

PRELIMINARIES AND SOME REMARKS

Throughout this research, let \mathbb{Z} and \mathbb{Z}_m for a positive integer m denote the ring of integers and the ring of integers modulo m, respectively, and let each element of \mathbb{Z}_m be donoted by \overline{a} where $a \in \mathbb{Z}$.

For a ring R and a positive integer n, let $M_n(R)$ denote the full $n \times n$ matrix ring over R, that is, $M_n(R)$ is the ring of all $n \times n$ matrices over R under the usual addition and multiplication of matrices, and for $A \in M_n(R)$ and $i, j \in \{1, 2, ..., n\}$, let A_{ij} denote the element of A in ith row and jth column. Let the zero matrix in $M_n(R)$ be denoted by $[0]_{n \times n}$.

A ring R is said to be regular if for every $a \in R$, there exists $x \in R$ such that a = axa.

Let R be a ring.

For subsets A and B of R, let AB denote the set of all finite sums of the form $\sum_{i=1}^{n} a_i b_i$ where $a_i \in A$ and $b_i \in B$. An additive subgroup Q of R is said to be a quasi-ideal of R if $RQ \cap QR \subseteq Q$. A quasi-ideal Q of R is said to have the intersection property if there exist a left ideal H and a right ideal K of R such that $Q = H \cap K$. If each quasi-ideal of R has the intersection property, we say that R has the intersection property of quasi-ideals.

We observe that the following statements hold.

- (1) If Q is an additive subgroup of R, then RQ and QR are a left ideal and a right ideal of R, respectively.
- (2) If Q is an additive subgroup of R such that $Q = RQ \cap QR$, then Q is a quasi-ideal of R which has the intersection property.

- (3) The intersection of a left and a right ideal of R is a quasi-ideal of R.
- (4) Every left ideal and every right ideal of R is a quasi-ideal of R having the intersection property.
- (5) If R is commutative, then every quasi-ideal of R is an ideal of R, so R has the intersection property of quasi-ideals. In particular, these facts hold in any zero ring.
- (6) If R has an identity, then every quasi-ideal Q of R, $Q = RQ \cap QR$, so R has the intersection property of quasi-ideals.
- (7) Let R be a regular ring and Q a quasi-ideal of R. Then for every $a \in Q$, there exists $x \in R$ such that a = axa which implies that $a \in RQ \cap QR$. Thus $Q = RQ \cap QR$. This fact is proved in [4]. Hence R has the intersection property of quasi-ideals.

Let *n* be a positive integer. For $i, j \in \{1, 2, ..., n\}$, let Q(i, j) be the set of all matrices $A \in M_n(R)$ such that $A_{k\ell} = 0$ if $k \neq i$ or $\ell \neq j$, that is, Q(i, j) is the set of all matrices in $M_n(R)$ of the form

$$\begin{array}{c}
j!h \\
0 \cdots 0 0 0 \cdots 0 \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
0 \cdots 0 0 0 \cdots 0 \\
0 \cdots 0 a 0 \cdots 0 \\
0 \cdots 0 0 \cdots 0 \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
0 \cdots 0 0 0 \cdots 0
\end{array}$$

where $a \in R$. Then Q(i,j) is an additive subgroup of $M_n(R)$ for all $i, j \in \{1, 2, ..., n\}$.

Let $k, \ell \in \{1, 2, ..., n\}$. For $A \in M_n(R)$ and $B \in Q(k, \ell)$, we have

$$AB = \begin{bmatrix} 0 & \cdots & 0 & A_{1k}B_{k\ell} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & A_{2k}B_{k\ell} & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & A_{nk}B_{k\ell} & 0 & \cdots & 0 \end{bmatrix}$$

and

$$BA = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \\ B_{k\ell}A_{\ell 1} & B_{k\ell}A_{\ell 2} & \cdots & B_{k\ell}A_{\ell n} \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} k^{th}.$$

