ฟลาโวนอยด์จากใบปาหนันขึ้แมวและแก่นหาดหนุน

นางสาว เสาวลักษณ์ ฉายวิริยะ

สถาบนวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวท คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ISBN 974-14-3487-1 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย FLAVONOIDS FROM GONIOTHALAMUS TENUIFOLIUS LEAVES AND ARTOCARPUS GOMEZIANUS HEARTWOOD

Miss Saowalak Chaiwiriya

สถาบนวทยบรการ

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy Department of Pharmacognosy Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2006 ISBN 974-14-3487-1 Copyright of Chulalongkorn University

Thesis Title	FLAVONOIDS FROM GONIOTHALAMUS TENUIFOLIUS LEAVES		
	AND ARTOCARPUS GOMEZIANUS HEARTWOOD		
Ву	Miss Saowalak Chaiwiriya		
Field of Study	Pharmacognosy		
Thesis Advisor	Associate Professor Kittisak Likhitwitayawuid, Ph.D.		
Thesis Co-Advisor	Boonchoo Sritularak, Ph.D.		

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

(Associate Professor Pornpen Pramyothin, Ph.D.)

.. Thesis Advisor

THESIS COMMITTEE

Nigrie Fungrungen Chairman

(Associate Professor Nijsiri Ruangrungsi, Ph.D.)

K. Cekhit

(Associate Professor Kittisak Likhitwitayawuid, Ph.D.)

Boonchoo Sntukarob Thesis Co-Advisor (Boonchoo Sritularak, Ph.D.)

Rutt Suttin. Member

(Associate Professor Rutt Suttisri, Ph.D.)

he Joyb compost Member

(Assistant Professor Vichien Jongboonprasert)

เสาวลักษณ์ ฉายวิริยะ: ฟลาโวนอยด์จากใบปาหนันขึ้แมวและแก่นหาดหนุน (FLAVONOIDS FROM GONIOTHALAMUS TENUIFOLIUS LEAVES AND ARTOCARPUS GOMEZIANUS HEARTWOOD) อ. ที่ปรึกษา: รศ.ดร. กิตติศักดิ์ ลิขิตวิทยาวุฒิ, อ. ที่ปรึกษา ร่วม: อ.ดร. บุญชู ศรีตุลารักษ์, 185 หน้า. ISBN 974-14-3487-1

การศึกษาทางพฤกษเคมีของใบปาหนันขี้แมว สามารถแยกสารบริสุทธิ์ในกลุ่มฟลาโวนอยด์ ได้ 2 ชนิด คือ 3,5,7,3',4'-pentamethoxyflavone และ 5,3',4'-trihydroxy-3,7-dimethoxyflavone ส่วนการศึกษาทางพฤกษเคมีของแก่นหาดหนุน สามารถแยกสารบริสุทธิ์จากสิ่งสกัดได้สาร 8 ชนิด ประกอบด้วยสารกลุ่มฟลาโวนอยด์ ชนิด คือ cycloartocarpin, 6 isocyclomorusin, norartocarpetin ซึ่งเป็นสารที่เคยมีรายงานมาก่อนและ norcycloartocarpin, artocarpin, artogomezianone ซึ่งเป็นสารที่พบครั้งแรกในธรรมชาติ, สารกลุ่ม stilbene 1 ชนิด คือ oxyresveratrol และสารกลุ่ม steroid ผสมกันคือ β-sitosterol และ stigmasterol การพิสูจน์ โครงสร้างทางเคมีของสารที่แยกได้นี้อาศัยการวิเคราะห์สเปกตรัมของ UV, IR, MS, NMR ร่วมกับ การเปรียบเทียบข้อมูลของสารที่ทราบโครงสร้างแล้ว และได้มีการทดสอบฤทธิ์ในการต้านเชื้อไวรัส herpes simplex ทั้ง type I และ II ของสารบริสุทธิ์แต่ละชนิดที่แยกได้ พบว่ามีสาร 4 ชนิด ที่มีฤทธิ์ ปานกลางในการด้านเชื้อไวรัส herpes simplex ทั้ง 2 ชนิด ได้แก่ สาร cycloartocarpin, isocyclomorusin, norartocarpetin ແລະ oxyresveratrol

ภาควิชาเกล้ซเวท	ลายมือชื่อนิสิตเดาวลักษณ์	ถายว่งไฟ ะ
สาขาวิชาเกล้ชเวท	ลายมือชื่ออาจารย์ที่ปรึกษา	N
ปีการศึกษา ²⁵⁴ จ	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม.	\sim

4776615333 : MAJOR PHARMACOGNOSY

KEYWORD: GONIOTHALAMUS TENUIFOLIUS / ARTOCARPUS GOMEZIANUS / FLAVONOIDS

SAOWALAK CHAIWIRIYA: FLAVONOIDS FROM *GONIOTHALAMUS TENUIFOLIUS* LEAVES AND *ARTOCARPUS GOMEZIANUS* HEARTWOOD. THESIS ADVISOR: ASSOC. PROF. KITTISAK LIKHITWITAYAWUID, Ph.D., THESIS CO-ADVISOR: BOONCHOO SRITULARAK, Ph.D. 185 pp. ISBN 974-14-3487-1

Phytochemical study of the leaves of *Goniothalamus tenuifolius* King led to the isolation of two flavonoids including 3,5,7,3',4'-pentamethoxyflavone and 5,3',4'-trihydroxy-3,7-dimethoxyflavone. From the heartwood of *Artocarpus gomezianus* Wall. ex Tre'c, six flavonoids were isolated. They were identified as a new flavonoid named artogomezianone and five known flavonoids namely cycloartocarpin, isocyclomorusin, norcycloartocarpin, artocarpin and norartocarpetin. Furthermore, oxyresveratrol and a mixture of steroids consisting of β -sitosterol and stigmasterol were obtained. The identification and structure elucidation of the isolated compounds were achieved by analysis of their spectroscopic data (UV, IR, MS, NMR) in comparison with previously reported data. Evaluation of the anti-herpes simplex virus activity of the isolated compounds indicated moderate activity against both types of herpes simplex virus for cycloartocarpin, isocyclomorusin, norartocarpetin and oxyresveratrol.

DepartmentF	Pharmacognosy	.Student's signature	Saowalak Cho	aiwiriya
Field of studyF	harmacognosy	. Advisor's signature	K. WK	chit
Academic year	2006	Co-advisor's signature	Barrohoo	Sntularal

ACKNOWLEDGEMENTS

The author would like to express her deepest gratitude to her thesis advisor, Associate Professor Dr. Kittisak Likhitwitayawuid of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for his valuable advice, useful guidance, endless support, concern, patience and encouragement throughout the course of this study.

The author wishes to express her sincere thanks to Dr. Boonchoo Sritularak of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, her thesis co-advisor, for his helpful advice, constant help and kindness.

The author would like to express her grateful thanks to Associate Professor Dr. Vimolmas Lipipun of the Department of Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for her help and kindly support in the antiherpes simplex virus assay.

The author wishes to express her thanks to the members of her thesis committee for their critical perusal and useful advice.

The author would like to thank the Graduate School of Chulalongkorn University for granting partial financial support to conduct this investigation.

The author would also like to thank all staff members of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for supplying chemicals and facilities.

The author is grateful to all students of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for unforgettable friendship and kindness.

Finally, the author wishes to express her infinite gratitude to her family for their love, understanding and encouragements.

CONTENTS

AB	STRAC	CT (Thai)	iv
AB	STRAC	CT (English)	V
AC	KNOW	LEDGEMENTS	vi
СС	ONTEN	۲S	vii
LIS	ST OF T	ABLES	. x
LIS	St of f	IGURES	.xi
LIS	ST OF S	CHEMES	xiv
LIS	ST OF A	BBREVIATIONS AND SYMBOLS	XV
C⊦	IAPTER	R	
Ι	INTRO	DUCTION	1
II	HISTC	DRICAL	
	1.	Chemical constituents of <i>Goniothalamus</i> spp.	8
	2.	Chemical constituents of <i>Artocarpus</i> spp	20
	3.	Traditional uses and biological activities of <i>Goniothalamus</i> spp	87
	4.	Traditional uses and biological activities of Artocarpus spp	88
	EXPER	RIMENTAL	
	1.	Source of plant materials	90
	2.	General techniques	90
		2.1 Analytical thin-layer chromatography	90
		2.2 Preparative thin-layer chromatography	90
		2.3 Column chromatography	
		2.3.1 Vacuum liquid column chromatography	90
		2.3.2 Flash column chromatography	91
		2.3.3 Gel filtration chromatography	91
		2.4 Spectroscopy	
		2.4 Spectroscopy2.4.1 Ultraviolet (UV) absorption spectra	91
		2.4 Spectroscopy2.4.1 Ultraviolet (UV) absorption spectra2.4.2 Infrared (IR) absorption spectra	91 91

		Page
	2.4.4 Proton and carbon -13 nuclear magnetic resonance	92
	(¹ H and ¹³ C NMR) spectra	
	2.5 Physical properties	
	2.5.1 Optical rotation	92
	2.5.2 Circular dichroism (CD) spectra	92
	2.6 Solvents	92
3.	Extraction and isolation	
	3.1 Extraction and isolation of compounds from Goniothalamus tenuifolius	S
	3.1.1 Extraction	93
	3.1.2 Isolation	
	3.1.2.1 Isolation of compound GT1	93
	3.1.2.2 Isolation of compound GT2	94
	3.2 Extraction and isolation of compounds from Artocarpus gomezianus	
	3.2.1 Extraction	94
	3.2.2 Isolation	
	3.2.2.1 Isolation of isolate AG1	95
	3.2.2.2 Isolation of compound AG2	. 95
	3.2.2.3 Isolation of compound AG3	. 95
	3.2.2.4 Isolation of compound AG4, AG5 and AG6	95
	3.2.2.5 Isolation of compound AG7	. 96
	3.2.2.6 Isolation of compound AG8	. 97
4.	Physical and spectral data of isolated compounds	
	4.1 Compound GT1	98
	4.2 Compound GT2	98
	4.3 Isolate AG1	98
	4.4 Compound AG2	98
	4.5 Compound AG3	99
	4.6 Compound AG4	99
	4.7 Compound AG5	. 100
	4.8 Compound AG6	. 100

4.9 Compound AG7...... 101 4.10 Compound AG8......101 5. Determination of anti-herpes simplex virus activity IV RESULTS AND DISCUSSION 1. Structure determination of isolated compounds......108 1.2 Structure determination of compound GT2...... 110 1.3 Structure determination of isolate AG1......112 1.4 Structure determination of compound AG2...... 115 1.5 Structure determination of compound AG3...... 118 1.6 Structure determination of compound AG4.....120 1.7 Structure determination of compound AG5...... 122 1.8 Structure determination of compound AG6...... 124 1.9 Structure determination of compound AG7......127 V

จุฬาลงกรณ่มหาวิทยาลัย

Page

LIST OF TABLES

Table	Page
1	Distribution of flavonoids in <i>Goniothalamus</i> spp8
2	Distribution of miscellaneous constituents in Goniothalamus spp10
3	Distribution of flavonoids in <i>Artocarpus</i> spp 20
4	Distribution of triterpenoids in <i>Artocarpus</i> spp
5	Distribution of miscellaneous constituents in <i>Artocarpus</i> spp
6	NMR spectral data of compound GT1 (CDCl ₃) and
	3,5,7,3′,4′-pentamethoxyflavone (CDCl ₃)109
7	NMR spectral data of compound GT2 (Acetone- d_6) and kumatakenin111
8	13 C NMR spectral data of isolate AG1 (CDCl ₃) and
	β -sitosterol, stigmasterol (CDCl ₃)113
9	NMR spectral data of compound AG2 (DMSO- d_6) and
	cycloartocarpin (DMSO- <i>d</i> ₆)117
10	NMR spectral data of compound AG3 (Acetone- <i>d</i> ₆) and
	isocyclomorusin (DMSO-d ₆)119
11	NMR spectral data of compound AG4 (Acetone- d_6) and
	cycloartocarpin (DMSO-d ₆)121
12	NMR spectral data of compound AG5 (Acetone- d_6) and
	artocarpin (DMSO- <i>d</i> ₆)123
13	NMR spectral data of compound AG6 (Acetone- <i>d</i> ₆)126
14	NMR spectral data of compound AG7 (Acetone- d_6) and
	norartocarpetin (DMSO- <i>d₆</i>)128
15 0	NMR spectral data of compound AG8 (Acetone- d_6) and
	oxyresveratrol (DMSO- <i>d</i> ₆)130
16	Percentage of HSV inhibition by pure compounds isolated from
	Artocarpus gomezianus132

LIST OF FIGURES

Figure	Page
1	Goniothalamus tenuifolius King6
2	Artocarpus gomezianus Wall. ex Tre ^r c7
3	Structures of compounds previously isolated from Goniothalamus spp41
4	Structures of compounds previously isolated from <i>Artocarpus</i> spp58
5	Anti-herpes simplex activity virus of compound AG2, AG3, AG7 and AG8
	on plaque reduction assay
6	UV Spectrum of compound GT1 (Methanol)
7	¹ H-NMR (300 MHz) Spectrum of compound GT1 (CDCl ₃)135
8	¹³ C-NMR (75 MHz) Spectrum of compound GT1 (CDCl ₃)
9	UV Spectrum of compound GT2 (Methanol)
10	¹ H-NMR (300 MHz) Spectrum of compound GT2 (DMSO- <i>d</i> ₆) 137
11	¹³ C-NMR (75 MHz) Spectrum of compound GT2 (DMSO- d_6)
12	¹ H-NMR (300 MHz) Spectrum of isolate AG1 (CDCl ₃)
13	¹³ C-NMR (75 MHz) Spectrum of isolate AG1 (CDCl ₃)138
14	UV Spectrum of compound AG2 (Methanol) 139
15	IR Spectrum of compound AG2 139
16	Mass Spectrum of compound AG2 140
17	¹ H-NMR (300 MHz) Spectrum of compound AG2 (DMSO- d_6)
18	¹³ C-NMR (75 MHz) Spectrum of compound AG2 (DMSO- d_3)141
19	¹ H- ¹ H COSY Spectrum of compound AG2 (DMSO- d_3)142
20	NOESY Spectrum of compound AG2 (DMSO- d_6)
21	UV Spectrum of compound AG3 (Methanol) 144
22	IR Spectrum of compound AG3 145
23	Mass Spectrum of compound AG3 145
24	¹ H-NMR (300 MHz) Spectrum of compound AG3 (Acetone- d_6)
25	¹³ C-NMR (75 MHz) Spectrum of compound AG3 (Acetone- d_6)
26	UV Spectrum of compound AG4 (Methanol) 147
27	IR Spectrum of compound AG4147

Figur	e Page
28	Mass Spectrum of compound AG4148
29	¹ H-NMR (300 MHz) Spectrum of compound AG4 (Acetone- <i>d</i> ₆) 148
30	¹³ C-NMR (75 MHz) Spectrum of compound AG4 (Acetone- d_6)
31	UV Spectrum of compound AG5 (Methanol) 149
32	IR Spectrum of compound AG5150
33	Mass Spectrum of compound AG5150
34	¹ H-NMR (300 MHz) Spectrum of compound AG5 (Acetone- <i>d₆</i>)151
35	¹³ C-NMR (75 MHz) Spectrum of compound AG5 (Acetone- <i>d</i> ₆)151
36	UV Spectrum of compound AG6 (Methanol) 152
37	IR Spectrum of compound AG6 152
38	HRESI Mass Spectrum of compound AG6153
39	El Mass Spectrum of compound AG6 153
40	¹ H-NMR (300 MHz) Spectrum of compound AG6 (Acetone- <i>d</i> ₆)
41	¹³ C-NMR (75 MHz) Spectrum of compound AG6 (Acetone- d_6)
42	¹ H- ¹ H COSY Spectrum of compound AG6 (Acetone- <i>d</i> ₆)
43	NOESY Spectrum of compound AG6 (Acetone -d ₆)
44	HMBC Spectrum of compound AG6 (Acetone $-d_6$)
	$[\delta_{H} 0.2-13.8 \text{ ppm}, \delta_{C} 10-190 \text{ ppm}]157$
45	HMBC Spectrum of compound AG6 (Acetone $-d_6$)
	$[\delta_{\rm H} 6.4\text{-}9.0 \text{ ppm}, \delta_{\rm C} 100\text{-}190 \text{ ppm}]158$
46	HMBC Spectrum of compound AG6 (Acetone $-d_6$)
	$[\delta_{\rm H} \ 1.0\text{-}5.0 \ {\rm ppm}, \ \delta_{\rm C} \ 100\text{-}190 \ {\rm ppm}]159$
47	HMBC Spectrum of compound AG6 (Acetone $-d_6$)
	$[\delta_{\rm H} 0.5$ -3.0 ppm, $\delta_{\rm C} $ 10-90 ppm]160
48	HMBC Spectrum of compound AG6 (Acetone $-d_6$)
	[δ _H 11.6-13.8 ppm, $δ_{\rm C}$ 100-160 ppm]161
49	CD Spectrum of compound AG6 (MeOH) 162
50	UV Spectrum of compound AG7 (Methanol)163
51	IR Spectrum of compound AG7163

Figu	re	Page
52	Mass Spectrum of compound AG7	.164
53	¹ H-NMR (300 MHz) Spectrum of compound AG7 (Acetone- d_6)	.164
54	¹³ C-NMR (75 MHz) Spectrum of compound AG7 (Acetone- d_6)	165
55	UV Spectrum of compound AG8 (Methanol)	.165
56	IR Spectrum of compound AG8	166
57	Mass Spectrum of compound AG8	166
58	¹ H-NMR (300 MHz) Spectrum of compound AG8 (Acetone- d_6)	167
59	¹³ C-NMR (75 MHz) Spectrum of compound AG8 (Acetone- <i>d</i> ₆)	. 167

LIST OF SCHEMES

Schem	ne	Page
1	Extraction of Goniothalamus tenuifolius Leaves	. 103
2	Isolation of GT1 and GT2	. 104
3	Isolation of AG1, AG2, AG4, AG5 and AG6	. 105
4	Isolation of AG3	106
5	Isolation of AG7 and AG8	107

LIST OF ABBREVIATIONS AND SYMBOLS

α	=	alpha
Acetone- d_6	=	deuterated acetone
β	=	beta
br	=	broad (for NMR spectra)
С	=	concentration
°C	=	degree Celsius
CDCI ₃	=	deuterated chloroform
CHCI ₃	=	chloroform
¹³ C NMR	=	carbon-13 nuclear magnetic resonance
COSY	=	correlation spectroscopy
1-D	=	one-dimensional
2-D	=	two-dimensional
d	= 2	doublet (for NMR spectra)
dd	=	doublet of doublets (for NMR spectra)
DEPT	- 4	distortionless enhancement by polarization transfer
DMSO-d ₆	=	deuterated dimethylsulfoxide
EIMS	=	electron impact mass spectrum
ESIMS	=	electrospray ionization mass spectrometry
EtOAc	=	ethyl acetate
g	¥	gram
μg	ĿIJ	microgram
δ	āc	chemical shift
¹ H NMR	= 3	proton nuclear magnetic resonance
НМВС	=	¹ H- detected heteronuclear multiple bond coherence
Hz	=	hertz
IC ₅₀	=	median inhibitory concentration
IR	=	infrared spectrum
J	=	coupling constant
kg	=	kilogram

L	=	liter
μΙ	=	microliter
λ_{max}	=	wavelength at maximal absorption
3	=	molar absorptivity
$ u_{\text{max}}$	=	wave number at maximal absorption
m	=	multiplet (for NMR spectra)
mg	=	milligram
ml	=	milliliter
m/z	=	mass to charge ratio
M ⁺	=	molecular ion
МеОН	=	methanol
MHz	=	megahertz
MS	=	mass spectrometry
MW	=	molecular weight
μΜ	=	micromolar
nm	=	nanometer
NMR	= 03	nuclear magnetic resonance
NOESY	= 39	nuclear overhauser effect correlation spectroscopy
PFU	=	plaque-forming units
ppm	=	part per million
s	=	singlet (for NMR spectra)
spp.	Ξ/	species
t ลถา	Ξl	triplet (for NMR spectra)
TLC	=	thin layer chromatography
UV	121	ultraviolet

CHAPTER I

INTRODUCTION

Flavonoids are a large group of polyphenolic compounds that occur commonly in plants. This group of natural products contains more than 8000 known compounds, and this number is constantly growing because of the great structural diversity arising from the various hydroxylation, methoxylation, glycosylation and acylation patterns. Many flavonoids are endowed with biological activities, such as anti-inflammatory, antiallergic, antiischemic, antiplatelet, immunomodulatory, antitumoral (Pietta *et al.*, 2003), cytotoxic and antimicrobial activities (Liou *et al.*, 1993; Sato *et al.*, 1996). Flavonoids have also been shown to inhibit several enzymes, including lipoxygenases, cyclooxygenases, mono-oxygenases, xanthine oxidase, mitochondrial succinoxidase, reduced nicotinamide-adenine dinucleotide (NADH) oxidase, phospholipase A₂, topoisomerases and protein kinases. Several plants have been used as herbal remedies for their flavonoid contents (Pietta *et al.*, 2003). Therefore, it is interesting to investigate some flavonoids in plants.

The genus *Goniothalamus* belongs to the family Annonaceae of the order Magnoliales. This genus consists of 115 species which are distributed throughout the tropics and subtropics of the world especially Cambodia, Vietnam, Malaysia, China, Palau, Philippines, Thailand and Indonesia (Lan *et al.*, 2003). Plants in the genus *Goniothalamus* are small trees or shrubs. *Terminal buds* not enclosed by leaves. *Bark*: cream, gray, brown. *Leaves*: simple, two-ranked, not scale-like, stipules absent. *Flowers*: bisexual, stalked, about 0.5 cm long or across, solitary or in fascicles. *Petals and Sepals*: valvate, sepals membranaceous and generally persistent in fruit, inner petal whorl smaller than the outer. *Fruit*: berry-like, fleshy, not multiple. *Seeds*: 1-2 per fruit, less than 5 mm.

Goniothalamus tenuifolius King, locally known as 'Panan Kee Meaw', is a small tree or shrub growing in several parts of Thailand (ปียะ เฉลิมกลิน, 2544). It is a tree up to 2-7 m high. Young twigs: slender, pubescent, later glabrous and striate. Leaves: membranous, varying considerably in shape and size, lanceolate or oblong lanceolate, acuminate, base acute, rarely rounded, the margins sometimes slightly undulate glabrous or pubescent on the midrib and veins beneath, main nerves 8-11 pairs, fine, curving and interarching 5 mm from margin, reticulations faint and lax, length 8-18.5 cm, breadth 2-6 cm, petiole 5-8 mm long, glabrous or pubescent. *Flowers*: solitary, axillary, pendulous. Pedicels: 2-5 mm long, glabrous or pubescent with 2-3 minute bracts at base. Sepals: ovate, acute or acuminate, membranous, several-nerved and reticulate, persistent, varying much in size, 7 mm -2.7 cm long and 6 mm-2.2 cm broad. Petals: yellowish to pinkish, thinly coriaceous, pubescent, outer broadly lanceolate, acuminate, much contracted at the base, varying much in length with age, 2-3 cm long, inner ovate, acuminate, 1 cm long or less. Stamens: 2 mm long, numerous with flat-topped or convex connectives. Ovaries: about 3 mm long, narrow; style filiform, stigma funnelshaped, split down the inner side. Ripe carpels: slight apiculate, pubescent or glabrescent, 1-1.2 cm long; stalks 4-5 mm long. Seeds: 1 rarely 2 (Sinclair, 1955).

The genus *Artocarpus* belongs to the tribe Artocarpeae, the family Moraceae of the order Urticarles. The name '*Artocarpus*' is derived from the Greek words 'artos' (= bread) and 'karpos' (= fruit) (Morton and Miami, 1987). This genus consists of approximately 50 species, indigenous of the tropical and sub-tropical regions especially Burma, Thailand, Indo-China, South-China, Malaysia and Solomon Islands (Dassanayake and Fosberg, 1981). The plants in the genus *Artocarpus* are evergreen trees with latex. The twigs and the stem can produce a milky sap. *Leaves*: alternate, distichous, coriaceous, often very large, margin entire, lobe or pinnatifid, rarely pinnate leathery, penninerved. *Stipule*: free, intrapetiolar or lateral. *Flowers*: monoecious, often mixed with scales which are often thickened or peltate at the apex. *Male flower: Perianth* 2-4 lobed or 2-4 partite, lobes obtus, valvate or slightly imbricate, calyx tubular. *Stamen* 1 erect, anthers globose to oblong. *Pistillode* 0. *Female flowers: Perianth* tubular, confluent below with the receptacle, mouth minute. *Ovary* straight, ovule

pendulous. *Style* central or lateral. *Stigma* 1-2 entire, equal or unequal. Flowers and bract fused laterally to form a syncarp, sometimes very large. *Seed*: pendulous, without endosperm, testa-membranous, albumen 0, embryo straight or incurved, cotyledons fleshy, equal or unequal (Forster and Forster, 1775; Kirtikar and Basu, 1980).

Several species in the genus bear edible fruit and are commonly cultivated: *Artocarpus communis* (Breadfruit), *A. integer* (Cempedak), *A. heterophyllus* (Jackfruit) and *A. odoratissimus* (Marang) (Morton and Miami, 1987).

The species of genus *Artocarpus* found in Thailand (Smitinand, 2001) are as follows.

Artocarpus altilis (Parkinson) Fosberg

- (A. communis J.R. & G. Forst.,
- (A. incisa Linn. f.)
- A. altissimus J.J. Smith
- A. chaplasha Roxb.
- A. dadah Miq.
- A. elasticus Reinw. ex Blume
- A. gomezianus Wall. ex Tre'c.

A. heterophyllus Lank. (A. integrifolius Linn. f.) ขนุนสำปะลอ Khanun sampalo (Central); สาเก Sake (Central); Bread fruit tree; Bread nut tree. ไสน Sanai (Surat Thani). หาดส้าน Haat san (Chiang Rai). ทังคัน Thang khan; ม่วงกวาง Muang kwang (Yala); หาดรุม Hat rum, หาดลูกใหญ่ Hat luk yai (Trang); หาดขน Hat khon (Narathiwat).

กะออก Ka ok, กะเอาะ Ka-o (Peninsular); ตือกะ Tue-ka (Malay-Yala); เอาะ O (Trang, Ranong).

ตะปัง Ta pang, ตำปัง Tam-pang (Malay-Peninsular); หาดหนุน Hat nun (Northern); อี โป้ I po (Trang).

ขนุน Khanun (General); ขะนู Kha-nu (Chanthaburi); ขะเนอ Kha-noe (Khmer); ซีคีย Si-khue, ปะหน่อย Pa-noi (Karen-Mae Hong Son); นะยวยซะ Na-yuai-sa (Karen-Kanchanaburi); นากอ Na-ko (Malay-Pattani); เนน Nen (Chaobon- Nakhon Ratchasima); มะหนุน Manun (Northern, A. kemando Miq.

A. integer (Thunb.) Merr.

A. lacucha Roxb.

(A. lakoocha Roxb.)

A. lanceifolius Roxb.

A. nitidus Tre**'**c.

subsp. lingnanensis Jarrett

(A. parva Gagnep.)

A. rigidus Blume

subsp. *rigidus*

A. rigidus bl.

subsp. asperulus Jarrett.

(A. calophyllus Kurz)

Artocarpus gomezianus Wall. ex Tre'c., locally known in Thai as 'Hat nun', is a medium-sized to tall tree reaching 42 m and 210 cm girth. Bark: gray brown, cracking to scaly. *Inner bark*: pink, soft with creamy sap. *Sapwood*: pale yellow. *Leaves*: stalk 1.5-3 cm long, blade leathery, oblong to elliptic, 11-25 x 7-16 cm, apex shortly pointed, base more or less rounded, glabrous on both surfaces, upper surface shining, secondary nerves 10-15 pairs, nervation prominent on both surfaces; midrib and nerves drying black. *Flower* heads: solitary in leaf axils. *Male head*: obovoid to subglobose, 1-2.5 cm

Peninsular); ล้าง, ลาง Lang (Shan-Northern): หมักหมี้ Mak mi (Northeastern): หมากลาง Mak lang (Shan-Mae Hong Son); Jack fruit tree. ขนุนป่า Khanun pa (Narathiwat); ยาตู Yatu (Malay-Narathiwat). จำปาดะ Champada (General); จำปาเดาะ Champado (Peninsular); Champedak. กาแย Kaa-yae, ตาแป Ta-pae, ตาแปง Tapaeng (Malay-Narathiwat); มะหาด Mahat (Peninsular); มะหาดใบใหญ่ Mahat bai yai (Trang); หาด Hat (General). ขนุนป่า Khanun pa (Peninsular); หนัง กาปิโต Nang-ka-pi-to, หนังกาปีปี้ต Nangka-pi-pit (Malay-Peninsular); นังกาปีแป๊ะ Nang-ka-pi-pae (Malay-Narathiwat). มะหาดข่อย Mahat khoi (Surat Thani).

