

Throughout this research, let \mathbf{Z} and \mathbf{Z}_{m} for a positive integer \boldsymbol{m} denote the ring of integers and the ring of integers modulo m, respectively, and let each element of \boldsymbol{Z}_{m} be donoted by $\overline{\boldsymbol{a}}$. where $a \in \mathbf{Z}$.

For a ring R and a positive integer n, let $M_{n}(R)$ denote the full $n \times n$ matrix ring over R, that is, $M_{n}(R)$ is the ring of all $n \times n$ matrices over R under the usual addition and multiplication of matrices, and for $A \in M_{n}(R)$ and $i, j \in\{1,2, \ldots, n\}$, let $A_{i j}$ denote the element of A in $i t h$ row and $j^{\text {th }}$ column. Let the zero matrix in $M_{n}(R)$ be denoted by $[0]_{n \times n}$.

A ring R is said to be regular if for every $a \in R$, there exists $x \in R$ such that $a=a x a$.

Let R be a ring.
For subsets A and B of R, let $A B$ denote the set of all finite sums of the form $\sum_{i=1}^{n} a_{i} b_{i}$ where $a_{i} \in A$ and $b_{i} \in B$. An additive subgroup Q of R is said to be a quasi-ideal of R if $R Q \cap Q R \subseteq Q$. A quasi-ideal Q of R is said to have the intersection property if there exist a left ideal H and a right ideal K of R such that $Q=H \cap K$. If each quasi-ideal of R has the intersection property, we say that R has the intersection property of quasi-ideals.

We observe that the following statements hold.
(1) If Q is an additive subgroup of R, then $R Q$ and $Q R$ are a left ideal and a right ideal of R, respectively.
(2) If Q is an additive subgroup of R such that $Q=R Q \cap Q R$, then Q is a quasi-ideal of R which has the intersection property.
(3) The intersection of a left and a right ideal of R is a quasi-ideal of R.
(4) Every left ideal and every right ideal of R is a quasi-ideal of R having the intersection property.
(5) If R is commutative, then every quasi-ideal of R is an ideal of R, so R has the intersection property of quasi-ideals. In particular, these facts hold in any zero ring.
(6) If R has an identity, then every quasi-ideal Q of $R, Q=R Q \cap Q R$, so R has the intersection property of quasi-ideals.
(7) Let R be a regular ring and Q a quasi-ideal of R. Then for every $a \in$ Q, there exists $x \in R$ such that $a=a x a$ which implies that $a \in R Q \cap Q R$. Thus Q $=R Q \cap Q R$. This fact is proved in [4]. Hence R has the intersection property of quasi-ideals.

Let n be a positive integer. For $i, j \in\{1,2, \ldots, n\}$, let $Q(i, j)$ be the set of all matrices $A \in M_{n}(R)$ such that $A_{k \ell}=0$ if $k \neq i$ or $\ell \neq j$, that is, $Q(i, j)$ is the set of all matrices in $M_{n}(R)$ of the form
 $n\}$.

Let $k, \ell \in\{1,2, \ldots, n\}$. For $A \in M_{n}(R)$ and $B \in Q(k, \ell)$, we have
$\ell \underline{t h}$

$$
A B=\left[\begin{array}{ccccccc}
0 & \cdots & 0 & A_{1 k} B_{k \ell} & 0 & \cdots & 0 \\
0 & \cdots & 0 & A_{2 k} B_{k \ell} & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & A_{n k} B_{k \ell} & 0 & \cdots & 0
\end{array}\right]
$$

and

$$
B A=\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 \\
B_{k \ell} A_{\ell 1} & B_{k \ell} A_{\ell 2} & \cdots & B_{k \ell} A_{\ell n} \\
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0
\end{array}\right] k \underline{h} .
$$

Then each element of $M_{n}(R) Q(k, \ell)$ and each element of $Q(k, \ell) M_{n}(R)$ are of the forms

$$
\left[\begin{array}{ccccccc}
0 & \cdots & 0 & x_{1 \ell} & 0 & \cdots & 0 \\
0 & \cdots & 0 & x_{2 \ell} & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & x_{n \ell} & 0 & \cdots & 0
\end{array}\right] \text { and }\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 \\
y_{k 1} & y_{k 2} & \cdots & y_{k n} \\
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0
\end{array}\right] k \text {, }
$$

respectively where $x_{1 \ell}, x_{2 \ell}, \ldots, x_{n \ell}, y_{k 1}, y_{k 2}, \ldots, y_{k \ell} \in R$. It follows that every element of $M_{n}(R) Q(k, \ell) \cap Q(k, \ell) M_{n}(R)$ is of the form

$$
\begin{aligned}
& \text { <th } \\
& k k^{\text {dh }}\left[\begin{array}{ccccccc}
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & \cdots & 0 & z_{k \ell} & 0 & \cdots & 0 \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}\right]
\end{aligned}
$$

where $z_{k \ell} \in R$. Hence $M_{n}(R) Q(k, \ell) \cap Q(k, \ell) M_{n}(R) \subseteq Q(k, \ell)$.
Next, we shall show that $Q(k, \ell)$ is neither a left ideal nor a right ideal if R is not a zero ring and $n \geq 2$. Assume that R is not a zero ring and $n \geq 2$. Then there exist $a, b \in R$ such that $a b \neq 0$. Let $A, B, C, D \in M_{n}(R)$ be defined by
$\ell \underline{t h}$
$A=\left[\begin{array}{ccccccc}0 & \cdots & 0 & a & 0 & \cdots & 0 \\ 0 & \cdots & 0 & a & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & a & 0 & \cdots & 0\end{array}\right], B=\left[\begin{array}{ccccccc}0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & b & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0\end{array}\right] k^{\underline{k} h}$,
$C=\left[\begin{array}{ccccccc}0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 9 & 0 & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & a & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0\end{array}\right]$ and $D=\left[\begin{array}{cccc}0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \\ b & b & \cdots & b \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0\end{array}\right]$ eth.
Then $B, C \in Q(k, \ell)$ and
$A B=\left[\begin{array}{ccccccc}0 & \cdots & 0 & a b & 0 & \cdots & 0 \\ 0 & \cdots & 0 & a b & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & a b & 0 & \cdots & 0\end{array}\right]$ and $C D=\left[\begin{array}{cccc}0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \\ a b & a b & \cdots & a b \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0\end{array}\right] k \underline{h}$
which do not belong to $Q(k, \ell)$ since $a b \neq 0$. Hence $Q(k, \ell)$ is neither a left ideal nor a right ideal of $M_{n}(R)$.

From the above proof and the fact that a matrix ring over a zero ring is a zero ring, the following proposition is obtained.

Proposition 1.1. Let R be a ring, n a positive integer and $n \geq 2$. Then the following statements are equivalent.
(1) R is not a zero ring.
(2) There exists a quasi-ideal of $M_{n}(R)$ which is neither a left ideal nor a right ideal.

An example which shows that not every quasi-ideal of an arbitrary ring has the intersection property can be seen in [2].

The following theorem is well-known.

Theorem 1.2. ([1]) For every ring R and a positive integer $n, M_{n}(R)$ is regular if and only if R is regular.

The following theorem gives necessary and sufficient conditions for a quasi-ideal of a ring to have the intersection property. It was given in [5]. This theorem is a main tool of the next theorem.

Theorem 1.3. ([5]) Let Q be a quasi-ideal of a ring R. Then the following statements are equivalent.
(1) Q has the intersection property.
(2) $(R Q+Q) \cap(Q R+Q)=Q$.
(3) $R Q \cap(Q R+Q) \subseteq Q$.
(4) $Q R \cap(R Q+Q) \subseteq Q$.

The following result given in [2] is a main tool of our research.

Theorem 1.4. ([2]) Let R be a ring. Then R has the intersection property of quasi-ideals if and only if for any finite subset X of R,

$$
R X \cap(Z X+X R) \subseteq \mathbb{Z} X+(R X \cap X R)
$$

We know that in a semigroup S, if e is a left identity of S and f is a right identity of S, then $e=f$. This implies that if a ring R has more than one left [right] identity, then R has no right [left] identity.

The following theorem is obtained from [4].

Theorem 1.5. ([4]) If a ring R has a left identity or a right identity, then R has the intersection property of quasi-ideals.

We give the next proposition as an application of Theorem 1.5.

Proposition 1.6. Let R be a ring with identity $1,|R|>1, n$ a positive integer and $n>1$. For $i \in\{1,2, \ldots, n\}$, let $R(i)$ denote the subring of $M_{n}(R)$ consisting of all matrices $A \in M_{n}(R)$ such that $A_{k j}=0$ for all $k, j \in\{1,2, \ldots$, $n\}$ and $k \neq i$, that is, $R(i)$ is the subring of all matrices in $M_{n}(R)$ of the form

$$
i \underline{\underline{h}}\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 \\
a_{i 1} & a_{i 2} & \cdots & a_{i n} \\
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

where $a_{i 1}, a_{i 2}, \ldots, a_{i n} \in R$. For $j \in\{1,2, \ldots, n\}$, let $C(j)$ denote the subring of $M_{n}(R)$ consisting of all matrices $A \in M_{n}(R)$ such that $A_{i k}=0$ for all $i, k \in\{1,2$, $\ldots, n\}$ and $k \neq j$, that is, $C(j)$ is the subring of all matrices in $M_{n}(R)$ of the form

$$
\left[\right]
$$

where $a_{1 j}, a_{2 j}, \ldots, a_{n j} \in R$.
Then the following statements hold.
(1) For $i \in\{1,2, \ldots, n\}$, (1.1) if $A \in R(i)$ is such that $A_{i i}=1$, then A is a left identity of $R(i)$, (1.2) $R(i)$ has no rightidentity and (1.3) $R(i)$ has the intersection property of quasi-ideals.
(2) For $j \in\{1,2, \ldots, n\}$, (2.1) if $A \in C(j)$ is such that $A_{i j}=1$, then A is a right identity of $C(j)$, (2.2) $C(j)$ has no left identity and (2.3) $C(j)$ has the intersection property of quasi-ideals.

Proof. (1) Let $k \in\{1,2, \ldots, n\}$. If $A \in R(k)$ is such that $A_{k k}=1$, then A is a left identity of $R(k)$ since for $B \in R(k)$,

$$
\begin{aligned}
A B & =\left[\begin{array}{ccccccc}
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
A_{k 1} & \cdots & A_{k, k-1} & 1 & A_{k, k+1} & \cdots & A_{k n} \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 \\
B_{k 1} & B_{k 2} & \cdots & B_{k n} \\
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0
\end{array}\right] k k^{1 h} \\
& =\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 \\
B_{k 1} & B_{k 2} & \cdots & B_{k n} \\
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0
\end{array}\right] k k_{k}=B .
\end{aligned}
$$

Then (1.1) is proved. Since $|R|>1$ and $n \geq 2, R(k)$ has more than one left identity which implies that $R(k)$ has no right identity. Then (1.2) holds. By Theorem $1.5, R(k)$ has the intersection property of quasi-ideals. Then we have (1.3).
(2) Let $\ell \in\{1,2, \ldots, n\}$. If $A \in C(\ell)$ is such that $A_{\ell \ell}=1$, then A is a right identity of $C(\ell)$ since for $B \in C(\ell)$,

\[

\]

Then (2.1) is proved. Since $|R|>1$ and $n \geq 2, C(\ell)$ has more than one right identity which implies that $C(\ell)$ has no left identity. Then (2.2) holds. By Theorem $1.5, C(\ell)$ has the intersection property of quasi-ideals. Then we have (2.3).

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณโมหาวัทยาล่ย }
\end{gathered}
$$

