CHAPTER 3

THEORETICAL BACKGROUND

Computer simulation plays an important roie in science today. In the past,
physical sciences were catalyzed by the interplay between experiment and theory. In
experiment, we measure a system and then obtain some results in numeric form. In
theory, we construct a model in a form of a set of mathematical equations. Then we
validate the model to describe the system behavior in a few selected cases, simple enough
to aliow a solution to be computed from the equations. In many cases, this implies a
considerable amount of simplification in order to eliminate all the complexities invariably
associated with real world problems, and make the problem solvable. |

In the past, only some of physical models could be easily tested by some
approximations in the calculation. Others, such as the molecules involving a large amount
of degree of freedom, the disordered systems and the systems that require accurate
treatment of temperature effect, were difficult to test. After the adventure of high-speed
computers, the new link between experimental and theory occurred. Theorists provide the
model and the machine carries out the calculations by following the suitable algorithm. In
this way, we can introduce any complexity and investigate more realistic systems to get a
better understanding of real experiments.

The more development of computer simulation the more increase the demand for
accuracy of the models. One of the examples is molecular dynamics simulation, which
allows evaluating the melting temperature of a material, modeled by means of a certain
interaction law. This is the difficult thing to do in the past. Therefore the simulatioﬁ made
models bring to life, disclose some critical areas and provide some suggestions to
improve them. The simulation now come closer to the experiment thus some result can
sometimes be compared directly with the experimental results. So we can use simulation
as a powerful tool to understand and interpret the experiments at microscopic level.
Moreover it can be used to study any experiment which are not accessible or any

experiment which are expensive. It could be said that computer simulation is a way to do
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the experiment, which are just impossible to do in reality. Its outcome increases our
understanding of many phenomena greatly.

The basic principles of the simulation methodology designed to study structural, .
dynamical, and thermodynamic properties of biological macromolecules will be
described in this chapter. The molecular mechanics and the statistical mechanics are the
. two theoretical bases behind the study of molecular dynamics simulation in biomolecules. -
The former is utilized for describing the numerous pairs of the potential energy arising
form the interatomic interactions present in the molecules. The latter is employed for
linking the microscopic properties obtained from the former to the observable

macroscopic properties.
3.1 Energy minimization

An important method for exploring the potential energy surface is to find
configurations that are stable points on the surface [45; 48). This means finding a point in
the configuration space where the net force on each atom vanishes. By simply
minimizing the energy, stable conformations can be identified. Two first-order
minimization algorithms are frequently used in computer simulation are the method of
steepest descents and the conjugate gradient methods

3.1.1 The steepest descents method

Steepest descents performs ‘the ‘energy minimization through repeated
minimizations along the direction of the force. It uses the first derivative of the potential
energy with respect to the Cartesian coordinates. The method moves down the steepest
slope of the interatomic forces on the potential energy surface. The descent is
- accomplished by adding an increment to the coordinates in the direction of the negative
gradient of the potential energy, or the force.

This method shows reasonable convergence initially so it is commonly used when
the gradients are large and the conﬁguraﬁons are far from the minimum, which is the case

for initial relaxation of poorly refined crystallographic data or graphically built
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molecules. Each step in steepest descents requires minimal computing time. However,
there is a disadvantage of the method that the progress.becomes slow when approaching
the minimum. Thus, other minimization methods are carried out after the steepest

descents.

3.1.2 Conjugate gradients

The conjugate gradient differs from the steepest descent by using both the current
gradient (search direction) and the previous search direction to drive the minimization.

The advantage of this method is that it uses the minimization history to calculate
the search direction, so the convergence is faster than the steepest descents. It als6
contains a scaling factor for determining step size. This makes the step sizes optimal

when compared to the steepest descents.

Figure 3.1 Minimization paths for a simple energy surface: steepest descents, —

----- conjugate gradients [45].
3.2 Molecular simulation
3.2.1 Molecular mechanics

A simple model is developed in order to study the interactions in molecule in the
system, which is the stretching of bonds, the bending of angles and the rotation about the
single bonds, etc [45; 48]. The energy of a molecuie is a sum of the steric and non-
bonded interactions using force fields. Force field is the empirical method to fit the

potential energy surface. The force field defines the coordinates used, the mathematical
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form of the equations involving the coordinates, and the parameters adjusted in the
empirical fit of the potential energy surface. The force fields commonly used for
describing molecules employ a combination of internal coordinates (bond distances, bond
angles, torsions), to describe the van der Waals and electrostatic interaction between
atoms. The function forms range from simple quadratic forms to Morse functions, Fourier
expansions, Lennard-Jones potentials, etc. The goal of a force field is to describe entire
classes of molecules with reasonable accuracy. In a sense, the force field interpolates and
extrapolates from the empirical of the small set of molecules used to parameterize the
force field to a larger set of related molecules and structures.

Molecular mechanics force fields use the equations of classical mechanics to
describe the potential energy surfaces and physical properties of molecules. The
component of a force field is the energy arising from compressing and stretching the
bonds, bending the angles, rotating about the single bonds and interacting of non-bond.
One function for such a force field that can be used to show the variety of interactions,
which are important in protein interactions and seen suitable simple mathematical forms

for their representation is

Vi)=Y K (r-r) + D K, (8~6,)
bond
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where V(") denotes the potential energy which is a function of the positions r of N
particles. Each potential term in Eq.(3.1) will be described as follows.



28

ez 00

-
2 O
+% ©®)
+I @0

Figure 3.2 Pictorial representation of the terms included in a molecular mechanic
force fields [48].

3.2.1.1 Bond stretching

The potential energy curve for a typical bond has the form shown in figure 3.2.

b
1
equilibrium bopd jength

- o 1 i

O rOLERRETILAL IR
bond leagth in wtits afr-g)

Figure 3.3 Curves showing the variation of bond stretch energy with distance:

Morse potential and harnionic potential [48].

The convenient model to represent the potential energy of the diatomic molecules

is Morse Potential. The function form of the potential is

V=D, {l-e "Wy (3.2)
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where r is bond length, rp is the equilibrium bond length, D, is the potcntial energy for
bond formation and “a” a parameter controlling the width of the potential well. For large
molecules, this is still computationally expensive calculation. Thus, the standard way to
_approximate the bond stretching potential energy in protein and most other molecules is
to employ Hooke’s law:

bond = ZKr(""ro)z (3.3)
bonds

where K, is the stretchmg force constant.

From the mathematical point of view, the two functions (eq. 3.2 and 3.3) have
similar form at the potential minimum. This implies that both functions will give the
same equilibrium structures. Thus, the force field employed with this harmonic potential

is well described for the equilibrium.
3.2.1.2 Angle bending

Bond angles are treated in the same way as bond length and usually described by
a harmonic function.

Ve = 2. Ko(0=6,)" (3.4)

ongies
As before K is a bending force constant, &;the equilibrium value for the bond angle.
3.2.1.3 Torsional angles

In molecular mechanics, the dihedral potential function is often implemented as a

truncated Fourier series. This periodic function is appropriate for the torsional potential.
The standard function form for representing the potential energy for a rotational is
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Vosis = %, 21+ 003016 =7)] (3.5)

torsions

In this representative, ¥, is the rotational barrier height, n is the periodicity of rotation, ¢
is the torsion angle, and yis the phase angle shifts the curve to the left or right. (Fig.3.2).
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Figure 3.4 Variation of energy with dihedral angle [48].
3.2.1.4 Non-bonded interactions

The non-bonded interactions are distance-dependent calculated as the sum over all
atoms with a 1,4 or greater separation. It is usual to consider these interactions as having
two components: van der Waals and electrostatic. In the case of electrostatic interactions,
charges on nuclei and electrons interact according to Coulomb’s law. This interaction
provides a quantitative measurement of the influence of polarity on the energy and
structure. '

y= Y i (3.6)

coulombs £r i
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In this model of electrostatic interactions, two atoms (i and 5) have point charges
g; and g;. The magnitude of the electrostatic energy varies inversely with the distance
between the atoms, 7. The dielectric constant is given as &

van der Waals interaction can be considered as both a size parameter and a
representative of electron correlation (resulting from instantaneous dipole interactions).
The van der Waals interactions can be determined using the most common function
called 6-12 Lennard-Jones potential

Viawr = Z[ﬁ’--—ﬁ] €X)

12 6
icj | Ty fy

where 4y and By are calculated from ary'? and 2er,’ respectively, where & is the well
depth (potential energy) at 7m, and rp, is the minimum energy interaction distance. The r?
term accounts short range repulsion whereas the % term represents London dispersion-

attraction forces.

There is an additional term to be included. That is hAydrogen bonding. It is the
electrostatic interactions between groups, which carry no formal overall electrical charge.
The hydrogen bonding is vital for stability and the fundamentally importants to
biomolecular structure. This function, 10-12 Lennard-Jones potential, is used to model
the interaction between the donor hydrogen atom and the heteroatom acceptor atom. This
function is calculated to ensure correct geometries of hydrogen bonding systems. Such
force field in certain protein has the form

C D
Vvsond = [—%)-[—F) (3.8)

where Cif and Dij are hydrogen bond paramete}s for the interacting pair of atoms. The
hydrogen bonding potential given does not contribute significantly to the hydrogen
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bonding attraction between two atoms but it is rather implemented to fine-tune the

distances between these atoms.
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Figure 3.5 The van der Waals (6-12) and hydrogen bond (10-12) potentials {43].

Some non-covalent bonds i.e. hydrogen bonds, electrostatic, and Van derWaals
interactions were illustrated in figure 3.5.

3.2.2 Statistical Mechanics

To determine experimentally the value of the property of the system, such
propetrties will depend upon the positions and momenta of the N particles that comprise
the system [48]. The instantaneous value of property A can thus be written as 4@"(1),
(1)), where p"(t) and #*(?) represent the N momenta and positions respectively at time t
(.e. A" W), ' (1) =A@15 P1y D1 P2e i X1, Y1y Z1, X3, s, 1) Where py, is the momentum
of particle 1 in the x direction and x; is its coordinate. The fluctuation of the
instantaneous value of the property 4 is a result of interactions between the particles over
the times. Such experimental value, which averaged A over the time, is known as t;'me

average as follows



KK}

Ao =lim? 4" O @) (3.9

{=0

For any atoms in the system, the force, which acting on each atom due to the
interaction with other atoms, is calculated by differentiating the energy function. The
acceleration is then determined from force via Newton’s second law. The trajectory
described how the positions, velocities and accelerations of the system vary with the time
are determined using the equation (3.9).

3.2.3 Molecular dynamics

- Molecular dynamics (MD) is a computer simulation technique where the time
evolution of a set of interacting atoms, macromolecules and the surrounding solvent, is
followed by -integrating their equation of motion [45; 48]. This method provides most
exact and detail information from simulating the dyfxamics of macromolecules of

biological interest.
3.2.3.1 Equation of motion

In molecular dynamics, the motions of a system of particles (atoms) are simulated
with respect to forces. The forces, that are acting on each atom and cause the system to
change, were collected to give the collective motion of particles over time by integrating

Newton’s second law.
FJ =maq, (3-1 D

where F is the force acting on a particle, m its mass, and a its acceleration. This made the
following of the evolution of the system over time.

From equation (3.9), one can rearrange the acceleration into the second derivative
of displacement(s) with respect to time, -&°s/&, then (3.9) will be
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Solving this second order differential equation will give the dynamic behavior for every

particles of the system. Integrating (3.12) with respect to time gives

s [ F
—=|—|t+ 3.13
5t (m,] 6 . (3.13)

Initial velocity, u;, is given constant at time ¢ = 0. The expression for velocity at any time

tis

h)
E—:a,t+u, . (3.149)

Integration with respect to time produces
s, =ut+ Yaf +c, (3.15)

where the constant is the current position. Therefore the displacement can be calculated
from an initial velocity, u;, and the acceleration which can be derived from a; = F/m;.
The displacement can be expressed in truncated Taylor series, which has the form

as follows

ox 5x A
x(t+At)=xt)+| — |At+| — |—+... 3.16
This assumed that the acceleration remains constant throughout the time step 4t. The

integration algorithm was used to overcome to problem of finite time steps and truncation

CITOIS.
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3.2.3.2 Leap-frog integration algorithm ,

The leap-frog algorithm is one of the finite difference methods, which are used for
generating molecular dynamics trajectories with continuous potential models. The
‘general idea is that the integration is separated into small time, &, the total force on each
particle in the configuration at time ¢ is calculated as the sum of its interactions with other
particles. The acceleration of the particles is combined with the position and velocity at
time ¢, the positions and velocities at time ¢+4 are then calculated. The forces on the
particles in their new positions are then determined, leading to new positions and
velocities at time r+2&, and so on. The positions, velocities, and accelerations can be

approximated as Taylor series expansions

rt+8e)=r(ty+50v(0)+ %Jrza(r) +—;—5t3b(t) + Elié't‘c(t) +... (3.17)
vt +5¢) =v(t)+5ta(t) +%5:2b(r) + %5t3c(r) +.. (3.18)
aG+50=a@}HﬂM0+%5ﬁdﬂ+”. (3.19)
bt +8t)=b{t)+5tc(t) +... (3.20)

where v is the velocity (the first derivative of the positions with respect to time), a the

acceleration ( the second derivative), b the third derivative, and so on.

In leap-frog algorithm, the velocities v(t+%5 t) are first calculated from the

- . 1 . .
velocities at time £ — 56: and the accelerations at time t, where a can be calculated from

v@+%50=v0-%50+5m0) (3.21)

The new position is then given by

L
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rE+88) =r(t)+8v(t + %5:) (3.22)

3.2.3.3 Periodic Boundary Condition

In the simuiation, the imaging box is set up in order to treat the boundary effect,
which thus molecule closes to the edge of this box cannot receive all interactions for
reliable simulation. Therefore, the periodic boundary condition was set to the system,
where the system of interest is surrounded by images of itself. Furthermore, this can help
keeping constant number of molecules in the system by entering the image of the leaving

molecule.
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Figure 3.6 Periodic boundary condition in two dimensions [48}.

The key point is that now each particle i in the box should be thought as
interacting not only with other particles j, but also with their images in the nearby box.
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3.2.4 Constant pressure and constant temperature procedure
3.2.4.1 Constant temperature

Coupling to an external bath is the way to maintain the temperature [32]. The bath
acts as a thermal energy source to supply or remove heat. At each step, the velocities are
scaled such that the rate of change of temperature is proportional to the difference in
temperature between the bath and the system.

_—

1
=7 B =TO) (3.23)

where 1 is a coupling parameter whose magnitude determines how tightly the bath and
the system are coupled together. The change in temperature between successive time

steps is
AT = %(Tm -T(®)) (3.24)
The scaling factor for the velocities is thus:

2 =1+§i[zm—1J (3.25)

3.2.4.2 Constant pressure

In a macroscopic system, changing its volume is the way to maintain constant
pressure. A simulation in isothermal-isobaric ensemble also maintains constant pressure
by changing the volume of the simulation cell. So one of the methods used for pressure
control is simply the volume scaling. An alternative is to couple the system to a ‘pressure

béthf, analogous to the temperature bath [32]. The rate of change of pressure is given by
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ar(t)
dt

1
= — (P = P(1)) (3.26)
Tp
where 1p is the coupling constant, Py is the pressure of the bath, and P(t) is the actual
pressure at time t. The volume of the simulation box is scaled by the factor A, which is .
equivalent to scaling the atomic coordinates by a factor A!2, Thus

2=1-k2L(P-P.,) (3.27)

Tp
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