ขนุนป่า Khanun pa (Peninsular).

ขนุนปาน Khanun pan (Surat Thani).

across on 0.7-1.7 cm long stalk. *Fruits*: subglobose, 8 cm across, yellow pink flesh, drying brown or black, with smooth velutinous surface, stalk 1.5-4.5 cm long. *Seeds*: ellipsoid, 1.2-1 cm (Kochummen, 1978).

A previous phytochemical study on the ethyl acetate extract of the leaves of *G. tenuifolius* showed the presence of several flavonoids, some of which possessed free radical scavenging activity with DPPH assay (Likhitwitayawuid *et al.*, 2006). This investigation is focused on the isolation of more polar compounds in the MeOH extract. As for *A. gomezianus*, tyrosinase inhibitors have been isolated from the roots including isocyclomorusin, norartocarpetin, cudraflavone C, artocarpin, cycloartocarpin, albanin A and resveratrol. It is interesting to investigate the chemical compounds in other parts of this plant for more information on chemistry. In this study, preliminary anti-herpetic activity evaluation revealed that the MeOH extract of *G. tenuifolius* was devoid of activity whereas the *A. gomezianus* heartwood extract was active.

The main objectives in this investigation are as follows.

- to isolate and purify compounds from the leaves of *G.tenuifolius* and from the heartwood of *A.gomezianus*.
- 2. to determine the chemical structure of each isolated compound.
- 3. to evaluate anti-herpetic potential of each isolated compound from the heartwood of *A.gomezianus*.

Figure 1 Goniothalamus tenuifolius King.

Figure 2 Artocarpus gomezianus Wall. ex Tre'c.

CHAPTER II

HISTORICAL

1. Chemical constituents of *Goniothalamus* spp.

Several classes of chemical constituents have been isolated from the genus *Goniothalamus*. They can be classified as acetogenins, alkaloids, aza-anthraquinones, benzenoids, flavonoids, naphthoquinones, styrylpyrones, sterols, styrene derivatives, terpenoids and miscellaneous compounds (Tables 1-2 and Figure 3).

Table 1 D	istribution of	f f <mark>lavonoid</mark> s	in	Goniothalamus	spp.
-----------	----------------	-----------------------------	----	---------------	------

Plant and Chemical compound	Plant part	Reference
Goniothalamus borneensis		
Pinocembrin [1]	Bark	Cao <i>et al</i> ., 1998
Goniothalamus gardneri	Sector Contraction	
2',4'-Dihydroxy-4-6'-dimethoxy-	Aerial part	Seidal, Bailleul and
chalcone [2]		Waterman, 2000
2'-4'-Dihydroxy-4-6'-dimethoxy-	Aerial part	Seidal <i>et al</i> ., 2000
dihydrochalcone [3]	ยบริการ	
2'-Hydroxy-4,4',6'-trimethoxy-	Aerial part	Seidal <i>et al.</i> , 2000
chalcone [4]	เหาวิทยา	ลย
2'-Hydroxy-4,4',6'-trimethoxy-	Aerial part	Seidal <i>et al</i> ., 2000
dihydrochalcone [5]		
Naringenin trimethyl ether [6]	Aerial part	Seidal <i>et al</i> ., 2000
rel-(1 β ,2 α) Di-(2,4-dihydroxy-6-	Aerial part	Seidal <i>et al</i> ., 2000
methoxybenzoyl)-(3 β ,4 α) di-(4-		
methoxyphenyl)-cyclobutane [7]		

Plant and Chemical compound	Plant part	Reference
2',4,4' –Trihydroxy-6'-methoxy-	Aerial part	Seidal <i>et al</i> ., 2000
dihydrochalcone [8]		
Tsugafolin [9]	Aerial part	Seidal <i>et al</i> ., 2000
	1 de la	
Goniothalamus tenuifolius		
3',4'-Dihydroxy-3,5,7-trimethoxy-	Leaf	Likhitwitayawuid
flavone [10]		<i>et al.</i> , 2006
3'-Hydroxy-3,5,7,4'-tetramethoxy-	Leaf	Likhitwitayawuid
flavone [11]		<i>et al.</i> , 2006
4'-Hydroxy-3,5,7,3'-tetramethoxy-	Leaf	Likhitwitayawuid
flavone [12]		<i>et al.</i> , 2006
5-Hydroxy-3,7,3',4'-tetramethoxy-	Leaf	Likhitwitayawuid
flavone [13]		<i>et al.</i> , 2006
Kumatakenin [14]	Leaf	Likhitwitayawuid
		<i>et al.</i> , 2006
Pachypodol [15]	Leaf	Likhitwitayawuid
	Į.	<i>et al.</i> , 2006
3,5,7,3',4'-Pentamethoxyflavone [16]	Leaf	Likhitwitayawuid
สถาบับวิท	เมาริการ	<i>et al.</i> , 2006
5,7,3',4'-Tetrahydroxy-3-methoxy	Leaf	Likhitwitayawuid
flavone [17]	เหาวิทยา	<i>et al.</i> , 2006
Coniothalamus thwaitesii		
Annulatin [18]	Aerial part	Seidal <i>et al</i> ., 2000

Plant and Chemical compound	Category	Plant part	Reference
Goniothalamus amuvon			
(-)-Anolobine [19]	Aporphine	Wood	lu Wu and
(),	alkaloid	11000	
() Anonaina [20]	Aporphino	Wood	Lu at al. 1985
		WUUU	Lu <i>et al.</i> , 1903
Goniodiol-7-monoacetate [21]	Styrylpyrone	Leat	Wu, Duh and Chang,
			1991
Goniodiol-8-monoacetate [22]	Styrylpyrone	Leaf	Wu <i>et al</i> ., 1992
Goniotriol [23]	Styrylpyrone	Leaf	Wu <i>et al</i> ., 1992
Liriodenine [24]	Oxoporphine	Stem bark	Lu <i>et al</i> ., 1985
	alkaloid		
Palmatine [25]	Protoberberine	Stem bark	Lu <i>et al</i> ., 1985
	alkaloid		
(-)-Tetrahydropalmatine [26]	Tetrahydro	Stem bark	Lu <i>et al</i> ., 1985
	protoberberine		
	alkaloid		
Goniothalamus andersonii			
(+)-Goniothalamin [27]	Stvrvlpvrone	Leaf. Fruit.	Jewers <i>et al</i> ., 1972
	o"	Root Stem	2
			าลย
Goniothalamus arvensis			
5-Acetoxyisogoniothalamin	Styrylpyrone	Stem bark	Peris <i>et al</i> ., 2000
oxide [28]			
3-Acetylaltholactone [29]	Styrylpyrone	Stem bark	Peris <i>et al</i> ., 2000
Almuheptolide-A [30]	Benzenoid	Stem bark	Bermejo <i>et al</i> ., 1998b
Almuheptolide-B [31]	Benzenoid	Stem bark	Bermejo <i>et al</i> ., 1998b

Table 2 Distribution of miscellaneous constituents in Goniothalamus spp.

Table 2 (continued)

Plant and Chemical compound	Category	Plant part	Reference
Altholactone [32]	Styrylpyrone	Stem bark	Peris <i>et al.</i> , 2000
(+)-Etharvendiol [33]	Styrylpyrone	Stem bark	Bermejo et al., 1998a
(-)-Etharvensis [34]	Stvrvlpvrone	Stem bark	Bermejo <i>et al</i> .,1997
(+)-Garvensintriol [35]	Stvrvlpvrone	Stem bark	Bermejo et al., 1998a
(+)-Goniofufurone [36]	Styrene	Stem bark	Bermejo et al., 1998a
	derivative		
Goniothalamus borneensis			
Altholactone [32]	Styrylpyrone	Bark	Cao <i>et al</i> ., 1998
Aristolactam-AIII [37]	Aristolactam	Bark	Cao <i>et al</i> ., 1998
	alkaloid		
Cinnamyl cinnamate [38]	Miscellaneous	Bark	Cao <i>et al</i> ., 1998
Goniobutenolide A [39]	Styrene	Bark	Cao <i>et al</i> ., 1998
	derivative		
Goniobutenolide B [40]	Styrene	Bark	Cao <i>et al</i> ., 1998
	derivative		
Goniofufurone [36]	Styrene	Bark	Cao <i>et al</i> ., 1998
	derivative		
Goniothalactam [41]	Aristolactam	Bark	Cao <i>et al</i> ., 1998
с.	alkaloid		
Goniothalamin [27]	Styrylpyrone	Bark	Cao <i>et al</i> ., 1998
Goniothalesdiol [42]	Styrene	Bark	Cao <i>et al</i> ., 1998
จฬาลงกร	derivative		าลย
Goniotriol [23]	Styrylpyrone	Bark	Cao <i>et al</i> ., 1998
Stigmasterol [43]	Sterol	Bark	Cao <i>et al</i> ., 1998
Conjetholomus condisantelus			
Altholactone [32]	Stynylpyropo	Stem bark	Hisbam et al. 2000
	Осугуругоне		nonam <i>et a</i> l., 2000

Plant and Chemical compound	Category	Plant part	Reference
Cardiobutanolide [44]	Styryllactone	Bark	Matsura, Takabe and
			Yoda, 2006
Cardiopetalolactone [45]	Styrylpyrone	Stem bark	Hisham <i>et al</i> ., 2000
Etharvendiol [33]	Styryllactone	Bark	Matsura <i>et al</i> ., 2006
Goniodiol [46]	Styryllactone	Bark	Hisham <i>et al</i> ., 2003
Goniofufurone [36]	Styryllactone	Bark	Matsura <i>et al</i> ., 2006
Goniofupyrone [47]	Styryllactone	Stem bark	Hisham <i>et al</i> ., 2003
Goniopypyrone [48]	Styryllactone	Stem bark	Hisham <i>et al</i> ., 2003
Goniopyrone [49]	Styryllactone	Stem bark	Hisham <i>et al</i> ., 2000
Goniothalamin [27]	Styryllactone	Stem bark	Hisham <i>et al</i> ., 2003
Goniotriol [23]	Styryllactone	Bark	Matsura <i>et al</i> ., 2006
Squamocin [50]	Styryllactone	Stem bark	Histam <i>et al</i> ., 2000
Goniothalamus cheliensis			
Goniolactone A [51]	Bi-styrylpyrone	Root	Wang <i>et al</i> ., 2002
Goniolactone B [52]	Flavanone-	Root	Wang <i>et al</i> ., 2002
	styrylpyrone		
Goniolactone C [53]	Flavanone-	Root	Wang <i>et al</i> ., 2002
	styrylpyrone		
Goniolactone D [54]	Flavanone-	Root	Wang <i>et al</i> ., 2002
2 2 2	styrylpyrone		
Goniolactone E [55]	Flavanone-	Root	Wang <i>et al</i> ., 2002
ລາທິລລາຄອ	styrylpyrone		าวย
Goniolactone F [56]	Flavanone-	Root	Wang <i>et al</i> ., 2002
4	styrylpyrone		
Goniothalamus dolichocarpus			
(+)-Annonacin [57]	Acetogenin	Stem bark	Goh <i>et al</i> ., 1995

Table 2 (continued)

Plant and Chemical compound	Category	Plant part	Reference
(+)-5-Deoxygoniopypyrone [58]	Styrylpyrone	Stem bark	Goh <i>et al.</i> , 1995
(-)-Iso-5-deoxygoniopypyrone [59]	Styrylpyrone	Stem bark	Goh <i>et al</i> ., 1995
(-)-Iso-5-deoxygoniopypyrone	Styrylpyrone	Stem bark	Goh <i>et al</i> ., 1995
acetate [60]			
Isogoniothalamin epoxide [61]	Styrylpyrone	Stem bark	Goh <i>et al</i> ., 1995
(+)-Goniodiol [46]	Styrylpyrone	Stem bark	Goh <i>et al</i> ., 1995
(+)-Goniodiol diacetate [62]	Styrylpyrone	Stem bark	Goh <i>et al</i> ., 1995
(+)-Goniothalamine [27]	Styrylpyrone	Stem bark	Goh <i>et al</i> ., 1995
(+)-Goniothalamine epoxide [63]	Styrylpyrone	Stem bark	Goh <i>et al</i> ., 1995
Goniothalamus donnaiensis			
(+)-Annonacin [57]	Acetogenin	Root	Jiang and Yu, 1997
cis-Goniodonin [64] and	Acetogenin	Root	Jiang <i>et al</i> ., 1997
34-epi-cis-Goniodonin [65]	A Carlo man		
Donbutocin [66]	Acetogenin	Root	Jiang <i>et al</i> ., 1997
Donhepocin [67] and	Acetogenin	Root	Jiang <i>et al</i> ., 1998a
34- <i>epi</i> -Donhepocin [68]			
Donaienin [69]	Acetogenin	Root	Jiang <i>et al</i> ., 1998b
Donnaienin A [70] and	Acetogenin	Root	Jiang and Yu, 1997
34- <i>epi</i> -Donnaienin A [71]		9	
Donnaienin B [72] and	Acetogenin	Root	Jiang and Yu, 1997
34- <i>epi</i> -Donnaienin B [73]	79NDI		
Donnaienin C [74] and	Acetogenin	Root	Jiang <i>et al</i> ., 1998c
34- <i>epi</i> -Donnaienin C [75]	1 P P P I		191
Donnaienin D [76] and	Acetogenin	Root	Jiang <i>et al</i> ., 1998c
34- <i>epi</i> -Donnaienin D [77]			
Donhexocin [78]	Acetogenin	Root	Jiang <i>et al</i> .,1998a
Goniothalamicin [79]	Acetogenin	Root	Jiang and Yu, 1997
Isoannonacin [80]	Acetogenin	Root	Jiang and Yu, 1997
Murisolin [81]	Acetogenin	Root	Jiang and Yu, 1997

Table 2 (continued)

Plant and Chemical compound	Category	Plant part	Reference
Goniothalamus gardneri			
Gardnerilins A [82]	Acetogenin	Root	Chen <i>et al</i> ., 1998a
Gardnerillins B [83]	Acetogenin	Root	Chen <i>et al</i> ., 1998a
Gardnerinin [84] and	Acetogenin	Root	Chen <i>et al</i> ., 1998b
34-epi-Gardnerinin [85]	SALLA.		
Goniothalamusin [86]	Acetogenin	Aerial part	Seidal <i>et al</i> ., 1999
Goniothalamus giganteus			
8-Acetylgoniotriol [87]	Styrylpyrone	Stem bark	Fang <i>et al</i> ., 1990
Altholactone [32]	Styrylpyrone	Stem bark	El-Zayat <i>et al</i> ., 1985
Annomontacin [88]	Acetogenin	Stem bark	Fang <i>et al</i> ., 1992a
Annonacin [57]	Acetogenin	Stem bark	Alkofahi <i>et al.</i> , 1988
Asimilobin [89]	Acetogenin	Stem bark	Zhang <i>et al</i> ., 1995
2,4- <i>cis</i> and <i>trans</i> -Gigantecin [90]	Acetogenin	Stem bark	Alali <i>et al</i> ., 1997
2,4-cis and trans-Gonioneninone	Acetogenin	Stem bark	Alali <i>et al</i> ., 1998
[91]			
2,4-cis and trans-Xylomaricinone	Acetogenin	Stem bark	Alali <i>et al</i> ., 1999
[92]			
4-Deoxygigantecin [93]	Acetogenin	Stem bark	Alali <i>et al</i> ., 1997
9-Deoxygoniopypyrone [94]	Styrylpyrone	Stem bark	Fang <i>et al</i> ., 1991a
Gigantecin [95]	Acetogenin	Stem bark	Alkofahi <i>et al</i> ., 1990
Gigantetrocin [96]	Acetogenin	Stem bark	Fang <i>et al</i> ., 1991c
Gigantetronenin [97]	Acetogenin	Stem bark	Fang <i>et al</i> ., 1992a
Gigantransenin A [98]	Acetogenin	Stem bark	Zeng, Zhang and
			McLaughlin, 1996
Gigantransenin B [99]	Acetogenin	Stem bark	Zeng <i>et al</i> ., 1996
Gigantransenin C [100]	Acetogenin	Stem bark	Zeng <i>et al</i> ., 1996

Plant and Chemical compound	Category	Plant part	Reference
Gigantriocin [101]	Acetogenin	Stem bark	Fang <i>et al.</i> , 1991c
Gigantrionenin [102]	Acetogenin	Stem bark	Fang <i>et al</i> ., 1992a
Goniobutenolide A [39]	Styrene	Stem bark	Fang <i>et al</i> ., 1991b
	derivative		
Goniobutenolide B [40]	Styrene	Stem bark	Fang <i>et al</i> ., 1991b
	derivative		
Goniocin [103]	Acetogenin	Stem bark	Gu <i>et al</i> ., 1994
Goniodenin [104]	Acetogenin	Acetogenin	Zhang <i>et al</i> ., 1995
Goniodiol [46]	Styrylpyrone	Stem bark	Fang <i>et al</i> ., 1991a
Goniofufurone [36]	Styrene	Stem bark	Fang <i>et al</i> ., 1990
	derivative		
7-epi-oniofufurone [105]	Styrene	Stem bark	Fang <i>et al</i> ., 1991b
	derivative		
Goniofupyrone [47]	Styrylpyrone	Stem bark	Fang <i>et al</i> ., 1991b
Gonioheptolide A [106]	Benzenoid	Stem bark	Fang <i>et al</i> ., 1993
Gonioheptolide B [107]	Benzenoid	Stem bark	Fang <i>et al</i> ., 1993
Gonionenin [108]	Acetogenin	Stem bark	Gu <i>et al</i> ., 1994
Goniopypyrone [48]	Styrylpyrone	Stem bark	Fang <i>et al</i> ., 1990
Goniotetracin [109]	Acetogenin	Stem bark	Alali <i>et al.</i> , 1998
Goniothalamicin [79]	Acetogenin	Stem bark	Alkofahi <i>et al</i> ., 1988;
สถาบเ	ไว่งเกิง	ารการ	Fang <i>et al</i> ., 1992b
Goniothalamin [27]	Styrylpyrone	Stem bark	El-Zayat <i>et al</i> ., 1985
Goniotriocin [110]	Acetogenin	Stem bark	Alali <i>et al</i> ., 1999
Goniotriol [23]	Styrylpyrone	Stem bark	Alkofahi <i>et al</i> ., 1989
Goniotrionin [111]	Acetogenin	Stem bark	Alali <i>et al</i> ., 1998
Pyragonicin [112]	Acetogenin	Stem bark	Alali <i>et al</i> ., 1998
Pyranicin [113]	Acetogenin	Stem bark	Alali <i>et al</i> ., 1998
Goniothalamus griffithii			
Altholactone [32]	Styryllactone	Stem Branch	Tien <i>et al</i> ., 2006

Plant and Chemical compound	Category	Plant part	Reference
Aristolactam A-II [114]	Aristolactam	Root	Zhang <i>et al</i> ., 1999a
	alkaloid		
Goniodiol [46]	Styrylpyrone	Stem bark	Talapatra <i>et al</i> ., 1985
Goniodiol diacetate [62]	Styrylpyrone	Stem bark	Talapatra <i>et al</i> ., 1985
Goniodiol-7-monoacetate [21]	Styrylpyrone	Stem bark	Talapatra <i>et al</i> ., 1985
Goniothalamin [27]	Styrylpyrone	Stem Branch	Tien <i>et al</i> ., 2006
Griffithazanone A [115]	Aza-	Root	Zhang <i>et al</i> ., 1999a
	anthraquinone		
Griffithdione [116]	4,5-Dioxo-	Root	Zhang <i>et al</i> ., 1999a
	aporphine		
	alkaloid		
Griffithinam [117]	Aristolactam	Root	Zhang <i>et al</i> ., 1999a
	alkaloid		
4-Methyl-2,9,10-(2H)-1-	Aza-	Root	Zhang <i>et al</i> ., 1999a
azaanthracenetrione [118]	anthraquinone		
Nor-cepharanone B [119]	Alkaloid	Root	Zhang <i>et al</i> ., 1999a
Taliscanine [120]	Aristolactam	Root	Zhang <i>et al</i> ., 1999a
	alkaloid		
Velutinam [121]	Aristolactam	Root	Zhang <i>et al</i> ., 1999a
	alkaloid		
Oswiethelemus Isissemus	ไวเปล	ารบาร	
Z-eni-Goniodiol [122]	Stynylpyrope	Stem bark	Mulet al. 1000
	Styropo	Stom bark	Mu et al., 1999
	dorivativo	Stelli Daik	Mu et al., 1999
Leieerrin P [124]	Elavanana	Stom bork	Mu at al. 1000
	riavarione-	Stelli Dark	Mu et al., 1999
Leieeerpin ([125]	Styryipyrone	Ctom bork	Mu at al. 1000
	Styryipyrone	Stelli Dalk	wu <i>el al.</i> , 1999

Table 2 (continued)

Plant and Chemical compound	Category	Plant part	Reference
Goniothalamus macrophyllus			
(+)-Goniothalamin [27]	Stvrvløvrone	Stem bark.	Sam <i>et al</i> 1987
Goniothalamin oxide [63]	Styrylpyrone	Stem bark.	Sam <i>et al.</i> , 1987
	- 5 5 7 5	Root	- ,
Goniothalamus malayanus			
(+)-Isoaltholactone [126]	Styrene	Stem bark	Colegate <i>et al</i> ., 1990
	derivative	M	
Goniothalamus marcanii			
Dielsiquinone [127]	Aza-	Stem bark	Soonthornchareonnon
	anthraquinone		<i>et al.</i> , 1999
5-Hydroxy-3-amino-2-aceto-1,4-	Naphtho-	Stem bark	Soonthornchareonnon
naphthoquinone [128]	quinone		<i>et al.</i> , 1999
Marcanine A [129]	Aza-	Stem bark	Soonthornchareonnon
	anthraquinone		<i>et al.</i> , 1999
Marcanine B [130]	Aza-	Stem bark	Soonthornchareonnon
	anthraquinone		<i>et al.</i> , 1999
Marcanine C [131]	Aza-	Stem bark	Soonthornchareonnon
	anthraquinone		<i>et al.</i> , 1999
Marcanine D [132]	Aza-	Stem bark	Soonthornchareonnon
	anthraquinone		<i>et al</i> ., 1999
Marcanine E [133]	Aza-	Stem bark	Soonthornchareonnon
	anthraquinone		<i>et al</i> ., 1999
Goniothalamus montanus		o	
(+)-Isoaltholactone [126]	Styrene	Stem bark	Colegate <i>et al</i> ., 1990
	derivative		

Table 2 (continued)

Plant and Chemical compound	Category	Plant part	Reference
<i>Goniothalamus scortechinii</i> Scornazanone [134]	Aza- anthraquinone	Root	Din, Colegate and Razak, 1990
Goniothalamus sesquipedalis			
5-Acetoxyisogoniothalamin oxide [135]	Styrylpyrone	Stem bark	Hasan <i>et al</i> ., 1994
Aristolactam A-II [114]	Aristolactam alkaloid	Leaf, Twig	Talapatra <i>et al</i> ., 1988
Aurantiamid acetate [136]	Miscellaneous	Leaf, Twig	Talapatra <i>et al.</i> , 1988
(+)-Goniodiol [46]	Styrylpyrone	Leaf, Twig	Talapatra <i>et al</i> ., 1985
(+)-Goniodiol diacetate [62]	Styrylpyrone	Leaf, Twig	Talapatra <i>et al</i> ., 1985
Goniodiol-7-monoacetate [21]	Styrylpyrone	Leaf, Twig	Talapatra <i>et al</i> ., 1985
Goniopedaline [137]	Aristolactam	Leaf, Twig	Talapatra <i>et al</i> ., 1988
	alkaloid		
Goniotriol [23]	Styrylpyrone	Leaf, Twig	Talapatra <i>et al</i> ., 1985
β-Sitosterol [138]	Steroid	Leaf, Twig	Talapatra <i>et al</i> ., 1988
Taliscanine [120]	Aristolactam	Leaf, Twig	Talapatra <i>et al</i> ., 1988
	alkaloid		
Goniothalamus tapis	เวิทยเ	ี่มริการ	
Isoaltholactone [126]	Styrene	Stem bark	Colegate et al., 1990
จหาสงกร	derivative	าวุ่าย่	าลย
Conjotholomus tonuifalius			
Aristolactam A-II [11/]	Aristolactam	Stem bark	l ikhitwitayawuid et al
		JIEIII DAIK	1007
Cenharanone R [130]		Stem bark	likhitwitayawuid ot ol
		JIEIII DAIK	1007
	ainaiulu		1991

Table 2 (continued)

Plant and Chemical compound	Category	Plant part	Reference
Norcepharadione B [140]	4,5-Dioxo-	Stem bark	Likhitwitayawuid et al.,
	aporpine		1997
	alkaloid		
Taliscanine [120]	Aristolactam	Stem bark	Likhitwitayawuid et al.,
	alkaloid		1997
Trans-cinnamic acid [141]	Miscellaneous	Leaf	Likhitwitayawuid et al.,
			2006
Velutinam [121]	Aristolactam	Stem bark	Likhitwitayawuid et al.,
	alkaloid		1997
Operate the strength operation of the state			
Goniotnalamus thwaitesii	- 10 - CO - O		
Betulinic acid [142]	Iriterpene	Aerial part	Seidal <i>et al</i> ., 2000
Friedelin [143]	Triterpene	Aerial part	Seidal <i>et al</i> ., 2000
Friedelinol [144]	Triterpene	Aerial part	Seidal <i>et al</i> ., 2000
Goniothalamus umbrosus			
Goniothalamin [27]	Styryllactone	Root	Rosli <i>et al</i> ., 2004
		8	
Goniotnalamus uvarioides			
5-Acetylgoniothalamin [145]	Styrylpyrone	Root	Ahmad <i>et al</i> ., 1991
Goniothalamin [27]	Styrylpyrone	Root	Ahmad <i>et al</i> ., 1991
Goniothalamus velutinus	เวิทยา	เริการ	o
Conhoranana P [130]	Ariatalaatam	Stom bork	Omeratal 1002
	Ansiolaciam	Stem Dark	Unial et al., 1992
	alkaloid		1610
Velutinam [121]	Aristolactam	Stem bark	Omar <i>et al</i> ., 1992
	alkaloid		

2. Chemical constituents of Artocarpus spp.

According to previously reported phytochemical studies, the chemical constituents of plants in the genus *Artocarpus* can be classified into several groups as flavonoids, triterpenoids, steroids, stilbenes and miscellaneous compounds (Tables 3-5 and Figure 4).

Table 3 Distribution of flavonoids in Artocarpus spp.

Plant and chemical compound	Plant part	Reference
Artocarpus altilis		
Apigenin [146]	Heartwood	Shimizu <i>et al.</i> , 1998
Artobiloxanthone [147]	Bark	Aida <i>et al</i> ., 1993
Artocarpesin [148]	Heartwood	Shimizu <i>et al</i> ., 1998
Artocarpin [149]	Heartwood	Venkataraman, 1972
Artocarpus chalcone AC-3-1 [150]	Flower	Fujimoto <i>et al</i> ., 1987b
Artocarpus chalcone AC-3-2 [151]	Flower	Fujimoto <i>et al</i> ., 1987b
Artocarpus chalcone AC-5-1 [152]	Flower	Fujimoto <i>et al</i> ., 1987b
Artocarpus chalcone I [153]	Flower	Fujimoto, Agusutein and
		Made, 1987a
Artocarpus flavone AC-3-3 [154]	Flower	Fujimoto <i>et al</i> ., 1987b
Artocarpus flavone AC-5-2 [155]	Flower	Fujimoto <i>et al</i> ., 1987b
Artocarpus flavone KB-1 [156]	Bark	Fujimoto <i>et al</i> ., 1990
Artocarpus flavone KB-2 [157]	Bark	Fujimoto <i>et al</i> ., 1990
Artocarpus flavone KB-3 [158]	Bark	Fujimoto <i>et al</i> ., 1990
Artochamin B [159]	Cortex of the root	Lin <i>et al</i> ., 2006
Artochamin D [160]	Cortex of the root	Lin <i>et al</i> ., 2006
Artocommunol CC [161]	Cortex of the root	Lin <i>et al</i> ., 2006
Artomunoflavanone [162]	Cortex of the root	Lin <i>et al</i> ., 2006
Artomunoisoxanthone [163]	Cortex of the root	Lin <i>et al.</i> , 2006
Table 3 (continued)

Plant and chemical compound	ant and chemical compound Plant part	
Artomunoxanthentrione [164]	Root bark	Shieh and Lin, 1992
Artomunoxanthone [165]	Root bark	Shieh and Lin, 1992
Artomunoxanthotrione epoxide [166]	Root bark	Lin, Shieh and Jong, 1992
Artonin E [158]	Bark	Hano <i>et al</i> ., 1990
Artonin F [167]	Bark	Hano <i>et al</i> ., 1990
Artonin K [168]	Bark	Aida <i>et al</i> ., 1993
Artonin V [169]	Root bark	Hano, Inami and Nomura,
		1994
Artonol A [170]	Bark	Aida <i>et al</i> ., 1993
Artonol B [171]	Bark	Aida <i>et al</i> ., 1993
Artonol C [172]	Bark	Aida <i>et al</i> ., 1993
Artonol D [173]	Bark	Aida <i>et al</i> ., 1993
Artonol E [174]	Bark	Aida <i>et al</i> ., 1993
Cudraflavone A [175]	Root bark	Shieh and Lin, 1992
Cycloaltilisin [176]	Stem	Chen <i>et al</i> ., 1993
Cycloaltilisin 6 [177]	Bud cover	Patil <i>et al</i> , 2002
Cycloaltilisin 7 [178]	Bud cover	Patil <i>et al</i> , 2002
Cycloartobiloxanthone [179]	Bark	Hano <i>et al</i> ., 1990b
Cycloartocarpin [180]	Heartwood	Venkataraman, 1972
Cycloartomunin [181]	Root bark	Lin and Shieh, 1991
Cycloartomunoxanthone [182]	Root bark	Lin and Shieh, 1991
Cyclocommunin [183]	Root bark	Lin and Shieh, 1991
Cyclocommunol [184]	Root bark	Lin and Shieh, 1991
Cyclocommunomethonol [185]	Cortex of the root	Lin <i>et al</i> ., 2006
Cyclomorusin [186]	Stem	Chen <i>et al.</i> , 1993
	Root bark	Lin and Shieh, 1991

Table 3 (continued)

Plant and chemical compound	Plant part	Reference
Cyclomulberrin [197]	Stom	Chap at al. 1002
Cyclomabernin [10/]		Lin and Chich 1002a
	Root bark	Lin and Shien, 1992a
Dihydroartomunoxanthone [188]	Cortex of the root	Lin <i>et al</i> ., 2006
Dihydrocycloartomunin [189]	Root bark	Lin and Shieh, 1991
Dihydroisocycloartomunin [190]	Root bark	Lin and Shieh, 1992a
Dihydromorin [191]	Heartwood	Shimizu <i>et al</i> ., 1998
Engeletin [192]	Stem	Chen <i>et al</i> ., 1993
3'-Geranyl-2'-3-4-4'- tetrahydroxy –	Leaf	Shimizu <i>et al</i> ., 2000
chalcone [193]		
Isoartocarpetin [194]	Heartwood	Shimizu <i>et al</i> ., 1998
Isocyclomorusin (Cudraflavone A) [175]	Stem	Chen <i>et al</i> ., 1993
Isocyclomulberrin (Cyclocommunin) [183]	Stem	Chen <i>et al</i> ., 1993
Morin [195]	Heartwood	Venkataraman, 1972
Morusin [196]	Stem Bark	Fujimoto <i>et al</i> ., 1990
(+)- Norartocarpanone [197]	Heartwood	Shimizu <i>et al</i> ., 1998
Norartocarpetin [198]	Heartwood	Venkataraman, 1972
Artocarpus champeden	4	
Artoindonesianin A [199]	Root	Hakim <i>et al</i> ., 1999
Artoindonesianin B [200]	Root	Hakim <i>et al</i> ., 1999
Artoindonesianin M [201]	าหาวท	Syah <i>et al</i> ., 2002a
Artoindonesianin Q [202]	Heartwood	Syah <i>et al</i> ., 2002b
Artoindonesianin R [203]	Heartwood	Syah <i>et al</i> ., 2002b
Artoindonesianin S [204]	Heartwood	Syah <i>et al</i> ., 2002b
Artoindonesianin T [205]	Heartwood	Syah <i>et al</i> ., 2002b
Artoindonesianin U [206]	Heartwood	Syah <i>et al</i> ., 2004

Table 3 (continued)

Plant and chemical compound	Plant part	Reference
Artoindonesianin V [207]	Heartwood	Syah <i>et al.</i> , 2004
Artonin A [208]	Root	Hakim <i>et al.</i> , 1999
Artonin B [209]	Heartwood	Syah <i>et al</i> ., 2004
Cyclochampedol [210]	Stem bark	Achmad <i>et al</i> ., 1996;
		Paolo <i>et al</i> ., 1998
Cyclocommunin [183]	Heartwood	Syah <i>et al</i> ., 2004
5'-Hydroxycudraflavone A [211]	Heartwood	Syah <i>et al.</i> , 2004
	///	
	6.2.	
Artocarpesin [148]	Heartwood	Rao, Rathi and Venkataraman,
		1972
Artocarpin [149]	Heartwood	Rao <i>et al</i> ., 1972
Chaplashin [212]	Heartwood	Rao <i>et al</i> ., 1972
Cycloartocarpesin [213]	Heartwood	Rao <i>et al</i> ., 1972
Cycloartocarpin [180]	Heartwood	Rao <i>et al</i> ., 1972
6		6
Artocarpus dadah		
Afelechin-3-0- <i>a</i> -L-rhamnopyra	Stem bark	Su <i>et al.</i> , 2002
Noside [214]	Twig	000
(+)-Catechin [215]	Stem bark	Su <i>et al.</i> , 2002
ວເທວ	Twig	
Dihydromorin [191]	Stem bark	Su <i>et al.</i> , 2002
Engeletin [192]	Twig	Su <i>et al</i> ., 2002
(+)-Epiafzelechin [216]	Stem bark	Su <i>et al</i> ., 2002
(-)-Epiafzelechin-(4 $\beta \rightarrow$ 8)-epicate-	Stem bark	Su <i>et al.</i> , 2002
chin [217]		

Plant and chemical compound	Plant part	Reference
Gemichalcone B [218]	Twig	Su <i>et al.</i> , 2002
Isogemichalcone B [219]	Twig	Su <i>et al.</i> , 2002
Norartocarpetin [198]	Twig	Su <i>et al.</i> , 2002
Steppogenin [220]	Twig	Su <i>et al</i> ., 2002
Artocarpus elasticus		
Artelasticin [221]	Heartwood	Kijjoa <i>et al</i> ., 1996
Artelastin [222]	Heartwood	Kijjoa <i>et al</i> ., 1996
Artelastinin [223]	Heartwood	Kijjoa <i>et al</i> ., 1998
Artelastocarpin [224]	Heartwood	Cidade <i>et al</i> ., 2001
Artelastochromene [225]	Heartwood	Kijjoa <i>et al</i> ., 1996
Artelastofuran [226]	Heartwood	Kijjoa <i>et al</i> ., 1998
Artocarpesin [227]	Heartwood	Kijjoa <i>et al</i> ., 1996
Artocarpin [149]	Heartwood	Kijjoa <i>et al</i> ., 1996
Carpelastofuran [228]	Heartwood	Cidade <i>et al</i> ., 2001
Cycloartocarpesin [213]	Heartwood	Pendse <i>et al</i> ., 1976
Cycloartocarpin [180]	Heartwood	Pendse <i>et al</i> ., 1976
Integrin [229]	Heartwood	Pendse <i>et al</i> ., 1976
Norartocarpin [230]	Heartwood	Pendse <i>et al</i> ., 1976
Artocarpus fretessi	มหาวิเ	เยาลย
Artoindonesianin X [231]	Root bark	Hakim <i>et al</i> ., 2003
Artoindonesianin Y [232]	Root bark	Hakim <i>et al</i> ., 2003

Table 3 (continued)

Plant and chemical compound	Plant part	Reference
Artocarpus gomezianus		
Albanin A [233]	Root	Likhitwitayawuid, Sritularak
		and De-Eknamkul, 2000
Artocarpesin [148]	Heartwood	Venkataraman, 1972
Artocarpin [149]	Heartwood	Venkataraman, 1972
	Root	Likhitwitayawuid <i>et al</i> ., 2000
Cudraflavone C [234]	Root	Likhitwitayawuid <i>et al</i> ., 2000
Cycloartocarpin [180]	Heartwood	Venkataraman, 1972
	Root	Likhitwitayawuid <i>et al</i> ., 2000
Isocyclomorusin [175]	Root	Likhitwitayawuid <i>et al</i> ., 2000
Morin [195]	Heartwood	Venkataraman, 1972
Norartocarpetin [198]	Heartwood	Venkataraman, 1972
	Root	Likhitwitayawuid <i>et al</i> ., 2000
	Child Statistics	
Artocarpus heterophyllus		
Afzelechin-($4\alpha \rightarrow 8$)-catechin [235]	Leaf	An <i>et al</i> ., 1992
Artocarpanone [236]	Heartwood	Radhakrishnan, Rao and
		Venkataraman, 1965
Artocarpanone A [237]	Root bark	Lin, Lu and Huang, 1995
Artocarpesin [148]	Heartwood	Radhakrishnan <i>et al</i> ., 1965
Artocarpetin [238]	Heartwood	Venkataraman, 1972
Artocarpetin A [239]	Root bark	Lin <i>et al</i> ., 1995
Artocarpetin B [240]	Root	Chung <i>et al</i> ., 1995
Artocarpin [149]	Heartwood	Radhakrishnan <i>et al</i> ., 1965
Artocarpine [241]	Root bark	Feng <i>et al</i> ., 1998
Artoflavanone [242]	Root	Dayal and Seshadri, 1974
Artonin A [208]	Root bark	Hano <i>et al</i> ., 1989

Plant and chemical compound	Plant part	Reference
Artonin B [200]	Poot bark	Hano et al. 1080
Artonin C [203]	Root bark	Hano Aida and Nomura 1000a
Artonin D [244]	Root bark	Hano, $et al. 1000a$
Artonin J [245]	Root bark	Hano et al., 1990a
Artonin I [246]	Root bark	Aida at al., 1909
Artonin K [169]	Root bark	Aida et al., 1995
Artonin K [106]	Root bark	Aida et al., 1993
Artonin L [247]	Root bark	
Artonin Q [248]	Bark	Alda et al., 1994
Artonin R [249]	Bark	Aida et al., 1994
Artonin S [250]	Bark	Aida <i>et al.</i> , 1994
Artonin T [251]	Bark	Aida <i>et al</i> ., 1994
Artonin U [252]	Bark	Aida <i>et al.</i> , 1994
Artonin X [253]	Bark	Shinomiya <i>et al</i> ., 1995
Catechin [215]	Leaf	Yamazaki <i>et al</i> ., 1987
Cudraflavone A [175]	Root bark	Lin <i>et al</i> ., 1995
Cyanomaclurin [254]	Heartwood	Radhakrishnan <i>et al</i> ., 1965
Cycloartocarpesin [213]	Heartwood	Pathasarathy et al., 1969
Cycloartocarpin [180]	Heartwood	Venkataraman, 1972
Cycloartocarpin A [255]	Root bark	Lu and Lin, 1994
Cycloheterophyllin [256]	Bark	Rao <i>et al</i> ., 1971
	Root bark	Hano <i>et al</i> ., 1989
Cycloheterophyllin diacetate	Root bark	Feng <i>et al</i> ., 1998
[257]		
Cycloheterophyllin peracetate	Root bark	Feng <i>et al</i> ., 1998
[258]		
Dihydromorin [191]	Heartwood	Venkataraman, 1972
Heteroartonin A [259]	Root bark	Chung <i>et al</i> ., 1995

Plant and chemical compound	Plant part	Reference
Heteroflavanone A [260]	Root bark	Lu and Lin, 1993
Heteroflavanone B [261]	Root bark	Lu and Lin, 1993
Heteroflavanone C [262]	Root bark	Lu and Lin, 1994
Heterophyllin [263]	Root bark	Hano <i>et al</i> ., 1989
Heterophyllol [264]	Root bark	Lu and Lin, 1993
Isocycloheterophyllin [265]	Bark	Rao, Varadan and
		Venkataraman, 1973
Kuwanon R [266]	Root bark	Shinomiya <i>et al</i> ., 1995
Kuwanon T [267]	Root bark	Shinomiya <i>et al</i> ., 1995
Morin [195]	Heartwood	Radhakrishnan <i>et al</i> ., 1965;
		Pathasarathy <i>et al</i> ., 1969;
		Mu and Li, 1982
Morin-calcium-chelate [195]	Heartwood	Mu and Li, 1982
Norartocarpetin [198]	Heartwood	Radhakrishnan <i>et al</i> ., 1965
Norartocarpin [230]	Heartwood	Venkataraman, 1972
Oxydihydroartocarpesin [268]	Heartwood	Pathasarathy <i>et al</i> ., 1969
Procyanidin B-3 [269]	Leaf	An <i>et al</i> ., 1992
Procyanidin C-1 [270]	Leaf	An <i>et al</i> ., 1992
ลถาบน	วทยบรก	15
Artocarpus hirsuta	с <u>А</u>	0
Artocarpanone [236]	Heartwood	Venkataraman, 1972
Artocarpesin [148]	Heartwood	Venkataraman, 1972
Artocarpetin [238]	Heartwood	Venkataraman, 1972
Artocarpin [149]	Heartwood	Venkataraman, 1972
Cyanomaclurin [254]	Heartwood	Venkataraman, 1972
Cycloartocarpesin [213]	Heartwood	Venkataraman, 1972

Plant and chemical compound	Plant part	Reference
Cycloartocarpin [180]	Heartwood	Venkataraman, 1972
Dihydromorin [191]	Heartwood	Venkataraman, 1972
Morin [195]	Heartwood	Venkataraman, 1972
Norartocarpetin [198]	Heartwood	Venkataraman, 1972
Oxydihydroartocarpesin [268]	Heartwood	Venkataraman, 1972
Artogornup integor		
Artocarpagone [236]	Heartwood	Pendse et al. 1076
Artocarpesin [148]	Heartwood	Pendse et al., 1976
Artocarpetin [238]	Heartwood	Pendse et al., 1976
Catechin [215]	Leaf	Vamazaki <i>et al.</i> 1087
Chaplashin [212]	Heartwood	Pendse et al. 1076
Cycloartocarpesin [213]	Heartwood	Pendse et al. 1976
Cycloartocarpin [180]	Heartwood	Pendse et al. 1076
Cyclointearin [271]	Heartwood	Pendse <i>et al.</i> , 1976
Cvanomaclurin [254]	Heartwood	Pendse <i>et al.</i> , 1976
Dihvdromorin [191]	Heartwood	Pendse <i>et al.</i> , 1976
Integrin [229]	Heartwood	Pendse <i>et al.</i> , 1976
Morin [195]	Heartwood	Pendse <i>et al.</i> , 1976
Norartocarpetin [198]	Heartwood	Pendse <i>et al.</i> , 1976
Oxydihydroartocarpesin [268]	Heartwood	Pendse <i>et al</i> ., 1976
Oxyisocyclointegrin [272]	Heartwood	Pendse <i>et al.</i> , 1976
		, ,
Artocarpus lakoocha		
Artocarpin [149]	Heartwood	Venkataraman, 1972

Plant and chemical compound	Plant part	Reference
Cycloartocarpin [180] 5.7-Dihydroxyflayone-3-0- <i>α</i> -L-	Heartwood Root bark	Venkataraman, 1972 Chauhan and Kumari, 1979a
rhamnoside [273]		
5-Hydroxy-7-2'-4'-trimetroxyflavone [274]	Stemwood	Pavaro and Reutrakul, 1976
Galangin-3-0- <i>a</i> -L-(-)-rhamnopyranoside [275]	Root bark	Chauhan and Kumari, 1979a
Galangin-3-0- β -D-galactopyranosyl-(1 \rightarrow 4)-	Root bark	Chauhan, Kumari and
α-L-rhamnopyranoside [276]		Saraswat, 1979b
Kaempferol-3-0- β-D-xylanopyranoside [277]	Root bark	Chauhan <i>et al</i> ., 1982
Norartocarpin [230]	Heartwood	Venkataraman, 1972
Norcycloartocarpin [278]	Heartwood	Venkataraman, 1972
Quercetin-3-0- α -L-rhamnopyranoside [279]	Root bark	Chauhan <i>et al</i> ., 1982
Artocarpus lanceifolius		
Artelasticin [221]	Heartwood	Syah <i>et al</i> ., 2001
Artelastofuran [226]	Heartwood	Syah <i>et al</i> ., 2001
Artobiloxanthone [147]	Bark	Hakim, 2002
Artoindonesianin G [280]	Heartwood	Syah <i>et al</i> ., 2001
Artoindonesianin H [281]	Heartwood	Syah <i>et al</i> ., 2001
Artoindonesianin I [282]	Heartwood	Syah <i>et al</i> ., 2001
Artoindonesianin P [283]	Bark	Hakim, 2002
Artonol B [171]	Bark	Hakim, 2002
Cycloartobiloxanthone [179]	Bark	Hakim, 2002
Artocarpus nobilis		
Artobilochromen [284]	Bark	Pavanasasivam, Sultanbawa
		and Mageswaran, 1974;
		Kumar <i>et al</i> ., 1977;
		Sultanbawa and
		Surendrakumar, 1989
		Kumar <i>et al.</i> , 1977; Sultanbawa and Surendrakumar, 1989

Table 3 (continued)

Plant and chemical compound	Plant part	Reference
Artobilovanthone [147]	Bark	Sultanbawa and
	Dark	Surendrakumar 1080
Chromanaartabilaabraman A [295]	Trunk bork	Kumar at al. 1077
Chromanoartabilochromen R [205]		Rumai et al., 1977
Chromanoanopilochromen B [200]		
		Rumar <i>et al.</i> , 1977
Chromanoartobilochromene [287]	Bark	Pavanasasıvam et al., 1974
Cycloartobiloxanthone [179]	Bark	Pavanasasivam <i>et al</i> ., 1974
(-)-Dihydrofuranoartobilochromen A [288]	Trunk bark	Kumar <i>et al</i> ., 1977
(-)-Dihydrofuranoartobilochromen B-1 [289]	Trunk bark	Kumar <i>et al</i> ., 1977
(-)-Dihydrofuranoartobilochromen B-2 [290]	Trunk bark	Kumar <i>et al</i> ., 1977
Furanoartobilochromen A [291]	Bark	Pavanasasivam <i>et al</i> ., 1974
Furanoartobilochromen B-1 [292]	Bark	Pavanasasivam <i>et al</i> ., 1974
Furanoartobilochromen B-2 [293]	Bark	Pavanasasivam <i>et al</i> ., 1974
2',4',4-Trihydroxy-3'-geranylchalcone [294]	Leaf	Fujimoto <i>et al</i> ., 2004
2',4',4-Trihydroxy-3'-[6-hydroxy-3,7-	Leaf	Fujimoto <i>et al.</i> , 2004
dimethyl-2(E),7-octadiethyl] chalcone [295]	<u>A</u>	J
2',4',4-Trihydroxy-3'-[2-hydroxy-7-methyl-	Leaf	Fujimoto <i>et al</i> ., 2004
3-methylene-6-octaethyl] chalcone [296]		
2',3,4,4'-Tetrahydroxy-3'-geranylchalcone	Leaf	Fujimoto <i>et al</i> ., 2004
[297]		
2',3,4,4'-Tetrahydroxy-3'-[6- hydroxy-3,7-	Leaf	Fujimoto <i>et al</i> ., 2004
dimethyl-2(E),7-octadiethyl] chalcone [298]		
Oxydihydromorusin [299]	Trunk bark	Kumar <i>et al</i> ., 1977;
		Fukai and Nomura, 1993
Artocarpus pithecogalla		
Morin [195]	Heartwood	Mu and Li, 1982
Morin-calcium-chelate [195]	Heartwood	Mu and Li, 1982

Plant and chemical compound	Plant part	Reference	
Artocarpus rigida			
Artobiloxanthone [147]	Stem Bark	Hano, Inami and Nomura, 1990	
Artonin E [158]	Stem Bark	Hano <i>et al.</i> , 1990	
Artonin G [300]	Stem Bark	Hano <i>et al.</i> , 1990	
Artonin H [301]	Stem Bark	Hano <i>et al</i> ., 1990	
Artonin M [302]	Stem Bark	Hano <i>et al</i> ., 1990	
Artonin N [303]	Stem Bark	Hano <i>et al</i> ., 1990	
Artonin O [304]	Stem Bark	Hano <i>et al</i> ., 1990	
Artonin P [305]	Stem Bark	Hano <i>et al</i> ., 1990	
Cycloartobiloxanthone [179]	Stem bark	Hano <i>et al</i> ., 1990	
Artocarpus rotundo			
Artoindonesianin L [306]	Root bark	Suhartati <i>et al</i> ., 2001	
Artonin E [158]	Root bark	Suhartati <i>et al</i> ., 2001	
Artonin M [302]	Root bark	Suhartati <i>et al</i> ., 2001	
Artonin O [304]	Root bark	Suhartati <i>et al</i> ., 2001	
Cycloartobiloxanthone [179]	Root bark	Suhartati <i>et al.</i> , 2001	
		05	
Artocarpus teysmanii		1 d	
Artoindonesianin C [307]	Root bark	Makmur <i>et al</i> ., 2000	
Artonin J [246]	Root bark	Makmur <i>et al</i> ., 2000	
Cycloartobiloxanthone [179]	Root bark	Makmur <i>et al</i> ., 2000	
<i>Artocarpus tonkinensis</i> Artotonkin [308]	Stem bark	Lien <i>et al</i> ., 1988	

Plant and chemical compound	Plant part	Reference
Artocarpus venenosa		
Paratocarpin A [309]	Stem bark	Nomura, Hano and
		Aida, 1998
Paratocarpin B [310]	Stem bark	Nomura <i>et al</i> ., 1998
Paratocarpin C [311]	Stem bark	Nomura <i>et al</i> ., 1998
Paratocarpin D [312]	Stem bark	Nomura <i>et al</i> ., 1998
Paratocarpin E [313]	Stem bark	Nomura <i>et al</i> ., 1998
Paratocarpin F [314]	Stem bark	Nomura <i>et al</i> ., 1998
Paratocarpin G [315]	Stem bark	Nomura <i>et al</i> ., 1998
Paratocarpin H [316]	Stem bark	Nomura <i>et al</i> ., 1998
Paratocarpin I [317]	Stem bark	Nomura <i>et al</i> ., 1998
Paratocarpin J [318]	Stem bark	Nomura <i>et al</i> ., 1998
Paratocarpin K [319]	Stem bark	Nomura <i>et al</i> ., 1998
Paratocarpin L [320]	Stem bark	Nomura <i>et al</i> ., 1998

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย Table 4 Distribution of triterpenoids in Artocarpus spp.

Plant and chemical compound	Plant part	Reference
Artocarnus altilis		
α-Amyrin [321]	Latex	Ultee, 1949
α -Amyrin acetate [322]	Fruit	Altman and Zito, 1976
β-Amyrin acetate [323]	Latex	Ultee, 1949
Cycloart-23-ene-3 β -25-diol [324]	Fruit	Altman and Zito, 1976
Cycloart-24-ene-3 β -ol [325]	Fruit	Altman and Zito, 1976
Cycloart-25-ene-3 <i>β</i> -24-diol [326]	Fruit	Altman and Zito, 1976
Cycloartenol [325]	Stem Bark	Pavanasasivum and Sultanbawa,
(Cycloart-24-ene-3 β -ol)		1973
Cycloartenone [327]	Stem Bark	Pavanasasivum and Sultanbawa,
		1973
Cycloartenyl acetate [328]	Stem Bark	Pavanasasivum and Sultanbawa,
		1973
Lupeol acetate [329]	Root bark	Shieh and Lin, 1992
Artocarpus champeden	a land	6
Cycloartenone [327]	Stem bark	Achmad <i>et al.</i> , 1996
Cycloeucalenol [330]	Stem bark	Achmad <i>et al.</i> , 1996
Glutinol [331]	Stem bark	Achmad <i>et al.</i> , 1996
24-Methylenecycloartenone [332]	Stem bark	Achmad <i>et al.</i> , 1996
	6	U U
Artocarpus chapiasha	Stom bork	Mahata Daparias and
Cycloanenyi acelale [320]	Stem bark	
langual artanal agatata [222]	Ctom bork	
Isocycloartenol acetate [333]	Stem bark	
Lupeoi acetate [329]	Stem bark	Manato <i>et al.</i> , 1971
Artocarpus elasticus		
β-Amyrin acetate [323]	Latex	Ultee, 1949

Table 4 (continued)

Plant and chemical compound	Plant part	Reference
Lupeol acetate [329]	Latex	Ultee, 1949
Artocarpus gomezianus		
Lupeol acetate [329]	Leaf	Kingroungpet, 1994
Simiarenol [334]	Leaf	Kingroungpet, 1994
Artocarpus heterophyllus		
Cycloartenone [327]	Fruit	Nath and Mukherjee, 1939;
		Barton, 1951
	Stem bark	Pavanasasivum and
		Sultanbawa, 1973
	Root	Dayal and Seshadri, 1974
	Latex	Barik <i>et al</i> ., 1994
Betulin [335]	Root bark	Lu and Lin, 1994
Betulinic acid [336]	Root	Dayal and Seshadri, 1974
A SECOND SECOND	Root bark	Lu and Lin, 1994
Butyrospermol [337]	Fruit	Barton, 1951
Cycloartenol [325]	Fruit	Barton, 1951
	Wood	Nogueira and Correia, 1958
	Stem Bark	Pavanasasivam and
2 A	4	Sultanbawa, 1973
ลลาบนวท	Latex	Barik <i>et al</i> ., 1994
Cycloartenyl acetate [328]	Stem bark	Pavanasasivum and
จฬาลงกรณเ	เหาวเ	Sultanbawa, 1973
9,19-Cyclolanost-23-ene-3 β ,25-diol	Fruit	Kielland and Malterud, 1994
(Cycloart-23-ene-3,25-diol) [324]		
9,19-Cyclolanost-25-ene-3 β ,24-diol [326]	Fruit	Kielland and Malterud, 1994
9,19-Cyclolanost-3-one-24,25-diol [338]	Latex	Barik <i>et al</i> ., 1994
Ursolic acid [339]	Root	Dayal and Seshadri, 1974
	Root bark	Lu and Lin, 1994

Table 4 (continued)

Plant and chemical compound	Plant part	Reference
Artocarpus integer		
Cycloartenone [327]	Latex	Pant and Chaturvedi, 1989
Artocarpus lakoocha		
β-Amyrin acetate [323]	Stem Bark	Kapil and Joshi, 1960
Cycloartenol [325]	Stem Bark	Pavanasasivum and
		Sultanbawa, 1973
Cycloartenone [327]	Stem Bark	Pavanasasivum and
		Sultanbawa, 1973
Cycloartenyl acetate [328]	Stem Bark	Pavanasasivum and
		Sultanbawa, 1973
Lupeol [329]	Root bark	Chauhan and Kumari, 1979
Lupeol acetate [329]	Stem Bark	Kapil and Joshi, 1960
Artocarpus nobilis	erezely 1	
Cycloartenol [325]	Stem Bark	Pavanasasivum and
C.	Heartwood	Sultanbawa, 1973
Cycloartenone [327]	Stem Bark	Pavanasasivum and
	Heartwood	Sultanbawa, 1973
Cycloartenyl acetate [328]	Stem Bark	Pavanasasivum and
61 61 1 1 1 1 6 9 1	Heartwood	Sultanbawa, 1973
ลเหาลงกรณ์เ	แหล่าวิจ	แกล้ย

Table 5 Distribution of miscellaneous constituents in Artocarpus spp.

Plant and chemical compound	Category	Plant part	Reference
Artocarpus altilis			
<i>γ</i> -Aminobutyric acid [340]	Amino acid	Leaf	Durand <i>et al</i> ., 1962
Artocarbene [341]	Stilbene	Heartwood	Shimizu <i>et al</i> ., 1997
4-Prenyloxyresveratrol [342]	Stilbene	Heartwood	Shimizu <i>et al</i> ., 1997
β-sitosterol [138]	Steroid	Root bark	Shieh and Lin, 1992
Artocarpus chaplasha			
Oxyresveratrol [343]	Stilbene	Heartwood	Rao <i>et al</i> ., 1972
Resorcinol [344]	Benzenoid	Heartwood	Rao <i>et al</i> ., 1972
β-Resorcyaldehyde [345]	Benzenoid	Heartwood	Rao <i>et al</i> ., 1972
Resveratrol [346]	Stilbene	Heartwood	Rao <i>et al</i> ., 1972
β-sitosterol [138]	Steroid	Stem bark	Mahato <i>et al</i> ., 1971
Artocarpus dadah	an and the second second		
Dadahol A [347]	Neolignan	Twig	Su <i>et al.</i> , 2002
Dadahol B [348]	Neolignan	Twig	Su <i>et al.</i> , 2002
3-(2,3-Dihydroxy-3-methylbutyl)-	Stilbene	Stem bark	Su <i>et al.</i> , 2002
resveratrol [349]			
3-(γ , γ -Dimethylally) oxyresveratrol	Stilbene	Stem bark	Su <i>et al</i> ., 2002
[350]	JNEU		
$3-(\gamma,\gamma$ -Dimethylally) resveratrol	Stilbene	Stem bark	Su <i>et al</i> ., 2002
[351]	หม่า	BILLI	BBI
3-(γ , γ -Dimethylpropenyl) moracin M	Stilbene	Stem bark	Su <i>et al.</i> , 2002
[352]			
Moracin M [353]	Stilbene	Twig	Su <i>et al</i> ., 2002
Oxyresveratrol [343]	Stilbene	Stem bark	Su <i>et al</i> ., 2002
		Twig	
Resveratrol [346]	Stilbene	Twig	Su <i>et al.</i> , 2002

Plant and chemical compound	Category	Plant part	Reference
Artocarpus elasticus			
β-sitosterol [138]	Steroid	Heartwood	Pendse <i>et al.</i> , 1976
Artocarpus gomezianus			
Andalasin [354]	Stilbene	Root	Likhitwitayawuid and
			Sritularak, 2001
Arbutin [355]	Phenolic	Leaf	Kingroungpet, 1994
	glycoside		
Artogomezianol [356]	Stilbene	Root	Likhitwitayawuid and
	13 Ga 4		Sritularak, 2001
Artoindonesianin N [357]	Stilbene	Bark	Hakim <i>et al</i> ., 2002
Artoindonesianin O [358]	Stilbene	Bark	Hakim <i>et al</i> ., 2002
1-Dotriacontanol [359]	Alcohol	Leaf	Kingroungpet, 1994
Mesoerythritol [360]	Phenolic	Heartwood	Venkataraman, 1972
	compound		
Phenyl- <i>β</i> -naphthylamine [361]	Naphthalene	Root	Likhitwitayawuid <i>et al</i> ., 2000
Resorcinol [344]	Benzenoid	Root	Sritularak, 1998
Resveratrol [346]	Stilbene	Root	Likhitwitayawuid <i>et al</i> ., 2000
β-sitosterol [138]	Steroid	Leaf	Kingroungpet, 1994
Stigmasterol [43]	Steroid	Root	Sritularak, 1998
			0
Artocarpus heterophyllus	ณ่มห	าวิทย	ยาลย
Acetylcholine [362]	Amine	Seed	Pereira, Medina and Bustos,
			1962

Table 5 (continued)

Plant and chemical compound	Category	Plant part	Reference
Artocarpus integra α -D-Galactose specific lectin [363]	Lectin	Seed	Suresh, Appukuttan and Basu, 1982
Artocarpus integrifolia lectin	Lectin	Seed	Chatterjee, Sarkar and
[364]	s de la sec		Rao, 1982; Namjuntra and
			Culavatnatol, 1984
Artocarpus lectin CE-A-I [365]	Lectin	Seed	Ferreira <i>et al</i> ., 1992
Aurantiamide acetate [366]	Protein	Seed	Chakraborty and Mandal,
			1981
9-Hydroxytridecyl docosanoate	Lipid	Root bark	Lu and Lin, 1994
[367]	13 200 4		
4-Hydroxyundecyl docosanoate	Lipid	Latex	Pant and Chaturvedi,1989
[368]			
Jacalin [369]	Lectin	Seed	Hagiwara <i>et al</i> ., 1988
			Ferreira <i>et al</i> ., 1992
Lymphoagglutinin [370]	Lectin	Seed	Arora <i>et al</i> ., 1987
Recinoleic acid [371]	Lipid	Seed oil	Daulatabad and Mirajkar,
			1989
β-sitosterol [138]	Steroid	Heartwood	Pathasarathy <i>et al</i> ., 1969
	0	Root	Dayal and Seshadri, 1974
	โวทยา	Root bark	Lu and Lin, 1994
ณฑาณงกร	อเมพ	าวทย	าลย
Artocarpus hirsuta			
Lymphoagglutinin [370]	Lectin	Seed	Arora <i>et al</i> ., 1987
Artocarpus integer			
Artocarbene [341]	Stilhene	Aerial nart	Boonlaksiri <i>et al.</i> 2000

Table 5 (continued)

Plant and chemical compound	Category	Plant part	Reference
Artocarpus lectin C [372]	Lectin	Seed	Hashim, Gendeh and Jaafar, 1992
4-Hydroxyundecyl docosanoate	Lipid	Latex	Pant and Chaturvedi,1989
[368]	And the second second		
4-Methoxy-2,2-dimethyl-6-(2-(2,4-	Stilbene	Aerial part	Boonlaksiri <i>et al</i> ., 2000
dihydroxy) phenyl-trans-ethenyl)			
chromene [373]			
4-Prenyloxyresveratrol [374]	Stilbene	Aerial part	Boonlaksiri <i>et al</i> ., 2000
β-sitosterol [138]	Steroid	Heartwood	Pendse <i>et al</i> ., 1976
trans-4-Isopentenyl-3,5,2',4'-	Stilbene	Aerial part	Boonlaksiri <i>et al</i> ., 2000
tetrahydroxystilbene [374]	TO A		
trans-4-(3-Methyl-E-but-1-enyl)-	Stilbene	Aerial part	Boonlaksiri <i>et al</i> ., 2000
3,5,2',4'-tetrahydroxystilbene [375]	NAVA IN		
	States of the states		
Artocarpus lakoocha	2007/32/22		
ALA-I [376]	Isolectin	Seed	Wongkham <i>et al</i> ., 1995
ALA-II [377]	Isolectin	Seed	Wongkham <i>et al</i> ., 1995
Artocarpus lakoocha lectin [378]	Lectin	Seed	Chatterjee <i>et al</i> ., 1982
Lakoochins A [379]	Stilbene	Root	Puntumchai <i>et al</i> .,2004
Lakoochins B [380]	Stilbene	Root	Puntumchai <i>et al</i> .,2004
Lymphoagglutinin [370]	Lectin	Seed	Arora <i>et al</i> ., 1987
Oxyresveratrol [343]	Stilbene	Heartwood	Venkataraman, 1972;
			Likhitwitayawuid and
			Sritularak, 2001
Resorcinol [344]	Benzenoid	Heartwood	Venkataraman, 1972
Resveratrol [346]	Stilbene	Heartwood	Venkataraman, 1972
β-sitosterol [138]	Steroid	Root bark	Chauhan and Kumari, 1979

Table 5 (continued)

Plant and chemical compound	Category	Plant part	Reference
<i>Artocarpus lignanensis</i> Artocarpus lectin [381]	Lectin	Seed	Zhang <i>et al</i> ., 1999
Artocarpus masticatus			
Artocarpus lectin AM [382]	Lectin	Seed	Blasco <i>et al.</i> , 1996
Artocarpus melinoxylus			
Artocarpus lectin AME [383]	Lectin	Seed	Blasco <i>et al.</i> , 1996
Artocarpus rigida	10 20 A		
Artocarpol A [384]	Phenolics	Root bark	Ko, Lin, and Yang, 2001
Artocarpol C [385]	Phenolics	Root bark	Ko <i>et al</i> ., 2001
Artocarpol D [386]	Phenolics	Root bark	Ko <i>et al</i> ., 2001
Artocarpol E [387]	Phenolics	Root bark	Ko <i>et al</i> ., 2001
Artocarpol F [388]	Phenolics	Root bark	Ko <i>et al</i> ., 2001
	Les Vagas		

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Pinocembrin [1]

2',4'-Dihydroxy-4,6'-dimethoxychalcone [2]

OC⊢

ö

2'-Hydroxy-4,4',6'-trimethoxychalcone [4]

ÓН

H₃CO

OCH₃

2',4'-Dihydroxy-4,6'-dimethoxy

dihydrochalcone [3]

2'-Hydroxy-4,4',6'-trimethoxy

H₃CO OCH₃ O

Narigenin trimethyl ether [6]

rel-(1 β ,2 α) Di-(2,4-dihydroxy-6-methoxy benzoyl)-(3 β ,4 α)-di-(4-methoxy phenyl)-cyclobutane **[7]**

2',4,4'-Trihydroxy-6'-methoxy dihydrochalcone [8]

HO

tetramethoxyflavone [11]

5-Hydroxy-3,7,3',4'-

tetramethoxyflavone [13]

Pachypodol [15]

Annulatin [18]

5,7,3',4'-Tetrahydroxy-3-

methoxyflavone [17]

O NH

(-)-Anolobine [19]

Goniodiol-7-monoacetate [21]

Goniotriol [23]

(-)-Anonaine [20]

Goniodiol-8-monoacetate [22]

Liriodenine [24]

Figure 3 Structures of compounds previously isolated from Goniothalamus spp. (continued)

Palmatine [25]

(+)-Goniothalamin [27]

(-)-Tetrahydropalmatine [26]

5-Acetoxyisogoniothalamin oxide [28]

3-Acetylaltholactone [29]

Almuheptolide-A [30]

Figure 3 Structures of compounds previously isolated from Goniothalamus spp. (continued)

(+)-Annonacin [57]

(-)-Iso-5-Deoxygoniopypyrone [59]

Isogoniothalamin epoxide [61]

(+)-Goniothalamine epoxide [63]

(+)-5-Deoxygoniopypyrone [58]

(-)-Iso-5-Deoxygoniopypyrone acetate [60]

(+)-Goniodiol diacetate [62]

cis-Goniodonin [64] and 34-*epi-cis*-Goniodonin [65]

Figure 3 Structures of compounds previously isolated from Goniothalamus spp. (continued)

Figure 3 Structures of compounds previously isolated from Goniothalamus spp. (continued)

Figure 3 Structures of compounds previously isolated from Goniothalamus spp. (continued)

Figure 3 Structures of compounds previously isolated from Goniothalamus spp. (continued)

Figure 3 Structures of compounds previously isolated from Goniothalamus spp. (continued)

5-Hydroxy-3-amino-2-aceto-

1,4-napthoquinone [128]

Marcanine B [130]

Marcanine D [132]

Scornazanone [134]

Marcanine A [129]

Marcanine C [131]

Marcanine E [133]

5-Acetoxyisogoniothalamin oxide [135]

Figure 3 Structures of compounds previously isolated from Goniothalamus spp. (continued)

Figure 3 Structures of compounds previously isolated from Goniothalamus spp. (continued)

Artocarpesin [148]

HO

ÒН

HO

Artocarpus chalcone AC-3-1 [150]

Artocarpin [149]

HO

 \sim

OH

ЮH

ÓН

.OH

Artocarpus chalcone AC-3-2 [151]

Artocarpus chalcone AC-5-1 [152]

Artocarpus chalcone I [153]

Artocarpus flavone AC-3-3 [154]

Artocarpus flavone KB-1 [156]

Artocarpus flavone KB-3 [158]

(Artonin E)

HO

ö

ÓН

OH

ЮH

`OH

HO

Ö ÓН

Artomunoflavanone [162]

Artomunoxanthentrione [164]

ö ÓН

OH Ö

Artonin K [168]

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

HO

OCH₃

ЮH

Cycloaltilisin 7 [178]

Cycloartocarpin [180]

Cycloartomunoxanthone [182]

Cyclocommunol [184]

Cycloartobiloxanthone [179]

Cycloartomunin [181]

Cyclocommunin [183]

Cyclocommunomethonol [185]

Cyclomorusin [186]

Dihydroartomunoxanthone [188]

Dihydroisocycloartomunin [190]

Cyclomulberrin [187]

Dihydrocycloartomunin [189]

Dihydromorin [191]

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

Artocarpanone [236]

Afzelechin($4\alpha \rightarrow 8$)-catechin [235]

ÔH

OCH₃

Artocarpanone A [237]

OH O

H₃CO

Artocarpetin A [239]

Artocarpetin B [240]

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

Heteroflavanone B R1= Me [261]

Heteroflavanone C R1= H [262]

Heterophyllol [264]

Kuwanon R [266]

Morin-calcium-chelate [195]

Isocycloheterophyllin [265]

Oxydihydroartocarpesin [268]

OH

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

ÓН

Ö

Chromanoartobilochromen A [285]

QН

OH

Chromanoartobilochromene [287]

(-)-Dihydrofuranoartobilochromen B-1 [289]

Furanoartobilochromen A [291]

(-)-Dihydrofuranoartobilochromen A [288]

Furanoartobilochromen B-1 [292]

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

Furanoartobilochromen B-2 [293]

2',4',4-Trihydroxy-3'-geranylchalcone [294]

2',4',4-Trihydroxy-3'-[6-hydroxy-3,7- dimethyl-2(E),7-octadiethyl]chalcone [295]

2',4',4-Trihydroxy-3'-[2-hydroxy-7- methyl-3-methylene-6-octaenyl]chalcone [296]

OH

2',3,4,4'-Tetrahydroxy-3'-geranyl-

chalcone [297]

Oxydihydromorusin [299]

2',3,4,4'-Tetrahydroxy-3'-[6-hydroxy-3,7-

dimethyl-2(E),7-octadienyl]chalcone [298]

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

Paratocarpin J [318]

Paratocarpin L [320]

α-Amyrin acetate [322]

Cycloart-23-ene-3*β*,25-diol [324]

Paratocarpin K [319]

α-Amyrin [321]

β- Amyrin acetate [323]

Cycloart-24-ene-3β-ol [325]

Cycloart-25-ene-3β,24-diol [326]

Cycloartenyl acetate [328]

24-Methylenecycloartenone [332]

0

Cycloartenone [327]

Ĥ

Lupeol acetate [329]

ŅН

OH

ŅН

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

ŌН

OН

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

Figure 4 Structures of compounds previously isolated from Artocarpus spp. (continued)

3. Traditional uses and biological activities of Goniothalamus spp.

Ethnobotanical uses of several species of the genus Goniothalamus are well known in many countries. In folk medicine of Malaysia, G. macrophyllus has been used to treat hypertension, swelling and to invigorate women after childbirth (Goh et al., 1999). Other reported uses of G. macrophyllus are antimalarial, antipyretic and abortifacient property (Nijila et al., 2002). G. scortechinii is used for antipyretic and antimalarial properties (Kamel et al., 2002). The seeds of G. amuyon are reported to be useful for the treatment of edema and rheumatism (Lan et al., 2003). G. borneensis and G. andersonii have been used as a mosquito repellent by the natives in Sabah, East Malaysia (Cao et al., 1998). G. umbrosus has abortifacient and anti-cancer property. In China, the stem bark of G. griffithii is applied as pesticidal agents (Chen and Yu, 1999). In Thailand, the G. tenuifolius stem bark is tonic (Likhitwitayawuid et al., 2006). In Borneo, Goniothalamus spp. are widely used in the practice of traditional medicine especially in treating diarrhea, fever, skin diseases, antidotes and most commonly used as postparturation aid and abortifacient. Some of the species are also used as natural insecticide (Fassihuddin, 2004).

Many plants of the genus *Goniothalamus* have provided bioactive acetogenins, alkaloids, styryllactones and flavonoids. Styryllactones or their derivatives, which have been reported in almost all of the *Goniothalamus* species studied, are characteristic compounds of this genus (Cao *et al.*, 1998). The alkaloids produced by many *Goniothalamus* species, being part of the Annonaceae family, are notably aporphines, some of which are known to be biologically active (Mix *et al.*, 1982).

Many bioactive styryllactones that have been isolated from *Goniothalamus* spp. exhibited antitumor activity (Zhang *et al.*, 1999b). Among them, goniopypyrone and altholactone are the most cytotoxic styryllactones (Mereyala and Joe, 2001). Some styryllactone derivatives exhibited strong anti-proliferative activity in MCF-7 and MDA-MB-231 cell lines (Hawariah and Stanslas, 1998). Tetrahydroxy-monotetrahydrofuran fatty acid-lactone (acetogenin) has been isolated from ethanolic extracts of the stem bark of *G. giganteus*. This compound was found to be cytotoxic,

insecticidal and inhibited the formation of crown gall tumors on potato disc (Alkofahi *et al.*, 1988).

According to Fassihuddin in 2004, some of the alkaloids isolated from *Goniothalamus* species including goniopedaline, aristolactam AII, aristolactam BII and velutinam showed cytotoxicity on various human tumor cell lines.

In 2006, there has been a report describing the presence of flavonoids in the leaves of *G. tenuifolius*, which showed free radical scavenging activity on the DPPH decoloration test (Likhitwitayawuid *et al.*, 2006).

4. Traditional uses and biological activities of Artocarpus spp.

Plants of the genus *Artocarpus* have been widely used in traditional medicine in many countries. In Trinidad and Bahamas, *Artocarpus altilis*, a decoction of the breadfruit leaf is used to lower blood pressure and relieve asthma. Crushed leaves are applied on the tongue as a treatment for thrush. The leaf juice is employed as ear-drops. Ashes of burned leaves are used on skin infection. A powder of roasted leaves is employed as a remedy for enlarged spleen. The crushed fruit is poulticed on tumors to ripen them. Toasted flowers are rubbed on the gum around an aching tooth. The latex is used on skin diseases and is bandaged on the spine to relieve sciatica. Diluted latex is taken internally to overcome diarrhea. In Indonesia, the flower of *A. altilis* or breadfruit is used against parulis (Fukai *et al.*, 2003). The ashes of the leaves with coconut oil and curcuma are used on skin disease with creeps like herpes. The fruit meat is used for cough, the root bark for diarrhea and dysentery, the seeds for aphrodisiac. In the Philippines, a decoction of the bark is used to treat stomachache and vulnerary. In New Guinea, the latex is taken to treat dysentery (Perry, 1980).

A. heterophyllus (*A. integrifolia* Linn.), or Jackfruit plant, has edible fruit. Its seeds are nutritious and widely used as a food source. Antitryptic and antichymotryptic activities of the crude extract of jackfruit seeds have been reported (Kundu *et al.*, 1989). The pulp and seeds are tonic, cooling and pectorial. Its roots are used for treating diarrhea and fever. Leaf ash is applied to ulcers and wounds (Khan *et al.*, 2003). In Burma, China and Philippines, the sap is used to treat ulcers

and abscess. In Malaysia and Peninsular, the bark is employed as poultices. In Indo-China, the wood is used as a sedative in convulsions. The boiled leaves are used to activate the secretion of milk in women and animals, as antisyphilitic and vermifuge (Perry, 1980).

In Indonesia, the sap from the wounded bark of *A. dadah* is used to clean foul leg-wounds. The strip of *A. elasticus* is applied as a bandage to treat lumbago. The leaves of *A. elasticus* with rice are applied to treat tuberculosis and the latex for the treatment of dysentery. In Indo-China, the latex of *A. rigidus* is used to treat the wound of domestic animals. The boiled bark of *A. ovatus* is applied to treat stomachache. The fresh leaves of *A. rubrovenious* are taken to lower fevers. In Burma, the juice and seeds of *A. lakoocha* are purgative and the bark is astringent. Its heartwood is applied as the eradication of tapeworms. The crude extract of roots is used for antimycobacterial activity (Perry, 1980).

Prenylated flavones from *Artocarpus* species were shown to be a source of interesting biological activities including cytotoxic (Liou *et al.*, 1993), anticomplementary (Nascimento *et al.*, 1997), anti-platelet (Lin *et al.*, 1993) and antimicrobial (Sato *et al.*, 1996) activities. They have also been described as inhibitors of arachidonate 5-lipoxygenase (Reddy *et al.*, 1991) and TNF- α releasing (Nomura *et al.*, 1998). The natural prenylated flavones isolated from *A. elasticus* were found to have antiproliferative activity. Artelastin has been found to exhibit the highest antiproliferative activity of prenylated flovones from *A. elasticus* (Cerqueira *et al.*, 2003). Flavones from the heartwood of *A. heterophyllus* showed intensive antibacterial, antiplatelet and antidiabetic activities (Khan *et al.*, 2003). Flavonoid derivatives isolated from *A. gomezianus* possessed potent tyrosinase inhibitory activity (Likhitwitayawuid, Sritularak and De-EKnamkul, 2000).

CHAPTER III

EXPERIMENTAL

1. Sources of Plant Materials

The leaves of *Goniothalamus tenuifolius* King were collected from Kaengkrachan, Phetchaburi province, Thailand. The heartwood of *Artocarpus gomezianus* Wall. ex Tre'c. was collected from Trang province, Thailand. The plant was identified by comparison with herbarium specimens in the Botany Section, Technical Division, Department of Agriculture, Ministry of Agriculture and Co-operatives, Bangkok, Thailand.

2. General Techniques

2.1 Analytical Thin-Layer Chromatography (TLC)

Technique	: /	One dimension, ascending		
Adsorbent	://	Silica gel 60 F ₂₅₄ (E. Merck) precoated plate		
Layer thickness	: /	0.2 mm		
Distance	:	6 cm		
Temperature	:	Laboratory temperature (30-35°C)		
Detection	:	1. Ultraviolet light at wavelengths of 254 and 365 nm		
		2. Anisaldehyde and heating at 105°C for 10 min		
2.2 Preparative Thin-Layer Chromatography (PLC)				
Technique		One dimension, ascending		
Adsorbent	:U	Silica gel 60 F ₂₅₄ (E. Merck) precoated plate		
Layer thickness		0.2 mm		
Distance	ЛП	15 cm		
Temperature	:	Laboratory temperature (30-35°C)		
Detection	:	Ultraviolet light at wavelengths of 254 and 365 nm		
2.3 Column Chromatography				

- - -

2.3.1 Vacuum liquid column chromatography

Adsorbent	:	Silica gel 60 (No. 7734) particle size 0.063-0.200 mm
		(70-230 mesh ASTM) (E. Merck)

Packing method	:	Dry packing			
Sample loading	:	The sample was dissolved in a small amount of			
		organic solvent, mixed with the adsorbent, triturated,			
		dried and then placed gently on top of the column.			
Detection	:	Fractions were examined by TLC observing under UV			
		light at the wavelengths of 254 and 365 nm			
2.3.2 Flash Column Chromatography					
Adsorbent	:	Silica gel 60 (No. 9385) particle size 0.040-0.063 mm			
		(230-400 mesh ASTM) (E. Merck)			
Packing method	:	Wet packing			
Sample loading	:	The sample was dissolved in a small amount of organic			
		solvent and then applied gently on top of the column.			
Detection	:	Fractions were examined by TLC observing under UV			
		light at the wavelengths of 254 and 365 nm			
2.3.3 Gel filtration Chromatography					
Gel filter	: /	Sephadex LH 20 (Pharmacia)			
Packing method	: //	Gel filter was suspended in the eluant and left standing			
		to swell for 24 hours prior to use. It was then poured			
		into the column and allowed to set tightly.			
Sample loading	:	The sample was dissolved in a small amount of organic			
		solvent and then applied gently on top of the column.			
Detection	: 0	Fractions were examined by TLC observing under UV			
		light at the wavelengths of 254 and 365 nm			
2.4 Spectroscopy					
2.4.1 Ultraviolet (UV) Absorption Spectra					

UV (in methanol) spectra were obtained on a MiltonRoy spectronic 3000 Array Spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.4.2 Infrared (IR) Absorption Spectra

IR spectra were recorded on a Perkin Elmer spectrum one FT-IR 1760 Spectrophotometer with UATR technique (Chulabhorn Research Institute)

91

2.4.3 Mass Spectra

Electron impact mass spectra (EIMS) were measured on a Finnigan Mat GCQ-Mass Spectrometer (Chulabhorn Research Institute). High Resolution mass spectra were obtained in the Time-of-flight technique (TOF) manner with a Bruker Daltonics mass spectrometer (Chulabhorn Research Institute).

2.4.4 Proton and Carbon-13 Nuclear Magnetic Resonance (¹H and ¹³C-NMR) Spectra

¹H-NMR (300 MHz), ¹³C-NMR (75 MHz), NOESY, COSY, HMQC spectra were obtained with a Bruker Avance DPX-300 FT-NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University). HMBC spectra was obtained with a JEOL JMN-A 500 NMR spectrometer (Scientific and Technological Research Equipment Center, Chulalongkorn University).

Solvents for NMR spectra were deuterated acetone (acetone- d_6), deuterated dimethylsulfoxide (DMSO- d_6) and deuterated chloroform (CDCl₃). Chemical shifts were reported in ppm scale using the chemical shift of the solvent as the reference signal.

2.5 Physical Properties

2.5.1 Optical Rotation

Optical rotations were measured on a Perkin Elmer 341 polarimeter (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.5.2 Circular Dichroism (CD) Spectra

CD Spectra were recorded on a JASCO J-715 spectropolarimeter (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.6 Solvents

All organic solvents employed throughout this work were of commercial grade and were redistilled prior to use.
3. Extraction and Isolation

3.1 Extraction and Isolation of Compounds from Goniothalamus tenuifolius

```
3.1.1 Extraction
```

The dried leaves of *Goniothalamus tenuifolius* (1.3 kg) were extracted four times with hexane (10 L, 3 days each) and then filtered. The filtrates were pooled and evaporated under reduced pressure at temperature not exceeding 40°C to yield a hexane extract (syrupy mass 29.4 g, 2.26% based on dried weight of leaves).

The marc was then extracted four times with ethyl acetate (10 L, 3 days each) and then filtered. The filtrates were pooled and evaporated under reduced pressure at temperature not exceeding 40°C to yield an ethyl acetate extract (syrupy mass 97.7 g, 7.51% based on dried weight of leaves).

Finally, the marc was extracted four times with methanol (10 L, 3 days each). Removal of the organic solvent gave a methanol extract (syrupy mass 114.7 g, 8.82% based on dried weight of leaves).

3.1.2 Isolation

The methanol extract was separated by vacuum liquid column chromatography using a sintered glass filter column of silica gel (No. 7734). The methanol extract (50 g) was dissolved in a small amount of methanol, triturated with silica gel (No. 7734) and dried under vacuum. Elution was performed in a polarity gradient manner with mixtures of methanol and dichloromethane (0.2:9.8 to 1:9) as the solvents. The eluants were collected 500 ml per fraction and examined by TLC (SiO₂) using 5% methanol in dichloromethane as developing solvent. Fractions with similar chromatographic patterns were combined to yield 8 fractions: fraction A (0.5 g), fraction B (3.0 g), fraction C (1.6 g), fraction D (2.0 g), fraction E (3.3 g), fraction F (6.6 g), Fraction G (9.1 g), Fraction H (22.8 g).

3.1.2.1 Isolation of Compound GT1

Fraction B (3.0 g) was separated by column chromatography using silica gel (No. 9385, 115 g) as the adsorbent. Gradient elution was performed using mixtures of ethyl acetate and hexane. Sixty fractions (50 ml, each) were collected and combined based on their chromatographic patterns (silica gel, ethyl acetate: hexane = 6:4) to yield 10 fractions (Fraction B1 to Fraction B10).

Fraction B9 (328 mg) was further separated on a column using silica gel (No. 9385, 65 g) as the adsorbent. Elution was performed in a polarity gradient manner with dichloromethane and methanol (9.8:0.2 to 9:1). Eluates with similar TLC behavior (silica gel, MeOH: CH_2CI_2 = 1:19) were combined to give 6 fractions (fraction B9-1 to fraction B9-6). Fraction B9-1 gave compound GT1 as pale yellow needles [3.4 mg, 2.61x10⁻⁴% based on dried weight of the leaves, Rf values= 0.14, silica gel, ethyl acetate: hexane (6:4)]. This compound was identified as 3,5,7,3',4'-pentamethoxyflavone [16].

3.1.2.2 Isolation of Compound GT2

Fraction C (1.6 g) was fractionated by column chromatography using silica gel (No. 9385, 65 g) as the adsorbent. Gradient elution was performed using mixtures of ethyl acetate and hexane (2:8 to 8:2). The eluates were collected and combined according to their TLC chromatographic patterns (silica gel, ethyl acetate: hexane= 6:4) to give 8 fractions (fraction C1 to fraction C8). Fraction C4 gave compound GT2 as pale yellow needles [4.9 mg, 3.77×10^{-4} % based on dried weight of the leaves, Rf values= 0.38, silica gel, ethyl acetate: hexane (6:4)]. This compound was identified as kumatakenin [14].

3.2 Extraction and Isolation of Compounds from Artocarpus gomezianus

3.2.1 Extraction

The dried and powdered heartwood of *Artocarpus gomezianus* (3.8 kg) was extracted with methanol four times (30 L, 3 days each) and then filtered. The filtrates were pooled and evaporated under reduced pressure at temperature not exceeding 40°C to yield a methanol extract (syrupy mass 160.4 g, 4.22 % based on dried weight of heartwood).

3.2.2 Isolation

The methanol extract was divided into two portions: A (80 g) and B (80.4 g). Each was dissolved in a small amount of methanol, triturated with silica gel (No. 7734) and dried under vacuum. It was then fractionated by vacuum liquid column chromatography using a sintered glass filter column of silica gel (No. 7734). Elution was performed in a polarity gradient manner with mixtures of ethyl acetate and hexane (2:8 to 8:2) as the solvents. The eluants were collected 500 ml per fraction and examined by TLC (SiO₂) using ethyl acetate: hexane (1:1) as developing solvent. Fractions with similar

chromatographic pattern were combined to yield 12 fractions (fraction A to fraction L).

3.2.2.1 Isolation of Isolate AG1

AG1 was obtained as colorless needles from fraction I through recrystallization from methanol [6.3 mg, 1.65×10^{-4} % based on dried weight of the heartwood, silica gel, Rf values= 0.38, ethyl acetate: hexane (4:6)]. This isolate was identified as a mixture of β -sitosterol and stigmasterol [138, 43].

3.2.2.2 Isolation of Compound AG2

Compound AG2 was obtained as a yellow powder from fractions A-H through recrystallization from ethyl acetate [108.7 mg, 2.86x10⁻³% based on dried weight of the heartwood, silica gel, Rf values= 0.44, ethyl acetate : hexane (4:6)]. This compound was identified as cycloartocarpin [180].

3.2.2.3 Isolation of Compound AG3

After recrystallization of compound AG2, the mother liquors from fractions A to H were combined, dried and then separated by column chromatography using silica gel (No. 9385) as the adsorbent. Elution was performed in a polarity gradient manner with ethyl acetate and hexane (2:8 to 5:5). Twenty-six fractions (30 ml each) were collected. The eluates were examined by TLC (SiO₂) using ethyl acetate: hexane (3:7) as the developing solvent. Fractions showing similar chromatographic patterns were combined to yield 5 major fractions: fractions 1-5, fractions 6-13, fractions 14-16, fractions 17-21, fractions 22-26.

The TLC chromatogram of fractions 1-5 showing only one spot under UV light at 254 nm [Rf values= 0.61, silica gel, ethyl acetate: hexane (4:6)]. These fractions were combined and dried under reduced pressure to give compound AG3 as a yellow powder (7.8 mg, 2.05x10⁻⁴% based on dried weight of the heartwood). This compound was identified as isocyclomorusin [175].

3.2.2.4 Isolation of Compounds AG4, AG5 and AG6

Fraction J (1.3 g) was fractionated by column chromatography using silica gel (No.9385) as the adsorbent. Elution was performed in a polarity gradient manner with ethyl acetate and hexane (3:7 to 7:3). Sixty-seven fractions (50 ml each) were collected and examined by TLC (SiO₂) using ethyl acetate: hexane (4:6) as the developing solvent. Fractions with similar chromatographic patterns were combined to

give 8 fractions: fraction J1 to fraction J8.

Fraction J4 (71.5 mg) was further separated by gel filtration chromatography using a column of Sephadex LH 20 with methanol as the eluant. Sixteen fractions were collected (25 ml per fraction) and combined according to their TLC chromatographic patterns (silica gel, ethyl acetate: hexane= 4:6) to yield 5 fractions: fraction J4-1 to fraction J4-5.

Fraction J5 (512 mg) was divided into four portions. Each portion was separated by gel filtration chromatography using a column of Sephadex LH 20 with methanol as the eluant. The eluates were collected 25 ml per fraction and examined by TLC (SiO₂) using ethyl acetate: hexane (4:6) as the developing system. Fractions with similar chromatographic pattern were combined to give 6 fractions: fraction J5-1 to fraction J5-6.

Fraction J4-4 and fraction J5-5 were combined and showed only one spot on TLC under UV light at 254 nm [Rf values= 0.34, silica gel, ethyl acetate: hexane (4:6)]. Evaporation of the combined fractions under reduced pressure gave compound AG4 as a yellow powder (55.6 mg, 1.46x10⁻³% based on dried weight of the heartwood). This compound was identified as norcycloartocarpin [278].

Fraction J4-2 and fraction J5-3 were combined. The TLC chromatogram of the combined fractions showed only one spot under UV light at 254 nm [Rf values= 0.34, silica gel, ethyl acetate: hexane (4:6)]. Evaporation of this combined fraction under reduced pressure gave compound AG5 as a yellow powder (114.8 mg, 3.02x10⁻³% based on dried weight of the heartwood). This compound was identified as artocarpin [149].

The TLC chromatogram of fraction J5-1 showed only one spot under UV light at 254 nm [Rf values= 0.2, silica gel, ethyl acetate: hexane (4:6)]. Evaporation of this fraction under reduced pressure gave compound AG6 as a yellow powder (12.2 mg, 3.21×10^{-4} % based on dried weight of the heartwood). This isolate is a new compound, and its structure is elucidated as artogomezianone [389].

3.2.2.5 Isolation of Compound AG7

Fraction K (2.8 g) was separated by vacuum liquid column chromatography using a sintered glass filter column of silica gel (No. 7734). Elution was

performed in a polarity gradient manner with mixtures of methanol and dichloromethane (0.2:9.8 to 1:9) as the solvents. Forty fractions (200 ml, each) were collected and combined based on their TLC chromatographic patterns (silica gel, MeOH: CH_2CI_2 =0.5:9.5) to give 10 fractions: fraction K1 to fraction K10.

Fraction K8 (457.5 mg) was further separated by column chromatography using silica gel (No.9385) as the adsorbent. Elution was performed in a polarity gradient manner with acetone and hexane (3:7 to 6:4). The eluates were collected and examined by TLC (SiO_2) using acetone: hexane (1:1) as the developing system. Fractions showing similar chromatographic pattern were combined to yield 11 fractions: fraction K8-1 to fraction K8-11.

Fraction K8-4 (21.8 mg) was separated by gel filtration chromatographic technique (Sephadex LH 20) with methanol as the eluant. The eluates were examined by TLC (silica gel, acetone: hexane= 1:1). Fractions giving the same chromatographic patterns were combined to yield 7 fractions: fraction K8-4-1 to fraction K8-4-7.

The TLC chromatogram of fraction K8-4-4 showed only one spot under UV light at 254 nm [Rf values= 0.33, silica gel, acetone: hexane (1:1)]. Evaporation of this fraction under reduced pressure gave compound AG7 as yellow prisms (4.3 mg, 1.13x10⁻⁴% based on dried weight of the heartwood). It was identified as norartocarpetin [198].

3.2.2.6 Isolation of Compound AG8

Fraction K9 (558.4 mg) was fractionated by column chromatography using silica gel (No. 9385) as the adsorbent. Elution was performed in a polarity gradient manner with acetone and hexane (3:7 to 6:4). Twenty-six fractions (50 ml each) were collected. The eluates were examined by TLC using acetone: hexane (1:1) and combined according to their TLC chromatographic patterns to give 5 fractions: fraction K9-1 to fraction K9-5.

Fraction K9-2 was further separated by gel filtration chromatography using a column of Sephadex LH 20 with acetone as the eluant. The eluates were collected and combined according to their TLC chromatographic patterns (silica gel, acetone: hexane= 1:1) to yield 4 fractions (fraction K9-2-1 to fraction K9-2-4).

Fraction K9-2-1 gave compound AG8 as white powder [17.9 mg, 4.71x10⁻⁴% based on dried weight of the heartwood, Rf values= 0.25, silica gel, acetone: hexane (1:1)]. This compound was identified as oxyresveratrol [343].

4. Physical and spectral data of isolated compounds

4.1 Compound GT1 (3,5,7,3['],4[']-Pentamethoxyflavone)

Compound GT1 was obtained as pale yellow needles, soluble in chloroform (3.4 mg, 2.61×10^{-4} % based on dried weight of leaves).

UV : λ_{max} nm (log ε), in methanol; Figure 6 246 (2.36), 340 (2.03)

¹H-NMR : δ ppm, 300 MHz, in CDCl₃; Figure 7, Table 6

¹³C-NMR : δ ppm, 75 MHz, in CDCl₃; Figure 8, Table 6

4.2 Compound GT2 (Kumatakenin)

Compound GT2 was obtained as pale yellow needles, soluble in acetone (4.9 mg, 3.77×10^{-4} % based on dried weight of leaves).

UV : λ_{max} nm (log ϵ), in methanol; Figure 9 256 (1.18), 354 (0.92)

¹H-NMR : δ ppm, 300 MHz, in acetone- d_6 ; Figure 10, Table 7

¹³C-NMR : δ ppm, 75 MHz, in acetone- d_6 ; Figure 11, Table 7

4.3 Isolate AG1 (*β*-Sitosterol and Stigmasterol)

Isolate AG1 was obtained as colorless needles, soluble in chloroform

 $(6.3 \text{ mg}, 1.65 \times 10^{-4} \% \text{ based on dried weight of heartwood}).$

¹H-NMR : δ ppm, 300 MHz, in CDCl₃; Figure 12, Table 8

¹³C-NMR : δ ppm, 75 MHz, in CDCl₃; Figure 13, Table 8

4.4 Compound AG2 (Cycloartocarpin)

Compound AG2 was obtained as a yellow powder, soluble in acetone

 $(108.7 \text{ mg}, 2.86 \times 10^{-3} \% \text{ based on dried weight of heartwood}).$

- UV : λ_{max} nm (log ϵ), in methanol; Figure 14 258 (2.15), 291 (2.59), 370 (2.16)
- : v_{max} cm⁻¹, KBr disc; Figure 15 IR 3387 (br), 2961, 2866, 2167, 1650, 1618, 1584, 1479, 1450, 1208, 1081,977
- : δ ppm, 300 MHz, in DMSO- d_6 ; Figure 17, Table 9 ¹H-NMR
- ¹³C-NMR : δ ppm, 75 MHz, in DMSO- d_{s} ; Figure 18, Table 9

4.5 Compound AG3 (Isocyclomorusin)

Compound AG3 was obtained as a yellow powder, soluble in acetone

 $(7.8 \text{ mg}, 2.05 \times 10^{-4} \% \text{ based on dried weight of heartwood}).$

$\left[\alpha \right]_{D}^{20}$: +61.2° (c 0.1045 g/100ml)			
EIMS	: <i>m/z</i> (% relative intensity); Figure 23			
	418 (M ⁺ , 39), 404 (24), 403 (100), 385 (12), 363 (33), 348 (13),			
	347 (47), 203 (7), 194 (8)			
UV	: λ_{max} nm (log ϵ), in methanol; Figure 21			
	293 (3.45), 370 (2.82)			
IR	: v_{max} cm ⁻¹ , KBr disc; Figure 22			
	3277 (br), 2921, 2851, 1653, 1617, 1590, 1553, 1464, 1186, 1137,			
	1082, 987, 817			
¹ H-NMR	: δ ppm, 300 MHz, in acetone- $d_{_6}$; Figure 24, Table 10			
¹³ C-NMR	¹³ C-NMR : δ ppm, 75 MHz, in acetone- d_6 ; Figure 25, Table 10			
Compound	AG4 (Norcycloartocarpin)			

4.6

Compound AG4 was obtained as a yellow powder, soluble in acetone $(55.65 \text{ mg}, 1.46 \times 10^{-3} \% \text{ based on dried weight of heartwood}).$

$\left[\alpha \right] _{D}^{20}$: +153.0° (c 0.1035 g/100ml)
EIMS	: <i>m/z</i> (% relative intensity); Figure 28
	420 (M ⁺ , 48), 403 (16), 377 (22), 365 (38), 364 (34), 349 (15), 321
	(100), 309 (25), 207 (9)
UV	: λ_{max} nm (log ϵ), in methanol; Figure 26
	257 (2.96), 292 (3.18), 367 (2.82)
IR	: v_{max} cm ⁻¹ , KBr disc; Figure 27

3228 (br), 2959, 1615, 1563, 1455, 1354, 1212, 1081, 985, 812

- ¹H-NMR : δ ppm, 300 MHz, in acetone- d_{s} ; Figure 29, Table 11
- ¹³C-NMR : δ ppm, 75 MHz, in acetone- d_6 ; Figure 30, Table 11

4.7 Compound AG5 (Artocarpin)

Compound AG5 was obtained as a yellow powder, soluble in acetone $(114.75 \text{ mg}, 3.02 \times 10^{-3} \% \text{ based on dried weight of heartwood}).$

- EIMS : *m/z* (% relative intensity); Figure 33 436 (M⁺, 100), 419 (13), 405 (14), 394 (21), 393 (51), 381 (25), 379 (20), 363 (25), 337 (72), 323 (12), 319 (15), 253 (9), 179 (12), 123 (9), 55 (10), 43 (17), 41 (31)
- UV : $λ_{max}$ nm (log ε), in methanol; Figure 31 214 (3.09), 278 (3.02)
- IR : v_{max} cm⁻¹, KBr disc; Figure 32
 - 3325 (br), 2959, 2920, 1643, 1615, 1476, 1449, 1350, 1204, 977
- ¹H-NMR : δ ppm, 300 MHz, in acetone- d_6 ; Figure 34, Table 12
- ¹³C-NMR : δ ppm, 75 MHz, in acetone- d_6 ; Figure 35, Table 12

4.8 Compound AG6 (Artogomezianone)

Compound AG6 was obtained as a yellow powder, soluble in acetone

 $(12.2 \text{ mg}, 3.21 \times 10^{-4} \% \text{ based on dried weight of heartwood}).$

$\left[\alpha\right]^{20}_{D}$: +28.4° (c 0.1020 g/100ml)
EIMS	: <i>m/z</i> (% relative intensity); Figure 39
	452 (M ⁺ , 100), 417 (31), 409 (47), 401 (32), 391 (100), 381 (43),
	373 (17), 335 (19), 325 (64), 309 (14), 295 (15), 227 (10), 191 (9),
	179 (11)
UV	: λ_{max} nm (log ϵ), in methanol; Figure 36
	278 (4.57), 322 (3.10)
IR	: v_{max} cm ⁻¹ , KBr disc; Figure 37
	3249 (br), 2958, 1643, 1619, 1480, 1452, 1353, 1206, 1160,
	978, 810
¹ H-NMR	: δ ppm, 300 MHz, in acetone- $d_{ m _6}$; Figure 40, Table 13
¹³ C-NMR	: δ ppm, 75 MHz, in acetone- $d_{ m s}$; Figure 41, Table 13

4.9 Compound AG7 (Norartocarpetin)

Compound AG7 was obtained as yellow prisms, soluble in acetone

(4.3 mg, 1.13×10^{-4} % based on dried weight of heartwood).

EIMS	: m/z (% relative intensity); Figure 52
	286 (M ⁺ , 100), 269 (10), 258 (13), 244 (6), 229 (6), 153 (43),
	134 (14), 95 (5), 69 (7)

UV : $λ_{max}$ nm (log ε), in methanol; Figure 50 250 (1.69), 263 (1.72), 348 (2.22)

: v_{max} cm⁻¹, KBr disc; Figure 51

IR

3273 (br), 1661, 1612, 1508, 1455, 1358, 1170, 1029, 853, 829

¹H-NMR : δ ppm, 300 MHz, in acetone- d_6 ; Figure 53, Table 14

¹³C-NMR : δ ppm, 75 MHz, in acetone- d_6 ; Figure 54, Table 14

4.10 Compound AG8 (Oxyresveratrol)

Compound AG8 was obtained as a white powder, soluble in acetone

 $(17.9 \text{ mg}, 4.71 \times 10^{-4} \% \text{ based on dried weight of heartwood}).$

EIMS	: <i>m/z</i> (% relative intensity); Figure 57
	244 (M ⁺ , 100), 227 (24), 226 (74), 198 (38), 197 (30), 181 (17),
	173 (9), 170 (14), 169 (17), 147 (11), 141 (14), 115 (18), 77 (7),
	69 (8)
UV	: λ_{max} nm (log ϵ), in methanol; Figure 55
	327 (2.44)
IR	: v_{max} cm ⁻¹ , KBr disc; Figure 56
	3263 (br), 1687, 1589, 1456, 1280, 1150, 969, 822
¹ H-NMR	: δ ppm, 300 MHz, in acetone- $d_{_6}$; Figure 58, Table 15
¹³ C-NMF	R $$: δ ppm, 75 MHz, in acetone- $d_6^{};$ Figure 59, Table 15

5. Determination of Anti-Herpes Simplex Virus (HSV) Activity

In this study, plaque reduction assay (PRA) was performed against HSV-1 and HSV-2 for all isolated compounds.

5.1 Inactivation

Virus (30 PFU/ 25 $\mu L)$ was mixed with 25 μL of test compound in a

5% CO₂ incubator at 37°C for an hour. The mixture was then added onto Vero cells (6x10⁵ cells/ml, 50µl/well) in a 96-well microtiter plate and incubated at 37°C for 1 hour. The overlay medium containing various concentration of test compound (100µl/well) was added to the Vero cells and incubated at 37°C in humidified CO₂ incubator for 2 days. After incubation, the cells were fixed in 10% formalin and stained with 1% crystal violet for an hour. The number of plaques was counted under an inverted microscope. The percent plaque inhibition was determined. The graph plotted between values of various concentrations and percent plaque inhibition was used for IC₅₀ (inhibitor concentration at 50% of virus growth) determination.

5.2 Post- treatment

Virus (30 PFU/ 25 μ L) was added into Vero cells (6x10⁵ cells/ml, 50 μ l/well) in a 96-well microtiter plate and incubated at 37°C for 1 hour. Fifty μ l of each test compound dilution and overlay medium (100 μ l/well) were added to the 96-well microtiter plate and incubated at 37°C in humidified CO₂ incubator for 2 days. The cells were fixed in 10% formalin and stained with 1% crystal violet for an hour. The plaques were counted under an inverted microscope. The percent plaque inhibition was determined. The graph plotted between values of various concentrations and percent plaque inhibition was used for IC₅₀ determination.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Schemes 1: Extraction of Goniothalamus tenuifolius Leaves

Methanol extract (114.7 g) from leaves of *Goniothalamus tenuifolius* King

Vacuum liquid column chromatography, Silica gel No.7734, Ethyl acetate : Hexane (2:8 to 8:2)

Methanol extract (160.4 g) from heartwood of Artocarpus gomezianus Wall. ex Tre'c.

105

Schemes 5: Isolation of compounds AG7 and AG8

CHAPTER IV

RESULTS AND DISCUSSION

A methanol extract (114.7g) obtained from the dried leaves of *Goniothalamus tenuifolius* King was separated using several chromatographic techniques to afford two pure compounds (GT1 and GT2).

The dried heartwood of *Artocarpus gomezianus* Wall. ex Tre'c. (3.8 kg) was extracted with methanol to give a methanol extract (160.4 g). The methanol extract was then separated using several chromatographic techniques to yield eight pure compounds (AG1 to AG8).

The structure determinations of all isolates were performed by interpretation of their UV, IR, NMR and MS data and then confirmed by comparison with previously reported values.

1. Structure Determination of Isolated Compounds

1.1 Structure Determination of Compound GT1

Compound GT1 was obtained as pale yellow needles. It was identified as 3,5,7,3',4'-pentamethoxyflavone [16] by comparison of its UV absorptions, ¹H and ¹³C NMR data with reported values (Likhitwitayawuid *et al.*, 2006). This methylated flavone was previously isolated from the fruits of *Amomum koenigii* (Dong, 1999). The UV spectrum (Figure 6) showed absorptions at 246, 340 nm.

The ¹H NMR spectrum (Figure 7 and Table 6) exhibited the presence of five methoxyl groups at δ 3.85, 3.88, 3.94, 3.94, 3.94 (3H each, s). In the aromatic region, signals for the A ring protons appeared at δ 6.32 (br s, H-6) and 6.48 (br s, H-8). The B ring protons displayed signals at δ 6.95 (d, *J*=8.7 Hz, H-5'), 7.67 (br s, H-6') and 7.69 (br s, H-2'). The ¹³C NMR, DEPT90, DEPT135 spectra (Figure 8 and Table 6) showed twenty signals, corresponding to five methoxyls, five methines and ten quarternary carbons.

3,5,7,3',4'-pentamethoxyflavone [16]

Table 6NMR Spectral data of compound GT1 (CDCl3) and 3,5,7,3',4'-pentamethoxyflavone (CDCl3)

position	compound	d GT1	3,5,7,3',4'-Pentamethoxyflavone	
position	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult)	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult)
2	-	152.5 (s)	-	152.5 (s)
3	-	141.0 (s)	-	141.1 (s)
4	-	173.9 (s)	-	174.0 (s)
5	-	161.1 (s)	-	161.0 (s)
6	6.32 (br s)	95.7 (d)	6.33 (d, 1.8)	95.7 (d)
7	-	163.9 (s)	-	163.8 (s)
8	6.48 (br s)	92.9 (d)	6.48 (d, 1.8)	92.8 (d)
8a	-	158.6 (s)	- 0	158.7 (s)
4a	- /	109.5 (s)	-	109.5 (s)
1'	- 10	123.4 (s)	3	123.4 (s)
2'	7.69 (br s)	111.3 (d)	7.69 (br s)	111.3 (d)
3'	สถาบ	148.7 (s)	ปรีการ	148.7 (s)
4'		150.7 (s)		150.8 (s)
5'	6.95 (d, 8.7)	110.7 (d)	6.95 (d, 8.4)	110.8 (d)
6′	7.67 (br s)	121.5 (d)	7.66 (br s)	121.6 (d)
3-OCH ₃	3.94 (s)	59.8 (q)	3.93 (s)	59.9 (q)
5-OCH ₃	3.94 (s)	55.6 (q)	3.93 (s)	55.7 (q)
7-OCH ₃	3.88 (s)	55.8 (q)	3.88 (s)	55.9 (q)
3'-OCH ₃	3.85 (s)	55.9 (q)	3.86 (s)	56.0 (q)
4'-OCH ₃	3.94 (s)	56.3 (q)	3.93 (s)	56.3 (q)

1.2 Structure Determination of Compound GT2

Compound GT2 was isolated as yellow needles. It was determined as 5,3',4'-trihydroxy-3,7-dimethoxyflavone [14] by comparison of its UV absorptions, ¹H and ¹³C NMR data with previously published values (Likhitwitayawuid et al., 2006). This compound has been previously isolated from the leaves of Combretum guadrangulare (Ganzera et al., 1998) and Larrea cuneifolia (Valesi et al., 1972). The UV spectrum (Figure 9) exhibited absorptions at 256, 354 nm, characteristic of a flavone skeleton.

The ¹H NMR spectrum (Figure 10) showed a H-bonded phenolic proton at δ 12.87 ppm, indicating a 5-hydroxyflavone structure. It also revealed the presence of a methoxy group at δ 4.08, 4.11 (3H each, s). The A ring displayed signals for protons with meta-coupling at δ 6.46 (d, J=1.8 Hz, H-6) and 6.80 (d, J=1.8 Hz, H-8). The B ring showed a splitting pattern at δ 7.13 (d, J=8.4 Hz, H-5'), 7.74 (br d, J=8.4 Hz, H-6') and 7.86 (br s, H-2').

The ¹³C NMR (Figure 11) exhibited seventeen carbon signals. The ¹H NMR and ¹³C NMR data were shown in Table 7.

5,3',4'-trihydroxy-3,7-dimethoxyflavone [14]

	compound	GT2	kumatakenin			
position	¹ H (mult, <i>J</i> in Hz)	¹³ C (mult)	¹ H (mult,	J in Hz)	¹³ C (mult)	
	acetone-d ₆	acetone-d ₆	benzene- d_6	acetone-d ₆	acetone-d ₆	
2	-	157.5 (s)	-	-	157.6 (s)	
3	-	139.9 (s)	-	-	140.0 (s)	
4	-	179.3 (s)		-	179.5 (s)	
5	-	162.7 (s)		-	162.7 (s)	
6	6.46 (d, 1.8)	98.4 (d)	6.22 (d, 2.5)	6.29 (d, 1.8)	98.4 (d)	
7	-	166.4 (s)	-	-	166.5 (s)	
8	6.80 (d, 1.8)	92.5 (d)	6.32 (d, 2.5)	6.62 (d, 1.8)	92.7 (d)	
8a	-	156.1 (s)	-	-	156.9 (s)	
4a	-	106.4 (s)	5 4 -	-	106.5 (s)	
1 ′	-	122.8 (s)	-	-	122.8 (s)	
2′	7.86 (br s)	116.2 (d)	7.61 (d, 2.5)	7.70 (d, 1.8)	116.3 (d)	
3′	-	145.5 (s)	2000020-	-	145.9 (s)	
4 ′	-	149.0 (s)	132/22-	-	149.2 (s)	
5 ′	7.13 (d, 8.4)	116.0 (d)	6.85 (d, 9.0)	6.97 (d, 8.4)	116.3 (d)	
6 ′	7.74	122.0 (d)	7.53	7.57	122.1 (d)	
	(br d, 8.4)		(dd, 9.0, 2.5)	(dd, 8.4, 1.8)		
3-OCH ₃	4.08 (s)	59.8 (q)	3.80	3.82 (s)	60.1 (q)	
7-0CH ₃	4.11 (s)	56.2 (q)	3.21	3.95 (s)	56.3 (q)	
ОН	12.87 (br s)			12.64 (br s)	-	
	NM 191		MALLAN	ELIAE		

Table 7NMR Spectral data of compound GT2 (acetone- d_6) and kumatakenin

1.3 Structure Determination of Isolate AG1

Compound AG1 was isolated as colorless needles. Anisaldehyde TS test gave a purple color, indicative of a steroidal skeleton. Through comparison of its ¹H and ¹³C NMR spectral data with reported values (Wright *et al.*, 1978; Iribarren and Pomilio, 1985), it was identified as a mixture of β -sitosterol [138] and stigmasterol [43].

The ¹H NMR spectrum (Figure 12) of compound AG1 showed the signals at δ 5.00 (0.2H, dd, *J*= 15.0, 8.4 Hz), 5.14 (0.2H, dd, *J*= 15.0, 8.4 Hz) which were due to H-22 and H-23 of stigmasterol, and at 5.32 (1H, d, *J*= 4.5 Hz) which was H-6 of β -sitosterol and stigmasterol. The integration of H-6, H-22 and H-23 were approximately in the ratio of 1:0.2:0.2. Therefore, it could be calculated that AG1 was a mixture of β -sitosterol and stigmasterol in the ratio of 4:1.

The ¹³C NMR spectrum (Figure 13) exhibited forty-six signals. Comparison of these data with reported ¹³C NMR data of β -sitosterol and stigmasterol (Wright *et al.*, 1978) was demonstrated in Table 8.

Carbon	Chemical shift (ppm)				
position	β- sitosterol	Stigmasterol	Isolate AG1		
1	37.31	37.31	36.83		
2	31.57	31.67	31.24		
3	71.69	71.81	71.41		
4	42.45	42.35	41.79, 41.88		
5	140.76	140.80	140.52		
6	121.59	121.69	120.38		
7	31.92	31.94	31.48		
8	31.92	31.94	31.48		
9	50.17	50.20	49.71		
10	36. <mark>5</mark> 1	36.56	36.08		
11	21.11	21.11	20.65		
12	39.81	39.74	39.35		
13	42.33	42.35	41.88		
14	56.79	56.91	56.34, 56.45		
15	24.32	24.39	23.87		
16	28.26	28.96	27.81, 28.47		
17	56.11	56.06	55.64, 55.69		
18	11.87	12.07	11.42, 11.55		
19	19.40	19.42	18.96		
20	36.17	40.54	35.71, 39.92		
21 9	18.82	21.11	18.35		
22	33.95	138.37	33.53, 138.07		
23	26.13	129.32	25.67, 128.94		
24	45.85	51.29	45.42, 50.81		
25	29.18	31.94	28.74, 31.48		

Table 8 13 C NMR Spectral data of isolate AG1 (CDCl₃) and β -sitosterol, stigmasterol (CDCl₃)

Table 8 (continued)

Carbon	Chemical shift (ppm)				
position	β- sitosterol	Isolate AG1			
26	19.84	21.26	19.37, 20.77		
27	19.04	19.02	18.60		
28	23.09	25.44	22.65, 24.95		
29	12.32	12.27	11.55, 11.95		

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

1.4 Structure Determination of Compound AG2

Compound AG2 was obtained as a yellow powder. The EI mass spectrum (Figure 16) displayed a molecular ion peak at m/z 434, consistent with the molecular formula $C_{26}H_{26}O_6$. It also showed other major peaks at m/z 391 [M-CH₃-CO]⁺ or [M-C₃H₇]⁺, 379 [M-C₄H₇]⁺ and the base peak at m/z 335 [M-C₃H₇-C₄H₈]⁺ indicating the presence of pyrano- γ , γ -dimethylallyl and ¹ Δ -isopentenyl moieties in this structure. The UV absorptions (Figure 14) at 258, 291 and 370 nm were characteristics of a flavone skeleton (Markham, 1982). The IR spectrum (Figure 15) showed absorption bands at 3387 (hydroxyl group), 2961 (C-H stretching of alkane), 1450-1618 (aromatic ring) and 1650 (carbonyl group) cm⁻¹.

The ¹H NMR spectrum (Figure 17 and Table 9) showed a ¹Δ-isopentenyl group at C-6 of ring A at δ 1.03 (6H, d, *J*=6.6 Hz, H₃-17 and H₃-18), 2.41 (1H, m, H-16), 6.45 (1H, d, *J*=16.2 Hz, H-14) and 6.63 (1H, dd, *J*=16.2, 6.6 Hz, H-15). The methoxyl group of C-7 appeared at δ 3.92 (3H, br s), while the chelated hydroxyl group of C-5 appeared at δ 13.54. The presence of ring D, resulting from oxidative cyclization of 2'-hydroxyl group with the allylic methylene of a prenyl group at C-3 (Chen, Huang and Ou, 1993), was indicated by ¹H-NMR signals at δ 1.64 (3H, br s, H₃-13) and 1.88 (3H, br s, H₃-12) for two vinyl methyl protons, a doublet at δ 6.13 (1H, d, *J*=9.3 Hz, H-9) and 5.41 (1H, d, *J*=9.3 Hz, H-10). The ABX-type aromatic proton signals appeared at δ 6.35 (1H, br s, H-3'), 6.56 (1H, d, *J*=8.7 Hz, H-5') and 7.68 (1H, d, *J*=8.7 Hz, H-6'). The ¹H NMR spectrum also showed a singlet of an aromatic proton at δ 6.80. Their relationships were confirmed by the ¹H-¹H COSY correlations (Figure 19). From the NOESY spectrum (Figure 20), H-9 (δ 6.13) showed NOE interaction with H₃-12 (δ 1.88), H-10 (δ 5.41) showed NOE interaction with H₃-13 (δ 1.64), whereas H-8 (δ 6.80) showed NOE interaction with 7-OCH₃ (δ 3.92).

^CThe ¹³C NMR, DEPT 90 and DEPT 135 spectrum (Figure 18 and Table 9) exhibited twenty-six carbon signals, corresponding to five methyls, nine methines and twelve quarternary carbons.

From all of the above spectral data and comparison with reported values (Lu and Lin, 1994; Likhitwitayawuid *et al.*, 1999), this compound was identified as cycloartocarpin [180].

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

in a siti sus	compound AG2		cycloartocarpin	
position	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult)	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult)
2	-	155.5 (s)	-	156.1 (s)
3	-	108.6 (s)	-	109.3 (s)
4	-	177.8 (s)	-	178.4 (s)
4a	-	104.6 (s)	-	105.4 (s)
5	-	158.0 (s)	-	158.4 (s)
6	-	108.8 (s)	-	109.6 (s)
7	-	162.3 (s)	-	162.9 (s)
8	6.80 (s)	90.7 (d)	6.75 (s)	91.5 (d)
8a	-	154.8 (s)	-	155.4 (s)
9	6.13 (d, 9.3)	68.9 (d)	6.12 (d, 9.3)	69.8 (d)
10	5.41 (br d, 9.3)	121.1 (d)	5.41 (br d, 9.0)	121.9 (d)
11	-	138.3 (s)	-	138.9 (s)
12	1.88 (3H, br s)	18.4 (q)	1.89 (3H, br s)	19.4 (q)
13	1.64 (3H, br s)	25.4 (q)	1.66 (3H, br s)	26.4 (q)
14	6.45 (d, 16.2)	115.7 (d)	6.44 (d, 16.5)	116.5 (d)
15	6.63 (dd, 16.2, 6.6)	141.5 (d)	6.62 (dd, 16.5, 5.7)	142.2 (d)
16	2.41 (m)	32.5 (d)	2.42 (m)	33.5 (d)
17	1.03 (3H, d, 6.6)	22.6 (q)	1.04 (3H, d, 6.6)	23.6 (q)
18	1.03 (3H, d, 6.6)	22.6 (q)	1.04 (3H, d, 6.6)	23.6 (q)
1'		106.4 (s)		107.2 (s)
2'	M ISAN	157.6 (s)	113418116	158.3 (s)
3′	6.35 (br s)	103.8 (d)	6.36 (br s)	104.6 (d)
4 ′	-	163.5 (s)	-	164.2 (s)
5 ′	6.56 (d, 8.7)	110.2 (d)	6.56 (d, 8.1)	111.0 (d)
6 ′	7.68 (d, 8.7)	125.4 (d)	7.66 (d, 8.4)	126.2 (d)
5-OH	13.54 (br s)	-	13.54 (br s)	-
7-OCH ₃	3.92 (s)	56.4 (q)	3.91 (br s)	57.3 (q)

Table 9 NMR Spectral data of compound AG2 (DMSO-d₆) and cycloartocarpin (DMSO-d₆)

1.5 Structure Determination of Compound AG3

Compound AG3 was obtained as a yellow powder. The UV spectrum (Figure 21) showed characteristics of a flavone chromophore with absorption maxima at 293 and 370 nm. The IR spectrum (Figure 22) exhibited absorptions at 3277 (hydroxyl group), 1464-1617 (aromatic ring), 1653 (carbonyl group), 1186 (ether linkage) cm⁻¹. The EI mass spectrum (Figure 23) revealed a molecular ion peak at m/z 418, suggesting the molecular formula $C_{25}H_{22}O_6$. It also showed intense peaks at m/z 403 $[M-Me]^+$, 363 $[M-C_4H_7]^+$ and 347 $[M-C_5H_{11}]^+$.

The ¹H NMR spectrum (Figure 24 and Table 10) showed the presence of two methyl groups at δ 1.22 (6H, s, H₃-17 and H₃-18) and *cis*-olefinic protons at δ 5.51 and 6.41, characteristics of a 2,2-dimethyl chromene (Sultanbawa and Surendrakuma, 1989). It also exhibited signals for a γ , γ -dimethylallyl moiety, with H-9 and H-10 resonating at δ 5.96 (d, *J*=9.6 Hz) and 5.23 (d, *J*=9.6 Hz) and vinyl methyl protons at δ 1.71 and 1.45. The chelated hydroxyl proton of C-5 position appeared as a sharp singlet signal at δ 13.20, while H-8 showed at δ 6.21. The three aromatic proton signals appearing at δ 6.19 (d, *J*=1.8 Hz), 6.38 (dd, *J*=8.7, 1.8 Hz), 7.46 (d, *J*=8.7 Hz) were due to H-3', H-5' and H-6', respectively.

The ¹³C NMR, DEPT 90 and DEPT 135 spectra (Figure 25 and Table 10) suggested the presence of four methyl carbons, eight methine carbons and thirteen quarternary carbons. The most downfield signal at δ 177.8 was assigned to C-4

By comparison of these data with reported values, compound AG3 was identified as isocyclomorusin [175] (Chen *et al.*, 1993; Likhitwitayawuid *et al.*, 1999). This compound was first reported from the stem of *Artocarpus altilis* (Chen *et al.*, 1993).

Isocyclomorusin [175]

	compound	I AG3	isocyclomorusin	
position	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult)	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult)
2	-	156.2 (s)	-	156.4 (s)
3	-	109.3(s)	-	109.2 (s)
4	-	178.6 (s)	-	178.5 (s)
4a	-	105.3 (s)	-	105.7 (s)
5	-	156.2 (s)	-	156.4 (s)
6	-	105.3 (s)	-	105.6 (s)
7	-	162.2 (s)	-	159.2 (s)
8	6.21 (s)	95.5 (d)	6.50 (s)	95.5 (d)
8a	-	156.4 (s)	-	156.5 (s)
9	5.96 (d, 9.6)	69.7 (d)	6.10 (d, 9.3)	69.7 (d)
10	5.23 (br d, 9.6)	121.4 (d)	5.40 (br d, 8.7)	121.9 (d)
11	-	139.1 (s)	-	139.1 (s)
12	1.71 (3H, br s)	18.3 (q)	1.83 (3H, br s)	19.2 (q)
13	1.45 (3H, br s)	25.4 (q)	1.62 (3H, br s)	26.3 (q)
14	6.41 (d, 9.9)	115.3 (d)	6.57 (d, 9.9)	115.4 (d)
15	5.51 (d, 9.9)	129.0 (d)	5.77 (d, 9.9)	129.8 (d)
16		78.0 (s)		78.8 (s)
17	1.22 (br s)	27.9 (q)	1.40 (br s)	28.7 (q)
18	1.22 (br s)	27.9 (q)	1.40 (br s)	28.6 (q)
1'		107.2 (s)		107.2 (s)
2'	M I A M I	158.3 (s)	กาวพยาด	158.4 (s)
3'	6.19 (d, 1.8)	104.3 (d)	6.35 (d, 2.1)	104.6 (d)
4'	-	163.9 (s)	-	164.5 (s)
5 ′	6.38 (dd, 8.7, 1.8)	110.6 (s)	6.55 (dd, 8.1, 2.1)	111.1 (s)
6 ′	7.46 (d, 8.7)	126.1 (d)	7.62 (d, 8.1)	126.3 (d)
5-OH	13.20 (s)	-	13.16 (br s)	-

Table 10 NMR Spectral data of compound AG3 (acetone- d_6) and isocyclomorusin (DMSO- d_6)

1.6 Structure Determination of Compound AG4

Compound AG4 was obtained as a yellow powder. Its UV spectrum (Figure 26) in methanol showed characteristics of a flavone chromophore with maxima at 257, 292, 367 nm. The IR spectrum (Figure 27) exhibited absorptions at 3228 (hydroxyl group), 1455-1615 (aromatic ring), 1699 (carbonyl group) cm⁻¹. The EI mass spectrum (Figure 28) afforded a molecular ion peak at *m/z* 420, corresponding to the molecular formula $C_{25}H_{24}O_6$. Other significant peaks appeared at *m/z* 377 [M- C_3H_7]⁺, 365 [M- C_4H_7]⁺.

The structure of compound AG4 was similar to that of compound AG2, except for the absence of methoxyl group. The ¹H NMR spectrum (Figure 29 and Table 11) showed signals for a ¹ Δ -isopentenyl group at C-6 of ring A at δ 1.05 (6H, d J=6.9 Hz, H₃-17 and H₃-18), 2.44 (1H, m, H-16), 6.59 (1H, d, J=16.2 Hz, H-14), and 6.75 (1H, d, J=16.2, 6.9 Hz, H-15). It also possessed a γ , γ -dimethylallyl, as indicated by the two methine protons at δ 5.45 (d, J=9.3 Hz, H-10) and 6.19 (d, J=9.3 Hz, H-9), two methyl singlets at δ 1.69 (H₃-13) and 1.92 (H₃-12). The chelated hydroxyl group of C-5 showed at δ 13.74, while H-8 appeared at δ 6.60. The aromatic proton signals of ring B appearing at δ 6.41 (1H, d, J=2.1 Hz), 6.61 (1H, br d, J=8.7 Hz), 7.67 (1H, d, J=8.7 Hz) could be assigned to H-3', H-5' and H-6', respectively.

The ¹³C NMR, DEPT 90 and DEPT 135 spectra (Figure 30 and Table 11) indicated the presence of four methyl carbons, nine methine carbons and twelve quarternary carbons.

These spectral analyses led to the identification of compound AG4 as norcycloartocarpin [278]. It has been previously isolated from the heartwood of *Artocarpus lakoocha* (Venkataraman, 1972).

Norcycloartocarpin [278]

	compound	AG4	cycloartocarpin	
position	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult)	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult)
2	-	155.9 (s)	-	156.1 (s)
3	-	109.3 (s)	-	109.3 (s)
4	-	178.9 (s)	-	178.4 (s)
4a	-	105.1 (s)		105.4 (s)
5	-	160.1 (s)	-	158.4 (s)
6	-	109.3 (s)	-	109.6 (s)
7	-	161.9 (s)	-	162.9 (s)
8	6.60 (s)	94.1 (d)	6.75 (s)	91.5 (d)
8a	-	155.3 (s)	-	155.4 (s)
9	6.19 (d, 9.3)	70.0 (d)	6.12 (d, 9.3)	69.8 (d)
10	5.45 (d, 9.3)	121.9 (d)	5.41 (br d, 9.0)	121.9 (d)
11	-	138.6 (s)	-	138.9 (s)
12	1.92 (3H, br s)	18.4 (q)	1.89 (3H, br s)	19.4 (q)
13	1.69 (3H, br s)	25.6 (q)	1.66 (3H, br s)	26.4 (q)
14	6.59 (d, 16.2)	116.9 (d)	6.44 (d, 16.5)	116.5 (d)
15	6.75 (dd, 16.2, 6.9)	142.1 (d)	6.62 (dd, 16.5, 5.7)	142.2 (d)
16	2.44 (m)	33.2 (d)	2.42 (m)	33.5 (d)
17	1.05 (3H, d, 6.9)	22.6 (q)	1.04 (3H, d, 6.6)	23.6 (q)
18	1.05 (3H, d, 6.9)	22.6 (q)	1.04 (3H, d, 6.6)	23.6 (q)
1'		108.1 (s)		107.2 (s)
2'	M I A M I	158.4 (s)	กาวพยาด	158.3 (s)
3′	6.41 (d, 2.1)	104.3 (d)	6.36 (br s)	104.6 (d)
4'	-	163.6 (s)	-	164.2 (s)
5 ′	6.61 (br d, 8.7)	110.4 (d)	6.56 (d, 8.1)	111.0 (d)
6 ′	7.67 (d, 8.7)	126.1 (d)	7.66 (d, 8.4)	126.2 (d)
5-OH	13.74 (br s)	_	13.54 (br s)	-

Table 11 NMR Spectral data of compound AG4 (acetone- d_6) and cycloartocarpin (DMSO- d_6)

1.7 Structure Determination of Compound AG5

Compound AG5 was obtained as a yellow powder. The UV maxima (Figure 31) at 214, 278 nm and the IR absorptions (Figure 32) at 3325 (hydroxyl group), 1449-1643 (aromatic ring), 1701 (conjugated carbonyl) cm⁻¹ were suggestive of a flavone skeleton. The EIMS spectrum (Figure 33) showed a [M]⁺ ion peak at *m/z* 436, analyzed for $C_{26}H_{28}O_{6}$.

The ¹H NMR spectrum (Figure 34 and Table 12) displayed one methoxyl group at δ 3.95. Signals for aromatic protons appeared at δ 6.55 (1H, d, *J*=2.4 Hz, H-3'), 6.51 (1H, dd, *J*=8.4, 2.4 Hz, H-5') and 7.19 (1H, d, *J*=8.4 Hz, H-6'). The chelated hydroxyl group at C-5 appeared at δ 13.95, and H-8 showed at δ 6.54. It also revealed the presence of signals for ¹ Δ -isopentenyl group at δ 1.07 (6H, d, *J*=6.9 Hz, H₃-17 and H₃-18), 2.42 (1H, m, H-16), 6.58 (1H, d, *J*=16.2 Hz, H-14) and 6.71 (1H, dd, *J*=16.2, 6.9 Hz, H-15). Furthermore, it possessed prenyl group at C-3, as indicated by the methylene protons at δ 3.11 (2H, d, *J*=6.9 Hz, H-9) and 5.11 (1H, br t, *J*=6.9 Hz, H-10) and two methyl protons at δ 1.42 (H₃-12) and 1.55 (H₃-13).

The ¹³C NMR, DEPT 90 and DEPT 135 spectra (Figure 35 and Table 12) showed twenty-six carbon signals, corresponding to five methyls, one methylene, eight methines and twelve quaternary carbons.

By comparison of these data with previously published data, compound AG5 was identified as artocarpin [149] (Likhitwitayawuid *et al.*, 2000). Artocarpin was previously found in several species of the genus *Artocarpus* (Venkataraman, 1972).

Artocarpin [149]

position	compound AG5		artocarpin	
	¹ H (mult., J in Hz)	¹³ C (mult)	¹ H (mult., J in Hz)	¹³ C (mult)
2	-	161.1(s)	-	162.9 (s)
3	-	120.6 (s)	-	121.1 (s)
4	-	182.0 (s)	-	182.7 (s)
4a	-	104.2 (s)	-	105.0 (s)
5	-	158.5 (s)	-	158.9 (s)
6	-	108.4 (s)	-	109.1 (s)
7	-	162.5 (s)	-	163.4 (s)
8	6.54 (s)	89.1 (d)	6.65 (s)	91.0 (d)
8a	-	155.9 (s)	-	158.6 (s)
9	3.11 (d, 6.9)	23.3 (t)	3.02 (d, 6.7)	24.5 (t)
10	5.11 (br t, 6.9)	121.2 (d)	5.05 (br t, 7.0)	122.3 (d)
11	-	131.4 (s)	-	132.1 (s)
12	1.42 (br s)	17.9 (q)	1.38 (br s)	18.2 (q)
13	1.55 (br s)	25.1 (q)	1.55 (br s)	26.3 (q)
14	6.58 (d, 16.2)	115.6 (d)	6.50 (d, 16.5)	116.7 (d)
15	6.71 (dd, 16.2, 6.9)	141.2 (d)	6.64 (dd, 16.5, 6.9)	142.0 (d)
16	2.42 (m)	32.6 (d)	2.44 (m)	33.4 (d)
17	1.07 (d, 6.9)	22.3 (q)	1.06 (d, 6.6)	23.5 (q)
18	1.07 (d, 6.9)	22.3 (q)	1.04 (d, 6.6)	23.5 (q)
1'		111.5 (s)		111.7 (s)
2 ′	M ISAI	156.1 (s)	11341811	157.3 (s)
3′	6.55 (d, 2.4)	102.5 (d)	6.45 (d, 1.8)	103.5 (d)
4 ′	-	160.1 (s)	-	161.3 (s)
5 ′	6.51 (dd, 8.4, 2.4)	106.8 (d)	6.36 (dd, 8.1, 2.1)	107.6 (d)
6 ′	7.19 (d, 8.4)	131.3 (d)	7.12 (d, 8.4)	131.9 (d)
5-OH	13.95 (br s)	-	13.89 (br s)	-
7-OCH ₃	3.95 (br s)	-	3.89 (br s)	-

Table 12 NMR Spectral data of compound AG5 (acetone- d_6) and artocarpin (DMSO- d_6)

1.8 Structure Determination of Compound AG6

Compound AG6 was isolated as a yellow powder. It showed an $[M]^+$ ion peak at m/z 452 in the EIMS (Figure 39) and an $[M+H]^+$ ion at m/z 453.1908 in the high resolution positive ESIMS (Figure 38), corresponding to the molecular formula $C_{26}H_{28}O_7$. The IR spectrum (Figure 37) showed absorption bands of hydroxyl (3249 cm⁻¹), carbonyl group (1700 cm⁻¹), aromatic ring (1452-1643 cm⁻¹). The UV spectrum (Figure 36) exhibited absorption at 278, 322 nm, suggestive of a flavone chromophore.

The structure of compound AG6 resembled that of compound AG5 (artocarpin), having a ¹Δ-isopentenyl group at C-6 of ring A. The ¹H NMR spectrum (Figure 40 and Table 13) showed signals for this moiety at δ 1.10 (6H, d, *J*= 6.9 Hz, H₃-17 and H₃-18), 2.45 (1H, m, H-16), 6.60 (d, *J*= 16.2 Hz, H-14) and 6.73 (dd, J=16.2, 6.9 Hz, H-15). A sharp singlet at δ 13.83 indicated a chelated OH group. It also showed a methoxy proton signal at δ 3.98, and the position of the methoxy at C-7 was confirmed by NOESY data (Figure 44). The aromatic protons of ring B showed an ABX pattern at δ 6.54 (d, *J*=2.1 Hz, H-3'), 6.54 (d, *J*= 9.0, 2.1 Hz, H-5') and 7.33 (d, *J*=9.0 Hz, H-6'). Coupling between these protons were confirmed by a ¹H-¹H COSY experiment (Figure 43). The singlet at δ 6.59 was assigned to H-8. Furthermore, this compound possessed two pairs of methylene protons at δ 2.60 (1H, dd, *J*=13.8, 5.1 Hz, H-9), and at δ 4.68, 4.83 (1H each, s, H-12), a methine doublet at δ 4.44 (br s, H-10) and one methyl singlet at 1.59 (H₃-13).

The ¹³C NMR, DEPT 90 and DEPT 135 spectra (Figure 41 and Table 13) indicated the presence of four methyls, two methylenes, eight methines and twelve quaternary carbons. The HMBC spectrum (Figure 45-49) showed correlation of the long-range coupled ¹H and ³C nuclei. The intramolecular H-bonded hydroxyl group showed long range correlations with C-5, C-6 and C-4a. The methylene protons at position 9 showed long range correlations with C-2, C-3 and C-4. Other HMBC correlations are summarized in Table 13.

From the above data, compound AG6 was identified as a new flavone and named artogomezianone [389].

Artogomezianone [389]

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

	compound /	НМВС	
position	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult)	(correlation with ¹ H)
2	-	163.3 (s)	H-9 and H-6 '
3	-	119.8 (s)	H-9
4	-	183.8 (s)	H-9
4a	-	105.4 (s)	5-OH and H-8
5	-	159.7 (s)	5-OH and H-14
6	-	109.9 (s)	5-OH and H-15
7	-	163.9 (s)	H-14 and 7-OCH ₃
8	6.59 (s)	90.5 (d)	-
8a	-	156.9 (s)	-
9	2.60 (dd, 13.8, 8.7)	32.9 (t)	-
	2.80 (dd, 13.8, 5.1)		
10	4.44 (br s)	73.9 (d)	H-9, H-12 and H-13
11	- 2	148.7 (s)	H-9 and H-13
12	4.68, 4.83 (br s)	110.4 (t)	H-13
13	1.59 (br s)	17.6 (q)	H-12
14	6.60 (d, 16.2)	116.9 (d)	H-15, H-16
15	6.73 (dd, 16.2, 6.9)	142.3 (d)	H-14, H-16, H-17 and H-18
16	2.45 (m)	33.9 (d)	H-14, H-15, H-17 and H-18
17	1.10 (d, 6.9)	23.0 (q)	H-15 and H-16
18	1.10 (d, 6.9)	23.0 (q)	H-15 and H-16
1′		112.9 (s)	H-3'and H-5'
2'	10/1130	157.4 (s)	H-3'and H-6'
3 ′	6.54 (d, 2.1)	104.1 (d)	H-5 ′
4 ′	-	161.5 (s)	H-5' and H-6'
5 ′	6.54 (dd, 9.0, 2.1)	108.2 (d)	H-3 ′
6 ′	7.33 (d, 9.0)	132.8 (d)	-
5-OH	13.83 (br s)	-	-
7-OCH ₃	3.98 (s)	56.6 (q)	-

Table 13NMR Spectral data of compound AG6 (acetone- d_6)

1.9 Structure Determination of Compound AG7

Compound AG7, a yellow prism, was analyzed for $C_{15}H_{10}O_6$ from its $[M]^+$ ion peak at m/z 286 in the EIMS (Figure 53). Other significant peaks showed at 269 $[M-OH]^+$, 258 $[M-CO]^+$, 153 $[M-C_8H_5O_2]^+$ and 134 $[M-C_7H_4O_4]^+$. The UV absorptions (Figure 51) at 250, 263, 348 nm and the IR bands (Figure 52) at 3273 (hydroxyl group), 1455-1612 (aromatic ring), 1661 (carbonyl group) cm⁻¹ were suggestive of a flavone skeleton.

The ¹H NMR spectrum (Figure 54 and Table 14) displayed six aromatic and olefenic protons at δ 6.2-7.9, together with chelated hydroxyl protons at δ 13.11. The meta-coupled signals at δ 6.22 and 6.48 could be assigned to H-6 and H-8. The ABM-type aromatic proton signals exhibited at δ 6.59 (br s), 6.55 (br d, *J*=8.7 Hz) and 7.82 (d, *J*=8.7 Hz) were due to H-3', H-5' and H-6', respectively.

The ¹³C NMR, DEPT 90 and DEPT 135 spectra (Figure 55 and Table 14) showed fifteen carbon signals, indicating six methine carbons and nine quaternary carbons.

Based on the above spectral evidence, compound AG7 was identified as norartocarpetin [198] (Likhitwitayawuid *et al.*, 1999). It was first found in *Artocarpus heterophyllus* (Venkataraman, 1965).

compound AG7 norartocarpetin position ¹³C (mult) ¹³C (mult) ¹H (mult., J in Hz) ¹H (mult., J in Hz) 2 162.0 (s) 162.4 (s) 3 7.06 (s) 107.2 (d) 7.00 (s) 107.2 (d) 182.1 (s) 182.5 (s) 4 103.9 (s) 104.3 (s) 4a 5 161.1 (s) 162.1 (s) 6 6.22 (br s) 98.1 (d) 99.4 (d) 6.18 (d, 1.8) 7 163.3 (s) 164.6 (s) 8 6.48 (br s) 93.2 (d) 6.44 (d, 1.8) 94.6 (d) 8a 157.5 (s) 158.0 (s) 1' 109.4 (s) 109.4 (s) 2**′** 157.9 (s) 159.5 (s) 6.59 (br s) 6.50 (br s) 104.0 (d) 103.0 (d) 3' 161.5 (s) 162.4 (s) 4**′** 6.55 (br d, 8.7) 6.44 (m) 108.9 (d) 107.8 (d) 5**′** 7.82 (d, 8.7) 129.6 (d) 7.76 (d, 8.7) 130.5 (d) 6**′** 13.11 (br s) 13.06 (br s) _ 5-OH

Table 14 NMR Spectral data of compound AG7 (acetone- d_{e}) and norartocarpetin (DMSO- d_{e})

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย
1.10 Structure Determination of Compound AG8

Compound AG8 was obtained as a white powder. The molecular weight should be 244 ($C_{14}H_{12}O_4$) as shown by an [M]⁺ ion peak at m/z 244 in the EIMS (Figure 58). The IR spectrum (Figure 57) exhibited absorption bands at 3263 (hydroxyl group), 1687 (C=C), 1456-1589 (aromatic ring), 969 (*trans* –CH=CH-)cm⁻¹. The UV spectrum (Figure 56) showed a maximal absorption at 327 nm, suggestive of a stilbene skeleton.

The ¹H NMR spectrum (Figure 59 and Table 15) revealed six aromatic protons at δ 6.23 (1H, br s), 6.38 (1H, dd, *J*=8.4, 2.4 Hz), 6.43 (1H, br s), 6.51 (2H, br s) and 7.40 (1H, d, *J*=8.4 Hz), typical for H-4', H-5, H-3, H-2', H-6'and H-6, respectively. *Trans* olefenic protons at δ 6.88 and 7.33 (1H each, d, *J*=16.5 Hz) could be assigned to H- β and H- α .

The ¹³C NMR, DEPT 90 and DEPT 135 spectra (Figure 60 and Table 15) showed fourteen carbon signals, suggesting the presence of eight methine carbons and six quaternary carbons.

This compound was identified as oxyresveratrol **[343]** by analysis of the above spectral data and comparison with earlier reported ¹H and ¹³C NMR data (Likhitwitayawuid *et al.*, 2001). It has been previously isolated from Osage orange wood (*Toxylon pomiferum*, *Maclura pomifera*) (Gerber, 1986).

Oxyresveratrol [343]

position	compound AG8		oxyresveratrol	
	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult)	¹ H (mult., <i>J</i> in Hz)	¹³ C (mult)
1	-	115.9 (s)	-	115.4 (s)
2	-	155.6 (s)	-	156.1 (s)
3	6.43 (br s)	102.2 (d)	6.33 (d, 2.4)	102.7 (d)
4	-	157.8 (s)	-	158.2 (s)
5	6.38 (dd, 8.4, 2.4)	107.1 (d)	6.25 (dd, 8.4, 2.4)	107.4 (d)
6	7.40 (d, 8.4)	126.9 (d)	7.34 (d, 8.4)	127.3 (d)
1′	-	140.3 (s)	-	140.1 (s)
2'	6.51 (br s)	104.1 (d)	6.35 (d, 1.8)	104.2 (d)
3′	-	158.2 (s)	-	158.5 (s)
4 ′	6.23 (br s)	100.9 (d)	6.08 (s)	101.5 (d)
5 ′	-	158.2 (s)	-	158.5 (s)
6 ′	6.51 (br s)	104.1 (d)	6.35 (d, 1.8)	104.2 (d)
α	7.33 (d, 16.5)	123.0 (d)	7.15 (d, 16.5)	123.3 (d)
β	6.88 (d, 16.5)	124.9 (d)	6.77 (d, 16.5)	124.7 (d)

Table 15 NMR Spectral data of compound AG8 (acetone-d₆) and oxyresveratrol (DMSO-d₆)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

2. Anti- Herpes Simplex Activity

Evaluation of anti herpes simplex activity of pure compounds from the heartwood of *Artocarpus gomezianus* was performed by the plaque reduction assay (Inactivation and Post- treatment). Compounds exhibiting more than 50% inhibition without cytotoxicity at 25 μ g/ml were further evaluated for IC₅₀ (inhibition concentration at 50% of virus growth). Acyclovir was employed as positive control. The result are summarized in Table 16

C. AG7

Figure 5 Anti-herpes simplex virus activity of compound AG2, AG3, AG7 and AG8 on plaque reduction assay

Table 16Percentage of HSV inhibition by pure compounds isolated from A.gomezianus

	IC ₅₀ (μM)		IC ₅₀ (μM)	
compounds	Inactivation		Post- treatment	
	HSV-1	HSV-2	HSV-1	HSV-2
AG2	28.2	23.5	150.4	148.5
AG3	30.4	27.2	130.5	126.6
AG4	· ·	-	-	-
AG5	- II	-	- III -	-
AG6	-	-	-	-
AG7	63.0	52.2	174.0	155.5
AG8	42.8	42.5	95.2	91.5
Acyclovir	1.45	2.85	6.25	7.15

(-) Cytotoxicity at 25 µg/ml

From Table 16, seven pure compounds were determined for anti-herpes simplex activity. It was found that cycloartocarpin [180], isocyclomorusin [175], norartocarpetin [198], oxyresveratrol [343] showed moderate activity against both types of virus in Inactivation assay but weak anti-HSV activity in Post-treatment assay.

CHAPTER V

CONCLUSION

In this study, two known 3-methoxyflavone compounds were isolated from the leaves of *Goniothalamus tenuifolius* King (Annonaceae). They were identified as 3,5,7,3',4'-pentamethoxyflavone [16] and 5,3',4'-trihydroxy-3,7-dimethoxyflavone [14]. Chemical investigation of the heartwood of *Artocarpus gomezianus* Wall. ex Tre'c. (Moraceae) led to the isolation of a new compound, named artogomezianone [389] and six known compounds including cycloartocarpin [180], isocyclomorusin [175], norcycloartocarpin [278], artocarpin [149], norartocarpetin [198], oxyresveratrol [343] and mixture of β -sitosterol [138] and stigmasterol [43]. The isolated compounds were evaluated for anti-herpes simplex virus activity. Cycloartocarpin [180], isocyclomorusin [175], norartocarpetin [198] and oxyresveratrol [343] showed moderate activity against both types of herpes simplex virus in the Inactivation assay and weak activity in the Post-treatment method.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX

Figure 6 UV Spectrum of compound GT1 (Methanol)

Figure 7¹H-NMR (300 MHz) Spectrum of compound GT1 (CDCl₃)

Figure 8 ¹³C-NMR (75 MHz) Spectrum of compound GT1 (CDCl₃)

Figure 9 UV Spectrum of compound GT2 (Methanol)

136

Figure 10¹H-NMR (300 MHz) Spectrum of compound GT2 (DMSO-*d*₆)

Figure 11 ¹³C-NMR (75 MHz) Spectrum of compound GT2 (DMSO-*d*₆)

Figure 12¹H-NMR (300 MHz) Spectrum of compound AG1 (CDCl₃)

Figure 13 ¹³C-NMR (75 MHz) Spectrum of compound AG1 (CDCl₃)

Figure 14 UV Spectrum of compound AG2 (Methanol)

Figure 15 IR Spectrum of compound AG2

Figure 16 Mass Spectrum of compound AG2

Figure 17¹H-NMR (300 MHz) Spectrum of compound AG2 (DMSO-*d*₆)

Figure 18¹³C-NMR (75 MHz) Spectrum of compound AG2 (DMSO-*d*₃)

Figure 20 NOESY Spectrum of compound AG2 (DMSO- d_6)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 22 IR Spectrum of compound AG3

Figure 23 Mass Spectrum of compound AG3

Figure 24 ¹H-NMR (300 MHz) Spectrum of compound AG3 (Acetone-*d*₆)

Figure 25¹³C-NMR (75 MHz) Spectrum of compound AG3 (Acetone-*d*₆)

Figure 26 UV Spectrum of compound AG4 (Methanol)

Figure 27 IR Spectrum of compound AG4

Figure 28 Mass Spectrum of compound AG4

Figure 29 ¹H-NMR (300 MHz) Spectrum of compound AG4 (Acetone- d_6)

Figure 30 ¹³C-NMR (75 MHz) Spectrum of compound AG4 (Acetone- d_6)

Figure 31 UV Spectrum of compound AG5 (Methanol)

Figure 32 IR Spectrum of compound AG5

Figure 33 Mass Spectrum of compound AG5

Figure 35 ¹³C-NMR (75 MHz) Spectrum of compound AG5 (Acetone-*d*₆)

Figure 36 UV Spectrum of compound AG6 (Methanol)

Figure 37 IR Spectrum of compound AG6

Figure 39 El Mass Spectrum of compound AG6

Figure 40 ¹H-NMR (300 MHz) Spectrum of compound AG6 (Acetone- d_6)

Figure 41 ¹³C-NMR (75 MHz) Spectrum of compound AG6 (Acetone-*d*₆)

Figure 46 HMBC Spectrum of compound AG6 (Acetone-d₆)

Figure 48 HMBC Spectrum of compound AG6 (Acetone $-d_6$)

จุฬาลงกรณมหาวทยาละ

Figure 49 CD Spectrum of compound AG6 (MeOH)

Figure 50 UV Spectrum of compound AG7 (Methanol)

Figure 51 IR Spectrum of compound AG7

Figure 52 Mass Spectrum of compound AG7

Figure 53 ¹H-NMR (300 MHz) Spectrum of compound AG7 (Acetone-*d*₆)

Figure 54 ¹³C-NMR (75 MHz) Spectrum of compound AG7 (Acetone-*d*₆)

Figure 55 UV Spectrum of compound AG8 (Methanol)

Figure 56 IR Spectrum of compound AG8

Figure 57 Mass Spectrum of compound AG8

Figure 58 ¹H-NMR (300 MHz) Spectrum of compound AG8 (Acetone- d_6)

Figure 59 ¹³C-NMR (75 MHz) Spectrum of compound AG8 (Acetone-*d*₆)

REFERENCES

- ปียะ เฉลิมกลิ่น. 2544. <u>พรรณไม้วงศ์กระดังงา</u>. พิมพ์ครั้งที่ 1. กรุงเทพมหานคร: สำนักพิมพ์บ้าน และสวน.
- Achmad, S. A., Hakim, E. H., Julianaty, L. D., Makmur, L., and Ghisalberti, E. L. 1996. A new prenylated flavone from *Artocarpus champeden*. J. Nat. Prod. 59: 878-879.
- Ahmad, F. B., Tukol, W. A., Omar, S., and Sharif, A. M. 1991. 5-Acetyl-goniothalamin, a styryldihydropyrone from *Goniothalamus uraroides*. <u>Phytochemistry</u> 30(7): 2430-2431.
- Aida, M., Shinomiya, K., Hano, Y., and Nomura, T. 1993. Artonins J, K and L, three new isoprenylated flavones from the root bark of *Artocarpus heterophyllus* Lamk. <u>Heterocycles</u> 36: 575-583.
- Aida, M., Shinomiya, K., Matsuzawa, K., Hano, Y., and Nomura, T. 1994. Artonins Q, R, S,
 T, and U, five new isoprenylated phenols from the bark of *Artocarpus heterophyllus* Lamk. <u>Heterocycles</u> 39: 847-858.
- Alali, F. Q., Zhang, Y., Rogers, L., and McLaughlin, J. L. 1997. (2,4-*cis* and *trans*) Goniotecinone and 4-deoxygigantecin, bioactive nonadjacent bis tetrahydrofuran annonaceous acetogenins from *Goniothalamus giganteus*.
 <u>J. Nat. Prod</u>. 60: 929-933.
- Alali, F. Q., Zhang, Y., Rogers, L., and McLaughlin, J. L. 1998. Mono-tetrahydrofuran acetogenins from *Goniothalamus giganteus*. <u>Phytochemistry</u> 49: 761-768.
- Alali, F. Q., Zhang, Y., Rogers, L., and McLaughlin, J. L. 1999. Goniotriocin and (2,4-cis and trans)-xylomaticinones, bioactive annonaceous acetogenins from *Goniothalamus giganteus*. <u>J. Nat. Prod</u>. 62: 31-34.
- Alkofahi, A., Rupprecht, J. K., Smith, D. L., Chang, C. J., and McLaughlin, J. L. 1988. Goniothalamicin and annonacin: bioactive acetogenins from *Goniothalamus giganteus* (Annonaceae). <u>Experientia</u> 44: 82-85.
- Alkofahi, A., Ma, W-W., McKenzie, A. T., Byrn, S. R., and McLaughlin, J. L. 1989. Goniotriol from *Goniothalamus giganteus*. <u>J. Nat. Prod</u>. 52: 1371-1373.

- Alkofahi, A., Rupprecht, J. K., Smith, D. L., Chang, C. J., and McLaughlin, J. L. 1990.
 Goniotecin: a novel antimitotic and cytotoxic acetogenins with nonadjacent tetrahydrofuran rings from *Goniothalamus giganteus* (Annonaceae). <u>Experientia</u> 46: 539-541.
- Altman, L. J., and Zito, S. W. 1976. Sterols and triterpenes from the fruit of *Artocarpus altilis*. <u>Phytochemistry</u>. 15: 829-830.
- An, B. J., Choi, J. Y., Kwon, I. B., Nishioka, I., and Choi, C. 1992. Structure and isolation of glucosyl transferase inhibitor from jackfruit. <u>Han'guk Saenghwa Hakhoechi</u> 25: 347-353.
- Arora, J. S., Sanhu, R. S., Kamboj, S. S., and Chopra, S. K. 1987. Occurrence and characterization of lympho-agglutinins in Indian plants. <u>Vox Sang</u> 52: 134-137.
- Barik, B. R., Bhaumik, T., Dey, A. K., and Kundu, A. B. 1994. Triterpenoids from *Artocarpus heterophyllus*. <u>Phytochemistry</u> 35: 1001-1004.

Barton, D. H. R. 1951. Cycloartenone, a triterpenoid ketone. Ibid. pp 1444-1451.

- Bermejo, A., Blazquez, M. A., Serrano, A., Zafra-Polo, M. C., and Cortes, D. 1997.
 Preparation of 7-alkoxylated furanopyrones: semisynthesis of (-)-etharversin, a new styryllactone from *Goniothalamus arvensis*. J. Nat. Prod. 60: 1338-1340.
- Bermejo, A., Blazquez, M. A., Rao, K. S., and Cortes, D. 1998a. Styryl-pyrones from *Goniothalamus arvensis*. <u>Phytochemistry</u> 47(7): 1375-1380.
- Bermejo, A., Tormo, J. R., Cabedo, N., Estornell, E., Figadere, B., and Cortes, D. 1998b.
 Enantiospecific semisynthesis of (+)-almuheptolide-A, a novel natural heptolide
 inhibitor of the mammalian mitocondrial respiratory chain. <u>J. Med. Chem</u>. 41:
 5158-5166.
- Blasco, E., Ngoc, L. D., Aucouturier, P., and Barra, A. 1996. Mitogenic activity of new lectins from seeds of wild *Artocarpus* species from Vietnam. <u>C R Acad Sci III</u>. 319(5): 405-409.
- Boonlaksiri, C., Onanant, W., Kongsaeree, P., Kittakoop, P., Tanticharoen, M., and Thebtara, Y. 2000. An antimalarial stilbene from *Artocarpus integer*. <u>Phytochemistry</u>. 54(4): 415-417.

- Cao, S-G., Wu, X-H., Sim, K-Y., Tan, B. K. H., Pereira, J. T., and Goh, S-H. 1998.
 Styryllactone derivatives and alkaloids from *Goniothalamus borneensis* (Annonaceae). <u>Tetrahedron</u>. 54: 2143-2148.
- Cerqueira, F., Araujo, N., Cicade, H., Kijoa, A., and Nascimento, M. S. J. 2003. Inhibitory of lymphocyte proliferation by prenylatedflavones: Artelastin as a potent inhibitor. <u>Life Sciences</u> 73: 2322-2334.
- Chaktraborty, D. P., and Mandal, A. K. 1981. Aurantinamide acetate from *Artocarpus intregrifolia* Linn. <u>J. Indian. Chem. Soc</u>. 58: 103.
- Chatterjee, B. P., Sarkar, N., and Rao, A. S. 1982. Serological and chemical investigations of the anomeric configuration of the sugar units in the D-galacto-D-manner of fenugreek (*Trigonella foenum-graecum*) seed. <u>Carbohydr. Res</u>. 104: 348-353.
- Chauhan, J. S., and Kumari, G. 1979a. A new glycoflavonol from the root bark of *Artocarpus lakoocha*. <u>Planta Med</u>. 37: 86-88.
- Chauhan, J. S., Kumari, G., and Saraswat, M. 1979b. A new flavonol glycoside from the root bark of *Artocarpus lakoocha*. Indian. J. Chem. 18B: 473-475.
- Chauhan, J. S., Kumari, G., Kumar, S., and Chaturvedi, R. 1982. Chemical examination of the root bark of *Artocarpus lakoocha*. <u>Proc. Natl. Acad. Sci. India. Sect</u>. A 52: 217-218.
- Chen, C. C., Huang, Y. L., Ou, J. C., Lin, C. F., and Pan, T. M. 1993. Three new prenylflavones from *Artocarpus altilis*. <u>J. Nat. Prod</u>. 56: 1594-1597.
- Chen, Y., Jiang, Z., Chen, R. R., and Yu, D. Q. 1998a. Two linear acetogenins from *Goniothalamus gardneri*. <u>Phytochemistry</u>. 49(5): 1317-1321.
- Chen, Y., Jiang, Z., Chen, R. R., and Yu, D. Q. 1998b. A new epimeric pair of mono-THF Annonaceous acetogenin from *Goniothalamus gardneri*. <u>Planta Med</u>. 64: 242-245.
- Chen, J. G., and Yu, J. G. 1999. The chemical constituents in the stem of *Goniothalamus griffithii*. <u>Acta. Bot. Sin</u>. 41: 330-333.
- Chung, M. I., Lu, C. M., Huang, P. L., and Lin, C. N. 1995. Prenylflavonoids of *Artocarpus heterophyllus*. <u>Phytochemistry</u> 40: 1279-1281.

- Cidade, H. M., Nacimento, M. S., Pinto, M. M., Kijjoa, A., Silva, A. M., and Herz, W. 2001. Artolastocarpin and carpelastofuran, two new flavones and cytotoxicities of prenylflavonoids from *Artocarpus elasticus* against three cancer cell lines. <u>Planta</u> <u>Med</u>. 67(9): 867-870.
- Colegate, S. M., Din, B. L., Latiff, A., Salleh, K. M., Samsudin, M. W., Skelton, W., Tadano, K., White, A. H., and Zakaria, Z. 1990. (+)-Isoaltholactone: a furanopyrone isolated from *Goniothalamus* species. <u>Phytochemistry</u> 29(5): 1701-1704.
- Dassanayake, M. D., and Fosberg, F. R. 1981. Flora of Ceylon Vol III. New Delhi: Amerind Publish.
- Daulatabad, C. D., and Mirajkar, A. M. 1989. Ricinoleic acid in *Artocarpus intregrifolia* seed oil. <u>J. Am. Oil. Chem. Soc</u>. 66: 1631.
- Dayal, R., and Seshadri, T. R. 1974. Colourless components of the roots of *Artocarpus heterophyllus*: Isolation of a new compound, artoflavanone. <u>Indian. J. Chem</u>. 12: 895-896.
- Din, B. L., Colegate, S. M., and Razak, D. A. 1990. Scorazanone, A 1-aza-anthraquinone from *Goniothalamus scortechinii*. <u>Phytochemistry</u> 29(1): 346-348.
- Dong, H., Gou, Y-L., Cao, S-G., Chen, S-X., Chen, K-Y., Goh, S-H., and Kini, R. M. 1999. Eicosenones and methylated flavonols from *Amomum koenigii*. <u>Phytochemistry</u> 50: 899-902.
- Durand, E., Ellington, E. V., Feng, P. C., Haynes, L. J., Magnus, K. E., and Philip, N. 1962. Simple hypotensive and hypertensive principle from some West Indian medicinal plants. <u>J. Pharm. Pharmacol</u>. 14: 562-566.
- El-Zayat, A. E., Ferrigni, N. R., McCloud, T. G., and McKenzie, A. T. 1985. Goniothalenol: a novel, bioactive tetrahydrofurano-2-pyrone from *Goniothalamus giganteus* (Annonaceae). <u>Tetrahedron Lett</u>. 26(8): 955-956.
- Fang, X-P., Anderson, J. E., Chang, C-J., Fanwick, P. E., and McLaughlin, J. L. 1990.
 Novel bioactive styryllactone: goniofufurone, goniopypyrone and 8-acetylgoniotriol from *Goniothalamus giganteus* (Annonaceae), X-ray molecular structure of goniofufurone and goniopypyrone. <u>J. Chem. Soc. Perkin. Trans</u>. 6: 1655-1661.

- Fang, X-P., Anderson, J. E., Smith, D. L., Fanwick, P. E., and McLaughlin, J. L. 1991a.
 Two new styryllactones, 9-deoxygoniopypyrone and 7-epi-goniofufurone from *Goniothalamus giganteus*. J. Nat. Prod. 54(4): 1034-1043.
- Fang, X-P., Anderson, J. E., Smith, D. L., Fanwick, P. E., and McLaughlin, J. L. 1991b.
 Three new bioactive styryllactones from *Goniothalamus giganteus* (Annonaceae). <u>Tetrahedron</u> 47: 9751-9758.
- Fang, X-P., Rupprecht, J. K., Alkofahi, A., Hui, Y-H., Liu, Y-M., Smith, D. L., Wood, K. V., and McLaughlin, J. L. 1991c. Gigantetrocin and gigantriocin: two novel bioactive Annonaceous acetogenins from *Goniothalamus giganteus*. <u>Heterocycles</u> 32(10): 11-17.
- Fang, X-P., Anderson, J. E., Smith, D. L., Wood, K. V., and McLaughlin, J. L. 1992a.
 Gigantetronenin and gigantrionenin: novel cytotoxic acetogenins from *Goniothalamus giganteus*. J. Nat. Prod. 55(11): 1655-1663.
- Fang, X-P., Anderson, J. E., Smith, D. L., Wood, K. V., and McLaughlin, J. L. 1992b.
 Giganenin, a highly potent monotetrafuran acetogenin and 4-deoxygigantecin from *Goniothalamus giganteus*. <u>Heterocycles</u> 34(6): 1075-1083.
- Fang, X-P., Anderson, J. E., Qui, X-X., Kozlowski, J. F., Chang, C-J., and McLaughlin, J.
 L. 1993. Gonioheptolides A and B: novel eight-membered ring lactones from *Goniothalamus giganteus* (Annonaceae). <u>Tetrahedron</u> 49(8): 1563-1570.
- Fassihuddin, B. A. 2004. Phytochemical and biological studies on *Goniothalamus* spp. In Borneo. <u>Iranian Journal of Pharmaceutical Research</u> supplement 2: 13-14.
- Feng, N. K., Cheng, Z. J., Lin, C. N., and Teng, C. 1998. Scavenger and antioxidant properties of prenylflavones isolated from *Artocarpus heterophyllus*. <u>Free radical</u> <u>Biology and Medicine</u> 25(2): 160-168.
- Ferreira De Miranda-Santos, I. K., Delgado, M., Bonini, P. V., Bunn, M. M. M., and Campos, N. A. 1992. A crude extract of *Artocarpus intregrifolia* contains two lectins with distinc biological activities. <u>Immunol. Lett</u>. 31: 65-71.
- Forster, J. R., and Forster, G. 1775. Artocarpus. Char. Gen. Pl. 51.
- Fujimoto, Y., Agusutein, S., and Made, S. 1987a. Isolation of a chalcone derivative and antitumor compositions containing it. <u>Jpn. Kokai. Tokkyo. Koho. JP</u> 62270544 (CA. 110: 13561y).

- Fujimoto, Y., Uzava, J., Suhanda, S., Soemartono, A., Sumatra, M., and Koshihara, Y.
 1987b. Isolation and structural elucidation of new lipoxygenase inhibitors from Indonesia *Artocarpus communis*. <u>Tennen Yuki Kagobutsu Toronkai Koen</u> <u>Yoshishu</u> 29: 721-728. (CA. 108: 164664u).
- Fujimoto, Y., Zhang, X. X., Kirisawa, M., Uzawa, J., and Sumatra, M. 1990. New flavones from *Artocarpus communis* Forst. <u>Chem. Pharm. Bull</u>. 38: 1787-1789.
- Fujimoto, Y., Jayasinghe, L., Hara, N., and Chintha, B. W. 2004. Geranyl chalcone derivatives with antifungal and radical scavenging properties from the leaves of *Artocarpus nobilis*. <u>Phytochemistry</u> 65(9): 1287-1290.
- Fukai, T., and Nomura, T. 1993. ¹H NMR spectra of prenylated flavonoids and pyranoflavonoids. <u>Heterocycles</u> 36: 329-343.
- Fukai, T., Satoh, K., Nomura, T., and Sakagami, H. 2003. Antinephritis and radical scavenging activity of prenyl flavonoids. <u>Fitoterapia</u> 74: 720-724.
- Ganzera, M., Ellmerer-Muller, E. P., and Stuppner, H. 1998. Cycloartane triterpenes from *Combretum qaudrangulare*. <u>Phytochemistry</u> 49(3): 835-838.
- Gerber, N. N. 1986. Phenolics from Osage orange wood cleavage of oxyresveratrol. <u>Phytochemistry</u> 25(7): 1697-1699.
- Goh, S. H., Ee, G. C. L., Chuah, C. H., and Wei, C. 1995. Styrylpyrone derivative from *Goniothalamus dolichocarpus*. <u>Aust. J. Chem</u>. 48: 1999-2005.
- Goh, S. H., Wong, W. H., Din, L., and Chuah, C. H. 1999. Proceeding of the seminar on Malaysian Traditional Medicine. <u>Malaysian Traditional Medicine</u>: 1-6.
- Gu, Z. M., Fang, X., Zeng, L., and McLaughlin, J. L. 1994. Goniocin from *Goniothalamus giganteus*: the first tri-THF Annonaceous acetogenin. <u>Tetrahedron Lett</u>. 35(30): 5367-5368.
- Hagiwara, K., Collet, C. D., Kobayashi, K., and Vaerman, J. P. 1988. Jacalin: isolation, characterization and influence of various factors on its interaction with human IGAI, as assessed by precipitation and latex agglutination. <u>Molec. Immunol</u>. 25: 69-83.
- Hakim, E. H., Fahriyati, A., Kau, M. S., Achmad, S. A., Makmur, L., Ghisalberti, E. L., and Nomura, T. 1999. Artoindonesianins A and B, two new prenylatedflavones from the root of *Artocarpus champeden*. J. Nat. Prod. 62(4): 613-615.

- Hakim, E. H., Aimi, N., Kitajima, M., and Takayama, H. S. 2002. Artoindonesianins P, a new prenylatedflavones with cytotoxic activity from *Artocarpus lanceifolius*.
 <u>Fitoterapia</u> 73: 668-673.
- Hakim, E. H., Achmad, S. A., Ghisalberti, E. L., and Syah, Y. M. 2003. ArtoindonesianinsX and Y, two isoprenylated-2-arylbenzofurans from *Artocarpus fretessi* (Moraceae). <u>Phytochemistry</u> 64(4): 831-834.
- Hano, Y., Aida, M., Shiina, M., Nomura, T., Kawai, T., Ohe, H., and Kagei, K. 1989.
 Artonins A and B, two new prenylated flavones from the root bark of *Artocarpus heterophyllus* Lamk. <u>Heterocycles</u> 29: 1447-1453.
- Hano, Y., Aida, M., and Nomura, T. 1990a. Two new natural Diels-Alder-type adducts from the root bark of *Artocarpus heterophyllus*. J. Nat. Prod. 53: 391-395.
- Hano, Y., Yamagami, Y., Kobayashi, M., Isohata, R., and Nomura, T. 1990b. Artonins E and F, two new prenylatedflavones from the bark of *Artocarpus communis* Forst. <u>Heterocycles</u> 31: 877-882.
- Hano, Y., Inami, R., and Nomura, T. 1990. Components of the bark of *Artocarpus rigida*Bl. 1. Structure of two new isoprenylated flavones, Artonins G and H. <u>Heterocycles</u>
 31: 2137-2179.
- Hano, Y., Inami, R., and Nomura, T. 1994. Constituents of Moraceae plants. 20. A novel flavone, artonins V, from the root bark of *Artocarpus altilis*. <u>J. Chem. Res. Synop</u>. 348-349. (CA. 251263z).
- Hasan, C. M., Mai, M. Y., Rashid, M. A., and Connolly, J. D. 1994. 5-Acetoxyisogoniothalamin oxide, an epoxystyryllactone from *Goniothalamus sesquipedalis*. <u>Phytochemistry</u> 37(6): 1763-1764.
- Hashim, O. H., Gendeh, G. S., and Jaafar, M. I. N. 1992. Lectin extracts of Champedak seeds demonstrate selective stimulation of T lymphocyte proliferation. <u>Biochem</u>. <u>Int</u>. 27:139-143.
- Hawariah, A., and Stanslas, J. 1998. In vitro response of human breast cancer cell lines to the growth inhibitory effects of styrylpyrone derivative (SPD) and assessment of its antiestrogenicity. <u>Anticancer. Res</u>. 18: 4383-4386.

Hisham, A., Harassi, A., Shuaily, W., Echigo, S., and Fujimoto, Y. 2000.
 Cardiopetalalactone: a novel styryllactones from *Goniothalamus cardiopetalus*.
 <u>Tetrahedron</u> 56: 9985-9989.

- Hisham, A., Toubi, M., Shuaily, W., Ajitha, M. D., and Fujimoto, Y. 2003. Cardiobutanolide, a styryllactone from *G. cardiopetalus*. <u>Phytochemistry</u> 62(4): 597-600.
- Iribarren, A. M., and Pomilio, A. B. 1985. Sitosterol 3-0-*α*-riburonofuranoside from *Bauhinia candicans*. <u>Phytochemistry</u> 24(2): 360-361.
- Jewers, K., Davis, B., Dougan, J., and Manchanda, A. H. 1972. Goniothalamin and its distribution in four *Goniothalamus* species. <u>Phytochemistry</u> 11: 2025-2030.
- Jiang, Z., and Yu, D-Q. 1997. New type of mono-tetrahydrofuran ring acetogenins from *Goniothalamus donnaiensis*. J. Nat. Prod. 60:122-125.
- Jiang, Z., Chen, Y., Chen, R-Y., and Yu, D-Q. 1997. Monotetrahydrofuran ring acetogenins from *Goniothalamus donnaiensis*. <u>Phytochemistry</u> 46(2): 327-331.
- Jiang, Z., Chen, Y., Chen, R-Y., and Yu, D-Q. 1998a. Linear acetogenins from *Goniothalamus donnaiensis*. <u>Phytochemistry</u> 49(3): 769-775.
- Jiang, Z., Chen, Y., Chen, R-Y., and Yu, D-Q. 1998b. Donnaienin, a new acetogenin bearing a hydroxylated tetrahydrofuran ring. J. Nat. Prod. 61: 86-88.
- Jiang, Z., Chen, Y., Chen, R-Y., and Yu, D-Q. 1998c. Two epimeric pair of C-4- acetyl Annonaceous acetogenins from *Goniothalamus donnaiensis*. <u>Planta Med</u>. 64: 362-366.
- Kamel, A. G. M., Nijila, M. J. S., Raim, A. N., Zahir, S. I. S., Khozirah, S., Hakim, S. L. Zakiah, I., and Azizol, A. K. 2002. The screening of extracts from *Goniothalamus scortechinii*, *Aralidium pinnatifidum* and *Andrographis paniculata* for antimalarial activity using the lactate dehydrogenase assay. <u>Journal of</u> <u>Ethnopharmacology</u> 82: 239-242.
- Kapil, R. S., and Joshi, S. S. 1960. Chemical constituents of *Artocarpus lakoocha*. <u>J. Sci</u>. <u>Ind. Research</u> (India) 19B: 498.
- Khan, M. R., Omoloso, A. D., and Kihara, M. 2003. Antibacterial activity of *Artocarpus heterophyllus*. <u>Fitoterapia</u> 74: 501-505.
- Kielland, I. S., and Malterud, K. E. 1994. Triterpenoids from *Artocarpus intregrifolia* fruits. <u>Planta Med</u>. 60:196.

- Kijjoa, A., Cidade, H. M., Pinto, M. M. M., Gonzalez, M. T. G., Anantachoke, C., Gedris,T. E., and Herz, W. 1996. Prenylflavonoids from *Artocarpus elasticus*.<u>Phytochemistry</u> 43: 691-694.
- Kijjoa, A., Cidade, H. M., Gonzalez, M. T. G., Afonzo, C. M., Silva, A. M. S., and Herz, W.
 1998. Further prenylflavonoids from *Artocarpus elasticus*. <u>Phytochemistry</u>
 47:875-878.
- Kingroungpet, B. 1994. <u>Phytochemical study of Artocarpus gomezianus Wall. ex Trec'.</u> <u>Leaves</u>. (Master's thesis, Department of Pharmacognosy, Graduate School, Chulalongkorn University).
- Kirtikar, K. R., and Basu, B. D. 1980. <u>Indian medicinal plants vol.3</u>. India: Lalit Mohan Basu. pp 119-133.
- Ko, H-H., Lin C-N., and Yang S-Z. 2001. Artocarpol F, a phenolic compound with a novel skeleton, isolated from *Artocarpus rigida*. <u>Tetrahedron Lett</u>. 42(31): 5269-5270.
- Kochummen, K. M. 1978. <u>Tree flora of Malaya vol.3</u>. Malaysia: Forest Department, Ministry of Primary Industries. pp 119-133.
- Kumar, N. S., Pavanasasivum, G., Sultanbawa, M. U. S., and Mageswaran, R. 1977.
 Chemical investigation of Ceylonese plants. Part 24. New chromenoflavonoids from the bark of *Artocarpus nobilis* (Moraceae). <u>J. C. S. Perkin I</u>: 1243-1251.
- Kundu, G. C., and Sinha, N. K. 1989. Purification and characterization of proteinase inhibitor from *Artocarpus intregrifolia* seeds. <u>Phytochemistry</u> 28: 725-728.
- Lan, Y. H., Chang, F. R., Yu, J. H., Yang, Y. L., Chang, Y. L., Lee, S. J., and Wu, Y. C.
 2003. Cytotoxic styrylpyrones from *Goniothalamus amuyon*. <u>J. Nat. Prod</u>. 66: 487-490.
- Lien, H., Ripperger, A., Porzel, T. V., and Adam, G. 1988. Constituents of *Artocarpus tonkinensis*. <u>Pharmazia</u>. 53: 353.
- Likhitwitayawuid, K., Wirasathien, L., Jongboonprasert, V., Aimi, N., Takayama, H., and Kitajima, M. 1997. Antimalarial alkaloids from *Goniothalamus tenuifolius*. <u>Pharm</u>. <u>Pharmacol. Lett</u>. 7: 99-102.
- Likhitwitayawuid, K., Sritularak, B., and De-Eknamkul, W. 2000. Tyrosinase inhibitors from *Artocarpus gomezianus*. <u>Planta Med</u>. 66(3): 275-277.

Likhitwitayawuid, K., and Sritularak, B. 2001. A new dimeric stilbene with tyrosinase inhibitory activity from *Artocarpus gomezianus*. J. Nat. Prod. 64(11): 1457-1459.

- Likhitwitayawuid, K., Klongsiriwet, C., Jongboonprasert, V., Sritularak, B., and Wongseripipatana, S. 2006. Flavones with Free Radical Scavenging Activity from *Goniothalamus tenuifolius*. <u>Arch. Pharm. Res</u>. 29(3): 199-202.
- Lin, C. N., and Shieh, W. L. 1991. Prenylflavonoids and a pyranodihydrobenzoxanthone from *Artocarpus communis*. <u>Phytochemistry</u> 30: 1669-1671.
- Lin, C. N., and Shieh, W. L. 1992a. Pyranoflavonoids from *Artocarpus communis*. <u>Phytochemistry</u> 31: 2922-2924.
- Lin, C. N., Shieh, W. L., and Jong, T. T. 1992b. Pyranoflavonoids from *Artocarpus communis*. <u>Phytochemistry</u> 31: 2563-2564.
- Lin, C. N., Shieh, W. L., Ko, F. N., and Teng, C. M. 1993. Antiplatelet activity of some prenylflavonoids. <u>Biochem. Pharmacol</u> 45: 509-512.
- Lin, C. N., Lu, C. M., and Huang, P. L. 1995. Flavonoids from *Artocarpus heterophyllus*. <u>Phytochemistry</u> 39: 1447-1451.
- Lin, C. N., Ko, H. H., Weng, J. R. Chan, S. C., and Lu, Y. H. 2006. Antiplatelet prenylflavonoids *Artocarpus communis*. <u>Phytochemistry</u> 67(8): 824-829.
- Liou, S. S., Shieh, W. L., Cheng, T. H., Won, S. J., and Lin, C. N. 1993. Gamma-pyrone compounds as a potential anti cancer drugs. <u>Journal of Pharmacy and Pharmacology</u> 45: 791-794.
- Lu, C. M., and Lin, C. N. 1993. Two 2',4',6'-trioxygenated flavones from *Artocarpus heterophyllus*. <u>Phytochemistry</u> 33: 909-911.
- Lu, C. M., and Lin, C. N. 1994. Flavonoids and 9-hydroxytridecyl docosanoate from *Artocarpus heterophyllus*. <u>Phytochemistry</u> 35: 781-783.
- Lu, S. Y., Wu, Y. C., and Leou, S. P. 1985. Alkaloids of Formosan *Fissistigma* and *Goniothalamus* species. <u>Phytochemical</u> 24(8): 1829-1834.
- Mahato, S. B., Banerjee, S. K., and Chakravarti, R. N. 1971. Triterpenoids of the stem bark of *Artocarpus chaplasha*. <u>Phytochemistry</u> 10: 1351-1354.
- Makmur, L., Syamsurizal, S., Tukiran, T., Achmad, S. A. Aimi, N., Hakim, E. H., Kitajima,
 M., and Takayama, H. 2000. Artoindonesianin C, a new xanthone derivative from *Artocarpus teysmanii*. J. Nat. Prod. 63(2): 243-244.

Markham, K. R. 1982. Techniques of flavonoids identification. London: Academic Press.

- Matsura, D., Takabe, K., and Yoda, H. 2006. Novel and stereocontrolled asymmetric synthesis of a new naturally occurring styryllactone, (+)-cardiobutanolide. <u>Tetrahedron Lett</u>. 47(9): 1371-1374.
- Mereyala, H. B., and Joe, M. 2001. Cytotoxic activity of styryllactones and their derivatives. <u>Curr. Med. Chem</u>. 1: 292-300.
- Mix, D. B., Guinaudeau, H., and Shamma, M. 1982. The aristolochic acids and Aristolactams. J. Nat. Prod. 45: 657-666.
- Morton, J. F., and Miami, F. L. 1987. Breadfruit. Fruits of warm climates. pp 50-58.
- Mu, Q. Z., and Li, Q. X. 1982. The isolation and identification of morin-calcium chelated compound from *Artocarpus pithecogallus* and *Artocarpus heterophyllus*. <u>Chih</u> <u>Wu Hsueh Pao</u> 24: 147-153. (CA. 97: 107043w).
- Mu, Q., Tang, W., Li, C., Lu, Y., Sun, H., Zheng, H., Hao, X., Zheng, Q., Wu, N., Lou, L., and Xu, B. 1999. Four new styryllactones from *Goniothalamus leiocarpus*. <u>Heterocycles</u> 51(12): 2969-2976.
- Namjuntra, P., and Chulavatnatol, M. 1984. Purification and characterization of a lectin from seeds of jackfruit (*Artocarpus heterophyllus*). Abst. <u>10th Conference of</u> <u>Science and Technology, Thailand</u>. Chaingmai Univer., Chaingmai, Thailand. pp 356-357.
- Nascimento, M. S. J., Cidade, H. 1997. Anticomplementary activity of prenylated flavones from *Artocarpus elasticus*. <u>Pharmaceutical and Pharmacological Letters</u> 7(2-3): 135-137.
- Nath, M. C., and Mukherjee, M. C. 1939. Crystallographic investigation of artostenone, the stenone isolated from the Indian summer fruit, *Artocarpus intregrifolia* by means of Goniometer and X-rays. <u>J. Indian. Chem. Soc</u>. 16: 229-234.
- Nijila, M. J. S., Rain, A. N., and Kamel, A. G. M. 2002. The anti-malarial activity of plant extract: elucidation of its mechanism of action. <u>International Conference on</u> <u>Traditional/ Complimentary Medicine</u>: 40-41.
- Nogueira, P. L., and Correia, A. A. 1958. Chemical study of a tropical wood. <u>Garcia orta</u> 6: 679-688 (CA. 53: 20792a)

- Nomura, T., Hano, Y., and Aida, M. 1998. Isoprenoid substituted flavonoids from *Artocarpus* plants (Moraceae). <u>Heterocycles</u> 47: 1179-1204.
- Omar, S., Chee, C. L., Ahmad, F., Ni, J. X., Jaber, H., Huang, J., and Nakatsu, T. 1992. Phenanthrene lactams from *Goniothalamus velutinus*. <u>Phytochemistry</u> 31(12): 4395-4397.
- Pant, R., and Chaturvedi, K. 1989. 4-Hydroxyundecy docosanoate and cycloartenone in *Artocarpus intregra* latex. <u>Phytochemistry</u> 28: 2197-2199.
- Paolo, P., Alessandro, P., Giorgio, H., Holisotan, H. E., Lukman, M., Arifin, A. S., and Babara, G. 1998. A new prenylatedflavone from *Artocarpus champeden* inhibits the K⁺-dependent amino acid transport in *Bombyx mori* midgut. <u>Biochem</u>.
 <u>Biophys. Res. Commun</u>. 244: 445-448. (CA. 128: 306539w).
- Parthasarathy, P. C., Radhakrishnan, P. V., Rathi, S. S., and Venkarataman, K. 1969.
 Coloring matters of the wood of *Artocarpus heterophyllus*, cycloartocarpesin and oxydihydroartocarpesin, two new flavones. <u>Indian. J. Chem</u>. 7: 101-102. (CA 71: 70451n).
- Patil, A. D., Freyer, A. J., Killmer, L., Offen, P., Taylor, P. B., Votta, B. J., and Johnson, R.
 K. 2002. A new dimeric dihydrochalcone and a new prenulated flavone from the bud cover of *Artocarpus altilis*. J. Nat. Prod. 65(4): 624-627.
- Pavanasasivum, G., and Sultanbawa, M. U. S. 1973. Cycloartenyl acetate, cycloartenol and cycloartenone in the bark of *Artocarpus* species. <u>Phytochemistry</u> 12: 2725-2726.
- Pavanasasivum, G., Sultanbawa, M. U. S., and Mageswaran, R. 1974. Chemical investigation of Ceylonese plants. X. New chromenoflavonoids from the bark of *Artocarpus nobilis* (Moraceae). <u>Chem. Ind</u>. (London): 875-876. (CA. 82: 121639).
- Pavaro, J., and Reutrakul, V. 1976. New flavones *in Artocarpus lakoocha*. <u>Mahidol. Univ</u>.<u>J. Pharm. Sci</u>. 3: 161-164.
- Pendse, A. D., Pendse, R., Rao, A. V. R., and Venkarataman, K. 1976. Integrin, cyclointegrin and oxyisocyclointegrin, three new flavones from the heartwood of *Artocarpus integer*. Indian. J. Chem. 14B: 69-72.

- Pereira, J. R., Medina, H., and Bustos, R. E. 1962. On the presence of acetylcholine in seeds of *Artocarpus integrifolia* (Moraceae) and of *Annona squamosa* (Annonaceae). <u>An. Fac. Med. Univ. Parana</u> 5: 45-47. (Biological Abstracts 46: 12891).
- Peris, E., Estornell, E., Cabedo, N., Cortes, D., and Bermejo, A. 2000.
 3-Acetylaltholactone and related styryllactones, mitochondrial respiratory chain inhibitors. <u>Phytochemistry</u> 54: 311-315.
- Perry, L. M. 1980. <u>Medicinal plant of East and Southeast Asia</u>. Cambridge: The MIT Press.
- Pietta, P., Gardana, C., and Pietta, A. 2003. Flavonoids in Herbs. <u>Flavonoids in Health and</u> <u>Disease</u>. Califonia: University of Southern Califonia School of Pharmacy.
- Puntumchai, A., Kittakoop, P., Rajviroongit, S., Vimuttipong, S., Likhitwitayawuid, K. and Thebtaranonth, Y. 2004. Lakoochins A and B, New antimycobacterial stilbene derivatives from *Artocarpus Iakoocha*. J. Nat. Prod. 67: 485-486.
- Radhakrishnan, P. V., Rao, A. V. R., and Venkarataman, K. 1965. Two new flavones from *Artocarpus heterophyllus*. <u>Tetrahedron Lett</u>. 663-667.
- Rao, A. V. R., Varadan, M., and Venkarataman, K. 1971. Coloring matters of the wood of *Artocarpus heterophyllus*: part VI. Cycloheterophyllin, a flavone linked to three isoprenoid groups. <u>Indian. J. Chem</u>. 9: 7-13.
- Rao, A. V. R., Rathi, S. S., and Venkarataman, K. 1972. Chaplashin, a flavone containing an oxepine ring from the heartwood of *Artocarpus chaplasha* Roxb. Indian. J. <u>Chem</u>. 10: 905-907.
- Rao, A. V. R., Varadan, M., and Venkarataman, K. 1973. Coloring matters of the wood of *Artocarpus heterophyllus*: part VII. Isoycloheterophyllin, a new flavone. <u>Indian. J.</u> <u>Chem</u>. 11: 298-299.
- Reddy, G. R. 1991. A prenylflavone, artonin E, as arachidonate 5-lipoxygenase inhibitor. <u>Biochem. Pharmacol</u>. 41: 115-118.
- Rosli, R., Umar-Tsafe, N., Mohamed-Said, M. S., Din, L. B., and Lai, L. C. 2004. Genotoxicity of goniothalamin in CHO cell lines. <u>Mutat. Res</u> 562(1-2): 91-102.

- Sam, T. W., Chew, S-Y., Matsjeh, E. K. G., Razak, D., and Mohamed, A. L. 1987. Goniothalamin oxide: an embryotoxic compound from *Goniothalamus macrophyllus* (Annonaceae). <u>Tetrahedron Lett</u>. 28(22): 2541-2545.
- Sato, S., Fujimara, H., Tsuchiya, T., Fuji, M., Iinuma, H., and Ohkara, Y. 1996. Flavones with antibacterial activity against cariogenic bacteria. <u>Journal of</u> <u>Ethnopharmacology</u> 54: 171-176.
- Seidel, V., Bailleul, F., and Waterman, P. G. 1999. Goniothalamusin, a linear acetogenin from *Goniothalamus gardneri*. <u>Phytochemistry</u> 52: 1101-1103.
- Seidel, V., Bailleul, F., and Waterman, P. G. 2000. (Rel)-1*β*,2α-di-(2,4-dihydroxy-6methoxybenzoyl)-3*β*,4α-di-(4-methoxyphenyl)-cyclobutane and other flavonoids from the aerial parts of *Goniothalamus gardneri* and *Goniothalamus thwaitesii*. <u>Phytochemistry</u> 55: 439-446.
- Shieh, W. L., and Lin, C. N. 1992. A quinonoid pyranobenzoxanthone and pyranodihydrobenzoxanthone from *Artocarpus communis*. <u>Phytochemistry</u> 31: 364-367.
- Shimizu, K., Kondo, R. R., and Sakai, K. 1997. A stilbene derivative from *Artocarpus incisus*. <u>Phytochemistry</u> 45(6): 1297-1298.
- Shimizu, K., Kondo, R. R., Sakai, K., Lee, S. H., and Sato, H. 1998. The inhibitory components from *Artocarpus incisus* on Melanin Biosynthesis. <u>Planta Med</u>. 64: 408-412.
- Shimizu, K., Kondo, R. R., Sakai, K., and Buabarn, S. 2000. A geranylated chalcone with 5α-reductase inhibitory properties from *Artocarpus incisus*. <u>Phytochemistry</u> 54(8): 737-739.
- Shinomiya, K., Aida, M., Hano, T., and Nomura, T. 1995. A diels-alder-type adduct from *Artocarpus heterophyllus*. <u>Phytochemistry</u> 40(4): 1317-1319.
- Sinclair, J. 1955. A revision of Malayan Annonaceae. <u>The Garden's Bulletin Singapore</u> 14(2): 149-516.
- Smitinand, T. 2001. <u>Thai plant names (Botanical names-vernacular names)</u>. pp 56-57. Bangkok. Funny Publishing.

- Soonthornchareonnon, N., Suwanborirux, K., Bavovada, R., Patarapanich, C., and Cassady, J. M. 1999. New cytotoxic 1-Aza-anthraquinones and 3-aminonaphthoquinone from the stem bark of *Goniothalamus marcanii*. J. Nat. Prod. 62(10): 1390-1394.
- Sritularak, B. 1998. <u>Chemical constituents of Artocarpus Iakoocha and A. gomezianus</u>. (Master's thesis, Department of Pharmacognosy, Graduate School, Chulalongkorn University).
- Su, B. N., Cuendet, M., Hamthorne, M. E., Kardono, L. B., Riswan, S., Fong, H. H.,
 Mehta, R. G., Pezzuto, J. M., and Kinghorn, A. D. 2002. Constituents of the bark
 and twigs of *Artocarpus dadah* with cyclooxygenase inhibitory activity. <u>J. Nat</u>.
 <u>Prod.</u> 65(2): 163-169.
- Suhartati, T., Achmad, S. A., Aimi, N., Hakim, E. H., Kitajima, M., Takayama, H., and Takeya, K. 2001. Artoindonesianin L, a new prenylated flavone with cytotoxic activity from *Artocarpus rotundo*. <u>Fitoterapia</u> 72(8): 912-918.
- Sultanbawa, M. U. S., and Surendrakumar, S. 1989. Two pyranodihydrobenzoxanthones from *Artocarpus nobilis*. <u>Phytochemistry</u> 28: 599-605.
- Suresh, G. K., Appukuttan, P. S., and Basu, D. K. 1982. Alpha-D-galactose specific lectin from jackfruit (*Artocarpus integra*) seed. <u>J. Biol. Sci</u>. 4: 257-261. (Medicinal Aronatic Plant Abstracts 83: 83010447).
- Syah, Y. M., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H., Mujahidin, D., and Makmur,
 L. 2001. Artoindonesianins G-I, three new isoprenylated flavones from
 Artocarpus lanceifolius. <u>Fitoterapia</u> 72(7): 765-773.
- Syah, Y. M., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H., and Mujahidin, D. 2002a.
 Artoindonesianins M: a new prenylated flavone from *Artocarpus champeden* Spreng (Moraceae). <u>Bull. Soc. Nat. Prod. Chem</u> (Indonesia). 2: 31-36.
- Syah, Y. M., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H., Mujahidin, D., and Makmur,
 L. 2002b. Artoindonesianins Q-T, four isoprenylated flavones from *Artocarpus champeden* Spreng (Moraceae). <u>Phytochemistry</u> 61(8): 949-953.
- Syah, Y. M., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H., and Mujahidin, D. 2004. Two new cytotoxic isoprenylated flavones, artoindonesianins U and V from the heartwood of *Artocarpus champeden*. <u>Fitoterapia</u> 75(2): 134-140.

- Talapatra, B., Deb, T., and Talapatra, S. K. 1985. Isolation of pinocembrin from *Goniothalamus grifithii &* its biomimetic synthesis. <u>Indian J. Chem</u>. 24B: 561.
- Talapatra, S. K., Basu, D., Talapatra, B., Deb, T., and Goswami, S. 1985. Structure & stereochemistry of four new 5,6-dihydro-2-pyrones from *Goniothalamus grifithii*. <u>Indian J. Chem</u>. 24B: 29-34.
- Talapatra, S. K., Basu, D., Chattopadhyay, P., and Talapatra, B. 1988. Aristolactam of *Goniothalamus sesquipedalis* Wall. revised structure of the 2-oxygenated aristolactam. <u>Phytochemistry</u> 27(3): 903-906.
- Tian, Z., Chen, S., Zhang, Y., Huang, M. H., Shi, L., Huang, F., Fony, C., Yang, M. S., and Xiao, P. 2006. The cytotoxicity of naturally occurring styryllactones. <u>Phytomedicine</u> 13(3): 181-186.
- Tsafe, N. U., Said, M. S. M., Rosli, R., Din, L. B., and Lai, L. 2004. Genotoxicity of Goniothalamin in CHO cell line. <u>Mutation Research/ Genetic toxicology and</u> <u>Environmental Mutagenesis</u> 562: 91-102.
- Ultee, A. J. 1949. Components of samples of latex (from a number of tropical trees). <u>Pharm. Weekblad</u> 84: 65-70. (CA. 43: 4041i).
- Valesi, A. G., Rodriguez, E., Velde, G. V., and Mabry, T. J. 1972. Methylated flavonols in *Larrea cuneifolia*. <u>Phytochemistry</u> 11(9): 2821-2826.
- Venkataraman, K. 1972. Wood phenolics in the chemotaxonomy of the Moraceae. <u>Phytochemistry</u> 11: 1571-1586.
- Wang, S., Zhang, Y-J., Chen, R-Y., and Yu, D. Q. 2002. Goniolactones A-F, six new styrylpyrone derivatives from the roots of *Goniothalamus cheliensis*. <u>J. Nat. Prod</u>. 65(6): 835-841.
- Wongkham, S., Wongkham, C., Boonsiri, P., Simasathiansophon, S., Trisonthi, C., and
 Atisook, K. 1995. Isolectins from seeds of *Artocarpus lakoocha*. <u>Phytochemistry</u> 40(5): 1331-1334.
- Wright, J. L. L., Mc Innes, A. G., Shimizu, S., Smith, D. G., and Walter, J. A. 1978.
 Identification of C-24 alkyl epimers of marine sterol by ¹³C nuclear magnetic resonance spectroscopy. <u>Can. J. Chem</u>. 56: 1898-1903.

- Wu, Y. C., Duh, C. Y., Chang, F. R., and Chang, G. Y. 1991. The crystal structure and cytotoxicity of goniodiol-7-monoacetate from *Goniothalamus amuyon*. <u>J. Nat</u>. <u>Prod</u>. 54(4): 1077-1081.
- Wu, Y. C., Duh, C. Y., Chang, F. R., Wang, S. K., and Wu, T. S. 1992. Cytotoxic styrylpyrones of *Goniothalamus amuyon*. <u>Phytochemistry</u> 31(8): 2851-2853.
- Yamazaki, M., Okuyama, E., Matsudo, T., Takamaru, T., and Kaneko, T. 1987. Principle of Indonesian herbal drugs having antiulcerogenic activity I; isolation and identification of (±)-catechin from *Artocarpus integra* Merr. <u>Yakugaku Zasshi</u> 107: 914-916. (CA. 108: 68693g).
- Zeng, L., Zhang, L., and McLaughlin, J. L. 1996. Gigantransenins A, B and C, novel mono THF acetogenins bearing *trans* double bonds from *Goniothalamus giganteus* (Annonaceae). <u>Tetrahedron</u> 37(31): 5449-5452.
- Zhang, Y., Zeng, L., Woo, M-H., Gu, Z-M., Ye, Q., Wu, F-E., and McLaughlin, J. L. 1995.
 Goniodenin, a new bioactive Annonaceous acetogenin from *Goniothalamus giganteus* and its conversion to tri-THF acetogenins. <u>Heterocycles</u> 41(8): 1743-1754.
- Zhang, Y. J., Kong, M., Chen, R. Y., and Yu, D. Q. 1999a. Alkaloids from the roots Goniothalamus griffithii. J. Nat. Prod. 62(7): 1050-1052.
- Zhang, Y. J., Chen, D. Q., Yu, D. Q., and Zhou, G. X. 1999b. Styryllactones from the rhizomes of *Goniothalamus griffithii*. J. Asian. Nat. Prod. Res. 1: 189-197.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

VITA

Miss Saowalak Chaiwiriya was born on July 26, 1980 in Nakorn Si Thammarat, Thailand. She received her Bachelor's degree of Science in Pharmacy in 2002 from the Faculty of Pharmaceutical Sciences, Prince of Songkhla University, Thailand.

Poster Presentation

Chaiwiriya, S., Likhitwitayawuid, K., Sritularak, B., and Jongbunprasert, V. <u>Chemical constituents of *Goniothalamus tenuifolius*</u>. p. 3 The 22th Annual Research Meeting in Pharmaceutical Sciences, December 2, 2005. Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok.

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย