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CHAPTER I 
 

INTRODUCTION 
 

 Scheduling problems have long been considered as a part of production 

planning and control, but they have been rarely found associated with the complex 

scheduling problems frequently encountered in practice.  Traditional scheduling 

problems have been addressed in many specific forms such as single machine, 

parallel-machine, flow shop, or job shop problems which are able to be taken by the 

general forms which are more complex and beneficial than the specific forms (Pinedo 

and Chao, 1999).   

 

 The outline of this chapter is organized as follows:  Firstly, the general 

background is explained to provide the definition of scheduling problems, the 

scheduling function, and the classification of the scheduling problems.  Secondly, the 

importance of scheduling problems, i.e. a flexible flow shop problem, sequence-

dependent setup times, release dates of machines, and schedule objectives, is 

indicated.  Thirdly, the statement of the problem is addressed.  In this section, a 

problem example is also illustrated.  Next, the objectives of this dissertation are 

proposed.  The dissertation scope and the dissertation contribution are given in the 

fifth and sixth sections of this chapter.  Then, the dissertation methodology is 

presented.  In addition, the rational for the solution approaches is also introduced in 

this section.  The organization of the chapters of this dissertation is framed in the final 

section. 
 
 

1.1  General Background 
 

 This section presents the general background of scheduling theory.  It begins 

with the definition of scheduling and the general conceptual scheme, providing a 

useful framework for performing the scheduling function effectively.  The scheduling 



 
 

2

function in a production system and the classification of scheduling problems are also 

stated in this section. 

 
1.1.1  Definition of Scheduling 

   

  Scheduling is the allocation of available and limited production 

resources (i.e. workforce, machines, tools, etc.) to perform a number of jobs over time 

and to meet certain objectives while respecting a set of constraints (Baker, 1974; 

Pinedo, 1995; Pinedo and Chao, 1999).  Another view of scheduling is defined as the 

determination of the relative position of jobs with respect to a processing machine, 

including the assignment of definite times at which processing occurs (Nawaz, 

Enscore, and Ham, 1983). 

 

  Scheduling problems, both practical and theoretical aspects, have 

captured attention from researchers for several years.  They involve the assignment of 

machines to various jobs and the determination of the order in which the jobs will be 

performed in order to best satisfy some single criterion or several optimization 

criteria.  Generally, there are two kinds of questions concerned in the fundamental 

decision of the scheduling functions (Baker, 1974): 

 

1. Which resources will be allocated to perform each job? 

2. When will each job be performed? 

 

In other words, the essence of scheduling problems has brought about (1) allocation 

decisions and (2) sequencing decisions. 

 

  In addition, two kinds of feasibility constraints are commonly found in 

scheduling problems.  Firstly, there are limits on the capacity of available resources, 

and secondly, there are technological restrictions on the orders in which jobs can be 

performed (Baker, 1974).  The former generally refers to machine or workforce 

capacities and limitations, whereas the latter includes machine eligibility restrictions 
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and precedence constraints.  Machine eligibility restrictions mean that not all 

machines can process all jobs, that is, some jobs can be processed only on some 

machines.  Precedence constraints require that one or more jobs may have to be 

completed before another job is allowed to start its processing.  

 

1.1.2  The Scheduling Function in a Production System 
 

  The scheduling function in a production system has to interface with 

various other important functions such as production planning, master scheduling, 

material requirements planning, capacity planning and so on as illustrated in an 

information flow diagram in Figure 1.1 (Pinedo and Chao, 1999). 

 

In order to provide for departments in an organization to access the 

necessary scheduling information and in order to enable departments to provide the 

scheduling system with relevant information such as order quantities, job due dates, 

release dates, machine status and so on, a management information system (MIS) or a 

decision support system (DSS) is probably needed. 

 

  The process of scheduling in manufacturing starts with capacity 

planning (also called long-term planning) which involves facility and equipment 

acquisition.  Intermediate-term (or medium-term) planning includes aggregate 

production planning and master production planning.  The aggregate production 

planning (also known as aggregate scheduling) is concerned with determining the 

quantity and timing of production for the intermediate future to minimize cost over 

the planning period by adjusting production rates, labor levels, inventory levels, 

overtime work, sub contracting rates, and other controllable variables.  The master 

production schedule (MPS) then breaks down the aggregate plan and develops an 

overall schedule for outputs.  It specifies what is to be made (i.e. the number of 

finished products or items) and when and must be in accordance with a production 

plan.  Material requirement planning (MRP) is one popular system which has to 

interact with other decision-making procedures used within the shop floor.  In short-
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term planning, schedules translate capacity decisions, intermediate planning, and 

master schedules into job sequences and specific assignments of personnel, 

machinery, and materials (Heizer and Render, 2001). 

 

 

 
 

Figure 1.1  An information flow diagram in a manufacturing system 

 

 

1.1.3  Classification of Scheduling Problems 
 

  To consider the classification of the major scheduling problems, it is 

necessary to characterize the configuration of resources and the nature of tasks.  For 

example, a problem requires one processing step (also called a single-stage problem) 

or several processing steps (called a multi-stage problem).  A scheduling problem, 
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where the number of jobs to be considered and their release dates are available, is 

called a static case.  On the other hand, a scheduling problem, where the number of 

jobs and related characteristics change over time, is called a dynamic case. 

 

 

 
 

Figure 1.2  Classification of scheduling problems 

 

  Let the number of jobs is denoted by n and the number of machines by 

m.  A schema for a classification of scheduling problems as depicted in Figure 1.2 is 

presented by Day and Hottenstein (1970).  It shows that the scheduling problems have 

been categorized according to the following three components: 

 

1. The nature of job arrivals, namely fixed batch size and continuous 

arrivals which given by a probability density function, 
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2. The number of machines involved, namely single machine 

production (m = 1) and  multi-machine production (m > 1), and  

3. The nature of the job route, namely same route and alternative 

routes. 

 

  The classification of scheduling problems is separated in two groups: 

(1) m×n fixed-batch-size problems (or static cases) and (2) continuous job arrivals 

(or dynamic cases).  The nature of the job arrivals provides the distinction between 

m×n fixed-batch-size problems (also called deterministic problems) and continuous 

arrivals (also called stochastic problems).  In m×n fixed-batch-size problems, the 

number of machines and jobs is given in advance.  A certain number of jobs arrive in 

a shop at any time which is known in advance, that is, there are no further jobs 

unexpectedly arriving, so attention can be focused on scheduling the completely 

known and available set of jobs.  In continuous arrivals, the shop is a continuous 

process.  Jobs arrive intermittently at time that is predictable only in a statistical sense, 

and job arrivals will continue indefinitely into the future (Conway, Maxwell, and 

Miller, 1967).  Additionally, both the m × n fixed-batch-size problems and the 

continuous-arrival problems can be divided into single-machine problems and multi-

stage problems.  The single-machine problems are the pure sequencing problems in 

which an ordering of the jobs completely determines a schedule.  Moreover, they are 

the simplest pure sequencing problems, where there is a single resource or machine.  

The multi-stage problems are more than one machine.  The simple problems are the 

single-stage sequencing with several machines until the multi-stage problem.  The 

process of such problems in general requires both sequencing and resource allocation 

decisions, and it is classified as the elementary multi-stage models: parallel machine, 

flow shop, and job shop systems.   

 

1.2  Importance of the Problem 
 

 The importance of scheduling is obvious.  It is one of the key functions in 

modern manufacturing and service companies.  Although other functions may be 
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optimized, the success of a company still depends heavily on the performance of 

scheduling.  The importance of scheduling problems is given first in this section.  

Then, any other importance of scheduling problems related to this dissertation is 

explained. 

 

1.2.1  Importance of Scheduling Problems 
 

  Nowadays, companies are encountered with market demands for a 

variety of high quality products, and more customers than ever have become selective 

with rapidly changing needs.  The companies must, therefore, compete against these 

phenomena by making their production systems more flexible, producing the high 

quality products, and responding rapidly to demand fluctuations.  Moreover, some 

companies face such antagonist decisions as producing items with shorter and shorter 

life cycles, in small quantities and with the lowest possible costs.  Therefore, the 

ability to make the right product at the right time and at the lowest possible cost 

remains the key to success for the companies.  Hence, the companies need to make 

schedules that match their production to customer demands by satisfying certain 

objectives and respecting their set of production constraints. 

 

  Practical scheduling, an important decision making process in the 

operation level, arises in a variety of situations; for example, consider the scheduling 

of cars to be repaired in a garage, professors to classes in a university, planes to gates 

at an airport, physicians and nurses to patients in a hospital, production resources to 

jobs in a manufacturing plant, etc.  Therefore, it plays an important role in both most 

manufacturing and service industries (Pinedo and Chao, 1999). 

 

  Due to limited resources existing along the scheduling function, the 

resources always perform the jobs.  However, when the number of jobs is more than 

the number of resources, the job waiting time or job lateness may occur.  Moreover, 

scheduling programs which do away with an inefficient or inappropriate scheduling 

process will waste resources and lead to confusion.  Therefore, efficiency in 
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scheduling is essential.  For example, some companies may use the mathematical 

techniques or other heuristic methods to allocate scarce resources to a set of jobs.  The 

proper allocation of such resources enables the companies to optimize their objectives 

in many forms, such as minimizing the time to complete all jobs or minimizing the 

number of jobs completed after their committed due dates.   

 

  Based on the above stated fact that scheduling problems appear in both 

manufacturing and service industries, this dissertation is however concerned with 

industrial scheduling problems, where one first has to assign jobs to limited resources 

and then to sequence the assigned jobs on each resource over time.  The scheduling 

objective, for example, might consist in the building a schedule with the smallest 

length (minimizing the makespan) and/or meeting job due dates (minimizing the 

number of tardy jobs, minimizing total tardiness, etc).   

 

1.2.2  Importance of a Flexible Flow Shop Problem 
 

  The industrial scheduling problems are interesting in both practical and 

theoretical viewpoints.  The problems have been widely studied since the pioneering 

work of Johnson (1954) who proposes efficient algorithms for a minimum makespan 

two-stage flow shop scheduling problem with one machine at each stage and zero 

release date.  All jobs have to pass through a number of stages in the same order, i.e. 

starting at the first stage, at completion going to the second stage and so on until the 

last stage.  Such a production process is called the classical flow shop environment.   

 

  In the theoretical aspect, most studies concern many manufacturing 

systems like a classical flow shop architecture which consists of a single machine on 

each stage, while in most of practical manufacturing systems for every stage, a 

number of machines are available that can operate in parallel.  Hence, the scheduling 

problem is more realistic to assume that, at every stage, a number of machines may be 

available in that it can operate in parallel known as a flexible flow shop, 

multiprocessor flow shop, or hybrid flow shop problem as depicted in Figure 1.3 (let 
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mt be the number of parallel machines at stage t).  At each stage, a job needs to be 

processed by only one of parallel machines.  A flexible flow shop problem makes the 

scheduling problem more complex such that the job processing sequence in each stage 

may no longer be the same sequence.   

 

 

 
 

Figure 1.3  A schema of a flexible flow shop environment 

 

  For the past three decades, the flexible flow shop scheduling problem 

has attracted many researchers.  Numerous research articles have been published on 

this topic, see the survey in Linn and Zhang (1999), Wang (2005), Quadt and Kuhn 

(2007), and Allahverdi et al. (2008).  There are two main reasons for this, among 

many others (Wang, 2005).  Firstly, a flexible flow shop environment is difficult to 

solve (Garey and Johnson, 1979; Gupta, 1988; Pinedo, 1995).  The flexible flow shop 

problem which has two stages, with one stage having at least two machines, has 

already been proved to be NP-hard (Hoogeveen, Lenstra, and Veltman, 1996).  Thus, 

it is unlikely that polynomial time algorithms exist for the exact solution of the 

general problem.  Secondly, such a machine scheduling problem can find applications 

in many real-world applications. 
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  Precisely, this dissertation is mainly concerned with process industries 

like e.g. a glass-container industry (Paul, 1979), a rubber plant (Yanney and Kuo, 

1989), a photographic film manufacture (Tsubone et al., 1993), a steel industry (Finke 

and Medeiros, 2002), a textile manufacture (Karacapilidis and Pappis, 1996), a 

printed circuit board manufacture (Alisantoso, Khoo, and Jiang, 2003; Hsieh, Chang, 

and Hsu, 2003) and so on.  Such industries are established as multi-stage production 

flow shop facilities, where at least one production stage is made up of parallel 

production lines, machines or any other production facility.  At some stages, the 

facilities (i.e. machines, lines, etc) are duplicated in parallel to increase the overall 

capacities of the shop floor, to balance the capacities of the stages, or to either 

eliminate or reduce the impact of bottleneck stages on the overall shop floor 

capacities.   

  

  Most researchers on the flexible flow shop scheduling problems deal 

with the two-stage flexible flow shop scheduling.  For instance, see work of  

Narasimhan and Mangiameli (1987), Gupta (1988),  Deal and Hunsucker (1991), 

Gupta and Tunc (1991, 1994, 1998), Lee and Vairaktarakis (1994), Chen (1995), 

Guinet et al. (1996),  Gupta, Hariri, and Potts (1997), Haouari and M’Hallah (1997), 

Oguz, Lin, and Cheng (1997), Dessouky, Dessouky, and Verma (1998), Schuurman 

and Woeginger (2000), Lin and Liao (2003), Guirchoun, Martineau, and Billaut 

(2005), Haouari, Hidri, and Gharbi (2006), and Low, Hsu, and Su (2008). 

 

  Although there are some studies which concern the parallel machines 

in each stage, they have some non-practical assumptions; for example, they are 

concentrated on problems with identical machines, that is, each job is processed on 

any one of the machines in parallel for every stage in the same manner, see for 

instance, Gupta et al. (2002), Alisantoso et al. (2003), Lin and Liao (2003), and Wang 

and Hunsucker (2003).  However, in the real world situation, it is common to find 

newer or more modern machines running side by side with older and less efficient 

machines.  Even though the older machines are less efficient, they may be kept in the 

production lines because of their high replacement costs.  The older machines may 
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perform the same operations as the newer ones, but they would generally require 

longer operating time for the same operation.  In addition, it may be possible that 

speeds of machines are still dependent on the jobs assigned.  Such a problem is called 

a flexible flow shop with unrelated parallel machines.  Hence, in this dissertation, the 

flexible flow shop problem with unrelated parallel machines is considered, that is, 

there are different parallel machines at every stage, and speeds of machines are also 

dependent on the jobs.  It is a general form of all kinds of parallel machine problems. 

 

1.2.3  Importance of Sequence-Dependent Setup Times 
 

  In some cases where the operator needs to change the configuration of 

the station in order to process the next job, the change of it may result in an additional 

production cost or additional time, being necessary to realize the change in the 

configuration.  This process is known as a changeover or setup.  Hence, setup time is 

the time used to prepare the process of jobs on machines.  This includes obtaining 

tools, positioning work in process material, adjusting tools, returning tools, cleaning 

up, and inspecting materials.  It is very common in many real manufacturing systems.   

 

Scheduling problems involving setup times can be divided into two 

types.  The first type is sequence-independent setup time, and the second type is 

sequence-dependent setup time.  Setup is sequence-dependent if its duration depends 

on both the current and the immediately preceding job and is sequence-independent if 

its duration depends only on the current job to be processed (Allahverdi, Gupta, and 

Aldowaisan, 1999). 

 

The usual assumption for most scheduling researches is that jobs are 

sequence-independent.  The result of this assumption is that capacity management in 

these studies requires only the allocation of capacity over the specified time interval.  

The sum of setup and processing times remains constant for instances of sequence 

independence, and capacity utilization also remains constant.  Such a setup, known as 
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sequence-independent setup, has for long been considered negligible and hence 

ignored or considered as part of the processing time. 

 

However, in some industries, setup is complicated by the fact that the 

length of setup required depends on the job just completed and on the one about to be 

started, known as sequence-dependent setup.  This setup has most significant effects 

on shop performance as follows: Firstly, the length of setup time directly affects the 

throughput rate of a production system.  Secondly, the cost of unit setup time is 

usually higher than that of unit processing time since the cost of setup time includes 

loss of productivity due to machine down-time and the cost of setup itself such as 

labor cost of a setup technician.  Thirdly, the setup change can often be made only by 

a qualified technician since setup is often a complicated work requiring a higher level 

of expertise.  The qualified workers are limited resources that are not always 

available. 

 

  An example of the sequence-dependent setup operations is in dyeing 

operations which require setups.  Whenever a new color is needed, a dyeing machine 

must be cleaned.  The cleanup time often depends on the color just completed and the 

color about to be started.  In practice, the best sequence is to go from light to dark 

colors because the cleanup process is easier.  In chemical industry, to produce the 

different chemical compounds may require that some amount of cleansing be carried 

out between process runs on different compound to insure that tolerably low impurity 

levels are maintained.  In addition, in steel industry, the setup time for the roll 

changing depends on the type of products just completed and the next type about to be 

processed. 

   

  The importance of setup times has been investigated in several studies.  

Wilbrecht and Prescott (1969) find that sequence-dependent setup times are 

significant when a shop is operated at or near full capacity.  In a survey of industrial 

managers, Panwalkar, Dudek, and Smith (1973) discover that about three quarters of 

the managers have reported at least some operations their schedule requires sequence-
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dependent setup times, whereas approximately 15 percent of the managers have 

reported all operations requiring sequence-dependent setup times. 

 

  Burns and Daganzo (1987) discuss a flow shop problem with setup 

costs and distinguish between three different types of setup cost/time as follows: 

 

1. Waste material resulting in additional cost owing to, for instance, 

discard of the paint in the paint shop of an automobile production.  

This setup cost has only impact on the objective function that 

minimizes the production costs, 

2. Station downtime or labor required to change the setup.  This 

occurs, for example, when the mounting or a tool needs to be 

changed.  In this case, the schedule of the jobs is directly 

influenced; it means a sequence without setup time is not possible 

because some job changes require additional time for preparation, 

and 

3. Product quality implications which affect the performance of the 

station.  For instance, the paint quality may temporarily decline 

when a change of color occurs. 

 

  In order to further improve the solution, the setup cost/time is 

considered completely separated.  Allahverdi et al. (1999) highlight that when setup 

cost is directly proportional to setup time, a sequence that is optimal with respect to 

setup cost is also optimal with respect to setup time.  Their survey on setup 

considerations furthermore considers sequencing problems in flow shop regarding the 

following characteristics: 

 

1. Batch setup: Jobs are grouped into batches and a major setup is 

incurred when switching between jobs belonging to different 

batches, whereas a minor setup is incurred for switching between 

jobs within the batches, 
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2. Sequence dependent setup: Including setup cost/time that depends 

on the succeeding job gives the possibility to further improve the 

sequence.  In the symmetric case, the appearance of setup cost/time 

is the same for a change from model a to model b and for a change 

from model b to model a, and 

3. Setup time separable from processing time: The case in which 

setup time is separable from processing time leads to the possibility 

of further reducing the total processing time.  This results from the 

fact that once on a machine i a job j is finished, and the setup can 

already be changed way before job j + 1 arrives.  

 
1.2.4  Importance of Release Dates of Machines and Jobs 

 

  The release date of the machine (or machine availability) is the time 

indicating when the machine becomes available from the previous job in the previous 

planning period and can start processing in the current planning period.  In classical 

scheduling problems, machines are assumed to be available at time zero onward.  

However, in most real life industrial settings, a machine can be unavailable at time 

zero for many different reasons.  For instance, some machines may be tied up with 

unfinished jobs that are carried over from the previous planning period.  This machine 

restriction can also arise from the overlapping of two consecutive planning periods in 

a system with rolling horizons.  It occurs when a new planning period is triggered 

before all jobs of the previous planning period have been completed, and the 

assignment of these uncompleted jobs cannot be altered anymore, e.g. due to process 

preparation,  To increase the real life situation, the machine availability at 

nonnegative available time is hence considered in this dissertation.  

 

  The release date of the job is also known as the ready time.  It is the 

time where a job arrives at the system, that is, the earliest time at which a job can start 

its processing.  Although in the real situation customer orders may not arrive 

simultaneously, a few papers are devoted to scheduling problems with nonnegative 
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release dates of the jobs.  Therefore, it is suitable to concern the job release date 

where the date is known in advance in this dissertation. 

 
1.2.5  Importance of Scheduling Objectives 

 

  The scheduling objectives in such industries may vary.  In real life 

situations, decisions to be made are often constrained by specific requirements.  More 

importantly, these requirements are typically conflicting in nature.  The decision 

making process gets increasingly more complicated with increment in the number of 

requirements.  Modeling and development of the solution methodology for these 

scenarios have been the challenge for operations researchers.  Generally speaking, 

scheduling problems in real life applications involve optimization of more than one 

criterion.  The due-date related criteria and the makespan criterion may be important 

and have been used by many researchers, which they are included in this dissertation. 

 

  The motivation to consider the problem of generating an efficient set 

of schedules for the flexible flow shop environment comes from the variety of 

industrial cases where the criteria related to efficiently utilizing resources and 

completing orders by their due dates are important.  For example, the makespan and 

the number of tardy jobs are used as the scheduling criteria.   

 

  Makespan is a traditional objective for much of the flexible flow-line 

literature.  In addition to its applicability to a periodic multiple product scheduling 

environment, the makespan criterion can also be considered as a surrogate for 

capacity maximization and flow time criterion.  Pinedo (1995) explains that lower 

makespan usually indicates an efficient utilization of resources.  Moreover when 

dealing with machines in parallel, the makespan becomes an objective of significant 

interest.  In practice, one often has to deal with the problem of balancing the load on 

machines in parallel, and by minimizing the makespan the scheduler ensures a good 

balance (Pinedo, 1995). 
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  The number of tardy jobs may at first appear somewhat artificial and of 

no practical interest.  However, in the real-world it is a performance measure that is 

often monitored and used to rate managers’ performance.  It is equivalent to the 

percentage of on-time shipments (Pinedo, 1995).  In many cases, a manufacturer 

wants not only the conformity to schedule but also the minimization of the number of 

tardy jobs in order to avoid the penalties that may incur.  Thus, it is directly related to 

improving the customer’s satisfaction, which is becoming a more critical issue for 

management.  In this criterion, changing any job’s completion time changes the value 

of the objective, whereas in the makespan criterion, only one job defines the value of 

the objective.   

 
1.3  Statement of the Problem  
 

 This dissertation addresses the job scheduling problem in a system, which is 

called a flexible flow shop environment.  There are customer orders (or jobs) to be 

processed in this system. Customer orders may not arrive simultaneously, but their 

arrival times, called the release dates, are known and fixed by customers.  The due 

dates of jobs are designated by customers.  Each job is allowed to start its processing 

whenever it is ready, that is, there are no precedence constraints and priority rules.  

Each job is an entity, and it cannot split into sub-jobs, that is, job splitting is not 

permitted. 

 

 The system (or machine environment) consists of many production stages in 

series, where jobs have to undergo multiple operations in the same order (referred to 

as a flow shop environment).  In addition, there are a number of machines in parallel 

at each stage, where jobs have to be processed on any one of the parallel machines in 

each stage (referred to as a flexible flow shop environment).  Even though each 

machine in each stage can perform all jobs, the time that each job spends on the 

machines may be different.  In this dissertation, the time to perform any job on the 

machines depends on the jobs and the machines (referred to as unrelated parallel 

machines).  There are infinite buffers between all adjacent stages, as well as before 
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the first stage and after the last stage.  Figure 1.4 shows a general schematic of the 

production process under consideration.   

 

 

Figure 1.4  A general schematic of the production process  

 

 This problem considers only one planning period.  The times for the 

uncompleted jobs from the previous planning period are reserved on the machines 

(referred to as machine release dates or machine availability).  In other words, 

machines in the current planning period are available from time non-negative 

onwards.  Moreover, it is assumed that there are no machine breakdowns as well as 

scheduled or unscheduled maintenance.  In addition, the problem is assumed to be a 

static scheduling problem, that is, the current schedule will not change even though 

there are new jobs that enter the system.  Consequently, the new jobs and the jobs that 

have never been performed in the current planning period will be scheduled in the 

following planning periods.   

 

 Setups need to be considered in the problem.  They are the addition processes 

where the operators need to change the configuration of the station in order to process 

the next job, and they result in additional production costs and times.  The setup of the 

next job can start whenever the job arrives at the machine and the machine becomes 

free to process the job (referred to as a non-anticipatory setup).  In addition, the setup 
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time (cost) depends on the current job and the immediately preceding job (called 

sequence-dependent setup time) during the current planning period.  However, there 

are hidden sequence-dependent setups that occur between the last unfinished job in 

the previous planning period and the first job in the current planning period on the 

same machine.  Consequently, it seems that the setup time of the job that is processed 

in the first position on any machines depends on the machine that the job is processed 

(referred to as machine-dependent setup time).  In this dissertation, such a machine-

dependent setup time is called changeover time.  

 

All jobs must be completed without interruption in the system (known as non-

preemption) and cannot be cancelled before their completion.  It is assumed that all 

jobs are always processed without error and do not revisit the stage that they have 

already visited.  There is no transportation time between two consecutive stages, that 

is, they are available for processing at a stage immediately after completing 

processing at the previous stage.  No two operations of the same job are processed 

simultaneously, and no machine processes more than one job at a time. 

 

 This problem is now to find a feasible solution consisting of a feasible 

assignment and a feasible schedule, such that the completion time of the last job to 

leave the system (called the makespan) and the number jobs that cannot be sent to the 

customers by their due dates (called the number of tardy jobs) for the current planning 

period is minimized by using the positively convex of combination. 

 

1.4  Dissertation Objectives 
  

1. To formulate a mathematical model to solve the problem of a flexible flow 

shop problem with unrelated parallel machines and sequence-dependent setup times 

and to produce an optimal schedule in order to minimize the makespan and the 

number of tardy jobs, and 

2. To develop constructive and iterative algorithms to find approximate 

solutions for large-sized problems. 
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1.5  Dissertation Scope 
 

 The scheduling problem considered is a flexible flow shop problem.  

Specifically, this dissertation studies a problem that has unrelated parallel machines at 

least one production stage.  All data in this problem are assumed to be known 

deterministically when scheduling is undertaken.  The scheduling problem is 

characterized by three components:  

 

(1) The machine environments and job characteristics,  

(2) The processing characteristics and a set of constraints that 

must be satisfied for each schedule, and  

(3) The objective function characteristics that must be 

minimized.   

 

Hence, the scope and assumptions of this study are classified in three 

components as follows: 

 

1.5.1  Machine Environments and Job Characteristics  
 

  This section describes the details of machine environments and job 

characteristics studied in this dissertation as follows: 

 

1.5.1.1  Machine Environments 

 

1) This is a flexible flow shop scheduling problem whose 

system is a k-stage flexible flow shop (k≥ 2) environment.  

A stage is a machine or set of machines that perform the 

same operation, and 

2) Some stages are made up of a number of machines (mt ≥ 2, 

∃t ∈  {1, 2, …, k}, where mt be the number of machines at 

stage t).  It has a set of unrelated parallel machines, each of 
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which can process all jobs but the processing time of each 

job on each machine may be not necessary to equal. 

 
   Let    denote the processing time of job j on machine i at 

stage t,  be the standard processing time of job j at stage t , and  be the relative 

speed of machine i for job j at stage t.  In general, for each stage t, one can distinguish 

among the following three cases: 

t
ijp

t
jps t

ijv

 
a) Identical parallel machines:  =  for all i and j, t

ijp t
jps

b) Uniform parallel machines:  t
i

t
jt

ij v
ps

p = for all i and j, where 

 is the relative speed of machine i at stage t, and =  

for all j, and 

t
iv t

iv t
ijv

c) Unrelated parallel machines: t
ij

t
jt

ij v
ps

p =  for all i and j. 

 

1.5.1.2  Job Characteristics 

 

   The number of jobs is known and fixed.  Each job to be 

scheduled in the current planning period comes from two sources, the new customer 

orders in this planning period and the remaining jobs from the previous planning 

period that are not carried out.  Each of the n jobs is an entity.  Even though the job is 

composed of distinct operations, no two operations of the same job may be processed 

simultaneously.  There are own due dates (dj). 

 

1.5.2  Processing Characteristics and a Set of Constraints 
 

  This section provides detailed scope and assumptions of processing 

characteristics and constraints as follows: 
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1) The release dates or arrival times of all jobs are nonnegative 

release dates, that is, jobs cannot start their processing times before 

their release dates (rj).  However, they are assumed to be known 

with certainty, 

2) The sequence-dependent setup times may exist between two 

consecutive jobs at each stage.  Setup can only be preformed after 

the machine is no longer processing any job and the job for which 

setup is being performed is ready.  Moreover, the length of time 
required to do the setup of each stage t, , depends on both the 

prior job l which the machine processes and the current job j to be 

processed.  However, it is also assumed that the setup times are 

equal for all machines in the same stage when changing from one 

job to another, 

t
ljs

3) The machine-dependent setup times occur only when the job 

assigned to each machine at the first position at each stage in the 

studied period.  It means that the length of setup time (or 
changeover time, ) of job j depends on the machine performing 

it since each machine has different unfinished jobs in the pervious 

planning period, so the length of changeover time depends on the 

unfinished job in the previous planning period and the first new job 

in the current planning period, which is the reason why the 

changeover time depends on machines, 

t
ijch

4) Preemption is not permitted; i.e. once operation is started, it must 

be completed without interruption,  

5) There are no precedence constraints and no job priority constraints, 

that is, each job is allowed to start its processing whenever it is 

ready, 

6) Jobs cannot be cancelled before their completion, 

7) Each job visits the stage in same order, but it does not revisit a 

stage that it has already visited, and the process flow for each job is 

known in advance, 
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8) Jobs are always processed without error and have no associated 

priority values, 

9) At any time, every job can be processed at most one machine, and 

every machine can process at most one job, 

10) There are infinite buffers between all two consecutive stages as 

well as before the first stage and after the last stage, so there is no 

blocking of machines, that is, in-process inventory is allowed,  

11) There are no machine breakdowns and scheduled or unscheduled 

maintenance.  The machines are however continuously available 
from time non-negative  onwards.  The machine release dates 

( ) mean the times that machines are reserved to perform the 

unfinished jobs carried over from the previous planning period,  

t
ia

t
ia

12) There is no transportation time between stages; jobs are available 

for processing at a stage immediately after completing processing 

at the previous stage, and 

13) All data used in this dissertation (i.e. standard processing time, 

relative speed of machines, release date, due date, setup time and 

so on) are randomly generated from the uniform distribution. 

 

1.5.3  Objective Function Characteristics 
 

  Let the completion time of job j at stage k, it means the time that job j 
can leave the system, be .  The criteria for considering the production 

improvement in the scheduling method will be: 

k
jC

 
a) The makespan (Cmax):  The makespan, defined as { }, is 

equal to the completion time of the last job to leave the system,  

which is defined as: 

}..1{
max

nj∈

k
jC

 
Cmax = { } 

},...,1{
max

nj∈

k
jC (1.1) 
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b) The number of tardy jobs (ηT):  The number of jobs whose 

completion times are larger than their due dates. 

   

Associated with each job j, a due date dj  ≥ 0.  Let Uj = 1 if the 
completion time  of job j is larger than due date for job j, otherwise Uj = 0.  The 

total number of tardy jobs (ηT) is defined as: 

k
jC

 

ηT  =  ∑
=

n

j
jU

1

(1.2) 

 
1.6  Dissertation Contribution 
 

 According to stated details of the importance of problems in Section 1.2, this 

problem is worth studying.  This section addresses the contribution of this dissertation 

based on two main attractions of this problem (Wang, 2005).  Firstly, flexible flow 

shop problem is a category of machine scheduling problems where most machine 

scheduling problems are difficult to solve and have been proved to be NP-hard or NP-

complete.  Secondly, most machine scheduling problems can find applications in the 

real world. 

 

 Gupta (1988) has studied the minimum makespan problem in a two-stage 
flexible flow shop which m1 ≥ 2 and m2 = 1.  He states that the minimum makespan 

problem in a two-stage flexible flow shop is NP-hard when max {m1 and m2} > 1.  

This result is very important because it shows that any minimum makespan problem 

in a k-stage flexible flow shop is NP-hard since the k-stage flexible flow shop can 

always be reduced to a two-stage flexible flow shop.  Consequently, the flexible flow 

shop problem is at least that difficult, and it is well worth studying.   

 

Although the processing complexity is a major direction of development, it is 

clearly shown in the literature review that most of the work is the two-stage flexible 

flow shop problems.  While interesting results have been obtained for these cases, 
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there has been less work done on the k-stage (k ≥ 3) ones.  Thus, the complexity level 

would significantly increase as it extends to three or higher number of stages.   

 

Moreover, although the flexible flow shop problem has been widely studied in 

the literature, most of the studies related to the flexible flow shop problem are 

concentrated on the problem with identical processors, see for instance, Bratley, 

Florian, and Robillard (1975), Brah and Hunsucker (1991), Deal and Hunsucker 

(1991), Gupta and Tunc (1991, 1994, 1998), Rajendran and Chaudhuri (1992), 

Santos, Hunsucker, and Deal (1995), Guinet and Solomon (1996), Gupta et al. (2002), 

Alisantoso et al. (2003), Lin and Liao (2003), and Wang and Hunsucker (2003).  In 

this dissertation, the flexible flow shop problem with unrelated parallel machines is 

however considered, that is, there are different parallel machines for every stage, and 

speeds of the machines are also dependent on the jobs.   

 

To simplify the problem, setup times are seldom considered in the scheduling.  

They are fixed and included in processing times, see Negenman (2001) and Engin and 

Döyen (2004).  However, several industries encounter sequence-dependent setup 

times which result in even more difficult scheduling problem.  In this dissertation, 

sequence-dependent setup time restriction is therefore taken into account as well.  

 

Most researchers suppose that machines are always available at time zero.  It 

means that schedulers can assume that no jobs exist on every machine during 

scheduling.  However, in the real life of scheduling problem machines may be subject 

to some unavailability periods due to uncompleted jobs on the machine.  There has 

been no serious research work reported on this subject despite the fact that it is the 

realistic machine scheduling.   

 

Moreover, customer orders may not arrive simultaneously in real-life 

problems, so assuming that n independent jobs are available at zero is not an 

acceptable assumption.  Thus, this dissertation concerns the problem as the unequal 

release date scheduling problem. 
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Scheduling criteria are the measures upon which schedules are to be evaluated.  

Two board classes of criteria are the schedule cost and the schedule performance.  

Such costs are often difficult to measures, so frequently an important cost-related 

measure of system performance can be used as a substitute for total cost system 

(Baker, 1974).  In theoretical research, most researchers have addressed single 

criterion problems.  The minimization of makespan is the most widely used criterion, 

see Moursli and Pochet (2000), Schuurman and Woeginger (2000), and Engin and 

Döyen (2004).  However, companies are usually faced with the problem of satisfying 

several different groups of people.  Thus, there is a need for further research in multi-

criteria scheduling problems. 

  

It can conclude that this dissertation problem is also of great academic interest.  

The scheduling literature has dedicated a great deal of attention to the flow shop 

machine environment while basically ignoring the equally important flexible flow 

shop machine environment.  To simplify the problem, most researchers focus two-

stage or k-stage problems with identical machines, and the setup times are fixed and 

included in processing times, in contrast to this problem.  At the same time, most 

scheduling models have concerned the makespan as the objective, while results for 

models with dual criteria, number of tardy jobs and makespan, are rare, and most of 

these are limited to very simple cases like the single machine problem or the two-

stage problem.  To best of the knowledge, this is a brand new problem for serious 

study in scheduling literature (Allahverdi et al., 2008). 

 
1.7  Dissertation Methodology 
 

After determining the context in which scheduling is being defined, the 

methodology for selecting a “good” schedule solution is determined.  This section 

addresses the dissertation methodology.   
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Study a problem  
in a setting 

Using a 0-1 mixed integer 
programming to find the optimality 

Develop iterative algorithms 
 to obtain a near-optimal solution 

Formulate a mathematical 
model of the problem 

Develop constructive algorithms 
 to obtain a best solution 

Conduct computational experiments 

Make conclusion and discuss future 
research direction 

 

Figure 1.5  The research methodology 

 

Figure 1.5 shows the dissertation methodology.  The common solutions to 

solve the static scheduling problem are described first in this section.  Then, a way of 

dealing with this dissertation problem is presented.  Finally, the rational for 

approaches is addressed.   

 

1.7.1  Common Solutions for Scheduling Problems 
 

  Scheduling problems are typically represented as the combinatorial 

optimization problems.  They maximize or minimize functions of many variables 

subject to some problem specific constraints and some integrality restrictions imposed 

on all or some of the variables.  Often, a combinatorial optimization problem can be 

modeled as an integer program (Nemhauser and Wolsey, 1999).  However, these 
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problems are often very difficult to solve, which is captured by the fact that many 

such problems are NP-hard or NP-complete.  Due to their difficulty and numerous 

practical importance, a large number of solution techniques for attacking NP-hard 

integer and combinatorial optimization problems have been developed.  The available 

algorithms can be classified into two main classes: exact and approximate algorithms.   

 

  Exact algorithms are guaranteed to find the optimal solution and to 

prove its optimality for every finite size instance of a combinatorial optimization 

problem within an instance-dependent, finite run-time.  If optimal solutions cannot be 

computed efficiently in practice, the only possibility is to trade optimality for 

efficiency.  In other words, the guarantee of finding optimal solutions can be 

sacrificed for the sake of getting very good solutions in polynomial time.  A class of 

approximate algorithms is that of heuristic methods, or simply heuristics, and seeks to 

obtain this goal.   

 

Two techniques from each class that have had significant success are 

integer programming (IP), as an exact approach, and local search and extensions 

thereof called metaheuristics, as an approximate approach.  The IP approach is a class 

of methods that relies on the characteristic of the decision variables of being integers.  

Some well-known IP methods are branch-and-bound, branch-and-cut, dynamic 

programming and so on, see e.g. Brah and Hunsucker (1991), Moursli and Pochet 

(2000), Sawik (2000, 2002, 2007), and Lee and Asllani (2004).  However, for most of 

the available IP algorithms the size of the instances solved is relatively small, and the 

computational time increases strongly with increasing instance size, whereas the local 

search algorithm has been shown to be the most successful class of approximate 

algorithms, i.e. Santos et al. (1995, 1996).  It yields high-quality solutions by 

iteratively applying small modifications (local moves) to a solution in the hope of 

finding a better one.  Embedded into metaheuristics designed to escape local optima 

such as simulated annealing, tabu search, genetic algorithm, or iterated local search, 

these approaches have been shown to be very successful in achieving near-optimal 

 



 
 

28

(and sometimes optimal) solutions to a number of difficult problems, i.e. Lee and 

Asllani (2004). 

 
1.7.2  Solution Methodology for the Dissertation Problem 

 

This section addresses the solution methodology for this dissertation 

problem.  According to the common solutions for scheduling problem in Section 

1.7.1, the available algorithms for this dissertation problem can be classified into two 

main categories: exact and approximate algorithms.  In addition, the approximate 

algorithms can be classified into two groups: constructive algorithms, and artificial 

intelligence (iterative algorithms) search techniques (Wang, 2005).  Hence, there are 

three solution approaches used to solve this dissertation problem.  These approaches 

are described below: 

 

(1) Exact algorithms 

 

   This dissertation problem is able to take the form of a 

mathematical model that expresses the desired objectives subject to the constraints set 

forth in the problem.  The most well-known general technique studied in this 

dissertation is a 0-1 mixed integer programming method, where the solution can be 

obtained by running the commercial mathematical programming software (Sawik, 

2000, 2002, 2007). 

 

(2)  Constructive algorithms 

 

   The NP-completeness of scheduling problem makes it 

computationally expensive to use an exact solution technique (Lee and Asllani, 2004; 

Nearchou, 2004), which gives the optimal solution of a problem.  It is impractical for 

most problems since the solution time would be unacceptably long.  That is why an 

approximate solution technique is needed.  Approximate solution techniques, or 

heuristics, may provide the optimal solution for a problem even though they do not 
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guarantee the optimal solution.  This fact implies that there may be some spaces for a 

heuristic to be improved.   

 

In this dissertation, some dispatching rules, namely the Shortest 

Processing Time (SPT), Longest Processing Time (LPT), Earliest Due Date first 

(EDD), Earliest Release Date first (ERD), Minimum Slack Time first (MST), and 

Slack time per Processing time (S/P) rules, and flow shop makespan heuristics, which 

are the algorithms given by Palmer (1965), Campbell, Dudek, and Smith (1970), 

Gupta (1971), and Dannenbring (1977) as well as the insertion heuristic by Nawaz et 

al. (1983), will be used for flexible flow shop environment as the constructive 

algorithms.  Upon these heuristics, the starting job sequence for the first stage is 

generated by using them.  Then, use the greedy search policy to determine the relative 

position of jobs with respect to any machines.  In addition, the new job sequence for 

the other stages will now be used, by using either permutation or First-In-First-Out 

rules to construct a schedule for the problem.  The solution is then set equal to the best 

function value obtained by both rules.   

 

   Moreover, after several constructive algorithms have been 

adapted, several fast polynomial improvement heuristics will be applied to the 

solutions to improve the quality of solution (called improvement algorithms). 

 

(3)  Iterative algorithms 

 

To increase the near-optimal solution from the constructive 

algorithms, iterative metaheuristic algorithms or artificial intelligence (AI) search 

techniques are proposed to solve the flexible flow shop problem in this dissertation.  

The AI search techniques are different from other heuristics.  They search for a good 

solution by using or learning certain knowledge (usually the knowledge is problem 

specific), which belongs to the category of AI search techniques.  However, they do 

not guarantee optimal solutions. There are three types of the AI search techniques 
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commonly applied in solving optimization problems in this dissertation: simulated 

annealing, tabu search, and genetic algorithms. 

 

1.7.3  Rational for the Solution Approaches 
 

  This section addresses the rational for solution approaches studied in 

this dissertation.  Thus, the important issue of the solution methodology for this 

dissertation problem is given.  The importance of exact algorithms is presented first.  

Then, the importance of approximate algorithms (for both constructive and iterative 

algorithms) is given.   

 

1.7.3.1  Importance of Exact Algorithms 

 

Although the flexible flow shop problem with unrelated parallel 

machines and sequence-dependent setup times is difficult to solve optimally for a 

large-sized problem, i.e. Brah and Hunsucker (1991) and Kurz and Askin (2004), an 

exact procedure using a mathematical programming formulation is generally accepted 

for solving small-sized problems. 

 

   In recent years, remarkable improvements have been reported 

for the integer program when it applies to some difficult problems, i.e. Sawik (2000, 

2002, 2007).  However, for most of the available integer programming algorithm the 

size of the instances solved is relatively small, and the computational time increases 

strongly with increasing instance size.  Additional problems are often due to the facts 

that: 

 

1. The memory consumption of exact algorithms may lead to 

the early abortion of a program, 

2. High performing exact algorithms for one problem are often 

difficult to extend if some details of the problem 

formulation change, and  
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3. For many combinatorial problems, the best performing 

algorithms are highly problem specific, and they require 

large development times by experts on integer 

programming.  

 

   Nevertheless, there are some important advantages for 

formulating the exact algorithm from the mathematical programming as follows:  

 

1. Proven optimal solutions can be obtained if the algorithm 

succeeds,  

2. The mathematical programming provides a better 

understanding of the problem, which will be useful in 

formulating relaxed problems and in developing heuristic 

procedures, 

3. Even though existing computing devices cannot solve large 

problems in an acceptable time, development of these 

devices is improving with a fast pace.  Faster computers are 

developed with larger memories, and they may be able to 

solve practical size problems in near future, 

4. Valuable information on the upper/lower bounds to the 

optimal solution is obtained even if the algorithm is stopped 

before completion, and  

5. A more practical advantage of mathematical methods is that 

powerful, general-purpose tools such as CPLEX often reach 

astonishingly good performance. 

 

1.7.3.2  Importance of Approximate Algorithms 

 

   In general, the computational effort required to find an optimal 

solution grows exponentially with the size of the problem.  The exact algorithms for 

finding an optimal solution in polynomial time are therefore unlikely to exist.  That is 
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why the approximate solution techniques are necessary.  Advantages of the 

approximate methods are that: 

 

1. In practice, the approximate algorithms are found to be the 

best performing algorithms for a large number of problems,  

2. The approximate algorithms can examine an enormous 

number of possible solutions in reasonable or acceptable 

computation time,  

3. The approximate algorithms are often more easily adapted 

to variants of problems, so they are more flexible, and  

4. The approximate algorithms are typically easier to 

understand and implement than exact methods.  

 

   However, disadvantages of the approximate algorithms are that 

typically: 

 

1. The approximate algorithms cannot prove optimality,  

2. The approximate algorithms cannot provably reduce the 

search space,  

3. The approximate algorithms do not have well defined 

stopping criteria (this is particularly true for 

metaheuristics), and  

4. The approximate algorithms often have problems with 

highly constrained problems where feasible areas of the 

solution space are disconnected.   

 

   It concludes that this dissertation problem belongs to the class 

of combinatorial optimization problems characterized as NP-hard, so the right way to 

perform is with heuristic (Nearchou, 2004).  According to the advantages of 

approximate algorithms, several concepts of constructive algorithms, namely SPT, 

LPT, ERD, EDD, MST, S/P, PAL, CDS, GUP, DAN, and NEH, are adapted as 

constructive algorithms for this dissertation problem. 
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   The question raised for the constructive algorithms is whether it 

is possible to improve the solution quality.  Sticking into local optima is one 

drawback of constructive algorithms, while most iterative algorithms (or AI search 

techniques) always try to find a better solution or escape from a local optimal to find 

the globally better solutions.  This is why iterative algorithms can improve flexible 

flow shop solutions.  Jones, Mirrazavi, and Tamiz (2002) show that 70% of the 

articles utilize the genetic algorithm as the primary metaheuristic, 24% simulated 

annealing, and 6% tabu search.  The genetic algorithm is so popular because of its 

flexibility.  Thus, to determine near-optimal solutions, the simulated annealing, tabu 

search, and genetic algorithms are proposed as iterative algorithms. 

 
1.8  Dissertation Organization 
 

 This dissertation addresses a scheduling in flexible flow shop problem with 

unrelated parallel machine and sequence-dependent setup times.  It is organized as 

follows:   

 

Chapter I states the general background and introductory problem to provide 

the definition of scheduling problems, the scheduling function and the classification 

of the scheduling problems.  The importance of scheduling problems, a flexible flow 

shop problem, sequence-dependent setup times, release dates of machines, and 

schedule objectives, is indicated.  The statement of the problem and the objective of 

this dissertation are addressed.  The dissertation scope, the dissertation contribution, 

and the dissertation methodology are presented.  

 

At the beginning of Chapter II, the brief review of machine environments for 

scheduling problems, which are single machine, parallel machines, flow shop, and job 

shop, is explained.  The survey of the flexible flow shop problem, which consists of 

the flexible flow shop environment review, the setup time scheduling problem review, 

the scheduling objective function review, and the flexible flow scheduling procedure 

review, is presented. 
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In Chapter III, the mathematical model considering three main conditions, 

namely unrelated parallel machines, sequence-dependent setup time between jobs, 

and machine-dependent setup time of a job, is formulated to find the optimal 

scheduling solution by using the a commercial algebraic modeling language AMPL 

with CPLEX solver that runs on Windows platform.  The total number of possible 

sequence combinations that are generated by a complete enumeration method is 

estimated to illustrate the complexity of the problem.   

 

The heuristic solution concepts are proposed in Chapter IV.  They will consist 

of three main kinds of the heuristic approaches which are the constructive algorithms, 

improvement algorithms, and iterative algorithms.  The constructive algorithms 

proposed are adapted the ideas of the dispatching rules and flow shop heuristic 

algorithms.  Then, the improvement algorithms are proposed by using the 

neighborhood exchanges to improve the solution obtained from the constructive 

algorithm.  The iterative algorithms based on the artificial algorithms, namely tabu 

search, simulated annealing, and genetic algorithms, are used to find the schedule 

solution. 

 

Chapter V provides the computational experiments of the heuristic algorithms 

that are proposed in Chapter IV.  The performance of each algorithm is compared to 

the best heuristics that are found in these tests on medium- and large-sized test 

problems, whereas the performance on small-sized test problems is compared to the 

optimal solution obtained from the 0-1 mixed integer programming in Chapter III.  In 

addition, the recommended heuristic solution approach is proposed. 

 

The research summary of this dissertation is provided in Chapter VI, where 

conclusion is presented.  The future research is briefly discussed in view of 

theoretical, computational, and empirical research. 

 



CHAPTER II 
 

LITERATURE REVIEW 
 

This chapter reviews the literature that is related to the dissertation problem, 

whose topic is a scheduling problem in flexible flow shop environment.  As stated in 

Chapter I, the flexible flow shop environment can be seen as the combination of the 

classical flow shop environment and the single stage parallel machine environment.  

The classical machine environments for scheduling problems which are single 

machine, parallel machines, flow shop, and job shop, as well as the complex machine 

environment, namely the flexible flow shop environment, are explained in this 

chapter.  More other general scheduling studies are found in Baker (1974), Pinedo 

(1995), and Pinedo and Chao (1999).  More details of the flexible flow shop 

scheduling problems are found in Linn and Zhang (1999), Wang (2005), Quadt and 

Kuhn (2007), and Allahverdi et al. (2008). 

 

This chapter is organized as follows:  Firstly, the brief review of machine 

environments for scheduling problems, which are single machine, parallel machines, 

flow shop, and job shop problem, is explained.  Secondly, the flexible flow shop 

scheduling problem, which is the problem under consideration, is introduced.  Finally, 

the survey of the flexible flow shop problem is presented.  It consists of the flexible 

flow shop environment review, the setup time scheduling problem review, the 

scheduling objective function review, and the flexible flow shop scheduling procedure 

review.   

 

2.1  Machine Environments for Scheduling Problems 
  

 There are many important machine environments in the scheduling problems 

presented in the literature such as single machine, parallel machines, flow shop, and 

job shop.  In this section, the definition of each machine environment is explained. 
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2.1.1  Single Machine Problem 
  

  The single-machine model is the simplest pure sequencing problem; 

there is one machine that can process at most one job at a time.  It requires only the 

sequencing decision.  It has been the most popular of all scheduling problems.   

 

  Numerous results exist for a large number of problem specifications.  

The best known results are the procedures for minimizing a weighted sum of 

completion times (Smith, 1956) and for minimizing the maximum tardiness (Jackson, 

1955); both of these procedures ascertain the optimal job sequence by means of a 

simple ordering of the jobs, WSPT (Weighted Shortage Processing Time sequencing), 

which sequences the jobs in non-decreasing order of their ratios of processing time to 

weight, and EDD (Earliest Due Date sequencing), which sequences the jobs in non-

decreasing order of deadlines.   

 

  A slightly more complex procedure is that of Moore (1968) for 

minimizing the number of late jobs.  While the previous-mentioned problems have 

proved to be quite easy, the problem of minimizing weighted tardiness has been 

considerably more difficult because tardiness is not a linear function of completion 

time.  Wilkerson and Irwin (1971) introduce a suboptimal procedure for minimizing 

the mean tardiness.   

 

  In earlier literature, most researchers examine the basic single-machine 

model with regular measures of performance, which are non-decreasing in job 

completion times.  However, the recent literature has begun to change with the 

growing interest in Just-In-Time (JIT) production, which espouses the notation of 

earliness and tardiness (known as an E/T problem), see Ventura and Radhakrishnan 

(2003), Valente and Alves (2005), and  Hino, Ronconi, and Mendes (2005). 
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2.1.2  Parallel-Machine Problem 
 

  The one-stage parallel-machine problem is similar to the single-

machine model except that each job may be performed on any of the parallel 

machines.  It requires both sequencing and resource allocation decisions and is an 

important generalization of the single-machine problem; however, the single-machine 

problem is introductorily of theoretical interest.   

 

  The parallel machine models are divided into three groups: identical 

parallel machines, uniform parallel machines, and unrelated parallel machines.  In the 

identical parallel-machine case, there are m machines in parallel, that is, each job 

requires a single operation and may be processed on any one of the machines.  Under 

uniform parallel-machine case, the machines in parallel have different processing 

speeds.  (A set of machines is uniform if the operation time to perform any job on a 

particular processor is proportional to that machine’s speed.  In other words, each 

machine is a scale replica of some base unit.) The unrelated parallel-machine case is 

another generalization of the parallel machine model.  The operation time for every 

job is dependent on the machines, and the speeds of machines are dependent on the 

jobs.   

 

  Unfortunately, most of the researchers assume that the machines are 

identical, see Elmaghraby and Park (1974), Sarin, Ahn, and Bishop (1988), Belouadah 

and Potts (1994), Ho and Chang (1995), Azizoğlu and Kirca (1999), and Lin and Jeng 

(2004).  The most common objective function studied for the problem is the 

minimization of makespan, weighted flow time, or weighted tardiness.   

 
2.1.3  Flow Shop Problem 

 

  The flow shop model, which is the problem with multiple machines in 

series, is assumed that all jobs are to be processed on the same route of which an 

identical precedence ordering of the processing steps, which is unidirectional.  It is the 
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simplest multistage scheduling problem, and it is to determine how to sequence the 

jobs on each machine, where each job must visit each machine in the prescribed order.   

 

  A common assumption made by most researchers is to restrict attention 

to schedules for which the sequence of jobs is identical on each machine, see Reeves 

(1995), Chung, Flynn, and Kirca (2002), and Iyer and Saxena (2004).  Such schedules 

are called permutation schedules and have been shown to be optimal for all two-stage 

and three-stage problem with makespan; however, in general, permutation schedules 

need not be optimal.   

 

  Most of researches have also been limited to considering the makespan 

criterion with nonpreemptive schedules.  The best known result for scheduling in the 

flow shop environment is that of Johnson (1954) for the two-stage problem.  He 

presents a simple list-scheduling algorithm for minimizing the makespan.  While 

numerous combinatorial optimization procedures have been proposed for solving the 

general flow shop problem, work on heuristic procedures such as genetic algorithms, 

simulated annealing, and tabu search has paralleled the work on optimal procedures 

for the flow shop problem.  Most noteworthy heuristics for the makespan criterion are 

those of Campbell et al. (1970) and Nawaz et al. (1983). 

 

2.1.4  Job Shop Problem 
 

  The job shop model is the most general production scheduling problem 

in the classification; here there are no restrictions on the processing steps for a job, 

and alternative routes for a job may be allowed.  Moreover, a job may visit a machine 

more than once.  Like the flow shop model, the job shop model has multiple machines 

in series, but it often has different routes.   

 

  Most researchers have assumed that all jobs are nonpreemptive and 

that the criterion is to minimize the makespan, see Kumar and Srinivasan (1996), Sule 

and Vijayasundaram (1998), and Park, Choi, and Kim (2003). 
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2.2  Flexible Flow Shop Scheduling Problem 
 

The flexible flow shop environment –– also commonly referred to as hybrid 

flow shop, flow shop with parallel machines, or multiprocessor flow shop –– is one 

complicated type of the machine environments which can be seen as the combination 

of the parallel-machine and flow shop machine environments.  The flexible flow shop 

model is a generalization of the classical flow shop model and the parallel machine 

environments which are explained in the previous section.  Each job has to be 

processed first at stage 1, then at stage 2 and so on.  Each stage functions as a bank of 

parallel machines; at each stage job j requires only one machine, and usually, any 

machine can process any job (Pinedo, 1995).   

 

 

 

Figure 2.1  The flexible (hybrid) flow shop environment 

 

 In the most general problem in a setting of a flexible flow shop environment, 

there are multiple stages (t ∈ {1, …, k}, k ≥ 2) in series.  At least one production stage 

is made up of mt parallel machines (mt > 1; ∃ t).  Each job has to be processed in stage 

1 through stage k, in that order.  A simple schematic representation of the flexible 

flow shop environment is illustrated in Figure 2.1.   

 

The parallel machines in each stage may be identical, uniform, or unrelated 

parallel machines.  Under identical parallel machines, the processing time to process a 

job on each machine in the same stage is similar.  Machines are uniform if the 
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processing time to process a job on any machine in the same stage is a constant ratio 

of its processing time on any other machine (i.e. new machines versus old machines).  

In other words, uniform machines are identical processors that do not have equal 

speeds.  Unrelated machines are machines for which the time to process a job on any 

machine has not only particular relationship of its processing time on any other 

machine, but the time also depends on the job that are processed on such a machine.  

The flow of jobs through the shop is unidirectional (Linn and Zhang, 1999).  The 

survey of the flexible flow shop problem is presented in the next section. 

 

2.3  Survey of the Flexible Flow Shop Problem  
 

 Only in the last decade or so, with the rapidly growing interest in the field of 

flexible manufacturing systems, the flexible flow shop problem has recently received 

attention because of its importance from both theoretical and practical points of view 

(Jin, Yang, and Ito, 2006).  Flexible flow shop scheduling problems with the 

makespan criterion are NP-hard as Gupta has showed in 1988.  He proves that the 

problem is NP-hard when, at any stage, there exist more than one processor.  

Consequently, the flexible flow shop problem is difficult and is well worth studying.  

In this section, the survey of the flexible flow shop problem are divided into four 

subsections, namely the flexible flow shop environment review, the setup time 

scheduling problem review, the scheduling objective function review, and the flexible 

flow shop scheduling procedure review.  At the end of this section, the summary of 

the literature in the flexible flow shop problem is presented in Table 2.1. 

 

2.3.1  Flexible Flow Shop Environment Review 
 

Firstly, the review of the flexible flow shop environments is provided.  

As seen in Figure 2.2, the flexible flow shop environments are divided into two 

groups, namely 2-stage cases and k –stage (k > 2) cases.  In earlier studies, the simple 

two-stage flexible flow shop environments have been considered; for example, Gupta 

(1988) has studied a two-stage flexible flow shop problem when there are multiple 
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machines at stage 1 (m1≥2), and there is only one machine at stage 2 (m2=1).  

Sriskandarajah and Sethi (1989) has considered the two-stage flexible flow shop 

problem with m1≥2 and m2=1 and with m1≥2 and m2≥2.  Few papers have been 

published on the k-stage flexible flow shop scheduling problem (Grangeon, Tanguy, 

and Tchernev, 1999), see e.g. Salvador (1973), Brah and Hunsucker (1991), and 

Rajendran and Chaudhuri (1992).   

 

 

Figure 2.2  Classification of the flexible flow shop environments 

 

For both the 2-stage and k-stage cases, the problems can still be 

divided into three groups, namely identical parallel machines, uniform parallel 

machines, and unrelated parallel machines (see Section 1.5.1.1).  Certainly, the earlier 

literature has studied the flexible flow shop environment with identical parallel 

machines; for example, Gupta (1988) has studied the two-stage flexible flow shop 

problem with identical parallel machines at stage 1.  Sriskandarajah and Sethi (1989) 

have concerned the two-stage flexible flow shop problem with identical parallel 

machines for both stages.  Other two-stage flexible flow shop problems with identical 

parallel machines are, for example, found in Deal and Hunsucker (1991), Gupta and 

Tunc (1991, 1994), Guinet, Echalier, and Dussauchoy (1992), Uetake, Tsubone, and 

Ohba (1995), Kim, Kang, and Lee (1997), Lin and Liao (2003), Guirchoun et al. 

(2005), and Haouari et al. (2006).  Soewandi and Elmaghraby (2003) study the two-

stage flexible flow shop with uniform parallel machines.  Low et al. (2008) propose 

 



 
 

42

the heuristics to solve the two-stage flexible flow shop problem with unrelated 

parallel machines.   

 

For the k-stage (k > 2) flexible flow shop problem, most researchers 

have studied in the case of identical parallel machines, see e.g. Brah and Hunsucker 

(1991), Santos et al. (1995, 1996), Negenman (2001), Ruiz and Maroto (2006), and 

Janiak et al. (2007).  Little literature has studied in the field of the flexible flow shop 

problem with uniform parallel machines, see Kyparisis and Koulamas (2006).  Very 

few studies have considered the flexible flow shop problem with unrelated parallel 

machines, see Low (2005), Jenabi et al. (2007), and Ruiz, Şerifoğlu, and Urlings 

(2008). 

 

In this dissertation, the problem under consideration is in the case of 

the k-stage problem with unrelated parallel machines, where is the general 

environment form of all cases of the flexible flow shop environments.  

 

2.3.2  Setup Time Scheduling Problem Review 
 

  Secondly, this section provides the setup time flexible flow shop 

scheduling problem review.  The classification of the setup time scheduling problems 

is shown in Figure 2.3. 

 

 
 

Figure 2.3  Classification of the setup time scheduling problems 
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Most earlier literature has not concerned the setup time in the flexible 

flow shop problems, see e.g. Deal and Hunsucker (1991), Lee and Vairaktarakis 

(1994), Santos et al. (1995, 1996), Moursli and Pochet (2000), and Sawik (2000, 

2002, 2007). 

 

For the literature considering the setup time, it can be divided into two 

groups, the anticipatory setup cases and the non-anticipatory setup cases.  When setup 

time is separable from the processing time, it could be anticipatory, meaning that the 

setup of the next job can start as soon as a machine becomes free to process the job 

since the shop floor control system can identify the next job in the sequence.  In such 

a situation, the idle time of a machine can be used to complete the setup of a job on a 

specific machine, see Ruiz et al. (2008).  In another situation, setup time is non-

anticipatory, that is, the setup operation can start only when the job arrives at a 

machine as the setup is attached to the job.  Most researchers have assumed their 

setup time as non-anticipatory setup time, see e.g. Zandieh, Fatemi Ghomi, and 

Moattar Husseini (2006), Jenabi et al. (2007), and Ruiz et al. (2008).  

 

For both anticipatory and non-anticipatory setup cases, the setup time 

cases can still be divided into two groups: non-batch cases and batch cases.  In a non-

batch processing environment, a setup time (cost) is incurred prior to the processing 

of each job, see Lin and Liao (2003) and Zandieh et al. (2006).  For a batch setup 

processing environment, a setup time (cost) occurs when jobs, e.g. machine parts, are 

processed in batches (pallets, containers, or boxes), and a setup of a certain time or 

cost precedes the processing of each batch.  The definition of a batch is as follows.  

The jobs are supposed to be partitioned into F, F ≥ 1, families.  A batch is a set of jobs 

of the same family (Allahverdi et al., 2008), see Logendran, deSzoeke, and Barnard 

(2006).  

 

The batch setup time (cost) can be sequence-dependent setup between 

consecutive families if its duration (cost) depends on the families of both the current 

and the immediately preceding batches or between two consecutive jobs in the family 
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if its duration (cost) depends on the current job and the immediately preceding job in 

the family.  Likewise, the non-batch setup time can also be sequence-dependent setup 

if the setup time depended on the current job and the immediately preceding job.  For 

the sequence-independent setup time, the duration (cost) depends only on the current 

job or the current batch to be processed, so all setup times are assumed to be zero by 

adding the setup times to the processing times of their jobs or families. 

 

For the non-batch sequence-independent setup time case, see e.g. 

Allaoui and Artiba (2004), and Low (2005).  For the non-batch sequence-dependent 

setup time case, see e.g. Kurz and Askin (2003 and 2004), Ruiz and Maroto (2006), 

and Ruiz et al. (2008).  In this dissertation, the non-bath sequence-dependent setup 

time problem is considered.   
 

2.3.3  Scheduling Objective function Review 
 

Majority of studies for the flexible flow shop scheduling problem has 

been considered to the optimization of a single criterion focusing on the minimum 

makespan problem, see e.g. Brah and Hunsucker (1991), Santos et al. (1995, 1996), 

Engin and Döyen (2004), and Logendran et al. (2006).  However, there exist other 

several objectives such as minimizing total flow time, see Rajendran and Chaudhuri 

(1992) and Low (2005), minimizing maximum lateness, see Botta-Genoulaz (2000), 

minimizing weighted maximal tardiness, see Lin and Liao (2003), or minimizing total 

setup time, see Liu and Chang (2000).  

 

However, scheduling problems often involve more than one aspect and 

therefore require multiple criteria analysis (Loukil, Teghem, and Tuyttens, 2005).  

Despite their importance, scant attention has been given to multiple criteria 

scheduling problems, see Paul (1979) and Gupta et al. (2002).  In the literature 

concerning multi-objective scheduling problems, the five main approaches for the 

multi-objective can be distinguished as follows (Loukil et al., 2005): 
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(a) Hierarchical approach: the objectives considered are ranked in a 

priority order and optimized in this order; for example, Sawik 

(2007) proposes a hierarchical approach to complete all the jobs 

with minimum number of tardy orders as a primary criterion and 

to level the aggregate production or the total capacity utilization 

over a planning horizon as a secondary criterion, 

(b) Utility approach: a utility function or weighting function––often 

a weighted linear combination of the objectives––is used to 

aggregate the considered objectives in a single one, see Gupta et 

al. (2002).  The problem considered in this dissertation belongs 

to this class,  

(c) Goal programming (or satisficing approach): all the objectives 

are taken into account as constraints which express some 

satisficing levels (or goals), and the objective is to find a solution 

which provides a value as close as possible of the pre-defined 

goal for each objective.  Sometimes one objective is chosen as 

the main objective and is optimized under the constraint related 

to other objectives, see Markland, Darby-Dowman, and Minor 

(1990),  

(d) Simultaneous (or Pareto) approach: the aim is to generate––or to 

approximate in case of a heuristic method––the complete set of 

efficient solutions, see Mansouri (2006), and 

(e) Interactive approach: at each step of the procedure, the decision-

maker expresses his preferences in regard to one (or several) 

solutions proposed so that the method will progressively 

converge to a satisfying compromise among the considered 

objectives, see Bernardo and Lin (1994). 

 

Each approach has its own advantages and drawbacks as described in 

general literature on multi-objective optimization; for example, the hierarchical 

approach, utility approach, and goal programming approach require more parameters 
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or the priori information.  The hierarchical approach and utility approach are more 

pragmatic, but they are unable to generate some efficient solutions.  The simultaneous 

(or pareto) approach is more general or theoretical.  The goal programming approach 

and interactive approach are more oriented to real case studies. 

 

2.3.4  Flexible Flow Shop Scheduling Procedure Review 
 

 In this section, the flexible flow shop scheduling procedures are 

reviewed.  Figure 2.4 shows the classification of the flexible flow shop scheduling 

procedures that are adapted from Winston and Venkataramanan (2003), Wang (2005), 

and Quadt and Kuhn (2007). 

 

 
 

Figure 2.4  Classification of the flexible flow shop procedures 

 

2.3.4.1  Exact Solution Procedures 

  

   The majority of optimal procedures for scheduling flexible flow 

lines are based on a branch and bound approach.  Salvador (1973) is among the first 

to consider a flexible flow shop scheduling problem by using a branch and bound 

method, which guarantees optimal solutions.  His procedure generates a permutation 

schedule, i.e. the same sequence of jobs is used on all stages.  A permutation schedule 

simplifies the problem substantially, as only one sequence of jobs has to be 

determined.  In Brah and Hunsucker (1991), a new branch and bound method, which 

is able to generate non-permutation schedules with machine idle times between jobs, 
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is developed to minimize the makespan of a flexible flow shop problem.  They have 

adapted the “Enumeration Method” proposed by Bratley et al. (1975) for scheduling 

the single stage parallel machine problem.  Their algorithm consists of three parts: 

lower bound calculation, branching, and node elimination.  Their algorithm is very 

fast for very small instances but already time consuming for small ones.  However, 

the computation time of the suggested procedure is rather long when the problem size 

increases.  They solved a 6-job configuration with 5 stages; all stages are made up of 

two machines except the middle stage which was made up of 3 machines, in 12 hours 

running time on a PC XT computer.   

 

Rajendran and Chaudhuri (1992) consider the minimizing total 

flow time by using a branch and bound algorithm for obtaining a permutation 

schedule for the flexible flow shop environment.  They solve the problem by 

generating a single sequence of jobs that is valid for all production stages.  Portmann 

et al. (1998) also study the flexible flow shop scheduling problem to minimize the 

makespan.  They improve the lower bounds of Brah and Hunsucker (1991) and reduce 

the number of branches used in the search tree by coupling it with a genetic algorithm 

(GA), which is employed to derive upper bounds (i.e. schedules) during the branch 

and bound procedure.  Their computational experiments is indicated that optimal 

solutions using their branch and bound approach are more often reached using the GA 

approach.  They could solve problems with up to five stages (3, 3, 1, 2, and 2 

machines in stages one through five, respectively) and 15 jobs with an average 

deviation of 3% from the results of the branch and bound algorithm. 

 

Moursli and Pochet (2000) use a branching scheme that is an 

extension of a method for a parallel machine scheduling problem.  The schedule is 

generated in one stage at a time.  An approach based on a branch-and-bound approach 

coupled with constraint propagation is presented.  Unlike the above mentioned 

procedures, it considers the stages simultaneously.  The search tree is generated by 

consecutively selecting a stage and the next job to be scheduled on that stage.  Néron, 
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Baptiste, and Gupta (2001) use the so-called concepts of ‘energetic reasoning’ and 

‘global operations’ to reduce the computation time of the procedure.   

 

Sawik (2000, 2002) addressed his problems by formulating the 

flexible flow shop problems with limited buffers in a mixed integer programming 

format and solving the problems with a CPLEX solver.  The mixed integer 

programming is to minimize makespan for both batch and non-batch scheduling.  Of 

course, only small problems can be solved in this way to get optimal solutions. 

 

Research on optimal procedures with objectives other than 

makespan minimization is sparse.  Again, mostly a branch-and-bound method is 

employed.  Rajendran and Chaudhuri (1992) consider the objective of minimizing 

mean flow time.  They develop a branch-and-bound procedure that generates an 

optimal permutation schedule.   

 

Azizoğlu, Cakmak, and Kondakci (2001) consider the mean 

flow time flexible flow shop problem but allow non-permutation schedules.  They 

compare the branching scheme of Brah and Hunsucker (1991) with one that does not 

generate certain sub-problems because of proven sub-optimality under the mean flow 

time objective.  With the new branching scheme, the algorithm has a substantially 

lower computation time.  A different approach is considered by Harjunkoski and 

Grossmann (2002).  They develop a method that generates an optimal solution by 

iteratively solving the loading and the sequencing problem consecutively.  The 

objective is to minimize job assignment costs and one-time machine-initialization 

costs.  Setup times are included, but are only dependent on the machine and not on the 

job.  Thus, batching decisions are not made.  The algorithm is based on the hybrid 

mixed integer and constraint programming approach. The loading problem is solved 

using mixed integer programming.  A subsequent constraint programming procedure 

solves the sequencing part and iteratively adds cuts to the loading problem until an 

optimal schedule is found. 
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2.3.4.2  Approximate Solution Procedures  

 

  Even though the exact solution approach as stated in the 

previous section gives the optimal solution, it is impractical for the large-sized 

problems since the solution time would be unacceptably long.  That is why an 

approximate solution technique is needed.  Approximate solution techniques may 

provide the optimal solution for a problem even though they do not guarantee it.  This 

fact implies that there may be some space for a heuristic to be improved.  In this 

section, the review of the approximate solution procedures is divided into two groups: 

heuristic approaches and metaheuristic approaches.  

 

   The former, heuristic approaches, is first reviewed.  Paul (1979) 

demonstrates that some scheduling theory results can probably be extended to the 

real-life problem of scheduling the parallel production lines in the glass-container 

industry.  By means of computer simulation, the results indicate that the Shortest 

processing time (SPT) rule is relatively effective in this special case of scheduling 

machines in parallel subject to the resource constraints.  Wittrock (1985) develops a 

periodic heuristic algorithm for maximizing the throughput (or minimizing the 

makespan) by focusing on job loading and time allocating.  He also presents a more 

flexible non-periodic heuristic algorithm for the same problem by taking three steps: 

machine allocation, job sequencing, and timing (Wittrock, 1988).  

 

Gupta (1988) has studied the minimum makespan problem in a 

heuristic algorithm for a two-stage flow shop problem.  He proposes a heuristic to 

solve the minimum makespan problem.  Computational experiments show that the 

effectiveness of the proposed heuristic increases as the problem size increases.  

Sriskandarajah and Sethi (1989) develop simple heuristic algorithms for two-stage 

flexible flow shop problem.  They discuss the worst and average case performance of 

algorithms of finding minimum makespan schedules; their solutions are based on 

Johnson’s rule.  Deal and Hunsucker (1991) study the two-stage flow shop scheduling 
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problem.  A lower bound calculation for the makespan is introduced, and the 

performance of a Johnson’s type ordering is evaluated.   

 

Gupta and Tunc (1991) develop two polynomial bounded 

heuristic algorithms to determine an acceptable solution to minimize the makespan for 

two-stage flexible flow shop problem.  Their results show that when the number of 

machines at stage two is greater than or equal to the total number of jobs, the Longest 

Processing Time (LPT) scheduling rule yields optimal solutions.  For the case in 

which the total number of jobs is greater than the number of machines in stage two, 

they develop two heuristics to minimize the makespan. Their first heuristic based on 

the premise that Johnson’s rule coupled with an appropriate assignment rule should 

produce an acceptable schedule for the problem.  In their second heuristic, they 

arrange jobs in a non-increasing order according to their processing times at stage 

two.  Computational results indicate that the effectiveness of the algorithms increases 

with the increase of the total number of jobs.  The deviations of the heuristic 

makespan are relatively large from the lower bounds, and an improved branch and 

bound algorithm is developed.  The maximum number of jobs reported in their work 

is only eight jobs. 

 

   Guinet et al. (1992) propose a heuristic for the minimum 

makespan problem in a two-stage flexible flow shop based on Johnson’s rule.  They 

compare this heuristic with the Shortest Processing Time (SPT) and Longest 

Processing Time (LPT) dispatching rules.  They conclude that the LPT rule gives 

good results for the minimum makespan problem in a two-stage hybrid flow shop 

environment.   

 

Adler et al. (1993) describe the Bagpack Production 

Scheduling system (BPSS) whose machine environment is a three-stage flexible flow 

shop.  The production process consists of three stages, but not all orders have to go 

through all the three stages.  There are three objectives to minimize the sum of 

tardiness, the sum of setup times, and the work-in-process inventory.  They identify 
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the bottleneck stage, and they schedule the jobs at the bottleneck stage and schedule 

the jobs at the non-bottleneck stages, respectively.  However, the procedure is very 

application-specific, and no computational experience is reported.  Gupta and Tunc 

(1994) consider the two-stage flow shop scheduling problem.  The setup and removal 

times of each job at each stage are separated from the processing times.  They propose 

heuristic algorithms that are empirically tested to determine the effectiveness in 

finding an optimal.   

 

Global lower bounds for the flow shop problem with multiple 

processors are proposed by Santos et al. (1995).  In the absence of a known optimal 

solution for NP-complete problems, strong lower bounds can be effective tools when 

used to evaluate the quality of sub-optimal solution methodologies.  For example, 

suppose a lower bound on the unknown optimal solution is developed for an NP-

complete flexible flow shop scheduling problem.  Further suppose that a feasible 

solution is found for this problem which lies within 5% of the lower bound.  

Obviously, it can be said that the solution obtains within 5% of the optimal solution.  

This allows the practitioner to decide if a possible improvement of at most 5% is 

worth the further expenditure of time and effort.  Santos et al. (1996) investigate 

scheduling procedures which seek to minimize the makespan in the static flow shop 

with multiple processors scheduling environment.  Their method is to generate an 

initial permutation schedule based on the Palmer, CDS, Gupta, and Dannenbring flow 

shop heuristics, and that would then be followed by the application of First in First out 

(FIFO). 

 

Gupta et al. (1997) consider a non-preemptive two-stage hybrid 

flow shop problem.  The objective is to find a schedule which minimizes the 

maximum completion time or makespan.  Several lower bounds are derived and are 

tested in a branch and bound algorithm so as to limit the size of the search tree.  They 

propose several heuristics, all based on Johnson’s algorithm.  Kyparisis and Koulamas 

(2006) deal with the multistage flexible flow shop scheduling problem with uniform 
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parallel machines in each stage and the objective of minimizing makespan.  They 

develop several well-known heuristics to solve the problems.  

 

The later, metaheuristic approaches, is reviewed.  To obtain a 

near-optimal solution, the metaheuristic algorithms (or the artificial intelligent 

techniques) have also been proposed.  The most well-known metaheuristic algorithms 

are the simulated annealing, tabu search, and genetic algorithms (Jones et al., 2002).  

Gourgand, Grangeon, and Norre (1999) present several simulated annealing (SA)-

based algorithms for the flexible flow shop problem.  A specific neighborhood is 

used, and the authors apply the methods to a realistic industrial problem.  Jin et al. 

(2006) consider the flexible flow shop with identical parallel machines.  They propose 

two approaches to generate the initial job sequence and use a simulated annealing 

algorithm to improve it.  It can be seen that a simulated annealing algorithm has been 

successfully applied to various combinatorial optimization problems.  For an 

extensive survey of the theory and applications of the simulated annealing algorithm, 

see Koulamas, Antony, and Jaen (1994).   

 

Furthermore, Nowicki and Smutnicki (1998) propose a tabu 

search (TS) algorithm for the flexible flow shop makespan problem.  Logendran et al. 

(2006) tackle with a flexible flow scheduling problem within the context of sequence 

dependent setup times in shops.  Their objective is to minimize the makespan on the 

shop floor.  Three different algorithms based on tabu search are developed.   

 

A genetic algorithm (GA) has been widely used in many 

previous works for the flowshop makespan problem, see Werner (1984) and Reeves 

(1995).  Cheng, Gen, and Tozawa (1995) address the earliness/tardiness scheduling 

problem with identical parallel machines, and they apply a GA approach to solve this 

problem.  Ruiz, Maroto, and Alcaraz (2005) use a GA approach to deal with the 

permutation flow shop scheduling problem with sequence-dependent setup times.  For 

the flexible flow shop problem, see Bertel and Billaut (2004), Kurz and Askin (2004), 
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Bolat, Al-Harkan, and Al-Harbi (2005), Ruiz and Maroto (2006), and Jenabi et al. 

(2007). 

 

For other metaheuristics, for example, Engin and Döyen (2004) 

deal with the flexible flow shop with identical parallel machines by using the artificial 

immune system.  Artificial immune system (AIS) is computational systems inspired 

by theoretical immunology, observed immune functions, principles and mechanisms 

in order to solve problems.  Their objective is to minimize the makespan.   

 

Table 2.1 The summary of the literature in the flexible flow shop problem 

References # of 

stages 

Parallel 

machines 

Setup Objectives Approaches 

Salvador (1973) k Identical - Makespan Branch-and-bound 

Paul (1979) k Identical - Total tardiness, number of 

tardy jobs 

Simulation 

Wittrock (1985) k Identical - Makespan Heuristics 

Gupta (1988) 2 Identical - Makespan Heuristics 

Wittrock (1988) k Identical - Makespan, queuing Heuristics 

Sriskandarajah and 

Sethi (1989) 

2 Identical - Makespan Heuristics 

Brah and Hunsucker 

(1991) 

k Identical - Makespan Branch-and-bound 

Deal and Hunsucker 

(1991) 

2 Identical - Makespan Heuristics 

Gupta and Tunc (1991) 2 Identical - Makespan Heuristics 

Guinet, Echalier, and 

Dussauchoy (1992) 

2 Identical - Makespan Heuristics, mixed 

integer 

programming 

Rajendran and 

Chaudhuri (1992) 

k Identical - Mean flow time Branch-and-bound 

 

 



 
 

54

Table 2.1 The summary of the literature in the flexible flow shop problem (cont.) 

References # of 

stages 

Parallel 

machines 

Setup Objectives Approaches 

Adler, Fraiman, 

Kobacker, Pinedo, 

Plotnicoff, and Wu 

(1993) 

3 Identical Yes Tardiness, setup time, 

work-in-process inventory 

Heuristics 

Gupta and Tunc (1994) 2 Identical Yes Makespan Heuristics 

Lee and Vairaktarakis 

(1994) 

2 Identical - Makespan Heuristics 

Santos, Hunsucker, and 

Deal (1995) 

k Identical - Makespan Lower bound 

Uetake, Tsubone, and 

Ohba (1995) 

2 Identical - Total flow time, 

makespan 

Heuristics 

Santos, Hunsucker, and 

Deal (1996) 

k Identical - Makespan Heuristics 

Gupta, Hariri, and Potts 

(1997) 

2 Identical - Makespan Branch-and-bound, 

heuristics  

Haouari and M’Hallah 

(1997) 

2 Identical - Makespan Simulated annealing, 

tabu search 

Kim, Kang, and Lee 

(1997) 

2 Identical Yes Makespan Heuristics 

Nowicki and Smutnicki 

(1998) 

k Identical - Makespan Tabu search 

Portmann, Vignier, 

Dardilhac, and 

Dezalay (1998) 

k Identical - Makespan Branch-and-bound 

Riane, Artiba, and 

Elmaghraby (1998) 

3 Identical - Makespan Branch-and-bound 
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Table 2.1 The summary of the literature in the flexible flow shop problem (cont.) 

References # of 

stages 

Parallel 

machines 

Setup Objectives Approaches 

Brah and Loo (1999) k Identical - Makespan, mean flow 

time 

Heuristics 

Gourgand, Grangeon, 

and Norre (1999) 

k Identical - Makespan Simulated annealing

Botta-Genoulaz (2000) k Identical - Maximum lateness Heuristics 

Liu and Chang (2000) k Identical Yes Setup time Lagrangian 

relaxation 

Moursli and Pochet 

(2000) 

k Identical - Makespan Branch-and-bound 

Sawik (2000) k Identical - Makespan Mixed integer 

programming 

Azizoğlu, Cakmak, and 

Kondakci (2001)  

k Identical - Mean flow time Branch-and-bound 

Negenman (2001) k Identical - Makespan Simulated annealing, 

tabu search 

Néron, Baptiste, and 

Gupta (2001) 

k Identical - Makespan Branch-and-bound 

Soewandi and 

Elmaghraby (2001) 

3 Identical - Makespan Heuristics 

Gupta, Krüger, Lauff, 

Werner, and 

Sotskov (2002) 

k Identical - Earliness and tardiness 

penalties, weighted 

completion time, and the 

costs of due date 

assignment. 

Heuristics 

Harjunkoski and 

Grossmann (2002) 

k Identical - Assignment and 

initialization costs 

Mixed integer 

programming 

Sawik (2002) k Identical - Makespan Mixed integer 

programming 
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Table 2.1 The summary of the literature in the flexible flow shop problem (cont.) 

References # of 

stages 

Parallel 

machines 

Setup Objectives Approaches 

Alisantoso, Khoo, and 

Jiang (2003) 

k Identical - Makespan Immune algorithm 

Kurz and Askin (2003) k Identical Yes Makespan Heuristics 

Lin and Liao (2003) 2 Identical Yes weighted maximal 

tardiness 

Heuristics 

Soewandi and 

Elmaghraby 

(2003) 

2 Uniform - Makespan Heuristics 

Wang and Hunsucker 

(2003) 

k Identical - Makespan Heuristics 

Allaoui and Artiba 

(2004) 

k Identical - Makespan, maximum 

tardiness, flow time, 

number of tardy jobs 

Heuristics, simulated 

annealing 

Bertel and Billaut 

(2004) 

k Identical - Weighted  number of 

tardy jobs 

Greedy algorithm, 

genetic algorithm 

Engin and Döyen 

(2004) 

k Identical - Makespan Immune algorithm 

Kurz and Askin (2004) k Identical Yes Makespan Greedy algorithm, 

genetic algorithm 

Wardono and Fathi 

(2004) 

k Identical - Makespan Tabu search 

Bolat, Al-Harkan, and 

Al-Harbi (2005) 

3 Identical - Makespan Branch-and-bound, 

genetic algorithm 

Guirchoun, Martineau, 

and Billaut (2005) 

2 Identical - Total completion time Mixed integer 

programming 

Low (2005) k Unrelated - Makespan Simulated annealing

Haouari, Hidri, and 

Gharbi (2006) 

2 Identical - Makespan Branch-and-bound 
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Table 2.1 The summary of the literature in the flexible flow shop problem (cont.) 

References # of 

stages 

Parallel 

machines 

Setup Objectives Approaches 

Jin, Yang, and Ito 

(2006) 

k Identical - Makespan Simulated annealing

Kyparisis and Koulamas 

(2006) 

k Uniform - Makespan Heuristics 

Logendran, deSzoeke, 

and Barnard (2006) 

k Identical Yes Makespan Tabu search  

Ruiz and Maroto (2006) k Identical Yes Makespan Genetic algorithm 

Zandieh, Fatemi Ghomi, 

and Moattar 

Husseini (2006) 

k Identical Yes Makespan Immune algorithm 

Janiak, Kozan, 

Lichtenstein, and 

Oğuz (2007) 

k Identical - Total weighted earliness, 

total weighted tardiness, 

total weighted waiting 

time 

Tabu search, 

simulated annealing 

Jenabi, Fatemi Ghomi, 

Torabi, and Karimi 

(2007) 

k Unrelated Yes Setup costs, inventory 

holding costs 

Genetic algorithm, 

simulated annealing 

Sawik (2007) k Identical - Number of tardy jobs, the 

total capacity utilization 

Mixed integer 

programming 

Low, Hsu, and Su (2008) 2 Unrelated - Makespan Heuristics 

Ruiz, Şerifoğlu, and 

Urlings (2008) 

k Unrelated Yes Makespan Mixed integer 

programming, 

heuristics 

 

 



CHAPTER III 
 

A MATHEMATICAL PROGRAMMING 
SOLUTION APPORACH 

 

This chapter provides the mathematical programming formulation for 

scheduling the flexible flow shop problem with unrelated parallel machines that 

minimizes both objective functions of makespan (Cmax) and number of tardy jobs (ηT).  

The model formulation considers three main conditions, namely unrelated parallel 

machines, sequence-dependent setup time between two consecutive jobs, and 

machine-dependent setup time of a job.  The formulation can be used to find the 

optimal schedule by using commercially available software for the mixed integer 

programming.  A numerical example is also illustrated.  The example problem has 

been modeled by using an advanced algebraic modeling language AMPL with 

CPLEX solver that runs on Windows platform.  AMPL enables the complete 

separation to be kept between the model file and the data file, and the model is written 

in a form very close to the mathematical formulation (Sawik, 2000, 2002, 2007). 

 

This chapter is organized as follows: Firstly, the introduction is explained to 

give the definition and importance of the mathematical programming.  Secondly, the 

problem under consideration is described.  Thirdly, a descriptive example is used to 

explain the problem under consideration.  The 0-1 mixed integer programming 

formulation is presented in the next section, which consists of the assumptions, 

objective function, and constraints as well as a numerical example that is presented to 

illustrate the application of the proposed model.  Then, the total number of possible 

sequence combinations that are generated by a complete enumeration method is 

estimated to illustrate the complexity of the problem.  Finally, a conclusion will be 

presented. 
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3.1  Introduction 
  

Two fundamental decisions of a scheduling problem are allocation and 

sequencing decisions (Baker, 1974).  The former answers the question what machine 

should be allocated to which job, and the latter answers the question how to sequence 

the jobs.  The aim of these decisions is to obtain a best schedule that satisfies some 

measures of effectiveness (such as minimization of the makespan, mean flow time, 

tardiness, or number of tardy jobs), called the model’s objective function(s), and 

satisfies the production constraints (such as production requirement, resource 

capacities, or operation procedures), called constraint functions.  The variables whose 

values are able to control and influence the performance of the system are called 

decision variables.  The scientific approach to decision making usually involves the 

use of one or more mathematical models.  A mathematical model is a mathematical 

representation of an actual situation that may be used to make better decisions or 

simply to understand the actual situation better (Winston, 2004).   

 

In recent years, most researches have been reported for the mathematical 

model; for example, Sawik (2000) presents a mixed integer programming formulation 

for scheduling a flexible flow line with the finite intermediate buffers and uses the 

commercial software to solve the problem.  Sawik (2002) still presents a mixed 

integer programming model for the same problem in 2000, but all parts are scheduled 

in batches of parts of the same type, and within the batch individual parts are 

processed consecutively part-by-part.  Damodarn and Srihari (2004) propose a mixed 

integer programming formulation for the flow shop problem with no buffers.  Tang 

and Liu (2007) present a mixed integer programming model for a real-life order 

scheduling problem for the production of steel sheets.  Bhattacharya and Bose (2007) 

develop the mathematical model for scheduling the continuous processing units and 

test the model by using the commercial software.   

 

In general, mathematical programming models ensure the optimal schedules, 

but the CPU time required to find proven optimal schedules for realistic large-sized 
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problems still can be very high.  However, the mathematical models are worth 

formulating because the proven optimal solutions obtained for small-sized problems 

can also be used to evaluate the performance of various heuristics that are developed 

to find the approximate solution (Sawik, 2000, 2002, 2007; Lee and Asllani, 2004).  

Moreover, the development of the computer devices is improving with a fast pace, in 

which they are developed with larger memories and may be able to solve practical 

problems in near future.  In addition, the mathematical model can be used to 

understand the actual situation better (Winston, 2004).   

 

3.2  Problem Description 
  

In this dissertation, the flexible flow shop system consists of k stages in series, 

as shown in Figure 3.1.  Each stage t (t = 1, …, k) is made up of mt unrelated parallel 

machines.  Each job j (j = 1,…, n) must be processed without preemption on exactly 

one machine in each of the stages sequentially, that is, each job must be processed in 

stage 1 through stage k in that order.  There are infinite buffers between all adjacent 

stages as well as before the first stage and after the last stage.  The order of processing 

the jobs in every stage is identical, that is, all jobs have the same routing and do not 

revisit a stage the jobs have already visited.   

 

 
Figure 3.1  The flexible flow shop environment 

 

At the beginning of a current planning period, there are a fixed number of jobs 

that must be ordered to be processed on this flexible flow shop system so that the 

makespan and the number of tardy jobs are minimized.  It is presumed that the 
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schedule is static in that the decision variables do not involve sequences of decisions 

over multiple planning periods, that is, the current schedule will not change even 

though there are new jobs that enter the system.  Those new jobs will be scheduled in 

the following planning period.  This implies that it is possible that there are jobs 

scheduled in the previous planning period that are not yet finished; they must be 

processed as scheduled before the jobs that are scheduled in the current planning 

period. 

 
Let t

jps be the standard processing time for job j at stage t, which is usually 

measured on the average processor.  Their actual processing times of jobs may be 

lesser than the standard processing times, when jobs operate at a higher efficiency 

machine, and the actual processing times may be greater than the standard processing 

times, when jobs operate at the lower efficiency machines. 

 
Let be the relative speed of machine i on which job j is processed at stage t, 

which is a relative machine speed that is compared to the average speed machine in 
the system.  The value of a relative machine speed  of job j on machine i ( ) is equal 

to 1, when the machine i that processes job j is an average efficiency machine for the 
job j in the system.  The  value is lesser than 1, when the machine i that processes 

job j is the lower efficiency machine for the job j, whereas such a value is greater than 

1 if the machine i that processes job j is the higher efficiency machine for the job j.  In 

this dissertation, it is assumed that the actual processing time of job j on machine i at 

stage t  is equal to the standard processing time of job j at stage t, whenever the 

relative machine speed of job j on machine i at stage t is equal 1.  Hence, the 

processing time of job j that must be processed on machine i at stage t is equal to 

t
ijv

t
ijv

t
ijv

t
jps / .   t

ijv

 
Let be the “sequence-dependent” setup time between job l and job j, where 

job j is to be processed directly after job l on the same machine at stage t.  The 

sequence-dependent setup time is the time needed on any machine to install, clean, or 

remove something before the next job is processed, which the length of setup required 

t
ljs
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depends on the job just completed and on the one about to be started.  Thus, the total 
operating time of job j ( t

jO ) that is processed directly after job l on machine i at stage 

t is equal to +t
ljs t

jps / .   t
ijv

 

Moreover, it is possible that there are some unfinished jobs on each machine 

from the previous planning period, so to take into account of the sequence-dependent 

setup time between a unfinished job in the previous planning period and a new job in 
the current planning period, the machine-dependent setup time of job j ( ) that is 

processed on machine i in the first position at stage t is used in this research, this is, 
the total operating time of job j (

t
ijch

t
jO ) that is processed on machine i in the first 

position at stage t is equal to +t
ijch t

jps / .  To avoid the confusion between the words 

of sequence-dependent setup time and machine-dependent setup time, in this 

dissertation, the sequence-dependent setup time is called “setup time” and the 

machine-dependent setup time is called “changeover time”. 

t
ijv

 
Also, the unfinished jobs still affect the availability of machine i at stage t, , 

which is the time that the pervious jobs are still processed on each machine.  In other 

words, job j that is ready in the system to be assigned on machine i in stage t cannot 

start its processing before the machine availability.  Moreover, each job j still has two 

information, a release date (r

t
ia

j) that is the time the job will arrive in the system (in 

other words, job j cannot start its processing before its release date) and a due date (dj) 

that is the time the job is promised to the customer. 

 

Machines are available from time non-negative onwards, without breakdowns 

and scheduled or unscheduled maintenance.  At any time, every machine can process 

at most one job.  Each job is always processed at most one machine at any time and 

cannot be interrupted during its processing.  Each job does not require any other job to 

be completed before such a job is allowed to start its processing.  Each job cannot be 

split.  Jobs are always processed without error and cannot be cancelled before their 

completion. 

 

 



 
 

63

3.3  A Descriptive Example 
 

 Now suppose that there is a two-stage flexible flow shop environment, which 

consists of two unrelated parallel machines in stage 1 and one machine in stage 2.  

Two jobs will be scheduled in such an environment.  The standard processing time 
( t

jps ), release dates (rj), and due dates (dj) of two jobs are given in Table 3.1.  The 

relative machine speed of machine i at stage t ( ) is listed in Table 3.2.  The 

changeover time ( ) and setup time ( ) are given in Table 3.3 and Table 3.4 

respectively.  The machine availability ( ) is shown in Table 3.5. 

t
ijv

t
ijch t

ljs
t
ia

 
Table 3.1  The standard processing time ( t

jps ), release dates (rj), and due dates (dj) for 

job j 

job j 1 2 
1
jps  5 7 
2
jps  7 4 

rj 1 2 

dj 20 22 

 
Table 3.2  The relative machine speed of  job j on machine i at stage t ( ) t

ijv

Stage t 

job j

machine i 

1 2 

1 1 1.25 1.00 

 2 1.00 0.70 

2 1 1.00 1.00 

 
Table 3.3 The matrix of changeover time of job j on machine i at stage t ( ) t

ijch

Stage t 

job j

machine i 

1 2 

1 1 3 1 

 2 1 2 

2 1 2 1 
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Table 3.4 The matrix of setup time from job l to job j at stage t ( ) t
ljs

Stage t 

to job j

from job l 

1 2 

1 1 - 2 

 2 1 - 

2 1 - 1 

 2 3 - 

 
Table 3.5  The availability of machine i at stage t ( ) t

ia

 1
1m  1

2m  2
1m  

t
ia  2 1 7 

 

For this problem, each job has to be processed at stage 1 first and then at stage 

2, and at each stage job j requires only one machine.  This assumes that job 1 is 

processed on machine 1 ( ) and job 2 is processed on machine 2 ( ) at stage 1.  

Then, at stage 2, job 1 is processed on the machine ( ) at stage 2 before job 2 is 

processed on the same machine ( ).  The schedule can be generated as follows:  

Firstly, although job 1 arrives at the system at unit time 1 (see r

1
1m 1

2m
2
1m

2
1m

1 = 1), job 1 starts its 

processing at unit time 2, because there are some unfinished jobs from the previous 
planning period on machine 1 at stage 1 (see = 2).  Before job 1 starts its 

processing, the changeover (see ) such as clean-up process is hold.  Hence, job 1 

can start at unit time 5 (  + ,  = 2 and  =3).  Due to the unrelated problem, 

the processing time of job 1 is equal to 4 time units ( / ,  = 5 and  = 1.25), 

so the completion time of job 1 at stage 1 is unit time 9.  Let 

1
1a

1
11ch

1
1a 1

11ch 1
1a 1

11ch
1
1ps 1

11v 1
1ps 1

11v
t
jC  be the completion 

time of job j at stage t, so  = 9.  Similarly, job 2 arrives at the system at unit time 2 

(max{ r

1
1C

2 , }, r1
2a 2 = 2 and  = 1).  The changeover time is hold about 2 time units 

(see = 2), so job 2 starts its processing at unit time 4 (max{ r

1
2a

1
22ch 2 , } + , r1

2a 1
22ch 2 = 2, 

 = 1, and = 2).  Again, due to the unrelated problem, the processing time of job 

2 is equal to 10 time units ( / , = 7 and  = 0.70), so the completion 

time  of job 2 at stage 1 is unit time 14 (see Figure 3.2).  

1
2a 1

22ch
1
2ps 1

22v 1
2ps 1

22v
1
2C
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Figure 3.2.  A Gantt chart for the example problem 

 

For stage 2, the system has one machine at this stage, so only a sequencing 

function is considered.  Now, job 1 is assumed to be processed at the first position of 

the machine at stage 2, but job 1 cannot start its processing before it finishes at stage 
1, that is, job 1 at stage 2 can start after unit time 9 (see  = 9).  However, since job 

1 is processed on the machine at the first position, it is able to start whenever all jobs 
from the previous planning period complete (see ).  Hence, job 1 arrives at stage 2 

at unit time 9 (max{ , },  = 9 and  = 7), and job 1 can start after the 

changeover process of job 1 on machine 1 at stage 2 (see ), so it starts its 

processing at unit time 11 (max{ , }+ ,  = 9,  = 7, and  = 2).  Then, 

job 1 spends 7 time units ( / ,  = 7 and  = 1.00), and it completes at unit 

time 18 (= ).  Next, job 2 is assigned to the same machine, and it arrives at stage 2 

whenever it completes its processing at stage 1.  Hence job 2 arrives at stage 2 at unit 
time 14 (see ), but it cannot start any process because at that time job 1 is still 

processed on the machine, so it must wait until unit time 18 (see = 18).  At the 

point of unit time 18, before job 2 starts its processing, the setup time between job 1 

and job 2, called sequence-dependent setup time,  such as a cleaning process occurs 
and spends 1 time unit (see = 1).  Thus job 2 starts its processing at unit time 19 

(  + ,  = 18 and  = 1).  Then, job 2 spends 4 time units ( / , = 4 

and  = 1.00), and it completes at unit time 23 (= ). 

1
1C

2
1a

1
1C 1

2a 1
1C 1

2a
2

11ch
1
1C 1

2a 2
11ch 1

1C 1
2a 2

11ch
2
1ps 2

11v 2
1ps 2

11v
2

1C

1
2C

2
1C

2
12s

2
1C 2

12s 2
1C 2

12s 2
2ps 2

12v 2
2ps

2
12v 2

2C

 

In this dissertation, two performance measures, which are the makespan and 

number of tardy jobs, are considered.  The makespan is equivalent to the completion 

time of the last job to leave the system.  In this example, job 2 is the last job to leave 
the system, so the makespan (Cmax) is equal to 23 time units (see  = 23).  To 2

2C
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consider the due dates compared to the completion time of both jobs, there are one job 
that is tardy (i.e. Job 2, d2 = 22 unit time and  = 23 unit time, completes after its 

due date, so job 2 is a tardy job).  Thus, the number of tardy jobs (η

2
2C

T) is equal to 1. 

  

Table 3.6  Possible feasible schedule results of an example problem 

Schedule No. Schedule results 2
1C  2

2C  Cmax ηT

1 Stage 1: 1 – 2 // -  

Stage 2: 1 – 2  

18 23 23 1 

2 Stage 1: 1 – 2 // -  

Stage 2: 2 – 1   

34 24 34 2 

3 Stage 1: 2 – 1 // -  

Stage 2: 1 – 2  

24 29 29 2 

4 Stage 1: 2– 1 // -  

Stage 2: 2 – 1   

30 20 30 1 

 

5 Stage 1: 1 // 2 

Stage 2: 1 – 2  

18 23 23 1 

 

6 Stage 1: 1 // 2 

Stage 2: 2 – 1  

29 19 29 1 

 

7 Stage 1: 2 // 1 

Stage 2: 1 – 2  

16 21 21 0 

8 Stage 1: 2 // 1 

Stage 2: 2 – 1  

22 12 22 1 

 

9 Stage 1:  –  // 1 – 2  

Stage 2: 1 – 2  

16 21 21 0 

 

10 Stage 1: –  // 1 – 2  

Stage 2: 2 – 1   

34 24 34 2 

11 Stage 1: –  // 2 – 1  

Stage 2: 1 – 2  

29 34 34 2 

 

12 Stage 1: –  // 2 – 1  

Stage 2: 2 – 1   

29 19 29 1 
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However, the above detailed example is one of all 12 schedules that can be 

generated for a given example problem.  In this dissertation, a result of a schedule can 

be presented by using a job code.  For example, the result from Figure 3.2 is 

represented as stage 1:  1 // 2 and stage 2: 1 – 2, that is, at stage 1, job 1 is processed 

on machine 1 and job 2 is processed on machine 2, and at stage 2, job 1  is processed 

before job 2 on the same machine. For another example, 1 – 2 // -, it means that there 

are 2 machines in the stage where job 1 and job 2 are processed on machine 1 and no 

job is processed on machine 2.  Table 3.6 shows all possible feasible schedules 

generated under such machine and job environments.  It is found that only 2 

schedules, a schedule No.7 and a schedule No.9, generate a good solution both 

criteria, Cmax and ηT.  However, if the problem size increases, it is impossible to 

generate all schedules since the number of schedules generated will exponentially rise 

(see Section 3.5). 

 
3.4  Mathematical Formulation 
 

This section presents a 0-1 mixed integer linear programming model with the 

objectives of minimizing both criteria, namely the makespan and the number of tardy 

jobs.  Before proceeding with the mathematical formulation, the notations of 

parameters and decision variables used in formulating model are defined.  The 

mathematical formulation is then provided.  

 

Indices: 

t Stage index, t = 1, 2, 3, . . . , k 

i Machine index, i = 1, 2, 3, . . . , mt

j, l Job index, j, l = 1, 2, 3, . . . , n 

 

Parameters: 

rj Release date of job j  
tm  Number of parallel machines at stage t 

dj Due date of job j 
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t
ljs  Setup time between job l and job j at stage t 

t
ijch  Changeover time of job j if job j is assigned to machine i at the first 

position at stage t 
t
jps  Standard processing time of job j at stage t 

t
ijv  Relative machine speed of machine i at stage t for job j 
t
ia  Time when machine i at stage t becomes available  

 

Variables: 
t
ijlX  1 if job j is scheduled immediately before job l on machine i at stage t, 

and 0 otherwise 
t
jO  Operating time of job j at stage t 
t
jC  Completion time of job j at stage t 

Cmax The makespan is equivalent to the completion time of the last job to 

leave the system 

Uj A Boolean variable; 1 if job j is tardy, and 0 otherwise 

Tj Tardiness of job j 

ηT The total number of tardy jobs in the schedule 

 

 Before formulating the model, the assumptions of the model are first given.  

Then, the objective function of the optimization model is presented.  Then, the given 

constraints are addressed.  Finally, a numerical example is also illustrated. 

 

3.4.1  Assumptions 
 

The problem is formulated under the following assumptions: 

 

1. The problem is assumed to be a static and deterministic scheduling 

environment, 

2. Machines are available from time non-negative onwards, with no 

breakdowns and scheduled or unscheduled maintenance, 

3. The ready times for all jobs are non-negative, 
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4. Non-anticipatory sequence-dependent setup times exist between 

two consecutive jobs at each stage.  After completing processing of one job and 

before beginning processing of the next job, some sort of setup must be performed, 

5. Machine-dependent setup times occur only when the job assigned 

to each machine at the first position at each stage in a period studied, 

6. Job processing cannot be interrupted (i.e. no preemption is 

allowed) and jobs have no associated priority values, 

7. There are no precedence constraints, that is, any job can be allowed 

to start without any other job completion condition, 

8. Jobs are always processed without error and cannot be cancelled 

before their completion, 

9. Each job visits the stages in same order but does not revisit a stage 

that it has already visited, 

10. At any time, every job can be processed at most one machine, and 

every machine can process at most one job,   

11. There are infinite buffers between all stages as well as before the 

first stage and after the last stage, and 

12. There is no travel time between stages; jobs are available for 

processing at a stage immediately after departing at previous stage. 

 

3.4.2  Objective Function 
 

  The need to consider multiple criteria in scheduling is widely 

recognized (Loukil et al., 2005).  Either a hierarchical (also called Lexicographic) or a 

simultaneous approach can be adopted (Gupta and Ruiz-Torres, 2005).  Under a 

hierarchical or lexicographic approach, the criteria are ranked in order of importance; 

the first criterion is optimized first, the second criterion is then optimized, subject to 

achieving the optimum with respect to the first criterion and so on.  For simultaneous 

optimization, there are two approaches.  Firstly, a single objective function can be 

constructed by forming a linear combination of the various criteria, which is then 

optimized.  Secondly, all efficient (also called Pareto Optimal) schedules can be 
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generated, where an efficient schedule is one in which any improvement to the 

performance with respect to one of the criteria causes deterioration with respect to one 

of the other criteria. 

 

  For a linear combination of the various criteria, some researchers deal 

with the mutli-criteria by minimizing the positively weighted convex sum of multi-

objectives in form ƒ(x)  =  w1×ƒ1(x)  +  w2×ƒ2 (x) ..... + wn×ƒn (x), where = 1 and 

w

∑
=

n

h
hw

1

h ≥ 0 , h ∈ {1,..., n}.  It is used to aggregate the considered objectives in a single 

one.  For example, Murtadi and Taboun (2001) study the bicriteria of the makespan 

and the number of tardy jobs for scheduling on identical parallel machines.  They 

develop the solution techniques for multi-objective problems (MOP) to minimize the 

positively weighted convex sum of their objective in form ƒ (x) = w1×ƒ1 (x) + w2×ƒ2 

(x), where w2 = (1- w1).  Rajendran and Ziegler (2003) study a static flow shop 

problem to minimize the sum of flow time and tardiness of jobs by using the weighted 

sum of both objectives.  This technique corresponds to weighted decision making, 

where the weight values are determined by the truth values. Lee and Asllani (2004) 

study the single machine problem with dual criteria.  They minimize the flow time 

and the tardiness by using the weighted sum of both objectives.  They choose the 

weight values by using the holding cost for job j per unit time in the flow time criteria 

and the tardiness cost for job j per unit time in tardiness criteria as the weight values.   

 

For this dissertation, the motivation to consider the problem of 

generating an efficient set of schedules for the flexible flow shop environment comes 

from the variety of industrial cases, where the criteria related to efficiently utilizing 

resources and completing orders by their due date are important.  In the case that if 

there are many optimal solutions from one criterion, considering the other criteria 

may assist to choose the best solution better than randomly selecting from them.  

Therefore, the makespan and the number of tardy jobs are used as the scheduling 

criteria.   
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The first objective 

 

   According to the dissertation objectives, the first goal is to 

minimize the makespan Cmax, i.e. the completion time of the last job at the last stage. 

 

   Let the completion time of job j at stage k, it means the time 
that job j can leave the system, be , then. k

jC

 
Cmax = { } 

},...,1{
max

nj∈

k
jC (3.1) 

 

The second objective 

 

   The second goal is to minimize the number of tardy jobs.  
Associated with each job j is a due date dj  ≥ 0, let Uj = 1 if the completion time of 

job j is larger than due date for job j, and otherwise U

k
jC

j = 0.  The total number of tardy 

jobs (ηT) is defined as: 

 

ηT =  ∑
=

n

j
jU

1

(3.2) 

  

  A simplest method to combine multiple objective functions into a 

scalar fitness solution (Z1) is the following weighted sum approach: 

 

Z1 = w1× Cmax + w2×ηT (3.3) 

 

where w1 and w2 are constant weights of each objective criterion.  The constant 

weight w1 may represent the holding cost per time unit, whereas the constant weight 

w2 may represent the penalty cost per tardy-job unit. 

 

For example, it can also apply a single-objective function, where the 

weights w1 and w2 are fixed as follows (Murata, Ishibuchi, and Tanaka, 1996), e.g.  

w1: w2 = 100:1, 50:1, 20:1, 15:1, 10:1, 5:1, 2:1, 1:1, 1:2, 1:5, 1:10, 1:15, 1:20, 1:50, 
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and 1:100.  Hence, if the w1: w2 is set as 1:100, it means that the constant weight w2 is 

one-hundred times as high as the constant weight w1.  Moreover, it can use w1: w2 as 

1:0 or 0:1, that is, it means that the problem is considered as a makespan problem or a 

number-of-tardy-job problem, respectively.   

 

However, from the data generations in this dissertation, the first 

criterion Cmax mostly dominates the second criterion ηT.  It will not concern the ratio 

of w1: w2 that the constant weight w1 is greater than the constant weight w2, since it 

seems to be considered only one criterion Cmax.  When the w1: w2 is set as 1:1, it 

seems that the value of Cmax greatly dominates the value of ηT, but it can get a benefit 

from such a ratio, that is, assuming that the two best schedules of the Cmax problems 

are generated as a schedule 1 (Cmax = 23 time units and ηT = 1 job unit) and a schedule 

2 (Cmax = 23 time units and ηT = 2 job units), so the schedule 1 will be chosen.  

 

Similarly, if the objective (Z2) is set to seek a schedule that minimizes 

a positively weighted convex sum of the makespan and the number of tardy jobs, the 

objective function value for this dissertation is defined by: 

 

Z2 = λCmax + (1 – λ)ηT (3.4) 

 

where 0 ≤ λ ≤ 1.  λ denotes the weight (or relative importance) given to Cmax and ηT. 

 

  The relative importance (λ) and the constant weights (w) are 

interchangeable, that is, if it sets the relative importance (λ) to be 0.01, it means that 

the w1: w2 is set as 0.01: 099 (λ : 1 – λ ) or 1: 99.  The meaning of 1:99 is that, for 

example, the users consider that the penalty cost for the tardy jobs is more significant 

than the holding cost in their system.  As stated above, it does not concern the ratio of 

w1: w2 that the constant weight w1 is greater than the constant weight w2 expect for the 

ratio of w1: w2 as 1:0, so the weight (or relative importance, λ ) will be set to be 0, 

0.001, 0.005, 0.01, 0.05, 0.1, 0.5, or 1.0 (, or w1: w2 = 0:1, 1: 999, 1:199, 1:99, 1:19, 

1:9, 1:1, or 1:0, respectively).  For the application of this objective function, users can 
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choose arbitrarily w1 and w2.  Then they are only scaled into a convex combination.  

This is equivalent (because only the objective function value is multiplied by a 

constant — this does not influence the optimal solution) for both variants.   
 

3.4.3  Constraint Functions 
 

  From the above idea of scheduling the flexible flow shop example 

problem in Section 3.3, it can construct the constraint functions as follows:   

 
The variable  = 1 if the job l is sequenced as the first job on 

machine i at stage t, and  = 1 if job j is sequenced as the last job on machine i 

at stage t.   

t
liX 0

t
nijX )1( +

 

  Constraints about job sequencing on all k stages: 

  

 These constraints, Constraints (1) through Constraints (7), need to ensure that 

the partial schedule on each machine at each stage is feasible.  

 

 Constraints (1) ensure that a job l at stage t scheduled on a machine i must be 

immediately preceded by exactly one different job j. 
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Constraints (2) ensure that a job j at stage t scheduled on a machine i must be 

immediately followed by exactly one different job l. 
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 Hence, Constraints (1) and Constraints (2) ensure that only one job is assigned 

to each sequence position at each stage. 
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 Constraints (3) ensure that only one job l will be assigned to the first position 

on each machine at each stage. 
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 Constraints (4) ensure that only one job j will be assigned to the last position 

on each machine at each stage. 
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 Constraints (5) assure that, after the job has been finished at any stage, it 

cannot be reprocessed at the same stage.   

 
0=t

ijjX  t = 1, . . . , k ; i = 1, . . . , mt;  

 j = 1, . . . , n  

(5) 

 

 Constraints (6) force the construction of  a consistent sequence at every stage.  

It means that if job l at stage t scheduled on a machine i is immediately preceded by 

job j then a job that is immediately preceded by job l at the same stage must be on 

same machine i. 
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 Constraints (7) specify the decision variables  as binary variables. t

ijlX
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  Constraints about finding the operating time: 

  
 Constraints (8) determine the operating time  for every job j, which is 

dependent on the machine and stage, where the job is processed.  Due to the machine 

eligibility restrictions, the processing speed of a machine which cannot operate a job j 

at stage t is equal to the very small constant, i.e. lesser than the reciprocal value of 

sum of all job processing times and setup times to specify that job j cannot be 

processed on machine i of stage t. 
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 t = 1, . . . , k ; j = 1, . . . , n  (8) 

 

  Completion time forcing constraints: 

  

 Constraints (9) are a set of disjunctive constraints.  It states that, if job j and 

job l are scheduled on the same machine at a particular stage with job j scheduled 

before job l, then job j must complete the processing before job l can begin.  This 

constraint set forces job l to follow job j by at least the processing time of job l plus 

the setup time from j to l if job l is immediately scheduled after job j.  The value of B 

is set to a very big constant, i.e. greater than the sum of all job processing times and 

setup times.   
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 Constraints (10) ensure that the completion time of every job at each stage is a 

non-negative value.  
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 Constraints (11) specify the conjunctive precedence constraints for the jobs, 

which states that a job cannot start its processing at stage t + 1 before it finishes at 

stage t, that is, job l at stage t to complete after it completes at stage t-1, plus its 

processing time at stage t, plus the setup time from its predecessor to l or the 

changeover time if job l is assigned to machine i at the first position at stage t.   

 
t
l

m

i

t
li

t
il

m

i

n

j

t
jl

t
ijl

t
l

t
l OXchsXCC

tt

++≥− ∑∑∑
== =

−

1
0

1 1

1  t = 1, . . . , k;  l = 1, . . . , n (11) 

 

 Constraints (12) apply only to stage one, stating that a job j cannot start its 

processing at stage one before its release date.  

 

jj rC =0  j = 1, . . . , n (12) 

 

 Constraints (13) apply only to jobs that are processed at the first sequence on 

each machine; that is, the job cannot start its processing before machine availability.   
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 Constraints (14) link the makespan decision variable. 

 
k
jCC ≥max  j = 1, . . . , n (14) 

 

  Tardiness forcing constraints: 

 

 Constraints (15) determine the correct value of the lateness (Lj) 
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 Constraints (16) specify only the positive lateness as the tardiness (Tj = max 
{0, }). dCk

j −

 
0≥jT  j = 1, . . . , n (16) 

 

Hence, Constraints (15) and Constraints (16) determine the correct value of 

the tardiness (Tj). 

 

  The value of B is set to a very large constant, i.e. greater than the sum of all 

job processing times and setup times. 

 

 Constraints (17) assure that if the tardiness (Tj) value is greater than zero the 

value of Uj must be greater than zero as well, otherwise the value of Uj is zero. 

 

BUj ≥ Tj j = 1, . . . , n (17) 

  

Constraints (19) specify the decision variables Uj as binary variables.  

 

Uj ∈ {0,1}  j = 1, . . . , n (18) 

 

 Hence, Constraints (17) through Constraints (18) link the decision variable of 

the number of tardy jobs; that is, if tardiness is larger than zero, the job is tardy; 

otherwise this job is not tardy. 

 

3.4.4  A Numerical Example 
 

  In this section, the simple problem is illustrated.  Due to the positively 

weighted convex sum of objectives, the weights λ for each problem can be 0, 0.001, 

0.005, 0.01, 0.05, 0.1, 0.5, or 1.0.  They are solved by using AMPL and CPLEX8.0.0.  

This example consists of five jobs and three stages.  The first stage has two unrelated 

parallel machines, and others have three unrelated parallel machines.  Thus, set t to be 
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3, m1 to be 2, and m2 and m3 to be 3.  Table 3.7 shows the standard processing times, 
the release date, and the due date for every job.  Machine availability ( ) is given in 

Table 3.8.  Table 3.9 gives the information about the relative machine speed ( ) of 

the machines which is dependent on the job.  Table 3.10 and Table 3.11 show the 

matrix of changeover and setup times, respectively.   

t
ia

t
ijv

 
Table 3.7  The standard processing time at stage t ( t

jps ), release date (rj) and due date 

(dj) for job j of a two-stage flexible flow shop 

job i 1 2 3 4 5 
1
jps  71 47 74 14 88 
2
jps  89 28 19 52 73 
3
jps  23 47 40 35 35 

rj 3 130 166 52 69 

dj 275 302 313 204 315 

 
Table 3.8  The availability of machine i at stage t ( ) t

ia

 1
1m  1

2m  2
1m  2

2m  2
3m  3

1m  3
2m  3

3m  
t
ia  16 54 77 67 71 137 139 143 

 
Table 3.9  The relative machine speed of  job j on machine i at stage t ( ) t

ijv

Stage t 

job j 

machine i 

1 2 3 4 5 

1 1 0.976 0.826 0.760 1.120 1.270 

 2 1.042 0.796 0.754 1.186 0.706 

2 1 0.868 0.772 1.228 0.850 0.958 

 2 1.102 1.168 1.192 0.730 0.904 

 3 0.916 1.180 0.844 1.246 1.234 

3 1 0.910 1.024 0.910 0.898 1.174 

 2 1.192 1.006 1.258 0.982 1.144 

 3 1.180 0.970 1.288 1.018 0.922 
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Table 3.10  The matrix of changeover time of job j on machine i at stage t ( ) t
ijch

Stage t 

job j 

machine i 

1 2 3 4 5 

1 1 35 44 35 20 33 

 2 45 20 46 25 27 

2 1 44 19 40 34 13 

 2 30 27 28 43 47 

 3 7 23 41 15 26 

3 1 41 50 5 14 9 

 2 7 13 39 44 29 

 3 17 5 43 17 28 

 
Table 3.11 The matrix of setup time from job j to job l at stage t ( t

jls ) 

Stage t 

to job l 

from job j 

1 2 3 4 5 

1 1 - 17 16 43 3 

 2 30 - 9 0 10 

 3 14 48 - 35 30 

 4 0 19 11 - 39 

 5 23 44 34 25 - 

2 1 - 24 18 50 7 

 2 37 - 49 2 23 

 3 49 45 - 49 35 

 4 12 31 13 - 43 

 5 15 4 50 11 - 

3 1 - 43 17 18 19 

 2 19 - 18 47 5 

 3 43 35 - 45 10 

 4 26 50 4 - 17 

 5 3 26 29 27 - 
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Table 3.12  Results of calculations 

λ Schedule Value Cmax ηT

0 Stage 1: 1 – 5 – 3 // 4 – 2  

Stage 2: 5 – 2 // 1 – 3 // 4  

Stage 3: 4 – 3 // 5 – 2 // 1  

3 1166.76 3 

0.001 Stage 1: 5 – 2 // 4 – 1 – 3  

Stage 2: - // 1 – 3 // 4 – 5 – 2  

Stage 3: 5 – 1 // 2 // 4 – 3  

3.358 360.897 3 

0.005 Stage 1: 5 – 2 // 4 – 1 – 3  

Stage 2: - // 1 – 3 // 4 – 5 – 2  

Stage 3: 5 – 1 // 2 // 4 – 3  

4.789 360.897 3 

0.01 Stage 1: 5 – 2 // 4 – 1 – 3  

Stage 2: - // 1 – 3 // 4 – 5 – 2  

Stage 3: 5 – 1 // 2 // 4 – 3  

6.579 360.897 3 

0.05 Stage 1: 5 – 2 // 4 – 1 – 3  

Stage 2: - // 1 – 3 // 4 – 5 – 2  

Stage 3: 5 – 1 // 2 // 4 – 3  

20.895 360.897 3 

0.1 Stage 1: 5 – 2 // 4 – 1 – 3 

Stage 2: 1 // 3 // 4 – 5 – 2   

Stage 3: 5 – 1 // 2 // 4 – 3  

38.790 360.897 3 

0.5 Stage 1: 5 – 2 // 4 – 1 – 3  

Stage 2: 4 // 1 – 3 // 5 – 2  

Stage 3: 5 – 1 // 4 – 3 // 2  

178.687 353.374 4 

1 Stage 1: 5 – 2 // 4 – 1 – 3  

Stage 2: 4 – 3 // 1 // 5 – 2  

Stage 3: 5 – 1 // 4 – 3 // 2  

353.374 353.374 5 

 
  From these input data, the results are found by using a modeling 

language AMPL with CPLEX solver that runs on Windows platform.  The results of 

the calculations are shown in Table 3.12.  The CPU time for finding the solution is 
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about 60 seconds, but the CPU time is up to 30,000 seconds for the six jobs, see 

Jungwattanakit et al. (2005). 

 

3.5  Complexity of the Problem 
  

 In this section, the complexity of the problem is discussed.  As can be 

described in the previous section, there is a queue at each stage of the flexible flow 

shop, and all of n jobs can be processed on any one of the mt  machines at stage t (t= 

1, …, k).  When the job has been performed through the last stage k, it is complete and 

can finish the system at this point.  

  

Considering only one stage, there are two decision functions to generate the 

schedules, assigning the jobs to machines and sequencing those jobs on each machine. 

For the first part, the total possible solutions (TPS1) generated to assign the n jobs to 

mt machines at stage t (remember that mt is the number of machines at stage t) that are 

equal to: 

 

TPS1 = (mt)n (3.5) 

 
 Assuming that there are jobs that are processed on machine i at stage t, and 

the summation of jobs for all machine i in each stage t is equal to n jobs.  Hence the 

total possible solutions (TPS

t
in

t
in

2) to sequence the jobs on each machine at stage t are 

equal to:  

t
in

 

TPS2 = 
1

!
tm

t
i

i

n
=
∏  (3.6) 

 

 Consequently, the total possible solutions (TPS3) generated of two functions, 

allocation and sequencing functions, are equal to: 
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TPS3 =   TPS1 ×TPS2 

          =     (mt)n 
1

!
tm

t
i

i

n
=
∏  

(3.7) 

 

 From Equation (3.7), it can be noticed that the maximum number of the total 
possible solutions TPS3 will occur when there is an = n and otherwise zero.  Thus 

the total maximum possible solutions (TPS

t
in

3max) generated are equal to: 

 

TPS3max =   (mt)nn! (3.8) 

 

 Moreover, it can be noted that the minimum value of the total possible 
solutions TPS3 will occur when each value of is nearly equal.  Thus the total 

minimum possible solutions (TPS

t
in

3min) generated are equal to: 

 

TPS3min =   (mt)n

1

!
tm

t
i

n
m=

⎢ ⎥
⎢ ⎥⎣ ⎦

∏  (3.9) 

 

where t

n
m
⎢
⎢⎣ ⎦

⎥
⎥ is the largest integer number that is lesser than or equal to  t

n
m

 

 

 Consequently, considering all k stages, the total possible sequence 

combinations (TPC) of the problem under consideration are equal to: 
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 From Equation (3.10), it is found that the total possible sequence combinations 

depend on the number of jobs (n), the number of stages (k), and the number of 

machines (mt) of each stage. 

 

Table 3.13 shows the total number of possible sequence combinations of the 

problems with 5 stages and 5 machines per stage, when the number of jobs increases.  
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Although the given machine environment is quite small, the total number of possible 

sequence combinations is so large when the number of jobs increases.   

 

Table 3.13  Total number of possible sequence combinations for any number of jobs 

of the problems with 5 stages and 5 machines per stage 

Number of jobs Total possible sequence combinations of the problem 

 minimum maximum 

5 2.98E+17 7.42E+27 

10 2.98E+42 5.59E+67 

15 7.53E+71 1.01E+113 

20 2.53E+104 6.72E+161 

 

Table 3.14 shows the total number of possible sequence combinations of the 

problems with 5 jobs and 5 machines per stage, when the number of stages increases.  

Similarly, although the given machine environment is quite small, the total number of 

possible sequence combinations is so large when the number of stages increases.  

 

Table 3.14  Total number of possible sequence combinations for any number of stages 

of the problems with 5 jobs and 5 machines per stage 

Number of stages Total possible sequence combinations of the problem 

 minimum maximum 

5 2.98E+17 7.42E+27 

10 8.88E+34 5.50E+55 

15 2.65E+52 4.08E+83 

20 7.89E+69 3.02E+111 

  

A highest current computer technology, an Intel Core 2 Dual Core processor, 

has upped its clock speed to 3.16 GHz (or 3.16E+09 Hz), that is, the computer can 

generate its clocks to 3.16E+09 cycles per second.  With an optimistic assumption 

that one clock cycle generates one solution, the computer can generate 3.16E+09 

solutions per second, so it would be at least 2.99 years to solve the 5-job 5-stage 5-
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machine-per-stage problems for the minimum total possible sequence combinations, 

at least 7.92E+52 years to solve the 5-job 20-stage 5-machine-per-stage problem, or at 

least 2.53E+87 years to solve the 20-job 5-stage 5-machine-per-stage problem.  

Hence, the difficulty of a problem rises when the number of jobs and/or the number of 

stages and/or the number of machines per stage becomes large. 

 

It is not practical to evaluate all possible sequence combinations to find the 

optimal sequence.  This means there is a need for a method or an algorithm which can 

make it possible to avoid extensive computations and find a quick solution.  Of 

course, there is drawback to such algorithms; they do not guarantee optimally.  

 

For the above reason, although the problem under consideration is difficult to 

solve optimally for large-sized problems, an exact solution using mathematical 

programming formulation is still generally necessary for solving small-sized 

problems.  Some important advantages for formulating the exact algorithm from the 

mathematical programming are shown in Chapter I (Section 1.7.3.1).   

 
3.6  Conclusion 
  

This chapter develops the mathematical model to minimize a positively 

weighted convex sum of the makespan and the number of tardy jobs for the flexible 

flow shop problem with unrelated parallel machines and sequence dependent setup 

time.  This chapter begins with the introduction section that gives the definition and 

the importance of the mathematical programming.  It says that even though the CPU 

time required to find an optimal schedule by using the mathematical programming is 

very high, the mathematical models are worth formulating because the optimal 

solutions obtained for small-sized problems can also be used to evaluate the 

performance of various heuristics that are developed to find the approximate solution.  

Moreover, the large-sized problem may be able to solve in near future since the 

development of the computer devices is improving with a fast pace. 
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  Then, this chapter follows with a descriptive example problem that is a two-

stage flexible flow shop environment, which consists of two unrelated parallel 

machines in stage 1 and one machine in stage 2 in Section 3.3.  In that section, a detail 

of scheduling process of one possible solution is presented.  The total number of 

possible sequence combinations generated from such a problem is equal to 12. 

 

Next, in Section 3.4, the mathematical formulation is presented.  It starts with 

the assumptions of the model.  The objective function, why a positively weighted 

convex sum of makespan and the number of tardy jobs as performance measure of the 

schedules is used in this dissertation, is presented.  It concludes the meaning of the 

constant weights (w) and the relative importance (λ) that are interchangeable, that is, 

users can choose arbitrarily w1 and w2, then they are only scaled into a convex 

combination in terms of the relative importance (λ).  However, the limitation of this 

model is that users have to choose their suitable values of w1 and w2 for their 

environment before using the model.  A numerical example to illustrate a use of the 

mathematical model for the problem under consideration by using an AMPL/CPLEX 

solver, which is a commercial solver, is given.  Although the AMPL/CPLEX solver is 

considered one of the fastest commercial solvers available and is faster than an 

enumerative search, it still requires tremendous computational time.  

 

In Section 3.5, under an intuitive method that is called a complete 

enumeration, the total number of possible sequence combinations that will be 

generated by such an approach is estimated.  It is concluded that the total number of 

possible sequence combinations is so large when the number of jobs and/or number of 

machines per stage and/or number of stages increases.  Attempts to find all solutions 

are unsuccessful as they require too much CPU time.  Thus, it is hard to find the 

optimal solution or even best solution by using either a complete enumeration or a 

mathematical model.  Hence, in the next chapter, the development of some heuristics 

to obtain a good solution in acceptable time will be proposed.  

 

 

 



CHAPTER IV 
 

HEURISTIC SOLUTION CONCEPTS 
 

This chapter provides the heuristic solution concepts that are used to find the 

approximation solution of the flexible flow shop problem with unrelated parallel 

machines.  The proposed heuristic solution concepts consist of three main kinds of the 

heuristic algorithms, which are the constructive, improvement, and iterative 

algorithms (Winston and Venkataramanan, 2003).   

   

The outline of this chapter is as follows:  The introduction gives the definition 

and importance of the heuristic solution approach.  Then, the conceptual framework 

for heuristics is explained.  The next section proposes the schedule construction 

approach, where a starting job sequence for the first processing stage is known.  Then, 

the constructive algorithms are proposed for the determination of the starting job 

sequence for the first stage for the flexible flow shop problem in the next section.  The 

improvement algorithms are proposed in the next section.  Some iterative algorithms 

are proposed, namely simulated annealing, tabu search, and genetic algorithms as well 

as other variants with choices of an initial solution for the iterative algorithms.  

Finally, a conclusion will be drawn. 

 

4.1  Introduction 

 

The main limitation of the exact solution approach is the high memory 

consumption of finding the optimal solution, so the heuristic approach the behind idea 

of which is easy to find the good solution is appeared.  In combinatorial optimization 

(Cook et al., 1998), the heuristic approach is the technique designed to solve a 

problem that ignores whether the output can be proven to be correct, but which 

usually produces a good result.  It is intended to gain computational performance or 

conceptual simplicity at the cost of accuracy or precision.  The aim is to achieve a 

good enough output rather than exact output, but this is rewarded with a great 
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computational performance able to turn intractable problems into tractable ones 

(Gagliardi, 2007). 

 

As stated in Chapter I (see Section 1.2.2), a flexible flow shop problem is a 

category of machine scheduling problems which is difficult to solve (Garey and 

Johnson ,1979; Gupta, 1988; Pinedo, 1995); even though the problem has two stages 

with one stage having at least two machines, it has already been proved to be NP-hard 

(Hoogeveen et al., 1996).  From the previous chapter, the complexity of the problem 

makes it computationally expensive to use an exact solution technique, which gives 

an optimal solution of the problem.  Consequently, it is impractical to find the optimal 

solution.  This means there is a need for an algorithm which can make it possible to 

avoid extensive computations and find a quick solution.  That is why an approximate 

solution technique (or a heuristic solution approach) is needed.  A heuristic solution 

approach may provide the optimal solution for the problem even though such an 

approach does not guarantee the optimality of its solution.  This fact implies that there 

may be some space for a heuristic solution approach to be improved (Wang, 2005).  

Consequently, various types of approximation algorithms have been proposed.  Some 

importance advantages and disadvantages are stated in Chapter I (see Section 1.7.3.2). 

 

4.2  Conceptual Framework for Heuristics 
 

 Solving a flexible flow shop problem requires finding a good schedule that 

satisfies both some measures of effectiveness and the production controls.  The main 

idea of the proposed algorithm framework comes from the following questions: 

 

1. Which machines will be allocated to perform each job? 

2. When will each job be processed? 

 

Figure 4.1 shows the initial concept of the heuristic solution approach.  The 

concept used in this dissertation is proposed in three phases, which are the initial 

solution generation, the solution improvement, and the solution refinement.   
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Phase 1: Initial Solution Generation

Task 1: Determination of the Representatives of Operating Times
- Determine the representatives of operating times by using the combination of setup 

times and machine relative speeds.

Task 2: Arrangement of a Starting Job Sequence
- Arrange the jobs in a starting job sequence by using one of some selected rules, 

which are dispatching rules or flow shop heuristics.
- Treat the order in a starting job sequence as an initial priority seed for the first 

processing stage.

Task 3: Construction of the Schedule
- Assign the jobs in order of the job sequence to the machines by using the greedy 

search approach.
- Create a new job sequence for the next production stage by using either First-In-

First-Out or permutation rules.

Task 1: Neighborhood Exchanges
- Improve a starting job sequence for a current best solution by 

using the ideas of  a shift move approach or a pairwise interchange approach.
- Treat the order in a new starting job sequence as an initial priority 

seed for the first processing stage.

Task 2: Construction of the Schedule
- Assign the jobs in order of the job sequence to the machines by 

using the greedy search approach.
- Create a new job sequence for the next production stage by using 

either First-In-First-Out or permutation rules.

Phase 2: Solution Improvement

Task 1:  Initialization
- Determine the good parameters for the iterative algorithms (SA, TS, and GA)
- Choose an initial starting job sequence obtained by random or the current best 

solution from the solution in Phase 1 or Phase 2.

Task 2:  Neighborhood Exchanges
- Improve a starting job sequence by using the iterative algorithms
- Treat the order in a new starting job sequence as an initial priority seed for the first 

processing stage.

Task 3: Construction of the Schedule
- Assign the jobs in order of the job sequence to the machines by using the greedy 

search approach.
- Create a new job sequence for the next production stage by using either First-In-

First-Out or permutation rules.

Phase 3: Solution Refinement

 
Figure 4.1  Initial concept of the heuristic solution approach 
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The initial solution generation phase is to generate the initial feasible solution.  

It consists of three tasks.  Firstly, it has to determine the representatives of operating 

times, since the processing and setup times for every job are unknown until all jobs 

have already been assigned to machines.  Secondly, a starting job sequence is 

constructed.  All jobs are arranged by using one of some selected rules which are 

adapted from dispatching rules or flow shop heuristics.  The order in a starting job 

sequence is treated as an initial priority seed for scheduling in the first production 

stage.  Finally, the construction of the schedule is carried on to find the schedule 

solution.  In this task, there are two main approaches.  The first approach is the greedy 

search approach that is used to assign the jobs to the machines in the stage, and the 

second approach is the use of either First-In-First-Out (FIFO) or permutation rules to 

create a new job sequence for the next production stage.  All tasks of this phase are 

made up of the constructive algorithms in this dissertation. 

 

Next, the solution improvement phase is proposed to improve the current 

solution obtained from the initial solution generation in Phase 1.  Two tasks are 

implemented in this phase.  The first task is the neighbor exchanges.  It is applied on 

the starting job sequence, that is, it considers first only the current starting job 

sequence that is obtained from the particular constructive algorithm and exchanges 

the job order in such a current starting job sequence.  Then, the second task is to 

construct the schedule output.  Again, two approaches of assigning the jobs to the 

machines and determining the new job sequence are used.  The improvement 

algorithms proposed in this dissertation are followed in this phase. 

 

The solution refinement in Phase 3 is applied.  This phase is used as the 

iterative algorithm in this dissertation.  Its tasks are the initialization, neighborhood 

exchanges, and construction of the schedule.  The initialization in this phase consists 

of determining the good parameter for the iterative algorithms (namely, the simulated 

annealing, tabu search and genetic algorithms) and choosing an initial starting job 

sequence obtained by random or the best solution from either the constructive 

algorithms in Phase 1 or the improvement algorithms in Phase 2.  Then, the 
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neighborhood exchanges are applied to improve the initial starting job sequence.  

They use the idea of the iterative algorithms (known as artificial intelligent 

algorithms) to function as the neighborhood exchanges.  Finally, in each iteration of 

the neighborhood exchanges, the schedule construction approach is still used to 

determine the schedule output in order to evaluate the fitness or improvement of the 

new starting job sequence. 

 

That is all the initial concept of the heuristic solution approach.  Then, more 

details of the conceptual framework based on the initial concept of the heuristic 

solution approach are explained.  On the ideas of heuristic procedures (Winston and 

Venkataramanan, 2003), the heuristic techniques are characterized by using a 

particular approach for obtaining a good solution in efficient time (called a 

constructive algorithm) and for incrementally improving to an existing solution by 

neighborhood exchanges or local search (called an improvement algorithm).  As a 

result, they tend to get trapped in a local optimal solution until next attempts to 

develop other general heuristics that can work on a variety of problems have met with 

the development of solution methodologies based on an artificial intelligence method 

(called an iterative algorithm).  Consequently, three kinds of heuristics, namely 

constructive, improvement, and iterative algorithms, are proposed in this dissertation. 

 

Before concerning the heuristic algorithms, the schedule construction 

approach is presented to construct the schedule output (see Section 4.3).  The 

proposed schedule construction approach is based on the idea of Santos et al. (1996).  

It starts with a starting job sequence, which may be randomly generated.  The starting 

job sequence is represented by a permutation-based code (or job code) using integers; 

for example, the nine jobs can be coded as the starting job sequence [9  3  6  5  8  7  2  

4  1].  The stages are scheduled separately.  Considering the jobs in the order of the 

starting job sequence, each job is loaded on the machine with the minimum 

completion time in the first considered production stage (referred to as a greedy 

search).  The idea is to balance evenly the workload in a heuristic way as much as 

possible.  Then, the schedule construction approach uses the particular rules (i.e. the 
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FIFO and permutation rules) to generate a new job sequence for the next production 

stage.  Again, considering the jobs in the new job sequence, each job is loaded on the 

machine with the minimum completion time in the next considered production stage.  

Repeat the steps of the algorithms until all production stages are considered (see 

Approach 1).  Figure 4.2 shows a flow diagram of the schedule construction approach. 

 

 
 

Figure 4.2  A flow diagram of the schedule construction approach  

 

Firstly, the constructive algorithms are proposed (see Section 4.4).  From the 

schedule construction approach, it is noticed that the schedule output depends on the 

starting job sequence.  Santos et al. (1996) and Wang and Hunsucker (2003) conclude 

their studies that the quality of a schedule is improved by using some particular rules 

to determine a starting job sequence for the first stage.  Consequently, in this 

dissertation, a starting job sequence is created by using some particular rules.  The job 

operating times are required to find a starting job sequence for the first stage, but, due 

to the unrelated parallel machines and sequence-dependent setup times, the processing 

and setup times for every job are dependent on the machine and the previous job.  

This means that job operating times is not known until an assignment of jobs to 

machines for the corresponding stage has been done.  Thus, before finding the staring 

job sequence for the first stage, a approach for finding the representatives of the 

relative machine speeds and the setup times will be proposed (see Algorithm 1).  
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Figure 4.3  A flow diagram of the constructive algorithms 
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After generating the representatives of operating times, the algorithms will 

generate a starting job sequence and use the schedule construction approach to 

construct a schedule solution.  Now, this step will consider how to arrange the jobs in 

a starting job sequence for the first stage.  For the first idea, it will concern the 

information of the job operating times as a whole, that is, each representative of 

operating time of all stages will be added to the total representative of operating time 

of each job to find a starting job sequence for the first stage.  Then, it will apply some 

simple dispatching rules, namely SPT, LPT, ERD, EDD, MST, and S/P, to arrange all 

jobs in the starting job sequence (see Section 4.4.1). 

 

However, the problem under consideration is a combination of the parallel 

machine problem and the flow shop problem, so the idea of the well-known flow shop 

heuristics should be adapted in this problem; for example, the ideas of using the 

priority of the different operating times at each stage in the Palmer, CDS, Gupta, and 

Dannenbring heuristics should be considered for sequencing jobs in the starting job 

sequence.  Moreover, the probably best flow shop heuristic, called the NEH 

algorithm, based on the idea of the insertion algorithm is also adapted to find the 

starting job sequence.  Consequently, this dissertation will investigate the influence of 

using the adapted flow shop heuristics, namely Palmer, CDS, Gupta, Dannenbring, 

and NEH, for determining the starting job sequence (see Section 4.4.2).  Figure 4.3 

shows a flow diagram of the constructive algorithms. 

 

The computational efficiency of the constructive algorithms will be tested in 

the next chapter.  The result will show the performance of the constructive algorithms 

by comparing with the best solution that is found in the tests for the medium-and 

large-sized test problems (see Section 5.3.1) and the optimal solution for the small-

sized test problems (see Section 5.4).  It will conclude which algorithm gives the good 

performance in average.  
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Set the dummy starting job sequence to be the best 
starting job sequence

Start

Consider the best starting job sequence that gives the 
best schedule from the constructive algorithm

Choose the job j from the first job in the best starting job 
sequence

Is job j (in the dummy starting
 job sequence) tardy?

Apply neighborhood exchanges for job j in the dummy 
starting job sequence

Delete the job j from in the best starting job sequence

Is there an improved schedule ?

Update the dummy starting job sequence

Is  there job j (in the best starting job 
sequence)?

Use THE SCHEDULE CONSTRUCTION APPROACH
to find the schedule result

Yes

Yes

No

No

Apply A CONSTRUCTIVE ALGORITHM

No

Yes

Stop  
 

Figure 4.4  A flow diagram of the improvement algorithms 
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Next, after obtaining a good solution from the constructive algorithms, it can 

obtain incremental improvement (called an improvement algorithm) to an existing 

solution by neighborhood exchanges (Winston and Venkataramanan, 2003).  Now, it 

is noticed that the constructive algorithms do not consider the minimization of the 

number of tardy jobs, so this phase will provide the idea of improving the current 

solution by using some approaches, namely pairwise interchange and shift move 

strategies, for jobs that are tardy.  The first improvement idea (called a shift move 

approach or an insertion approach) is based on the fact that the tardy job should be 

shifted to perform earlier or later if the solution can improve.  The next improvement 

idea (called a pairwise interchange approach) is based on the fact that the tardy job 

may be exchanged with a job that is assigned ahead or later.   

 

Figure 4.4 shows the flow diagram of the improvement algorithms, where the 

idea will apply on a starting job sequence that obtains from the constructive algorithm 

and still use the schedule construction approach to find the schedule solution (see 

Section 4.5).  Again, the performance of the improvement algorithms is provided in 

Chapter V.  It will compare with the best solution that is found in the tests for the 

medium-and large-sized test problems (see Section 5.3.2) and the optimal solution for 

the small-sized test problems (see Section 5.4).  It will conclude which algorithm 

gives the good performance in average.  

 

As a result, those algorithms tend to get trapped in a local optimal solution, but 

they can apply other general heuristics with the development of solution 

methodologies based on an artificial intelligence method (called an iterative 

algorithm).  Jones et al. (2002) show that 70% of the articles utilize a genetic 

algorithm as the primary metaheuristic, 24% a simulated annealing, and 6% a tabu 

search.  Thus, to determine near-optimal solutions, the simulated annealing, tabu 

search, and genetic algorithms are proposed in this dissertation as the iterative 

algorithms (see Section 4.6).  Again, it will apply the iterative algorithms on a starting 

job sequence and use the schedule construction approach to construct a schedule 

solution in order to evaluate the fitness of each solution generated in each iteration.  
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Use THE SCHEDULE CONSTRUCTION APPROACH
to find the schedule result

Generate an initial starting job sequence

Is it terminated?

Start

Yes

No

Stop

Neighborhood Exchanges on the starting job sequence by 
using the iterative algorithms

 
 

Figure 4.5  A flow diagram of the iterative algorithms 

 

However, it is noted that each iterative algorithm firstly generates a starting 

job sequence as an initial solution by random.  Reeves (1995), Wang and Zheng 

(2003), and Grabowski and Wodecki (2004) have used the NEH algorithm as the 

initial solution instead of a random initial solution for their iterative methods, namely 

a tabu search and a genetic algorithm.  Janiak et al. (2007) have used the best solution 

among their constructive algorithms such ECT, EDD, and EDP as an initial solution 

for the simulated and tabu search algorithms.  These imply that a better initial solution 

gives a better schedule solution.  Consequently, it will apply this idea on the iterative 

algorithms by using a solution that is found by both constructive algorithms and 

improvement algorithms as a biased initial solution (or a part of the initial population 

for the genetic algorithm) (see Section 4.7).  Figure 4.5 shows all concepts of the 

iterative algorithms.  The performance of the iterative algorithms which is compared 

with the best solution is shown in Section 5.3.3 and which is compared with the 

optimal solution is shown in Section 5.4. 

 

 After all algorithms are tested in Chapter V, each algorithm will be concluded 

under the data generation that is given in Section 5.2.  Then, one heuristic solution 

algorithm that gives the good performance in average will be recommended to use for 

solving the problem under consideration (see Section 5.5). 
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4.3  Schedule Construction Approach 
 

 In this section, the algorithm of the schedule construction approach is 

proposed.  As stated in Section 4.2, such an approach is based on the idea of the 

greedy search approach (see Figure 4.2).  The purpose of the schedule construction 

approach is to construct a schedule that answers two questions, which machine will be 

allocated to process each job and when each job will be processed.  This approach is 

also developed to evaluate the performance of the schedule which is given by a 

starting job sequence at the first stage and to evaluate the fitness of the solution in 

each iteration of the iterative algorithms in Section 4.6. 

 

 The idea of the greedy search approach is used in many researches of the 

flexible flow shop problem, see Sundararaghavan, Kunnathur, and Viswantha (1997), 

Santos et al. (1996), and Lin and Liao (2003), that is, jobs are assigned as soon as 

possible to the machines at every stage using the starting job sequence determined for 

the first stage.  For other stages, a new job sequence is constructed, and it still uses the 

greedy search approach to distribute jobs to one of machines.  There are basically two 

approaches for constructing the new job sequence for other stages.  The first way is 

that for the other stages, i.e. from stage two to stage k, jobs are ordered according to 

their completion times at the previous stage.  This means that the First-In-First-Out 

(FIFO) rule is used to find the new job sequence for the next stage by means of the 

job sequence of the previous stage.  The advantages of the FIFO rule are simple and 

easy to understand, that is, any jobs come first, and then they should serve first.  

However, because of this nonpreemptive scheduling, short processes which are at the 

back of the queue have to wait for the long process at the front to finish, so if short 

processes are sometime yielded to process first, it may be possible to improve the 

solution.  Consequently, to omit the idea of the FIFO rule and to believe that the jobs 

in the starting job sequence should use all stages, the second way proposed is to 

sequence the jobs for other stages by using the same job sequence as for the first 

stage, called the permutation rule (Pinedo, 1995).  
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 In this dissertation, the ideas stated above are made for the modifications for 

the problem under consideration.  Approach 1 shows the steps of the schedule 

construction approach, where a starting job sequence for the first processing stage is 

known.  It consists of a greedy approach which constructs a schedule for n jobs at a 

particular stage and particular rules (i.e. either the FIFO or permutation rules) to find 

the new job sequence for the next production stage.  The objective of this greedy 

approach is to minimize the flow time and the idle time of the machines.  The idea is 

to balance evenly the workload in a heuristic way as much as possible.   

  

Approach 1: Schedule construction 

 

Input:  Assume now that a starting job sequence (ω1) for the first stage has already 

been determined, ω1 = [ω1[1]  ω1[2]  …  ω1[n]], where ω1[q] is a job at position q, q 

∈ {1, … , n}, in a starting job sequence (ω1) for stage 1, i.e. ω1 = [2  1  3], it means 

that job number 2 is the first job to be scheduled on any machines or ω 1[1] = 2, and 

job number 1 and 3 are followed respectively. 

 

Step 1: Set stage t to be 1. 

Step 2: Let a job sequence π  be ωt; ωt is a job sequence for stage t. 

Step 3: Initialize the machine available time avt[i] = , i ∈ {1, …, mt}. t
ia

Step 4: Assign the first job j in the job sequence π  to the machine i at stage t that 

has the minimum completion time by using the following formula. 

 Case1  Job j is assigned to the machine i at the first position: 
/ max{ , [ ] }

t t
j jt t t t

ij j ij ijt t
ij ij

ps ps
C r ch av i ch

v v
= + + + + ;  

 Case 2  Job j is assigned to the machine i at any other position: 
/ max{ , [ ] }

t t
j jt t t t

ij j lj ljt t
ij ij

ps ps
C r s av i s

v v
= + + + + . 

Step 5: If there is only machine i* that gives the minimum completion time Ct* 
=  of job j then assign job j on machine i* at stage t, and then go to 

Step 8. 

/
*
t
i jC
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Step 6: For every machine i* that gives the minimum completion time  of job 

j, calculate the waiting time of these machines if job j is assigned on 

it by using calculation: 

/
*
t
i jC

jiw *

 Case1  Job j is assigned to the machine i at the first position, for every 

machine i*: 
/ [ ]

t
jt t

ij ij ijt
ij

ps
w C av i

v
= − − − tch ; 

 Case2  Job j is assigned to the machine i at any other position for every 

machine i*: 
/ [ ]

t
jt t

ij ij ljt
ij

ps
w C av i

v
= − − − ts . 

Step 7: Select only one machine i* where the smallest idle time of job j. jiw *

Step 8: Update the available time of machine i*; avt[i*] = . *
/t

i j
C

Step 9: Store the completion time t
jC  of job j be equal to . *

/t
i j

C

Step 10: Let 1t
jr + be t

jC  

Step 11: Update unscheduled job sequence π = π – {j}.  If π ≠ φ then go to Step 4.  

Step 12: Case1 First-In-First-Out Approach: 

Update ωt+1 such that current completion time of job ωt+1[n] at stage t ≤ 

current completion time of job ωt+1[n +1] at stage t; 

 Case2 Permutation Approach: 

Update ωt+1 = ω1. 

Step 13: If  t < k (k is the total number of stages), then  t = t +1, and go to Step 2. 

Step 14: Return the best solution. 

 

4.4  Constructive Algorithms 
 

 From the previous section, it is noticed that the starting job sequence used for 

the first stage is important for the schedule construction approach.  In order to 

determine the starting job sequence for the first stage by some heuristics, remember 

that the processing and setup times for every job are dependent on the machine and 

the previous job.  This means that they are not fixed until an assignment of jobs to 

machines for the corresponding stage has been done.  Thus, for applying a schedule 

 



 
 

100

construction approach for fixing the starting job sequence for stage one, finding the 

representatives of the relative machine speeds and the setup times is necessary (see 

Algorithm 1).  

 
 The representatives of relative machine speed ( ) and setup time ( ) for 

stage t, t = 1, … , k, use the minimum, maximum, and average values of the data.  

Thus, the representative of operating time of job j at stage t is the sum of the 
processing time 

t
ijv / t

ljs /

t
ij

t
j vps /  plus the representative of the setup time .  Nine 

combinations of relative machine speeds and setup times will be used in the suggested 

algorithm.  The starting job sequence for the first stage is then fixed as the starting job 

sequence with the best function value obtained by all combinations of the nine 

different relative machine speeds and setup times. 

t
ljs /

 

 The idea of these combinations is to deal with unknown processing and setup 

times before assigning jobs to machines by using the expected time, the pessimistic 

time, and the optimistic time.  Firstly, it is assumed that each job has an equal chance 

to assign on each machine at each stage, so the expected values are used to apply, that 

is, the algorithm uses the average values of both relative machine speeds and setup 

times to generate the representatives of the operating times.  However, there are some 

chances that some jobs will assign to any machines that spend the operating times 

longer or shorter than the average values (especially, they should assign to the 

machine that spends time shorter).  This means that the results are better than using 

only the average values as the representative values.  To take these uncertainties into 

account and to find tune the value of the operating time, this idea will use the nine 

combinations of the both relative machine speeds and setup times to generate any 

operating time values that are in the ranges of the possible operating times and to 

increase the search space of the algorithms presented in this dissertation. 

 

Then, the determination of the starting job sequence for the first stage for the 

problem is proposed.  For the first idea, it will concern the information of the job 

operating times as a whole, that is, each representative of operating time of every 
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stage is summed as the total representative of operating time of each job to find a 

starting job sequence for the first stage.  It concerns the problem as a single model and 

uses the simple dispatching rules to determine the starting job sequence; for example, 

Kurz and Askin (2004) propose their starting job sequence by using the SPT rules and 

then follow by the greedy approach to distribute the jobs to the machines.   

 

For another idea, it can use the well-known flow shop heuristics to create the 

starting job sequence, by a reason that it should concern the priority of the different 

operating times at each stage; for example, Santos et al. (1996) have used the Palmer, 

CDS, Gupta, and Dannenbring heuristics to determine their starting job sequence, and 

Wang and Hunsucker (2003) have used the CDS algorithm to determine their starting 

job sequence, as well.  

 

Consequently, in this dissertation, the constructive algorithms are adapted and 

developed by using one of several basic dispatching rules and flow shop heuristics to 

determine the starting job sequence and then using the schedule construction approach 

to find the schedule solution (see Figure 4.3).   

 

Algorithm 1: Constructive algorithm 

 
Input:  Relative machine speeds ( ) and setup times (  and ).  t

ijv t
ijch t

ljs

 

Step 1: Determine the representatives of relative machine speeds  and setup 

times  for t=1,…,k. 

t
ijv /

t
ljs /

If speed =1 then  = min{ ; ∀i = {1, …, mt} }, ∀j = {1, 

…, n}; 

t
ijv / t

ijvStep 1(a): 

If speed =2 then  = max{ ; ∀i = {1, …, mt} }, ∀j = {1, 

…, n}; 

t
ijv / t

ijv

If speed =3 then  = average{ ; ∀i = {1, …, mt} }, ∀j = 

{1, …, n}. 

t
ijv / t

ijv
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If setup = 1 then  = min{ ; ∀l = {1, …, n}, ; ∀i = 

{1, …, mt} }, ∀j = {1, …, n}; 

t
ljs / t

ljs t
ijchStep 1(b): 

If setup = 2 then  = max{ ; ∀l = {1, …, n}, ; ∀i = 

{1, …, mt} }, ∀j = {1, …, n}; 

t
ljs / t

ljs t
ijch

If setup = 1 then  = average{ ; ∀l = {1,…, n}, ; ∀i = 

{1,…, mt} }, ∀j = {1, …, n}. 

t
ljs / t

ljs t
ijch

Step 2: Set speed to be 1. 

Step 3: Set setup to be 1.  

Step 4: Determine the representatives of operating time ( ) of each job and 

each stage by using equation:  

t
jO /

 

t
ljt

ij

t
jt

j s
v
ps

O /
/

/ +=  

 

 

(4.1) 

Step 5: Determine the starting job sequence ω1 of the first stage, by using the 
representatives of operating time  to find such a job sequence with 

one of some modified particular rules (dispatching rules and flow shop 

heuristics). 

t
jO /

Step 6: Construct a schedule output by using the schedule construction 

approach (see Approach 1) 

Step 7: If setup < 3, then setup = setup + 1, and go to Step 4. 

Step 8: If speed < 3, then speed = speed + 1, and go to Step 3. 

Step 9: Return the best solution. 

 

4.4.1  Dispatching Rules  
 

The dispatching rules are the simple algorithms to construct the 

solution.  They can be classified in a number of ways.  One such classification is as 

follows (Holthaus and Rajendran, 1997): 
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1. Process-time based rules, 

2. Due-date based rules, 

3. Combined rules, and 

4. Rules that are neither process-time based nor due-date based. 

 

  The algorithms that cover four types of dispatching rules are chosen. 

The Shortest Processing Time (SPT) is an example of a process-time based rule that 

ignores the due-date information of jobs.  The SPT rule has been found to minimize 

the mean flow time and a good performance with respect to the mean tardiness 

objective and has also been observed under highly loaded conditions in the shop 

(Baker, 1974).  Another method of a process-time based rule is the Longest 

Processing Time (LPT) rule, the advantage of which is to keep jobs with short 

processing times for later because these jobs are useful at the end for balancing the 

workload under the parallel-machine problem (Pinedo, 1995).  The reason is to keep 

jobs with short processing times to be assigned and sequenced without affecting the 

workload balance.  However, for the flexible flow shop problems with unrelated 

parallel machine, it is necessary to adapt the SPT and LPT rules by using the 

representatives of the operating times as stated above.  Then, the best solution is 

selected among the nine combinations of relative machine speeds and setup times (see 

Approach 2 that is Step 5 in Algorithm 1) 

 

Approach 2: Process-time based rule 

 
Input:  Representative of operating time  from Step 4 in Algorithm 1. t

jO /

 

Step 1: For each job j, j  = 1,…, n, determine its total representatives of operating 

time = . /
jTO ∑

=

k

t

t
jO

1

/

Case1  The Shortest Processing Time (SPT) rule: 
Sort the jobs in ascending order of the  values, if any two jobs have 

the same  values, sort them in an arbitrary order, and set it to be ω1, 

where ω1 is a starting job sequence for the first stage. 

/
jTO

/
jTO

Step 2: 
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Case2  The Longest Processing Time (LPT) rule: 
Sort the jobs in descending order of the  values, if any two jobs have 

the same  values, sort them in an arbitrary order, and set it to be ω1, 

where ω1 is a starting job sequence for the first stage. 

/
jTO

/
jTO

 

 

For due-date based rules, the Earliest Due Date (EDD) rule is 

proposed.  Followed by the EDD rule, the next job to be processed is the one with the 

earliest due date.  Consequently, the jobs in the starting job sequence ω1 for the first 

stage are sorted according to non-decreasing due dates of the jobs.  

 

Rules can be combined to make use of both process-time and due-date 

information, e.g. the Minimum Slack Time rule, etc.  The Minimum Slack Time first 

(MST) rule is a variation of the EDD rule.  This rule concerns the remaining slack of 

each job, defined as its due date minus the processing time required to process a job. 

Similar to the MST rule, another rule concerned in this problem is the Slack time per 

Processing time (S/P), where its slack time is divided by the processing time required 

as well (see Approach 3 that is Step 5 in Algorithm 1) 

 

Approach 3: Combined rule 

 
Input:  Representative of operating time  from Step 4 in Algorithm 1. t

jO /

 

Step 1: For each job j, j  = 1,…, n, determine its total representatives of operating 

time = . /
jTO ∑

=

k

t

t
jO

1

/

Case1  The Minimum Slack Time first (MST) rule: 
Sort the jobs in a non-decreasing order of the (dj – ) values, if any 

two jobs have the same (dj – ) values, sort them in an arbitrary order, 

and set it to be ω1, where ω1 is a starting job sequence for the first stage. 

/
jTO

/
jTO

 

 

 

Step 2: 
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Case2  The Slack time per Processing time (S/P) rule: 
Sort the jobs in a non-decreasing order of the (dj – )/ values, if 

any two jobs have the same (dj – )/ values, sort them in an 

arbitrary order, and set it to be ω1, where ω1 is a starting job sequence for 

the first stage. 

/
jTO /

jTO
/
jTO /

jTO

 

 

Finally, a rule that is neither process-time based nor due-date based 

concerned in this research is the Earliest Release Date first (ERD) rule which is 

equivalent to the well-known the First-In-First-Out (FIFO) rule.  The ERD rule, in a 

sense, minimizes the variation in the waiting times of the jobs at a machine (Pinedo 

and Chao, 1999).  Thus, the jobs in the starting job sequence ω1 for the first stage are 

sorted according to non-decreasing release dates of the jobs.  

 

Consequently, the basic dispatching rules given by Shortest Processing 

Time (SPT), Longest Processing Time (LPT), Earliest Release Date first (ERD), 

Earliest Due Date first (EDD), Minimum Slack Time first (MST), and Slack time per 

Processing time (S/P) rules are considered to arrange the jobs in the staring job 

sequence for the first stage in the constructive algorithms.  Moreover, they are used 

mainly for comparison purposes and to have a broad spectrum of solutions in the 

initial solution (or population) of the iterative algorithm as proposed in Section 4.7. 

 

4.4.2  Flow Shop Heuristics  
 

From Section 4.4.1, it is noticed that the dispatching rules concern the 

total operating times for all stages instead of the operating times in each stage.  

Consequently, now it has moved the dispatching rules to the flow shop heuristics that 

concern the operating time in each stage. 

 

The flow shop heuristics can be classified into four groups as follows 

(Hejazi and Saghafian, 2005): 
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1. Heuristics based on slope indices, 

2. Heuristics based on Johnson’s Rule, 

3. Heuristics based on both slope indices and Johnson’s Rules, and 

4. Otherwise. 

 

The Palmer Rule is an approach that assigns a weight or “index” to 

every job and then arranges the sequence by sorting the jobs according to the assigned 

index.  His idea is to give priority to jobs that have a tendency of progressing from 

short times to long times as they move through the stages.  It is noted that his 

algorithm behinds the concept of the LPT algorithm at the last stage and the SPT 

algorithm at the first stage.  This idea has been used in later papers; for example, 

Gupta proposes a modification of Palmer's slope index which exploits some 

similarities between scheduling and sorting problems. 

 

For the CDS rule, it is in the class of heuristics based on Johnson’s 

algorithm.  In this case, several schedules are constructed, and the best one is given as 

a result.  The heuristic is known as CDS and builds k−1 schedules (where k is the total 

number of stages) by clustering the k original machines into two virtual machines and 

solving the generated two machine problem by repeatedly using Johnson’s rule. 

  

Dannenbring’s heuristic is a method that mixes the previous ideas of 

Johnson’s algorithm and Palmer's slope index.  In this case, a virtual two machine 

problem is defined as it is in the CDS heuristic, but instead of directly applying 

Johnson’s algorithm over the processing times, two weighting schemes are calculated, 

and then Johnson’s algorithm is applied.  The weighting schemes give the processing 

times for the jobs in the two virtual machines.  

  

The NEH heuristic is based neither on Johnson's algorithm nor on 

slope indexes.  It is based on the idea that jobs with high processing times on all the 

machines should be scheduled as early in the sequence as possible. 
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Notice that the first four algorithms of flow shop makespan heuristics, 

namely the Palmer, CDS, Gupta, and Dannenbring methods, try to minimize 

makespan while the insertion heuristic, the NEH algorithm, can be used for any 

regular optimization criterion and for the multi-criteria problem under consideration 

as well.  Consequently, the well-known flow-shop makespan heuristics, which are 

Palmer, CDS, Gupta, and Dannenbring as well as the insertion heuristic by Nawaz, 

Enscore, and Ham, are adapted. 

 

4.4.2.1  Palmer  

 

   A heuristic developed by Palmer (1965), in an effort to use 

Johnson’s rule, proposes a slop order index to sequence the jobs on the machines 

based on the processing times.  The idea is to give priority to jobs that have a 

tendency of progressing from short times to long times as they move through the 

stages.  It means that the first stage sequence can be generated based upon a non-

increasing order of the slope indices. 

 
   Let S (j) be the slope index for job j and  be the operating 

time of job j at stage t.  Palmer’s slope index is calculated as follows: 

t
jO

 

{ }∑
=

−−−=
k

t

t
jOtkjS

1
)]12([)(  (4.2) 

   

   To illustrate Palmer’s method for use in the flow shop 

environment, the example given in Table 4.1 will be utilized.   
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Table 4.1  Standard processing times and due date for every job of a three-stage flow 

shop problem 

Job j 1 2 3 4 5 
1
jps  11 13 20 9 11 
2
jps  12 15 10 12 18 
3
jps  20 18 12 20 15 

dj 40 40 75 45 60 

  

   Since there is only one machine for every stage, the operating 
times for every job are equal to its standard processing times ( ).  The slope 

indices for the five jobs are now calculated as follows: 

t
j

t
j psO =

 
S(j)  = - [2  + 0  – 2 ], i.e. 1

jO 2
jO 3

jO

1.  S(1)  = -2(11) - 0(12) + 2(20)  = 18; 

2.  S(2)  = -2(13) - 0(15) + 2(18)  = 10; 

3.  S(3)  = -2(20) - 0(10) + 2(12)  = -16; 

4.  S(4)  = -2(9) - 0(12) + 2(20)  = 22; 

5.  S(5)  = -2(11) - 0(18) + 2(15)  =  8. 

 

Palmer’s heuristic sequences the jobs in non-increasing order of 

the slope indices.  For the job set in Table 4.1, this heuristic yields the starting job 

sequence ω1 = [4  1  2  5  3] for the first stage.  Palmer’s heuristic yields a makespan 

value of 106.  Using a 0-1 mixed integer programming formulation, one can confirm 

that 106 is the optimal makespan value as well.  

 

   Now, the modified Palmer’s method (in the following denoted 

by PAL) for the flexible flow shop problem with unrelated parallel machines and 

sequence-dependent setup times is developed as follows. 

 
   Let   be the standard processing time of job j  at stage t,  

be the representative of the relative machine speeds on machine i at stage t for job j, 

t
jps t

ijv /
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and  be the representative of the setup time between job l and job j at stage t.  

Then,  denotes the slope index for job j at the relative machine speed 

and setup time .  PAL’s slope index for the flexible flow shop problem with 

unrelated parallel machines and setup times is calculated as follows: 

t
ljs /
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   Since the processing times and the setup times for every job are 

dependent on the machine and the previous job, respectively, the representative of the 
operating time  of job j at stage t in Palmer’s method adaptation is the sum of the 

processing time 

t
jO /

t
ij

t
j vps /  plus the setup time .  To construct a schedule for the 

overall problem, set  to be the minimum, maximum, and average relative machine 

speeds and to be the minimum, maximum, and average setup times regardless for 

the machine and the previous job.  All these nine combinations of relative machine 

speeds and setup times will be used as described in Algorithm 1, and finally, the 

solution with the best objective function value obtained by all different relative 

machine speeds and setup times is taken. 

t
ljs /

t
ijv /

t
ljs /

  

4.4.2.2  Campbell, Dudek, and Smith 

 

   Campbell et al. (1970) develop one of the most significant 

heuristic methods for the makespan flow shop scheduling problem, known as the CDS 

algorithm.  Its strength lies in two properties: (1) it uses Johnson’s rule in a heuristic 

fashion and (2) it generally creates several schedules from which a “best” schedule 

can be chosen.  In so doing, k – 1 subproblems are created, and Johnson’s rule is 

applied to each of the subproblems.  Thus, k – 1 job sequences are generated.  Since 

Johnson’s algorithm is a two-stage algorithm, a k-stage problem must be collapsed 

into a two-stage problem.  Let g be a counter for the k – 1 sub-problems, the operating 

times for the “first” stage are denoted as a(j, g), where j denotes the job, and g denotes 

the g-th subproblem.  Similarly, b(j, g) denotes the “second” stage operating times of 
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job j and sub-problem g.  Given these notations, the operating times are calculated by 

the following two formulas: 
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   For each of the subproblems, Johnson’s algorithm provides a 

job sequence using the values a(j, g) and b(j, g).  Once Johnson’s sequence is created, 

the problem is then returned to the consideration of all k stages.   

 

   Again, due to the unrelated parallel machines, the constructed 
processing time for the “first” stage is denoted as , where j denotes the 

job, g denotes the g-th subproblem, and  and are the representatives of the 

relative machine speed and  setup time, respectively.  Similarly,  

denotes the “second” stage processing time.  Given these definitions, the constructed 

processing times are calculated according to the following two equations: 
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   To generate the starting job sequence, Johnson’s ordering is 

created, and the problem is then returned to the consideration of k stages by calling 

Approach 1 for all nine combinations of relative machine speeds and setup times as 

considered in Algorithm 1.   
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4.4.2.3  Gupta 

  

   Gupta (1971) provides an algorithm, denoted by GUP, in a 

similar manner as algorithm PAL by using a slope index.  Denote G(j) as the slope 

index generated by Gupta’s method for job j.  Then G(j) is calculated as follows: 
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   After calculating G(j) for all jobs, the jobs are subsequently 

ranked in a non-decreasing order of the slope indices.   

 
   Under the Gupta adaptation rule, let  be the slope 

index of algorithm GUP for job j at relative machine speed and setup time .  The 

slope index of algorithm GUP for the flexible flow shop with unrelated parallel 

machines and setup times is then calculated from: 
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4.4.2.4  Dannenbring 

  

   Like PAL’s rule, Dannenbring (1977) develops a method by 

using Johnson’s algorithm as the foundation.  Furthermore, the CDS and PAL 

algorithms are also exhibited.  Dannenbring constructs only one two-stage problem, 

but the processing times for the constructed jobs reflect the behavior of PAL’s slope 

index.  In the following, this method is denoted by DAN.  Denote a(j) and b(j) as the 

operating times for the constructed two-stage problem.  The calculations of a(j) and 

b(j) are as follows: 
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   After calculating a(j) and b(j) for all jobs, the jobs are 

subsequently ranked by applying Johnson’s algorithm to generate the starting job 

sequence for stage one.   

 

   Under the DAN adaptation rule, the operating times for the 

flexible flow shop problem with unrelated parallel machines and setup times are 

calculated as follows: 
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4.4.2.5  Nawaz, Enscore, and Ham 

  

   Nawaz et al.  (1983) develop probably the best constructive 

heuristic method for the permutation flow shop makespan problem, called the NEH 

algorithm.  It is based on the idea that a job with a high total operating time on the 

machines should be placed first at an appropriate relative order in the sequence.  Thus, 

jobs are sorted in non-increasing order of their total operating time requirements.  The 

final sequence is built in a constructive way, adding a new job at each step and 

finding the best partial solution (see Approach 4).   

 

Approach 4: Nawaz, Enscore, and Ham rule 

 
Input:  Representative of operating time  from Step 4 in Algorithm 1. t

jO /

 

Step 1: The total operating times for  job j is calculated using the formula : 

 
/

1

k
t

j
t

P O
=

= j∑ , j = 1, …, n. 

 

(4.14) 

Step 2: The n jobs are sorted in non-increasing order of their total operating time 

Pj on the machines.  Then the first two jobs (those with largest Pj) are 

taken, and the two possible schedules containing them are evaluated.  The 

sequence with better objective function value is taken for further 

consideration. 

Step 3: Take every remaining job in the sorted list calculated in Step 2 and find 

the best schedule by placing it at all possible positions in the sequence of 

jobs that are already scheduled.  For example, if [j1  j2  j3] is the current 

sequence of scheduled jobs, and job r is the remaining job with largest Pr 

in the sorted list, then job r could be placed at four positions: [r  j1  j2  

j3], [j1  r  j2  j3], [j1  j2  r  j3] or [j1  j2  j3  r].  The sequence with best 

objective function value among the four considered is selected for further 

extension. 
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   For example, the NEH algorithm inserts a third job into the 

previous partial solution in such a way that the resulting sequence gives the best 

objective function value (i.e.  the relative position of the previous job sequence 

remains fixed).  The algorithm repeats the process for the remaining jobs according to 

the initial ordering of the total operating time requirements. 

 

   Again, to apply the NEH algorithm to the flexible flow shop 

problem with unrelated parallel machines, the total operating times for calculating the 

starting job sequence for the first stage are calculated according to Step 4 of 

Algorithm 1 for the nine combinations of relative machine speeds and setup times.  

Contrary to the algorithms presented before, the NEH algorithm constructs job 

sequences by considering the minimization of the convex combination of the 

makespan and the number of tardy jobs. 

 

4.5  Improvement Algorithms 
 

 Unlike constructive algorithms, improvement heuristics start with an already 

built schedule and try to improve it by some given procedures.  As proposed the 

algorithms in the previous section, after obtaining a good solution in efficient time, it 

can obtain incremental improvement (called an improvement approach) to an existing 

solution by neighborhood exchanges or local search (Winston and Venkataramanan, 

2003).  Their use is necessary since the constructive algorithms (especially some 

algorithms that are adapted from pure makespan heuristics and some dispatching rules 

such as the SPT and LPT rules) do not consider due dates (and therefore, they do not 

consider the minimization of the number of tardy jobs).   

 

This section proposes the improvement algorithms for the current solution by 

using some algorithms, namely pairwise interchange and shift move strategies, to 

improve the overall function value by dealing mainly with the due date criterion (see 

Figure 4.4).  The first improvement idea (called a shift move approach or an insertion 

approach) is based on the fact that the tardy job should be shifted to perform earlier or 
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shifted to perform later if the solution can improve.  The next improvement idea 

(called a pairwise interchange approach) is based on the fact that the tardy job may 

be exchanged with a job that is assigned ahead or later.   

 

Consequently, in this dissertation, the iterative algorithms described in the 

following and in Section 4.6 are based on the shift move (SM) and the pairwise 

interchange (PI) neighborhoods.   

 

The SM neighborhood repositions a chosen job.  This means that an arbitrary 

job πr at position r is shifted to position i, while leaving all other relative job orders 

unchanged.  If 1 ≤ r < i ≤ n, it is called a right shift and yields π′ = [π1  …  πr-1  πr+1 

…  πi  πr  πi+1  …  πn].  If 1 ≤ i < r ≤ n, it is called a left shift and yields π′ = [π1  …  

πi-1  πr  πI  …  πr-1  πr+1  …  πn].  For instance, assume that randomly one starting job 

sequence solution for the first stage in the current generation is selected, say [4  9  8  7  

3  1  6  2  5], and then randomly a couple of job positions for performing the shift is 

selected, e.g. positions 2 and 7 (in this case, it is a right shift).  The new starting job 

sequence solution will be [4  8  7  3  1  6  9  2  5].  However, if positions 7 and 2 are 

randomly selected (i.e. it is a left shift), the new starting job sequence solution will be 

[4  6  9  8  7  3  1  2  5].  In the SM neighborhood, the current starting job sequence 

solution has (n–1)2 neighbors. 

 

The PI neighborhood exchanges a pair of arbitrary jobs πr, and πi, where 1 ≤ i, 

r  ≤ n and i ≠ r.  Such an operation swaps the jobs at positions r and i, which yields π′ 

= [π1  …  πr-1  πI  πr+1  …  πi-1  πr  πi+1  …  πn].  For example, assume that the current 

starting job sequence solution is [4  9  8  7  3  1  6  2  5], and then randomly the 

couple of job positions to be exchanged is selected, e.g. positions 1 and 3.  Thus, the 

new starting job sequence solution will be [8  9  4  7  3  1  6  2  5].  In the PI 

neighborhood, the current starting job sequence solution has n×(n-1)/2 neighbors. 

 

In order to find a satisfactory solution of the due date problem, the fast 

polynomial heuristics are applied on the starting job sequence that gives the best 
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schedule solution from the previous algorithms in Section 4.4 by investigating either 

the above SM algorithm as an improvement mechanism based on the idea that it will 

consider the jobs that are tardy in a left-to-right scan and move each of them left and 

right or the PI algorithm, where a tardy job is selected and swapped to different job 

positions left and right, and either to two randomly determined positions (denoted by 

the number “2”) or to all n–1 possible positions (denoted by the letter “A”).  The best 

schedule among the generated neighbors is then taken as the result.  The algorithm is 

as follows: 

 

Algorithm 2: Improvement algorithm 

 

Input:  The best starting job sequence solution ω1* from Algorithm 1; where ω1*  = 

[ω1* [1] … ω1* [n]] 

 

Step 1: Set the dummy starting job sequence π to be ω1* 

Step 2: Check the first job j in the best starting job sequence ω1*, if the job j is 

not tardy in the dummy starting job sequence π, go to Step 5. 

Step 3: Interchange (i.e. apply 2-PI or A-PI) or shift (i.e. apply 2-SM or A-SM) 

the chosen job j in the dummy starting job sequence π and evaluate the 

objective function values by using the schedule construction approach 

(see Approach 1). 

Step 4: Update the current dummy starting job sequence π, if the objective 

function values improve. 

Step 5: Update the job list ω* = ω* – {j}. 

Step 6: Go to Step 2 until the best starting job sequence ω1*  is empty. 

Step 7: Return the best sequence solution π.  

 

Since every tardy job in the job sequence is considered at most once, the 

complexity of the 2-PI and 2-SM procedures is O(n), and the complexity of the A-PI 

and A-SM procedures is O(n2). 
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4.6  Iterative Algorithms 
 

 Those algorithms from both Section 4.4 and Section 4.5 tend to get trapped in 

a local optimal solution, but it can apply other general heuristics with the development 

of solution methodologies based on an artificial intelligence method (called an 

iterative approach) (Winston and Venkataramanan, 2003) (see Figure 4.5).   

 

 Hence, to obtain a near-optimal solution, iterative algorithms (or metaheuristic 

algorithms), have also been proposed by many researchers; for example, Gourgand et 

al. (1999) present several simulated annealing (SA)-based algorithms for the flexible 

flow shop problem.  A specific neighborhood is used, and the authors apply the 

methods to a realistic industrial problem.  Jin et al. (2006) consider the flexible flow 

shop with identical parallel machines.  They propose two approaches to generate the 

initial job sequence and use an SA algorithm to improve it.  It can be seen that an SA 

algorithm has been successfully applied to various combinatorial optimization 

problems.  For an extensive survey of the theory and applications of the SA algorithm, 

see Koulamas, Antony, and Jaen (1994).  Furthermore, Nowicki and Smutnicki 

(1998) propose a tabu search (TS) algorithm for the flexible flow shop makespan 

problem.  A genetic algorithm (GA) has been widely used in many previous works for 

the flow shop makespan problem, see e.g. Werner (1984) and Reeves (1995).  Cheng 

et al. (1995) address the earliness/tardiness scheduling problem with identical parallel 

machines, and they apply a GA to solve their problem.  Ruiz et al. (2005) use a GA 

approach to deal with the permutation flow shop scheduling problem with sequence-

dependent setup times.  However, little research has been done for flexible flow shop 

scheduling problems, especially for the general case with unrelated parallel machines 

and setup times (see for instance the recent review on scheduling with setup times by 

Allahverdi et al. (2008)). 

 

In this dissertation, three well-known iterative algorithms for the heuristic 

solution of the problem are considered, namely simulated annealing, tabu search, and 

genetic algorithms.  All these iterative algorithms work with the starting job sequence 
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for the first stage.  If a new job sequence has been generated, the schedule 

construction procedure described in Section 4.3 is applied, and the objective function 

value of this schedule is used for evaluating the job sequence for the first stage. 

 

4.6.1  Simulated Annealing Algorithm 
 

  A simulated annealing (SA) algorithm is an enhanced version of local 

optimization or an iterative search method, in which an initial solution is repeatedly 

improved by making small local alterations until no such alteration yields a better 

solution.  It is developed by Kirkpatrick, Gelatt, and Vecchi (1983).   

 

An SA algorithm is inspired by the annealing of metals, in which 

annealing refers to the process which occurs when physical substances, such as metals, 

are raised to a high energy level (melted) and then gradually cooled until some solid 

state is reached.  The goal of this process is to reach the lowest energy state.  In this 

process, physical substances usually move from higher energy states to lower ones if 

the cooling process is sufficiently slow, so a minimization naturally occurs.  Due to 

natural variability, however, there is some probability at each stage of the cooling 

process that a transition to a higher energy state will occur.  As the energy state 

naturally declines, the probability of moving to a higher energy state decreases.  

 

  In general, an SA algorithm is a stochastic optimization method for 

minimizing a function f over a discrete domain S.  Starting from an initial solution s∈ 

S, an SA algorithm generates a new solution s'∈ S in the neighborhood of the initial 

solution s by using a suitable operator.  Concerning the neighborhood, both a shift 

move (SM) neighborhood (i.e. a job at an arbitrary position is selected and reinserted 

at some other position), and a pairwise interchange (PI) neighborhood (i.e. two 

arbitrary jobs are selected and interchanged) are considered (see Section 4.5).  

 

The objective function value f(s') of the new solution is then compared 

to the objective function value f(s) of the initial solution (remember that the objective 
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function value of the full schedule generated from the starting job sequence for the 

first stage is taken).  The change in the objective function value,  δ = f(s') – f(s), is 

calculated.  If the objective function value decreases (δ < 0), the new solution is 

automatically accepted and it becomes the point from which the search will continue.  

If the objective function value increases (δ ≥ 0), then a solution with a larger objective 

function may also be accepted with a probability, usually determined by a function, 

exp (–δ/T), where T ∈ ℜ is a control parameter of an SA algorithm called the 

temperature.  The probability of acceptance the higher values decrease as T decreases.  

At high temperature, the search is almost random, whereas at low temperature the 

search becomes almost greedy.  At zero temperature, the search becomes totally 

greedy, that is, only good moves are accepted.  Consequently, the role of the 

temperature T is significant in the operation of an SA algorithm.  This temperature, 

which is simply a positive number, is initialized to a value T0 at the beginning of the 

procedure and is periodically reduced every NT iterations, where NT denotes the 

epoch length, so that it moves gradually from a relatively high value to near zero as 

the algorithm progresses according to a function referred to as the cooling schedule.  

An SA approach is shown in Algorithm 3.  

 

Algorithm 3: Simulated annealing 

 

Input:  The initial temperature T0, final temperature Tf, cooling temperature rate, and 

epoch length  NT. 

 

Step 1: Select randomly an initial solution s0 = [s0[1]  …  s0[n]] and evaluate the 

objective function value f(s0) by setting a starting job sequence ω1 for the 

first stage in Algorithm 1 to a solution s0. 

Step 2: Set a current solution s and a best solution sbest  to an initial solution s0. 

Step 3: Set a temperature control parameter T to T0. 

Step 4: Generate a new solution s' in the neighborhood of the current solution s 

by using a suitable operator (e.g. PI and SM neighborhoods) (see Section 

4.5). 
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Step 5: Evaluate the objective function value f(s') by setting a starting job 

sequence ω1 in  the schedule construction approach (see Approach 1) to 

a solution s'. 

Step 6: Update a best solution sbest = s' if the objective function value f(s') < 

f(sbest). 

Step 7: Update a current solution s = s' and Go to Step 11 if δ  < 0, where δ = f(s') 

– f(s). 

Step 8: Determine a probability function by using equation exp (–δ/T). 

Step 9: Random a number uniformly distributed in the interval [0, 1]. 

Step 10: If  RANDOM  ~U[0,1]  < a probability function exp (–δ/T), update a 

current solution s = s'. 

Step 11: Go to Step 4, until number of iteration is equal to an epoch length NT. 

Step 12: Reduce the temperature by using cooling schedule (see Section 4.6.1.1) 

given in a specific cooling rate. 

Step 13: Reset number of iteration processed, and go to Step 4 again with a new 

temperature control until the temperature drops bellow the final 

temperature Tf or other stopping criteria. 

 

4.6.1.1  Cooling Schedule 

 

   The cooling schedule governs how likely the algorithm is to 

accept a bad transition as a function of the temperature T at each iteration.  At the 

beginning of the search, the algorithm is eager to use randomness to explore the 

search space widely, so the probability of accepting a negative transition is high by 

using higher temperature.  As the search progresses, the temperature is decreased, 

thus the probability of accepting will gradually decrease, converging to a simple 

iterative improvement algorithm.  
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Tnew= αTold  
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Figure 4.6  The patterns of cooling schedules 
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There are three most widely used cooling schedules (Bräsel et 

al., 2006): (1) the geometric reduction schedule using the function Tnew= αTold, 

(Kirkpatrick et al., 1983); (2) the schedule suggested by Lundy and Mees (1986) 

using the relation Tnew = Told/(1+ β Told); and (3) the linear reduction schedule using 

the function Tnew = Told –  γT0 (Winston and Venkataramanan, 2003).  Figure 4.6 

shows the three cooling schedules assuming the initial temperature to be 100. 

 

The scheme that follows a geometric law, which one of the 

most often used, corresponds to an exponential decay of the temperature.  It is similar 

to the cooling schedule suggested by Lundy and Mees (1986) in which it opposes to a 

linear decay.  However, the latter provides fast cooling in the early iterations and 

slower cooling at latter iterations.  Consequently, at the beginning the search will 

explore the search space, while at the end the search will exploit to the local 

minimum.  Nearchou (2004) shows that the performance of the latter is found superior 

to that of the first scheme.  For the linear reduction, it is the basic of the cooling 

schedule, but it will drop in temperature to below zero faster than the others, that is, it 

probably entraps the local optimal as well. 

 

4.6.1.2  Termination Condition 

 

    In an SA approach, the temperature is reduced to a smaller 

temperature when the best objective function value found so far is not updated for a 

predetermined number of iterations, and it is also reduced when NT iterations have 

been performed (i.e. at the end of an epoch length).  The procedure is terminated 

when the temperature becomes equal to or less than zero or when other criteria reach. 

 

4.6.2  Tabu Search Algorithm 
 

  A tabu search (TS) algorithm, initially developed by Glover (1986), is 

an iterative improvement approach designed to avoid terminating prematurely at a 

local optimum for solving combinatorial optimization problems.  Similar to a 
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simulating annealing algorithm, a TS algorithm is based on the idea of exploring the 

solution space of a problem by moving from one region of the search space to another 

in order to look for a better solution.  The function transforming a solution into 

another solution is usually called a move.  For any solution s∈ S, a subset of moves 

applicable to it is defined.  This subset of moves generates the neighborhood ℵ(s) of s 

(see Section 4.5).  Starting from an initial solution s, a TS algorithm iteratively moves 

from the current solution s to the best solution s*∈ℵ(s) even though s* is worse than 

the current solution s, until some stopping criterion is satisfied (see Algorithm 4). 

 

  Selecting the best move s* (which may or may not improve the current 

solution s) is based on the supposition that good moves are more likely to reach the 

optimal or near-optimal solutions.  The set of admissible solutions attempted at a 

particular iteration forms a candidate list.  A TS algorithm selects the best solution 

from the candidate list.  Candidate list size is a trade-off between quality and 

performance. 

 

  However, to escape from a local optimum, an SA algorithm accepts an 

inferior solution, which may lead to better solutions later by using an acceptance 

probability.  In contrast, a TS algorithm allows the search to move to the best solution 

s* among a set of candidate moves ℵ(s) as defined by the neighborhood structure, 

although it can move to a neighbor with a worse objective function value.  

Nevertheless, subsequent iterations may cause the search to move repeatedly back to 

the same local optimum.  In order to prevent cycling back to recently visited 

solutions, it should be forbidden or declared tabu for a certain number of iterations.  

This is accomplished by keeping the attributes of the forbidden moves in a list, called 

the tabu list.  The size of the tabu list, called the tabu tenure, must be large enough to 

prevent cycling, but small enough not to forbid too many moves.  

 

  Additionally, an aspiration criterion is defined to deal with the case in 

which a move leading to a new best solution is tabu.  If a current tabu move satisfies 

the aspiration criterion, its tabu status is canceled, and it becomes an allowable move.  
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The use of the aspiration criterion allows the TS algorithm to lift the restrictions and 

intensify the search into a particular solution region. 

 

Algorithm 4: Tabu search 

 

Input:  The candidate size (or size of neighborhoods) and tabu list size. 

 

Step 1: Select randomly an initial solution s0 = [s0[1]  … s0[n]] and evaluate the 

objective function value f(s0) by setting a starting job sequence ω1 for the 

first stage in Algorithm 1 to a solution s0. 

Step 2: Set a current solution s and a best solution sbest  to an initial solution s0. 

Step 3: Generate a set of candidate solutions ℵ(s) in the neighborhood of the 

current solution s by using a suitable operator (e.g. PI and SM 

neighborhoods) (see Section 4.5). 

Step 4: Evaluate the objective function value f(s') by setting a starting job 

sequence ω1 for the first stage in the schedule construction approach 

(see Approach 1) to a solution s', where s' ∈ ℵ(s) – L and L is a set of 

tabu list. 

Step 5: Select a best solution s* among a set of candidate moves ℵ(s). 

Step 6: Update a best solution sbest = s* if the objective function value f(s*) < 

f(sbest). 

Step 7: Update a current solution s = s*. 

Step 8: Declare a current solution s in a tabu list L for a certain number of 

iterations. 

Step 9: Go to Step 3, until the stopping criteria reach. 

 
4.6.3  Genetic Algorithm 

 

  A genetic algorithm (GA) approach is an iterative heuristic based on 

Darwin’s evolutionary theory about “survival of the fittest and natural selection”.  It 

belongs to the evolutionary class of artificial intelligent (AI) techniques.  Holland 
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(1975) proposes some basic principles of natural evolution as a methodology to solve 

decision-making problems.  For the classical flow shop problem, the first genetic 

algorithm has been given by Werner (1984). 

 

  The GA approach is characterized by a parallel search of the state 

space in contrast to a point-by-point search by conventional techniques.  The parallel 

search is achieved by keeping a set of possible solutions, called a population.  An 

individual in the population is a string of symbols.  The GA starts with the initial 

generation of artificial individuals which are often created randomly (see Algorithm 

5).  Each symbol is called a gene, and each string of genes is termed as a 

chromosome.  The individuals in the population are evaluated by a measure, called the 

fitness, to describe quantitatively how well the individual masters its task.  The initial 

population is then evolved into different populations over a number of generations 

through the use of two types of genetic operators: (1) unary operators, i.e. mutation 

and inversion, which change the genetic structure of a single chromosome, and (2) a 

higher-order operator, referred to as crossover which consists of obtaining new 

individual(s) by combining the genetic material from two selected parent 

chromosomes.  When applying crossover, two individuals (parents) are selected from 

the population, and new solution(s), called the offspring, is (are) created.  Mutation 

creates a new solution by a random change on a selected individual.  The genetic 

operators are applied to randomly selected parents to generate new offspring.  Then 

the new population is selected out of the individuals of the current population and the 

new generated chromosomes (Gen and Cheng, 1997)  

 

Algorithm 5: Genetic algorithm 

 

Input:  Number of population pop_size, Crossover rates pc, and Mutation rates pm. 

 

Step 1: Generate randomly a number of solutions Ρ (s) and evaluate the objective 

function value f(s) by setting a job list ω0 in Algorithm 1 to a solution s, 

where s ∈ Ρ (s). 
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Step 2: Create offspring solutions Oc(s) by using crossover operator (see Section 

4.6.3.2). 

Step 3: Create offspring solutions Om(s) by using mutation operator (see Section 

4.6.3.3).  

Step 4: Evaluate the objective function value offspring O(s) by setting a job list 

ω0 in the schedule construction approach (see Approach 1) to a solution 

s, where s ∈ O (s) and O(s) = Om(s) ∪ Oc(s). 

Step 5: Update a best solution sbest = s* if the objective function value f(s*) < 

f(sbest), where s* ∈ Ρ (s) ∪ O(s). 

Step 6: Selection a new population from a current population Ρ (s) and offspring 

solution O(s). 

Step 7: Go to Step 2, until the stopping criteria reach. 

 

  The application of the GA approach requires the representation of a 

solution, the choice of genetic operators (crossover and mutation), an evaluation 

function, a selection mechanism, and the determination of genetic parameters 

(population size as well as crossover and mutation rates). 

 

4.6.3.1  Encoding Scheme 

 

   For the representation, consideration of a job permutation is 

straightforward and widely used in many previous works on the GA approach for the 

flow shop problem, see Werner (1984).  Thus, in this dissertation, a permutation-

based code (or a job code) using integers as the chromosome coding scheme is 

applied.  For instance, one chromosome of an example with nine jobs can be coded as 

the job sequence [9  3  7  8  2  6  5  1  4].  

 

4.6.3.2  Crossover   

 

   A crossover operation is a mechanism for probabilistic 

inheritance of useful information from two fit individuals to offspring.  The main idea 
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is that the genetic information of a good solution is spread over the entire population.  

Thus, the best solution can be obtained by thoroughly combining the chromosomes in 

the population.  Crossover operation achieves recombination of the genetic material.  

The recombination process includes domain specific knowledge to enforce the 

inheritance of desirable features from individuals of current population. 

 

   The PMX (partially mapped crossover) method may be the 

most popular crossover operator when operating with permutations.  Firstly, choose 

two parents P1 and P2, e.g. P1 = [1  2  3  4  5  6  7  8  9] and P2 = [9  3  7  8  2  6  5  1  

4], and two cutting sites along the string are randomly chosen, e.g. 3 and 7.  The 

substrings defined by the two cutpoints are called the mapping sections.  Secondly, 

exchange the two substrings between the parents to produce protochildren, which 

yields [1  2  3 |8  2  6  5| 8  9] and [9  3  7 |4  5  6  7| 1  4].  It is clear that protochildren 

will often lead to infeasible solutions.  Then, one needs to determine the mapping 

relationship between the two mapping sections, and finally, it legalizes the offspring 

using this mapping relationship.  In the first protochild, it can map the two infeasible 

genes 2 and 8 outside the mapping section, by using the mapping swaps, for instance, 

2 in the first protochild’s mapping section can be mapped to 5 in the second 

protochild’s mapping section corresponding to the position.  It does however not 

finish, because 5 is in the first protochild’s mapping section as well.  Again, 5 in the 

first protochild can be mapped to 7 in a similar way.  At last, 2 in the first protochild 

can be swapped to 7.  Similarly, 8 in the first protochild can be mapped to 4.  

Consequently, the first offspring is [1 7  3 | 8  2  6  5| 4  9].  Then, the second 

offspring is analogously created as [9  3  2 | 4  5  6  7| 1  8]. 

   

   The OPX (combined order and position-based crossover) 

method may be a good crossover choice, in which it creates feasible solutions like 

PMX and combines the characteristics of OX and PBX as well.  It will create the first 

offspring based on OX, whereas the second offspring is characterized by PBX.  Again 

two parents P1 and P2 are randomly selected, and consider the same example as for 

PMX above.  Then, randomly select a substring from the first parent, e.g. [1  2  3 |4  5 
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6  7| 8  9].  Copy the substring into the first protochild corresponding to the first 

parent position, e.g. [_  _  _ |4  5  6  7| _  _].  Then, delete all the symbols from the 

second parent which are already in the substring and place its symbols into the 

unfixed positions in the first protochild from left to right according to the second 

parent order, e.g. [9  3  8 |4  5  6  7| 2  1].  To create the second offspring, the second 

protochild is created by copying the symbols from the second parent, where the jobs 

are the same as the symbols in the substring in the corresponding position, e.g. [_  _  7 

_  _  6  5  _  4].  Then, place the symbols from the first parent into the unfixed 

positions in the second protochild from left to right according to the order of the first 

parent regarding the substring symbols to produce the second offspring, [1  2  7  3  8  

6  5  9  4]. 

 

4.6.3.3  Mutation 

  

   The mutation operation is a means of introducing new 

information into the population.  For this dissertation, the mutations are based again 

on either pairwise interchange move or shift move (see Section 4.5). 

 

4.6.3.4  Evaluation Policy 

  

   During each generation, chromosomes are evaluated using 

some measure of fitness.  In most optimization applications, the fitness function is 

constructed based on the original objective function.  The fitness value of each 

chromosome is a key measure to guide the direction of search in the GA.  Due to the 

minimization problem, the fitness value must be in inverse proportion to the objective 

function value so that a fitter chromosome has a larger fitness value.   
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 where fitness(vz) is the fitness value, and f(vz) is the objective function value of the z-

th chromosome for the complete schedule generated from the corresponding job 

sequence for the first stage using Approach 1 (see Section 4.3). 

 

   According to this research objective, the objective is to 

minimize a positively weighted convex sum of makespan and number of tardy jobs.  

Thus, the fitness value of a chromosome, fitness(vz) is given by: 

 

max
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 where Cmax(vz) is the makespan of the z-th chromosome (resp. of the resulting 

complete schedule) ,Uj(vz) is a Boolean variable for job j of the z-th chromosome 

which is equal to 1 if job j is tardy, and 0 otherwise, and λ denotes the weight (or 

relative importance) given to makespan and number of tardy jobs.  The largest value 

of the fitness function is the lowest value of the positively weighted convex sum of 

makespan and number of tardy jobs.  In the denominator value one is added in order 

to prevent a division by zero when the weight λ and the number of tardy jobs are zero. 

 

4.6.3.5  Selection Policy 

 

   An elitist policy and enlarged sampling space technique are 

used.  Both parents and the offspring have the same chance of competing for survival.  

Figure 4.7 illustrates the selection based on an enlarged sampling space.  Then 

Holland’s proportionate selection or roulette wheel selection is employed to 

reproduce the next generation based on the current enlarged population.  The idea is 

to determine a selection probability (also called survival probability) for each 

chromosome proportional to its fitness value.  For chromosome vz with fitness 

fitness(vz), its selection probability prob(vz) is calculated as follows: 
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Figure 4.7  Illustration of the selection performed on an enlarged sampling space 

 

4.6.3.6  Termination Condition 

 

   In the implementation of a GA approach, the search procedure 

is terminated when the best objective function value found so far is not updated for a 

predetermined number of generations.  It can also be terminated when the number of 

generations exceeds the predetermined number of generations or when it reaches the 

other criteria. 

 
4.7  Choice of an Initial Solution for the Iterative Algorithms 
 

 For the original iterative algorithms as stated in the previous section, their 

initial solution is generated by random.  However, many researchers try to combine 

some local search with the iterative algorithms; for example, Reeves (1995), Wang 

and Zheng (2003), and Grabowski and Wodecki (2004) have used the NEH algorithm 

as the initial solution instead of a random initial solution for their iterative methods, 
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namely a tabu search and a genetic algorithm.  Janiak et al. (2007) have used the best 

solution among their constructive algorithms such ECT, EDD, and EDP as an initial 

solution for the simulated and tabu search algorithms.  These imply that a better initial 

solution gives a better schedule solution as well.  Hence, it is possible that the 

iterative algorithm can use a solution that is found by both constructive algorithms 

and improvement algorithms as a biased initial solution (or a part of the initial 

population for the genetic algorithm). 

 

To improve the quality of the solution finally obtained, the influence of the 

choice of an appropriate initial solution for the SA and TS algorithms, and an initial 

population for the GA algorithm by using the heuristic constructive and improvement 

algorithms are also investigated.  To this end, one or several constructive algorithm(s) 

SPT, LPT, ERD, EDD, MST, S/P, PAL, CDS, GUP, DAN, and NEH as well as the 

other selected polynomial improvement heuristics as initial solution(s), respectively 

(for the GA algorithm, the remaining initial solutions are still randomly generated) are 

employed.  In addition, for the GA algorithm, all selected constructive algorithms in 

parallel as a part of the initial population are used.   

 

4.8  Conclusion 

 

 In this chapter, the heuristic solution concepts for the flexible flow shop 

problem with unrelated parallel machines are presented.  Three kinds of heuristics, 

namely constructive, improvement, and iterative algorithms, are developed.  The 

constructive algorithms are adapted from the idea of Santos et al. (1996).  Then, the 

improvement algorithms are proposed by using the neighborhood exchanges to 

improve the solution obtained from the constructive algorithms.  The iterative 

algorithms based on the artificial algorithms are used to find the solution.  The 

computational results of these heuristic algorithms will be shown in the next chapter. 

 

Firstly, the constructive algorithms are developed on the starting job sequence 

for the first stage in Section 4.4.  Such algorithms start with the generation of the 
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representatives for each operation of each job and each stage.  The representatives of 

the operating time are generated by using the combinations of the different relative 

machine speeds and setup times.  After creating the representatives of operating time, 

some algorithms, namely dispatching rules and flow shop heuristic algorithms, are 

adapted to determine a starting job sequence for the first stage by using the nine 

combinations of the representative operating times.  Next, use the greedy search 

approach to distribute jobs into machines for the first stage, and use both the FIFO 

and permutation rules to determine the new job sequence for other following stages, 

and follow by the greedy search again to distribute jobs into machine on that stage.  

With the nine combinations of the representatives of operating times, nine schedule 

outputs are generated, so the best schedule is selected from them. 

 

 Moreover, the improvement algorithms are proposed in Section 4.5.  They 

start with an already built schedule from the constructive algorithm and try to improve 

the schedule by applying the ideas of the pairwise interchange and shift move 

approaches on the jobs that are tardy.   

 

Moreover, the iterative algorithms, namely simulated annealing, tabu search, 

and genetic algorithms, are proposed on the starting job sequence in Section 4.6, and 

the hybrid iterative algorithms that use the constructive algorithms’ solutions and/or 

improvement’s solution as an initial solution (or a part of population) for the iterative 

algorithms are proposed in Section 4.7.  

 

 

 



CHAPTER V 
 

COMPUTATIONAL EXPERIMENTS 
 

This chapter provides the computational experiments of the heuristic 

algorithms that are proposed in the previous chapter for the flexible flow shop 

problem with unrelated parallel machines.  The computational experiments have been 

performed using a randomly generated set of test instances.  From the heuristic 

solution concepts in the previous chapter, three main types of heuristics, which are 

constructive, improvement, and iterative algorithms, are proposed in this dissertation.  

All proposed heuristic algorithms are applied to determine a starting job sequence for 

the first stage of the flexible flow shop environment, and the greedy search approach 

is then used to distribute jobs into machines for the first production stage.  Next, both 

the FIFO rule and the permutation rule are used to determine the new job sequence for 

other further stages, and the greedy search approach is again used to distribute jobs 

into machines for any stages.  In this chapter, the results of the computational 

experiments will show the performance of the proposed heuristic algorithms. 

 

This chapter is organized as follows:  Firstly, the introduction is explained to 

give the definition and importance of the computational experiments.  Secondly, the 

data generation of the test instances is given.  Next, the performance compared to the 

best heuristics that are found in these tests on medium- and large-sized test problems 

of the heuristic algorithms that are proposed in the Chapter IV is presented.  The 

performance on small-sized test problems that are compared to the optimal solution is 

shown in the next section.  From the results of the computational experiments, the 

recommended heuristic solution approach is proposed.  Finally, a conclusion will be 

drawn. 
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5.1  Introduction 
 

Two fundamental goals in computer science are finding algorithms with 

provably good run times and with provably good or optimal solution quality.  

However, a heuristic is an algorithm that may abandon one or both of these goals; for 

example, it usually finds pretty good solutions, but there is no proof the solutions 

could not get arbitrarily bad; or it usually runs reasonably quickly, but there is no 

argument that this will always be the case (Pearl, 1984). 

 

Consequently, the computational experiment is designed to evaluate the 

performance of the heuristics.  In the computational testing of the algorithm, the 

experiment consists of solving a series of problem instances using a computer 

implementation.  The most prevalent computational experiment concerns the relative 

effectiveness (in terms of stated performance measures such as computational effort 

or quality of solutions) of different heuristic methods in solving specific classes of 

problems (Barr et al., 1995). 

 

For the solution quality, there are many methods to evaluate the performance 

of the algorithms.  Basically, the schedules generated are compared to the optimal 

solution by calculating the percentage deviation of the heuristic solution from the 

optimal solution as shown in the following equation: 

 

% deviation from the optimal solution  = 100sol sol

sol

Heu Opt
Opt

−
×  (5.1) 

 

where Heusol is the schedule solution obtained by a given algorithm, and Optsol is the 

optimal schedule solution obtaining by using an exact algorithm. 

 

 However, the determination of the optimal schedule solution may be 

practically impossible for the large-sized problems, or can be difficult for even 

medium-sized problem, so it is hard to evaluate the quality of the heuristic solution by 

comparing to the optimal schedule solution.  For this reason, an effective tool for 
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estimating the optimal solution, which is called the determination of a lower bound, is 

created to evaluate the quality solution instead of the optimal schedule solution.  The 

quality of solution obtained is checked by calculating the percentage deviation of the 

heuristic solution from the lower bound (LB) as shown in the following equation: 

 

% deviation from the lower bound  = 100sol sol

sol

Heu LB
LB

−
×  (5.2) 

 

where Heusol is the schedule solution obtained by a given algorithm, and LBsol is the 

lower bound of the solution. 

 

 Moreover, the benchmarks are available from the OR-Library (i.e. 

http://people.brunel.ac.uk/~mastjjb/jeb/info.html), which is a collection of test data 

sets for a variety of operations research (OR) problems.  Consequently, the quality 

solution is compared to the best solution that is found in the OR-Library.  However, 

for the new problem that the benchmark cannot find in the OR-Library, the quality 

solution can be compared to the best solution that is found in the tests by using the 

following equation: 

 

% deviation from the best solution  = 100sol sol

sol

Heu Best
Best

−
×  (5.3) 

 

where Heusol is the schedule solution obtained by a given algorithm, and Bestsol is the 

best solution found among the tests. 

 

5.2  Data Generation of the Test Instances 
 

The models are tested by using random generated data.  For every experiment, 

random instances with unrelated parallel machines, the standard processing times, 

relative machine speeds, setup times, release dates, and due dates are generated as 

follows.  The standard processing times are generated uniformly from the interval 

[10,100].  The relative speeds are distributed uniformly in the interval [0.7, 1.3].  The 
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setup times, both sequence- and machine-dependent setup times, are generated 

uniformly from the interval [0, 50], whereas the release dates are generated uniformly 

from the interval between 0 and half of their total standard processing time mean.  

The due date of a job is set in a way that is similar to the approach presented by 

Rajendran and Ziegler (2003) and is as follows: 

 

dj    =     rj  + + total of mean setup time of a job on all stages + ∑
=

k

t

t
jps

1

(n – 1) × (mean processing time of a job on one machine) ×U(0,1) 

(5.4) 

 

The random generated data are tested on medium- and large-sized problems 

with 10 jobs × 5 stages, 30 jobs × 10 stages, and 50 jobs × 20 stages.  For small-sized 

problems with a number of jobs ranging from three to seven were investigated.  For 

all problem sizes, they were investigated with λ ∈ {0, 0.001, 0.005, 0.01 0.05, 0.1, 

0.5, 1} in the objective function.  The idea behind the λ values is to balance both 

objectives.  For a low value of λ, the tardy job problem will dominate the makespan 

problem, whereas for a large value of λ, the makespan problem will dominate the 

tardy job problem.  Ten different instances for each problem size have been run.   

 

All algorithms have been implemented in the C++ programming language on a 

PC with an Intel Pentium 4 2.00GHz CPU and 256 MB of RAM.  The optimal 

solution obtained by means of the 0-1 mixed linear integer programming formulation 

given in Chapter III is found by a commercial mathematical programming software. 

 

5.3  Performance of Algorithms on Medium- and Large-
Sized Test Problems 
 

 The purpose of these experiments is to valuate the performance of each 

algorithm that are proposed in Chapter IV on the test problems whose sizes are 

medium or large (see Section 5.2) that cannot find the optimal solution in an 

acceptable time.  
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   The purpose of the first experiment is to test the computational 

efficiency of constructive algorithms – the simple dispatching rules (see Section 

4.4.1) and flow shop makespan heuristics (see Section 4.4.2).  The simple dispatching 

rules, namely SPT, LPT, ERD, EDD, MST, and S/P, are classified into the heuristic 

“Group I”, whereas the flow shop makespan heuristics, namely PAL, CDS, GUP, 

DAN, and NEH, are classified into the heuristic “Group II”.   

 

 

where Heusol is the schedule solution obtained by a given algorithm, and Bestsol is the 

best solution found among the tests. 

 

 

For the problem with λ > 0, the performance of each test for each algorithm is 

assessed by the percentage deviation of a particular algorithm from the best solution 

in such a test among the heuristic groups I and II as well as groups III and IV stated in 

Section 5.3.2 by using the following equation: 

 

where Heusol is the schedule solution obtained by a given algorithm, and Bestsol is the 

best solution found among the tests. 

 

 

For the problem with λ = 0, the performance of each test for each algorithm is 

assessed by the absolute deviation of a particular algorithm from the best solution in 

such a test among the heuristic groups I and II as well as groups III and IV stated in 

Section 5.3.2 by using the following equation: 

percentage deviation from the best solution  = 

5.3.1  Performance of the Constructive Algorithms 

absolute deviation from the best solution  = Heusol - Bestsol (5.5) 

100solHeu
Best

sol

sol

Best−
×  (5.6) 
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Table 5.1  Average performance of the constructive algorithms of Group I and II 
 Problem  Group I Group II 

λ size SPT LPT ERD EDD MST S/P PAL CDS GUP DAN NEH 
10×5 3.000a 3.200 3.500 4.600 4.100 4.100 2.700 2.200 2.800 2.600 0.700

30×10 6.900 7.900 7.700 7.900 8.400 7.900 7.700 6.100 7.300 7.800 1.800
50×20 8.700 8.200 11.100 15.800 14.600 14.100 9.400 6.600 8.600 8.800 1.0000 

Sum 18.600 19.300 22.300 28.300 27.100 26.100 19.800 14.900 18.700 19.200 3.500
10×5 90.920b 94.290 87.880 102.460 91.560 90.930 73.220 61.630 77.800 70.370 10.470

30×10 89.090 104.510 94.730 90.250 100.510 91.170 101.410 77.990 94.510 98.410 29.980
50×20 31.830 34.420 42.570 49.770 45.600 43.960 37.030 27.000 34.620 35.200 10.3200.001 

Sum 211.840 233.220 225.180 242.480 237.670 226.060 211.660 166.620 206.930 203.980 50.770
10×5 45.290 44.130 44.710 58.240 52.180 52.520 38.870 31.010 41.540 36.150 6.250

30×10 42.140 45.420 43.800 43.640 46.770 41.540 44.290 34.330 42.650 43.740 11.500
50×20 18.812 18.338 23.140 28.685 26.281 25.233 20.046 15.791 18.867 18.902 4.4110.005 

Sum 106.242 107.888 111.650 130.565 125.231 119.293 103.206 81.131 103.057 98.792 22.161
10×5 33.300 30.430 31.040 41.170 36.990 37.630 28.570 22.230 30.560 25.780 4.710

30×10 30.633 30.954 30.780 31.752 33.282 28.880 29.870 23.506 29.744 29.561 6.887
50×20 14.895 14.199 17.734 21.330 19.445 18.625 15.440 12.655 14.646 14.514 3.1600.01 

Sum 78.828 75.583 79.554 94.252 89.717 85.135 73.880 58.391 74.950 69.855 14.757
10×5 22.154 16.778 17.176 21.889 20.413 19.662 18.069 12.421 19.019 15.633 2.399

30×10 20.477 17.413 19.306 21.227 21.110 16.986 16.766 13.394 17.207 15.928 2.386
50×20 10.406 9.721 11.872 12.748 11.476 10.838 10.355 8.400 9.898 9.457 0.7650.05 

Sum 53.037 43.912 48.354 55.864 52.999 47.486 45.190 34.215 46.124 41.018 5.550
10×5 21.084 15.177 15.656 19.457 18.163 17.181 17.073 11.196 17.585 14.471 2.097

30×10 18.691 15.309 17.482 19.453 19.007 15.058 14.637 11.722 15.071 13.784 1.470
50×20 10.029 9.384 11.335 11.772 10.554 9.935 9.877 8.016 9.523 8.985 0.4790.1 

Sum 49.804 39.870 44.473 50.682 47.724 42.174 41.587 30.934 42.179 37.240 4.046
10×5 21.203 14.852 15.456 18.446 17.310 16.114 17.373 11.176 17.221 14.448 2.700

30×10 18.759 15.021 17.524 19.528 18.653 14.916 14.368 11.768 14.794 13.488 0.869
50×20 9.985 9.394 11.181 11.244 10.068 9.446 9.754 7.933 9.489 8.866 0.4360.5 

Sum 49.947 39.267 44.161 49.218 46.031 40.476 41.495 30.877 41.504 36.802 4.005
10×5 21.473 15.061 15.696 18.567 17.426 16.214 17.674 11.400 17.418 14.701 2.885

30×10 18.793 15.018 17.551 19.567 18.630 14.923 14.367 11.785 14.780 13.477 0.964
50×20 9.892 9.308 11.073 11.087 9.918 9.296 9.651 7.837 9.399 8.766 0.4281.0 

Sum 50.158 39.387 44.320 49.221 45.974 40.433 41.692 31.022 41.597 36.944 4.277
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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The results of the first experiment are given in Table 5.1.  The 

performance of algorithms is assessed by the average performance of the (absolute for 

λ = 0 resp. percentage for λ > 0) deviation of a particular algorithm from the best 

solution in these tests (among the heuristic groups I and II as well as groups III and IV 

stated in Section 5.3.2) for each three-problem size n×k (the best variant in each group 

is given in italic underlined whereas the overall best variant is given in bold face 

underlined). 

 

The results of constructive algorithms show that among the simple 

dispatching rules (heuristic Group I), the SPT, LPT, and ERD rules are good 

dispatching rules.  However, in general the SPT rule outperforms the other 

dispatching rules for λ < 0.01, and the LPT rule is better than the other rules 

otherwise.  The results confirm earlier observations with the LPT algorithms, the 

advantage of which is to keep jobs with shortage processing times for later because 

these jobs are useful at the end for balancing the workload (Pinedo and Chao, 1999).  

It coincides with a previous study by Guinet et al. (1992) where they conclude that the 

LPT rule gives good results in a two-stage hybrid flow shop problem.   

 

Among the adapted flow shop makespan heuristics in heuristic Group 

II, the NEH algorithm is clearly the best algorithm among all of the studied 

constructive heuristics (but, in fact, this algorithm takes the convex combination of 

both criteria into account when selecting partial sequences).  This is in 

correspondence with Framinan, Gupta, and Leisten (2004) and Ruiz and Maroto 

(2005), who have found that, among the constructive methods, the NEH algorithm is 

regarded as the best one in practice.  The CDS algorithm is certainly the algorithm on 

the second rank (but it is substantially worse than the NEH algorithm, even if the 

makespan portion in the objective function value is dominant, i.e. for large λ values).  

However, the main drawback of the NEH algorithm is that a total of [n(n + 1)/2] − 1 

partial schedules need to be evaluated.  The running time of the NEH algorithm, 

therefore, increases rapidly as the problem size increases.   
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5.3.2  Performance of the Improvement Algorithms 
 

  The purpose of the second experiment is to test the computational 

efficiency of the improvement algorithms that are proposed in Chapter IV (see 

Section 4.6).  The fast improvement algorithms based on the four cases, namely, 2-

random-position shift move, all shift move, 2-random-position pairwise interchange, 

and all pairwise interchange, that are proposed to improve the quality of the 

constructive algorithms in Chapter IV (see Section 4.5).   

 

The average overall performance of the constructive algorithms 

(denoted by the letter “CA”) and the fast improvement algorithms (denoted by the 

letter “2-SM”, “A-SM”, “2-PI”, and “A-PI”, respectively) are shown in Table 5.2.   

 

The average overall performance of the CA group is calculated by 

finding the average performance of the average (absolute for λ = 0 resp. percentage 

for λ > 0) deviation of the constructive algorithms, namely SPT, LPT, ERD, EDD, 

MST, S/P, PAL, CDS, GUP, DAN, and NEH from Section 5.3.1.   

 

For the average overall performance of the 2-SM group, which is 

applied the 2-random shift move on the constructive algorithms (see Section 4.5), the 

performance is calculated by finding the average performance of the average 

(absolute for λ = 0 resp. percentage for λ > 0) deviation of such algorithms from the 

best solution in these tests.  

 

In the same method, the average overall performance of the A-SM, 2-

PI, and A-PI group, each performance is also calculated by finding the average 

performance of the average (absolute for λ = 0 resp. percentage for λ > 0) deviation of 

each group of such algorithms from the best solution in these tests (the overall best 

variant is given in bold face). 
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Table 5.2 Average overall performance of the constructive and polynomial 

improvement heuristics 
λ Problem size CA 2-SM A-SM 2-PI A-PI 

10×5 3.045a 1.527 1.173 1.691 1.209 
30×10 7.036 3.927 2.982 4.264 2.045 
50×20 9.718 5.773 4.591 5.591 2.236 

0 

Sum 19.799 11.227 8.746 11.546 5.490 
10×5 77.410b 28.710 19.530 33.200 21.130 
30×10 88.410 37.020 24.030 37.820 19.040 
50×20 35.670 12.580 12.320 10.190 5.730 

0.001 

Sum 201.490 78.310 55.880 81.210 45.900 
10×5 40.990 14.870 9.530 18.150 11.500 
30×10 39.980 16.050 10.610 17.970 8.590 
50×20 19.864 8.612 8.170 8.658 4.592 

0.005 

Sum 100.834 39.532 28.310 44.778 24.682 
10×5 29.310 10.780 6.870 13.650 8.370 
30×10 27.804 12.240 7.727 13.843 6.593 
50×20 15.149 8.241 7.536 8.668 5.415 

0.01 

Sum 72.263 31.261 22.133 36.161 20.378 
10×5 16.874 6.029 4.547 8.306 5.231 
30×10 16.564 8.182 6.110 9.846 4.891 
50×20 9.631 5.643 5.312 6.518 5.036 

0.05 

Sum 43.069 19.854 15.969 24.670 15.158 
10×5 15.376 5.454 3.997 8.653 4.764 
30×10 14.699 6.685 4.707 8.702 3.683 
50×20 9.081 5.210 5.082 5.778 4.730 

0.1 

Sum 39.156 17.349 13.786 23.133 13.177 
10×5 15.118 5.486 3.943 7.884 4.457 
30×10 14.517 7.087 5.413 8.326 4.304 
50×20 8.891 5.147 4.946 6.554 4.610 

0.5 

Sum 38.526 17.720 14.302 22.764 13.371 
10×5 15.319 5.279 4.144 7.671 4.581 
30×10 14.532 6.901 5.294 9.186 4.329 
50×20 8.787 5.421 4.875 6.098 4.567 

1.0 

Sum 38.638 17.601 14.313 22.955 13.477 
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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From these results, it is obvious that the fast polynomial improvement 

heuristics 2-SM and 2-PT can improve the quality of the constructive algorithms by 

about 40 – 60 percent, whereas the A-SM and A-PI heuristics can improve the quality 

of the constructive algorithms even by 60 – 75 percent.  In addition, it is noticed that 

for the problem size 10 jobs × 5 stages the all-shift-move (A-SM) heuristic is slightly 

better than the others, whereas the all-pairwise-interchange-based (A-PI) 

improvement heuristic is the best algorithm otherwise.  However, in general the A-PI 

algorithm should be selected as the improvement algorithm.  Consequently, in this 

dissertation only the A-PI-based improvement heuristic is used as an improvement 

algorithm.  However, when comparing between the 2-SM and 2-PI algorithms whose 

CPU time is smaller than the CPU time of both the A-SM and A-PI algorithms, it is 

found that the 2-SM algorithm certainly behaves better than the 2-PI algorithm. 

 

Next, the results for the A-PI improvement algorithms, heuristic 

“Group III” and heuristic “Group IV”, are presented.  They are generated from the 

first two groups of heuristics, where the solutions are improved by the selected 

polynomial improvement algorithm based on A-PI improvement heuristics, and they 

are denoted by the first letter “I” in front of the letters describing the heuristics of the 

first two groups.  

 

The results for the fast polynomial improvement algorithms are given 

in Table 5.3 (the best variant in each group is given in italic underlined while the 

overall best variant is given in bold face underlined).  From these results, it is obvious 

that the algorithms in the fourth heuristic group (namely, IPAL, ICDS, IGUP, IDAN, 

and INEH) improved the pure makespan heuristics from the second heuristic group 

(i.e. PAL, CDS, GUP, DAN, and NEH), and they are better than the dispatching rules 

in the first heuristic group (i.e. SPT, LPT, ERD, EDD, MST, and S/P) as well as the 

third heuristic group improved from them.   
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Table 5.3  Average performance of the fast polynomial improvement algorithms of Group III and IV 
 Problem Group III Group IV 

λ size ISPT ILPT IERD IEDD IMST IS/P IPAL ICDS IGUP IDAN INEH 
10×5 1.400a 1.300 1.200 1.000 1.300 1.300 1.400 1.300 1.100 1.300 0.700

30×10 2.100 2.500 2.400 1.500 1.200 1.800 2.500 2.300 2.100 2.300 1.800
50×20 1.300 2.300 3.000 3.000 4.900 3.300 1.700 0.700 2.000 1.400 1.000 0 

Sum 4.800 6.100 6.600 5.500 7.400 6.400 5.600 4.300 5.200 5.000 3.500
10×5 16.220b 24.020 12.550 13.710 18.940 18.870 35.200 23.980 35.630 22.840 10.470

30×10 20.310 18.910 18.970 13.200 15.710 13.910 17.750 18.110 21.450 21.140 29.980 
50×20 6.730 5.150 7.690 5.010 4.040 6.960 8.750 2.640 3.260 2.460 10.320 0.001 

Sum 43.260 48.080 39.210 31.920 38.690 39.740 61.700 44.730 60.340 46.440 50.770 
10×5 10.000 13.410 8.170 8.650 11.990 11.740 13.980 14.060 15.260 12.970 6.250

30×10 9.690 8.150 8.610 7.530 7.520 6.610 9.650 6.050 9.020 10.200 11.500 
50×20 3.924 5.228 5.514 6.051 3.554 5.631 5.453 3.306 3.734 3.703 4.411 0.005 

Sum 23.614 26.788 22.294 22.231 23.064 23.981 29.083 23.416 28.014 26.873 22.161
10×5 8.890 9.450 7.030 6.640 7.690 9.540 8.460 9.810 10.130 9.770 4.710

30×10 6.373 9.709 5.676 6.753 4.762 4.076 7.585 4.935 8.988 6.782 6.887 
50×20 4.699 6.427 5.749 6.264 6.890 6.583 6.183 4.934 3.431 5.251 3.1600.01 

Sum 19.962 25.586 18.455 19.657 19.342 20.199 22.228 19.679 22.549 21.803 14.757
10×5 5.476 5.281 4.900 6.629 5.643 5.620 6.322 4.229 5.675 5.365 2.399

30×10 4.820 6.313 2.768 6.397 5.431 4.893 5.865 4.227 5.282 5.419 2.386
50×20 4.778 5.247 5.438 7.221 6.010 6.711 5.486 3.139 5.538 5.064 0.7650.05 

Sum 15.074 16.841 13.106 20.247 17.084 17.224 17.673 11.595 16.495 15.848 5.550
10×5 4.546 5.404 4.787 6.318 5.721 4.877 5.749 3.752 4.154 4.996 2.097

30×10 3.255 4.743 1.718 5.523 4.957 5.033 4.193 2.241 3.848 3.537 1.470
50×20 5.169 4.241 5.024 6.681 5.831 5.788 5.336 3.126 5.394 4.955 0.4790.1 

Sum 12.970 14.388 11.529 18.522 16.509 15.698 15.278 9.119 13.396 13.488 4.046
10×5 4.969 4.932 5.195 5.707 6.287 4.629 4.327 2.790 4.147 3.346 2.700

30×10 3.929 5.283 2.404 6.727 5.135 6.897 4.936 2.812 4.611 3.745 0.869
50×20 5.453 4.244 5.090 6.215 5.900 4.725 5.163 3.450 5.125 4.906 0.4360.5 

Sum 14.351 14.459 12.689 18.649 17.322 16.251 14.426 9.052 13.883 11.997 4.005
10×5 5.018 5.073 5.268 5.741 5.935 4.840 4.527 3.195 4.378 3.531 2.885

30×10 4.155 4.838 2.421 6.843 5.932 6.940 4.910 2.405 4.666 3.543 0.964
50×20 5.346 4.147 5.107 6.079 5.731 4.523 5.044 3.808 5.046 4.976 0.4281.0 

Sum 14.519 14.058 12.796 18.663 17.598 16.303 14.481 9.408 14.090 12.050 4.277 143 a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 



 
 

144

When applying a fast pairwise interchange (A-PI) algorithm (denoted 

by the letter “I” first) to a dispatching rule and/or an adapted makespan heuristic, the 

results show that the quality of the solution can be improved by about 60 – 80 percent 

except for the NEH rule (for the problems with small positive λ value the percentage 

improvements are often larger than for the remaining problems, e.g. for λ = 0.001 the 

IEDD algorithm can improve the results of the EDD rule by about 87 percent on 

average).  It can be noted that the NEH rule is not improved by using the 

improvement heuristics of algorithm INEH because both algorithms use a very similar 

strategy (it confirms the excellent solution quality by algorithm NEH).  However, the 

improvement of the heuristics from the adapted pure makespan heuristics in the 

heuristic Group IV is better than the improvement of the heuristics derived from the 

dispatching rules in the heuristic Group III.  

 

5.3.3  Performance of the Iterative Algorithms 
 

Thirdly, the iterative algorithms, i.e. the SA, TS, and GA algorithms 

with a random initial solution (or population), have been studied (see Section 4.6).  

Before testing the performance of the iterative algorithms for the problem under 

consideration, it is necessary to find the favorable parameters of each iterative 

algorithm in order to reduce the effect of the parameters of each iterative algorithm on 

the solution quality.   

 

Consequently, the purpose of this study is to determine the favorable 

parameters of the iterative algorithms for the problem under consideration.  From the 

preliminary tests, the CPU time is limited to one second for the problems with ten 

jobs, ten seconds for the problems with 30 jobs, and 30 seconds for the problems with 

50 jobs.  Again, the algorithms are tested on the test instances with λ  ∈ {0, 0.001, 

0.005, 0.01, 0.05, 0.1, 0.5, 1}.  Based on the preliminary tests, the tested parameters 

are shown in Table 5.4. 
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Table 5.4  Tested parameters for the SA, TS, and GA algorithms 

Algorithms Parameters Levels 

SA Initial temperature 2, 4, 6, 8, 10 through 100, in steps of 10 

 Neighborhood structures PI (= Pairwise Interchange), SM ( = Shift Move) 

 Cooling schedules   1 – 4 (geometric reduction with α ∈ {0.8, 0.85, 0.9, 

0.95})  

5 – 13 (LM reduction with β: 0.01 through 0.09, in 

steps of 0.01) 

14 – 23 (LM reduction with β: 0.1 through 1.0, in 

steps of 0.1) 

TS Number of neighbors 10 through 50, in steps of 10 

 Neighborhood structures PI, SM 

 Sizes of tabu list 5, 10, 15, and 20 

GA Population sizes 10, 30, 50, 70 

 Crossover types PMX, OPX 

 Mutation types PI, SM 

 Crossover rates 0.1 through 0.9, in steps of 0.1 

 Mutation rates 0.1 through 0.9, in steps of 0.1 

 

Given the above three different problem sizes, the SA parameter values 

were tested.  Table 5.5 through Table 5.7 present the effect of the initial temperatures, 

neighborhood structures and cooling schedules by using the average (absolute resp. 

relative) deviation from the best value as the performance measure. 

 

From the full factorial experiment, the results are analyzed by means of 

a multi-factor analysis of variance (ANOVA) technique using a 5% significance level.  

The results give the average (absolute resp. percentage) deviation of a particular 

iterative algorithm from the best solution obtained by the iterative algorithms.  For the 

SA algorithm, it is found that for the neighborhood structure and the cooling schedule, 

there are statistically significant differences, whereas there are slightly statistically 

significant differences in the initial temperature.   
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Table 5.5  The effect of various initial temperatures on the performance of the SA algorithm  
 Problem Initial Temperature (T0) 

λ size 2 4 6 8 10 20 30 40 50 60 70 80 90 100 
10×5 0.017a 0.019 0.024 0.019 0.024 0.024 0.030 0.022 0.028 0.027 0.028 0.029 0.023 0.032 
30×10 0.483 0.485 0.487 0.515 0.520 0.509 0.546 0.522 0.520 0.498 0.526 0.502 0.515 0.504 
50×20 0.248 0.252 0.278 0.270 0.278 0.296 0.291 0.309 0.307 0.298 0.311 0.289 0.257 0.294 0 

Sum 0.748 0.756 0.789 0.804 0.822 0.828 0.867 0.852 0.854 0.822 0.865 0.820 0.795 0.830 
10×5 0.772b 0.963 0.987 1.003 1.168 1.181 0.894 1.243 1.154 1.058 1.193 1.315 1.076 1.161 
30×10 9.480 9.540 9.570 9.740 9.680 9.510 9.640 10.100 9.830 9.970 10.020 10.130 10.010 9.940 
50×20 2.438 2.582 2.617 2.583 2.655 2.670 2.769 2.711 2.756 2.745 2.723 2.810 2.825 2.794 0.001 

Sum 12.690 13.085 13.174 13.326 13.503 13.361 13.303 14.054 13.740 13.773 13.936 14.255 13.911 13.895 
10×5 0.649 0.783 0.796 0.783 0.784 0.857 0.893 0.909 0.936 0.924 0.876 0.972 0.923 0.966 
30×10 6.766 7.164 6.989 7.203 7.079 7.038 7.132 7.135 7.068 7.294 7.326 7.280 7.309 7.437 
50×20 2.863 2.968 3.012 3.085 3.085 3.105 3.164 3.130 3.118 3.177 3.162 3.196 3.243 3.245 0.005 

Sum 10.278 10.915 10.797 11.071 10.948 11.000 11.189 11.174 11.122 11.395 11.364 11.448 11.475 11.648 
10×5 0.531 0.657 0.654 0.710 0.729 0.736 0.778 0.753 0.749 0.735 0.741 0.831 0.783 0.814 
30×10 6.111 6.193 6.392 6.416 6.477 6.506 6.432 6.588 6.491 6.434 6.285 6.481 6.616 6.559 
50×20 2.676 2.793 2.808 2.819 2.851 2.918 2.798 2.921 2.900 2.887 2.911 2.928 3.001 2.964 0.01 

Sum 9.318 9.643 9.854 9.945 10.057 10.160 10.008 10.262 10.140 10.056 9.937 10.240 10.400 10.337 
10×5 0.178 0.202 0.204 0.247 0.244 0.250 0.272 0.270 0.292 0.283 0.274 0.269 0.297 0.278 
30×10 4.644 4.525 4.761 4.705 4.883 4.560 4.855 4.916 4.879 4.774 4.776 4.910 4.901 4.805 
50×20 1.931 1.942 1.993 1.959 2.004 1.999 2.022 2.002 2.031 2.092 2.057 2.070 2.088 2.094 0.05 

Sum 6.753 6.668 6.958 6.911 7.131 6.809 7.149 7.188 7.201 7.149 7.107 7.250 7.286 7.176 
10×5 0.129 0.162 0.155 0.176 0.167 0.164 0.180 0.189 0.188 0.182 0.205 0.196 0.208 0.186 
30×10 4.129 3.967 4.184 4.154 4.001 4.112 4.169 4.220 4.359 4.358 3.929 4.193 4.168 4.140 
50×20 1.648 1.636 1.654 1.699 1.721 1.709 1.743 1.752 1.726 1.820 1.743 1.769 1.785 1.796 0.1 

Sum 5.906 5.764 5.993 6.030 5.890 5.985 6.092 6.161 6.273 6.360 5.876 6.158 6.161 6.122 
10×5 0.309 0.287 0.340 0.322 0.321 0.275 0.310 0.314 0.348 0.336 0.340 0.330 0.329 0.307 
30×10 4.645 4.425 4.089 4.322 4.598 4.422 4.366 4.179 4.484 4.557 4.481 4.690 4.690 4.514 
50×20 2.136 1.728 1.707 1.562 1.551 1.738 1.920 1.957 1.681 1.877 1.884 1.686 1.863 1.844 0.5 

Sum 7.090 6.440 6.136 6.206 6.470 6.435 6.596 6.450 6.513 6.770 6.705 6.706 6.882 6.665 
10×5 0.511 0.479 0.451 0.425 0.417 0.412 0.456 0.430 0.479 0.477 0.462 0.458 0.469 0.467 
30×10 5.162 4.936 4.614 4.123 4.009 4.286 4.617 4.366 4.520 4.428 4.762 4.512 4.394 4.373 
50×20 3.535 2.291 1.567 1.924 1.681 1.677 2.019 1.761 2.350 1.904 2.412 2.505 2.283 2.126 1.0 

Sum 9.208 7.706 6.632 6.472 6.107 6.375 7.092 6.557 7.349 6.809 7.636 7.475 7.146 6.966 
a average absolute deviation for λ = 0, b average percentage deviation for λ >0 
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Table 5.6  The effect of various neighborhood structures on the performance of the 

SA algorithm 

 Problem Neighborhood Structure 
λ size PI SM 

10×5 0.029a 0.020 
30×10 0.525 0.494 
50×20 0.248 0.320 

0 

Sum 0.802 0.834 
10×5 1.279b 0.888 
30×10 10.040 9.560 
50×20 2.640 2.742 

0.001 

Sum 13.959 13.190 
10×5 0.973 0.748 
30×10 7.561 6.757 
50×20 3.196 3.026 

0.005 

Sum 11.730 10.531 
10×5 0.830 0.628 
30×10 6.900 5.954 
50×20 3.048 2.691 

0.01 

Sum 10.778 9.273 
10×5 0.377 0.131 
30×10 5.306 4.250 
50×20 2.299 1.741 

0.05 

Sum 7.982 6.123 
10×5 0.312 0.043 
30×10 4.591 3.707 
50×20 2.009 1.449 

0.1 

Sum 6.912 5.198 
10×5 0.549 0.089 
30×10 4.810 4.113 
50×20 1.974 1.617 

0.5 

Sum 7.333 5.819 
10×5 0.721 0.193 
30×10 4.750 4.264 
50×20 2.143 2.148 

1.0 

Sum 7.614 6.605 
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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Table 5.7  The effect of various cooling schedules on the performance of the SA algorithm 
 Problem Cooling Schedules 

size CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10 λ CS11 CS12 
10×5 0.004a 0.001 0.011 0.043 0.221 0.087 0.060 0.035 0.029 0.019 0.021 0.005 
30×10 0.207 0.221 0.282 0.536 1.539 0.961 0.800 0.693 0.632 0.639 0.575 0.532 
50×20 0.043 0.046 0.079 0.400 2.107 1.011 0.686 0.439 0.311 0.229 0.207 0.196 0 

Sum 0.254 0.269 0.371 0.979 3.868 2.058 1.545 1.167 0.971 0.887 0.804 0.733 
10×5 1.229b 1.244 1.229 2.314 6.868 3.036 1.751 1.284 1.035 0.712 0.631 0.577 
30×10 8.453 8.005 8.104 10.517 24.762 15.777 13.808 12.334 11.504 10.946 10.296 9.799 
50×20 1.067 1.131 1.272 2.850 9.646 5.948 4.541 3.811 3.354 3.186 3.095 2.827 0.001 

Sum 10.749 10.380 10.605 15.681 41.276 24.761 20.100 17.429 15.893 14.844 14.022 13.203 
10×5 8.453 8.005 8.104 10.517 24.762 15.777 13.808 12.334 11.504 10.946 10.296 9.799 
30×10 6.061 5.774 6.188 7.414 16.505 12.073 10.335 9.466 8.694 8.587 8.052 7.753 
50×20 0.981 1.065 1.281 3.076 9.124 6.819 5.714 0.005 4.852 4.388 4.062 3.773 3.575 
Sum 15.495 14.844 15.573 21.007 50.391 34.669 29.857 26.652 24.586 23.595 22.121 21.127 
10×5 8.453 8.005 8.104 10.517 24.762 15.777 13.808 12.334 11.504 10.946 10.296 9.799 
30×10 5.721 5.659 5.815 6.690 13.881 10.679 9.223 8.345 7.677 7.219 6.806 6.462 
50×20 1.105 1.146 1.293 2.841 8.468 6.220 4.839 4.136 3.713 3.409 3.244 3.057 0.01 

Sum 15.279 14.810 15.212 20.048 47.111 32.676 27.870 24.815 22.894 21.574 20.346 19.318 
10×5 8.453 8.005 8.104 10.517 24.762 15.777 13.808 12.334 11.504 10.946 10.296 9.799 
30×10 5.599 5.655 5.013 5.303 7.394 5.896 5.416 5.307 4.975 4.772 4.901 4.699 
50×20 1.266 1.366 1.465 2.391 4.186 3.152 2.811 2.661 2.531 2.479 2.439 2.398 0.05 

Sum 15.318 15.026 14.582 18.211 36.342 24.825 22.035 20.302 19.010 18.197 17.636 16.896 
10×5 8.453 8.005 8.104 10.517 24.762 15.777 13.808 12.334 11.504 10.946 10.296 9.799 
30×10 4.896 4.686 4.412 4.719 5.327 4.559 4.290 4.278 4.010 3.931 3.882 3.708 0.1 50×20 1.190 1.197 1.323 2.055 2.952 2.473 2.334 2.279 2.218 2.165 2.150 2.103 
Sum 14.539 13.888 13.839 17.291 33.041 22.809 20.432 18.891 17.732 17.042 16.328 15.610 
10×5 8.453 8.005 8.104 10.517 24.762 15.777 13.808 12.334 11.504 10.946 10.296 9.799 
30×10 4.718 4.384 4.132 4.186 4.035 3.723 3.621 3.522 3.673 3.861 3.711 4.021 
50×20 1.268 1.117 1.230 1.568 2.121 1.959 1.736 1.509 1.366 1.250 1.173 1.174 0.5 

Sum 14.439 13.506 13.466 16.271 30.918 21.459 19.165 17.365 16.543 16.057 15.180 14.994 
10×5 0.344 0.272 0.206 0.144 0.103 0.112 0.117 0.152 0.193 0.203 0.208 0.235 
30×10 4.384 4.184 3.890 3.543 3.244 3.141 3.162 3.377 3.580 3.468 3.843 3.994 
50×20 1.413 1.331 1.386 1.627 2.077 1.640 1.432 1.372 1.286 1.293 1.425 1.419 1.0 

Sum 6.141 5.787 5.482 5.314 5.424 4.893 4.711 4.901 5.059 4.964 5.476 5.648 148 a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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Table 5.7 The effect of various cooling schedules on the performance of the SA algorithm (cont.) 
 Problem Cooling Schedules 

λ size CS13 CS14 CS15 CS16 CS17 CS18 CS19 CS20 CS21 CS22 CS23 
10×5 0.012a 0.010 0.002 0.001 0.000 0.004 0.001 0.001 0.000 0.002 0.000 
30×10 0.568 0.450 0.446 0.411 0.375 0.361 0.336 0.379 0.311 0.239 0.221 
50×20 0.186 0.150 0.107 0.061 0.043 0.025 0.057 0.036 0.039 0.036 0.039 0 

Sum 0.766 0.610 0.556 0.473 0.418 0.389 0.394 0.416 0.350 0.277 0.261 
10×5 0.584b 0.431 0.334 0.191 0.323 0.208 0.265 0.105 0.064 0.351 0.152 
30×10 10.012 9.363 8.688 7.832 7.388 7.318 6.535 6.224 6.195 6.033 5.475 
50×20 2.797 2.754 2.287 1.973 1.743 1.589 1.326 1.299 1.236 1.118 1.051 0.001 

Sum 13.393 12.548 11.309 9.996 9.454 9.115 8.126 7.628 7.495 7.502 6.678 
10×5 10.012 9.363 8.688 7.832 7.388 7.318 6.535 6.224 6.195 6.033 5.475 
30×10 7.627 7.315 5.749 5.399 5.253 4.653 4.530 4.369 4.384 4.239 4.227 
50×20 3.334 3.214 2.418 2.123 1.929 1.869 1.704 1.668 1.637 1.495 1.448 0.005 

Sum 20.973 19.892 16.855 15.354 14.570 13.840 12.769 12.261 12.216 11.767 11.150 
10×5 10.012 9.363 8.688 7.832 7.388 7.318 6.535 6.224 6.195 6.033 5.475 
30×10 6.451 6.506 5.364 5.058 4.688 4.555 4.288 4.211 3.946 4.460 4.120 
50×20 2.905 2.789 2.327 2.157 2.077 1.946 1.816 1.775 1.664 1.584 1.494 0.01 

Sum 19.368 18.658 16.379 15.047 14.153 13.819 12.639 12.210 11.805 12.077 11.089 
10×5 10.012 9.363 8.688 7.832 7.388 7.318 6.535 6.224 6.195 6.033 5.475 
30×10 4.437 4.362 4.094 3.964 3.977 4.067 3.941 3.853 3.846 4.301 4.127 
50×20 2.375 2.357 2.125 1.784 1.583 1.349 1.336 1.164 1.101 1.066 1.081 0.05 

Sum 16.824 16.082 14.907 13.580 12.948 12.734 11.812 11.241 11.142 11.400 10.683 
10×5 10.012 9.363 8.688 7.832 7.388 7.318 6.535 6.224 6.195 6.033 5.475 
30×10 3.623 3.693 3.597 3.686 3.517 3.846 3.984 4.061 4.003 4.230 4.488 
50×20 2.079 1.996 1.552 1.281 1.166 1.091 1.051 1.097 1.232 1.376 1.403 0.1 

Sum 15.714 15.052 13.837 12.799 12.071 12.255 11.570 11.382 11.430 11.639 11.366 
10×5 10.012 9.363 8.688 7.832 7.388 7.318 6.535 6.224 6.195 6.033 5.475 
30×10 4.013 4.114 4.291 4.520 4.747 5.277 5.340 5.490 5.609 5.743 5.886 
50×20 1.043 1.046 1.433 1.756 2.067 2.347 2.587 2.743 2.843 2.964 2.990 0.5 

Sum 15.068 14.523 14.412 14.108 14.202 14.942 14.462 14.457 14.647 14.740 14.351 
10×5 0.249 0.261 0.462 0.542 0.706 0.778 0.885 1.013 1.052 1.129 1.136 
30×10 3.866 4.012 4.550 5.066 5.383 5.734 5.895 6.267 6.267 6.345 6.471 
50×20 1.458 1.617 2.490 2.728 2.978 3.241 3.260 3.359 3.461 3.517 3.536 1.0 

Sum 5.573 5.890 7.502 8.336 9.067 9.753 10.040 10.639 10.780 10.991 11.143 149 a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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For the initial temperature, it is observed that a lower initial 

temperature is effective for the problem under consideration.  However, not all the 

problem cases should use the same small initial temperature.  For the problems with λ 

< 0.5, the use of an initial temperature of two and of ten for the other problems can be 

recommended.  

 

For the neighborhood structure, it is clear that SMs are better than PI 

moves for λ ≥ 0.001, especially for the problems whose makespan portion λCmax is 

dominant in comparison with the tardiness portion (1–λ)ηT, whereas the PI moves are 

slightly better than or nearly as good as the SMs for the other values.  Consequently, 

the neighborhood structures should be based on PIs for λ  = 0 and on shifts of jobs 

otherwise, or it can also be recommended to use SMs for the whole range of λ.   

 

For the cooling schedule, the results show that the performance of a 

geometric reduction is as good as the performance of the Lundy and Mees reduction 

only for problems with λ = 0, whereas the Lundy and Mees reduction becomes better 

when the value λ increases.  Nevertheless, the parameter of the Lundy and Mees 

reduction depends on the value λ.  It is noted that for the problems with λ < 0.5, the 

cooling rate of the Lundy and Mees reduction is suitable at a range from 0.5 through 

1.0 (1.0 is recommended), whereas for the other problems it is suitable at a range from 

0.05 through 0.2 (0.1 is recommended). 

 

Next, the TS algorithm with a random initial solution is studied.  Given 

the above three different problem sizes, the effect of the number of neighbors, 

neighborhood structure, and size of tabu list by using the average (absolute resp. 

relative) deviation from the best value as the performance measure is shown in Table 

5.8 through Table 5.10. 
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Table 5.8 The effect of the various numbers of neighbors on the performance of the 

TS algorithm 
 Problem The number of neighbors 

λ size 10 20 30 40 50 
10×5 0.029a 0.017 0.033 0.050 0.083 

30×10 0.400 0.242 0.313 0.392 0.463 
50×20 0.050 0.146 0.346 0.533 0.625 

0 

Sum 0.479 0.404 0.692 0.975 1.171 
10×5 0.954b 0.989 0.943 1.477 3.281 

30×10 7.912 5.236 4.940 5.640 6.250 
50×20 0.981 0.945 2.040 3.409 4.250 

0.001 

Sum 9.847 7.170 7.923 10.526 13.781 
10×5 1.136 0.648 0.618 0.799 1.282 

30×10 6.057 3.942 3.611 4.134 4.195 
50×20 1.875 1.663 2.623 3.493 4.099 

0.005 

Sum 9.068 6.253 6.852 8.426 9.576 
10×5 0.781 0.419 0.474 0.730 1.099 

30×10 5.264 3.653 3.549 3.931 4.390 
50×20 2.171 1.807 2.783 3.744 4.161 

0.01 

Sum 8.216 5.879 6.806 8.405 9.650 
10×5 0.535 0.176 0.166 0.191 0.332 

30×10 4.585 3.727 3.632 3.777 4.119 
50×20 2.410 1.734 2.793 3.338 3.905 

0.05 

Sum 7.530 5.637 6.591 7.306 8.356 
10×5 0.381 0.119 0.158 0.154 0.344 

30×10 4.067 3.542 3.458 3.773 3.714 
50×20 2.174 1.491 2.313 2.925 3.555 

0.1 

Sum 6.622 5.152 5.929 6.851 7.613 
10×5 0.331 0.164 0.108 0.228 0.282 

30×10 3.705 2.962 3.168 3.182 3.569 
50×20 2.008 1.304 2.098 2.860 3.510 

0.5 

Sum 6.044 4.43 5.374 6.269 7.36 
10×5 0.358 0.127 0.152 0.218 0.327 

30×10 3.523 2.805 2.877 3.169 3.299 
50×20 2.129 1.415 2.321 2.861 3.551 

1.0 

Sum 6.011 4.347 5.351 6.249 7.177 
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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Table 5.9 The effect of the various neighborhood structures on the performance of the 

TS algorithm 

 Problem Neighborhood Structures 
λ size PI SM 

10×5 0.033a 0.052 
30×10 0.337 0.387 
50×20 0.163 0.517 

0 

Sum 0.533 0.955 
10×5 0.911b 2.146 
30×10 5.923 6.068 
50×20 2.050 2.600 

0.001 

Sum 8.884 10.814 
10×5 0.826 0.967 
30×10 4.650 4.125 
50×20 2.635 2.867 

0.005 

Sum 8.111 7.959 
10×5 0.667 0.735 
30×10 4.413 3.903 
50×20 2.759 3.108 

0.01 

Sum 7.839 7.746 
10×5 0.379 0.181 
30×10 4.298 3.638 
50×20 2.839 2.834 

0.05 

Sum 7.516 6.653 
10×5 0.324 0.138 
30×10 4.004 3.418 
50×20 2.407 2.576 

0.1 

Sum 6.735 6.132 
10×5 0.283 0.162 
30×10 3.561 3.073 
50×20 2.310 2.402 

0.5 

Sum 6.154 5.637 
10×5 0.290 0.183 
30×10 3.341 2.928 
50×20 2.345 2.566 

1.0 

Sum 5.976 5.677 
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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Table 5.10 The effect of the various sizes of tabu list on the performance of the TS 

algorithm 
 Problem Tabu list sizes 

λ size 5 10 15 20 
10×5 0.057a 0.030 0.040 0.043 
30×10 0.380 0.367 0.347 0.353 
50×20 0.380 0.347 0.287 0.347 

0 

Sum 0.817 0.743 0.673 0.743 
10×5 2.254b 1.152 0.924 1.786 
30×10 6.046 5.912 6.412 5.612 
50×20 2.511 2.221 2.339 2.228 

0.001 

Sum 10.811 9.285 9.675 9.626 
10×5 1.036 0.707 0.894 0.949 
30×10 4.325 4.354 4.341 4.532 
50×20 2.837 2.746 2.711 2.710 

0.005 

Sum 8.198 7.807 7.946 8.191 
10×5 0.855 0.534 0.552 0.863 
30×10 4.097 4.165 4.238 4.131 
50×20 2.933 3.134 2.687 2.979 

0.01 

Sum 7.885 7.833 7.477 7.973 
10×5 0.261 0.239 0.257 0.364 
30×10 3.939 4.019 3.989 3.926 
50×20 2.667 2.905 2.903 2.869 

0.05 

Sum 6.867 7.163 7.149 7.159 
10×5 0.278 0.150 0.230 0.267 
30×10 3.684 3.769 3.682 3.708 
50×20 2.513 2.444 2.427 2.582 

0.1 

Sum 6.475 6.363 6.339 6.557 
10×5 0.219 0.190 0.217 0.264 
30×10 3.379 3.219 3.375 3.295 
50×20 2.369 2.340 2.431 2.283 

0.5 

Sum 5.967 5.749 6.023 5.842 
10×5 0.290 0.167 0.207 0.283 
30×10 3.171 3.105 3.085 3.177 
50×20 2.434 2.451 2.521 2.416 

1.0 

Sum 5.895 5.723 5.813 5.876 
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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For the number of neighbors, 20 and 30 non-tabu neighbors per 

iteration are good choices, but 20 nontabu neighbors are still slightly better.   

 

For the neighborhood structure, it is clear that PI moves are better than 

SMs for λ < 0.005, whereas for λ = 0.005 and the problem sizes  10 jobs × 5 stages 

and  50 jobs × 20 stages, there are no statistically significant differences in both 

neighborhood structures, but they are statistically significant for the problem size 30 

jobs × 10 stages.  For the problem size 50 jobs × 20 stages and λ ≥ 0.1, although the 

average main effect of PI moves is better than that of SMs, it is found that there is a 

statistically significant interaction between the neighborhood structure and the 

number of neighbors, that is, for 20 non-tabu neighbors the SMs become better than 

PI moves.  Hence, in general SMs should be selected as the neighborhood structure 

for λ ≥ 0.005.  

 

For the size of the tabu list, it can be seen that sizes of 10 and 15 works 

good, but the size 10 of the tabu list is slightly superior. 

 

Then, the GA approach with a random initial population is studied.  

The purpose of this study is to determine the favorable GA parameters, i.e. population 

size, crossover types, and mutation types, as well as crossover and mutation rates. 

 

Table 5.11 through 5.13 present the effect of the population size, 

crossover types, and mutation types by using the average (absolute resp. relative) 

deviation from the best value as the performance measure. 
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Table 5.11 The effect of various population sizes on the performance of the genetic 

algorithm 
 Problem Population size 

λ size 10 30 50 70 
10×5 0.168a 0.058 0.045 0.053 
30×10 1.366 0.786 0.600 0.948 
50×20 1.034 0.550 0.514 0.752 

0 

Sum 2.568 1.394 1.159 1.753 
10×5 1.366b 0.786 0.600 0.948 
30×10 21.280 13.640 13.170 17.530 
50×20 3.255 2.363 2.301 3.221 

0.001 

Sum 25.901 16.789 16.071 21.699 
10×5 2.629 1.168 0.785 1.108 
30×10 11.081 8.751 8.708 10.845 
50×20 3.282 3.265 3.282 4.084 

0.005 

Sum 16.992 13.184 12.775 16.037 
10×5 2.349 1.293 0.937 0.969 
30×10 8.943 8.133 7.954 9.383 
50×20 3.394 3.249 3.911 4.315 

0.01 

Sum 14.686 12.675 12.802 14.667 
10×5 1.375 0.734 0.576 0.714 
30×10 7.465 6.827 6.834 7.672 
50×20 2.492 2.454 2.755 3.469 

0.05 

Sum 11.332 10.015 10.165 11.855 
10×5 0.983 0.559 0.467 0.612 
30×10 6.636 6.069 6.244 6.991 
50×20 2.081 2.187 2.595 3.190 

0.1 

Sum 9.700 8.815 9.306 10.793 
10×5 1.187 0.836 0.771 0.887 
30×10 6.436 5.689 6.063 6.635 
50×20 1.926 2.010 2.476 2.986 

0.5 

Sum 9.549 8.535 9.310 10.508 
10×5 1.191 0.843 0.834 0.858 
30×10 6.335 5.608 5.893 6.578 
50×20 1.977 2.107 2.558 3.131 

1.0 

Sum 9.503 8.558 9.285 10.567 
 a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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Table 5.12 The effect of various crossover types on the performance of the genetic 

algorithm 
 Problem Crossover types 

λ size PMX OPX 
10×5 0.132a 0.030 
30×10 0.980 0.871 
50×20 0.757 0.667 

0 

Sum 1.869 1.568 
10×5 2.564b 0.794 
30×10 16.960 15.850 
50×20 2.994 2.575 

0.001 

Sum 22.518 19.219 
10×5 1.924 0.922 
30×10 10.051 9.642 
50×20 3.605 3.351 

0.005 

Sum 15.580 13.915 
10×5 1.698 1.077 
30×10 8.889 8.318 
50×20 3.840 3.595 

0.01 

Sum 14.427 12.990 
10×5 0.954 0.745 
30×10 7.411 6.988 
50×20 2.839 2.746 

0.05 

Sum 11.204 10.479 
10×5 0.748 0.563 
30×10 6.597 6.373 
50×20 2.590 2.437 

0.1 

Sum 9.935 9.373 
10×5 1.071 0.770 
30×10 6.353 6.059 
50×20 2.431 2.268 

0.5 

Sum 9.855 9.097 
10×5 1.104 0.759 
30×10 6.238 5.969 
50×20 2.514 2.372 

1.0 

Sum 9.856 9.100 
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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Table 5.13 The effect of various mutation types on the performance of the genetic 

algorithm 
 Problem Mutation types 

λ size PI SM 
10×5 0.035a 0.127 
30×10 0.906 0.944 
50×20 0.650 0.775 

0 

Sum 1.591 1.847 
10×5 0.828b 2.530 
30×10 16.290 16.510 
50×20 2.642 2.928 

0.001 

Sum 19.760 21.968 
10×5 0.921 1.924 
30×10 9.970 9.723 
50×20 3.417 3.539 

0.005 

Sum 14.308 15.186 
10×5 1.666 1.109 
30×10 8.779 8.428 
50×20 3.709 3.726 

0.01 

Sum 14.154 13.263 
10×5 0.948 0.751 
30×10 7.451 6.948 
50×20 2.872 2.713 

0.05 

Sum 11.271 10.412 
10×5 0.798 0.513 
30×10 6.716 6.254 
50×20 2.631 2.396 

0.1 

Sum 10.145 9.163 
10×5 1.106 0.734 
30×10 6.356 6.056 
50×20 2.488 2.211 

0.5 

Sum 9.950 9.001 
10×5 1.102 0.760 
30×10 6.251 5.956 
50×20 2.563 2.323 

1.0 

Sum 9.916 9.039 
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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Table 5.14 The effect of various crossover rates on the performance of the genetic algorithm 
 Problem Crossover rates 

λ size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
10×5 0.000a 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

30×10 0.556 0.639 0.583 0.639 0.750 0.722 0.694 0.528 0.806 
50×20 0.361 0.583 0.528 0.500 0.556 0.583 0.778 0.667 0.806 0 

Sum 0.917 1.250 1.111 1.139 1.306 1.306 1.472 1.195 1.611 
10×5 0.153b 0.179 0.253 0.715 0.199 0.227 0.199 0.274 1.628 

30×10 15.320 12.570 12.400 13.310 11.400 10.090 14.570 10.460 9.050 
50×20 2.085 2.139 1.925 3.082 2.324 2.669 2.588 2.195 2.725 0.001 

Sum 17.558 14.888 14.578 17.107 13.923 12.986 17.357 12.929 13.403 
10×5 0.607 0.446 0.423 0.812 0.951 0.897 0.351 0.941 1.248 

30×10 9.401 9.544 8.485 8.513 7.896 7.968 7.379 8.885 8.432 
50×20 3.513 3.193 3.542 3.336 3.618 3.341 3.341 3.131 3.771 0.005 

Sum 13.521 13.183 12.450 12.661 12.465 12.206 11.071 12.957 13.451 
10×5 0.639 0.821 1.042 1.022 1.163 1.361 1.211 1.476 1.747 

30×10 8.457 7.774 7.775 7.711 8.401 7.730 7.691 8.623 7.104 
50×20 3.200 2.629 3.226 3.976 3.174 2.554 3.337 3.130 2.090 0.01 

Sum 12.296 11.224 12.043 12.709 12.738 11.645 12.239 13.229 10.941 
10×5 0.744 0.636 0.937 0.921 0.537 0.839 0.557 0.816 0.876 

30×10 7.126 6.407 6.503 7.325 6.823 6.986 6.727 6.201 6.063 
50×20 2.175 2.798 1.524 2.249 2.271 2.383 2.516 2.375 2.111 0.05 

Sum 10.045 9.841 8.964 10.495 9.631 10.208 9.800 9.392 9.050 
10×5 0.327 0.515 0.640 0.874 0.383 0.562 0.377 0.442 0.471 

30×10 6.302 5.832 5.347 5.387 6.127 5.813 5.533 6.000 6.174 
50×20 1.812 2.141 2.297 1.696 1.875 1.874 2.432 2.252 2.142 0.1 

Sum 8.441 8.488 8.284 7.957 8.385 8.249 8.342 8.694 8.787 
10×5 0.549 0.700 0.587 0.785 0.725 0.718 0.613 0.503 0.706 

30×10 5.813 5.576 6.004 5.308 5.361 4.808 5.811 5.529 5.472 
50×20 1.786 1.443 1.406 1.767 2.038 2.238 1.931 1.834 2.127 0.5 

Sum 8.148 7.719 7.997 7.860 8.124 7.764 8.355 7.866 8.305 
10×5 0.434 0.536 0.843 0.856 0.746 0.501 0.776 0.484 0.466 

30×10 5.543 5.162 5.679 4.407 6.076 5.421 5.583 5.916 5.359 
50×20 1.884 1.799 1.492 1.880 2.230 2.360 2.349 1.726 2.081 1.0 

Sum 7.861 7.497 8.014 7.143 9.052 8.282 8.708 8.126 7.906 158 a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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Table 5.15 The effect of various mutation rates on the performance of the genetic algorithm 
 Problem Mutation rates 

λ size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
10×5 0.000a 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.000 

30×10 0.778 0.639 0.778 0.667 0.583 0.639 0.611 0.583 0.639 
50×20 0.806 0.806 0.528 0.472 0.583 0.500 0.361 0.528 0.778 0 

Sum 1.583 1.445 1.306 1.139 1.167 1.167 0.972 1.111 1.417 
10×5 0.736b 1.642 0.253 0.290 0.208 0.132 0.200 0.214 0.154 

30×10 13.570 11.490 11.900 13.970 11.350 11.720 12.890 10.910 11.370 
50×20 4.050 2.770 1.844 2.487 2.077 2.709 2.507 1.487 1.801 0.001 

Sum 18.356 15.902 13.997 16.747 13.635 14.561 15.597 12.611 13.325 
10×5 2.536 0.300 0.905 1.214 0.464 0.511 0.401 0.227 0.115 

30×10 9.698 7.879 8.136 8.555 7.694 7.464 9.042 9.220 8.815 
50×20 3.851 3.615 3.346 3.332 2.593 3.568 3.034 3.920 3.528 0.005 

Sum 16.085 11.794 12.387 13.101 10.751 11.543 12.477 13.367 12.458 
10×5 1.994 1.045 1.558 1.276 0.891 1.153 0.550 0.867 1.149 

30×10 7.832 7.668 7.547 8.028 8.281 7.788 7.313 7.568 9.240 
50×20 2.825 3.584 2.349 2.948 3.354 3.447 2.805 2.910 3.094 
Sum 12.651 12.297 11.454 12.252 12.526 12.388 10.668 11.345 13.483 
10×5 1.220 0.856 0.738 0.749 0.748 0.697 0.753 0.751 0.350 

30×10 6.706 7.166 6.778 5.776 6.729 7.162 6.221 6.952 6.673 
50×20 2.330 2.293 2.221 2.595 1.944 1.841 2.202 2.511 2.465 0.05 

Sum 10.256 10.315 9.737 9.120 9.421 9.700 9.176 10.214 9.488 
10×5 0.887 0.667 0.434 0.440 0.822 0.345 0.313 0.295 0.387 

30×10 5.771 5.755 5.897 5.178 5.882 6.269 6.069 5.444 6.249 
50×20 2.223 2.164 1.782 2.295 2.239 2.042 1.922 1.938 1.916 0.1 

Sum 8.881 8.586 8.113 7.913 8.943 8.656 8.304 7.677 8.552 
10×5 0.759 0.908 0.745 0.558 0.587 0.618 0.714 0.499 0.499 

30×10 5.638 5.861 5.138 5.303 5.305 5.719 6.112 5.483 5.123 
50×20 1.895 1.853 1.754 1.829 1.951 1.776 1.667 1.849 1.995 0.5 

Sum 8.292 8.622 7.637 7.690 7.843 8.113 8.493 7.831 7.617 
10×5 0.657 0.684 0.629 0.413 0.586 0.565 0.650 0.751 0.708 

30×10 5.579 5.510 4.990 5.336 5.548 5.483 6.173 5.428 5.098 
50×20 1.913 2.162 2.079 1.499 2.434 1.823 1.723 2.288 1.882 1.0 

Sum 8.149 8.356 7.698 7.248 8.568 7.871 8.546 8.467 7.688 159 a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 

0.01 
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For the GA, it is found that for the population size, crossover types, 

and mutation types as well as crossover and mutation rates, there are statistically 

significant differences.  The population sizes of 30 and 50 are quite not statistically 

different, but in general a population size of 30 is slightly better than a population size 

of 50.   

 

Considering the crossover types, the OPX crossover is obviously 

superior to the PMX crossover.  For the mutation type, it is clear that SMs are better 

than PI moves for λ ≥ 0.01, whereas the PI moves are mostly better than SMs for the 

other values.  This means that the PI moves are suitable for problems whose tardiness 

portion dominates the makespan portion.  Consequently, the neighborhood structures 

should be based on PIs for λ < 0.01, and on shifts of jobs otherwise.  

 

Given the selected GA parameters, the crossover and mutation rates 

are analyzed again.  The results are shown in Table 5.14 through Table 5.15.  There 

are no significant differences for these parameters.  However, in general a crossover 

rate of 0.6 and a mutation rate of 0.3 are recommended. 

 

Then, the recommended SA, TS, and GA parameters are used to test 

the choice of an appropriate initial solution (or a part of the initial population for the 

GA approach) (see Section 4.7).  The letters before the letters SA (or TS, or GA) 

denote the heuristic rule used for generating one initial solution for SA (or TS, or 

GA).  For example, LPTSA means that the LPT rule is used as an initial solution for 

the SA algorithm, RNDTS means that an initial solution in TS is randomly generated, 

or NEHGA means that one initial solution of the initial population in the GA 

approach is generated by the NEH rule but the other initial solutions are still randomly 

generated. 

 

Next, the results compared the LPT, ILPT, NEH, and INEH rules as 

well as the iterative algorithms with random initial solution or population denoted by 

RNDSA, RNDTS, and RNDGA).   
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Table 5.16 Average performance of the constructive and iterative algorithms 

λ 
Problem  

Size 
LPT ILPT NEH INEH RNDSA RNDTS RNDGA

10×5 3.200a 1.300 0.700 0.700 0.000 0.040 0.100 
30×10 8.400 3.000 2.300 2.300 0.300 0.260 0.680 
50×20 8.400 2.500 1.200 1.200 0.040 0.040 0.400 

0 

Sum 20.000 6.800 4.200 4.200 0.340 0.340 1.180 
10×5 99.380b 26.900 13.320 13.320 0.030 0.060 3.430 
30×10 115.570 24.880 36.810 36.810 6.320 5.880 9.460 
50×20 35.302 5.650 10.921 10.921 0.748 0.917 1.694 

0.001 

Sum 250.252 57.430 61.051 61.051 7.098 6.857 14.584 
10×5 46.353 15.036 7.862 7.862 0.031 0.946 1.067 
30×10 56.309 16.126 19.711 19.711 3.899 4.167 7.785 
50×20 19.539 6.237 5.427 5.427 0.946 1.617 2.512 

0.005 

Sum 122.201 37.399 33.000 33.000 4.876 6.730 11.364 
10×5 31.949 10.704 5.944 5.944 0.160 0.565 1.359 
30×10 40.655 17.738 14.730 14.730 3.497 4.214 6.731 
50×20 15.380 7.504 4.199 4.199 0.923 1.669 2.079 

0.01 

Sum 87.984 35.946 24.873 24.873 4.580 6.448 10.169 
10×5 17.358 5.831 2.936 2.936 0.015 0.039 0.701 
30×10 24.011 12.349 8.167 8.167 3.054 4.059 6.164 
50×20 11.311 6.766 2.218 2.218 0.806 2.187 2.650 

0.05 

Sum 52.680 24.946 13.321 13.321 3.875 6.285 9.515 
10×5 15.885 6.054 2.720 2.720 0.082 0.077 0.747 
30×10 21.987 10.890 7.440 7.440 4.098 3.705 6.333 
50×20 10.779 5.565 1.755 1.755 1.099 1.880 2.266 

0.1 

Sum 48.651 22.509 11.915 11.915 5.279 5.662 9.346 
10×5 15.493 5.523 3.284 3.284 0.013 0.052 0.630 
30×10 21.179 10.949 6.291 6.291 3.089 3.682 5.769 
50×20 10.547 5.337 1.492 1.492 0.888 2.076 2.432 

0.5 

Sum 47.219 21.809 11.067 11.067 3.990 5.810 8.831 
10×5 15.486 5.474 3.279 3.279 0.041 0.075 0.607 
30×10 21.079 10.419 6.324 6.324 3.965 3.365 5.692 
50×20 10.591 5.365 1.605 1.605 1.021 2.012 2.666 

1.0 

Sum 47.156 21.258 11.208 11.208 5.027 5.452 8.965 
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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In Table 5.16, the results give the average (absolute resp. percentage) 

deviation of a particular algorithm from the best solution in these tests.  It is found 

that iterative metaheuristic algorithms can improve the quality of the LPT rule by 

about 90 percent or even more.  Among the iterative algorithms, the results show that 

for the RNDSA and RNDTS algorithms there are no statistically significant 

differences, but in general, the RNDSA algorithm is slightly better than the RNDTS 

algorithm. 

 

5.3.4  Performance of a Choice of an Initial Solution for the 
Iterative Algorithms 

 

Fourthly, to improve the quality of the solution finally obtained by the 

iterative algorithms, the initial solution of the iterative algorithms has used the biased-

initial solution instead of the random initial solution (see Section 4.7).  Consequently, 

the purpose of this experiment is to investigate the influence of the choice of an 

appropriate initial solution for the SA and TS algorithms and an initial population for 

the GA algorithm by using the heuristic constructive and improvement algorithms.  In 

addition, for the GA approach, all selected constructive algorithms in parallel as a part 

of the initial population are used to investigate the influence of the biased parallel 

initial solutions in the population.   

 

In Table 5.17, the SPT, LPT, S/P, ISPT, ILPT, IS/P, PAL, CDS, NEH, 

IPAL, ICDS, and INEH rules are selected as the initial solution under consideration.  

The letter CA denotes the whole group of constructive algorithms considered.  The 

letter C before the letters SA, TS, and GA denote the SA, TS, and GA algorithms 

using the best of the constructive algorithms as an initial solution.  In addition, for the 

GA approach, some selected algorithms in parallel as a part of the initial population 

are used.  Based on each heuristic group, all solutions in each heuristic group stated 

above as a part of the initial population (the other initial solutions are still randomly 

generated) are used.  Consequently, there are four new choices of initial populations 

tested (denoted by MIX1GA, MIX2GA, MIX3GA, and MIX4GA, respectively).   
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Table 5.17 Average performance of the iterative algorithms with biased initial 

solutions 

λ 
Problem 

size 
CA C-SA C-TS C-GA MIX1GA MIX2GA MIX3GA MIX4GA

10×5 1.943a 0.001 0.006 0.089 0.120 0.100 0.040 0.060 
30×10 4.829 0.274 0.237 0.794 0.520 0.360 0.780 0.720 
50×20 5.050 0.014 0.056 0.474 0.460 0.200 0.160 0.080 

0 

Sum 11.821 0.290 0.299 1.357 1.100 0.660 0.980 0.860 
10×5 51.554b 0.096 0.421 2.487 3.600 2.560 2.630 3.010 
30×10 59.438 5.719 4.909 9.640 8.270 3.080 10.540 8.710 
50×20 19.131 0.854 0.923 2.410 2.481 0.488 1.286 0.344 

0.001 

Sum 130.123 6.668 6.253 14.537 14.351 6.128 14.456 12.064
10×5 26.798 0.206 0.791 1.433 1.778 1.271 1.303 1.431 
30×10 32.128 4.198 3.834 7.380 6.433 4.945 6.990 6.122 
50×20 12.033 0.894 1.463 3.070 3.400 0.564 1.557 0.973 

0.005 

Sum 70.958 5.298 6.088 11.883 11.611 6.780 9.850 8.526 
10×5 19.264 0.205 0.502 1.044 1.445 0.904 1.233 1.595 
30×10 24.923 3.781 4.030 7.693 6.412 5.147 8.697 6.042 
50×20 10.475 0.924 1.532 3.362 2.431 1.382 1.515 1.013 

0.01 

Sum 54.662 4.910 6.064 12.099 10.288 7.433 11.445 8.650 
10×5 11.247 0.051 0.047 0.844 0.756 0.277 0.547 0.696 
30×10 16.360 3.745 4.100 6.521 6.499 5.042 4.872 4.525 
50×20 8.117 0.891 2.064 3.207 3.037 2.686 1.484 1.131 

0.05 

Sum 35.725 4.687 6.210 10.572 10.292 8.005 6.903 6.352 
10×5 10.408 0.049 0.025 0.608 0.855 0.659 0.476 0.294 
30×10 14.940 4.107 3.868 5.762 6.160 4.905 4.527 4.647 
50×20 7.573 1.107 1.963 3.019 2.827 2.983 1.105 1.103 

0.1 

Sum 32.921 5.263 5.856 9.389 9.842 8.547 6.108 6.044 
10×5 10.134 0.020 0.034 0.640 0.646 0.688 0.418 0.449 
30×10 14.625 3.316 3.636 5.808 5.941 4.942 3.647 3.724 
50×20 7.249 0.757 1.820 2.764 2.331 2.724 0.961 0.811 

0.5 

Sum 32.008 4.093 5.490 9.212 8.918 8.354 5.026 4.984 
10×5 10.181 0.036 0.051 0.582 0.691 0.566 0.492 0.408 
30×10 14.565 3.764 3.554 5.696 5.292 4.530 3.732 3.255 
50×20 7.312 0.993 1.809 2.987 2.366 2.861 0.950 0.875 

1.0 

Sum 32.058 4.792 5.414 9.264 8.349 7.957 5.174 4.538 
a average absolute deviation for λ = 0, b average percentage deviation for λ > 0 
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Table 5.18 Average performance of iterative algorithms with biased initial solutions 
  SA-Based Algorithms TS-Based Algorithms GA-Based Algorithms (1) GA-Based Algorithms (2) 

λ Problem
size 

L
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M
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A

 

M
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A

 

M
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10×5 0.000a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.100 0.120 0.120 0.060 0.120 0.060 0.120 0.040 0.100 0.060 
30×10 0.260 0.280 0.260 0.300 0.300 0.300 0.220 0.220 0.340 0.180 0.300 0.160 0.760 0.900 0.780 0.880 0.880 0.880 0.520 0.780 0.360 0.720 
50×20 0.000 0.000 0.000 0.000 0.040 0.000 0.060 0.120 0.020 0.000 0.040 0.000 0.580 0.960 0.580 0.240 0.340 0.240 0.460 0.160 0.200 0.0800 

Sum 0.260 0.280 0.260 0.300 0.340 0.300 0.280 0.340 0.360 0.180 0.360 0.160 1.440 1.980 1.480 1.180 1.340 1.180 1.100 0.980 0.660 0.860 
10×5 0.520b 0.010 0.030 0.020 0.510 0.030 0.090 0.570 0.100 0.170 1.060 0.530 2.160 2.990 2.480 2.070 3.660 2.070 3.600 2.630 2.560 3.010 
30×10 5.380 6.050 5.600 5.870 5.220 5.880 5.470 4.640 4.520 4.220 5.760 4.220 10.680 9.310 8.230 10.340 8.430 10.340 8.270 10.540 3.080 8.710 
50×20 0.954 0.778 0.831 0.844 0.802 0.940 1.211 1.287 0.817 0.615 0.652 0.622 1.839 3.610 1.933 1.323 2.114 1.259 2.481 1.286 0.488 0.344

0.001 

Sum 6.854 6.838 6.461 6.734 6.532 6.850 6.771 6.497 5.437 5.005 7.472 5.372 14.679 15.910 12.643 13.733 14.204 13.669 14.351 14.456 6.128 12.064 
10×5 0.115 0.236 0.531 0.041 0.060 0.259 0.984 1.279 1.179 1.076 1.103 0.721 1.134 1.275 1.437 1.374 1.899 1.374 1.778 1.303 1.271 1.431 
30×10 3.999 4.203 4.249 4.264 4.727 4.320 3.897 3.785 3.687 4.075 4.051 4.183 8.038 7.726 7.481 7.055 6.482 7.055 6.433 6.990 4.945 6.122 
50×20 0.969 0.866 0.799 0.888 0.923 0.917 1.524 2.046 1.175 0.838 0.975 0.842 2.464 4.560 2.157 1.426 3.183 1.426 3.400 1.557 0.564 0.973 0.005 

Sum 5.083 5.305 5.579 5.193 5.710 5.496 6.405 7.110 6.041 5.989 6.129 5.746 11.636 13.561 11.075 9.855 11.564 9.855 11.611 9.850 6.780 8.526 
10×5 0.084 0.163 0.212 0.382 0.086 0.324 0.551 0.481 0.779 0.664 0.387 0.706 1.283 1.111 0.859 0.873 1.273 0.873 1.445 1.233 0.904 1.595 
30×10 3.701 3.957 3.450 4.103 4.064 4.104 4.389 4.172 3.677 3.892 3.934 3.819 7.098 8.423 7.383 8.586 7.142 8.586 6.412 8.697 5.147 6.042 
50×20 0.965 0.969 0.895 0.936 0.933 0.957 1.245 2.171 1.767 0.931 1.517 0.931 2.706 5.873 2.239 1.498 4.247 1.498 2.431 1.515 1.382 1.0130.01 

Sum 4.750 5.089 4.557 5.421 5.083 5.385 6.185 6.824 6.223 5.487 5.838 5.456 11.087 15.407 10.481 10.957 12.662 10.957 10.288 11.445 7.433 8.650 
10×5 0.038 0.032 0.054 0.049 0.040 0.049 0.033 0.052 0.029 0.042 0.054 0.029 0.567 0.793 0.926 0.625 0.859 0.625 0.756 0.547 0.277 0.696 
30×10 4.176 3.369 3.903 4.016 3.301 4.005 4.654 3.823 4.165 3.250 4.378 3.356 6.440 8.122 6.803 4.730 7.754 4.730 6.499 4.872 5.042 4.525
50×20 0.896 0.852 0.918 0.748 0.881 0.740 1.963 2.152 2.430 1.491 1.894 1.491 3.133 5.216 3.199 1.382 3.472 1.382 3.037 1.484 2.686 1.1310.05 

Sum 5.110 4.253 4.875 4.813 4.222 4.794 6.650 6.027 6.624 4.783 6.326 4.876 10.140 14.131 10.928 6.737 12.085 6.737 10.292 6.903 8.005 6.352
10×5 0.033 0.064 0.038 0.070 0.047 0.070 0.057 0.035 0.025 0.030 0.021 0.012 0.688 0.523 0.669 0.504 0.540 0.504 0.855 0.476 0.659 0.294
30×10 4.794 3.305 4.647 3.581 3.705 3.581 4.067 4.061 3.724 3.260 3.786 3.254 5.945 6.834 5.444 4.219 6.190 4.219 6.160 4.527 4.905 4.647 
50×20 1.067 1.105 1.168 0.813 0.861 0.837 2.142 2.264 2.141 1.369 1.994 1.370 2.484 4.394 2.892 1.091 3.441 1.086 2.827 1.105 2.983 1.1030.1 

Sum 5.894 4.474 5.853 4.464 4.613 4.488 6.266 6.360 5.890 4.659 5.801 4.636 9.117 11.751 9.005 5.814 10.171 5.809 9.842 6.108 8.547 6.044
10×5 0.016 0.014 0.009 0.013 0.014 0.013 0.015 0.035 0.039 0.039 0.041 0.039 0.787 0.887 0.720 0.537 0.671 0.537 0.646 0.418 0.688 0.449 
30×10 3.228 3.500 3.571 3.140 4.027 3.153 3.864 3.721 3.894 2.854 3.753 2.904 5.853 7.253 5.490 3.775 5.813 3.775 5.941 3.647 4.942 3.724
50×20 0.776 0.794 0.826 0.715 0.689 0.687 1.895 2.099 2.157 1.170 1.723 1.157 2.150 4.194 2.401 0.982 3.585 0.982 2.331 0.961 2.724 0.8110.5 

Sum 4.020 4.308 4.406 3.868 4.730 3.853 5.774 5.855 6.090 4.063 5.517 4.100 8.790 12.334 8.611 5.294 10.069 5.294 8.918 5.026 8.354 4.984
10×5 0.020 0.006 0.059 0.038 0.035 0.038 0.059 0.065 0.069 0.047 0.024 0.035 0.626 0.591 0.604 0.458 0.387 0.458 0.691 0.492 0.566 0.408
30×10 4.467 2.588 4.071 3.183 3.709 3.148 3.813 3.726 3.763 3.024 3.471 3.030 5.461 7.428 5.580 3.533 5.579 3.547 5.292 3.732 4.530 3.255
50×20 0.858 1.066 1.184 0.588 1.014 0.588 1.821 2.068 2.199 1.198 1.874 1.198 2.367 4.351 2.523 1.040 4.303 1.040 2.366 0.950 2.861 0.8751.0 

Sum 5.345 3.660 5.314 3.809 4.758 3.774 5.693 5.859 6.031 4.269 5.369 4.263 8.454 12.370 8.707 5.031 10.269 5.045 8.349 5.174 7.957 4.538
a average absolute deviation for λ = 0, b average percentage deviation for λ>0 
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It is found that the SA-based algorithms are still particularly 

recommendable.  In addition, the GA-based algorithms can be improved by using a 

group of biased initial solutions as a part of the initial population instead of all 

randomly generated or only one biased initial solution. 

 

  Concerning the choice of an initial solution, this test only shows the 

results for the recommended SA, TS, and GA parameters to test an appropriate 

selection of an initial solution in Table 5.18.  It is found that for the SA algorithm, 

there are no statistically significant differences when using different initial solutions.  

It is however found that the ILPTSA, NEHSA and INEHSA rules are slightly better 

than the others in general.  Consequently, the ILPTSA, NEHSA and INEHSA 

algorithms are good choices for the SA algorithm with using a biased initial solution.  

However, the experiments have shown that there are slightly statistically significant 

differences for different initial solutions.  The NEHTS, INEHTS, NEHGA and 

INEHGA rules are, however, still good solutions when compared within each group. 

 

5.4  Performance of Algorithms on Small-Sized Test 
Problems 

 

The purpose of these experiments is to evaluate the performance of some 

selected algorithms that are proposed in Chapter IV on the small-sized test problems 

(see Section 5.2) that can find the optimal solution in an acceptable time. 

 

For the problem with λ = 0, the performance of each test for each algorithm is 

assessed by the absolute deviation of a particular algorithm from the optimal solution 

by using the following equation: 

 

absolute deviation from the optimal solution  = Heusol - Optsol (5.7) 

 

where Heusol is the schedule solution obtained by a given algorithm, and Optsol is the 

optimal schedule solution. 
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For the problem with λ > 0, the performance of each test for each algorithm is 

assessed by the percentage deviation of a particular algorithm from the optimal 

solution by using the following equation: 

 

percentage deviation from the best solution  = 100sol sol

sol

Heu Opt
Opt

−
×  (5.8) 

 

where Heusol is the schedule solution obtained by a given algorithm, and Optsol is the 

optimal schedule solution. 

 

In this section, the results of some algorithms for small-sized problems with a 

number of jobs ranging from three to seven are presented.  They give the average 

deviation from the optimal solution obtained by means of the 0-1 mixed linear integer 

programming formulation given in Chapter III using a commercial mathematical 

programming software, CPLEX 8.0.0 and AMPL, with an Intel Pentium 4 2.00GHz 

CPU with 256 MB of RAM.  However, the CPU time is limited to at most 2 hours (if 

the time limited is exceed, it uses the best solution found instead of an optimal one for 

the evaluation of the heuristic solution). 

 

 In the test, the problems with the same generation of the data (see Section 5.2) 

and  λ ∈ {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} in the objective function are tested.  

The constructive algorithms LPT and NEH, the fast improvement algorithms ILPT 

and INEH, and the iterative metaheuristic algorithms RNDSA, NEHSA, RNDTS, 

NEHTS, RNDGA, and NEHGA are selected to present the performance of each group 

of the algorithms. 
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Table 5.19 Average performance of the constructive, fast improvement, and 

metaheuristic algorithms for small-sized problems 
λ Problem  

size LPT ILPT NEH INEH RNDSA NEHSA RNDTS NEHTS RNDGA NEHGA

3 jobs 0.300a 0.050 0.100 0.100 0.050 0.050 0.050 0.050 0.050 0.050
4 jobs 0.750 0.250 0.250 0.250 0.150 0.150 0.150 0.150 0.150 0.150
5 jobs 0.700 0.250 0.150 0.150 0.150 0.150 0.190 0.200 0.150 0.150
6 jobs 1.200 0.400 0.450 0.450 0.150 0.150 0.150 0.150 0.150 0.150
7 jobs 1.150 0.500 0.450 0.450 0.200 0.200 0.200 0.200 0.200 0.200

0 

Sum 4.100 1.450 1.400 1.400 0.700 0.700 0.740 0.750 0.700 0.700
3 jobs 45.270b 5.180 8.610 8.610 4.950 4.950 4.950 4.950 4.950 4.950
4 jobs 88.390 32.670 37.460 37.460 7.350 7.350 7.500 7.480 7.350 7.350
5 jobs 23.570 2.320 5.700 5.700 1.870 1.870 2.270 2.320 1.870 1.870
6 jobs 97.960 33.860 27.320 27.320 13.370 13.370 13.370 13.370 13.370 13.370
7 jobs 23.960 7.140 7.200 7.200 0.970 0.970 0.970 0.970 0.970 0.970

0.001 

Sum 279.150 81.170 86.290 86.290 28.510 28.510 29.060 29.090 28.510 28.510
3 jobs 14.218 3.797 5.367 5.367 3.569 3.569 3.771 4.111 3.569 3.569
4 jobs 29.860 9.370 12.480 12.480 4.400 4.400 4.410 4.420 4.400 4.400
5 jobs 15.182 2.383 3.756 3.756 1.627 1.627 1.627 1.627 1.627 1.627
6 jobs 31.400 8.990 9.070 9.070 3.440 3.440 3.480 3.480 3.440 3.440
7 jobs 14.180 4.960 4.970 4.970 2.240 2.240 2.240 2.240 2.240 2.240

0.005 

Sum 104.840 29.500 35.643 35.643 15.276 15.276 15.528 15.878 15.276 15.276
3 jobs 9.820 3.371 4.379 4.379 3.143 3.143 3.550 3.550 3.143 3.143
4 jobs 20.475 5.812 8.182 8.182 3.350 3.350 3.423 3.370 3.350 3.350
5 jobs 11.884 2.334 2.899 2.899 1.450 1.450 1.450 1.450 1.450 1.450
6 jobs 20.018 5.542 5.677 5.677 2.154 2.154 2.165 2.154 2.164 2.155
7 jobs 10.528 2.917 2.903 2.903 1.096 1.096 1.096 1.096 1.102 1.096

0.01 

Sum 72.725 19.976 24.040 24.040 11.193 11.193 11.684 11.620 11.209 11.194
3 jobs 7.048 3.388 3.267 3.267 2.887 2.887 3.046 2.934 2.887 2.887
4 jobs 12.651 3.366 4.521 4.521 2.084 2.084 2.084 2.084 2.084 2.084
5 jobs 8.846 2.576 1.778 1.778 0.899 0.899 0.899 0.899 0.899 0.899
6 jobs 9.344 2.516 3.256 3.256 1.042 1.042 1.042 1.042 1.047 1.047
7 jobs 6.291 0.960 0.650 0.650 0.192 0.192 0.192 0.192 0.229 0.192

0.05 

Sum 44.180 12.806 13.472 13.472 7.104 7.104 7.263 7.151 7.146 7.109
3 jobs 6.828 3.343 3.149 3.149 2.929 2.929 3.011 3.011 2.929 2.929
4 jobs 12.301 3.529 4.315 4.315 2.059 2.059 2.059 2.059 2.059 2.059
5 jobs 8.705 2.417 1.574 1.574 0.889 0.889 0.889 0.889 0.889 0.889
6 jobs 9.172 2.656 2.186 2.186 0.949 0.949 0.949 0.949 0.949 0.949
7 jobs 5.906 0.615 0.335 0.335 0.146 0.146 0.146 0.146 0.184 0.155

0.1 

Sum 42.912 12.560 11.559 11.559 6.972 6.972 7.054 7.054 7.010 6.981
3 jobs 6.760 3.475 3.237 3.237 3.123 3.123 3.295 3.360 3.123 3.123
4 jobs 12.063 2.776 4.137 4.137 1.921 1.921 1.945 1.921 1.921 1.921
5 jobs 8.531 2.215 1.548 1.548 0.745 0.745 0.745 0.745 0.745 0.745
6 jobs 8.607 2.620 2.514 2.514 1.238 1.238 1.238 1.238 1.269 1.238
7 jobs 6.840 1.581 0.391 0.391 0.113 0.113 0.113 0.113 0.149 0.113

0.5 

Sum 42.801 12.667 11.827 11.827 7.140 7.140 7.336 7.377 7.207 7.140
3 jobs 6.750 3.492 3.247 3.247 3.142 3.142 3.182 3.191 3.142 3.142
4 jobs 12.038 2.745 4.107 4.107 1.877 1.877 1.877 1.877 1.877 1.877
5 jobs 9.458 3.192 2.441 2.441 1.712 1.712 1.712 1.712 1.712 1.712
6 jobs 9.368 2.811 2.747 2.747 1.518 1.518 1.518 1.518 1.545 1.531
7 jobs 7.834 2.139 0.843 0.843 0.297 0.297 0.332 0.297 0.315 0.306

1.0 

Sum 45.448 14.379 13.385 13.385 8.546 8.546 8.621 8.595 8.591 8.568

a average absolute deviation for λ = 0, b average percentage deviation for λ> 0 
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From the results in Table 5.19, it can be observed that the ILPT improvement 

algorithm can improve the constructive LPT rule by about 70 percent in terms of the 

deviation from the optimal value.  The performance of the NEH and INEH rules as 

well as the ILPT rule are not significantly different.  As stated above for the large-

sized problems, the NEH rule has already embedded the improvement routine as used 

by the ILPT algorithm.  However, in contrast to large-sized problems it can be 

observed that the ILPT algorithm is slightly better than NEH and INEH for problems 

with 0.001 ≤ λ≤ 0.05.  

 

For the iterative algorithms such as RNDSA, RNDTS, and RNDGA, it is 

found that they can improve the quality of the solution of the constructive and fast 

improvement algorithms such as ILPT, NEH, and INEH by about 40 – 70 percent.  

Similar to the large-sized problems, the SA-based algorithms certainly outperform the 

other algorithms.  

 

In particular, it can be observed that the average percentage deviation of 

algorithm RNDSA from the optimal solution for the problems with at least five jobs 

and λ ≥ 0.01 is usually less than 2% (for the problems with seven jobs and λ ≥ 0.05 

even less than 0.3%).  The higher percentage deviations for small positive λ values 

result from the peculiarities of the objective function, namely that, if the number of 

tardy jobs in the heuristic solution is only greater by one in comparison with an 

optimal solution, this may lead to a rather large percentage deviation (see e.g. 

problems with six jobs and λ = 0.001).  In addition, it is found that for small-sized 

problems, a biased initial solution for the iterative algorithm is slightly better than a 

random initial solution. 

 

5.5  The Recommended Heuristic Solution Algorithm 
 

 From the results of the performance of the algorithms stated in the previous 

sections, in this section a recommended algorithm is concluded.  According to the 

computational results, the INEHSA algorithm is recommended to find the schedule 
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solution for the flexible flow shop scheduling problem with unrelated parallel 

machines.  It consists of four parts, namely the determination of the representatives of 

the operating time, the modified NEH algorithm, the fast improvement algorithm, and 

the SA algorithm.  The algorithm process flow for the algorithm is shown in Figure 

5.1. 

 

 The first part is the determination of the representatives of the operating time.  

Since the actual job operating times are unknown, until an assignment of jobs to 

machines for the corresponding stage has been done, the representatives of the 

operating time is necessary to determine.  The representative of operating time of job j 
at stage t is the sum of the processing time t

ij
t
j vps /  plus the representative of the 

setup time , where the representatives of relative machine speed  and setup time 

 for stage t, t = 1, … , k, use the minimum, maximum and average values of the 

data.  Thus, nine combinations of relative machine speeds and setup times will be 

used to find the best solution (see Section 4.4).  

t
ljs / t

ijv /

t
ljs /

 

 The second part is the construction of the initial schedule solution, which is 

referred to the constructive algorithm.  The modified NEH algorithm is recommended 

to construct a set of the schedules that is corresponding to the using of the nine 

combinations of the representatives of operating times.  The starting job sequence that 

gives the best schedule solution is selected from the nine possible starting job 

sequences (see Section 4.4.2.5). 

 

 The third part is the improvement algorithm that is applied on the selected 

starting job sequence from the second part.  In this part, the all pairwise interchange 

approach is applied on the starting job sequence for the jobs that are tardy.  The new 

starting job sequence that gives the best schedule solution is kept (see Section 4.5). 

 

 The final part is the iterative algorithm, where the staring job sequence that 

generated from the third part is used as the initial solution for the SA algorithm (see 

Section 4.6.1). 

 



 
 

170

 

 

Scheduling Data

Determine the representatives of operating 
times with nine combinations

Use the modified NEH algorithm

Select the starting job sequence that gives the 
best schedule

Apply the all pairwise interchange on the 
selected starting job sequence

Use the simulated annealing to improve the 
schedule solution

A good schedule solution

Are nine combinations 
of the representatives considered?

Yes

No

Representative Determination

Constructive Algorithm

Improvement Algorithm

Iterative algorithm

 
 

Figure 5.1  Flow chart of the recommended heuristic solution algorithm 

 

 



 
 

171

5.6  Conclusion 
 

In this chapter, the results of computational experiments of the heuristic 

algorithms are shown.  Firstly, for the constructive algorithms, their performances are 

compared to each other.  It is shown that arranging the jobs in the starting job 

sequence for the first stage by using the modified NEH algorithm is an excellent 

constructive algorithm for minimizing the objective function considered.  

Consequently, the NEH algorithm is most superior to the other constructive 

algorithms.  

 

To improve the solutions obtained by the constructive algorithms, polynomial 

heuristic improvement algorithms based on shift moves and pairwise interchanges of 

jobs are applied.  When applying a fast polynomial improvement algorithm, it is 

found that the all-pairwise-interchange approach is a good improvement algorithm.  In 

addition, the INEH algorithm also provides the best solution. 

 

Next, the performance of the parameters of the iterative algorithms is 

presented.  For the SA parameters, i.e. initial temperatures, neighborhood structures, 

and cooling schedules, it is found that a low initial temperature is slightly preferable 

(two for λ < 0.5 and ten otherwise are recommended).  The neighborhood structures 

are based on pairwise interchanges for λ = 0 and on shifts of jobs otherwise.  The 

Lundy and Mees cooling scheme, Tnew = Told/(1+β×Told), is recommended. 

 

For the TS parameters, i.e. neighborhood structures, size of the tabu list, and 

the number of generated neighbors per iteration, the pairwise interchange 

neighborhood is better for λ < 0.005, whereas the shift neighborhood becomes better 

otherwise.  A tabu list size of 10 and the generation of a constant number of 20 

nontabu neighbors in each iteration are good choices.  

 

For the GA parameters, it is found that the OPX crossover is clearly superior 

to the PMX crossover, whereas the SM neighborhood is selected as the mutation 
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operator for problems with λ ≥ 0.01, and the PI neighborhood otherwise is 

recommended.  The algorithm is fixed the crossover and mutation rates at 0.6 and 0.3, 

respectively.  

 

For the recommended SA, TS, and GA parameters, the performance of these 

algorithms RNDSA, RNDTA, and RNDGA is investigated.  It is found that the 

RNDSA algorithm outperforms the other algorithms.  Then, the influence of the initial 

solution on these algorithms is studied.  The results have shown that the SA-based 

algorithms are still good algorithms.  However, among the SA-, TS- and GA- based 

algorithms, the NEH and INEH rules are a good choice of an initial solution in 

general.   

 

Finally, the INEHSA algorithm is recommended as the heuristic solution 

algorithm for the problem under consideration, where it consists of four parts, namely 

the creation of the representatives of the operating time, the modified NEH algorithm, 

the fast improvement algorithm, and the SA algorithm. 

 



CHAPTER VI 
 

CONCLUSION AND FUTURE RESEARCH 
 

Scheduling is the allocation of available and limited production resources to 

perform a number of jobs over time and to meet certain objectives while respecting a 

set of constraints (Baker, 1974; Pinedo, 1995; Pinedo and Chao, 1999).  The aims of 

this dissertation is to formulate a mathematical model and to develop approximate 

algorithms to solve the scheduling problem in the flexible flow shop environment 

with unrelated parallel machines and sequence-dependent setup times in order to 

minimize the makespan and the number of tardy jobs.  In this chapter, conclusion is 

presented in the first section.  Then, future research is discussed in the next section. 

 

6.1  Conclusion 
 

The dissertation problem is the job scheduling problem in a flexible flow shop 

environment (see Chapter I).  The flexible flow shop environment consists of many 

production stages in series, where jobs have to undergo multiple operations in the 

same order.  However, at least one stage consists of a number of machines in parallel, 

so jobs have to be processed on any one of the parallel machines in the stage.  In 

addition, processing times to perform a job on each machine in the stage are different.  

They depend on the jobs and the machines (referred to as unrelated parallel 

machines).  Moreover, setup times are considered in the problem.  The sequence-

dependent setup time is the setup duration that depends on the current job and the 

immediately proceeding job, whereas the machine-dependent setup time is the setup 

duration that depends on the current job and the machine that the job is processed.  

The machine-dependent setup is the sequence-dependent setup that occurs between 

the last job in the previous planning period and the first job in the current planning 

period on the same machine.  Moreover, due to the unfinished jobs of the previous 

planning period, the machines are reserved for processing the unfinished jobs without 

rescheduling.  All data are assumed to be known and constant.  The scheduling 
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problem has dual objectives, namely minimizing the makespan and minimizing the 

number of tardy jobs.   

 

The brief review of machine environments for scheduling problem is 

presented in Chapter II.  The related survey of the problem under consideration is 

provided.  It was found that most literature has studied the flexible flow shop problem 

with identical parallel machines since 1973 to 2006.  Few researchers consider the 

flexible flow shop with non-identical parallel machines; for example, Soewandi and 

Elmaghraby (2003) consider the two-stage flexible flow shop with uniform parallel 

machines, and Low (2005) and Kyparisis and Koulamas (2006) consider the multi 

stage flexible flow shop with unrelated parallel machines.  For the literature in 2007 

and 2008, researchers tend to study the flexible flow shop with unrelated parallel 

machines, see Jenabi et al. (2007), Low et al. (2008), and Ruiz et al. (2008). 

 

A 0-1 mixed integer program formulation is provided in Chapter III.  It 

considers three main conditions, namely unrelated parallel machines, sequence-

dependent setup time between jobs, and machine-dependent setup time of a job.  The 

optimal solution can be obtained by running the commercial mathematical 

programming software, CPLEX 8.0.0 and AMPL.  It is found that the mathematical 

model can be used for solving the problems with up to six jobs and four stages in 

acceptable time.  This observation is similar to the recommendations from previous 

research by Lee and Asllani (2004) in that they have recommended that the 0-1 

mathematical programming is practical for the scheduling problem where the number 

of jobs is lesser than five jobs.  In addition, the total number of possible sequence 

combinations that is generated by using a complete enumeration is estimated.  It is 

concluded that the total number of possible sequence combinations is so large when 

the number of jobs and/or number of machines per stage and/or number of stages 

increases.  Attempts to find all solutions are unsuccessful as they require too much 

CPU time.  Thus, it is hard to find the optimal solution or even best solution by using 

either a complete enumeration or a mathematical model.   
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The main limitation of the exact solution approach is the high memory 

consumption of finding the optimal solution, so the heuristic approach to find the 

good solution is suggested as the preferred approach.  The proposed heuristic solution 

concepts consist of three main kinds of the heuristic algorithms, which are the 

constructive, improvement, and iterative algorithms (see Chapter IV).   

 

The schedule construction approach is firstly proposed to evaluate the 

performance of the schedule and to evaluate the fitness of the solution in each 

iteration of the iterative algorithms.  It is based on the idea of Santos et al. (1996).  It 

starts with a starting job sequence.  The stages are scheduled separately.  Considering 

the jobs in the order of the starting job sequence, each job is loaded on the machine 

with the minimum completion time in the first considered production stage (referred 

to as a greedy search approach).  Then the approach uses the particular rules (i.e. the 

First-In-First-Out rule and the permutation rule) to generate a new job sequence for 

the next production stage.  Again, considering the jobs in the new job sequence, each 

job is loaded on the machine with the minimum completion time in the next 

considered production stage.  Repeat the steps of the approach until all production 

stages are considered (see Section 4.3). 

 

The constructive algorithms described in Section 4.4 are proposed for 

determining the starting job sequence for the first stage for the problem.  They start 

with finding the representatives of the operation time for each operation.  Then, they 

use the representatives of the operation times to find a starting job sequence for the 

first stage by using some algorithms and follow with the proposed schedule 

construction approach to find the schedule result.  Both dispatching rules (i.e. the SPT, 

LPT, ERD, EDD, MST, and S/P rules) and flow shop makespan heuristics (i.e. the 

PAL, CDS, GUP, DAN, and NEH) are used to find a starting job sequence for the 

first stage. 

 

The computational performance of each constructive algorithm is compared to 

each other.  It is shown that arranging the jobs in the starting job sequence for the first 
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stage by using the modified NEH algorithm is an excellent constructive algorithm for 

minimizing the objective function considered.   

 

Next, to improve the solutions obtained by the constructive algorithms, 

polynomial heuristic improvement algorithms based on shift moves and pairwise 

interchanges of jobs are applied (see Section 4.5).  

 

 When applying a fast polynomial improvement algorithm, it is found that the 

all-pairwise-interchange approach is good for the neighborhood exchanges in the 

improvement algorithms.  It can improve the quality of a particular constructive 

solution by about 60 – 80 percent. 

 

Next, the iterative algorithms, namely simulated annealing, tabu search, and 

genetic algorithms, are developed in Section 4.6.  The parameter testing for the 

iterative algorithms is first conducted.   For, the SA parameters, i.e. initial 

temperatures, neighborhood structures, and cooling schedules, it is found that a low 

initial temperature is slightly preferable (it recommends two for λ < 0.5, and ten 

otherwise).  The neighborhood structures should be based on pairwise interchanges 

for λ = 0, and on shifts of jobs otherwise.  The Lundy and Mees cooling scheme, Tnew 

= Told/(1+β×Told),  is recommended.   

 

For the TS algorithm, the TS parameters, i.e. neighborhood structures, size of 

the tabu list, and the number of generated neighbors per iteration, are tested.  Similar 

to the SA algorithm, the pairwise interchange neighborhood is better for λ < 0.005, 

whereas the shift neighborhood becomes better otherwise.  It can recommend a tabu 

list size of 10 and the generation of a constant number of 20 nontabu neighbors in 

each iteration.  

 

For the GA algorithm, it is found that the OPX crossover is clearly superior to 

the PMX crossover, whereas it recommends that the SM neighborhood should be 
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selected as the mutation operator for problems with λ ≥ 0.01, and the PI neighborhood 

otherwise.  The crossover and mutation rates at 0.6 and 0.3 are better.  

 

For the recommended SA, TS, and GA parameters, the performance of these 

algorithms RNDSA, RNDTA, and RNDGA, where an initial solution is randomly 

generated, are tested.  It is found that the RNDSA algorithm outperforms the other 

algorithms.  

 

Then, the influence of using the initial solution on these algorithms is studied 

(see Section 4.7).  The results have shown that the SA-based algorithms are still good 

algorithms.  However, among the SA-, TS- and GA- based algorithms, the NEH and 

INEH rules are a good choice of an initial solution for such algorithms in general.   

 

Finally, the INEHSA algorithm is recommended as the heuristic solution 

algorithm for the problem under consideration, where it consists of four parts, namely 

the determination of the representatives of the operating time, the modified NEH 

algorithm, the fast improvement algorithm, and the SA algorithm.  The first part is to 

determine the representatives of the operating times, since the actual job operating 

times are unknown until an assignment of jobs to machines for the corresponding 

stage has been done.  The second part is the construction of the initial schedule 

solution, which is referred to the modified NEH approach.  The modified NEH 

approach is applied for arranging the jobs in the starting job sequence and uses the 

schedule construction approach to construct the initial schedule output.  The third part 

is the improvement algorithm that is applied on the selected starting job sequence 

from the second part.  The all-pairwise-interchange approach is applied on the starting 

job sequence for the jobs that are tardy.  The new starting job sequence that gives the 

best schedule solution is kept.  The final part applies the simulated annealing 

algorithm, where the staring job sequence that is generated from the third part is used 

as the initial solution for the SA algorithm. 

 

The research summary of this dissertation is depicted in Figure 6.1. 
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Figure 6.1 Research summary 
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Figure 6.1 Research summary (cont.)  

 

 



 
 

180

6.2  Future Research 
 

 This dissertation has studied a flexible flow shop problem with unrelated 

parallel machines and sequence-dependent setup times.  The primary contributions of 

this dissertation are as follows: 

 

1. To develop a mathematical model that extends the flexible flow shop 

problem with identical parallel machines to cope with the flexible flow 

shop problem with unrelated parallel machines which is common to 

encounter in the real-world situation, and 

2. To investigate heuristic algorithms for the flexible flow shop problem with 

unrelated parallel machines. These algorithms generalize existing 

procedures from the literature.  Moreover, while in the literature for flow 

shop problems only one optimization criterion is used, this dissertation 

uses a bicriteria problem.  New results are e.g. the combination of 

makespan heuristics with fast polynomial iterative algorithms so that for 

the generation of the initial solution both criteria are used.  Within the 

individual algorithms new components have been suggested (e.g. 

crossover operators for the genetic algorithms, the schedule construction 

algorithm, the suggested treatment of the operating times, etc.).  

 

However, the proposed algorithms in this dissertation only determine a 

starting job sequence as an initial seed for the first stage and use the fixed rules (i.e. 

either FIFO or permutation rules) to find the new job sequence for the next stage.  

Then, they use the particular approach to assign the jobs to the machines in each 

stage.  Consequently, heuristics that use the different stage sequencing orders will be 

studied to increase the solution quality further. In addition, the procedure for fixing 

the processing and setup times as well as the relative speeds in the constructive 

algorithms can be refined further. 
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Even though most studies including this dissertation have developed the model 

to solve the flexible flow shop problem, such a problem remains largely unsolved.  

The progress in scheduling theory, while advancing at a rapid pace, is not appreciable 

to solve practical flexible flowshop scheduling problems optimally and efficiently.   

Moreover, it lacks of integrative and interactive decision making in the business 

practices.  Consequently, it is suggested that the gap between the development of 

theory and practical applications of theory intend to be bridged.  Three areas of future 

research are suggested: theoretical, computational, and empirical research. 

 

6.2.1  Theoretical Research 
 

  The mixed integer programming (MIP) optimization has limited 

operational capability.  However, although the size of most industrial problems 

exceeds the capability of the proposed model, it can be beneficial to researchers for 

testing the performance of heuristics designed for multi-criteria problems.  Further 

research in this area is required to develop more efficient computer codes so that the 

model is able to be applied to slightly or even much larger scheduling problems.   

 

  Although the mathematical model can easily provide an optimal 

solution, it becomes too complex to be used for large scheduling problems.  Solving 

larger instances of the scheduling problems using a commercial solver would be a 

challenge.  Techniques such as branch-and-price (branch-and-bound plus column 

generation) and branch-and-cut (branch-and-bound plus row generation) may be 

developed to solve larger instances, that is, theoretical research in a flexible flow shop 

scheduling problem should attempt to develop a polynomial bounded algorithm to 

reject quickly a large number of inefficient partial schedules to curtail enumeration 

scheme. 

 

Moreover, from the results of the numerical examples it is seen that 

there are usually different optimal solutions for each criterion.  Thus, to select an 
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appropriate criterion is necessary for making the decision.  Perhaps, it is worth using a 

multi-objective function to choose an optimal schedule considering different goals. 

  

  Simultaneously, more quick but reliable heuristic algorithms should be 

developed.  For example, it can be done to use other iterative algorithms such as ant 

colony algorithms.  The choice of good parameters for them should be tested.  In 

addition, the influence of the starting solution should be investigated.   

 

  Consideration of hybrid algorithms for the flexible flow shop problem 

provides other fruitful areas for future theoretical research; for instance, hybrid 

algorithms should be developed by using a local search algorithm within a GA 

approach.  This means that, after generating an offspring, this solution should be 

improved by applying for instance tabu search or simulated annealing before applying 

the selection criterion of the GA approach. 

 

6.2.2  Computational Research 
 

  It is difficult to select an algorithm in solving a given flexible flow 

shop problem.  The future computational research should consider such aspects as 

comparative efficiency of a wide range of algorithms for a specified problem with 

given data.  Consequently, new measures of computational effort should be 

developed.  In addition, it is possible to use artificial intelligence techniques, such as 

neural networks, to select a good specific heuristic to be used for a given flexible flow 

shop problem (Gupta, Sexton, and Tunc, 2000). 

 

6.2.3  Empirical Research 
 

  The mathematical theory of flexible flow shop scheduling suffers from 

too much abstraction and too little application.  Consequently, it seems to be 

motivated by how the practical research of flexible flow shop can be used.  Despite a 

few decade of research, the practical use of flexible flow shop is rare.  Perhaps, future 
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research in flexible flow shop scheduling should be inspired more by real life 

problems rather than problems encountered in mathematical abstractions. 

 

  For a realistic problem formulation, empirical research is necessary to 

understand the practical situations.  The flexible flowshop scheduling is only one of a 

few areas where no case histories are available.  Empirical research should answer 

such questions as (Gupta and Stafford, 2006):  

 

1. What is the maximum problem size encountered in practice?  

2. What specific situations give rise to flowshop scheduling 

problems?  

3. What are the desired objectives of scheduling?  

4. What is the nature of processing times?  

5. How rigid (or flexible) are the operating policies?  

 

  Moreover, for heuristic algorithms, although the scheduling problems 

are tested on a wide range of heuristic algorithms, it is necessary to obtain the 

industrial data to further validate performance. 
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