Then each element of $M_n(R)Q(k, \ell)$ and each element of $Q(k, \ell)M_n(R)$ are of the forms

$$\begin{bmatrix} 0 & \cdots & 0 & x_{1\ell} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & x_{2\ell} & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & x_{n\ell} & 0 & \cdots & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} kth,$$

respectively where $x_{1\ell}$, $x_{2\ell}$, ..., $x_{n\ell}$, y_{k1} , y_{k2} , ..., $y_{k\ell} \in R$. It follows that every element of $M_n(R)Q(k,\ell) \cap Q(k,\ell)M_n(R)$ is of the form

$$kth \begin{bmatrix} 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & z_{k\ell} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

where $z_{k\ell} \in R$. Hence $M_n(R)Q(k,\ell) \cap Q(k,\ell)M_n(R) \subseteq Q(k,\ell)$.

Next, we shall show that $Q(k, \ell)$ is neither a left ideal nor a right ideal if R is not a zero ring and $n \ge 2$. Assume that R is not a zero ring and $n \ge 2$. Then there exist $a, b \in R$ such that $ab \neq 0$. Let $A, B, C, D \in M_n(R)$ be defined by

$$A = \begin{bmatrix} 0 & \cdots & 0 & a & 0 & \cdots & 0 \\ 0 & \cdots & 0 & a & 0 & \cdots & 0 \\ 0 & \cdots & 0 & a & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} k^{th},$$

$$C = \begin{bmatrix} 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & a & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} k^{\underline{th}} \quad \text{and} \quad D = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \ell^{\underline{th}}.$$
Then $B, C \in O(k, \ell)$ and

Then $B, C \in Q(k, \ell)$ and

$$AB = \begin{bmatrix} 0 & \cdots & 0 & ab & 0 & \cdots & 0 \\ 0 & \cdots & 0 & ab & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & ab & 0 & \cdots & 0 \end{bmatrix} \text{ and } CD = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \\ ab & ab & \cdots & ab \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} k^{th}$$

which do not belong to $Q(k, \ell)$ since $ab \neq 0$. Hence $Q(k, \ell)$ is neither a left ideal nor a right ideal of $M_n(R)$.

From the above proof and the fact that a matrix ring over a zero ring is a zero ring, the following proposition is obtained.

Proposition 1.1. Let R be a ring, n a positive integer and $n \ge 2$. Then the following statements are equivalent.

- (1) R is not a zero ring.
- (2) There exists a quasi-ideal of $M_n(R)$ which is neither a left ideal nor a right ideal.

An example which shows that not every quasi-ideal of an arbitrary ring has the intersection property can be seen in [2].

The following theorem is well-known.

Theorem 1.2. ([1]) For every ring R and a positive integer n, $M_n(R)$ is regular if and only if R is regular.

The following theorem gives necessary and sufficient conditions for a quasi-ideal of a ring to have the intersection property. It was given in [5]. This theorem is a main tool of the next theorem.

Theorem 1.3. ([5]) Let Q be a quasi-ideal of a ring R. Then the following statements are equivalent.

- (1) Q has the intersection property.
- $(2) (RQ+Q) \cap (QR+Q) = Q.$
- (3) $RQ \cap (QR + Q) \subseteq Q$.
- (4) $QR \cap (RQ + Q) \subseteq Q$.

The following result given in [2] is a main tool of our research.

Theorem 1.4. ([2]) Let R be a ring. Then R has the intersection property of quasi-ideals if and only if for any finite subset X of R,

$$RX \cap (\mathbb{Z}X + XR) \subseteq \mathbb{Z}X + (RX \cap XR).$$

We know that in a semigroup S, if e is a left identity of S and f is a right identity of S, then e = f. This implies that if a ring R has more than one left [right] identity, then R has no right [left] identity.

The following theorem is obtained from [4].

