444 4.219 6.190 4.219 6.160 4.527 4.905 4.647
50×20 1.067 1.105 1.168 0.813 0.861 0.837 2.142 2.264 2.141 1.369 1.994 1.370 2.484 4.394 2.892 1.091 3.441 1.086 2.827 1.105 2.983 1.1030.1

Sum 5.894 4.474 5.853 4.464 4.613 4.488 6.266 6.360 5.890 4.659 5.801 4.636 9.117 11.751 9.005 5.814 10.171 5.809 9.842 6.108 8.547 6.044
10×5 0.016 0.014 0.009 0.013 0.014 0.013 0.015 0.035 0.039 0.039 0.041 0.039 0.787 0.887 0.720 0.537 0.671 0.537 0.646 0.418 0.688 0.449
30×10 3.228 3.500 3.571 3.140 4.027 3.153 3.864 3.721 3.894 2.854 3.753 2.904 5.853 7.253 5.490 3.775 5.813 3.775 5.941 3.647 4.942 3.724
50×20 0.776 0.794 0.826 0.715 0.689 0.687 1.895 2.099 2.157 1.170 1.723 1.157 2.150 4.194 2.401 0.982 3.585 0.982 2.331 0.961 2.724 0.8110.5

Sum 4.020 4.308 4.406 3.868 4.730 3.853 5.774 5.855 6.090 4.063 5.517 4.100 8.790 12.334 8.611 5.294 10.069 5.294 8.918 5.026 8.354 4.984
10×5 0.020 0.006 0.059 0.038 0.035 0.038 0.059 0.065 0.069 0.047 0.024 0.035 0.626 0.591 0.604 0.458 0.387 0.458 0.691 0.492 0.566 0.408
30×10 4.467 2.588 4.071 3.183 3.709 3.148 3.813 3.726 3.763 3.024 3.471 3.030 5.461 7.428 5.580 3.533 5.579 3.547 5.292 3.732 4.530 3.255
50×20 0.858 1.066 1.184 0.588 1.014 0.588 1.821 2.068 2.199 1.198 1.874 1.198 2.367 4.351 2.523 1.040 4.303 1.040 2.366 0.950 2.861 0.8751.0

Sum 5.345 3.660 5.314 3.809 4.758 3.774 5.693 5.859 6.031 4.269 5.369 4.263 8.454 12.370 8.707 5.031 10.269 5.045 8.349 5.174 7.957 4.538
a average absolute deviation for λ = 0, b average percentage deviation for λ>0

165

It is found that the SA-based algorithms are still particularly

recommendable. In addition, the GA-based algorithms can be improved by using a

group of biased initial solutions as a part of the initial population instead of all

randomly generated or only one biased initial solution.

 Concerning the choice of an initial solution, this test only shows the

results for the recommended SA, TS, and GA parameters to test an appropriate

selection of an initial solution in Table 5.18. It is found that for the SA algorithm,

there are no statistically significant differences when using different initial solutions.

It is however found that the ILPTSA, NEHSA and INEHSA rules are slightly better

than the others in general. Consequently, the ILPTSA, NEHSA and INEHSA

algorithms are good choices for the SA algorithm with using a biased initial solution.

However, the experiments have shown that there are slightly statistically significant

differences for different initial solutions. The NEHTS, INEHTS, NEHGA and

INEHGA rules are, however, still good solutions when compared within each group.

5.4 Performance of Algorithms on Small-Sized Test
Problems

The purpose of these experiments is to evaluate the performance of some

selected algorithms that are proposed in Chapter IV on the small-sized test problems

(see Section 5.2) that can find the optimal solution in an acceptable time.

For the problem with λ = 0, the performance of each test for each algorithm is

assessed by the absolute deviation of a particular algorithm from the optimal solution

by using the following equation:

absolute deviation from the optimal solution = Heusol - Optsol (5.7)

where Heusol is the schedule solution obtained by a given algorithm, and Optsol is the

optimal schedule solution.

166

For the problem with λ > 0, the performance of each test for each algorithm is

assessed by the percentage deviation of a particular algorithm from the optimal

solution by using the following equation:

percentage deviation from the best solution = 100sol sol

sol

Heu Opt
Opt

−
× (5.8)

where Heusol is the schedule solution obtained by a given algorithm, and Optsol is the

optimal schedule solution.

In this section, the results of some algorithms for small-sized problems with a

number of jobs ranging from three to seven are presented. They give the average

deviation from the optimal solution obtained by means of the 0-1 mixed linear integer

programming formulation given in Chapter III using a commercial mathematical

programming software, CPLEX 8.0.0 and AMPL, with an Intel Pentium 4 2.00GHz

CPU with 256 MB of RAM. However, the CPU time is limited to at most 2 hours (if

the time limited is exceed, it uses the best solution found instead of an optimal one for

the evaluation of the heuristic solution).

 In the test, the problems with the same generation of the data (see Section 5.2)

and λ ∈ {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} in the objective function are tested.

The constructive algorithms LPT and NEH, the fast improvement algorithms ILPT

and INEH, and the iterative metaheuristic algorithms RNDSA, NEHSA, RNDTS,

NEHTS, RNDGA, and NEHGA are selected to present the performance of each group

of the algorithms.

167

Table 5.19 Average performance of the constructive, fast improvement, and

metaheuristic algorithms for small-sized problems
λ Problem

size LPT ILPT NEH INEH RNDSA NEHSA RNDTS NEHTS RNDGA NEHGA

3 jobs 0.300a 0.050 0.100 0.100 0.050 0.050 0.050 0.050 0.050 0.050
4 jobs 0.750 0.250 0.250 0.250 0.150 0.150 0.150 0.150 0.150 0.150
5 jobs 0.700 0.250 0.150 0.150 0.150 0.150 0.190 0.200 0.150 0.150
6 jobs 1.200 0.400 0.450 0.450 0.150 0.150 0.150 0.150 0.150 0.150
7 jobs 1.150 0.500 0.450 0.450 0.200 0.200 0.200 0.200 0.200 0.200

0

Sum 4.100 1.450 1.400 1.400 0.700 0.700 0.740 0.750 0.700 0.700
3 jobs 45.270b 5.180 8.610 8.610 4.950 4.950 4.950 4.950 4.950 4.950
4 jobs 88.390 32.670 37.460 37.460 7.350 7.350 7.500 7.480 7.350 7.350
5 jobs 23.570 2.320 5.700 5.700 1.870 1.870 2.270 2.320 1.870 1.870
6 jobs 97.960 33.860 27.320 27.320 13.370 13.370 13.370 13.370 13.370 13.370
7 jobs 23.960 7.140 7.200 7.200 0.970 0.970 0.970 0.970 0.970 0.970

0.001

Sum 279.150 81.170 86.290 86.290 28.510 28.510 29.060 29.090 28.510 28.510
3 jobs 14.218 3.797 5.367 5.367 3.569 3.569 3.771 4.111 3.569 3.569
4 jobs 29.860 9.370 12.480 12.480 4.400 4.400 4.410 4.420 4.400 4.400
5 jobs 15.182 2.383 3.756 3.756 1.627 1.627 1.627 1.627 1.627 1.627
6 jobs 31.400 8.990 9.070 9.070 3.440 3.440 3.480 3.480 3.440 3.440
7 jobs 14.180 4.960 4.970 4.970 2.240 2.240 2.240 2.240 2.240 2.240

0.005

Sum 104.840 29.500 35.643 35.643 15.276 15.276 15.528 15.878 15.276 15.276
3 jobs 9.820 3.371 4.379 4.379 3.143 3.143 3.550 3.550 3.143 3.143
4 jobs 20.475 5.812 8.182 8.182 3.350 3.350 3.423 3.370 3.350 3.350
5 jobs 11.884 2.334 2.899 2.899 1.450 1.450 1.450 1.450 1.450 1.450
6 jobs 20.018 5.542 5.677 5.677 2.154 2.154 2.165 2.154 2.164 2.155
7 jobs 10.528 2.917 2.903 2.903 1.096 1.096 1.096 1.096 1.102 1.096

0.01

Sum 72.725 19.976 24.040 24.040 11.193 11.193 11.684 11.620 11.209 11.194
3 jobs 7.048 3.388 3.267 3.267 2.887 2.887 3.046 2.934 2.887 2.887
4 jobs 12.651 3.366 4.521 4.521 2.084 2.084 2.084 2.084 2.084 2.084
5 jobs 8.846 2.576 1.778 1.778 0.899 0.899 0.899 0.899 0.899 0.899
6 jobs 9.344 2.516 3.256 3.256 1.042 1.042 1.042 1.042 1.047 1.047
7 jobs 6.291 0.960 0.650 0.650 0.192 0.192 0.192 0.192 0.229 0.192

0.05

Sum 44.180 12.806 13.472 13.472 7.104 7.104 7.263 7.151 7.146 7.109
3 jobs 6.828 3.343 3.149 3.149 2.929 2.929 3.011 3.011 2.929 2.929
4 jobs 12.301 3.529 4.315 4.315 2.059 2.059 2.059 2.059 2.059 2.059
5 jobs 8.705 2.417 1.574 1.574 0.889 0.889 0.889 0.889 0.889 0.889
6 jobs 9.172 2.656 2.186 2.186 0.949 0.949 0.949 0.949 0.949 0.949
7 jobs 5.906 0.615 0.335 0.335 0.146 0.146 0.146 0.146 0.184 0.155

0.1

Sum 42.912 12.560 11.559 11.559 6.972 6.972 7.054 7.054 7.010 6.981
3 jobs 6.760 3.475 3.237 3.237 3.123 3.123 3.295 3.360 3.123 3.123
4 jobs 12.063 2.776 4.137 4.137 1.921 1.921 1.945 1.921 1.921 1.921
5 jobs 8.531 2.215 1.548 1.548 0.745 0.745 0.745 0.745 0.745 0.745
6 jobs 8.607 2.620 2.514 2.514 1.238 1.238 1.238 1.238 1.269 1.238
7 jobs 6.840 1.581 0.391 0.391 0.113 0.113 0.113 0.113 0.149 0.113

0.5

Sum 42.801 12.667 11.827 11.827 7.140 7.140 7.336 7.377 7.207 7.140
3 jobs 6.750 3.492 3.247 3.247 3.142 3.142 3.182 3.191 3.142 3.142
4 jobs 12.038 2.745 4.107 4.107 1.877 1.877 1.877 1.877 1.877 1.877
5 jobs 9.458 3.192 2.441 2.441 1.712 1.712 1.712 1.712 1.712 1.712
6 jobs 9.368 2.811 2.747 2.747 1.518 1.518 1.518 1.518 1.545 1.531
7 jobs 7.834 2.139 0.843 0.843 0.297 0.297 0.332 0.297 0.315 0.306

1.0

Sum 45.448 14.379 13.385 13.385 8.546 8.546 8.621 8.595 8.591 8.568

a average absolute deviation for λ = 0, b average percentage deviation for λ> 0

168

From the results in Table 5.19, it can be observed that the ILPT improvement

algorithm can improve the constructive LPT rule by about 70 percent in terms of the

deviation from the optimal value. The performance of the NEH and INEH rules as

well as the ILPT rule are not significantly different. As stated above for the large-

sized problems, the NEH rule has already embedded the improvement routine as used

by the ILPT algorithm. However, in contrast to large-sized problems it can be

observed that the ILPT algorithm is slightly better than NEH and INEH for problems

with 0.001 ≤ λ≤ 0.05.

For the iterative algorithms such as RNDSA, RNDTS, and RNDGA, it is

found that they can improve the quality of the solution of the constructive and fast

improvement algorithms such as ILPT, NEH, and INEH by about 40 – 70 percent.

Similar to the large-sized problems, the SA-based algorithms certainly outperform the

other algorithms.

In particular, it can be observed that the average percentage deviation of

algorithm RNDSA from the optimal solution for the problems with at least five jobs

and λ ≥ 0.01 is usually less than 2% (for the problems with seven jobs and λ ≥ 0.05

even less than 0.3%). The higher percentage deviations for small positive λ values

result from the peculiarities of the objective function, namely that, if the number of

tardy jobs in the heuristic solution is only greater by one in comparison with an

optimal solution, this may lead to a rather large percentage deviation (see e.g.

problems with six jobs and λ = 0.001). In addition, it is found that for small-sized

problems, a biased initial solution for the iterative algorithm is slightly better than a

random initial solution.

5.5 The Recommended Heuristic Solution Algorithm

 From the results of the performance of the algorithms stated in the previous

sections, in this section a recommended algorithm is concluded. According to the

computational results, the INEHSA algorithm is recommended to find the schedule

169

solution for the flexible flow shop scheduling problem with unrelated parallel

machines. It consists of four parts, namely the determination of the representatives of

the operating time, the modified NEH algorithm, the fast improvement algorithm, and

the SA algorithm. The algorithm process flow for the algorithm is shown in Figure

5.1.

 The first part is the determination of the representatives of the operating time.

Since the actual job operating times are unknown, until an assignment of jobs to

machines for the corresponding stage has been done, the representatives of the

operating time is necessary to determine. The representative of operating time of job j
at stage t is the sum of the processing time t

ij
t
j vps / plus the representative of the

setup time , where the representatives of relative machine speed and setup time

 for stage t, t = 1, … , k, use the minimum, maximum and average values of the

data. Thus, nine combinations of relative machine speeds and setup times will be

used to find the best solution (see Section 4.4).

t
ljs / t

ijv /

t
ljs /

 The second part is the construction of the initial schedule solution, which is

referred to the constructive algorithm. The modified NEH algorithm is recommended

to construct a set of the schedules that is corresponding to the using of the nine

combinations of the representatives of operating times. The starting job sequence that

gives the best schedule solution is selected from the nine possible starting job

sequences (see Section 4.4.2.5).

 The third part is the improvement algorithm that is applied on the selected

starting job sequence from the second part. In this part, the all pairwise interchange

approach is applied on the starting job sequence for the jobs that are tardy. The new

starting job sequence that gives the best schedule solution is kept (see Section 4.5).

 The final part is the iterative algorithm, where the staring job sequence that

generated from the third part is used as the initial solution for the SA algorithm (see

Section 4.6.1).

170

Scheduling Data

Determine the representatives of operating
times with nine combinations

Use the modified NEH algorithm

Select the starting job sequence that gives the
best schedule

Apply the all pairwise interchange on the
selected starting job sequence

Use the simulated annealing to improve the
schedule solution

A good schedule solution

Are nine combinations
of the representatives considered?

Yes

No

Representative Determination

Constructive Algorithm

Improvement Algorithm

Iterative algorithm

Figure 5.1 Flow chart of the recommended heuristic solution algorithm

171

5.6 Conclusion

In this chapter, the results of computational experiments of the heuristic

algorithms are shown. Firstly, for the constructive algorithms, their performances are

compared to each other. It is shown that arranging the jobs in the starting job

sequence for the first stage by using the modified NEH algorithm is an excellent

constructive algorithm for minimizing the objective function considered.

Consequently, the NEH algorithm is most superior to the other constructive

algorithms.

To improve the solutions obtained by the constructive algorithms, polynomial

heuristic improvement algorithms based on shift moves and pairwise interchanges of

jobs are applied. When applying a fast polynomial improvement algorithm, it is

found that the all-pairwise-interchange approach is a good improvement algorithm. In

addition, the INEH algorithm also provides the best solution.

Next, the performance of the parameters of the iterative algorithms is

presented. For the SA parameters, i.e. initial temperatures, neighborhood structures,

and cooling schedules, it is found that a low initial temperature is slightly preferable

(two for λ < 0.5 and ten otherwise are recommended). The neighborhood structures

are based on pairwise interchanges for λ = 0 and on shifts of jobs otherwise. The

Lundy and Mees cooling scheme, Tnew = Told/(1+β×Told), is recommended.

For the TS parameters, i.e. neighborhood structures, size of the tabu list, and

the number of generated neighbors per iteration, the pairwise interchange

neighborhood is better for λ < 0.005, whereas the shift neighborhood becomes better

otherwise. A tabu list size of 10 and the generation of a constant number of 20

nontabu neighbors in each iteration are good choices.

For the GA parameters, it is found that the OPX crossover is clearly superior

to the PMX crossover, whereas the SM neighborhood is selected as the mutation

172

operator for problems with λ ≥ 0.01, and the PI neighborhood otherwise is

recommended. The algorithm is fixed the crossover and mutation rates at 0.6 and 0.3,

respectively.

For the recommended SA, TS, and GA parameters, the performance of these

algorithms RNDSA, RNDTA, and RNDGA is investigated. It is found that the

RNDSA algorithm outperforms the other algorithms. Then, the influence of the initial

solution on these algorithms is studied. The results have shown that the SA-based

algorithms are still good algorithms. However, among the SA-, TS- and GA- based

algorithms, the NEH and INEH rules are a good choice of an initial solution in

general.

Finally, the INEHSA algorithm is recommended as the heuristic solution

algorithm for the problem under consideration, where it consists of four parts, namely

the creation of the representatives of the operating time, the modified NEH algorithm,

the fast improvement algorithm, and the SA algorithm.

CHAPTER VI

CONCLUSION AND FUTURE RESEARCH

Scheduling is the allocation of available and limited production resources to

perform a number of jobs over time and to meet certain objectives while respecting a

set of constraints (Baker, 1974; Pinedo, 1995; Pinedo and Chao, 1999). The aims of

this dissertation is to formulate a mathematical model and to develop approximate

algorithms to solve the scheduling problem in the flexible flow shop environment

with unrelated parallel machines and sequence-dependent setup times in order to

minimize the makespan and the number of tardy jobs. In this chapter, conclusion is

presented in the first section. Then, future research is discussed in the next section.

6.1 Conclusion

The dissertation problem is the job scheduling problem in a flexible flow shop

environment (see Chapter I). The flexible flow shop environment consists of many

production stages in series, where jobs have to undergo multiple operations in the

same order. However, at least one stage consists of a number of machines in parallel,

so jobs have to be processed on any one of the parallel machines in the stage. In

addition, processing times to perform a job on each machine in the stage are different.

They depend on the jobs and the machines (referred to as unrelated parallel

machines). Moreover, setup times are considered in the problem. The sequence-

dependent setup time is the setup duration that depends on the current job and the

immediately proceeding job, whereas the machine-dependent setup time is the setup

duration that depends on the current job and the machine that the job is processed.

The machine-dependent setup is the sequence-dependent setup that occurs between

the last job in the previous planning period and the first job in the current planning

period on the same machine. Moreover, due to the unfinished jobs of the previous

planning period, the machines are reserved for processing the unfinished jobs without

rescheduling. All data are assumed to be known and constant. The scheduling

174

problem has dual objectives, namely minimizing the makespan and minimizing the

number of tardy jobs.

The brief review of machine environments for scheduling problem is

presented in Chapter II. The related survey of the problem under consideration is

provided. It was found that most literature has studied the flexible flow shop problem

with identical parallel machines since 1973 to 2006. Few researchers consider the

flexible flow shop with non-identical parallel machines; for example, Soewandi and

Elmaghraby (2003) consider the two-stage flexible flow shop with uniform parallel

machines, and Low (2005) and Kyparisis and Koulamas (2006) consider the multi

stage flexible flow shop with unrelated parallel machines. For the literature in 2007

and 2008, researchers tend to study the flexible flow shop with unrelated parallel

machines, see Jenabi et al. (2007), Low et al. (2008), and Ruiz et al. (2008).

A 0-1 mixed integer program formulation is provided in Chapter III. It

considers three main conditions, namely unrelated parallel machines, sequence-

dependent setup time between jobs, and machine-dependent setup time of a job. The

optimal solution can be obtained by running the commercial mathematical

programming software, CPLEX 8.0.0 and AMPL. It is found that the mathematical

model can be used for solving the problems with up to six jobs and four stages in

acceptable time. This observation is similar to the recommendations from previous

research by Lee and Asllani (2004) in that they have recommended that the 0-1

mathematical programming is practical for the scheduling problem where the number

of jobs is lesser than five jobs. In addition, the total number of possible sequence

combinations that is generated by using a complete enumeration is estimated. It is

concluded that the total number of possible sequence combinations is so large when

the number of jobs and/or number of machines per stage and/or number of stages

increases. Attempts to find all solutions are unsuccessful as they require too much

CPU time. Thus, it is hard to find the optimal solution or even best solution by using

either a complete enumeration or a mathematical model.

175

The main limitation of the exact solution approach is the high memory

consumption of finding the optimal solution, so the heuristic approach to find the

good solution is suggested as the preferred approach. The proposed heuristic solution

concepts consist of three main kinds of the heuristic algorithms, which are the

constructive, improvement, and iterative algorithms (see Chapter IV).

The schedule construction approach is firstly proposed to evaluate the

performance of the schedule and to evaluate the fitness of the solution in each

iteration of the iterative algorithms. It is based on the idea of Santos et al. (1996). It

starts with a starting job sequence. The stages are scheduled separately. Considering

the jobs in the order of the starting job sequence, each job is loaded on the machine

with the minimum completion time in the first considered production stage (referred

to as a greedy search approach). Then the approach uses the particular rules (i.e. the

First-In-First-Out rule and the permutation rule) to generate a new job sequence for

the next production stage. Again, considering the jobs in the new job sequence, each

job is loaded on the machine with the minimum completion time in the next

considered production stage. Repeat the steps of the approach until all production

stages are considered (see Section 4.3).

The constructive algorithms described in Section 4.4 are proposed for

determining the starting job sequence for the first stage for the problem. They start

with finding the representatives of the operation time for each operation. Then, they

use the representatives of the operation times to find a starting job sequence for the

first stage by using some algorithms and follow with the proposed schedule

construction approach to find the schedule result. Both dispatching rules (i.e. the SPT,

LPT, ERD, EDD, MST, and S/P rules) and flow shop makespan heuristics (i.e. the

PAL, CDS, GUP, DAN, and NEH) are used to find a starting job sequence for the

first stage.

The computational performance of each constructive algorithm is compared to

each other. It is shown that arranging the jobs in the starting job sequence for the first

176

stage by using the modified NEH algorithm is an excellent constructive algorithm for

minimizing the objective function considered.

Next, to improve the solutions obtained by the constructive algorithms,

polynomial heuristic improvement algorithms based on shift moves and pairwise

interchanges of jobs are applied (see Section 4.5).

 When applying a fast polynomial improvement algorithm, it is found that the

all-pairwise-interchange approach is good for the neighborhood exchanges in the

improvement algorithms. It can improve the quality of a particular constructive

solution by about 60 – 80 percent.

Next, the iterative algorithms, namely simulated annealing, tabu search, and

genetic algorithms, are developed in Section 4.6. The parameter testing for the

iterative algorithms is first conducted. For, the SA parameters, i.e. initial

temperatures, neighborhood structures, and cooling schedules, it is found that a low

initial temperature is slightly preferable (it recommends two for λ < 0.5, and ten

otherwise). The neighborhood structures should be based on pairwise interchanges

for λ = 0, and on shifts of jobs otherwise. The Lundy and Mees cooling scheme, Tnew

= Told/(1+β×Told), is recommended.

For the TS algorithm, the TS parameters, i.e. neighborhood structures, size of

the tabu list, and the number of generated neighbors per iteration, are tested. Similar

to the SA algorithm, the pairwise interchange neighborhood is better for λ < 0.005,

whereas the shift neighborhood becomes better otherwise. It can recommend a tabu

list size of 10 and the generation of a constant number of 20 nontabu neighbors in

each iteration.

For the GA algorithm, it is found that the OPX crossover is clearly superior to

the PMX crossover, whereas it recommends that the SM neighborhood should be

177

selected as the mutation operator for problems with λ ≥ 0.01, and the PI neighborhood

otherwise. The crossover and mutation rates at 0.6 and 0.3 are better.

For the recommended SA, TS, and GA parameters, the performance of these

algorithms RNDSA, RNDTA, and RNDGA, where an initial solution is randomly

generated, are tested. It is found that the RNDSA algorithm outperforms the other

algorithms.

Then, the influence of using the initial solution on these algorithms is studied

(see Section 4.7). The results have shown that the SA-based algorithms are still good

algorithms. However, among the SA-, TS- and GA- based algorithms, the NEH and

INEH rules are a good choice of an initial solution for such algorithms in general.

Finally, the INEHSA algorithm is recommended as the heuristic solution

algorithm for the problem under consideration, where it consists of four parts, namely

the determination of the representatives of the operating time, the modified NEH

algorithm, the fast improvement algorithm, and the SA algorithm. The first part is to

determine the representatives of the operating times, since the actual job operating

times are unknown until an assignment of jobs to machines for the corresponding

stage has been done. The second part is the construction of the initial schedule

solution, which is referred to the modified NEH approach. The modified NEH

approach is applied for arranging the jobs in the starting job sequence and uses the

schedule construction approach to construct the initial schedule output. The third part

is the improvement algorithm that is applied on the selected starting job sequence

from the second part. The all-pairwise-interchange approach is applied on the starting

job sequence for the jobs that are tardy. The new starting job sequence that gives the

best schedule solution is kept. The final part applies the simulated annealing

algorithm, where the staring job sequence that is generated from the third part is used

as the initial solution for the SA algorithm.

The research summary of this dissertation is depicted in Figure 6.1.

178

Figure 6.1 Research summary

179

HEURISTIC

SOLUTION METHOD

IMPROVEMENT
ALGORITHMS

ITERATIVE
ALGORITHMS

CONSTRUCTIVE
ALGORITHMS

DISPATCHING RULES
Generate an initial feasible
solution by using the SPT, LPT,
ERD, EDD, MST, and S/P rules.

FLOW SHOP HEURISTICS
Generate an initial feasible
solution by using the PAL, CDS,
GUP, DAN, and NEH heuristics.

Improve an initial feasible
solution of the constructive
algorithms based on the shift
move (SM) and the pairwise
interchange (PI) neighborhoods.

 2-SM moves the job left and
right in two randomly positions.
 A-SM moves the job left and
right in all positions.
 2-PI swaps the job left and
right in two randomly positions.
 A-SM swaps the job left and
right in all positions.

Select the fast improvement
algorithm.
Generate a fast improvement
feasible solution by using the
notations ISPT, ILPT, IERD,
IEDD, IMST, IS/P, IPAL,
ICDS, IGUP, IDAN, and INEH
heuristics.

SIMULATED
ANNEALING
ALGORITHM

TABU SEARCH
ALGORIHTM

GENETIC
ALGORITHM

Determine the favorable
parameter of each iterative
algorithm.
Use the recommended
parameters to test the choice of
an appropriate initial solution for
the simulated annealing and tabu
search algorithms or a part of the
initial population for the genetic
algorithm

Computational
Experiments

The total number of possible sequence combinations is so large when
the number of jobs and/or number of machines per stage and/or number
of stages increases.
Arranging the jobs in the starting job sequence is better by using the
modified NEH rule.
The all-pairwise-interchange approach is good for the neighborhood
exchanges in the improvement algorithm.
The SA-based algorithm with a biased initial solution outperforms

Figure 6.1 Research summary (cont.)

180

6.2 Future Research

 This dissertation has studied a flexible flow shop problem with unrelated

parallel machines and sequence-dependent setup times. The primary contributions of

this dissertation are as follows:

1. To develop a mathematical model that extends the flexible flow shop

problem with identical parallel machines to cope with the flexible flow

shop problem with unrelated parallel machines which is common to

encounter in the real-world situation, and

2. To investigate heuristic algorithms for the flexible flow shop problem with

unrelated parallel machines. These algorithms generalize existing

procedures from the literature. Moreover, while in the literature for flow

shop problems only one optimization criterion is used, this dissertation

uses a bicriteria problem. New results are e.g. the combination of

makespan heuristics with fast polynomial iterative algorithms so that for

the generation of the initial solution both criteria are used. Within the

individual algorithms new components have been suggested (e.g.

crossover operators for the genetic algorithms, the schedule construction

algorithm, the suggested treatment of the operating times, etc.).

However, the proposed algorithms in this dissertation only determine a

starting job sequence as an initial seed for the first stage and use the fixed rules (i.e.

either FIFO or permutation rules) to find the new job sequence for the next stage.

Then, they use the particular approach to assign the jobs to the machines in each

stage. Consequently, heuristics that use the different stage sequencing orders will be

studied to increase the solution quality further. In addition, the procedure for fixing

the processing and setup times as well as the relative speeds in the constructive

algorithms can be refined further.

181

Even though most studies including this dissertation have developed the model

to solve the flexible flow shop problem, such a problem remains largely unsolved.

The progress in scheduling theory, while advancing at a rapid pace, is not appreciable

to solve practical flexible flowshop scheduling problems optimally and efficiently.

Moreover, it lacks of integrative and interactive decision making in the business

practices. Consequently, it is suggested that the gap between the development of

theory and practical applications of theory intend to be bridged. Three areas of future

research are suggested: theoretical, computational, and empirical research.

6.2.1 Theoretical Research

 The mixed integer programming (MIP) optimization has limited

operational capability. However, although the size of most industrial problems

exceeds the capability of the proposed model, it can be beneficial to researchers for

testing the performance of heuristics designed for multi-criteria problems. Further

research in this area is required to develop more efficient computer codes so that the

model is able to be applied to slightly or even much larger scheduling problems.

 Although the mathematical model can easily provide an optimal

solution, it becomes too complex to be used for large scheduling problems. Solving

larger instances of the scheduling problems using a commercial solver would be a

challenge. Techniques such as branch-and-price (branch-and-bound plus column

generation) and branch-and-cut (branch-and-bound plus row generation) may be

developed to solve larger instances, that is, theoretical research in a flexible flow shop

scheduling problem should attempt to develop a polynomial bounded algorithm to

reject quickly a large number of inefficient partial schedules to curtail enumeration

scheme.

Moreover, from the results of the numerical examples it is seen that

there are usually different optimal solutions for each criterion. Thus, to select an

182

appropriate criterion is necessary for making the decision. Perhaps, it is worth using a

multi-objective function to choose an optimal schedule considering different goals.

 Simultaneously, more quick but reliable heuristic algorithms should be

developed. For example, it can be done to use other iterative algorithms such as ant

colony algorithms. The choice of good parameters for them should be tested. In

addition, the influence of the starting solution should be investigated.

 Consideration of hybrid algorithms for the flexible flow shop problem

provides other fruitful areas for future theoretical research; for instance, hybrid

algorithms should be developed by using a local search algorithm within a GA

approach. This means that, after generating an offspring, this solution should be

improved by applying for instance tabu search or simulated annealing before applying

the selection criterion of the GA approach.

6.2.2 Computational Research

 It is difficult to select an algorithm in solving a given flexible flow

shop problem. The future computational research should consider such aspects as

comparative efficiency of a wide range of algorithms for a specified problem with

given data. Consequently, new measures of computational effort should be

developed. In addition, it is possible to use artificial intelligence techniques, such as

neural networks, to select a good specific heuristic to be used for a given flexible flow

shop problem (Gupta, Sexton, and Tunc, 2000).

6.2.3 Empirical Research

 The mathematical theory of flexible flow shop scheduling suffers from

too much abstraction and too little application. Consequently, it seems to be

motivated by how the practical research of flexible flow shop can be used. Despite a

few decade of research, the practical use of flexible flow shop is rare. Perhaps, future

183

research in flexible flow shop scheduling should be inspired more by real life

problems rather than problems encountered in mathematical abstractions.

 For a realistic problem formulation, empirical research is necessary to

understand the practical situations. The flexible flowshop scheduling is only one of a

few areas where no case histories are available. Empirical research should answer

such questions as (Gupta and Stafford, 2006):

1. What is the maximum problem size encountered in practice?

2. What specific situations give rise to flowshop scheduling

problems?

3. What are the desired objectives of scheduling?

4. What is the nature of processing times?

5. How rigid (or flexible) are the operating policies?

 Moreover, for heuristic algorithms, although the scheduling problems

are tested on a wide range of heuristic algorithms, it is necessary to obtain the

industrial data to further validate performance.

REFERENCES

Adler, L., Fraiman, N., Kobacker, E., Pinedo, M., Plotnicoff, J. C., and Wu, T. P.

1993. BPSS: A scheduling support system for the packaging industry.

Operations Research 41(4): 641-648.

Alisantoso, D., Khoo, L. P., and Jiang, P. Y. 2003. An immune algorithm approach

to the scheduling of a flexible PCB flow shop. The International Journal of

Advanced Manufacturing Technology 22(11-12): 819-827.

Allahverdi, A., Gupta, J. N. D., and Aldowaisan, T. 1999. A review of scheduling

research involving setup considerations. Omega. 27(2): 219-239.

Allahverdi, A., Ng, C. T., Cheng, T. C. E., and Kovalyov, M. Y. 2008. A survey of

scheduling problems with setup times or costs. European Journal of

Operational Research 187(3): 985-1032.

Allaoui, H., and Artiba, A. 2004. Integrating simulation and optimization to schedule

a hybrid flow shop with maintenance constraints. Computers & Industrial

Engineering 47(4): 431-450.

Azizoğlu, M., Cakmak, E., and Kondakci, S. 2001. A flexible flowshop problem

with total flow time minimization. European Journal of Operational Research

132(3): 528-538.

Azizoğlu, M., and Kirca, O. 1999. On the minimization of total weighted flow time

with identical and uniform parallel machines. European Journal of

Operational Research 113(1): 91-100.

Baker, K. R. 1974. Introduction to Sequencing and Scheduling. 1st ed. Canada:

John Wiley & Sons.

Barr, R., Golden, B., Kelly, J., Rescende, M., and Stewart, W. 1995. Designing and

Reporting on Computational Experiments with Heuristic Methods. Journal of

Heuristics 1(1): 9-32.

Belouadah, H., and Potts, C. N. 1994. Scheduling identical parallel machines to

minimize total weighted completion time. Discrete Applied Mathematics

48(3): 201-218.

185

Bernardo, J. J., and Lin, K. S. 1994. An interactive procedure for bi-criteria

production scheduling. Computers & Operations Research 21(6): 677-688.

Bertel, S., and Billaut, J. C. 2004. A genetic algorithm for an industrial

multiprocessor flow shop scheduling problem with recirculation. European

Journal of Operational Research 159(3): 651-662.

Bhattacharya, S., and Bose, S. K. 2007. Mathematical model for scheduling

operations in cascaded continuous processing units. European Journal of

Operational Research 182(1): 1-14.

Blum, C., and Roli, A. 2003 Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Computing Surveys. 35(3): 268-308.

Bolat, A., Al-Harkan, I., and Al-Harbi, B. 2005. Flow-shop scheduling for three

serial stations with the last two duplicate. Computers & Operations

Research 32(3): 647-667.

Botta-Genoulaz, V. 2000. Hybrid flow shop scheduling with precedence constraints

and time lags to minimize maximum lateness. International Journal of

Production Economics 64(1-3): 101-111.

Brah, S.A., and Hunsucker, J. L. 1991. Branch and bound algorithm for the flow

shop with multiple processors. European Journal of Operational Research

51(1): 88–99.

Brah, S. A., and Loo, L. L. 1999. Heuristics for scheduling in a flow shop with

multiple processors. European Journal of Operational Research 113(1):

113-122.

Bräsel, H., Herms, A., Mörig, M., Tautenhahn, T., Tusch, J., Werner, F., and

Willenius, P. 2006. A Comparison of Heuristics for Mean Flow Time Open

Shop Scheduling, In A. Dolgui, G. Morel, C. E. Pereira (eds.), Proceedings of

the 12th IFAC Symposium on Control Problems in Manufacturing, pp.

119-124. Vol. 3, St. Etienne/France.

Bratley, P., Florian, M., and Robillard, P. 1975. Scheduling with earliest start and

due date constraints on multiple machines. Naval Research Logistics

Quarterly 22(1): 165-173.

186

Burns, L. D., and Daganzo, C. F. 1987. Assembly line job sequencing principles.

International Journal of Production Research. 25(1): 71-99.

Campbell, H. G., Dudek, R. A., and Smith, M. L. 1970. A heuristic algorithm for the

n Job m Machine sequencing problem. Management Science 16(10): B630-

B637.

Chen, B. 1995. Analysis of classes of heuristics for scheduling a two-stage flow shop

with parallel machines at one stage. Journal of the Operational Research

Society 46(2): 234-244.

Cheng, R., Gen, M., and Tozawa, M. 1995. Minmax earliness/tardiness scheduling

in identical parallel machine system using genetic algorithms. Computers &

Industrial Engineering 29(1-4):513-517.

Chung, C. S., Flynn, J., and Kirca, O. 2002. A branch and bound algorithm to

minimize the total flow time for m-machine permutation flowshop problem.

International Journal of Production Economics 79(3): 185-196.

Conway, R. W., Maxwell, W. L., and Miller, L. W. 1967. Theory of Scheduling

Reading, Massachusetts: Addison-Wesley.

Cook, W. J., Cunningham, W. H., Pulleyblank, W. R, and Schrijver, A. 1998.

Combinatorial Optimization. 1st ed. New York: John Wiley & Sons.

Damodaran, P., and Srihari, K. 2004. Mixed Integer Formulation to Minimize

Makespan in a Flow Shop with Batch Processing Machines. Mathematical

and Computer Modelling 40(13): 1465-1472.

Dannenbring, D. G. 1977. An evaluation of flow shop sequencing heuristics.

Management Science 23(11):1174-1182.

Day, J. E., and Hottenstein, M. P. 1970. Review of Sequencing Research. Naval

Research Logistics Quarterly. 17(1): 11-39.

Deal, D. E., and Hunsucker, J. L. 1991. The two-stage flowshop scheduling problem

with m machines at each stage. Journal of Information and Optimization

Sciences 12 (3): 407-417.

Dessouky, M. M., Dessouky, M. I., and Verma, S. K. 1998. Flowshop scheduling

with identical jobs and uniform parallel machines. European Journal of

Operational Research 109(3): 620-631.

187

Elmaghraby, S. E., and Park, S. H. 1974. Scheduling jobs on a number of identical

machines. AIIE Transactions 6(1): 1-13.

Engin, O., and Döyen, A. 2004. A new approach to solve hybrid flow shop

scheduling problems by artificial immune system. Future Generation

Computer Systems 20(6): 1083-1095.

Eren, T. 2007. A multicriteria flowshop scheduling problem with setup times.

Journal of Materials Processing Technology 186(1-3): 60-65.

Finke, D. A., and Medeiros, D. J. 2002. Shop scheduling using tabu search and

simulation. Proceedings of the 2002 Winter Simulation Conference: 1013-

1017.

Framinan, J. M., Gupta J. N. D., and Leisten, R. 2004. A review and classification of

heuristics for permutation flow-shop scheduling with makespan objective.

Journal of the Operational Research Society 55(12): 1243-1255.

Gagliardi, F. 2007. Some Issues About Cognitive Modelling and Functionalism. In R.

Basili and M.T. Pazienza (eds.), AI*IA 2007: Artificial Intelligence and

Human-Oriented Computing, pp. 60-71. Berlin: Springer-Verlag.

Garey, M. R., and Johnson, D. S. 1979. Computers and Intractability: A Guide to

the Theory of NP-Completeness. San Francisco: W. H. Freeman and

Company.

Gen, M., and Cheng, R. 1997. Genetic Algorithms and Engineering Design. 1st

ed. New York: John Wiley & Sons.

Glover, F. 1986. Future paths for integer programming and links to artificial

intelligence. Computers & Operations Research 13(5): 533-549.

Glover, F., and Laguna, M. 1993. Tabu search. In C. R. Reeves (ed.), Modern

heuristic techniques for combinatorial problems, pp. 70-150. chapter 3.

Oxford: Blackwell Scientific Publications.

Gourgand, M., Grangeon, N., and Norre, S. 1999. Metaheuristics for the

deterministic hybrid flowshop problem. Proceeding of the international

conference on industrial engineering and production management

(IEPM’99), Glasgow, United Kingdom, July 12-15 1999: 136-145.

http://www.ingentaconnect.com/content/pal/01605682;jsessionid=2o71qfpboqhs4.victoria

188

Grabowski, J., and Wodecki, M. 2004. A very fast tabu search algorithm for the

permutation flow shop problem with makespan criterion. Computers &

Operations Research. 31(11): 1891-1909.

Grangeon, N., Tanguy, A., and Tchernev, N. 1999. Generic simulation model for

hybrid flow-shop. Computers & Industrial Engineering 37(1-2): 207-210.

Guinet A., Echalier, F., and Dussauchoy, A. 1992. Scheduling jobs on parallel

machines: a survey. EURO XII/TIMS XXXI Joint International

Conference, Helsinki, Finland

Guinet, A. G. P., and Solomon, M. M. 1996. Scheduling hybrid flowshops to

minimize maximum tardiness or maximum completion time. International

Journal of Production Research 34(6): 1643-1654.

Guinet, A., Solomon, M. M., Kedia, P. K., and Dussauchoy, A. 1996. A

Computational study of heuristics for two-stage flexible flowshops.

International Journal of Production Research 34(5): 1399-1415.

Guirchoun, S., Martineau, P., and Billaut, J. C. 2005. Total completion time

minimization in a computer system with a server and two parallel processors.

Computers & Operations Research 32(3): 599-611.

Gupta, J. N. D. 1971. A functional heuristic algorithm for the flowshop scheduling

problem. Operations Research Quarterly 22(1): 39-47.

Gupta, J. N. D. 1988. Two-stage, hybrid flow shop scheduling problem. Journal of

the Operational Research Society 39(4): 359-364.

Gupta, J. N. D., Hariri, A. M. A., and Potts, C. N. 1997. Scheduling a two-stage

hybrid flow shop with parallel machines at the first stage. Annals of

Operations Research 69: 171-191.

Gupta, J. N. D., Krüger, K., Lauff, V., Werner, F., and Sotskov, Y. N. 2002.

Heuristics for hybrid flow shops with controllable processing times and

assignable due dates. Computers & Operations Research 29(10): 1417-

1439.

Gupta, J. N. D., and Ruiz-Torres, A. J. 2005. Generating efficient schedules for

identical parallel machines involving flow-time and tardy jobs. European

Journal of Operational Research. 167(3): 679-695.

189

Gupta, J. N. D., Sexton, R. S., and Tunc, E. A. 2000. Selecting scheduling heuristics

using neural networks. INFORMS Journal on Computing. 12(2): 150-162.

Gupta, J. N. D., and Stafford Jr, E. F. 2006. Flowshop scheduling research after five

decades. European Journal of Operational Research 169(3): 699-711.

Gupta, J. N. D., and Tunc, E. A. 1991. Schedules for a two-stage hybrid flowshop

with parallel machines at the second stage. International Journal of

Production Research 29(7): 1489-1502.

Gupta, J. N. D., and Tunc, E. A., 1994. Scheduling a two-stage hybrid flowshop with

separable setup and removal times. European Journal of Operational

Research 77(3): 415-428.

Gupta, J. N. D., and Tunc, E. A. 1998. Minimizing tardy jobs in a two-stage hybrid

flowshop. International Journal of Production Research 36(9): 2397-2417.

Haouari, M., Hidri, L., and Gharbi, A. 2006. Optimal scheduling of a two-stage

hybrid flow shop. Mathematical Methods of Operations Research. 64(1):

107-124.

Haouari, M., and M’Hallah, R. 1997. Heuristic algorithms for the two-stage hybrid

flowshop problem. Operations Research Letters 21(1): 43-53.

Harjunkoski, I., and Grossmann, I. E. 2002. Decomposition techniques for

multistage scheduling problems using mixed-integer and constraint

programming methods. Computers & Chemical Engineering 26(11): 1533-

1552.

Heizer, J., and Render, B. 2001. Operations Management. 6th ed. New Jersey.

Prentice Hall.

Hejazi, S. R., and Saghafian, S. 2005. Flowshop-scheduling problems with

makespan criterion: a review. International Journal of Production

Research 43(14): 2895-2929.

Hino, C. M., Ronconi, D. P., and Mendes, A. B. 2005. Minimizing earliness and

tardiness penalties in a single-machine problem with a common due date.

European Journal of Operational Research 160(1): 190-201.

Ho, J. C., and Chang, Y. L. 1995. Minimizing the number of tardy jobs for m parallel

machines. European Journal of Operational Research 84(2): 343-355.

190

Holland, J. H. 1975. Adaptation in natural and artificial systems. Ann Arbor.

University of Michigan.

Holthaus, O., and Rajendran, C. 1997. New dispatching rules for scheduling in a job

shop — An experimental study. The International Journal of Advanced

Manufacturing Technology 13(2): 148-153.

Hoogeveen, J. A., Lenstra, J. K., and Veltman, B. 1996. Preemptive scheduling in a

two-stage multiprocessor flow shop is NP-hard. European Journal of

Operational Research 89 (1): 172-175.

Hsieh, J. C., Chang, P. C., and Hsu, L. C. 2003. Scheduling of drilling operations in

printed circuit board factory. Computers & Industrial Engineering. 44(3):

461-473.

Iyer, S. K., and Saxena, B. 2004. Improved genetic algorithm for the permutation

flowshop scheduling problem. Computers & Operations Research 31(4):

593-606.

Jackson, J. R. 1955. Scheduling a production line to minimize maximum tardiness.

Management Science Research Project Research Report 43. Los Angeles.

CA: University of California.

Janiak, A., Kozan, E., Lichtenstein, M., and Oğuz, C. 2007. Metaheuristic

approaches to the hybrid flow shop scheduling problem with a cost-related

criterion. International Journal of Production Economics 105(2): 407-424.

Jenabi, M., Fatemi Ghomi, S. M. T., Torabi, S. A., and Karimi, B. 2007. Two hybrid

meta-heuristics for the finite horizon ELSP in flexible flow lines with

unrelated parallel machines. Applied Mathematics and Computation

186(1): 230-245.

Jin, Z., Yang, Z., and Ito, T. 2006. Metaheuristic algorithms for the multistage hybrid

flowshop scheduling problem. International Journal of Production

Economics 100(2): 322-334.

Johnson, S. M. 1954. Optimal two- and three-stage production schedules with setup

times included. Naval Research Logistics Quarterly 1(1): 61-68.

191

Jones, D. F., Mirrazavi, S. K., and Tamiz, M. 2002. Multi-objective meta-heuristics:

An overview of the current state-of-art. European Journal of Operational

Research 137(1): 1-9.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., and Werner, F. 2005. An

evaluation of sequencing heuristics for flexible flowshop scheduling problems

with unrelated parallel machines and dual criteria. Otto-von-Guericke-

Universitat Magdeburg Preprint 05(28): 1-23.

Karacapilidis, N. I., and Pappis, C. P. 1996. Production planning and control in

textile industry: A case study. Computers in Industry 30(2): 127-144.

Kim, J. S., Kang, S. H., and Lee, S. M. 1997. Transfer batch scheduling for a two-

stage flowshop with identical parallel machines at each stage. Omega 25(5):

547-555.

Kirkpatrick, S., Gelatt, Jr. C. D., and Vecchi, M. P. 1983. Optimization by simulated

annealing. Science 220(4598): 671-680.

Koulamas, C., Antony, S. R., and Jaen, R. 1994. A survey of simulated annealing

applications to operations research problems. Omega International Journal

of Management Science 22(1):41-56.

Kumar, N. S. H., and Srinivasan, G. 1996. A genetic algorithm for job shop

scheduling – a case study. Computers in Industry 31(2): 155-160.

Kurz, M. E., and Askin, R. G. 2003. Comparing scheduling rules for flexible flow

lines. International Journal of Production Economics 85(3): 371-388.

Kurz, M. E., and Askin, R. G. 2004. Scheduling flexible flow lines with sequence-

dependent setup times. European Journal of Operational Research 159(1):

66-82.

Kyparisis, G. J., and Koulamas, C. 2006. Flexible flow shop scheduling with

uniform parallel machines. European Journal of Operational Research

168(3): 985-997.

Lee, C. Y., and Vairaktarakis, G. L. 1994. Minimizing makespan in hybrid

flowshops. Operations Research Letters 16(3): 149-158.

192

Lee, S. M., and Asllani, A. A. 2004. Job scheduling with dual criteria and sequence-

dependent setups: Mathematical versus genetic programming. Omega 32(2):

145-153.

Lin, B. M. T., and Jeng, A. A. K. 2004. Parallel-machine batch scheduling to

minimize the maximum lateness and the number of tardy jobs. International

Journal of Production Economics 91(2): 121-134.

Lin, Hung-Tso., and Liao, Ching-Jong. 2003. A case study in a two-stage hybrid

flow shop with setup time and dedicated machines. International Journal of

Production Economics 86(2): 133-143.

Linn, R., and Zhang, W. 1999. Hybrid flow shop scheduling: A survey. Computers

& Industrial Engineering 37(1-2): 57-61.

Liu, C. Y., and Chang, S. C. 2000. Scheduling flexible flow shops with sequence-

dependent setup effects. IEEE Transactions on Robotics and Automation

16(4): 408-419.

Logendran, R., deSzoeke, P., and Barnard, F. 2006. Sequence-dependent group

scheduling problems in flexible flow shops. International Journal of

Production Economics 102(1): 66-86.

Loukil, T., Teghem, J., and Tuyttens, D. 2005. Solving multi-objective production

scheduling problems using metaheuristics. European Journal of

Operational Research. 161(1): 42-61.

Low, C. 2005. Simulated annealing heuristic for flow shop scheduling problems with

unrelated parallel machines. Computers & Operations Research 32(8):

2013-2025.

Low, C., Hsu, C. J., and Su, C. T. 2008. A two-stage hybrid flowshop scheduling

problem with a function constraint and unrelated alternative machines.

Computers & Operations Research 35(3): 845-853.

Lundy, M., and Mees, A. 1986. Convergence of an annealing algorithm.

Mathematical Programming 34(1): 111–124.

Mansouri, S. A. 2006. A simulated annealing approach to a bi-criteria sequencing

problem in a two-stage supply chain. Computers & Industrial Engineering

50(1-2): 105-119.

193

Markland, R. E., Darby-Dowman, K. H., and Minor, E. D. 1990. Coordinated

production scheduling for make-to-order manufacturing. European Journal

of Operational Research 45(2-3): 155-176.

Moore, J. M. 1968. An n job, one machine sequence algorithm for minimizing the

number of late jobs. Management Science 15(1): 102-109.

Moursli, O., and Pochet, Y. 2000. A Branch-and-bound algorithm for the hybrid

flowshop. International Journal of Production Economics 64(1-3): 113-

125.

Murata, T., Ishibuchi, H., and Tanaka, H. 1996. Multi-objective genetic algorithm

and its applications to flowshop scheduling. Computers & Industrial

Engineering 30(4): 957-968.

Murtadi, A., and Taboun, S. M. 2001. A genetic algorithm for scheduling sequence

dependent jobs on identical parallel machines to minimize the bi-criteria of

makespan and number of tardy jobs. The 29th International Conference

Computers and Industrial Engineering. Montreal, Canada. (2001,

November 01): 508-513.

Narasimhan, S. L., and Mangiameli, P. M. 1987. A comparison of sequencing rules

for a two-stage hybrid flow shop. Decision Sciences 18(2): 250-265.

Nawaz, M., Enscore, Jr, E. E., and Ham, I. 1983. A heuristic algorithm for the m-

machine, n-job flow-shop sequencing problem. Omega 11(1): 91-95.

Nearchou, A. C. 2004. The effect of various operators on the genetic search for large

scheduling problems. International Journal of Production Economics

88(2): 191-203.

Negenman, E. G. 2001. Local search algorithms for the multiprocessor flow shop

scheduling problem. European Journal of Operational Research 128 (1):

147-158.

Nemhauser, L. G., and Wolsey, L. A. 1999. Integer and combinatorial optimization.

New York: John Wiley.

Néron, E., Baptiste, P., and Gupta, J. N. D. 2001. Solving hybrid flow shop problem

using energetic reasoning and global operations. Omega – The International

Journal of Management Science 29(6): 501-511.

194

Nowicki, E., and Smutnicki, C. 1998. The flow shop with parallel machines: A tabu

search approach. European Journal of Operational Research 106(2-3):

226-253.

Oguz, C., Lin, B. M. T., and Cheng, T. C. E. 1997. Two-stage flowshop scheduling

with a common second-stage machine. Computers and Operations

Research 24(12): 1169-1174.

Palmer, D. S. 1965. Sequencing jobs through a multi-stage process in the minimum

total time--A quick method of obtaining a near optimum. Operational

Research Quarterly 16(1):101-107.

Panwalkar, S. S., Dudek, R. A., and Smith, M. L. 1973. Sequencing research and the

industrial scheduling problem. In S. E. Elmaghraby (ed.), Proceedings of

Symposium on the Theory of Scheduling and its Applications, pp. 29-38.

New York: Springer-Verlag.

Park, B. J., Choi, H. R., and Kim, H. S. 2003. A hybrid genetic algorithm for the job

shop scheduling problems. Computers & Industrial Engineering 45(4):

597-613.

Paul, R. J. 1979. A production scheduling problem in the glass-container industry.

Operations Research 27(2): 290-302.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for Computer Problem

Solving. 1st ed. Massachusetts: Addison-Wesley.

Pinedo, M. 1995. Scheduling: theory, algorithms, and systems. 1st ed. New

Jersey: Prentice-Hall.

Pinedo, M., and Chao, X. 1999. Operations scheduling with applications in

manufacturing and services. 1st ed. Boston: McGraw-Hill.

Portmann, M. C., Vignier, A., Dardilhac D., and Dezalay, D. 1998. Branch and

bound crossed with GA to solve hybrid flowshops. European Journal of

Operational Research 107(2): 389-400.

Quadt, D., and Kuhn, H. 2007. A taxonomy of flexible flow line scheduling

procedures. European Journal of Operational Research 178(3): 686-698.

195

Rajendran, C., and Chaudhuri, D. 1992. A multi-stage parallel-processor flowshop

problem with minimum flowtime. European Journal of Operational

Research 57(1): 111-122.

Rajendran, C., and Ziegler, H. 2003. Scheduling to minimize the sum of weighted

flowtime and weighted tardiness of jobs in a flowshop with sequence-

dependent setup times. European Journal of Operational Research. 149(3):

513-522.

Riane, F., Artiba, A., and Elmaghraby, S. E. 1998. A hybrid three-stage flowshop

problem: Efficient heuristics to minimize makespan. European Journal of

Operational Research 109(2): 321-329.

Reeves, C. R. 1995. A genetic algorithm for flowshop sequencing. Computers &

Operations Research 22(1): 5-13.

Ruiz, R., and Maroto, C. 2005. A comprehensive review and evaluation of

permutation flowshop heuristics. European Journal of Operational

Research 165(2): 479-494.

Ruiz, R., and Maroto, C. 2006. A genetic algorithm for hybrid flowshops with

sequence dependent setup times and machine eligibility. European Journal

of Operational Research 169(3): 781-800.

Ruiz, R., Maroto, C., and Alcaraz, J. 2005. Solving the flowshop scheduling problem

with sequence dependent setup times using advanced metaheuristics.

European Journal of Operational Research 165(1):34-54.

Ruiz, R., Şerifoğlu, F., and Urlings, T. 2008. Modeling realistic hybrid flexible

flowshop scheduling problems. Computers & Operations Research 35(4):

1151-1175.

Salvador, M. S. 1973. A solution to a special case of flow shop scheduling problems,

In S. E. Elmaghraby (ed.) Symposium on the Theory of Scheduling and

Applications, Springer-Verlag, New York: 83-91.

Santos, D. L., Hunsucker, J. L., and Deal, D. E. 1995. Flowmult: permutation

sequences for flow shops with multiple processors. Journal of Information

& Optimization Sciences 16(2): 351-366.

196

Santos, D. L., Hunsucker, J. L., and Deal, D. E. 1996. An evaluation of sequencing

heuristics in flow shops with multiple processors. Computers & Industrial

Engineering 30(4): 681-691.

Sarin, S. C., Ahn, S., and Bishop, A. B. 1988. An improved branching scheme for

the branch and bound procedure of scheduling n jobs on m machines to

minimize total weighted flowtime. International Journal of Production

Research 26(7): 1183-1191.

Sawik, T. 2000. Mixed integer programming for scheduling flexible flow lines with

limited intermediate buffers. Mathematical and Computer Modelling

31(13): 39-52.

Sawik, T. 2002. An exact approach for batch scheduling in flexible flow lines with

limited intermediate buffers. Mathematical and Computer Modelling 36(4-

5): 461-471.

Sawik, T. 2007. A lexicographic approach to bi-objective scheduling of single-

period orders in make-to-order manufacturing. European Journal of

Operational Research 180(3): 1060-1075.

Schuurman, P., and Woeginger, G. J. 2000. A polynomial time approximation

scheme for the two-stage multiprocessor flow shop problem. Theoretical

Computer Science 237(1-2): 105-122.

Shen, V. Y., and Chen, Y. E. 1972. A scheduling strategy for the flow-shop problem

in a system with two classes of processors. Proceedings of the 6th Princeton

Conference on Information and System Science 645-649.

Smith, W. E. 1956. Various optimizers for single-stage production. Naval Research

Logistics Quarterly 3(1): 59-66.

Soewandi, H., and Elmaghraby, S. E. 2001. Sequencing three-stage flexible

flowshops with identical machines to minimize makespan. IIE Transactions

33(11): 985-993.

Soewandi, H., and Elmaghraby, S. E. 2003. Sequencing on two-stage hybrid

flowshops with uniform machines to minimize makespan. IIE Transactions

35(5): 467-477.

197

Sriskandarajah, C., and Sethi, S. P. 1989. Scheduling algorithms for flexible

flowshops: Worst case and average case performance. European Journal of

Operational Research 43(2): 143-160.

Sule, D. R., and Vijayasundaram, K. 1998. A heuristic procedure for makespan

minimization in job shops with multiple identical processors. Computers &

Industrial Engineering 35(3-4): 399-402.

Sundararaghavan, P. S., Kunnathur, A. S., and Viswanathan, I. 1997. Minimizing

makespan in parallel flowshops. Journal of the Operational Research

Society 48(8): 834-842.

Tang, L., and Liu, G. 2007. A mathematical programming model and solution for

scheduling production orders in Shanghai Baoshan Iron and Steel Complex.

European Journal of Operational Research 182(3): 1453-1468.

Tsubone, H., Ohba, M., Takamuki, H., and Miyake, Y. 1993. A production

scheduling system in the hybrid flow shop. Omega. 21(2): 205-214.

Uetake, T., Tsubone, H., and Ohba, M. 1995. A production scheduling system in a

hybrid flow shop. International Journal of Production Economics 41(1-3):

395-398.

Valente, J. M. S., and Alves, R. A. F. S. 2005. An exact approach to early/tardy

scheduling with release dates. Computers & Operations Research 32(11):

2905-2917.

Ventura, J. A., and Radhakrishnan, S. 2003. Single machine scheduling with

symmetric earliness and tardiness penalties. European Journal of

Operational Research 144(3): 598-612.

Wang, H. 2005. Flexible flow shop scheduling: Optimum, heuristics, and artificial

intelligence solutions. Expert Systems. 22(2): 78-85.

Wang, L., Zheng, D.-Z. 2003. An effective hybrid heuristic for flow shop scheduling.

The International Journal of Advanced Manufacturing Technology 21(1):

38-44.

Wang, W., and Hunsucker, J. L. 2003. An evaluation of the CDS heuristic in flow

shops with multiple processors. Journal of the Chinese Institute of

Industrial Engineers 20(3): 295-304.

198

Wardono, B., and Fathi, Y. 2004. A Tabu search algorithm for the multi-stage

parallel machine problem with limited buffer capacities. European Journal

of Operational Research 155(2): 380-401.

Werner, F. 1984. On the solution of special sequencing problems. PhD Thesis, TU

Magdeburg.

Wilbrecht, J. K., and Prescott, W. B. 1969. The influence of setup time on job shop

performance. Management Science. 16(4): B274-B280.

Wilkerson, L. J., and Irwin, J. D. 1971. An improved algorithm for scheduling

independent tasks. AIIE Transaction 3(3): 239-245.

Winston, W. L. 2004. Operations Research: Applications and Algorithms. 4th ed.

California: Thomson-Brooks.

Winston, W. L., and Venkataramanan, M. 2003. Introduction to Mathematical

Programming - Operations Research: Volume ONE. 4th ed. California:

Thomson-Brooks.

Wittrock, R. J. 1985. Scheduling algorithms for flexible flow lines. IBM Journal of

Research and Development 29(4): 401-412.

Wittrock, R. J. 1988. An adaptable scheduling algorithm for flexible flow lines,

Operations Research 36(3): 445-453.

Yanney, J. D., and Kuo, W. 1989. A practical approach to scheduling a multistage,

multiprocessor flow-shop problem. International Journal of Production

Research 27(10): 1733-1742.

Zandieh, M., Fatemi Ghomi, S. M. T., and Moattar Husseini, S. M. 2006. An

immune algorithm approach to hybrid flow shops scheduling with sequence-

dependent setup times. Applied Mathematics and Computation 180(1):

111-127.

 199

VITA

Mr.Jitti Jungwattanakit was born on May 20th, 1975 in Bangkok

province, Thailand. He graduated from King Mongkut’s Institute of Technology

Ladkrabang, Thailand in academic year 1995 with a bachelor’s degree in Electronic

Engineering. He started his work in 1996 as an electrical engineer at Siam Yamato

Steel Co., Ltd. During his work, he also earned a Master’s degree in Industrial

Management from King Mongkut’s Institute of Technology Ladkrabang, Thailand in

academic year 2000. He decided to quit his job to pursue his doctorate in 2003 in the

field of Industrial Engineering at Chulalongkorn University, Thailand.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	1.1 General Background
	1.2 Importance of the Problem
	1.3 Statement of the Problem
	1.4 Dissertation Objectives
	1.5 Dissertation Scope
	1.6 Dissertation Contribution
	1.7 Dissertation Methodology
	1.8 Dissertation Organization

	CHAPTER II LITERATURE REVIEW
	2.1 Machine Environments for Scheduling Problems
	2.2 Flexible Flow Shop Scheduling Problem
	2.3 Survey of the Flexible Flow Shop Problem

	CHAPTER III A MATHEMATICAL PROGRAMMING SOLUTIONAPPORACH
	3.1 Introduction
	3.2 Problem Description
	3.3 A Descriptive Example
	3.4 Mathematical Formulation
	3.5 Complexity of the Problem
	3.6 Conclusion

	CHAPTER IV HEURISTIC SOLUTION CONCEPTS
	4.1 Introduction
	4.2 Conceptual Framework for Heuristics
	4.3 Schedule Construction Approach
	4.4 Constructive Algorithms
	4.5 Improvement Algorithms
	4.6 Iterative Algorithms
	4.7 Choice of an Initial Solution for the Iterative Algorithms
	4.8 Conclusion

	CHAPTER V COMPUTATIONAL EXPERIMENTS
	5.1 Introduction
	5.2 Data Generation of the Test Instances
	5.3 Performance of Algorithms on Medium- and Large-Sized TestProblems
	5.4 Performance of Algorithms on Small-Sized Test Problems
	5.5 The Recommended Heuristic Solution Algorithm
	5.6 Conclusion

	CHAPTER VI CONCLUSION AND FUTURE RESEARCH
	6.1 Conclusion
	6.2 Future Research

	References
	Vita

	Button1:

