
การศึกษาคุณลักษณะสัทสัมพันธสําหรับการรูจําเสียงพูดอินโดนีเซีย 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

นายแนซรูล เอฟเฟนดี 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

วิทยานิพนธน้ีเปนสวนหน่ึงของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต 

สาขาวิชาวิศวกรรมไฟฟา  ภาควิชาวิศวกรรมไฟฟา 
คณะวิศวกรรมศาสตร  จุฬาลงกรณมหาวทิยาลัย 

ปการศึกษา 2549 

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย 



A STUDY OF PROSODIC FEATURES FOR  

INDONESIAN SPEECH RECOGNITION  

 

Mr. Nazrul Effendy 
 

A Dissertation Submitted in Partial Fulfillment of the Requirements  

for the Degree of Doctor of Philosophy Program in Electrical Engineering  

Department of Electrical Engineering  

Faculty of Engineering  

Chulalongkorn University  

Academic Year 2006  

Copyright of Chulalongkorn University  









 vi

 ACKNOWLEDGEMENTS 
 

I would like to express my great gratitude and deep appreciation to my 

advisor, Associate Professor Dr. Somchai Jitapunkul for his supports, guidance and 

friendship during completing my dissertation.  I would like to thank my thesis 

committee chairman, Associate Professor Dr. Watit Benjapolkul, my dissertation 

committee members, Associate Professor Dr. Boonserm Kijsirikul, Assistant Profes-

sor Dr. Nisachon Tangsangiumvisai, and Atiwong Suchato, Ph.D. for any encour-

agements and suggestions for completing the dissertation.  

I would like to express my sincere gratitude to AUN/SEED-Net and JICA for 

granting me a full scholarship and financial support for my research and study in 

Chulalongkorn University and my short-term study in Tokyo Institute of Technology, 

Japan, without which my Ph.D. program at Chulalongkorn University would not be 

finished.  

I would like to thank Professor Dr. Sadaoki Furui, Associate Professor Dr. 

Koichi Shinoda and Assistant Professor Koji Iwano who help me a lot during my 

short-term study in Japan and for discussion about my research.  I thank many 

students in the digital signal processing research group, Chulalongkorn University and 

in Furui Laboratory, Tokyo Institute of Technology from whom I benefit greatly 

through stimulating discussions.  

Finally, I would like to express my deepest gratefulness to my family, who 

have entirely supported, encouraged, and believed in me throughout my study. 

  
 

 

 

 

 

 

  



 Table of Contents 
Page 

Abstract in Thai ............................................................................................................iv 

Abstract in English.........................................................................................................v 

ACKNOWLEDGEMENTS..........................................................................................vi 

Table of Contents.........................................................................................................vii 

List of Table...................................................................................................................x 

List of Figure ..............................................................................................................xiii 

CHAPTER I INTRODUCTION....................................................................................1 

1.1 The Indonesian language .....................................................................................2 

1.2 Declarative Question and Statement in Indonesian Speech.................................3 

1.3 Objective of the Dissertation ...............................................................................5 

1.4 Scope of the Dissertation .....................................................................................5 

1.5 Dissertation Outline .............................................................................................5 

CHAPTER II FUNDAMENTAL TECHNIQUES FOR THE DESIGN OF  AN 

UTTERANCE-TYPE RECOGNIZER..........................................................................7 

2.1 Neural Networks ..................................................................................................7 

2.1.1 Backpropagation Algorithm .........................................................................9 

2.1.2 Neural Networks Application .....................................................................11 

2.2 Hidden Markov Model.......................................................................................11 

2.2.1 Definition of the Hidden Markov Model ....................................................12 

2.2.2 Observation Density Functions...................................................................14 

2.2.3 Continuous Density Hidden Markov Model...............................................15 

2.2.4 Hidden Markov Model for Speech Recognition.........................................18 

2.3 Summary............................................................................................................24 

CHAPTER III UTTERANCE-TYPE RECOGNIZER OF THE DECLARATIVE 

QUESTION AND STATEMENT OF INDONESIAN SPEECH BASED ON 

FUJISAKI MODEL.....................................................................................................26 

3.1 Speech Data .......................................................................................................27 

3.2 Fujisaki Model ...................................................................................................27 

3.2.1 Physiological Interpretation........................................................................29 

3.2.2 Automatic Extraction of Fujisaki-Model parameters .................................30 



 viii

 
Page 

3.3 Classifier ............................................................................................................32 

3.4 Experimental Setup............................................................................................32 

3.5 Experimental Results .........................................................................................34 

3.6 Summary............................................................................................................38 

CHAPTER IV THE DESIGN OF AN ACOUSTIC MODEL OF  AN INDONESIAN 

SPEECH RECOGNIZER ............................................................................................39 

4.1 Mel Frequency Cepstral Coefficient (MFCC) ...................................................40 

4.2 Speech Data .......................................................................................................41 

4.3 Experimental Setup............................................................................................41 

4.4 Experimental Results .........................................................................................44 

4.5 Summary............................................................................................................47 

CHAPTER V FINAL WORD OF DECLARATIVE QUESTION AND 

STATEMENT IN INDONESIAN SPEECH...............................................................48 

5.1 Speech Data .......................................................................................................48 

5.2 Pitch of the Final Words ....................................................................................49 

5.2.1 Experimental Setup.....................................................................................49 

5.2.2 Experimental Results ..................................................................................49 

5.3 Speech Rate........................................................................................................59 

5.3.1 Experimental Setup.....................................................................................59 

5.3.2 Experimental Results ..................................................................................59 

5.4 Summary............................................................................................................60 

CHAPTER VI AUTOMATIC UTTERANCE-TYPE RECOGNIZER USING THE 

POLYNOMIAL COEFFICIENTS OF THE PITCH CONTOUR OF SENTENCE’S 

FINAL WORD ............................................................................................................62 

6.1 Speech Data .......................................................................................................64 

6.2 Automatic Utterance-type recognizer ................................................................65 

6.2.1 Automatic Utterance Segmentation ............................................................66 

6.2.2 F0 Extractor ................................................................................................67 

6.2.3 Normalizer ..................................................................................................67 

6.2.4 Feature Extractor.........................................................................................68 

 
 



 ix

Page 

6.2.5 Classifier .....................................................................................................69 

6.3 Experiments .......................................................................................................71 

6.3.1 Experimental conditions .............................................................................71 

6.3.2 Results.........................................................................................................72 

6.4 Summary............................................................................................................75 

CHAPTER VII CONCLUSIONS................................................................................76 

7.1 Conclusions of the Dissertation .........................................................................76 

7.2 Contributions of the Dissertation.......................................................................78 

7.2.1 Indonesian speech data ...............................................................................78 

7.2.2 Utterance-type recognizer for Indonesian speech based on Fujisaki model79 

7.2.3 Characteristics of the final words of Indonesian declarative questions and 

statements.............................................................................................................79 

7.2.4 Indonesian acoustic model..........................................................................79 

7.2.5 Automatic utterance-type recognizer using the polynomial coefficients of 

the pitch contour of the sentence’s final word.....................................................80 

7.2.6 Program Scripts Development ....................................................................80 

7.3 Future Research on the Utterance-type recognizer of Indonesian Speech ........80 

REFERENCES ............................................................................................................82 

APPENDICES .............................................................................................................88 

Appendix A..............................................................................................................89 

Appendix B ..............................................................................................................93 

Appendix C ..............................................................................................................95 

Appendix D............................................................................................................101 

Appendix E ............................................................................................................113 

Vitae...........................................................................................................................115 

 



 

 List of Tables 
Page 

Table  3.1  Example of Fujisaki-model parameters .....................................................33 

Table  3.2 Four combinations of Fujisaki-model parameters used to investigate the 

performance of the utterance-type recognizer .....................................................34 

Table  3.3 Recognition rate of the utterance-type recognizer based on Fujisaki model36 

Table  4.1 Distinctive Feature Composition of Indonesian Phonemes (modified from 

Halim, 1981) ........................................................................................................42 

Table  4.2 Six combinations of the acoustic-phonetic features used to create six types 

of Indonesian acoustic models .............................................................................43 

Table  5.1 Types of pitch contour of the final word extracted from 290 pairs of 

declarative questions and statements in Indonesian Speech. ...............................49 

Table  5.2 The average and standard deviation of the pitch range of the final word of 

declarative questions and statements uttered by male and female speakers........56 

Table  5.3 The average and standard deviation of the maximum pitch of the final 

words of the declarative questions and the statements uttered by male and 

female speakers....................................................................................................59 

Table  6.1 The Indonesian speech database of statements and declarative questions..65 

Table  6.2 The four combinations of the training and the testing sets for the 

evaluation.............................................................................................................70 

Table  6.3 Equal Error Rate of the utterance-type recognizer using various order of 

the polynomial expansion and one hidden node..................................................73 

Table A.1 Indonesian sentences used to create the pairs of declarative question and 

statement ..............................................................................................................89 

Table A. 2 The set of the speech data for the investigation of the performance of the 

automatic utterance-type recognizer ....................................................................93 

Table A.3 Detail of the fall declarative questions in the set of the speech data for the 

investigation of the performance of the automatic utterance-type recognizer.....94 

Table A. 4 Error rate of the automatic utterance-type recognizer using the third order 

polynomial expansion, architecture 3-1-1 .........................................................101 

Table A. 5 Error rate of the automatic utterance-type recognizer using the third order 

polynomial expansion, architecture 3-2-1 .........................................................101 



 xi

 

Page 

Table A. 6 Error rate of the automatic utterance-type recognizer using the third order 

polynomial expansion, architecture of the neural networks 3-3-1.....................102 

Table A. 7 Error rate of the automatic utterance-type recognizer using the third order 

polynomial expansion, architecture 3-4-1 .........................................................102 

Table A. 8 Error rate of the automatic utterance-type recognizer using the third order 

polynomial expansion, architecture 3-5-1 .........................................................103 

Table A. 9 Error rate of the automatic utterance-type recognizer using the third order 

polynomial expansion, architecture 3-6-1 .........................................................103 

Table A. 10 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-7-1 ................................................104 

Table A. 11 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-8-1 ................................................104 

Table A. 12 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-9-1 ................................................105 

Table A. 13 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-10-1 ..............................................105 

Table A. 14 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-11-1 ..............................................106 

Table A. 15 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-12-1 ..............................................106 

Table A. 16 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-13-1 ..............................................107 

Table A. 17 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-14-1 ..............................................107 

Table A.18 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-15-1 ..............................................108 

Table A. 19 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-30-1 ..............................................108 

Table A. 20 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-45-1 ..............................................109 

 

 



 xii

Page 

Table A. 21 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-60-1 ..............................................109 

Table A.22 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-75-1 ..............................................110 

Table A. 23 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-90-1 ..............................................110 

Table A. 24 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-105-1 ............................................111 

Table A. 25 Error rate of the automatic utterance-type recognizer using the second 

order polynomial expansion, architecture 2-1-1 ................................................111 

Table A. 26 Error rate of the automatic utterance-type recognizer using the fourth 

order polynomial expansion, architecture 4-1-1 ................................................112 

Table A. 27 Error rate of the automatic utterance-type recognizer using the fifth order 

polynomial expansion, architecture 5-1-1 .........................................................112 

Table A. 28 Error rate of the semi automatic utterance-type recognizer using the 

second order polynomial expansion, architecture 2-1-1....................................113 

Table A. 29 Error rate of the semi automatic utterance-type recognizer using the third 

order polynomial expansion and architecture 3-1-1 ..........................................113 

Table A. 30 Error rate of the semi automatic utterance-type recognizer using the 

fourth order polynomial expansion and architecture 4-1-1 ...............................114 

Table A. 31 Error rate of the semi automatic utterance-type recognizer using the fifth 

order polynomial expansion and architecture 5-1-1 ..........................................114 

 



 

 List of Figures 
Page 

Figure  2.1 Multilayer neural network ...........................................................................8 

Figure  2.2 HMM with non-emitting entry and exit states ..........................................19 

Figure  2.3 Tee model HMM .......................................................................................19 

Figure  3.1 Utterance-type recognizer Based on Fujisaki model.................................26 

Figure  3.2 Fujisaki model (Fujisaki and Ohno, 1998) ................................................28 

Figure  3.3 A specific fully connected feed forward neural network ..........................31 

Figure  3.4 Waveform, pitch contour and Fujisaki-model parameters of an Indonesian 

Statement: “Dia sedang makan” (He is eating) ...................................................35 

Figure  3.5 Waveform, pitch contour and Fujisaki-model parameters of an Indonesian 

declarative question: “Dia sedang makan?” (He is eating?)................................35 

Figure  3.6 Waveform, pitch contour and Fujisaki-model parameters of an Indonesian 

Statement: “Komputer itu terjangkit virus” (The computer is infected by virus)37 

Figure  3.7 Waveform, pitch contour and Fujisaki-model parameters of an Indonesian 

declarative question: “Komputer itu terjangkit virus?” (The computer is infected 

by virus?) .............................................................................................................37 

Figure  4.1 Percentage correct of Indonesian speech recognizer.................................46 

Figure  4.2 Percentage accuracy of Indonesian speech recognizer..............................46 

Figure  5.1 Pitch contours of the three-syllable-final-word of declarative questions 

uttered by (a) male and (b) female speakers with the stress on the last syllable.  

Each line represents the pitch contour of each speaker. ......................................51 

Figure  5.2 Pitch contours of the three-syllable-final-word of declarative questions 

uttered by (a) male and (b) female speakers with the stress on the second 

syllable.  Each line represents the pitch contour of each speaker........................52 

Figure  5.3 Pitch contours of the two-syllable-final-word of declarative questions.  

Different lines are used for different speakers.....................................................53 

Figure  5.4 Pitch contours of the two-syllable-final-word (top) and the three-syllable-

final-word (below) of statements.  Different lines are used for different speakers.

.............................................................................................................................54 

 
 
 



 xiv

Page 

Figure  5.5 Histogram of the pitch range of the final word of declarative questions 

and statements uttered by male speakers .............................................................55 

Figure  5.6 Histogram of the pitch range of declarative questions and statements 

uttered by female speakers...................................................................................55 

Figure  5.7 Histogram of the pitch range of declarative questions and statements 

uttered by male and female speakers ...................................................................56 

Figure  5.8 Histogram of the maximum pitch of declarative questions and statements 

uttered by male speakers......................................................................................57 

Figure  5.9 Histogram of the maximum pitch of declarative questions and statements 

uttered by female speakers...................................................................................58 

Figure  5.10 Histogram of the maximum pitch of declarative questions and 

statements uttered by male and female speakers .................................................58 

Figure  5.11 Relation of the speech rates (syl/s) of the final word of 18 pairs of 

Indonesian statements and their corresponding declarative questions uttered by 

four female speakers.   Each symbol of the points is for each speaker. ..............61 

Figure  5.12 Duration per syllable of the final words of Indonesian Statement (S) and 

Declarative Question (DQ). .................................................................................61 

Figure  6.1 Block diagram of the automatic utterance-type recognizer.......................66 

Figure  6.2 Representation of typical F0 data using various order of polynomial 

expansion .............................................................................................................69 

Figure  6.3 A three layer full-connected neural network .............................................70 

Figure  6.4 Equal Error Rate of the open test of the utterance-type recognizer using 

the third order of the polynomial expansion and various numbers of hidden 

nodes ....................................................................................................................71 

Figure  6.5 Equal Error Rate of the close test of the utterance-type recognizer using 

the third order polynomial expansion and various numbers of hidden nodes .....73 

 

 

 



 

CHAPTER I 
INTRODUCTION 

 

Since the last one decade, several researchers have used utterance-type 

information in spoken system such as spoken dialogue system, speech recognition 

system and translation system.  In a typical spoken dialogue system, a user can ask a 

question or give information to the system.  In another side, the system should be 

capable of recognizing its user intention to give the correct response to him/her 

(Carpenter and Carrol, 1999).  Intonation a speaker used can be a cue to identify the 

type of an utterance.  In an automatic speech recognition system, the utterance-type 

information is used to decrease the word error rate of the system (Wright, 1998; 

Wright et al., 1999; Adami et al., 2003; Grau et al., 2004; Chen and Hasegawa-

Johnson, 2005).  In a translation system, the utterance-type information is used to 

resolve ambiguities in translating the utterances (Wahlster et al., 1997). 

This dissertation focuses on the recognition of the declarative questions from 

statements in Indonesian speech.  The two utterance types can contain the same 

words with the same order (Gunlogson and Christine, 2001; Brown-Schmidt et al., 

2006) and differ in intonational means depending on individual speakers.  Some 

speakers utter an utterance with a similar pitch contour that can be a declarative 

question or a statement.  Even listeners can be confused in recognizing the utterance 

type whether a speaker is asking a question or stating a statement in some Indonesian 

dialects.  When a listener is confused in recognizing the type of an utterance, he/she 

usually will ask the speaker to repeat the utterance.  Therefore, to distinguish a 

declarative question from a statement in Indonesian utterance, a spoken dialogue 

system needs not only a word recognizer but also an intonation recognizer. 

The same sentence can be uttered using the same utterance type in various 

pitch contours.  The pitch contours may differ from sentence to sentence and from 

speaker to speaker (Akagi and Ienaga, 1995; Kuwabara and Sagisaka, 1995; Furui, 

2001; Effendy et al., 2004).  A speaker can utter an Indonesian word with a different 

stressed syllable without changing its meaning (Samsuri, 1978; Halim, 1981, Odé, 

1994; Odé and van Heuven, 1998).  Consequently, the variation of the pitch contour 
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increases.  Therefore, the recognition of the Indonesian utterances-types based on the 

pitch contour is a difficult task. 

Since the last one decade, many utterance-type recognition methods have 

been investigated for other languages.  The methods use N-gram models, hidden 

Markov models, Naïve Bayes classifiers, Bayesian networks, multilayer perceptrons, 

decision trees, transformation-based learning, and memory-based learning 

(Reithinger and Maier, 1995; Lee et al., 1997; Wright, 1998; Ries, 1999; Samuel et 

al., 1999; Keizer et al., 2002; Levin et al., 2003; Grau et al., 2004).   

Pitch contour, the major correlate of the intonation (Yan et al., 2003; Watson 

and Hughes, 2006), has been shown as having a close relationship to the utterance 

types for Dutch and German (Haan et al., 1997; Brickmann and Benzmüller, 1999).  

In Dutch, interrogativity differs from declarativity by higher pitch, both local and 

global.  On a local level, interrogative utterances are found to have high onsets as 

well as high offset.  Globally, interrogativity causes utterances to be realized in a 

higher and a narrower register.  In German, for the average speaker, the final 

boundary tone, the F0 range, and the slope of the top-line can be used to distinguish 

the utterance types. 

In this dissertation,  the parameters of Fujisaki model are used as the features 

to represent the pitch contour to distinguish declarative questions from statements in 

Indonesian speech (Effendy et al., 2004).  Fujisaki model is adapted for recognition 

system, which is originally designed for speech synthesis system (Fujisaki and Ohno, 

1995; Higuchi et al., 1997; Aguero et al., 2004).   

Since the algorithm to extract the parameters of Fujisaki model is too 

complicated to be implemented in an automatic system, the utterance-type recognizer 

is further developed using polynomial coefficients of the pitch contour of the 

sentence’s final word.   

 

1.1 The Indonesian language 
 
Indonesian is a non-tonal language. The Indonesian language, so-called Bahasa 

Indonesia, is a unity language formed from hundreds of languages spoken in the 

Indonesian archipelago.  It was coined by Indonesian nationalists in 1928 and 

became a symbol of national identity during the struggle for independence in 1945. 
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Compared to other languages, which have a high density of native speakers, 

Indonesian is spoken as a mother tongue by only 7% of the population, and more 

than 195 million people speak it as a second language with varying degrees of  

proficiency. Approximately, there are 300 ethnic groups living in 17,508 islands, 

speaking 365 native languages or no less than 669 dialects (Tan). At home, people 

speak their own language, such as Javanese, Sundanese or Balinese, though almost 

everybody has a good understanding of Indonesian as they learn it in school (Sakti et 

al., 2004). 

The standard Indonesian language is continuously being developed and 

transformed to make it more suitable to the diverse needs of a modernizing society. 

Many words in the vocabulary reflect the historical influence of various foreign 

cultures that have passed through the archipelago. It has borrowed heavily from 

Indian Sanskrit, Chinese, Arabic, Portuguese, Dutch, and English. Although the 

earliest records in Malay inscriptions are syllable-based written in Arabic script, 

modern Indonesian is phonetic-based written in Roman script (Quinn).  It uses only 

26 letters as in the English/Dutch alphabet. 

 

1.2 Declarative Question and Statement in Indonesian Speech 

 

Utterance types are also called utterance classes, dialogue moves, dialogue acts, and 

speech acts (Fishel, 2006).  Utterances are normally grouped into four types: 

question, statement, exclamation, and command.  Furthermore, questions can be 

divided into two types: open-questions and yes-no-questions (van Heuven and van 

Zenten, 2005).  An open question involves question words such as ‘where’, ‘how’, 

and ‘why’.  A yes-no question differs from the former type because it allows only 

two possible responses, positive (‘yes’) or negative (‘no’).   

In Indonesian, a yes-no question can be generated (1) by using the question 

indicator 'apa' with or without the interrogative suffix ‘-kah’, (2) by using the 

interrogative ‘-kah’, and (3) by intonation (Halim, 1981).  The yes-no question made 

by intonation is called a declarative question (Gunlogson and Christine, 2001; van 

Heuven and van Zenten, 2005). 

The meaning of an utterance in Indonesian speech does not depend only on 

the words used by a speaker, but also on the intonation expressed by the speaker.  
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Although words used in two sentences are the same and in the same order, when a 

speaker uses two different intonations, the meaning of the two sentences might be 

different (Verhaar, 1992).   

 

For example,  

 

Statement: 

Andi sedang membaca buku  

(Andi is reading a book)  

 

Declarative Question: 

Andi sedang membaca buku?  

(Andi is reading a book?)   

 

A statement may be perceived as a declarative question when the speaker uses 

interrogative intonation in the same sentence with the same word order.  

Questions are generally signaled by a high final pitch and overall higher pitch 

(Eady and Cooper, 1986; Hirst and Cristo, 1998; van-Heuven et al., 1999).  In 

English, the question involves not only local F0 variations, but also more global 

patterns (Pierrehumbert, 1980; Ladd, 1996; Xu, 2005).  Unlike those of English, the 

utterance type characteristics of Indonesian have not been investigated extensively; 

only few researchers have studied these.  Two of them are Ebing and Stack.   

Ebing (1997) modeled the pitch contours of a word in Indonesian utterance 

using IPO (Institute for Perspective Research) approach (Ebing, 1997).  Her basic 

model consists of five basic forms.  Later, she developed these five basic forms into 

eight forms.  She used the model to synthesize the speech and then examined it 

perceptively with the assistance of several Indonesian native listeners. She used the 

model to make a synthetic speech.  The perceptive testing shows that the synthetic 

speech was comparable with the synthetic speech using original pitch contours.  

Stack (2005) investigated some sentences uttered by two Indonesian native 

speakers of Manado Malay dialect (Stack, 2005).  The word order in the sentence is 

arranged into several different structures.  Her work showed that although the 

utterances are only from two speakers of the same dialect, the intonation units (pitch 

contour) of each word in the utterances are different.  



 5

1.3 Objective of the Dissertation 
 
The objective of this dissertation is to study an automatic utterance-type recognizer 

to distinguish two utterance types in Indonesian speech: declarative question and 

statement. 

 
 

1.4 Scope of the Dissertation 

This dissertation covers the study of the automatic utterance-type recognizer to 

distinguish declarative question from statement in Indonesian speech.  Followings 

are the scopes of the dissertation: 

a) The utterance-type recognizer  of declarative question and statement in 

Indonesian speech is design based on Fujisaki model, 

b) Then, the utterance-type recognizer is developed to be an automatic 

recognition system using the polynomial coefficients of the pitch contour of 

the sentence’s final word.   

c) The characteristics of the final words of declarative question and statement in 

Indonesian  speech are investigated to be used in the design process of the 

automatic utterance-type recognizer.   

d) An Indonesian acoustic model is developed to be employed in the automatic 

utterance-type recognizer as an automatic utterance segmentation module.   

 

1.5 Dissertation Outline 

The dissertation consists of seven chapters.  Chapter 1 describes the introduction of 

the dissertation and elaborates the motivation, the Indonesian language, the 

declarative question and statement in Indonesian speech, objective of the 

dissertation, scope of the dissertation, and dissertation outline.  Chapter 2 provides a 

concise introduction of basic techniques used in the utterance-type recognizer.  They 

consist of neural networks and hidden Markov model. Chapter 3 elaborates the 

experiments of the utterance-type recognizer based on Fujisaki model.  The 

performance of the utterance-type recognizer using four combinations of the 

parameters of Fujisaki model is evaluated.  Chapter 4 describes the Indonesian 

acoustic model, which will be used as the automatic segmentation module in the 
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automatic utterance-type recognizer.  Chapter 5 describes the characteristics of the 

final words of declarative question and statement in Indonesian speech.  They consist 

of the pitch contours, the pitch range, the maximum pitch and the speech rate of the 

final words.  Chapter 6 describes the experiments on the automatic utterance-type 

recognizer using the polynomial coefficients of the pitch contours of the sentence 

final words.  The performance of the automatic recognizer is investigated using 

larger speech data, which cover larger variation of intonation from larger number of 

speakers than the speech data used in the investigation of the utterance-type 

recognizer based on Fujisaki model.  Chapter 7 concludes the dissertation and 

explains the contributions of the dissertation and the future research of the 

Indonesian utterance-type recognizer. 

 



 

CHAPTER II 
FUNDAMENTAL TECHNIQUES FOR THE DESIGN OF  

AN UTTERANCE-TYPE RECOGNIZER 
 

This chapter describes some fundamental techniques used in this dissertation to 

design an utterance-type recognizer.  They consist of neural networks and hidden 

Markov model. 

  

2.1 Neural Networks 
 

The term neural network originally referred to the biological neural network system. 

In recent years, however, it has often been used to express an artificial neural 

network implemented on an electronic device such as a computer, and in fact, such 

artificial networks have been considered to be one of the most promising 

technological concepts for developing information systems such as pattern 

recognizers and function estimators (Katagiri, 2000).   

Neural networks are actually based on the biological neural system.  They are 

comprised of many of the key features of the biological systems, such as distributed 

computation mechanism, adaptivity (trainability), nonlinearity, and simplicity in the 

node computation. 

The neural network consists of many nodes (circle in Figure 2.1), each of 

which conceptually corresponds to a neuron cell in the real biological neural system, 

and connections (arrow in Figure 2.1), each of which conceptually corresponds to an 

axon in the neural system.  The nodes are mutually connected.  

The neural network is trained using the pairs of data N input / target data 

vector pairs },{ nn txD = .   Each two-dimensional input vector is presented to the 

input layer, and the output of each input node equals the corresponding component in 

the vector.  Each hidden node computes the weighted sum of its inputs to form its 

scalar net activation, which denoted simply as net.  The net is the inner product of 

the inputs with the weights at the hidden nodes.   
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 xw
0

0
1

t
j

d

i
jiij

d

i
jiij wxwwxnet ≡=+= ∑∑

==
,  (2.1) 

 

where the subscript i indexes nodes in the input layer, j in the hidden; wji denotes the 

input-to-hidden layer weights at the hidden node j.  Each hidden node emits an 

output that is a nonlinear function of its activation, f (netj), that is, 

 )( jj netfy = . (2.2) 

This )(⋅f  is sometimes called the activation function or merely ‘nonlinearity’ of a 

node. 

Each output node similarly computes its net activation based on the hidden 

node signals as 

 yw
0

0
1

t
k

n

j
kjjk

n

j
kjjk

HH

wywwynet ≡=+= ∑∑
==

, (2.3) 

where the subscript k indexes nodes in the output layer and nH denotes the number of 

hidden nodes.  

 

 

 

Figure  2.1 Multilayer neural network 

 

 

 

Input 
layer 

Hidden 
layer 

Output 
layer 
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2.1.1 Backpropagation Algorithm 
 
Backpropagation is one of the simplest and most general methods for supervised 

training of multilayer neural networks.  It is the natural extension of the LMS 

algorithm.  Other methods may be faster or have other desirable properties, but few 

are more instructive. 

The training error on a pattern is considered to be the sum over output nodes 

of the squared difference between the desired output tk and the actual output zk, 

 
2

1

2
2
1)(

2
1(w) ztztJ

c

k
kk −=−= ∑

=
, (2.4) 

where t and z are the target and the network output vectors of length c and w 

represents all the weights in the network. 

The backpropagation learning rule is based on gradient descent.  The weights 

are initialized with random values, and then they are changed in a direction that will 

reduce the error: 

 w
w

∂
∂

−=∆
Jη ,  (2.5) 

or in a component form: 
 

 
pq

pq w
Jw

∂
∂

−=∆ η , (2.6) 

 
where η is the learning rate, and merely indicates the relative size of the changes in 

weight.  The power of Equation (2.10) and (2.11) is in their simplicity.  The weights 

are updated as 

 )w()w()1w( mmm ∆+=+ , (2.7) 

where m indexes the particular pattern presentation. 
 

Because the error is not explicitly dependent upon wjk, the chain rule for the 

differential of J is: 

 

 
kj

k
k

kj

k

kkj w
net

w
net

net
J

w
J

∂
∂

−=
∂
∂

∂
∂

=
∂
∂ δ , (2.8) 
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where the sensitivity of node k is defined to be 

 
k

k net
J

∂
∂

−=δ , (2.9) 

and describes how the overall error changes with the node’s net activation.  

Assuming that the activation function )(•f  is differentiable, Equation (2.10) is 

differentiated and found that for such an output node, δk is simply 

 

 ).(')( kkk
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k

kk
k netfzt

net
z

z
J

net
J

−=
∂
∂

∂
∂

−=
∂
∂

−=δ  (2.10) 

The last derivative in Equation (2.14) is 

 .j
kj

k y
w
net

=
∂
∂

 (2.11) 

The weight update or learning rule for the hidden-to-output weights: 

 jkkkjkkj ynetfztyw )(')( −==∆ ηηδ . (2.12) 

Using the chain rule,  
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 (2.13) 
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In analogy with Eq. (2.15), Eq (2.20) is used to define the sensitivity for a hidden 

node as 

 .)('
1
∑
=

=
c

k
kkjjj wnetf δδ  (2.15) 

The learning rule for the input-to-hidden weights is 
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 (2.16) 

 

2.1.2 Neural Networks Application 
 
Neural networks have been applied in many areas, such as pattern recognition, 

system modeling, digital signal processing and control engineering (Bishop, 1995; 

Effendy et al., 1998; Effendy et al., 2001; Effendy, 2002; Effendy et al., 2004).  In 

speech technology, the neural networks have been applied for speech coding, speech 

recognition, speech signal processing, voice conversion, and speech enhancement 

(Katagiri, 2000). 

 

2.2 Hidden Markov Model 

 

The Hidden Markov Model (HMM) is a powerful statistical approach for the study of 

time series modeling with many of the classical probability distributions. The HMM 

approach provides a framework, which includes an automatic supervised training 

algorithm with mathematically proven convergence, the Baum-Welch algorithm. In 

addition, an efficient decoding scheme, the Viterbi algorithm, is incorporated in 

HMM.  The underlying assumption of HMM is that the data samples can be well 

characterized as a parametric random process, and the parameters of the stochastic 

process can be estimated in a precise and well-defined framework.  

Speech observation sequences corresponding to an acoustic event can be 

modeled by traversing an underlying sequence of connected states, each associated 

with an output distribution. The output distribution and the relative likelihood 

moving between states are estimated from a number of observation sequences of 

particular speech unit to be modeled.  This is necessary to make speech recognition 

computationally tractable, and to ease the task of decoding a continuous waveform 

into a discrete set of symbols.    

HMM has become one of the most successful statistical methods used in 

speech recognition, because of few assumptions need to be built into the models, and 
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all model parameters can be efficiently estimated from the training data. Many 

successful speech recognition systems have employed the HMM approach as a major 

recognition part. Not only can the HMM be used in speech recognition, but it also 

can be applied in statistical language modeling, spoken language understanding, 

machine translation, and so on.  In this dissertation, HMM was used as the engine of 

the automatic segmentation module of the automatic utterance-type recognizer. 

This section briefly outlines theoretical framework of the HMM by 

explaining the definition of HMM.  Then the essential algorithms needed to estimate 

the model parameters and decoding are described.  All initial discussions are based 

on the discrete HMM.  However, most of the discrete HMM concepts can be 

extended to the continuous HMM as described succeeding the discrete HMM. 

 

2.2.1 Definition of the Hidden Markov Model 
 

A natural extension to the Markov chain introduces a non-deterministic process that 

generates output observation symbols in any given state.  Thus, the observation is a 

probabilistic function of the state.  This new model is known as a hidden Markov 

model, which can be viewed as a double-embedded stochastic process with an 

underlying stochastic process or the state sequence not directly observable.  The state 

sequence is hidden, and can only be observed through another set of observable 

stochastic processes. 

A hidden Markov model is basically a Markov chain, where the output 

observation is a random variable generated according to the output probabilistic 

function associated with each state.  A set of output probability distributions of each 

hidden state can be either discrete probability distributions or continuous probability 

density functions.  To describe the HMM characteristics, the following HMM 

elements are defined. 

1) The number of states in the model, N . Generally, the states are 

interconnected in such a way that any state can be reached from any other 

state. The individual states and the state at time t  are denoted as 

{ }NSSS ,...,, 21=S  and tq  respectively. 
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2) The number of distinct observation symbols per state, M .  The observation 

symbols correspond to the physical output of the system being modeled.  The 

individual symbols is denoted as { }MVVV ,...,, 21=V . 

3) The state transition probability distribution, { }ija=A  where 

[ ]itjtij SqSqPa === +1 , Nji ≤≤ ,1 .   (2.17) 

4) The observation symbol probability distribution in state j , ( ){ }kbj=B , 

where 

( ) [ kj VPkb =  at ]jt Sqt = , Nj ≤≤1 Mk ≤≤1 .   (2.18) 

5) The initial state distribution, { }iπ=π , where 

[ ],1 ii SqP ==π  Ni ≤≤1 .   (2.19) 

Since ija , ( )kbj , and iπ  are all probabilities, they must satisfy the following 

properties: 

0≥ija , ( ) 0≥kbj , 0≥iπ  for all i , j , k  

1
1

=∑
=

N

j
ija      (2.20) 

( ) 1
1

=∑
=

kb
M

k
j      (2.21) 

1
1

=∑
=

N

i
iπ      (2.22) 

Given appropriate value of N , M , A , B , and π , HMM can generate an 

observation sequence TOOO ,,, 21 K=O , where each observation tO  is one of the 

symbols from V , and T  is the number of observations in the sequence.  A complete 

specification of an HMM requires two constant parameters, N  and M , representing 

the total number of states and the size of observation symbols, and three sets of 

probability measures, A , B , and π .  For convenience, the compact notation is used 

to represent the complete parameter set of the model 

( )πB,A,=λ      (2.23) 
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In the first-order hidden Markov model, there are two assumptions. The first 

is the Markov assumption for the Markov chain.  

( ) ( )1
1

1 −
− = tt

t
t qqPqqP      (2.24) 

where 1
1
−tq  represents the state sequence 121 ,,, −tqqq K .  At each observation time t , 

a new state is entered based on the transitional probability, which only depends on 

the previous state.  The transition may allow the process to remain in the previous 

state.  The second is the output-independence assumption:  

( ) ( )tt
tt

t qPqP OOO =−
1

1
1 , .    (2.25) 

The output-independence states that the probability that a particular symbol is 

emitted at time t  depends only on the state tq  and is conditionally independent of 

the past observations. Although these assumptions severely limit the memory of the 

first-order HMM and may lead to model deficiency, in practice, they reduce the 

number of free parameters need to be estimated.  Furthermore, these assumptions 

make evaluation, decoding, and learning feasible and efficient without significantly 

affecting the modeling capability. 

 

2.2.2 Observation Density Functions 
 
The observation density functions have to model the distribution of the feature vector 

for the different parts in data.  These distributions are estimated from large amounts 

of training data.   The most frequently distributions are listed below. 

 

2.2.2.1 Discrete Density Functions 
 
This type of density modeling requires that the multidimensional continuous 

observations be quantized into a number of symbols.  Each state now has a discrete 

distribution that gives the probability of each symbol for the state. The discrete 

symbols are normally generated by a vector quantizer, which assigns a discrete 

symbol to each observation vector by choosing the nearest example from a small 

codebook of reference vector.  This is implicitly dealt with the choice of distance 
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metric for the clustering procedure in the vector quantization. The Euclidian distance 

measure, for instance, is used in the k -means clustering algorithm.  

 

2.2.2.2 Continuous Density Functions 
 
In this case, the observation probability distribution in state j , ( )tjb O , is a general 

parametric distribution of a predetermined form.  The generalized method to 

continuous output density functions requires that the probability density functions be 

strictly log concave.   The re-estimation algorithm can be extended to various types 

of elliptically symmetric density functions.  The rationale of continuous density 

function is that the continuous observations can be directly modeled without 

quantization. However, the choice of different density functions to model a given 

observation largely depends on the characteristics of observations. In addition, a 

single continuous probability density function associated with each state is usually 

inadequate to model complicated observations.  Therefore, finite mixture 

components are required. 

 

2.2.3 Continuous Density Hidden Markov Model 
 
If the observation does not come from a finite set, but from a continuous space, the 

discrete output distribution discuss in the previous sections can be extended to the 

continuous output probability density function.  This implies that the vector 

quantization technique, which maps observation vectors from the continuous space to 

the discrete space, is no longer necessary.  Consequently, the inherent error can be 

eliminated. 

The generalized method to continuous output density functions can be 

applicable to the Gaussian, Poisson, and Gamma distributions but not to the Cauchy 

distribution. Furthermore, the estimation algorithm is expanded to cope with finite 

mixtures of strictly log concave and elliptically symmetric density functions.  This 

section will discuss general re-estimation formulas for the continuous HMM, which 

is applicable to a wide variety of elliptically symmetric density functions. 
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2.2.3.1 Continuous Parameter Re-estimation 
 
Using continuous probability density functions, the first candidate for a type of 

output distributions is the multivariate Gaussian, since 

1) Gaussian mixture density functions can be used to approximate any 

continuous probability density functions in the sense of minimizing the error 

between two density functions, 

2) By the central limit theorem, the distribution of the sum of a large number of 

independent random variables tends towards a Gaussian distribution, 

3) The Gaussian distribution has the greatest entropy of any distribution with a 

given variance. 

The most commonly used distribution is the continuous Gaussian density 

function defined as 

( )
( )

( ) ( )µOµO
µO

−−−
=

-1Σ

Σ
Σ

T

e
n

2
1

2

1

π
,;N   (2.26) 

where n  is the dimensionality of the observation vector O , µ  and Σ  are the mean 

vector and the covariance matrix respectively.  The advantage of normal distributions 

is that the parameters of Gaussian can be easily and reliably estimated from a large 

number of data.  In order to obtain more accurate approximation, Gaussian mixtures 

are used. With enough components, such mixtures can approximate any density 

function with an arbitrary precision.  The probability density of the multiple 

Gaussian mixtures is defined as 

( ) ( )∑
=

=
M

m
jmjmtjmtj cb

1
,ΣµOO ;N    (2.27) 

where M  is the number of mixture components and m  is the mixture weight for the 

mixture component in state j .  The mixture weights satisfy the stochastic constraint 

1
1

=∑
=

M

m
jmc ,  Nj ≤≤1    (2.28) 

0≥jmc ,  Nj ≤≤1 , Mm ≤≤1   (2.29) 

For the continuous probability density functions, the likelihood of an input 

observation is expressed as 
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( ) ( )∑=
Qall

QPP
 

, λλ OO     (2.30) 

( ) ( )∑=
Q all

QPQP λλ ,O     (2.31) 

An information-theoretic Q -function, which is considered a function of λ  in 

the maximization procedure, is applied to derive the re-estimation formula as 

( ) ( ) ( ) ( )∑=
 Sall

QPQP
P

λλ
λ

λλ ,log,1, OO
O

Q   (2.32) 

Using an auxiliary Q -function, the re-estimated HMM parameters for the 

multimodal Gaussian distributions are 

( )

( )∑∑

∑

= =

== T

t

M

m
jm

T

t
jm

jm

t

t
c

1 1

1

γ

γ
     (2.33) 

( )

( )∑

∑

=

=

⋅
= T

t
jm

T

t
tjm

jm

t

t

1

1

γ

γ O
µ      (2.34) 

( ) ( )( )

( )∑

∑

=

=

′−−⋅
= T

t
jm

T

t
jmtjmtjm

jm

t

t

1

1

γ

γ µOµO
Σ   (2.35) 

where prime denotes vector transpose and ( )tjmγ  is the probability of being in state 

j  at time t  with the thm  mixture component for tO  

( ) ( ) ( )

( ) ( )

( )
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⎥
⎥

⎦

⎤
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⎥
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⎦
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⎢
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⎡
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t

11
Σ

Σ
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,;N

µO

µO

βα

βα
γ   (2.36) 

The re-estimation formula for ija  is identical to the one used for discrete observation 

densities. 

There are two possible options in the design of the mixtures.  Either the 

Gaussian mixtures are state specific or they are shared (tied) between different states 
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of the HMM. HMM with state specific Gaussian mixtures is called continuous 

density HMM.   HMM that shares Gaussian mixtures among different states is called 

semi-continuous HMM or tied mixture HMM. 

 

2.2.4 Hidden Markov Model for Speech Recognition 
 

2.2.4.1 Composite Models for Continuous Speech Recognition 
 
The parameter estimation and decoding techniques in the previous section are 

defined to apply to a single HMM mapped onto an isolated word.  One of the 

advantages of the HMM approach is the ease with which it can be adapted to a 

continuous recognition environment.  In order to extend to the continuous model, 

two modifications are made to the HMM structure; the addition of the entry and exit 

states to each model.  The entry and exit states are defined as non-emitting states, 

which take t∆  time to traverse, where t∆  is negligibly small.  Thus, the forward and 

backward probabilities that correspond to the entry and exit states are those at tt ∆−  

and tt ∆+ , where t  is the time value at the immediately following or preceding state 

respectively.  Therefore, the constraints are 

011 =a  and 0=Nia  i∀     (2.37) 

which simply ensure that the entry and exit states can only be occupied for one 

transition.  The other structural change is the addition of glue models.  These models 

have only one emitting state, plus the entry and exit state, along with a non-zero 

entry to exit transition probability.  These glue models are often call null or tee 

models (Young et al., 2002).  A model with non-emitting entry and exit states is 

depicted in Figure  2.2 and a tee model is shown in Figure  2.3. Using tee models and 

non-emitting entry and exit states, a series of HMMs, with tee model between words, 

may be linearly combined into a single HMM for training purpose. 
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Figure  2.2 HMM with non-emitting entry and exit states 

 
 
 
 

 

Figure  2.3 Tee model HMM 
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The modification required for the training formulas can be generated in a 

straightforward manner.  The notation, a superscript q  in parentheses representing 

the current model, is used as the notation that a training sentence model is 

represented by Q  HMMs placed in sequence.  The resulting forward and backward 

recurrent algorithms can be rewritten directly from the earlier definitions and new 

model structure.  The forward equations are: 

 

Initialization:  

 ( ) ( ) ( ) ( ) ( )
⎪⎩

⎪
⎨
⎧

= −1
1

1
1

1
1

1 qq
q

qN
aαα  
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 (2.38) 
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Recursion: 
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The corresponding backward equations are: 

Initialization:  

 ( ) ( ) ( ) ( ) ( )
⎪⎩

⎪
⎨
⎧

= ++
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11
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 (2.45) 
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The Baum-Welch re-estimation equations for transition probabilities are split 

into four categories:  

1. internal transitions between emitting states, 

2. transitions from the entry state into emitting states, 

3. transition from emitting states into the exit state, 

4. tee transitions from the entry state directly to the exit state, generally zero for 

non-tee models. 

The equations are all similar to the original transition re-estimation formulas, 

with some primary differences above.   The resulting formulas are: 
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 It can also be seen from examination of the last equation that the last model 

Qq =  in the state sequence cannot have a non-zero tee probability from the entry to 

exit state.  This restriction is generally enforced for the initial model 1=q  as well, so 

that neither the beginning nor the end of an utterance sequence can be a tee model. 

 The underlying Baum-Welch equations for estimating output distributions do 

not change once the modifications have been made to the forward and backward 

probabilities. 

 

2.2.4.2 Multiple Observation Sequence 
 
In a complex large-vocabulary speech recognition system, there may be literally 

thousands of models representing context-dependent sub-word units or segmental 

sub-word units.  One problem that arises when performing training operation is that 

the Baum-Welch equations discussed so far are designed to be computed on one 

training sentence at a time, which is likely to use only a handful of different models 

just once or twice each, resulting in a very small quantity of training data for each 

iteration and corresponding poor re-estimation. 

 A simple and accurate approach to solving is to treat the training sentences as 

a concatenated series of observation sequences assumed to be independent of each 

other.  This concept leads to updating the parameters for each model only one time 

over the entire training set, where the new parameters are given by continuously 

summing the numerator and denominator terms of the re-estimation equations 

throughout training.  In the transition probability re-estimations, a 
rP

1  term, where 

rP  is the ( )λOP  for the r th sentence, is added to the numerator and denominator. 

The full set of re-estimation equations for the Gaussian mixture distributions with 

multiple observation sequences, including entry and exit states and tee models, is 

given below 
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The implementation of these equations can be made with attention to some 

cancellations within the terms.  In particular, the recursion for ( ) ( )tq
jα  contains the 

term ( ) ( )t
q

jb O  within it, which is also in the denominator of the formula for ( ) ( )tq
jmγ .  

The variable ( ) ( )tU q
j  is defined as  
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to represent ( ) ( )tq
jα  without ( ) ( )t

q
jb O  term. The computation of this latter term is 

cancelled entirely, giving 
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Similar modifications may be made to the distribution re-estimation equations 

for discrete probability densities so that composite models and multiple observation 

sequences can be considered, resulting in the equation 
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 It should be noted that this formula has an identical form to the re-estimation 

equation for the mixture weights of Gaussian mixture distributions, if the mixture 

number m  is treated as the index of the emitted observation.  Thus, there is a direct 

correspondence between an M -mixture Gaussian distribution and a discrete 

distribution of M observation symbols. 

 

2.3 Summary 
 
This chapter provides concise information about fundamental techniques and 

methods in the utterance-type recognizer.  It includes neural networks and Hidden 

Markov Model.  Firstly, the neural network principle is described.  Then, the Hidden 

Markov Model (HMM) is elaborated.   
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Neural networks are originally referred to the biological neural network 

system.  They consist of nodes and connections between the nodes.  The neural 

networks have been applied in many areas, such as pattern recognition, system 

modeling, digital signal processing and control engineering.   In speech technology, 

they have been applied in speech coding, speech recognition, voice conversion and 

speech enhancement. 

HMM is basically a Markov chain, where the output observation is a random 

variable generated according to the output probabilistic function associated with each 

state.  It is a powerful statistical approach for the study of time series modeling with 

many of the classical probability distributions.  It has become one of the most 

successful statistical methods used in speech recognition, because of few 

assumptions need to be built into the models, and all model parameters can be 

efficiently estimated from the training data.   



 

CHAPTER III 
UTTERANCE-TYPE RECOGNIZER OF THE 

DECLARATIVE QUESTION AND STATEMENT OF 
INDONESIAN SPEECH BASED ON FUJISAKI MODEL 

 

 

In this research, Fujisaki model, which is originally designed for synthesis system 

(Fujisaki et al., 1996), is adapted for recognition system.  Besides adapted for 

Indonesian intonation recognition system (Effendy et al., 2004; Effendy and 

Jitapunkul, 2006), Fujisaki model has been adapted for Thai tone recognition system 

(Potisuk et al., 1999; Ngarmchatetanarom et al., 2004). 

Figure 3.1 shows the diagram block of an utterance-type recognizer of 

declarative question and statement of Indonesian speech based on Fujisaki model.  

The recognizer consists of a pitch extractor, Fujisaki model, a Fujisaki-model 

parameter extractor, and a classifier.  The next sections describe the speech data, 

Fujisaki model and parts of the utterance-type recognizer. 

 

 

 

Figure 3.1 Utterance-type recognizer Based on Fujisaki model 
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3.1 Speech Data 

 

To investigate the performance of the utterance-type recognizer, speech data 

consisting of 29 pairs of declarative questions and statements of Indonesian speech 

were used.  The speech data are recorded from a native Indonesian male speaker.  He 

was asked to utter the pairs of declarative questions and statements of Indonesian 

speech.  The sentences are chosen from daily-life conversations among Indonesian 

speakers as listed in appendix A.  The utterances are recorded at 16 kHz sampling 

rate, and 16-bit resolution in an office environment.   

 

3.2 Fujisaki Model 

 

Figure  3.2 shows a diagram of Fujisaki model.   The model generates F0 contours in 

the log F domain and is originally formulated for Japanese.  It consists of phrase and 

accent commands.  The phrase commands are assumed the impulse signals applied to 

the phrase control mechanism to generate the phrase components, while the accent 

commands are assumed the positive stepwise functions applied to the accent control 

mechanism to generate the accent components.  Both mechanisms are assumed to be 

critically damped second-order linear systems, and the sum of their outputs: the 

phrase components and the accent components, is superimposed on a baseline value 

(logFb) to form an F0 contour, as given by following equation (Fujisaki and Ohno, 

1998):  
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Figure  3.2 Fujisaki model (Fujisaki and Ohno, 1998) 
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Where,  

Fb : Baseline value of fundamental frequency 

I : Number of phrase commands 

J : Number of accent commands 

Api  : Magnitude of ith phrase command 

T0i  : Timing of ith phrase command 

Aaj  : Amplitude of jth accent command 

T1j  : Onset of jth accent command 

T2j  : Offset of jth accent command 

α    : Natural angular frequency of the phrase control mechanism 

β    : Natural angular frequency of the accent control mechanism 

γ    : Relative ceiling level of accent components 

 

 

Equation (3.2) denotes the impulse response of the phrase control 

mechanism.  The input signals to the phrase control mechanism are impulses, which 

are defined by their magnitude Ap and their onset time T0.  α denotes the time 
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constant of the phrase control mechanism and is assumed as being constant within an 

utterance.  Ap determines the onset value of the F0 contour relative to Fb, unless an 

accent command is present. 

Ga(t) (Equation 3.3) denotes the step response of the accent control 

mechanism.  The step-wise input signals to the accent control mechanism, the accent 

commands, are defined by their amplitude Aa, onset time T1 and offset time T2.  β 

denotes the time constant of the accent control mechanism and is assumed as being 

constant in an utterance.  The ceiling value γ (typically set to 0.9) of the accent 

control mechanism ensures that the accent component reaches its maximum in finite 

time.  Hence, the change in F0 is in proportion to Aa.  

 The analysis of natural F0 contours is conducted by a method known as 

‘Analysis-by-Synthesis’.  Basically, the number and parameters of input commands 

to the model is modified until an optimal approximation of the contour is yielded. 

When an arbitrary number of commands provided, any F0 contour can be 

approximated with unlimited accuracy.  For this reason, constraints must be applied 

in order to ensure a linguistically meaningful interpretation of the analysis results.  

These constraints are language-specific and concern the relationship between 

linguistic units and structures (prosodic phrases and accents, for instance) and the 

phrase and accent commands. 

 

3.2.1 Physiological Interpretation 
 
In early works, Fujisaki (1971) explained the reason for formulating the model in the 

log F domain by the observation  that contours by male and female speakers only 

look similar when plotted in the log F domain (Fujisaki et al., 1971).  Fujisaki 

derived this property from the relationship between the tension T and elongation x of 

skeletal muscles (Fujisaki et al., 1981). 

 )exp()1)(exp( bxabxaT ≈−=    for exp (bx) »1 (3.4) 

The vibration frequency of elastic membranes varies in proportion to the 

square root of their tension. 

 TcF 00 =  (3.5) 
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Combining Equation (3.4) and (3.5) yields 

 ( )0ln2/0ln caxbF += . (3.6) 

Hence ln F0 is in proportion to the elongation x plus a constant.  The constant 

corresponds to the baseline value of the Fujisaki model, ln Fb.  The oscillation 

frequency of the glottis (the vocalis muscle) is passively influenced by the 

cricothyroid muscle (CT) which changes the elongation x of the glottis.  CT moves 

the thyroid cartilage relative to the cricoid cartilage, changing the length and thus the 

tension of the glottis.  The movement has two degrees of freedom: 1) Rotation 

around the cricothyroid joint, 2) Translation of the thyroid against the cricoid.  

 

3.2.2 Automatic Extraction of Fujisaki-Model parameters 
 
Several researchers have investigated some methods of the automatic extraction of 

Fujisaki-model parameters.  Among of them are Fujisaki, et.al. (1996), Rossi, et al 

(2002), Narusawa, et.al. (2002), Mixdorff (2000), Mixdorff, et.al. (2003), Silva and 

Netto (2004) (Fujisaki et al., 1996; Mixdorff, 2000; Narusawa et al., 2002; Rossi et 

al., 2002; Mixdorff et al., 2003; Silva and Netto, 2004). 

The Fujisaki’s model produces a particular F0 contour in the log F domain by 

superimposing three components: the phrase component, which corresponds to the 

phrase-wise slow overall declination line, the accent component made up by the 

faster movements in the F0 contour connected with accents and boundary tones, and 

Fb, a speaker-individual constant. 

In order to separate the accent component from the phrase component and Fb, 

the spline contour is passed through a high-pass filter with a stop frequency at 0.5 Hz 

(Mixdorff, 2000).  The output of the high-pass (henceforth called ‘high frequency 

contour’ or HFC) is subtracted from the spline contour yielding a ‘low frequency 

contour’ (LFC), containing the sum of phrase component and Fb.  Hence, partial 

contours roughly corresponding to phrase and accent components are determined. 

The initialization procedure makes use of the characteristics of phrase and 

accent command responses making up phrase and accent components, respectively.   

The phrase command response has its onset with the occurrence of an impulse-wise 

phrase command, rise to a maximum and then decays slowly according to the 
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associated time constant α.  Hence, in a sequence of phrase commands, the onset of a 

new command is characterized by a local minimum in the phrase component.  

Consequently, the LFC is searched for local minima, applying a minimum distance 

threshold of 1 sec between consecutive phrase commands.  For initializing the 

magnitude value Ap assigned to each phrase command, the part of the LFC after the 

potential onset time T0 of a phrase command is searched for the next local 

maximum.  Ap is then calculated in proportion to the frequency value found at this 

point.  As responses of several phrase commands may add up in the phrase 

component, contributions of preceding commands must be taken into account when 

calculating Ap, which is reduced accordingly. 

The accent command response is a smoothed square function rising from a 

value of 0 at T1 to a maximum which is sustained until the offset time T2 when it 

starts decaying.   For initializing the appropriate number, onset times T1 and offset 

times T2 of accent commands, the HFC is searched for local minima, whose vicinity 

(± 100 msec) is scanned for even lower F0 values in order to avoid picking saddle 

points.  Two subsequent local minima each are associated with a new accent 

command. 

 

 

 

Figure  3.3 A specific fully connected feed forward neural network 
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3.3 Classifier 

In this research, a specific fully connected feed forward neural network depicted in 

Figure  3.3 was used as a classifier to distinguish declarative questions from 

statements.  The number of nodes in input layer can be changed to be arbitrary 

positive integer depending on the number of Fujisaki-model parameters used in the 

experiments.   Both hidden layer and output layer consist of two nodes.    The neural 

network is targeted to (0 1) for a statement and (1 0) for a declarative question.   

 

 

3.4 Experimental Setup 

 

All utterances in the speech data are extracted to produce the pitch contour using 

PRAAT software (©P.Boersma) (Boersma and Weenink, 2004).  After the extraction 

of the pitch contour, Fujisaki-model parameters are extracted using an automatic 

Fujisaki parameter extractor proposed by Mixdorff and his colleagues (Mixdorff et 

al., 2003).   Although, it is specifically designed for German, the automatic Fujisaki 

parameter extractor was adopted for the Indonesian language.   

Twenty-nine utterances are used as the training set of neural network and 

fifty-eight utterances consisting also the training files are used as the testing set of 

the neural network.  Three parameters of Fujisaki’s model, the amplitude of last 

accent command (AaJ), the magnitude of last phrase command (ApI); the baseline 

value of the fundamental frequency (Fb) are used to represent the pitch contour of 

each utterance type.  Table 3-1 lists the example of the values of the Fujisaki-model 

parameters used in this dissertation as the input of the neural network.  Four 

combinations of the Fujisaki-model parameters are created using the three 

parameters as illustrated in Table 3-2.  The combinations are (1) the amplitude of last 

accent command (AaJ), (2) AaJ and the magnitude of last phrase command (ApI), (3) 

the baseline value of the fundamental frequency (Fb), AaJ and ApI, and (4) a fraction of 

Fb: Fb/100, AaJ and ApI. 
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Table  3.1  Example of Fujisaki-model parameters 

No Fb ApI AaJ Utterance Type 
1 107.07 0.2242 0.19 Statement 
2 132.83 0.4012 0.60 Declarative Question 
3 85.69 0.0924 0.19 Statement 
4 119.13 0.1399 0.55 Declarative Question 
5 120.02 0.3485 0.97 Statement 
6 117.70 0.3149 0.51 Declarative Question 
7 86.47 0.4673 0.24 Statement 
8 108.37 0.1033 0.53 Declarative Question 
9 97.81 0.3776 0.06 Statement 
10 131.11 0.1877 0.25 Declarative Question 
11 89.55 0.3473 0.16 Statement 
12 132.96 0.0288 0.35 Declarative Question 
13 106.02 0.4212 0.33 Statement 
14 103.98 0.4814 0.53 Declarative Question 
15 121.72 0.0518 0.27 Statement 
16 116.54 0.043 0.53 Declarative Question 
17 86.01 0.0025 0.47 Statement 
18 98.88 0.2707 0.76 Declarative Question 
19 98.18 0.489 0.20 Statement 
20 106.67 0.2981 0.32 Declarative Question 
21 89.46 0.42 -0.24 Statement 
22 103.85 0.02 0.59 Declarative Question 
23 97.47 0.22 0.17 Statement 
24 98.64 0.1882 0.46 Declarative Question 
25 105.44 0.0008 0.14 Statement 
26 136.54 0.4257 0.45 Declarative Question 
27 105.97 0.4241 0.21 Statement 
28 84.87 0.0328 0.87 Declarative Question 
29 10.14 2.662 1.72 Statement 
30 122.54 0.293 0.57 Declarative Question 

 

AaJ: the amplitude of last accent command  

ApI: the magnitude of last phrase command  

Fb: Baseline value of fundamental frequency 

 
 
 
 
 
 

 

 
 
 



 34

 

Table  3.2 Four combinations of Fujisaki-model parameters used to investigate the 

performance of the utterance-type recognizer 

Combination Fujisaki-model parameter(s) 

I AaJ 

II AaJ and ApI 

III Fb, AaJ and ApI 

IV Fb/100, AaJ and ApI 

 

 

 
 

3.5 Experimental Results 

 

Table  3.3 shows the recognition rates of the utterance-type recognizer using 

each combination of the Fujisaki-model parameters listed in Table 3-2 as the input of 

the neural networks.  The recognition rate of the recognizer using only the amplitude 

of last accent command was 83.3%.  The recognition rate of the recognizer increased 

to 90.0% when the recognizer used the combination of the amplitude of last accent 

command and the magnitude of last phrase command as the input of the neural 

network.  When the recognizer used a combination of the baseline value of the 

fundamental frequency, the amplitude of last accent command and the magnitude of 

last phrase command as the input of the neural networks, the recognition rate of the 

recognizer decreased to 50.0%.  The highest recognition rate was achieved when the 

recognizer used a combination of one percent of the baseline value of the 

fundamental frequency, the amplitude of last accent command and the magnitude of 

last phrase command as the input of neural network: 96.7%. 

 
 
 



 35

 

Figure  3.4 Waveform, pitch contour and Fujisaki-model parameters of an 

Indonesian Statement: “Dia sedang makan” (He is eating) 

 

 

Figure  3.5 Waveform, pitch contour and Fujisaki-model parameters of an Indonesian 

declarative question: “Dia sedang makan?” (He is eating?) 
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Table  3.3 Recognition rate of the utterance-type recognizer based on Fujisaki model 

Combination Input of Neural Network Recognition Rate (%) 

I AaJ 83.3 

II AaJ and ApI 90.0 

III Fb, AaJ and ApI 50.0 

IV Fb/100, AaJ and ApI 96.7 

 
 

 

In this research, the neural network did not recognize all the patterns correctly 

because of the resemblance of the F0 contours of the declarative questions and the 

statements.  Figure 3-4 and Figure 3-5 show the waveform, pitch contour, and 

Fujisaki-model parameters of a pair of a statement “Dia sedang makan” (He is 

eating) and its corresponding declarative question “Dia sedang makan?” (He is 

eating?).  The figures show that the most important parts of the sentences to 

distinguish the two utterance-types are their final words.  In the pair of the utterance-

types, the declarative question has a final rise, while the statement has a final fall.   

However, the pitch contours of the final words of another pair of declarative 

question and statement as shown in Figure  3.6 and Figure  3.7 are unlike the most 

patterns of those of the pairs of declarative questions and statements.  Figure  3.6 and 

Figure  3.7 show another pair of an Indonesian statement “Komputer itu terjangkit 

virus” (The computer is infected by virus) and its corresponding declarative question 

“Komputer itu terjangkit virus?” (The computer is infected by virus?).   In the pair, 

the last accent command of the statement is higher than that of its corresponding 

declarative question.  It made the recognizer incorrectly distinguished the two 

utterance-types. 
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Figure  3.6 Waveform, pitch contour and Fujisaki-model parameters of an Indonesian 

Statement: “Komputer itu terjangkit virus” (The computer is infected by virus) 

 

 

Figure  3.7 Waveform, pitch contour and Fujisaki-model parameters of an Indonesian 

declarative question: “Komputer itu terjangkit virus?” (The computer is infected by 

virus?) 
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3.6 Summary 
 
This chapter has discussed the design of an utterance-type recognizer based on 

Fujisaki model to distinguish the declarative questions and statements in Indonesian 

speech.   

In this chapter, Fujisaki-model parameters were used as the features to 

classify the utterance type between the declarative questions and the statements in 

Indonesian speech.  Four different combinations of Fujisaki-model parameters were 

used as the input of the classifier of the utterance-type recognizer.   The highest 

recognition rate of the recognizer was achieved using a combination of a fraction 

value of Fb: Fb/100, the amplitude of last accent command, and the magnitude of last 

phrase command as the input of the neural networks. 

 



 

CHAPTER IV 
THE DESIGN OF AN ACOUSTIC MODEL OF  

AN INDONESIAN SPEECH RECOGNIZER 
 
 

The hidden Markov model (HMM) as explained in chapter 2 has been known as a 

useful tool to create an acoustic model of a speech recognizer.  There are many 

features to be the input of HMM.  Among them are Mel Frequency Cepstral 

Coefficient (MFCC), linear frequency cepstrum coefficients (LFCC), linear 

prediction coefficients (LPC), reflection coefficients (RC), F0, energy, and duration 

(Davis and Mermelstein, 1980; Wang, 2001). MFCC has been widely used by many 

researchers as the features to create the acoustic model of the speech recognition 

(Maneenoi, 2004; Effendy et al., 2005).   The MFCC combined with F0 have been 

used to represent the information of the source and the vocal tract respectively 

(Ezzaidi et al., 2004). 

Several researchers already investigated the influence of the use of the 

features in the performance of a speech recognizer for other languages.   Davis and 

Mermelstein (1980) described that the performance of the speech recognizer using 

MFCC as the features for the recognition is better than using LFCC, LPC or RC 

(Davis and Mermelstein, 1980).  Matsumoto et al. (1998) showed that MFCC is 

slightly better than Mel-LPC in higher orders for female speakers, but slightly worse 

than Mel-LPC for male speakers (Matsumoto et al., 1998).  Wang (2001) described 

that MFCC can improve the classification accuracy in addition to prosodic features 

in English stress classification.  However, the gain using only prosodic features is 

greater than when only MFCC is used (Wang, 2001).   

Besides of several investigations have been carried out in the influence of the 

features in a speech recognizer, however, none of them investigated the influence of 

the features in the Indonesian language.  Many researchers of Indonesian speech 

recognizer used an acoustic model from other languages, such as English to be 

implemented in Indonesian speech recognizer (Martin et al., 2003; Wong et al., 

2003; Sakti et al., 2004).  In this research, an Indonesian acoustic model is designed 

and employed in an Indonesian speech recognizer.  The investigation is limited on 
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the features of the combination of MFCC with energy, their first order and second 

order derivatives.  The acoustic model will be used in the automatic utterance 

segmentation module of an automatic utterance-type recognizer, which will be 

explained in chapter 6.  The influence of the increment of the Gaussian mixtures in 

the performance of the acoustic model is investigated as well.   

 

4.1 Mel Frequency Cepstral Coefficient (MFCC) 

 

The spectral features can be obtained by passing the speech signal through a bank of 

bandpass filters.  One of the main advantages of this approach is that the bandpass 

filters can be placed along the perceptual frequency scales such as critical band 

(Dautrich et al., 1983), bark scale (Ali et al., 2002), or Mel scale (Bu and Church, 

2000). The filterbanks are generally triangular, and they are equally spaced along the 

Mel scale, which is defined as 

 )
700

1(log2595)( 10
ffMel +=  (4.1) 

 

Obviously, the Mel scale is linear below and logarithmic above 1 kHz.  This scale is 

known to be a good scale for approximating the ability of human auditory system to 

discriminate frequencies.  

To implement the filterbank, each segment of speech data is transformed 

using a Fourier transform and the magnitude is taken. Each FFT magnitude 

coefficient is multiplied by the corresponding filter gain and the results are 

accumulated.  If the cepstral parameters are computed from the log filterbank 

amplitude using the discrete cosine transform as shown in Equation (4.2), then, the 

Mel Frequency Ceptral Coefficients (MFCCs) are obtained. 
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where, N is the number of filter bank channels and mj is the log filterbank amplitude. 
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4.2 Speech Data 
 
Speech data are recorded and collected from 20 Indonesian native speakers.  They 

consist of 11 male and 9 female speakers with age ranging from 23 to 50.  Each 

speaker was asked to utter twice 70 phone numbers and 89 sentences from 

Indonesian newspapers and Indonesian linguistics books, which consist of 1,305 

words.  Therefore, there are 280 utterances of phone numbers and 3,560 utterances of 

sentences, which consist of 52,200 words.  The speech data are recorded with 16 kHz 

sampling rate and 16-bit resolution in an office environment.   

 

4.3 Experimental Setup 
 
Speech data were passed through a signal preprocessing routine consisting of signal 

pre-emphasis with a coefficient of 0.97 (Rabiner and Juang, 1993; Furui, 2001).  A 

25 msec Hamming window was applied every 10 msec in order to divide the speech 

signal into frames. 

From the speech data, 49 sentences uttered by one male speaker and 1 

sentence uttered by another male speaker was labeled manually based on phoneme.  

The Indonesian phonemes are listed in Table 4.1.  The manual labeled speech data 

were used to create the acoustic model of the speech recognizer.  A standard 5-state 

left-to-right Hidden Markov Model (HMM) with no skip state was employed in the 

design of the acoustic model.  The manual acoustic model was used to automatically 

label the 335 phone numbers uttered by three male and two female speakers.  The 

automatically labeled speech data were used to update the manual acoustic model to 

become an Indonesian acoustic model.   

372 phone numbers uttered by two female speakers and four male speakers 

and 27 sentences uttered by one male speaker were used as the testing set to 

investigate the performance of the acoustic model of the Indonesian speech 

recognizer. 
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Table  4.1 Distinctive Feature Composition of Indonesian Phonemes (modified from 

Halim, 1981) 

 
 i u o a e ə y w l r h ʔ p b f 
Syllabic + + + + + + - - + + - - - - - 
Consonantal - - - - - - - - + + - - + + + 
Sonorant + + + + + + + + + + - - - - - 
High + - - - - - + + - - - - - - - 
Back - + + + - - - + - - - - - - - 
Low - - - + - - - - - - + + - - - 
Anterior - - - - - - - - + + - - + + + 
Coronal - - - - - - - - + + - - - - - 
Round - + + - - - - +        
Tense + + + - + - - -        
Continuant         + - + - - - + 
Voice         + + - - - + - 
Nasal         - - - - - - - 
                

 
 m t d c j s z n š ɲ k g x ŋ  
Syllabic - - - - - - - - - - - - - -  
Consonantal + + + + + + + + + + + + + +  
Sonorant + - - - - - - + - + - - - +  
High - - - - - - - - + + + + + +  
Back - - - - - - - - - - + + + +  
Low - - - - - - - - - - - - - -  
Anterior + + + - - + + + - - - - - -  
Coronal - + + + + + + + + + - - - -  
Round                
Tense                
Continuant - - - - - + + - + - - - + -  
Voice + - + - + - + + - + - + - +  
Nasal + - - - - - - + - + - - - +  
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Table  4.2 Six combinations of the acoustic-phonetic features used to create six types 

of Indonesian acoustic models 

 

Combination Symbol Dimension of the 

acoustic-phonetic 

feature stream 

Contents 

I MFCC 12 12 MFCCs 

II MFCC+E 13 12 MFCCs and Energy 

III MFCC+D 24 12 MFCCs and their first 

order derivatives 

IV MFCC+E+D 26 12 MFCCs, their energy and 

their first order derivatives 

V MFCC+D+A 36 12 MFCCs, their first and 

second order derivatives 

VI MFCC+E+D+A 39 12 MFCCs, their energy, 

their first and second order 

derivatives 

 

 

Six types of the acoustic-phonetic features were used to create six types of 

acoustic models as shown in Table  4.2.  The six types of Indonesian acoustic models 

were employed in an Indonesian speech recognizer.  The performance of the 

Indonesian acoustic model was investigated from the recognition rate of the 

Indonesian speech recognizer.  The number of the Gaussian mixtures per state of 

HMM was varied to investigate the best performance of the Indonesian acoustic 

model.   

The performance of the acoustic model is computed using 2 formulas called 

“Percentage Correctness” and “Percentage accuracy” (Young et al., 2002).  When the 

optimal alignment has been found, the number of substitution errors ( S ), deletion 

errors ( D ), and insertion errors ( I ) can be calculated.  Then, the percentage correct 

is 

Percent Correct  %100×
−−

=
N

SDN    (4.3) 
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where N is the total number of labels in the reference transcriptions.  For many 

purposes, the percentage accuracy defined as 

Percent Accuracy  %100×
−−−

=
N

ISDN   (4.4) 

is a more representative figure of the recognizer performance.  

 

4.4 Experimental Results 
 
Figure  4.1 and Figure  4.2 show the percentage correct and the percentage accuracy of 

Indonesian speech recognizer.  From the experimental results, the higher the number 

of the Gaussian mixtures, the higher both the accuracy and the percentage correct of 

the Indonesian speech recognizer.  However, the increase of the number of Gaussian 

mixtures also increased the computational complexity.  The Indonesian speech 

recognizer with 16 Gaussian mixtures achieved the highest percentage accuracy and 

the highest percentage correct.   

From the six combinations of the MFCCs with energy, their first and second 

order derivatives, the Indonesian acoustic model of the speech recognizer using only 

MFCCs achieved the lowest both of the percentage correct and the percentage 

accuracy.  However, the Indonesian speech recognizer with only MFCCs had the 

smallest computational complexity.  The addition of the energy to MFCC increased 

the percentage correct of the Indonesian speech recognizer to be 72.4%, 77.3%, 

81.6%, 84.9% and 86.4% for one, two, four, eight and sixteen Gaussian mixtures, 

respectively.  The addition of the first order derivatives of MFCCs to MFCCs 

increased the percentage correct of the Indonesian speech recognizer higher than the 

addition of the energy to MFCCs did, i.e. to be 84.8%, 88.3%, 89.60%, 90.1%, and 

90.2% for one, two, four, eight and sixteen Gaussian mixtures, respectively.  A 

combination of MFCCs with energy and their first order derivatives increased the 

percentage correct of the Indonesian speech recognizer higher than the combination 

of MFCC and their first order derivatives did, i.e. to be 85.0%, 88.4%, 89.7%, 

90.4%, and 90.6% for the one, two, four, eight and sixteen Gaussian mixtures, 

respectively.  The combination of MFCCs with energy, their first and second order 

derivatives increased the percentage correct of the Indonesian speech recognizer 

higher than the combination of MFCCs with energy and their first order derivatives 

did for four, eight and sixteen Gaussian mixtures, i.e. 88.8%, 90.6%, and 91.3%, 
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respectively.  The combination of MFCCs with their first and second order 

derivatives made the percentage correct of the Indonesian speech recognizer to be 

83.4% and 86.9% for one and two Gaussian mixtures, respectively. 

The effect of the combinations of the MFCCs with energy, their first and 

second order derivatives on the percentage accuracy of the speech recognizer is the 

same with their effect on the percentage correct.  The addition of energy to MFCCs 

increased the percentage accuracy of the Indonesian speech recognizer to be 63.6%, 

70.6%, 76.8%, 81.4%, and 83.8% for one, two, four, eight and sixteen Gaussian 

mixtures, respectively.  The addition of the delta to MFCCs increased the percentage 

accuracy of the Indonesian speech recognizer higher than the combination of MFCCs 

with energy did, i.e. to be 80.2%, 84.2%, 86.0%, 87.1%, and 87.6% for one, two, 

four, eight and sixteen Gaussian mixtures, respectively.   The combination of MFCCs 

with energy and their first order derivatives increased the percentage accuracy of the 

Indonesian speech recognizer higher than the combination of MFCCs with their first 

order derivatives did, i.e. to be 81.2%, 85.2%, 86.8%, 87.8 and 88.3% for one, two, 

four, eight and sixteen Gaussian mixtures, respectively.  A combination of MFCCs 

with their first and second order derivatives increased the percentage accuracy higher 

than the combination of MFCCs with energy, and their first order derivatives did for 

the acoustic model with 16 Gaussian mixtures, i.e. to be 88.7%.  A combination of 

MFCCs with energy, their first and second order derivatives increased the percentage 

accuracy of the Indonesian speech recognizer higher than the combination of MFCCs 

with energy, and their first order derivatives did for four, eight and sixteen Gaussian 

mixtures, i.e. to be 87.1%, 89.3%, and 89.7%, respectively.  The combination of 

MFCCs with energy, their first and second order derivatives increased the percentage 

correct of the Indonesian speech recognizer to be 79.6% and 83.7% for one and two 

Gaussian mixtures, respectively.   
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Figure  4.1 Percentage correct of Indonesian speech recognizer. 
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Figure  4.2 Percentage accuracy of Indonesian speech recognizer. 
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The highest of both the percentage correct and the percentage accuracy of the 

speech recognizer with either one or two Gaussian mixtures were achieved using the 

combination of MFCCs with energy, and their first order derivatives.  The highest 

both the percentage correct and the percentage accuracy of the speech recognizer 

using four, eight or 16 Gaussian mixtures were achieved using the combination of 

MFCC with energy, their first and second order derivatives.  In the research, the 

highest percentage correct and the highest percentage accuracy of the speech 

recognizer were achieved using 16 Gaussian mixtures and the combination of 

MFCCs with energy, their first and second order derivatives. 

 

 

4.5 Summary 
 
This chapter has discussed the study on the design of an acoustic model of 

Indonesian speech recognizer.  The Indonesian acoustic model yielded from the 

research will be employed in the design of an automatic utterance-type recognizer to 

distinguish declarative question and statement in Indonesian speech, which will be 

further described in Chapter 6.  

In this research, the higher the number of Gaussian mixtures used in the 

design of the Indonesian acoustic model, the higher both the percentage correct and 

the percentage accuracy of the speech recognizer.  The highest percentage correct 

and the highest percentage accuracy of the speech recognizer using either one or two 

Gaussian mixtures were achieved using the combination of MFCCs with energy and 

their first order derivatives.  The highest percentage correct and the highest 

percentage accuracy of the speech recognizer using four, eight or sixteen Gaussian 

mixtures were achieved using the combination of MFCCs with energy, their first and 

second order derivatives.  In the research, the highest percentage correct and the 

highest percentage accuracy of the speech recognizer were achieved using 16 

Gaussian mixtures and the combination of MFCCs with energy, their first and second 

order derivatives.   

 



 

CHAPTER V 
FINAL WORD OF DECLARATIVE QUESTION AND 

STATEMENT IN INDONESIAN SPEECH 
 

 

The characteristics of the final word of declarative question and statement in 

Indonesian speech were an open question.  Ebing (1997) explained the form and the 

function of pitch movements in Indonesian (Ebing, 1997) but not including the 

characteristics of the final word of an utterance types in Indonesian speech.  The 

characteristics of the final word of declarative question and statement in Indonesian 

speech had not been investigated.  I have a hypothesis that the final word of 

declarative question and statement in Indonesian speech might be used to distinguish 

the two utterance types.  To confirm the hypothesis, the characteristics of the final 

words of each utterance type will be investigated. 

This chapter describes the investigation of the characteristics of the final 

words of declarative questions and statements in Indonesian speech.  The 

investigation includes the pitch contour, pitch range, maximum pitch and speech rate 

of the sentence’s final word. 

 

5.1 Speech Data 
 

Speech data are recorded from 35 Indonesian native speakers.  They consist 

of 11 female and 24 male speakers with age ranging from 23 to 50.  The subjects are 

asked to utter 29 pairs of sentences as naturally as possible.  The pair of sentences 

consists of statements and their corresponding declarative questions.  The sentences 

are selected from the daily life conversation among Indonesian speakers (Effendy et 

al., 2004).  From the recording, there are 2030 utterances in the speech data.  The 

speech data are recorded in an office environment.  The recorded speech data are 

digitized at 16 kHz sampling rate and 16-bit resolution. 
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Table  5.1 Types of pitch contour of the final word extracted from 290 pairs of 

declarative questions and statements in Indonesian Speech. 

 

No Declarative 
Question 

Percentage of 
occurrence 

Statement Percentage of 
occurrence 

 
1 

 
 
 

 
5.86 

  
6.21 

 
2 

 
 
 

 
8.62 

  
31.03 

 
3 

 
 
 

 
14.48 

  
1.03 

 
4 

 
 
 
 

 
8.28 

  
1.38 

 
5 

 
 
 
 

 
5.52 

  
13.10 

 
 
6 

 
 
 
 
 

 
 

2.07 

  
 

26.89 

 
 
7 

 
 
 
 
 

 
 

33.45 

  
 

5.17 

 
8 

 
 
 

 
5.17  

  
8.62 

 
9 

 
 
 

 
3.10 

 

  
6.21 

 
10 

 
 
 

 
13.45 

  
0.34 
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5.2 Pitch of the Final Words 
 

Pitch is the major correlate of intonation (Yan et al., 2003; Watson and 

Hughes, 2006) and has been used by many researchers in prosody study.  In this 

section, the pitch contour, pitch range and maximum pitch are investigated on their 

relation with the utterance type of declarative question and statement of Indonesian 

speech.   

 

5.2.1 Experimental Setup 

The pitch contour of the sentences were extracted using PRAAT software 

(Boersma and Weenink, 2004) to produce the pitch data. The pitch contour of the 

final words was produced using both the pitch contour extracted using PRAAT 

software and final word boundary information extracted with the manually 

segmentation of the utterances.  The manual utterance segmentation to determine the 

final word boundary was performed to avoid the error in the segmentation.   

To get the types of the pitch contours of the final words of Indonesian 

sentences, 290 declarative questions and 290 statements from the speech data were 

analyzed.  Similar forms of the pitch contours were grouped into the same type.   The 

pitch range and maximum pitch of the sentence final words were calculated 

automatically from the pitch contour. 

 

5.2.2 Experimental Results 

5.2.2.1 Pitch Contour 
 
Table  5.1 shows the types of the pitch contour of the sentence’s final word.  From the 

experiments, it was found that there were ten types of the pitch contour of the final 

word of both declarative questions and statements.  33.45% of the pitch contours of 

the final word of the declarative question have a ‘rising wave’ form.  14.48% of the 

pitch contours have a ‘falling-rising’ form. 13.45% of the pitch contours have a 

‘falling-rising-falling-rising’ form. Others have other forms such as ‘rising’ (5.86%), 

‘end rising’ (8.62%), ‘falling-slightly rising’ (2.07%). In contrast with declarative 

questions, 31.03% of the pitch contours of the final word of the statements have a 
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‘falling wave’ form. In general, 92.4% of the pitch contours of the final word of the 

statements have a positive general slope, whereas only 61.38% of the declarative 

questions have a negative general slope. 

Figure  5.1 shows the pitch contours of the three-syllable-final-word of 

Indonesian declarative questions from three sentences each contains either the final 

words ‘pen-ja-hat’ (‘criminal’), ‘sen-di-ri’ (‘alone’), or ‘me-na-ri’ (‘dance’). Part (a) 

and (b) of Figure  5.1 display the pitch contours of the final word having stress 

located at the final syllable (‘syl3’) uttered by male and female speakers respectively.  

The positions of syllables ‘syl1’, ‘syl2’, and ‘syl3’ in Figure  5.1 are not accurate for 

each speaker.  They show only the common position, because each speaker can utter 

the sentence with different speech rate and different duration for each syllable.   

Like Figure  5.1, Figure  5.2 also shows the pitch contours of the three-

syllable-final-word of Indonesian declarative questions from three sentences each 

contains either final words ‘pen-ja-hat’ (‘criminal’), ‘sen-di-ri’ (‘alone’), or ‘me-na-

ri’ (‘dance’) but the final words have stress located at the second syllable (‘syl2’) of 

the words.  Figure  5.1 and Figure  5.2 confirm that in Indonesian speech, the final 

words of the declarative questions do not have only one form of the pitch contour.  

Different position of the stressed syllable changes the form of the pitch contours. 

 

 
 

 
              syl1               syl2          syl3 

(a) 

 
              syl1           syl2          syl3 

(b) 
 

Figure  5.1 Pitch contours of the three-syllable-final-word of declarative questions 

uttered by (a) male and (b) female speakers with the stress on the last syllable.  Each 

line represents the pitch contour of each speaker. 
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              syl1            syl2         syl3 

(a) 

 
               syl1             syl2        syl3 

(b) 

 

Figure  5.2 Pitch contours of the three-syllable-final-word of declarative questions 

uttered by (a) male and (b) female speakers with the stress on the second syllable.  

Each line represents the pitch contour of each speaker. 

 

 

Figure  5.3 depicts the pitch contours of the two-syllable-final-word of 

declarative questions with different stressed syllables in a normalized time domain.  

Part (a) and (b) of Figure  5.3 display the pitch contour of the final word ‘syl1-syl2’ 

with stress placed on the last-syllable for male and female speakers respectively.  

Part (c) and (d) of Figure  5.3 show the pitch contour of the final word ‘syl1-syl2’ 

having the pitch contour as ‘rise-fall-rise’.  The label ‘syl1’ and ‘syl2’ in the figures 

are placed in a common location for each speaker, because each speaker uttered the 

sentence naturally without using the same speech rate for each syllable.  The stress 

on different syllable of the final word produces different contours of the pitch.   

The examples of the pitch contours of the two-syllable-final-word and the 

three-syllable-final-word of statements uttered by male and female speakers are 

separately displayed in Figure  5.4.  Most of the pitch contours have a falling form.  

The rest have a rising form.   
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syl1                syl2 

(a) 

 
syl1                syl2 

(b) 
 

 
syl1                 syl2 

(c) 

 
syl1               syl2 

(d) 

 

Figure  5.3 Pitch contours of the two-syllable-final-word of declarative questions.  

Different lines are used for different speakers. 

 

 

Figure  5.1, Figure  5.2, Figure  5.3, and Figure  5.4 confirm that both the 

declarative questions and the statements uttered by female speakers have higher 

average pitch than those uttered by male speakers.  The findings are the same with 

the findings of other researchers for other languages.  This characteristic may be 

universal for many languages.  The pitch contours of the final word of each utterance 

type have various forms.  This characteristics increase the difficulty in the utterance 

type recognition using the pitch contour of sentence’s final word. 
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syl1                 syl2 

(a) 

 
syl1                 syl2 

(b) 

 

 
                syl1        syl2            syl3 

(c) 

 
               syl1        syl2            syl3 

(d) 

 

Figure  5.4 Pitch contours of the two-syllable-final-word (top) and the three-syllable-

final-word (below) of statements.  Different lines are used for different speakers. 

 

 

5.2.2.2 Pitch Range 
 

Figure  5.5 and Figure  5.6 show the histogram of the pitch range of the final word of 

declarative questions and statements uttered by male and female speakers 

respectively.  Although most of the pitch ranges of statements are smaller than those 

of declarative questions, there is intersection between them that makes error in the 

recognition of the two utterance types when the utterance-type recognizer uses only 

the pitch range information to distinguish the two utterance types.   
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Figure  5.5 Histogram of the pitch range of the final word of declarative questions 

and statements uttered by male speakers 
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Figure  5.6 Histogram of the pitch range of declarative questions and statements 

uttered by female speakers 
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Figure  5.7 Histogram of the pitch range of declarative questions and statements 

uttered by male and female speakers 

 

 

Moreover, there is a large intersection between the pitch range of the final words of 

the declarative questions of male speaker and the pitch range of the final words of the 

statements of female speakers as shown in Figure  5.7.  Consequently, there will be 

error in the gender-dependent utterance-type recognition when the recognizer uses 

only the pitch range information to distinguish the two utterance types.   

 

 

Table  5.2 The average and standard deviation of the pitch range of the final word of 

declarative questions and statements uttered by male and female speakers 

 

male speaker female speaker pitch range 

statement 

declarative-

question statement 

declarative-

question 

average  42.72 99.59 85.56 154.54 

standard 

deviation 31.28 54.57 44.90 74.68 
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Table  5.2 shows the average and standard deviation of the pitch range of the 

final word of declarative questions and statements uttered by male and female 

speakers.  Female speakers tend utter declarative questions with a larger average 

pitch range than male speakers do.  Both male and female speakers utter declarative 

questions with a larger pitch range than statements.    

 

5.2.2.3 Maximum Pitch 
 

Figure  5.8, Figure  5.9, and Figure  5.10 show the histogram of the maximum pitch of 

declarative questions and statements uttered by male, female, and both male and 

female speakers respectively.  Female speakers tend to utter both declarative 

questions and statements with higher maximum pitch than male speakers do.  

However, the distribution of the maximum pitch of the final words of declarative 

questions uttered by male speakers and the maximum pitch of the final words of the 

statements uttered by female speakers has a large intersection. 
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Figure  5.8 Histogram of the maximum pitch of declarative questions and statements 

uttered by male speakers 
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Figure  5.9 Histogram of the maximum pitch of declarative questions and statements 

uttered by female speakers 
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Figure  5.10 Histogram of the maximum pitch of declarative questions and 

statements uttered by male and female speakers 
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Table  5.3 The average and standard deviation of the maximum pitch of the final 

words of the declarative questions and the statements uttered by male and female 

speakers 

 
male speaker female speaker maximum pitch 

statement declarative-

question 

statement declarative-

question 

average  142.43 232.57 238.43 366.61 

standard deviation 35.89 65.59 37.04 74.46 

 

 
 

Table  5.3 shows the average and standard deviation of the maximum pitch of 

the final words of declarative questions and statements uttered by male and female 

speakers.  The averages of the maximum pitch values of male-statements and female-

declarative-questions are close, i.e. 232.57 Hz and 238.43 Hz respectively.  It makes 

a gender independent utterance-type recognizer will misrecognizes some of the 

declarative questions and statements when the recognizer uses only the maximum 

pitch information to distinguish the two utterance types. 

 
 

5.3 Speech Rate 

5.3.1 Experimental Setup 

 
The sentence final words were segmented manually.  The speech rate of each final 

word was measured from its duration and the number of syllables in the final words.  

 

5.3.2 Experimental Results 

 

Figure  5.11 shows the speech rates of the final word of 18 Indonesian declarative 

questions and those of the statements uttered by four Indonesian female speakers.  
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The figure suggests that most of the final words of declarative questions in 

Indonesian speech are spoken at a slower rate their corresponding statements.    

Figure  5.12 shows the histogram of the duration per syllable of the final word 

of Indonesian declarative questions and statements.  From the figure, the duration per 

syllable of the final word of the statements and the declarative questions have a 

similar distribution.  Therefore, the duration per syllable may be a low correlate to 

distinguish Indonesian statements and declarative questions. 

 

5.4 Summary 
 
This chapter has described the investigation of the characteristics of the final word of 

declarative questions and statements in Indonesian speech.  They include the pitch 

contour, pitch range, maximum pitch and the speech rate of the final words of the 

declarative questions and statements.   

Both the pitch range and maximum pitch of the final words of declarative 

questions are larger than those of the statements are.  However, there is intersection 

of the distribution of the parameters.  Consequently, an utterance-type recognizer 

will misrecognize some of the declarative questions and the statements when it uses 

only either the pitch range or the maximum pitch information. 

Most of the final words of declarative questions are spoken at a slower rate 

than the final words of their corresponding statements.  The duration per syllable of 

the final word of the statements and the declarative questions has a similar 

distribution.  Therefore, the duration per syllable may be a low correlate to 

distinguish Indonesian statements and declarative questions. 
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Figure  5.11 Relation of the speech rates (syl/s) of the final word of 18 pairs of 

Indonesian statements and their corresponding declarative questions uttered by four 

female speakers.   Each symbol of the points is for each speaker. 
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Figure  5.12 Duration per syllable of the final words of Indonesian Statement (S) and 

Declarative Question (DQ).  

 



 

CHAPTER VI 
AUTOMATIC UTTERANCE-TYPE RECOGNIZER USING 

THE POLYNOMIAL COEFFICIENTS OF THE PITCH 
CONTOUR OF SENTENCE’S FINAL WORD 

 

 

In Chapter 3, the parameters of Fujisaki model are used to represent declarative 

questions and statements in Indonesian speech (Effendy et al., 2004).  The utterance-

type recognizer was designed as speaker-dependent system.  In this chapter, an 

automatic utterance-type recognizer, which is a speaker-independent system and 

covers larger speech data, is proposed.  The proposed utterance-type recognizer uses 

polynomial coefficients to represent the pitch contour of the sentence final words 

because the algorithm to estimate the parameters of Fujisaki model used in Chapter 3 

in representing the pitch contour is too complicated to be implemented in an 

automatic utterance-type recognizer.   

Prior to modeling a given F0 contour using Fujisaki model, two tasks are 

performed: (1) Intermediate F0 values for unvoiced speech segments and short 

pauses are interpolated from the extracted F0 contour, (2) Microprosodic variations 

caused by the influence of individual speech sounds are smoothed out, as the Fujisaki 

model explicitly deals with macroprosody only (Mixdorff et al., 2003).   The Fujisaki 

model produces a particular F0 contour in the log F0 domain by superimposing three 

components: the phrase component which corresponds to the phrase-wise slow 

overall declination line, the accent component made up by the faster movements in 

the F0 contour connected with syllabic accents, and Fb, a speaker-individual 

constant.  In order to separate the accent component from the phrase component and 

Fb, the smooth contour is passed through a high pass filter with a stop frequency at 

0.5 Hz.  The output of the high-pass (henceforth called ‘high frequency contour’ or 

HFC) is subtracted from the smooth contour yielding a ‘low frequency contour’ 

(LFC), containing the sum of phrase component and Fb.  

In a sequence of phrase commands, the onset of a new command is 

characterized by a local minimum in the phrase component.  Consequently, the LFC 

is searched for local minima, applying a minimum distance threshold of 1 sec 
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between consecutive phrase commands.  For initializing, the magnitude value Ap 

assigned to each phrase command part of the LFC after the potential onset time T0 of 

a phrase command is searched for the next local maximum.  Ap is then calculated in 

proportion to the frequency value found at this point.  The time constant α is set to 

2.0/sec, a value found appropriate after a series of preliminary trials.  In order to 

yield an optimal initialization of phrase commands, the F0 contour is examined for 

pauses longer than 400 msec.  Since the minima of the LFC do not provide the exact 

locations of upcoming phrase commands, phrase commands found in the vicinity of a 

pause are readjusted and aligned with the pause.  For initializing the appropriate 

number, polarity and onset times T1 and offset times T2 of accent commands, the 

cubically smoothed contour pertaining to the part of the wave file between first and 

last voiced frame, is subdivided into segments with positive or negative gradient, 

respectively. These contour segments are searched for points where the derivative 

exhibits a maximum, that is, the inflection points of the cubically smoothed curve. 

Inflection points on contour segments with rising slope are associated with the offset 

of a negative accent command and the subsequent onset of a positive accent 

command, and inflection points on contour segments with falling slope are 

associated with the offset of a positive accent command and the subsequent onset of 

a negative accent command.  Hence, an alternating sequence of positive and negative 

commands is yielded initially.  The HFC is basically DC-free and therefore oscillates 

around 0.  For initializing the accent command amplitude Aa, the positive or negative 

maximum in the HFC between the initial settings of T1 and T2 is determined and Aa 

set in proportion to the frequency value found at this point. Accent commands are not 

continued across major pauses in the speech signal. The accent command time 

constant β is set to a value of 20/sec. 

The automatic utterance-type recognizer proposed in this chapter uses the 

polynomial expansion to extract the polynomial coefficients from the pitch contour 

of the sentence final words.  The algorithm to find the polynomial coefficients has a 

smaller computational complexity than the algorithm to find the parameters of 

Fujisaki model as will be explained in section 6.2.4.  The polynomial coefficients are 

used as the input of a classifier to distinguish the declarative questions and the 

statements.  The automatic utterance-type recognizer is optimized using various 
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numbers of hidden nodes in the neural networks and various orders of polynomial 

expansion. 

 

 

6.1 Speech Data 
 

The speech data were 29 sentence pairs, each comprising a statement and its 

corresponding declarative question.  The two sentences in each pair have the same 

words in the same order; they differ only in intonation.  This is different from the 

study of Yuan et al. (Yuan et al., 2002), where the number of words in each sentence 

differed from each other.  The sentences are selected from the daily-life 

conversations among Indonesian speakers (Effendy et al., 2004) as listed in 

Appendix A.  Speech data of 35 Indonesian native speakers are recorded.  They 

consist of 11 female and 24 male speakers with ages ranging from 23 to 50.  The 

speech data are recorded in an office environment.  In the recording, each subject 

was asked to utter the 29 pairs of sentences as naturally as possible.  After the 

recording session, the speech data are verified perceptively three times.  Utterances 

with wrong intonation are removed.   

Then, the speech data were divided into four sets with the balance in gender 

and data amount maintained as illustrated in Table  6.1.   Sets I and IV contain speech 

data from 12 male speakers and 5 female speakers. Sets II and III contain speech data 

from another group of speakers; 12 male speakers and 6 female speakers.  Sets I and 

II contain speech data consisting of 14 pairs of sentences, while sets III and IV 

contain speech data consisting of 15 pairs of sentences from another group.  

Consequently, there are 1866 utterances consisting of 221 statements and 221 

declarative questions in set I, 234 statements and 234 declarative questions in set II, 

241 statements and 241 declarative questions in set III, and 237 statements and 237 

declarative questions in set IV. 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bickel+U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bickel+U%22%5BAuthor%5D
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Table  6.1 The Indonesian speech database of statements and declarative questions 

Speakers  

First group 

- 12 males 

- 5 females 

Second group 

- 12 males 

- 6 females 

14 pairs of 
sentences in 

the first group 

Set 1 

 

statements: 216 

declarative questions: 216 

Set 2 

 

statements: 230 

declarative questions: 230

Se
nt

en
ce

s 

15 pairs of  
sentences in 
the second 

group 

 Set 4 

 

statements: 228 

declarative questions: 228 

Set 3 

 

statements: 240 

declarative questions: 240

 

 

 

6.2 Automatic Utterance-type recognizer 

 
An automatic utterance-type recognizer is proposed to distinguish statements and 

declarative questions in Indonesian speech.  This recognizer is speaker- and gender-

independent, and consists of an automatic utterance segmentation module, an F0 

extractor, a normalizer, a feature extractor, and a classifier as illustrated in Figure 

 6.1.  In this study, it is assumed that the correct transcription is given, since there 

are no large databases available to train accurate acoustic models in the Indonesian 

language at present.  Each of the subsystem of the recognizer will be described 

further in the next subsection.  
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Figure  6.1 Block diagram of the automatic utterance-type recognizer 

 
 
 

6.2.1 Automatic Utterance Segmentation 

 

From several pairs of the utterances, it is found that the statements and declarative 

questions could be distinguished by listening only to their final words.  On the basis 

of this finding, I decided to use the final word of each utterance as the data for 

utterance-type recognition.  

To determine the final word boundary, an automatic utterance segmentation 

module is designed using the hidden Markov model toolkit (Young et al., 2002).  I 

assumed that the transcription of each utterance is known, and performed alignment 

between each utterance and its transcription by using the Viterbi algorithm. For this 
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procedure, I used a standard feature set in speech recognition and made an acoustic 

model using a relatively small amount of training data, which is different from the 

database described in the previous section.  The detailed conditions will be explained 

in section 6.3. 

 

 

6.2.2 F0 Extractor 

 

The 'get_f0' program from the Entropic Waves software package (Entropic, 1993; 

Entropic, 1998) is used to extract F0 data from the final word in each utterance.  The 

‘get_f0’ implements a fundamental frequency estimation algorithm using a 

normalized cross correlation function and a dynamic programming function.  In the 

experiments described in the next section, the default values of the parameters of the 

'get_f0', i.e., Gaussian window with the length of 0.04 sec, and the shift time of 0.01 

sec are used.  The F0 data are converted into logarithmic scale and passed through a 

normalizer. 

 

 

6.2.3 Normalizer 

 

Even for the utterances of the same sentence with the same utterance type, the pitch 

contour of their final word may be different from speaker to speaker.  This difference 

increases the variation in the pitch contour.  To achieve robustness against this 

variation among speakers, the logF0 values are normalized both in the frequency 

domain and in the time domain.   

Let pi (i = 1,2,...,L) and ti (i = 1,2,...,L) be the sequences of the logF0 values 

and the time of the final word with length L.  The normalized vector of pi, ip~  (i = 

1,2,...,L) is calculated as 

 
minmax

min~
pp

ppp i
i −

−
= , (6.1) 

and the normalized vector of ti, it
~ (i = 1,2,...,L) is calculated as 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Akiyama+T%22%5BAuthor%5D
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The normalized logF0 values are input of the feature extractor. 

 
 

6.2.4 Feature Extractor 

 

Features of the F0 contour are extracted using the polynomial expansion method 

(Levitt and Rabiner, 1971; Hwang and Chen, 1994), where the pitch contour is 

approximated as a polynomial line in two-dimensional plane of the normalized logF0 

and time.  The coefficients ci of the polynomial expansion are extracted using the 

Least Mean Square (LMS) algorithm.  

Let N be the order of the polynomial expansion. Then the approximated 

contour for the normalized logF0, p̂~  can be expressed as 

 ∑
=

=
N

i

i
i tcp

0

~~̂ . (6.3) 

 

The coefficient for i = 0 is removed to achieve robustness against the difference in 

the pitch level between male and female speakers. 

Figure  6.2 shows the representation of typical F0 data using various order of 

polynomial expansion.  The higher the order of the polynomial expansion was, the 

smaller the error between the estimated points with the original F0 data became.  

However, as will be explained in the next section, the best performance of the 

automatic utterance-type recognizer may not be achieved with the highest order of 

polynomial expansion because of the over-training problem. 

The representation of the pitch contour of the final words in the proposed 

utterance-type recognizer will be compared with the representation of the pitch 

contour of the final words proposed by Ishi (2005) (Ishi, 2005). 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10341207&query_hl=37&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bickel+U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bickel+U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bickel+U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bolton+SJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Anthony+DC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Perry+VH%22%5BAuthor%5D
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Figure  6.2 Representation of typical F0 data using various order of polynomial 

expansion 

 
 

 

6.2.5 Classifier 

 

A neural network (Katagiri, 2000) is used as a classifier in the automatic utterance-

type recognizer.  The neural network has three full-connected layers: the input, 

hidden, and output layers, as illustrated in Figure  6.3.  The number of nodes in the 

input layer is equal to the number of features extracted from the F0 contour.  The 

number of nodes in the hidden layer is optimized through experiments.  One node in 

the output layer, which is trained to output zero for the statement and one for the 

declarative question is used.  

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Citi+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Volberg+T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bershadsky+AD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Denisenko+N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Geiger+B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Conacci%2DSorrell+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Zhurinsky+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Ben%2DZe%27ev+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Crone+C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Christensen+O%22%5BAuthor%5D
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Figure  6.3 A three layer full-connected neural network 

 

 

 

 

A statement-declarative question threshold is utilized at the end of the output 

node to classify the utterance type.  The threshold is controlled in each experiment 

such that the error rates for both classes are equal. 

 

 

 

Table  6.2 The four combinations of the training and the testing sets for the 

evaluation 

Combination Training Set Testing Set 

1 Set I Set III 

2 Set II Set IV 

3 Set III Set I 

4 Set IV Set II 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Domotor+E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Sipos+I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Kittel+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Abbott+NJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Adam%2DVizi+V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Dorovini%2DZis+K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Huynh+HK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Fiala+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Liu+QN%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Sayre+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Pop+V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Brahmandam+V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Graves+MC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Vinters+HV%22%5BAuthor%5D
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6.3 Experiments 

 

6.3.1 Experimental conditions 

 
For the automatic utterance segmentation described in subsection 6.2.1, an acoustic 

model is constructed in the following procedure. First, 3,840 utterances were 

recorded from 11 male and 9 female speakers, in which each speaker read texts from 

Indonesian newspapers and Indonesian linguistics books. The texts were chosen in 

order to contain all phonemes that appear in Indonesian speech. Then, for each 10 

msec frame, features of the power and 12 mel-frequency cepstral coefficients 

(MFCC), and their first and second order derivatives were extracted. The total 

dimension of the feature vector was 39. Finally, using the training data, the 

monophone hidden Markov models (HMMs) with five states for each phone and 16 

Gaussian mixtures for each state were trained. 
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Figure  6.4 Equal Error Rate of the open test of the utterance-type recognizer using 

the third order of the polynomial expansion and various numbers of hidden nodes 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Fischer+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Wobben+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Marti+HH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Renz+D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Schaper+W%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Flesher+JW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Horn+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Lehner+AF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Flesher+JW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Horn+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Lehner+AF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Furuse+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Itoh+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Hirase+T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Nagafuchi+A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Yonemura+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Tsukita+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Tsukita+S%22%5BAuthor%5D


 72

Using the data sets of speech data as listed in Table 6.1, four combinations of 

training and testing sets were designed.  The combinations are illustrated in Table 

 6.2.  The classifier was trained for 100,000 epochs using a back-propagation 

algorithm.   

Performance of the automatic utterance-type recognizer was evaluated by the 

averaged Equal Error Rate (EER), which is the average of the Equal Error Rates of 

the four combinations in Table  6.2.  

 
 
 

6.3.2 Results 

 
First, the number of hidden nodes in the neural network classifier was investigated. 

Figure  6.4 shows the EER of the utterance-type recognizer with various numbers of 

hidden nodes when the order of the polynomial expansion is three.  The recognizer 

using one hidden node achieved the lowest EER.  In this open test, the larger the 

number of hidden nodes, the larger the EER of the recognizer.  The larger number of 

hidden nodes used in the neural networks means that the neural network will be more 

specific in learning the training set.  Since the training set does not cover all variation 

of the pitch contour of the final word of speech data in the testing set, the more 

specific the neural network learn the training set, the larger error of the neural 

network in the recognition of the utterance type of the testing set.  However, in the 

close test of the utterance-type recognizer, the higher the number of the hidden 

nodes, the smaller the EERs of the recognizer (see Figure  6.5). 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Gottardi+CJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Gumbiner+BM%22%5BAuthor%5D


 73

7

8

9

10

11

12

13

14

15

0 10 20 30 40 50 60 70 80 90 100 110

Number of Hidden Node(s)

A
ve

ra
ge

 E
qu

al
 E

rr
or

 R
at

e 
(%

)

 

Figure  6.5 Equal Error Rate of the close test of the utterance-type recognizer using 

the third order polynomial expansion and various numbers of hidden nodes 

 

 

 

Table  6.3 Equal Error Rate of the utterance-type recognizer using various order of 
the polynomial expansion and one hidden node 

  
Order of the Polynomial 

Expansion 

Equal Error Rate (%) 

2 15.8 

3 11.0 

4 11.1 

5 38.3 

  
 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Hamann+GF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Okada+Y%22%5BAuthor%5D
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http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22del+Zoppo+GJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Haorah+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Knipe+B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Gorantla+S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Zheng+J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Persidsky+Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Hassan+BA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Bellen+HJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Heo+JH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Han+SW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Lee+SK%22%5BAuthor%5D
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The utterance-type recognizer is assumed being used to recognize the 

utterance type of the testing set, which differs from the training set in both the 

sentence and the speaker.  Therefore, based on the findings of the open test with the 

third order polynomial expansion, the performance of the utterance-type recognizers 

using the other orders of the polynomial expansion was investigated using one 

hidden node.  

Table  6.3 shows the EERs of the utterance-type recognizer when the order of 

polynomial expansion is varied.  The lowest EER was achieved when the third order 

polynomial expansion was used.  The further increase of the order of the polynomial 

expansion increased the EER.  

Next, the EERs of the proposed automatic utterance-type recognizer were 

compared with the EERs when the segmentation of the final words was carried out 

manually. The third order polynomial expansions were used and both recognizers 

used one hidden node. The recognizer with the manual segmentation achieved 88.1% 

accuracy, which is 0.9 point worse than the automatic recognizer did.  When either 

the second or the fifth order polynomial expansion was used, the recognizer with the 

manual segmentation achieved accuracy of 86.3% and 67.1%, respectively, which 

are 2.1 and 5.4 point higher than the automatic recognizer did. When the fourth order 

polynomial expansion was used, the recognizer with manual segmentation achieved 

86.8% accuracy, which is 2.1 point worse than the automatic utterance-type 

recognizer did. The average errors in the estimation of the beginning time and the 

duration of the final word were 43.5 msec and 75.4 msec, respectively. This small 

difference made the recognition rates of both the utterance-type recognizers 

comparable. 

Next, the performance of the proposed automatic utterance-type recognizer 

was compared with the performance of the utterance-type recognizer using the 

features to represent the pitch contour of the final word proposed by Ishi (2005) (Ishi, 

2005).  EER of the utterance-type recognizer using F0Move1 = F0tgt2b - F0avg2a to 

represent the pitch contour of the final word is 13.3%.  EER of the utterance-type 

recognizer using F0Move4 = F0tgt2b - F0tgt2a to represent the pitch contour of the 

final word is 14.5%.  EER of the utterance-type recognizer using F0Move2 = 

F0avg2b - F0avg2a to represent the pitch contour of the final word is 40.5%. EER of 

the utterance-type recognizer using F0Move3 = F0avg2b - F0tgt2a to represent the 

pitch contour of the final word is 37.9%.  The utterance-type recognizer using a 
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combination of F0Move1 and F0Move4 with the neural networks consisting of two 

input nodes, six hidden nodes, and one output node achieved EER of 13.1%.  Those 

experiments showed that the proposed utterance-type recognizer with the 

representation of pitch contour using the third order polynomial expansion is superior 

the utterance-type recognizer using the features proposed by Ishi (2005) to represent 

the pitch contour of the final word. 

The average error rate of the proposed utterance-type recognizer is higher 

than that of the utterance-type recognizer based on Fujisaki model (Effendy et al., 

2004). The recognizer in (Effendy et al., 2004) is speaker-dependent and evaluated 

using the testing set that covers the training set, and, therefore, difficult to be 

implemented as an automatic recognizer. On the other hand, the proposed recognizer 

is speaker-independent and evaluated using the testing set that differs from the 

training set in both the sentence and the speaker.  Therefore, it is expected to be more 

robust in real application.  

 

 

6.4 Summary 
 

This chapter reports my study on an automatic utterance-type recognizer 

using the polynomial coefficients of the pitch contours of the sentence final words to 

identify declarative questions and statements in Indonesian speech.  The automatic 

utterance-type recognizer consists of a pitch extractor, normalizer, feature extractor, 

classifier and an utterance segmentation module.   

The findings of the study confirmed that the use of the final word of the 

utterance and the pitch contour information was effective in identifying the 

Indonesian declarative questions and statements. The highest recognition rate was 

achieved using the third order polynomial expansion as the feature extractor in the 

automatic utterance-type recognizer.   

The proposed recognizer is speaker-independent and evaluated using the 

testing set that differs from the training set in both the sentence and the speaker. 

Consequently, it is expected to be more robust in real application.  
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CHAPTER VII 
CONCLUSIONS 

 

71 Conclusions of the Dissertation 

 

This dissertation reports my study on the automatic utterance-type recognizer to 

identify the declarative questions and the statements in Indonesian speech.   

At first, the utterance-type recognizer based on Fujisaki model has been 

designed to recognize the declarative questions and the statements in Indonesian 

speech.  The utterance-type recognizer consists of a pitch extractor, a Fujisaki model, 

a Fujisaki-model parameter extractor, a Fujisaki-model parameter selector, and a 

classifier.   

Three Fujisaki-model parameters are used in the dissertation: the amplitude 

of last accent command (AaJ), (2) the magnitude of last phrase command (ApI), and 

(3) the baseline value of the fundamental frequency (Fb).  Four different 

combinations of Fujisaki parameters were used as the input of the neural networks in 

the utterance-type recognizer: AaJ; AaJ and ApI; Fb, AaJ and ApI; a fraction of Fb: 

Fb/100, AaJ and ApI.  The highest recognition rate of the utterance-type recognizer 

was achieved using a fraction value of Fb: Fb/100, the amplitude of last accent 

command, and the magnitude of last phrase command as the input of the neural 

networks in the utterance-type recognizer.   

The study on the design of an Indonesian speech recognizer has been 

conducted to support the design of an automatic utterance-type recognizer.  In the 

research, the higher the number of the Gaussian mixtures is used in the design of the 

Indonesian acoustic model, the higher both the percentage correct and the percentage 

accuracy of the speech recognizer are.  The highest percentage correct and the 

highest percentage accuracy of the speech recognizer using one or two Gaussian 

mixtures were achieved using the combination of MFCCs with energy, and their first 

order derivatives.  The highest percentage correct and the highest percentage 

accuracy of the speech recognizer using four, eight or 16 Gaussian mixtures were 

achieved using the combination of MFCCs with energy, their first and second order 
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derivatives.  In the research, the highest percentage correct and the highest 

percentage accuracy of the speech recognizer were achieved using the acoustic 

model created with 16 Gaussian mixtures and the combination of MFCCs with 

energy, their first and second order derivatives. This last combination was used to 

create the automatic utterance segmentation module of the automatic utterance-type 

recognizer. 

The investigation of the characteristics of the final word of declarative 

questions and statements in Indonesian speech has been conducted.  They include the 

pitch contour, pitch range, maximum pitch and the speech rate of the final words of 

the declarative questions and statements.  

The average pitch range and the average maximum pitch of the final words of 

the declarative questions are larger than the average pitch range and the average 

maximum pitch of those of the statements.  However, there is intersection of the 

distribution of the parameters.  Consequently, an utterance-type recognizer may 

misrecognize the utterance type of some of the declarative questions and the 

statements when it uses only either the pitch range or the maximum pitch 

information. 

Most of the final words of declarative questions were spoken at a slower rate 

than that of their corresponding statements.  The duration per syllable of the final 

word of the statements and that of the declarative questions had a similar 

distribution.  Therefore, the duration per syllable may be a low correlate to 

distinguish Indonesian statements and declarative questions. 

The algorithm to extract the parameters of Fujisaki model is too complicated 

to be implemented in an automatic recognition system.  Therefore, the utterance-type 

recognizer needs to be developed.  an automatic utterance-type recognizer using the 

polynomial coefficients of the pitch contour of the sentence final words was 

proposed.  The investigation in this dissertation confirmed that the use of the final 

word of the utterance and the pitch contour information were effective in the 

identification of the Indonesian declarative questions and statements.  The highest 

recognition rate was achieved using the third order polynomial expansion as the 

feature extractor and a neural network with one hidden node as a classifier in the 

automatic utterance-type recognizer. 
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7.2 Contributions of the Dissertation 

This section summarizes the contributions made during doing the research in this 

dissertation.  The works begin with the design of the utterance-type recognizer for 

Indonesian speech based on Fujisaki model.  I have been collected Indonesian speech 

data during the research.  An Indonesian acoustic model has been design.  Its 

performance as the part of an Indonesian speech recognizer and an Indonesian-

utterance segmentation module of the automatic utterance-type recognizer has been 

investigated.  The characteristics of the final words of Indonesian declarative 

questions and statements have been analyzed.   They consist of the pitch contour, 

pitch range, maximum pitch and the speech rate of the sentence final words.  The 

utterance-type recognizer has been developed to be an automatic system using the 

polynomial coefficients of the pitch contour of the sentence’s final word.  The details 

of the contributions are described as follows: 

 

7.2.1 Indonesian speech data 

Indonesian speech data are collected and recorded from 35 Indonesian native 

speakers.  They consist of 11 female and 24 male speakers with age ranging from 23 

to 50.  The speech data are recorded in an office environment.  The recorded speech 

data are digitized at 16 kHz sampling rate and 16-bit resolution. 

The speech data are grouped into two domains: speech data A and speech 

data B.  Speech data A are used to investigate the performance of the automatic 

utterance-type recognizer of Indonesian speech.  Speech data B are used to create the 

Indonesian acoustic model used in the automatic utterance segmentation module of 

the automatic utterance-type recognizer.  

To collect speech data A, the subjects are asked to utter 29 pairs of sentences 

as naturally as possible.  The pair of the sentences consists of statements and their 

corresponding declarative questions.  The sentences in the speech data A are with a 

different number of words.  The sentences are selected from daily-life conversations 

among Indonesian speakers as listed in appendix A.  From the recording, there are 

2030 utterances in speech data A.  
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Speech data B are collected by recording the speakers reading out the 

Indonesian newspapers and Indonesian linguistics books.  The texts are chosen in 

order to contain all phonemes that are possible in Indonesian speech.  

Speech data A and speech data B are provided with their transcriptions.  The 

transcriptions are used to label the speech data and to investigate the performance of 

the acoustic model used to create a speech recognizer or to create the utterance 

segmentation module of an automatic utterance-type recognizer. 

 

7.2.2 Utterance-type recognizer for Indonesian speech based on 
Fujisaki model 

This dissertation proposed an utterance-type recognizer for Indonesian speech based 

on Fujisaki model.  The best recognition rate was achieved using a combination of a 

fraction of the baseline value of the fundamental frequency (Fb): Fb/100, the 

amplitude of last accent command, and the magnitude of last phrase command as the 

input of the neural networks in the utterance-type recognizer.  To author’s 

knowledge, the utterance-type recognizer is the first one for Indonesian speech. 

 

7.2.3 Characteristics of the final words of Indonesian declarative 
questions and statements 

This dissertation revealed the characteristics of the final words of Indonesian 

declarative questions and statements.  The characteristics comprise the pitch contour, 

pitch range, maximum pitch and the speech rate of the sentence’s final words.  The 

characteristics may be utilized as the information to further develop the utterance-

type recognizer. 

 

7.2.4 Indonesian acoustic model 

This dissertation provides an Indonesian acoustic model, which can be used to create 

an Indonesian speech recognizer or an Indonesian-utterance segmentation module of 

the automatic utterance-type recognizer.  The highest percentage correct and the 

highest percentage accuracy of the speech recognizer were achieved using the 
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acoustic model created with 16 Gaussian mixtures and the combination of MFCC, 

energy, their first and second order derivatives. 

 

7.2.5 Automatic utterance-type recognizer using the polynomial 
coefficients of the pitch contour of the sentence’s final word 

 
This dissertation proposed an automatic utterance-type recognizer to distinguish the 

declarative questions and the statements of Indonesian speech using the polynomial 

coefficients of the pitch contour of the sentence final word.  The automatic utterance-

type recognizer may be combined with other spoken system to create a larger spoken 

system such as a spoken dialogue system or a spoken understanding system.  The 

evaluation in this research confirmed that the use of the final word of the utterance 

and the pitch contour information was effective in the identification of the 

Indonesian declarative questions and statements.   

 

7.2.6 Program Scripts Development 

 
In this dissertation, some program scripts were created for the automatic pitch 

extractor, neural networks, Hidden Markov Model, and recognition rate calculation.  

The scripts can be used in the future researches of the study on the utterance-type 

recognition. 

 

7.3 Future Research on the Utterance-type recognizer of 

Indonesian Speech 

 
In the dissertation, the utterance-type recognizer was used to identify two utterance 

types: declarative questions and statements in Indonesian speech.  In the evaluation 

of the automatic utterance-type recognizer, the training and the testing were set 

differently in terms of both the speakers and sentences.  Patterns tested using the 

testing set may not be in the patterns of the training set.  It made the recognizer 

misrecognized some patterns in the testing set.  In the future, new larger speech data 

especially from female, which cover larger variation of the pitch contour of the 
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utterances needs to be collected.  Moreover, the automatic utterance-type recognizer 

will be developed to cover all types of Indonesian utterances including question, 

command, exclamation, and statement.  To support the investigation, new speech 

data that cover all utterance types need to be collected.  The automatic utterance-type 

recognizer may be able to be combined with other automatic system to create a larger 

spoken system such as a spoken dialogue system or a spoken understanding system 

to improve the performance of the spoken system. 

When the Indonesian large vocabulary speech recognizer has been developed 

until it achieves its suitable performance, the automatic utterance segmentation 

module of the automatic utterance-type recognizer might be capable of being further 

developed.  Therefore, the automatic segmentation module can segment more 

Indonesian sentences properly.  Consequently, the automatic utterance-type 

recognizer will be capable of recognizing the utterance type of larger variation of the 

sentences.  The automatic segmentation module may also be further developed by 

optimizing the parameters in HMM such as optimizing the number of states in 

HMM.  

The methods used in this dissertation are expected to be also useful in the 

recognition of the utterance types of other similar languages such as Malay spoken in 

southern Thailand, Malaysia, and Brunei and Tagalog spoken in the Philippines.  
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Appendix A 
 

Indonesian Sentences Used to Create Pairs of Declarative  

Questions and Statements 
 

Table A.1 Indonesian sentences used to create the pairs of declarative question and 
statement 

  

(1)    Tikar            itu   baru saja    dicuci 
[ tikar               itu  baru saja    dicuci]      
plaited mat      that      just        washed 
That plaited mat was just washed 
 

(2) Tembok itu  dikotori  oleh   Iwan (person’s name) 
[tembo’ itu   dikotori  oleh Iwan] 
  wall    that   durtied    by    Iwan 
That wall is durtied by Iwan 
 

(3)     Jagoan itu menendang    tiga                 orang                         penjahat 
[Jagowan itu menendang   tiga                  orang                         penjahat] 
Hero        that     kick       three  (numeral classifier for humans) criminals
That hero kicks three criminals 
 

(4) Polisi         menangkap penjahat       pagi              tadi 
[Polisi        menangkap penjahat       pagi              tadi] 
Policeman     catch      criminal   morning   this (just past) 
Policeman catched a criminal this morning 
 

(5) Sepeda iwan masih di bengkel 
[Sepeda iwan masih di bengkel] 
Bicycle Iwan   still   in  garage 
Iwan’s bicycle is still in a garage 
 

(6) Dia sudah  pergi tadi   pagi 
Dia sudah  pergi tadi   pagi 
He already went this morning 
He already went this morning 
 

(7) Lisa (person’s name) sedang menyanyi dan menari 
[Lisa                           sedang menyanyi dan menari] 
Lisa                               is singing           and dancing 
Lisa is singing and dancing 
 

(8) Dia sedang makan 
[Dia sedang makan] 
He     is      eating 
He is eating 
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Table A.1 Indonesian sentences used to create the pairs of declarative question 
and statement (cont.) 
 

 
 
 
 
 
 
 
 

(9) Albert (person’s name) lupa pada dirinya sendiri 
[Albert  lupa   pada dirinya sendiri] 
Albert  forget about   him       self  
Albert forget about himself 
 

(10) kunci pintu itu dibobol maling 
[ kunci pintu itu    dibobol maling] 
   key    door  that                  thief 
That door is broken by a  thief 
 

(11) kucing telah menangkap seekor tikus 
[ kucing telah menangkap seekor tikus] 
   cat     already catched         a      mouse 
A Cat already catched a mouse 
 

(12) Ibu sedang belanja ke pasar 
[ Ibu    sedang  belanja   ke pasar] 
mother     is    shopping  in market 
Mother is shopping in a market 
 

(13) Jendela itu tidak bisa dibuka 
[Jendela   itu   tidak  bisa     dibuka] 
 window  that   not    can   be opened 
That window cannot be opened 
 

(14) Headphone ini sangat bagus 
[Headphone ini sangat bagus] 
Headphone  this very    good 
This headphone is very good 
 

(15) Dokter sedang memeriksa pasien 
[Dokter sedang memeriksa pasien] 
Physician is checking patien 
Physician is checking a patient 
 

(16) Kursi ini baru dicat 
[Kursi ini baru dicat] 
chair   this  just painted 
This chair is just painted 
 



 91

 
Table A.1 Indonesian sentences used to create the pairs of declarative question and 
statement (cont.) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

(17) Pensil ini sudah tidak runcing 
[pensil ini sudah tidak runcing] 
pencil  this  already not sharp 
This pencil is not sharp 
 

(18) Gelas ini mudah pecah 
[ Gelas ini mudah pecah] 
Glass  this easily broken 
This glass is easily broken 

 
(19) Dia suka menolong orang lain 

]Dia suka menolong orang lain] 
He/she like help  peope  other 
He/she likes to help other people 
 

(20) Komputer itu terjangkit virus 
[Komputer itu terjangkit virus] 
Computer  that  infected  virus 
That computer is infected by virus 
 

(21) Atap rumahnya sudah bocor 
[ Atap rumahnya sudah bocor] 
Roof his house  already  
His house roof is already 
 

(22) Lantai itu sudah kamu bersihkan 
[ Lantai itu sudah kamu bersihkan] 
Floor that  already you clean 
The floor has been cleaned by you 
 

(23) Adik sedang bermain 
[Adik                                    sedang bermain] 
younger sister/brother          is playing 
The younger sister/brother  is playing 
 

(24) Andi berlari ke arah mobil 
[ Andi berlari ke arah mobil] 
Andi  run        to        car 
Andi run to a car 
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Table A.1 Indonesian sentences used to create the pairs of declarative question and 
statement (cont.) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(25) Kucing dan anjing sedang berkelahi 
[ Kucing dan anjing sedang berkelahi] 
   cat        and  dog      are fighting 
A cat and  a dog  are fighting 
 

(26) Televisimu telah dibeli oleh Umar 
[ Televisi     mu    telah       dibeli          oleh Umar] 
  television your   has      been bought    by   Umar (people’s name) 
Your   television has been bought by Umar 
 

(27) Samsul                               belum   selesai membaca buku itu 
[ Samsul                             belum   selesai membaca  buku    itu] 
 Samsul  (person’s name) not yet    finish      read       book   that 
Samsul has not read the book yet 
 

(28) Bapak sedang mengajar matematika 
[ Bapak sedang mengajar matematika] 
Father      is         teaching  mathematics 
Father is teaching mathematics 
 

(29) Air di tangki sudah penuh 
[ Air    di tangki sudah   penuh] 
water  in   tank  already   full 
The water in the tank is already full 
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Appendix B 
 

Group of Speech Data for the Testing and the Training of 
Utterance-type recognizer using the Polynomial Coefficients 

of the Pitch Contours of Sentence Final Words 
 
 
Table A.2 The set of the speech data for the investigation of the performance of the 
automatic utterance-type recognizer 
 

Speakers 
F1, M1,M7,M15 
F4,F6,F8,F10,M4,M6, 
M10,M12,M14,M18,M20,M22,M24 

F2,M2, M8,M16 
F3,F5,F7,F9,F11,M3,M5, 
M9,M11,M13,M17,M19,M21, M23 

statement fall 
declarative 
question 

Rise 
declarative 
question 

statement fall 
declarative 
question 

Rise 
declarative 
question 

 

M F M F M F M F M F M F 

 Set 1 Set 2 

1. air 12 5  1 12 4 12 6 1  11 6 
2. baca 12 5  1 12 4 12 6 1  11 6 
3. beli 10 5 2 1 10 4 12 6  1 12 5 
4. berkelahi 11 5  1 12 4 12 6 1  11 6 
5. berlari 12 5 1  11 5 12 6 2  10 6 
6. bermain 12 5 1  11 5 12 6 1  11 6 
7. bersih 11 5  1 11 4 12 6 1  11 6 
8. bocor 12 5 2 1 10 4 12 6 1  11 6 
9. cat 12 5 2 1 10 4 12 6 1 1 11 5 
10. dokter 12 5 1 1 11 4 12 6 1 2 11 4 
11. headphone 12 5  1 12 4 11 6 1  10 5 
12. jendela 12 5  1 12 4 12 6 1  10 6 

13. kepasar 12 5 1  11 5 12 6 1  11 6 

14. komputer 11 5  1 12 4 12 6 1  10 6 
             
             

subtotal 163 70 10 11 157 59 167 84 14 4 151 79 
   
 Set 4 Set 3 

1. kucing 12 5 3 1 9 4 11 6 2  9 5 
2. kunci 10 5  1 12 4 12 6 1  11 6 
3. lupa 12 5   12 4 12 6 1  11 6 
4. makan 12 5 2 1 10 4 12 6 1 1 10 5 
5. matematika 12 5  1 12 4 12 6 1  11 6 
6. menari 12 5 1 1 11 4 12 6 1  11 6 
7. menolong 11 5  1 12 3 12 6 1  10 6 
8. pecah 11 5  1 12 4 12 6 1  11 6 
9. pensil 12 5 2 1 10 4 12 6 1 1 11 5 
10. pergi 12 5  1 12 4 12 6 1 2 11 4 
11. sepeda 12 5 3 1 8 4 12 6 2 2 11 4 
12. tangkap 11 5 1 1 10 4 12 6 1  11 5 
13. tembok 12 5   12 5 12 6 1  11 6 
14. tendang 11 5   11 4 12 6 1  11 6 

Se
nt

en
ce

s 

15. tikar 11 5   12 5 12 5 1 1 11 5 
 Subtotal 173 75 12 11 165 61 179 89 17 7 161 81 
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Table A.3 Detail of the fall declarative questions in the set of the speech data for the 
investigation of the performance of the automatic utterance-type recognizer 
 

Speakers 
F1, M1, M7,M15 
F4,F6,F8,F10,M4,M6,M10,M12,M1
4,M18,M20,M22,M24 

F2,M2, M8,M16 
F3,F5,F7,F9,F11,M3,M5,M9,M11,M13,M1
7,M19, 
M21, M23 

fall declarative question fall declarative question 

 

M1 M6 M10 M15 F10 M3 M8 M9 M16 F2 F9 

 Set 1 Set 2 

1. air     1 1      
2. baca     1 1      
3. beli 1  1  1      1 
4. berkelahi     1 1      
5. berlari  1    1  1    
6. bermain   1   1      
7. bersih     1 1      
8. bocor 1  1  1 1      
9. cat 1 1   1 1    1  
10. dokter   1  1 1    1 1 
11. headphone     1 1      
12. jendela     1 1      

13. kepasar    1  1      

14. komputer     1 1      
            
            

subtotal 3 2 4 1 11 13  1  2 2 
 10 11 14 4 
   
 Set 4 Set 3 
1. kucing 1 1 1  1 1 1     
2. kunci     1 1      
3. lupa      1      
4. makan 1 1   1 1    1  
5. matematika     1 1      
6. menari   1  1 1      
7. menolong     1 1      
8. pecah     1 1      
9. pensil 1  1  1 1     1 
10. pergi     1 1     2 
11. sepeda 1 1 1  1 1   1 1 1 
12. tangkap 1    1 1      
13. tembok      1      
14. tendang      1      

Se
nt

en
ce

s 

15. tikar      1    1  
 Subtotal 5 3 4  1

1 
15 1  1 3 4 

  12 11 17 7 
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Appendix C 
 

Transcription of Labeled Indonesian Speech Data 
 
 

1. Aesop4_02_eff.wav 
konsonan ada yang bersuara, yang terjadi bila ada alur sempit di antara pita suara dan 
ada yang tidak bersuara, yang terjadi bila tempat artikulasi yang bersangkutan sajalah 
yang merupakan alur sempit, sedang pita suara itu terbuka agak lebar. 
 
2. Aesop4_03_eff.wav 
Untuk menjelaskan fungsi pita pita suwara, di bawah ini dimuat gambar ke empat 
posisi pita pita tersebut 
 
3. Aesop4_04_eff.wav 
udara dipompakan dari paru paru, melalui batang tenggorokan ke pangkal tenggorok, 
yang di dalamnya terdapat pita pita suara 
 
4. Aesop4_05_eff.wav1 
Pita suara itu harus terbuka, untuk memungkinkan arus udara keluar melalui rongga 
mulut, melalui rongga hidung atau melalui kedua duanya 
 
5. Aesop4_06_eff.wav 
fonitik auditoris tidak banyak dikerjakan dalam hubungan dengan linguistik. Buku-
buku standar mengenai linguistik juga sedikit sekali menguraikan mengenai fonitik 
auditoris itu. Dan keahlian yang dituntut sebenarnya, adalah keahlian dalam ilmu 
kedokteran 
 
6. Aesop4_07_eff.wav 
yang ketiga adalah fonetik organis. Fonetik organis menyelidiki bagaimana bunyi-
bunyi bahasa dihasilkan dengan alat-alat bicara. Bidang itu penting sekali untuk 
linguistik dan akan kita bicarakan secara terperinci dalam bab ini 
 
7. Aesop4_08_eff.wav 
Dalam bagian-bagian yang berikut, fonetik auditoris tidak diuraikan lagi. Hanya 
beberapa fakta dari fonetik akustis akan diuraikan, sehubungan dengan perlunya 
keterangan minimal demi uraian fonetik organis 
 
8. Aesop4_09_eff.wav 
hal pertama yang perlu diuraikan dalam fonetik organis ialah alat-alat bicara. 
Gambar yang berikut dengan daftar nama alat-alat tersebut kiranya cukup memadai 
 
9. Aesop4_10_eff.wav 
selaras dengan uraian tentang sistematik bahasa itu tadi, bab tiga membicarakan 
fonetik, bab empat membicarakan kronologi, bab lima membicarakan morfologi dan 
bab enam membicarakan sintaksis 
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10. Aesop4_11_eff.wav 
linguistik sebagai ilmu pengetahuan, membutuhkan suatu teori yang konsekwen, 
sesuatu teori linguistis. Bila seorang ahli linguistik memusatkan perhatiannya khusus 
pada pendirian sesuatu teori, maka apa yang dikerjakannya boleh disebut linguistik 
teoritis. 
 
11. Aesop4_12_eff.wav 
semantik adalah cabang sistematik bahasa, yang menyelidiki makna atau arti. Seperti 
sudah dicatat di atas, perbedaan di antara leksikon dan gramatika, menyebabkan 
bahwa dalam semantik itu kita bedakan pula, antara semantik leksikal dan semantik 
gramatikal 
 
12. Aesop4_13_eff.wav 
Menurut sistematiknya, dalam setiap bahasa dapat dibedakan antara  tata bahasa atau 
gramatika bahasa itu, dan perbendaharaan kata atau leksikon dalam bahasa yang 
sama. Oleh sebab itu, analisa tata bahasa atau analisa gramatikal dibedakan dari 
analisa leksikon, atau leksikologi atau analisa leksikal 
 
13. Aesop4_14_eff.wav  
dalam pengantar satu ini, yang sekiranya akan menarik perhatian ialah, bahwa 
banyak hal diandaikan kebenarannya tanpa bukti, atau tanpa bukti lengkap. Memang 
hal itu biasa terjadi dalam sebuah buku dikdaktis dan tidak jarang terjadi bahwa, 
bukti tentang hal-hal yang elementer menuntut keahlian tinggi sehingga jelas tidak 
dapat dimasukkan dalam sebuah buku pegangan 
 
14. Aesop4_15_eff.wav 
akhirnya saya dengan senang hati ingin memenuhi kewajiban mengucapkan rasa 
terima kasih dan penghargaan kepada mereka yang telah membantu dalam 
penyusunan buku ini. beberapa draft pertama untuk bab tiga sampai dengan lima 
pernah disusun oleh asisten saya di ui, dokterhandes el sihombing 
 
15. Aesop5_01_eff.wav 
di pihak lain, rupa-rupanya ada masalah yang lain, yang akan memunculkan 
pertanyaan atau kritik. Pendirian yang terdapat dalam buku ini, rupa-rupanya, dapat 
memberi kesan agak artikuler penentuannya 
 
16. Aesop5_02_eff.wav 
yang hendak saya jelaskan sebagai masalah yang pertama, ialah seleksi pendekatan 
pada umumnya, karena harus ada prinsip priyoritas. Prinsip semacam itu, dapat 
dibagi atas yang negatif dan yang positif 
 
17. Aesop5_03_eff.wav 
seperti diketahui oleh semua dosen yang pernah mencoba menyusun buku pegangan, 
tugas itu boleh dikatakan menuntut banyak, antara lain justru karena bahannya 
sederhana. Bila dipandang dari sudut keahlian profesional // tugas ini semakin berat. 
Saya pun dalam penyusunan buku pengantar linguistik ini telah mengalami 
kesulitan-kesulitan semacam itu 
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18. Aesop5_04_eff.wav 
kekeliruan-kekeliruan yang masih ada menjadi tanggung jawab saya seluruhnya. 
Saya akan menyambut segala kritik dengan senang hati, agar supaya buku ini di 
kemudian hari dapat disempurnakan. 
 
19. Aesop5_05_eff.wav 
akhirnya, cukup banyak orang lain yang juga membantu saya. Beberapa rekan dosen 
memberi catatan dan kritik. Mahasiswa-mahasiswa yang sering tanpa menyadarinya 
// menyebabkan saya memikirkan kembali beberapa bahan. 
 
20. Aesop5_06_eff.wav 
dewasa ini, fidologi diartikan sebagai ilmu yang menyelidiki masa kuno, dari sesuatu 
bahasa berdasarkan dokumen-dokumen tertulis. Walaupun para ahli fidologi 
sekarang, menyadari bahwa pengetahuwan sedikit tentang linguistik dapat menjadi 
panduan penting dalam bidang mereka, namun sudahlah menjadi pengertian bersama 
// bahwa fidologi tidak sama dengan linguistik 
 
21. Aesop5_07_eff.wav 
pada umumnya // yang dimaksudkan dengan distribusi ialah kemungkinan 
penggantian konstituwen tertentu dalam kalimat tertentu dengan konstituwen yang 
lain. misalnya dalam kalimat tadi, konstituwen putri bisa diganti dengan konstituwen 
putra atau anak atau lurah, tapi bukannya dengan berjalan, atau sering atau aduh. 
 
22. Aesop5_08_eff.wav 
dalam bab enam sudah diuraikan gejala-gejala yang terpenting, yang berhubungan 
dengan pembedaan antara fungsi, kategori dan peran sintaksis. Bidang sintaksis 
begitu luas sehingga soal-soalnya tak kunjung habis dapat ditambahkan 
 
23. Aesop5_09_eff.wav 
memang seringkali pemakaian kata “adalah” itu tidak perlu, misalkan pada kalimat 
tadi, dapat berbunyi juga itu tidak benar. namun, seringkali adapula pemakaian kata 
adalah yang tidak mencerminkan pengaruh barat atau mencerminkan pemakaian 
motif kata kepula dalam bahasa-bahasa indo eropa 
 
24. Aesop5_10_eff.wav 
kata kerja transitif dalam arti tradisional istilah tersebut, sering dipakai tanpa objek, 
misalkan pada kata kerja ‘makan’ dalam kalimat ‘saya sudah makan’. Pemakaian 
kata kerja transitif demikian, disebut  pemakaian yang absolut. Istilah tersebut 
berasal dari kata latin absolutus, yang berarti dilepaskan atau terlepas 
 
25. Aesop5_11_eff.wav 
sebagai masalah terakhir harus kita uraikan sedikit tentang hubungan antara fungsi 
dan peran. 
 
26. Aesop5_12_eff.wav 
di pihak lain, pasti ada peran bawahan dalam arti, terdapat dalam frase. Dalam frase 
‘rumah tetangga saya’, konstituwen ‘tetangga saya’ berperan posisi, sedangkan 
dalam frase ‘pengeluaran uang’, konstituwen ‘uang’ berperan objektif karena 
uangnya dikeluarkan tidak mengeluarkan sesuatu 
 



 98

27. Aesop5_13_eff.wav 
teori peran masih berada dalam tahap primitif. Istilah-istilah yang disebutkan di atas 
tidak semua dicontohkan di sini karena banyak dapat dipersoalkan. Kita dapat 
mencari contoh-contoh sendiri, tidak usah kita garap semuanya, sudah cukup bila 
beberapa istilah sudah pernah kita temui 
 
28. Aesop5_14_eff.wav 
kesimpulannya jelas, dalam banyak bahasa astronesia seperti bahasa tagalog, 
indonesia dan jawa, struktur peran menyebabkan bentuk kategorial di tempat 
predikat menyesuaikan diri dengan peran yang terdapat di tempat subjek. 
 
29. Aesop5_15_eff.wav 
soalnya tidak menyangkut hanya bentuk pasif tadi saja, karena baik kata benda 
maupun kata kerja, meskipun kedua kategori terdapat baik dalam bahasa-bahasa 
astronesiya maupun dalam bahasa-bahasa indo eropa, tidak mutlak perlu persis sama 
dengan kedua tipe bahasa tersebut 
 
30. Aesop5_16_eff.wav 
fungsi-fungsi itu sendiri tidak memiliki bentuk tertentu, tetapi harus diisi oleh bentuk 
tertentu, yaitu suatu kategori 
 
5_16b 
fungsi-fungsi itu juga tidak memiliki makna tertentu, tetapi harus diisi oleh makna 
tertentu yaitu peran 
 
31. Aesop7_01_eff.wav 
yang menarik  perhatian bila kita bandingkan hasil pertama dengan lajur ke empat di 
atas ialah bahwa dalam lajur pertama kita pakai istilah asli indonesia sedangkan 
bentuk aktif tifalnya dalam lajur keempat merupakan kata pinjaman asing. Fenomena 
itu dalam bahasa indonesia memang tidak terbatas pada peristilahan ilmu linguistik 
saja. 
 
32. Aesop7_02_eff.wav 
maka tidaklah mengherankan apabila centang perentang politik  di indonesia saat ini 
disebabkan oleh tiadanya  hukum yang andal dan tangguh untuk membatasi, 
mengerem dan memaksa politik untuk mengikuti trek hukum 
 
33. Aesop7_03_eff.wav 
Padahal hukum bukanlah atau seharusnya bukanlah seperti yang diungkapkan di 
muka, tetapi hukum adalah sebagai alat mencapai keadilan.  Bila hukum dengan ayat, 
pasal dan dalil-dalilnya penuh dengan multitafsir, maka jebol dan tumbanglah makna 
dan benteng keadilan 
 
34. Aesop7_04_eff.wav 
Bila keberadaan hukum di Indonesia berlanjut seperti ini maka yang diharapkan oleh 
rakyat bukanlah sekedar low imforsment yang pada akhirnya juga tak akan ada 
faedahnya, tetapi yang lebih menguatirkan terjadinya lowfus stet 
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35. Aesop7_05_eff.wav 
Maka janganlah disalahkan apabila masyarakat yang sudah buta hukum tetapi sedang 
mendambakan keadilan berperasangka bahwa dalam peradilan tahu-tahu tujuannya 
atau keputusannya telah ditentukan lebih dahulu, barulah kemudian dicarikan dalil-
dalil pembenaran hukumnya 
 
36. Aesop7_06_eff.wav 
pemerintah mengakui jumlah penderita demam berdarah mengalami peningkatan dua 
kali lipat perbulan dibandingkan tahun lalu 
 
37. Aesop7_07_eff.wav 
Jika tahun lalu dalam setahun tercatat lima puluh ribu dua puluh lima penderita, ini 
berarti tiap bulan ada empat puluh ribu orang penderita 
 
38. Aesop7_08_eff.wav 
menko kesra Yusuf kalla mengatakan masalah demam berdarah lebih berbahaya 
ketimbang sars dan flu burung karena demam berdarah sudah menimbulkan korban 
jiwa begitu banyak 
 
39. Aesop7_09_eff.wav 
oleh karena itu baik pemerintah dan masyarakat, menurut kalla // harus 
menyelesaikan masalah ini secepatnya. pasalnya, akibat demam berdarah akan jauh 
lebih besar. 
 
40. Aesop7_10_eff.wav 
kalla menambahkan penanganan demam berdarah harus melibatkan seluruh 
masyarakat, tidak cukup kalau  ditangani pemerintah saja 
 
41. Aesop7_11_eff.wav 
selain itu, dalam waktu dekat pihak kesra akan mengumpulkan para gubernur, bupati 
dan walikota guna membahas keterlibatan masyarakat menanggulangi demam 
berdarah bersama. Kita akan menggerakkan masyarakat agar terlibat dalam perang 
terhadap nyamuk // untuk mencegah demam berdarah 
 
42. Aesop7_12_eff.wav 
ketua panitia pelaksana // haji abdul latif usman ketika dihubungi di balik papan 
jumat mengatakan pihaknya sudah menghubungi keduanya di Jakarta dan apabila 
sesuai rencana // kedua tokoh nasional itu dipastikan hadir pada acara tersebut 
 
43. Aesop7_13_eff.wav 
dijelaskan bahwa peserta es en je dua ribu empat // diperkirakan akan dihadiri oleh 
dua ratus da 'i // yang merupakan utusan dewan suroh lain daerah hidayatullah 
seIndonesia, utusan ormas, bakor islam dan lembaga dakwah islam 
 
44. Aesop7_14_eff.wav 
saat ini sudah hadir lebih dari enam puluh orang utusan Depede hidayattullah. 
Diharapkan pada jum'at dan sabtu, seluruh peserta bisa hadir seluruhnya, katanya 
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45. Aesop7_15_eff.wav 
acara es 'ende dua ribu empat bertujuan untuk menata kembali langkah dan program 
dakwah 
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Appendix D 
 

Error Rate of the Automatic Utterance-type recognizer 
 

 

Table A.4 Error rate of the automatic utterance-type recognizer using the third order 

polynomial expansion, architecture 3-1-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 10.41 10.41 10.41 
IV II 10.68 10.26 10.47 
I III 10.37 10.79 10.58 
II IV 12.66 12.24 12.45 

Average 11.03 10.92 10.98 
 
 
 
 
 

Table A.5 Error rate of the automatic utterance-type recognizer using the third order 

polynomial expansion, architecture 3-2-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 10.41 9.95 10.18 
IV II 11.54 11.54 11.54 
I III 10.79 10.79 10.79 
II IV 12.24 12.66 12.45 

Average 11.24 11.23 11.24 
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Table A.6 Error rate of the automatic utterance-type recognizer using the third order 

polynomial expansion, architecture of the neural networks 3-3-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 10.86 10.41 10.63 
IV II 11.97 12.39 12.18 
I III 12.86 12.86 12.86 
II IV 11.81 12.24 12.03 

Average 11.87 11.97 11.92 
 

 

 

 

Table A.7 Error rate of the automatic utterance-type recognizer using the third order 

polynomial expansion, architecture 3-4-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 14.48 11.76 13.12 
IV II 13.68 13.68 13.68 
I III 10.37 10.37 10.37 
II IV 11.81 12.66 12.24 

Average 12.58 12.12 12.35 
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Table A.8 Error rate of the automatic utterance-type recognizer using the third order 

polynomial expansion, architecture 3-5-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 11.31 10.41 10.86 
IV II 14.11 14.53 14.32 
I III 11.62 12.03 11.83 
II IV 12.66 12.66 12.66 

Average 12.42 12.41 12.42 
    

 

 

 

Table A.9 Error rate of the automatic utterance-type recognizer using the third order 

polynomial expansion, architecture 3-6-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 10.41 10.86 10.63 
IV II 15.38 15.81 15.6 
I III 11.62 11.62 11.62 
II IV 13.08 13.51 13.29 

Average 12.62 12.95 12.78 
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Table A.10 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-7-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 11.31 10.86 11.09 
IV II 15.81 16.67 16.24 
I III 13.69 13.69 13.69 
II IV 13.08 13.08 13.08 

Average 13.47 13.57 13.52 
    

 

 

 

Table A.11 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-8-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 10.41 10.41 10.41 
IV II 14.11 14.53 14.32 
I III 12.45 12.03 12.24 
II IV 14.35 14.35 14.35 

Average 12.83 12.83 12.83 
    

 

 

 

 

 

 

 



 105

Table A.12 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-9-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 14.03 14.03 14.03 
IV II 15.81 15.81 15.81 
I III 12.86 12.86 12.86 
II IV 13.08 13.08 13.08 

Average 13.94 13.94 13.94 
    

 

 

 

Table A.13 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-10-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 13.12 13.57 13.35 
IV II 16.24 16.67 16.45 
I III 14.11 14.11 14.11 
II IV 13.51 13.51 13.51 

Average 14.24 14.46 14.35 
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Table A.14 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-11-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 13.57 12.22 12.9 
IV II 17.09 17.09 17.09 
I III 14.94 14.94 14.94 
II IV 14.35 15.19 14.77 

Average 14.99 14.86 14.92 
    

 

 

Table A.15 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-12-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 13.57 13.57 13.57 
IV II 16.24 16.24 16.24 
I III 12.45 12.45 12.45 
II IV 15.19 15.19 15.19 

Average 14.36 14.36 14.36 
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Table A.16 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-13-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 15.84 15.38 15.61 
IV II 17.52 18.38 17.95 
I III 12.86 12.86 12.86 
II IV 13.51 13.92 13.71 

Average 14.93 15.13 15.03 
    

 

 

 

Table A.17 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-14-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 14.03 14.03 14.03 
IV II 17.95 14.96 16.45 
I III 12.86 12.86 12.86 
II IV 15.19 14.77 14.98 

Average 15.01 14.15 14.58 
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Table A.18 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-15-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 14.03 14.03 14.03 
IV II 17.95 18.38 18.16 
I III 11.62 15.35 13.49 
II IV 10.97 11.81 11.39 

Average 13.64 14.89 14.27 
    

 

 

 

Table A.19 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-30-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 11.76 12.22 11.99 
IV II 16.67 17.09 16.88 
I III 13.28 13.69 13.49 
II IV 14.77 15.19 14.98 

Average 14.12 14.55 14.33 
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Table A.20 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-45-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 14.03 14.93 14.48 
IV II 17.52 17.52 17.52 
I III 13.69 14.11 13.91 
II IV 13.51 13.92 13.71 

Average 14.69 15.12 14.9 
    

 

 

 

Table A.21 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-60-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 14.48 14.03 14.25 
IV II 14.53 14.96 14.74 
I III 13.69 13.69 13.69 
II IV 15.19 15.61 15.41 

Average 14.47 14.57 14.52 
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Table A.22 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-75-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 14.93 15.38 15.16 
IV II 15.38 15.81 15.6 
I III 12.86 14.52 13.69 
II IV 15.61 16.03 15.82 

Average 14.69 15.43 15.07 
    

 

 

 

Table A.23 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-90-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 13.57 13.57 13.57 
IV II 16.24 16.67 16.45 
I III 9.13 14.94 12.03 
II IV 14.35 14.77 14.56 

Average 13.32 14.99 14.15 
    

 
 
 
 
 
 
 
 
 



 111

Table A.24 Error rate of the automatic utterance-type recognizer using the third 

order polynomial expansion, architecture 3-105-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 14.48 14.93 14.71 
IV II 17.09 17.95 17.52 
I III 9.54 14.52 12.03 
II IV 15.19 16.03 15.61 

Average 14.07 15.86 14.97 
 

 

 
 
 

Table A.25 Error rate of the automatic utterance-type recognizer using the second 

order polynomial expansion, architecture 2-1-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 14.9 14.9 14.9 
IV II 15.4 14.5 14.9 
I III 18.3 17.4 17.8 
II IV 15.2 16.0 15.6 

Average 15.9 15.7 15.8 
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Table A.26 Error rate of the automatic utterance-type recognizer using the fourth 

order polynomial expansion, architecture 4-1-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 10.9 10.9 10.9 
IV II 10.7 10.3 10.5 
I III 10.8 11.2 11.0 
II IV 11.8 12.2 12.0 

Average 11.0 11.1 11.1 
 
 
 
 
 
 

Table A.27 Error rate of the automatic utterance-type recognizer using the fifth order 

polynomial expansion, architecture 5-1-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 41.2 35.3 38.2 
IV II 39.3 38.0 38.7 
I III 43.9 31.5 37.8 
II IV 46.8 29.9 38.4 

Average 42.8 33.7 38.3 
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Appendix E 
 

Error Rate of the Automatic Utterance-type recognizer with 
Manual Utterance Segmentation 

 
 

Table A.28 Error rate of the semi automatic utterance-type recognizer using the 

second order polynomial expansion, architecture 2-1-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 9.51 11.31 10.41 
IV II 14.53 15.38 14.96 
I III 14.52 14.52 14.52 
II IV 14.77 14.77 14.77 

Average 13.33 13.99 13.66 
    

 

 

 

Table A.29 Error rate of the semi automatic utterance-type recognizer using the third 

order polynomial expansion and architecture 3-1-1 

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 9.5 9.9 9.7 
IV II 11.5 12.4 11.7 
I III 12.0 12.0 12.0 
II IV 14.4 14.4 14.4 

Average 11.9 12.2 11.9 
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Table A.30 Error rate of the semi automatic utterance-type recognizer using the 

fourth order polynomial expansion and architecture 4-1-1  

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 15.4 7.2 11.3 
IV II 14.5 14.1 14.3 
I III 10.4 16.2 13.3 
II IV 10.6 16.5 13.5 

Average 12.7 13.5 13.1 
 

 

 

 

Table A.31 Error rate of the semi automatic utterance-type recognizer using the fifth 

order polynomial expansion and architecture 5-1-1       

Error Rate (%) 

Training Set Testing Set 
Statement 

Declarative 

Question 

Equal Error Rate 

(%) 

III I 48.4 28.9 38.7 
IV II 14.5 42.7 28.6 
I III 44.0 22.8 33.4 
II IV 43.9 18.1 31.0 

Average 37.7 28.2 32.9 
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