Theorem 1.5. ([4]) If a ring R has a left identity or a right identity, then R has the intersection property of quasi-ideals.

We give the next proposition as an application of Theorem 1.5.

Proposition 1.6. Let R be a ring with identity 1, |R| > 1, n a positive integer and n > 1. For $i \in \{1, 2, ..., n\}$, let R(i) denote the subring of $M_n(R)$ consisting of all matrices $A \in M_n(R)$ such that $A_{kj} = 0$ for all $k, j \in \{1, 2, ..., n\}$ and $k \neq i$, that is, R(i) is the subring of all matrices in $M_n(R)$ of the form

$$i^{th}$$

$$\begin{bmatrix}
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 \\
a_{i1} & a_{i2} & \cdots & a_{in} \\
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0
\end{bmatrix}$$

where a_{i1} , a_{i2} , ..., $a_{in} \in R$. For $j \in \{1, 2, ..., n\}$, let C(j) denote the subring of $M_n(R)$ consisting of all matrices $A \in M_n(R)$ such that $A_{ik} = 0$ for all $i, k \in \{1, 2, ..., n\}$ and $k \neq j$, that is, C(j) is the subring of all matrices in $M_n(R)$ of the form

$$\begin{bmatrix}
0 & \cdots & 0 & a_{1j} & 0 & \cdots & 0 \\
0 & \cdots & 0 & a_{2j} & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & a_{nj} & 0 & \cdots & 0
\end{bmatrix}$$

where a_{1j} , a_{2j} , ..., $a_{nj} \in R$.

Then the following statements hold.

- (1) For $i \in \{1, 2, ..., n\}$, (1.1) if $A \in R(i)$ is such that $A_{ii} = 1$, then A is a left identity of R(i), (1.2) R(i) has no right identity and (1.3) R(i) has the intersection property of quasi-ideals.
- (2) For $j \in \{1, 2, ..., n\}$, (2.1) if $A \in C(j)$ is such that $A_{jj} = 1$, then A is a right identity of C(j), (2.2) C(j) has no left identity and (2.3) C(j) has the intersection property of quasi-ideals.

Proof. (1) Let $k \in \{1, 2, ..., n\}$. If $A \in R(k)$ is such that $A_{kk} = 1$, then A is a left identity of R(k) since for $B \in R(k)$,

$$AB = \begin{bmatrix} 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ A_{k1} & \cdots & A_{k,k-1} & 1 & A_{k,k+1} & \cdots & A_{kn} \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ B_{k1} & B_{k2} & \cdots & B_{kn} \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \\ B_{k1} & B_{k2} & \cdots & B_{kn} \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} kth = B.$$

Then (1.1) is proved. Since |R| > 1 and $n \ge 2$, R(k) has more than one left identity which implies that R(k) has no right identity. Then (1.2) holds. By Theorem 1.5, R(k) has the intersection property of quasi-ideals. Then we have (1.3).

(2) Let $\ell \in \{1, 2, ..., n\}$. If $A \in C(\ell)$ is such that $A_{\ell\ell} = 1$, then A is a right identity of $C(\ell)$ since for $B \in C(\ell)$,

$$BA = \begin{bmatrix} 0 & \cdots & 0 & B_{1\ell} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & B_{2\ell} & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & B_{n\ell} & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} 0 & \cdots & 0 & A_{1\ell} & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & A_{\ell-1,\ell} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & A_{\ell+1,\ell} & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & A_{n\ell} & 0 & \cdots & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \cdots & 0 & B_{1\ell} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & B_{2\ell} & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & B_{n\ell} & 0 & \cdots & 0 \end{bmatrix} = B.$$

Then (2.1) is proved. Since |R| > 1 and $n \ge 2$, $C(\ell)$ has more than one right identity which implies that $C(\ell)$ has no left identity. Then (2.2) holds. By Theorem 1.5, $C(\ell)$ has the intersection property of quasi-ideals. Then we have (2.3).

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย