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CHAPTER I
INTRODUCTION

Let X3, Xo, ..., X, be independent random variables with zero mean, finite variance
n

and E:EXZ2 = 1. Define

=1

WK1 1t X ot ™

Let F, be the distribution function of W,, and ® the standard normal distribution

function. The central limit theorem in probability theory and statistics states that
F,(xz) — ®(x) as n — oo.

The Berry-Esseen theorem, also known as the Berry-Esseen inequality, attempts
to quantify the rate of this convergence. Statements of the theorem vary, as it was
independently discovered by two mathematicians,Andrew C.Berry [2] and Carl-
Gustav Esseen [5], who then, along with other authors, refined it repeatly over
subsequent decades.

Suppose that E|X;|® < oo for i = 1,2, ..., n,then we have uniform Berry-Esseen
theorem

sup [F, (2) = ®(x)| < Co Y E|X,[? (1.1)

z€R i1

and the non-uniform version

| () = 0(2)]< 1+ |z)? Zi:1 BIX] (1.2)

where both Cy and C] are absolute constants.

In case of uniform bound, Berry [2] and Esseen [5] are the first two persons
who obtained (1.1) in case of X!s are identically distributed. Later,Siganov [11]
improved the constant down to 0.7655 in 1986 and 0.7164 by Chen [4] in 2002.



Without assuming the identically distributed of X's, Beek [14] sharpened the con-
stant to 0.7975 in 1972. The best bound in this case was found in 1986 by Siganov
[11].

Theorem 1.1. (Siganov,1986) Let X1, X, ..., X,, be independent random variables

such that EX; = 0 and E|X;]?> < oo for i =1,2,..,n. Assume that X:EXZ2 = 1.

i=1
Then

sup |[P(W, < x) — ®(x)| < 0.7915 ) E| X,

zeR i—1

where W, = X1+ Xo + ...+ X,,.

For non-uniform bound, Nagaev [7] is the first one who obtained (1.2) in case
of X/s are identically distributed random variables and Bikelis [1] generalized Na-
gaev’s result to the case that Xs are not necessarily identically distributed. Paditz
9] calculated C; which is 114.7 in 1977 and improved his bound to be 31.935 in
1989. His result is in Theorem 1.2.

Theorem 1.2. (Paditz,1989). Under the assumption of Theorem 1.1, we have

31.935
PW, <z)—=® ElX;[]?
[P(W, < 1) = () 1+||3Z X

Michel [6] reduced the constant to 30.84 for the independent and identically
distributed case.
In 2001, Chen and Shao 3] give the versions of (1.1) and (1.2) without assuming

the existence of third moments. Their results stated as follows.

sup |F () — (2)] < 41 S {EIXPI(X)] > 1+ EIXPI(X <)} (13)

zeR i1

and

Fufa) — o) < b ) {EXi (X > 1+ o)) | BIXPI(Xi] <1+ |x|)}

= (14 [=[)? (14 [x])?

(1.4)



where C5 is a positive constant and I(A) is an indicator random variable such that

1 if A is true,
1(A) =

0 otherwise.

In 2005, Neammanee [8] combined the concentration inequality in [3] with

coupling approach to calculate the constant in (1.4). Here is his result.

Theorem 1.3. Let X1, Xo5,...., X, be independent random variables with zero

means and Z EXZ»2 =1. LetW,, = X1+ Xo+...4+X,, and let F,, be the distribution
i=1

function of W,,. Then

n | EXAI(XA > 14 (5] EXGPI0X] <1+ (5]
[Fu(w) - (@) < €5y 4 T+ )
i=1 (1+|Z|) (1+|Z|)

(1.5)

where

21.44 i |z} <3,

32 if 3< |w| < 3.99,
C3 =460 if 3.99 < |z| < 7.98,
32 if 7.98 < |z| < 14,

2144 if |z| > 14.
\

We observe that-the bounds in (1.5) are given-in term of truncated moments
and the constant obtained is 21.44 for most values. In Theorem 1.4, we improve
the concentration inequality which used in [8] in case of |z| > 3.99 and get better

constants, i.e., 9.7. for almost x.

Theorem 1.4. Under the assumptions of Theorem 1.3, we have

n (BXI(X|>1+15)  EIXPIIX]<1+]5)
[Fu(z) - (@) <Y Tt T
1+ 15D (1+15D)




where

21.44 i |z <3,

32 if 3 < |z| <3.99,
C = 449.18 if 3.99 < |z| < 7.98,
14.69  if 7.98 < |z| < 14,

9.7 if |z > 14.

\

The method used in Theorem 1.4 is Stein’s method which first introduced by
Stein [12] in 1972. Besides Stein’s method, we give another bounds in Theorem

1.5, Corollary 1.6 and Cerollary 1.7 by using Paditz-Siganov theorems.

Theorem 1.5. Under the assumptions of Theorem 1.3, we have

“(EXZI(X ] 2 1+ 2] BIXPI(1XG) < 14 |z))
'F"“”)‘q’(x”“;{ GrRE?E L Oty }

where

(1989 i 0< ) < 1.3,
59.45  if 1.3<|z| <2,
7352 if 2.< |z}<3,
76.17 if 3< |z| < 7.98,
45.80 if 7.98 < |z| < 14,

\39'39 if @] > 14.
Corollary 1.6. Under the assumptions of Theorem 1.3, we have

x T
n [ EXZE(|X| > 1+ \Z]) EIXiPI(| X <1+ |Z|)
_l’_

Fula)+ ®(2)] < C . z
(1+15)? (1+15D°



where

’

9.54 if 0<|z|<1.3,
19.74  if 1.3< |2| <2,
1838  if 2< |z <3,
14.63  if 3<|z| <798,
5.13 if T98< |z| < 14,

(355 if [zf=14

Corollary 1.7. Under the assumptions of Theorem 1.3, we have

S EXZI(X > 1+ =) | EIXGPI(X] <1+ |2))
|[F(z) — @ ()] SOZ{ 1+ [zf? + 1+ |z]?
1=}

where

1311 if 0< || < 1.3,
28.54 if 13 < |z <2,
4632 if 2< |a| <3,
6140 if 3 < || <7.98,
40.12——if -7.98 < || < 14,

39.39  if |o > 14

This thesis is organized as follows. The proofs of Theorem 1.4 is in chapter 3
and Theorem 1.5, Corollary 1.6 and Corollary 1.7 are in chapter 4. Observe that
the constant in Corollary 1.6 is sharper than the constant in Theorem 1.3 and

Theorem: 1:4.



CHAPTER 11
PRELIMINARIES

In this chapter, we review some basic knowledges in probability which will be

used in our work.
Basic Knowledge in Probability

A probability space is a measure space ({2, F, P) for which P(Q2) = 1. The
measure P is called a probability measure. The set (2 will be referred to as a
sample space and its elements are called points or elementary events. The
elements of F are called events. For any event A, the value P(A) is called the
probability of A.

Let (2, F,P) be a probability space. A function X : 2 — R is called a
random variable if for every Borel set B in R, X ~(B) belongs to F. We shall
use the notation P(X € B) in place of P({w € Q|X(w) € B}). In the case where
B = (—o00,a] or [a,b], P(X € B) is denoted by P(X < a) or P(a < X < b),
respectively.

Let X be a random variable. A function F : R — [0, 1] which is defined by
F(z)=P(X < 7)

is called the distribution function of X.
A random variable X with its distribution function F is said to be a discrete
random variable if the image of X is countable and said to be a continuous

random variable if F' can be written in the form

Fla) = /_ F(t)dt

for some nonnegative integrable function f on R. In this case, we say that f is the



probability function of X.
Now we will give some examples of random variables.
We say that X is a normal random variable with parameter p and o2, written

as X ~ N(u,0?), if its probability function is defined by

f(z) = \/%exp < - T;(x - /L)2>.

Moreover, if X ~ N(0,1) then X is said to be a standard normal random
variable.

We say that X is a uniform random variable with parameter n if there exist
X1, To, ..., T, such that P(X = x;) = % for any ¢ = 1,2,...,n and denoted by
X ~U(n).

Let (Q, F, P) be a probability space and F, is a sub o-algebra of F for each
a € A. We say that {F,| @ € A} is independent if and only if for any nonempty
finite subset J = {j1, 72, ..+, jr} of A,

P(m Am) 7Z H P(Am>

m=1 m=1

where A, € Fj, form =1,2,.. . k.

Let &, C F for all & € A. We say that {€,|a € A} is independent if and
only if {o(&,)|a € A} is independent where o(&,) is the smallest o-algebra with
Ea Co(&y).

We say that the set of random variables {X,| o € A} is independent if
{0(X,)| a € A} is independent, where o(X) = {X}(B) | B is a Borel subset of
R}.

Theorem 2.1. Random variables X1, Xs, ..., X, are independent if and only if
for any Borel sets By, Bo, ..., B,, we have
P(({X:;e BY) =[] P(X/<cB).
i=1 i=1

Let X be any random variable on a probability space (€2, F, P). If / | X|dP <
Q

oo, then we define its expected value or mean to be

E(X) = /Q XdP.



Proposition 2.2.

1. If X s a discrete random variable, then E(X) = Z rP(X = x).

z€lm X

2. If X 1s a continuous random variable with probability function f, then
B(X) £ / o f (x)dz.
R

Proposition 2.3. Let X and Y be random wvariables such that E(|X|) < oo and
E(]Y]) < 00 and a,b € R. Then we have the followings:

1. E(aX +bY) = aB(X)+ bE(Y).
2. If X <Y, then E(X) < B(Y).
5. |E(X)] < E(1X]).

Let X be a random variable which E(]X|*) < co. Then E(|X¥) is called the
k~th moment of X about the origin and call E[(X — F(X))*] the k~th moment
of X about its mean.

We call the second moment of X about its mean, the variance of X, and

denote by Var(X). Then
Var(X) = E[X — BE(X))>.
We note that
Var(X) = H(X?) = E*X).

Proposition 2.4. If X, X, ..., X, are independent and E|X;| < oo for i =
1,2,...,n, then

1. B(X1X,---X,) = BE(X1)E(Xs) - B(X,),

2. Var(a; X1 +aaXo+- - -+a,X,) = a? Var(Xy)+a3 Var(Xy)+- - -+a? Var(X,,)

for any real number ay, as, . .., a,.



The following inequalities are useful in our work.
1. Holder’s inequality :
E(IXY]) < B# (| X]")E(|Y])

1 1
where 1 < p,qg < oo, —+ - =1and E(|X]?) < o0, E(]Y]?) < 0.
P q .

where F|X P < 0.

AONUUINYUINNS )
RN ITNINENAY



CHAPTER III
MAIN RESULT VIA STEIN’S METHOD

In this chapter, let X, X, ..., X}, be independent random variables with zero
n
mean, finite variance and Z EX? = 1. Define
i=1

Let F;, be the distribution function of WW,,, and ® the standard normal distribution
function. Then VarW,, =1 and EW? = 1.

In 2001, Chen and Shae [3] investigated the constant in the non-uniform version
of the Berry-Esseen theorem in term of truncated moments without assuming the

existence of third moments. Their result states as follows.

Theorem 3.1.

" (EXPIX) 2 L ba]) | BIXPI < 1+ )
R0 -l SO W, arpr

where C' s a positive constant.

In 2005, Neammanee [8] combined the concentration inequality approach which

used in [3] and the coupling approach to calculate the constant C'. Here is his result.

Theorem 3.2.
o [ IEXAI(X) = LA BIXGPIIX & T4 15D

=R 1+ 15D’




11

where

2144 if |z <3,

32 if 3< |z <3.99,
C'=<60 if 3.99 < |z| < 7.98,
32 if 7.98 < |z| < 14,

2144 if |z| =14,

\

The aim of this chapter is to improve the constant in Theorem 3.2. Here is our

result.
Theorem 3.3. (Main theorem)

o[ EXPIXI 21415 EIXPIX] < 1+15)
[Fu() — ()| < C +

T T
” 1 T 1)2 1 N3
- (1+ 1) (1+13)
where

9144 i {zf< 3,
39 if 3<la| <3.99,
C=144918  if 3.99 < |z| < 7.98,

14.69  if 7.98 < || < 14,

9.7 if |z > 14.
\

The tool which was used to prove these results is the Stein’s technique. Stein(1972)
introduced a powerful and general method for obtaining an explicit bound for the
error in the normal approximation. This technique is free from Fourier methods
but relied instead on the differential equation. Stein’s method has been widely
applied in the area of normal approximation. The method is as follows.

Let Z be a standard normal distributed random variable and Cp; the set
of continuous and piecewise continuously differentiable functions f : R — R
with E|f'(Z)| < oo. For f € Cyy and a real valued measurable function h with
E|N(h)| < oo, the equation



f'(w) —wf(w) =h(w) — N(h) forweR
is called Stein’s equation for normal distribution, where

1 22
N(h)=— [ h(x)e” zdx.
If h = h, where h, : R — R is defined by

1 if w<z,
ha(w) =

0 otherwise
for w € R, then the Stein’s equation becomes
f(w) —wf(w) = h(w) — ®(x).
Hence

E(fW) =W f(W)) = P(W < z) — ®(z)

12

(3.1)

for any random variable W. It is well-known that the solution f, of Stein’s equation

in (3.1) is given by

1) = V2re s B(w)[l — b)) if w <z,
z \/ﬂe“éi@(x)[l —d(w)] if w >z,

and for all real number w, u, we have
fwf(w)] < 1,
[fe(w)l< L,
| folw) — fo(w)| <1,

1
and 0 < f,(w) < min( —) for >0
x

(3.5)

(see Chen and Shao [3], pp.246). To prove our main result, we divide the proof

into two parts, auxiliary results and the main theorem.
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3.1 Auxiliary Results

For each z > 0,let Y, = X;I(|X;| < 1+2), 5, = ZY;@ ,

=1

ZEX2 (1X;] > 14 2), ZE|X|3I(|X|<1+x)
i=1 i=1

5, A, 5,
T — "~ d 5x == .
Y= an At+202 i+ 2p

Proposition 3.4. Let 0 <x <y. Then

1. 6,>6,,

(14 )

2. 9, < 0, and

(1+y)
(1+y)°
(1+ x)35y'

Proof. 1. It follows from the fact that

3. 0, <

EXZI(|X;|>1+2)  EIXPI|X] <1+

(1+x)? (1+z)?
B EX,?I(|X,-| >1+y) N EX,?I(l +r<|Xi| <1+y) EIXPI(|X;]| <1+x)
a (14 2)2 (14 )2 (1+x)?
PI(Xi| > T4y) | BIXPIA+z<|[Xi|<1+y)  EIXPI(X]<14+2)
- (1+x)? (T+y)(1+z)? (1+x)?
S EXZQI(|X,-| >1+y) E|XZ-|3I(1 +z<|X;| <14y N E]XZ-|3I(|X1-| <l+uz)
(1+y)? (1+y)3 (1+y)?
_EXPI(Xi| = 1+4y) | EIXGPI(IX| <1+y)
(1+y)? (1+y)3
2. Note that
EXZ?I X;|>1+y EIX;PI(|X;| <1+y
(1+y) (1+vy)
EIX;PI(|X; 1 E|X;21(1 < |X; 1

(1+y) (1+y)
E|X;PI(|1Xi] <1+ ) N (14 EX2I(1+ 2 < |X;| <1+7y)
(14 x) (1+y)

<EXPI(X] = 1+y)+
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EIXPI(1 X <1+2)

= EX’I(|X;| > 1
PTG = 1+ 2) + it o
EX2I(1X;| > 1 EIXPI(X;| <1
(1+z)? (1+2)3

Hence 2. holds.
3. By the fact that

JEXZI(X)| > 1+2)  BIXPI(X]<1+2)
(1+2) (1+z)? (I+z)3 ]

1+2)EXZI(|Xs| >1+y)+(Q+2)EX;I(1+ 2 < |X;| <1+vy)

+ BIX:PI(|1X;| <1 +a)
1+ 2)B|XGPI(1+2 <|X;| <1+
§(1+y)EX31(!X¢|21+y)+( ) E|1X| ((1+i)-| | y)

+ EIXPI(X] < 14 1)
= (1+y)EXI(1X;]| = 1+y)+ EIXPI(X;| < 1+y)

_ s EXAI(XG| 21 +y) EXPI(X| <14 y)

we have (14 )30, < (1+ y)*3,. O

Remark. 1. and 3. in Proposition 3.4 are stated in Chen and Shao [3], but the
proof was not given.

Proposition 3.5. For a nonempty subset A of {1,2,...,n}, let

< By ZY}@ and U, = Z Y &) min (g, Y1)

icA JEA
JFi
Then
«
1. |ESy .| < ——,
| A, | “ 14z
b + ( )2+ ( )4, and

8
2. ESY < (1 o+ 1 z
Az = (1+ )0 + +1—|—a: 142 142

3. E|UL, — EUS ' < (16(1 + 2)8, + 1)y,
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Proof. 1. It follows from the fact that

|ESA,z| = | Z EYz,r|

1EA

= | EXiI(|Xi| <1+u)
€A

= > EX;— > EXI(X;|>1+ax)
€A 1EA

= |Y  EXI(|Xi| 2 1+ )]
1EA

< D EIX (X >1+2)
=1
n 12 1>

< Z BIX* (| X;| 2 1 + )
2 1+z

—i aw

FT

2. From 1. and the fact that |V .| = [Xi|{(|X;| < 1+2) <1+ 2 and ZEY;QI <

i€A
ZEXZ.2 = 1, we have
i=1
ESi, = BE(Q_Yia)*
ich
= EYYL+D ) YAYE D) VRV,
i€A icA jEA i€A jEA
J#i J#
M B LD IOPDIRB AT
i€A jEA kEA i€A JEA kEA. lEA
i ki JAikFLg 1F,5k
< S EWLPIYi 4 D EYAD EVE
€A i€EA JEA
+ 37 BV PIY DBY e 13D EYZIIDBY, A BYl
TSN JEA 1EA JEA kEA
i i k#i,j
1D EYiall ) EYill Y EYill Y EYil
i€A JEA kEA leA
i#£j k#i,j I#i,5,k
amﬁx Qy 2 Ay 4
< (1 s+ 1 .
s (+2)f+1+ 1+x+(1+a:) +(l—l—x)
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We note that Z a; = 0 for real numbers a.s
i€
3. For each 5 € A, let
Yie = Vel min(qs, [Yie|) = ElYj | min(qs, [Yia]).

Then EY;, = 0 and |Yj.| < 7.(|Y.| + E|Y;.|) < 2(1 4+ x)7,. Similar to (2), we

can show that

ElU/l\,x - EUIZX,J:’4

= B[} Yl

JEA
J#
= B[ VLSSV £ Y Y W
JEA JEA keA JEA kEA
j#i G40 k#ig j#i k#i,j
IDIPIDVEE RS D) B DD SRR R A AN
JEA keA IeA JEA kEA leA  meA
A1 kFi,g lF 5k j#i kFi,5 10,5,k m#£i,g,k,l
JeA JeA keA
Ji Ji k]
(L+a) Y BVl £ BYLL
JEA jeA
' 3
1+33 /YxZE[i :r:’mln ’Yxa‘ x‘)+E‘Y3,x|mln(7I7|Y;,ID]
JEA
7
+ [Z Var([Y;,| min(y,, Yal))|
jeA
2
208 SB[ BRI+ D BOYminGs 1Y, )]
JEA JEA
2
< 8Lt D)t Y BVl A EYal?) 47 [ > EYﬁz}
JEA JEA

<16(1+2)vs > EYial’ +7;

JEA

< (16(1 + )8 + 1)7,
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where we use the fact that (a + 0)® < 2%(a® + ?) for a,b > 0 and ZEfo <
jeA
Z EX j2 < 1 in the fifth and the sixth inequality, respectively. O

J=1

Proposition 3.6. Let x be a positive real number and g : R — R defined by

g(w) = (wfy(w))"

Then
1. g is an increasing non-negative function on [0, x) and

2. g(z)| <1+zx forx > 1.

Proof. 1. See Chen and Shao [3], pp. 249.
2. By Chen and Shao [3], pp. 248, we have

s - (Vor@ +wDes (1= B(w)) - w)d(z)  if w>z,
(Vor(Lr w)es d(w)) 4 w)(1—d(x))  if w<a

Then for z > 1,

<dl +x

where we used the fact that

(S

x

1~ o(z) < =

(3.6)

2w

for x > 0 ( see [13], pp. 23 ) in the second inequality. O

In order to prove the main theorem, we use the idea of Neammanee [8]. Then,

we need the following concentration inequality and proposition 3.8.
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Proposition 3.7. Concentration Inequality
Leti e {1,2,...,n}, Wi = W, —Xi, and S; o = Sp,q where A = {1,2,...,n} —{i}.

1
Then for 1 <a <b< oo and (1+a)’a,+ (1+a)f, < 30’ e have

(b—a+2v,) ((1 +7)%  3(1+7.)%  3(1+7,)
Cl+a)P \(a—7) (a—7)* (a—7)
1.465 x 10773, ay
i +
0.5 — (8a)5 =20, = C4(1 +a)3  (1+a)?

Pla < W% <p)

IN

+1)ESL,

for any positive constant C' such that C' < 0.5 — (gaﬁ — 20. Furthermore,

@ 7.417

1. Pla<W,’ <b) < m(b—a)%—&l%éa for a>2,
@ 5.264

2 P(CL S Wn ~ b) S m(b | a) + 7018611 fOT a Z 3,
.D22

3. Pla< W’ <b) < ) (b— a) +3.9160, for a>6.

(1 +a)?

1
we have o, < — and

1
Proof. By the fact that (1 +a)*a, + (1 +a)B, < 0 0

1
Ba < 20" Hence a — v, > 0 and 0.5 — (ﬁa)§ — 27, > 0.
Let f: R — R be defined by

0 for t<a—n,,
FO) =< (1+t+ 7%t — a+ 7a) for a—7, <t<b+1,,
(1+t+7)%0b—a+2v,) for  t>b+,.

By equations (2.19) and (2.23), pp.. 1958-1959 of Neammanee [8], we know that

1 ,
I— ) S . PU: <
C(]. i CL)3 S%af(s’ha) + (UA,a — C) +

Ug

Pla <WW <p) < 3.7
(a<W;" <b) < A% a2 (3.7)

for every positive constant C'.
To bound the right hand side of (3.7), we divide the proof into two steps.
Step 1. We will show that

(1+7%)°  3(14+7)* 3(1+7)
(@—%P  (a—7)? | (a—1)

ESiaf(Sia) < (b—a+27)( +1)ESL,.

(3.8)
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First, we will show that
ESiof(Sia) < ESial(Sia>a—7a)(1+ Sia+7)(b—a+27,). (3.9)

It is obvious that (3.9) holds in case of S;, < a — 7, and S; 4 > b+ 7.
Assume that a — v, < S;q < b+ ,. Then

ES@af(Sl”a) = ESi,a<1 + Si,a —+ 7&)3<Si,a —a+ f)/a)
= ES;ol(Sia > a— %) 1480 +7)(Sia —a+7a)
S ESi,aI(Si,a 2 a — 7&)(1 o= Si,a, + 7&)3((b + ’Ya) —a+ /Y(z)
)

= BSial(Sia = a— 7)1+ Sia+9)°(b—a+27,).
Hence, (3.9) holds. By (3.9),

ES;iof(Sia)
< (b—a+27)|ES;d(Siu = a =7a)(1+ Sia + 7a)®|
= (b—a+279)|ESial(Sia = a— va){(1 + 7a)® + 3(1 + 72)?Sia
+3(1+7a)55, + Si o
< (- a+21){(1 £9) B al(Sia > @ — )
+3(1 +90) ESEI(Sia = a = 7a) + 3(1+ 1) |ES; . (Si0 = a — )]
+ Esgfa}.
From this fact and the fact that
ES}I(Sia > a—"a) < ES;}

7,a

ESiaI Si,aza_ a = )
| y ( 7)’ (a_,ya)g (a_fya)?)

ES} I(Siq>.a.—"a) - ESY,

ESZ,1(Sia>a—17.)| < < ;
GG PR mna

ESﬁaI(Si,a > a—7,) - ES;%Q
(a—ya) N (a_’ya)’

\ESEGI(Si,a >a—,)| <

we have

(1+7)* | 3(14+7)* | 3(1+7)
(a - Va)g (a - '}/a)2 (a - Va)

ESi,af(Si,a) S (b —a+ 2’7a)< + 1>ESz4,a



Step 2. We will show that

1.464 x 10774,
05— (8.)3 — 200 — CI4(1 +a)®
To bound P(Uj , < C), we note that

P(U,, <C) <

EUL, > 0.5 — (8.)5 — 2a,

20

(3.10)

(see Neammanee [8], pp.1959). By proposition (3.5)(3) and the fact that (1+a)5, <

1
—, we have
80 ‘ ‘
E|U/l\,a - EU/l\,a|4
1 p
< (16(==) + )72 =1.271 =0.0753; = 0.075328, < 1.465 x 107" ——"—.
< (16(g5) + Da it B, B.Ba < XA e
By Chebyshev’s inequality, we have, for C' < 0.5 — (ﬁa)§ — 2ay,,
P(U/i\,a S C) S P(EUX,Q = Uli\,a Z 0.5 — (ﬂa)% - 204(1 - C)
< E|U/i\,a 2 EUv/i\,a|4
[0 — (B.)5 =20, — CJA
g 1.465 x 1073,
~ 0.5 2(Ba)5 =20, — CJ4(1 + a)3
By (3.7),(3.8), and (3.10), we have
, b—a+29) ((1+7%)°  31+7)% 3(1+7.)
Pla<W% <p §< ( + + +1>ES§Q
( TR R N e e R T ’
1.465 x 10774, a
+ k 2 TR (3.11)
0.5 — (8.)5 — 20, — CJ*(1 +a)?  (1+a)
for 0 < C' < 0.5— (8,)3 — 20
Next, we will prove the proposition in case of a > 6. Let
C = 0.46. (3.12)
1
Since (1 + a)?a, + (1 +a)B, < ) and a > 6,
1
, < —— < 0.00179, o, < —— < 0.000255 3.13
o< S+ a) < @S 80(1 + a)? (3.13)
1 a
Ya < 0.000893, (1+a)B, < —, and —* < 0.000037. (3.14)

80’ 1+a
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By (3.13), we have

0.5 — (Ba)5 — 20 > 0.5 — (0.00179)5 — 2(0.000255)
> 0.4847. (3.15)

Then, by (3.11) with C' = 0.46, we have

A b—a+27)(1+7)° 301+7)? 3(1+17)
p <W(Z)<b<< 1)ES?
(@< W <) < G (o F A T Tam) + 1) ES
1.465 x 10-78, “
65 x 10775 @ (3.16)

M [0.5 = (8,)3 — 2a, — 0.46]4(1 + a)? " (14+a)*

From (3.14), proposition (3.5)(2), and a > 6, we have

<(1 +90)° | 3(1+ )20 301 + 74) 1) \ ((1.001)3 3(1.001)2 3(1.001) . 1)

(a—7)  (a—7)% + (@—") 5.999 5.999 5.999
< 1.589
and
1
ES* < — 41 0.000037)? + (0.000037)* < 1.014,

which implies that

(1 + ’Ya)g 3(1 == Va)z ?’(1 == VQ) 4

+ == +1)BS! < 1.62. 3.17

g g g TS (3.17)

Hence, by (3.15)-(3.17),
~ 1.62(b —a + 2v,) 1.465 x 10773, ay,
Pla < WW < p) <
(o < Wold SOhs—measmi o (@0 rar | 0T a?
3:522(b —a) | 35228, © 0.3948, o
- (1+a) (14+a)* (1+a)?  (1+a)?
3,522

< b 3.9160,.
—(1+ a)3( @)+

Similar to case a > 6, for case a > 1, a > 2 and a > 3, we choose C in (3.12) to

be 0.44,0.43, and 0.46, respectively. U
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Proposition 3.8. Let x be a positive real number and g defined as in proposition

1
3.6. If 1+ x)%a, + (1+2)3, < 30’ then for |u] <14 %, we have
- 4
1. EgW 4+ u) < ﬂ +0.9030:(1+2) for x> 14,
(1+2)
4
; 1. 344
2. BgW\" +u) < —2— +2.5346: (1 +2) for T.98 <z <14,
(1+2)
4
i 20.319
3. BEgqW\ +u) < 1oy +19.8280= (1 4-a) for 3.99 <z < T7.98.
1+
4

Proof. We will prove the proposition in case of > 14 and for the other cases we
can use the same argument.
From equations (2.44) and (2.45) of proposition 2.4 in Neammanee [8], we have,

for x > 14

. 2.517 .
EgW® +u) < Ty +glx=1)Px-1<W9 4u<2)
L / 7 (w)Plw < WO 1 u < x)dw (3.18)
x—1
and
0.056
glx—1) < Atap (3.19)

Since(:v—l)—uz(:B—l)—(1+§)28.4for:c214,

Pz -1<WY tu<z) < POV >z 1T+ u)
( (4)

IA

P(W > 8.4)
E(Wa)
(842

W2

70.56
1

70.56
= 0.0142 (3.20)

=
i

[A

S

IA
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where we have used Chebyshev’s inequality in the third inequality.
So, by (3.18)-(3.20), and proposition 3.7(3)
2.517 (0.056)(0.0142

EgW 4 u) < TEwSE TESE ) + /:1 g'(w)P(w < W +u < x)dw
= (12f15>3 + /x: g w)P(w—u < W < 2 —u)dw
< (ff f)g + / : g’(w)[(T_f)iQ—fu)?)(x — w) + 3.9168, ,]dw.
(3.21)
Note that for x > 14,
(3 )i G (4 5y =L _ g5 37 (3.22)

47 45 "= 5
By (3.5), proposition 3.6(1-2), (3.22), proposition 3.4(1), we have, for x > 14

* 3.522
! % T 91 )
/x_lg(w)[(1+w—u)3($ w) + 3.9160,,_,]dw

< 3.522
T (14 (x-1)
3.522 v *
< —5 (x —w)dg(w) + 3.9160(2—1)—u g (w)dw
(1+ 3%)3 /‘”"1 e /:rl
3.522 -
< —=7. g(w)dw — g(x — 1)| + 3.916[g(z) — g(z — 1)]53%

D22 z
35 / g(w)dw + 3.916g(x)53%
)? Jet

- 3T
1_£E
1+

3.522 : (@ fe (@)= (2= 1) (2 = 1)) + 3.916(1 + 7)ds

- 3/ (:U—w)g'(w)dw+3.916/ g (w)dy_ydw
U) =i r—1

“ 3%
1 _1
(i4=3)
3.522
(I =)

5

3.522

- 3x
1 N3
(1+2)

where we have used the fact that

+3.916(1 + ) (3.23)

Ver

0<l|zf.(z)| < |xmin(T,
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in the last inequality.

By proposition 3.4(2) and the fact that for z > 14,

we have

bsa € —— 471572093046 .
5 3x 4 4

(1+ 3)2

From this fact, (3.21) and (3.23), we have

2.518 3.922

EgW% 4 ) < s

+3.916(1 + &)

A

T+

0.458
= 10.9030% (1 + 2).

We note that proposition 3.7 and proposition 3.8 improve the following results

from Neammanee [8].

Proposition 3.9. Let i € {1,2,...,n} and W\’ = W, — X;. Then for3 < a <
1
b<ooand (1+a)a, + (1+a)b, < 0 e have

. 40.98
Pla < W <p) <

< IS it =)+ 46,380

1
Proposition 3.10. Let x > 14. If (14-z)*a,+ (1 +2)3, < —, then for |u| < 1—1—%,

R0
we have
. 4.60
EgW +u) < ——— +5.136:(1 + ).
(1+ Z)S

We are now ready to prove the main theorem.
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3.2 Proof of the main theorem.

Proof We will show the proof for x > 0 as we can simply apply the result to
—W,, when x < 0.
By the fact that

PW, <z, W,=S5,) <P(S, <z
and P(S, <z, W, =8, <PW,<zx),

we have
PW, <z)—P(Sz<x)=PW, <z,W,=S5,)— P(S; <x)
+ P(W,, < @, W, # S,)
< P(W, # S,) (3.24)
and

— P(S; <z, W, #S,)
P(S; <z, W, #£5;)

Z il
> —P(W, # S,). (3.25)
Hence, by (3.24) and (3.25), we have

|P(W; < 2) = ®(x)| = [P(Sz L) =)
< |P(W, <) = P(S, < 7))
< P(W, # 5,)

which implies that

[P(W,, < ) = ®(2)| < P(W, # Sa) + |P(S2 < @) — ®(2)]. (3.26)



Note that W,, = S, if max |X;| <1+ . Then

P(W, #S;) < P(max |X;| > 1+ 2)

1<j<n

n

< P(X;| > 1+2)

=Y EI(|Xi| >1+x)

Z": EX7I(X;| > 1+ )
(14 x)?

= (1+ )2

By Chebyshev’s inequality, we can show that

|P(Se < 2) —®(x)|

|1 — P(S; > z) — O(2)|
P(S; > x)+ (1 - ®(x))
ES:

o
ES: e

7 2rx

IN

IA

+ (1= 2(2))

IA

where we have used (3.6) in the last inequality.

By (3.26), (3.27) and (3.28), we have

|P(W, <z)—®(x)| < a +””x)2

%10 4 ES? y e 2
(1+z)2 27

+|P(Se < x) — O(x)

M)

If 0 <x <3.99, The results obtain immediately from theorem 1.3.
Suppose that x > 3.99.
Casel. x > 14.

1
Subcase 1.1 (1 + z)%a, + (1 +2)3, > 0

26

(3.27)

(3.28)

(3.29)

(3.30)



By Taylor’s formula, we note that for x > 14,

22 2 1 x? 1 a2 1 22
o STy STy STy
€ LR SR TSP
1443 14343 1453

o T 3s T ae T

2
e
= ]_ _—
+ 5 +
> 6023,

From this fact, proposition 3.4(2), proposition 3.5(2), (3.30) and the fact

0p < (+—2)205 <(0.3)0:,

ap = Y BXZI(X| > L+ 2) <Y EX? =1,
i=l =1
1 2
0

1
and =14+-—-<1.072 for z > 14,
€
we have

|P(W, < z) — ®(z)|
Qg BS3 . etz

27

< iy b
T (142 2t rx
L ES3 % 1
- 1+ ! 60/ 2zt
I (L+z)0, 0z B 1, oy o 1, a ., 1.0067
< =, il
- (1+x)? xt x4(1+x)+x4(1+x) +x4(1+:c) * x?
< Sz - Y o) T
- (l—l—x)QjL % x3+x2 :U2(1—|—a:)+x4 (14 z)?
N ol O 1.0067
2 (1+2)? (1+2)? xt
Qe Be (LO72)° < B,
< 1.072)(1.072)° :
S oo LY G e T i e
Ll e 1 oz (LOOGT)(072)*
144~ (L4 )2 1441+ 14)2 (1 + )2 (1+x)4
Qg e 1.33
< 1.327
S LT Yo Ty
1. 1 2 1
(14 x)*
— 107.735,
< 9.765. (3.31)
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1

Subcase 1.2 (14 2)%a, + (14 2)58, < 0"

Let K «(t) = EY;«{I(0 < t < Yiz) — (Y,
4 ' 4 ' 4

3], pp-250-251, we set

<t < 0)}. From Chen and Shao

z
’4

Fn(l’) — (I)(Qf) = Rl + RQ + Rg + R4 (332)

where

Ry = Zl E{I(|Xi] <1+ ﬁ)/t (FLWSD + X;) — fo(WD + 1)) K, = (t)dt},

<142
" T - .
Ry= B{I(X{]>1+7) / (S + X5) = fLW + 1)) K; = (t)dt},
i=1 ltls155
R3 = @%Ef;(wn),
Ry == E{XA(1Xi| 21+ 2)(f(Wa) = F(Wi))}.
i=1
By (3.4) and the fact that

/ K= (t)dt < / K;:()dt <EY?: <EX} <) EX?=1, (333
[t|<1+% =oco i—1

we have

Rl <Y BUXIZ 14D K

== [t|<1+%

<> B =T+ )

=gl

L)

n EXZI(X,]>1+5)
<> :

= T
i=1 (1 + 1)2
A (3.34)
= 0 .
1+ %2
1+
By the fact that
15
E|fi(W,)] < for x>2
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(see proposition 2.3 in Neammanee [8], pp.1960), we have

|Rs| < azE|f,(W,)]
150%

(1+)?
1.350[%

(1+7)

<

(3.35)

5
1
+4

==l

where we use the fact that

By (3.5), we have

< 0.3 for x > 14 in the last inequality.

Rl < _ BN W)X > 1+ D))

A BIX X =14 2)

; T
=1

n EXAI(Xi] >1+5)
< 4

— XL
i=1 (1 & Z).’E
0.32204%

< —
— X
1 N2
(1+3)

(3.36)

AL
where we use the fact that 4 1 < 0.322 for # > 14 in the last inequality.
x

7
By applying (3.34)-(3.36), we get

oz N 1.35acz 0.322a2

+
T o i
(1+ 1)2 (1+ 1)2 (1+ 1)2
2.6720s

< 909 =
=~ T oo
1 N2
0hE)

| Ry + R3 + R4l <

(3.37)

Note that |R;| < Ry; + Ry where

NS

n X, |
Fan = Z [EL(X] <1+ 2)/ K, (t)/ Eg(W " + u)dudt}|,
t

i=1 [t|<14-F
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- s
Ry =) E{I(|X;| <1+ Z)

i=1

/ P(z — max(t, X;) < W% < z — min(t, Xi)|Xi) K= (t)dt}
[t|<1+Z
(see Chen and Shao [3], pp.251), and

& 1 1
/ K= (£)dt < / K (A< ~EY]. < 2EIXP  (3.38)
t|<1+2 ! % b 2 4T 2

[e.°]

and
BIX)|EJX > < B3| XGBER | X = BIX . (3.39)

By (3.33) and (3.38)-(3.39), we can show that

St < 1+ Y L Ll o)

t]<1+2

Mé*

_Z‘E{ (11 <145 1] Lk ()dt+Al<l+I 1155 (]}

T
< ZE{(‘XJEDQF + §E’Xi‘3)j(‘Xi| Bl + Z)}

i=1

<23 EIXPHIX <1+ %)

1=1

<2) EY:|* (3.40)
=1

By proposition 3.8(1) and (3.40), we have

0.458

Ri1 < [(1 N

+0.903(1 + 2)d=
4) ]

Z|E{ \X|<1+4)/ (1] + 1t K s (00

[t<1+%

0.458
< 2| ———%— +0.903(1 EY,3
< [(1+4) + ]}j [Yisl
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0.9163:
<~ + 1.806(1 + 2)0z =
1+ )
4
0.91608=
< f L 4 0.0230: (3.41)
(1+ 1)3

where we have used the fact that

1
I_ZE|X|SI(]X|<1—|— <ZE|X[I(|X|<1—|—9;) B, <

=1 =1 80(1 +$)
in the last inequality.
& »
Note that for x > 14, |t| < 1+ 1 and | X;| <1+ >
z 3T 2z
r — max(t, X;) > :17—(1—1—1) = Z_l > ?29.3. (3.42)

From this fact, proposition 3.7(3), (3.33), (3.40), and proposition 3.4(1), we have
|R12|<Z { |X|<1+4)
522
/ (%(max(t, X;) — min(t, X)) + 3. 9165%) Lz (t )dt}
U<+ N1 4 %)3
( 3.522

Z { \X|<1+4)/ =

i=1 =15 (1T =23
)

3522 Z’E< |X|<1+4)/ (|t|+|Xi|)Ki,§(t)dt>‘

(1 _|_ 3 [t]<1+%

(el =13 + 3. 916(5230) (¢ )dt}

»MH

+3.9166@ZE‘([(|X1¢ < 1+55)/ K.
P <142

n

Z|Y,|3+39165212E (EXZI (|X|<1+4))
(1+§> =1 =1

n

(t)dt) |

2 522

k 044 Z Vi 2 [* +3.91602 Z EX?
1
044)(0.4
< (0 >(O 35, + (3.916)(0.190)5
(1+ )

4
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0.584
< 2% 8. 1 0.3258= (3.43)
1+ 4
4

where we have used proposition 3.4(2) and the fact that for x > 14

x L2
1+7 (1+ Z)

5 < 0436 and 0z < ——-—d= < 0.1906:
I+3 (1+ 3)2

in the last inequality.

Hence, by (3.32), (3.37), (3.41), and (3.43)

|F(z) — ®(z)| = |R1 + Ra+ R3 + Ryl
<'|Ri| + |R2 + R3 + R4|
< |Ri1| + |Raz| + |Re + R3 + Ryl

AP L toane + 008 03055, 4 20120
(1 PP QAR BN (14 9)?
<em At o PE 308,

o et 1) :
< 3.020s. (3.44)

By (3.31) and (3.44), we have the result in case x > 14.

Case2. 7.98 <z < 14.

We use the same argument as of case 1. by using proposition 3.8(2) and proposition
3.7(2) to bound (3.41) and (3.43), respectively.

Case3. 3.99 < x < 17.98.

We use the same argument as of case 1. by using proposition 3.8(3) and proposition
3.7(1) to bound (3.41) and (3.43), respectively, and replacing inequality (3.42) by
the following inequality

3
a:—max(t,Xi)Zx—(l—i—%)zzx—l:z



CHAPTER IV
MAIN RESULT VIA SIGANOV-PADITZ THEOREMS

In this chapter, we use the same notations as in chapter III.

In 1986, Siganov [11] investigated the constant in uniform version of Berry-
Esseen theorem. The result is as follows.
Theorem 4.1. (Siganov,1986) Let X1, Xs, ..., X,, be independent random vari-

ables such that EX; = 0 and B|X;]? < oo for i = 1,2,..,n. Assume that
> EX?=1. Then

=1

sup |[P(Wy, < ) = @(x)] < 0.7915 >~ E|X,[°.

veR i=1

In 1989, Paditz [10] gave their constant in non-uniform version. Here is his

result.

Theorem 4.2. (Paditz,1989) Under the assumption of Theorem 4.1, we have
for x € R,

31.935
PW, <z)—® B X;]?
POV, < 2) = 0(@)| < |3Z X

The purpose of this chapter is to improve the constant in Theorem 3.2 by using
Siganov and Paditz theorems (i.e., Theorem 4.1 and Theorem 4.2). Here are our

main results.
Theorem 4.3. (Main theorem)

[ EXPIX] 2 L4 [e) | BIXPI(X] <1+ Ja)
) —al <03 { SR e
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where

4989  if 0< |z| < 1.3,
59.45 if 1.3 < |z| <2,
7352 if 2<|z| <3,
76.17 if 3 < |x| <7.98,
4580 if T8 < |z| < 14,

\39‘39 if |z]>14.
Corollary 4.4.

T
n [ BXFL(XG] =14 1)) BIXGPI(XG] <1+ !2\)

+
T i
1+ 12 (1+15)°

(

9.54 if 0<|z| < 1.3,
1974 if 1.3< |z <2,
1838  if 2<|z| <3,
14.63  if 3<|z| <798,
5.13 if 798 <|z| < 14,

355 if |of > 14

We observe that the result in Corollary 4.4. yields a better bound than that in
Theorem 3.3.

Corollary 4.5.

EXAI(X;] > 1+ z])  E|XPI(X] <1+ |x])
1+ |z|? 1+ |23

F(@ - el <cY |

=1
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where

13.11 o 0<|z] < 1.3,
28.54  if 1.3 < |z| < 2,
46.32  if 2<|z| <3,
61.40 if 3 < x| <T7.98,
40.12  if 7.98 < |z| < 14,

(39.30  if |z} =14

We divide this chapter into two parts, auxiliary results and the main theorem.

4.1 Auxiliary Results

Proposition 4.6. For each n € N, we have

Tou,
14z

=1

(2)1—-2a, <VarS, <1, and

b

1
(3) if a, <0.11, then 0 < ——— < 1 + 1.452q,,.
arsS,

Proof. 1. Since FX; = 0,

= |EX;I(|X;] > 1+ x)|. (4.1)
From this fact and the fact that
BIXP <Y LEXP=A, (4.2)
i=1
E2X; 1< EX?, (4.3)

we have

Zn: Ely;,:v - E}/;,x‘s
i=1

= Y EBIXiI(Xi| < 1+2) - EX;I(|X;]| <1+ )

=1
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< Y IEIXPI(X| < 14 2) + 3EX7I(|X] < 1+ 2)| EX,I(|X;] < 1+ )|

i=1

+3EIX (X < 1+ 2)|E°XI(1X] < 1+ 2)| + |[EXI(1X:] < 1+ )]

S CEIXPI|X| <1+2)+3)  |[EXI(X)| <1+2)|

=1 =1

IA

+3) EIX||EXI(IX:] < 1+ a)||[EX:I(1X| < 1+ )]

i=1

+ Y EIXiPI(1X| < 14 2)| EXI(| X[ <1+ )]

=1

IN

B +3) |EXI(| Xl =1+ 2)[ +3)  BIX,PIEXI(X:| > 1+ )]

=1 =

+ ) IEX (1] >4 )

i=1

IA

ﬁx+32E1X|I X > 1+ 1) +BZE|X\I X, > 1+ )

=1 =1

+Y EIX(X]) = 1+ 1)

=1

= O+ 7ZE|Xi|I(|Xi| > 1+ )

=1
EIXPI(X) > 1+ 2)
<
- 72 (1+x)
7a1,
bt T30

2. By (4.1), we note that

VarS, = iVarYi,x

n

= D (BY?, - E%Y,y)
=1
= Y EXJI(|X)| <1+z) =) EXiI(X;| <1+z)

i=1 i=1



= 1= EXJI(|X;| > 1+2) = > E°XiI(X;| > 1+x)

i=1

= l—a,— > E°XiI(|Xi| > 1+

=1

i=1

From this fact and the fact that o, > 0, we have VarS, < 1.

By (4.3) and (4.4), we have

VarS, = 1=, — Y E°XI(|X;| > 1+ z)

i=1

> 1—a, — > BEXI(X| > 1+x)

=Nl

> 1 - 2a,.

From this fact and (4.4), we have 1 — 2a, < VarS, < 1.

3. For 0 <t <0.11, by using Taylor’s formula

1 t

o

V1 -2t (1—2¢)2

t
(1= 2(0.11))2
<1+ 1.452t.

<1+

From this fact and 2., we have

1 1
0<

, we have

for a, <0.11.

Proposition 4.7.
Y:i,:): P | E}/z,x

<
VvVVarS, — 1 —2a,

=1+-——— for some ce (0,0.11]

<1+ 14520,

For each x >0, let }7“0 = s and S, = ;Yw
1. If o, <0.09 and 1.3 < x <2, then
- z—FES, r—FES, 54.513c,  41.19503,
P(S, < 2222 — g e 3
VVarS, vVarS, (1+2) (1+2)
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(4.4)



1
2.If (1+ 1), < 5 then

| (g I—ES ) q)<l'—ESx>|_ Clax Cgﬂx
VVarS, VVarS,"  (1+z)2  (1+42)3
where C7; =57.186 (Cy="T73.515 for 2<ux <3,

Cy =33318 (Cy=76.17 for 3 <z <798,

Ci = 3.976 Cy =458 for 798 <x <14, and
C; = 1.226 Cy =39.382 for x> 14.

Proof.
1. By proposition 3.4(1) and proposition 4.6(2), we have

0.099
E s o =0.04
’S|—1+ on - AV L -

and 1>VarS, >1=2(a,) > 1— 2(0.099) = 0.802

which imply

0 < #— ESy 2 2+0.043 _ 99813,

~VVarS, — +/0.802
By proposition 4.6(1) and 4.6,

: 13 — 3
2 EMal ZE| m'

1
(Var—S) Z ElY;, — EY;,?
1 Targ
>
(V(M"Sx)% <ﬁ 1+z
1 Toy,

= (0.802)2 {f + (1+13)

— 1.39230, + 4.23750,.

IA

)

)

Note that S, = Z )7”3 is the sum of independent random variables whose
i=1
Y, Y;,m - EY;,x o E)/z,x E}/;,x

EY,,=F = — = (0 and
7 VVarS, ) VVarS, /VarS, an
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VarS, =V Vig) =V _
ar ar(; ar Z \/VarS Vaer

1 n
Var(z Yi.)=1
i=1

By (4.8) and Theorem 4.1(Siganov),

|P(S, < 2) = ®(2)] <0.7915 ) " E|V,|*
i=1
< 0.7915(1.39233, + 4.23750,)

< 1.1028; +3.354a,

for all z € R. From this fact, (4.5)- (4.7), we have

_ T L S
P(5, < —at gl A TN
|2 \/VarSm) (\/Vaer)l
A 4 (S=E5)311098, + 3.3540,)
4 arsS;
F x—ES,
(Y e
1+ s
_ (1+2.2818)(1.1028, +8.3540,)
y A (E oz
v VarS,

(3.2813)3(1.1023; + 3.354a,)
(1+ (@ —0.043))3
38.9333, + 118.4950,

IN

IA

(0.957 + )3
_ 38.933(1.019)%3,  118.495(1.019)%c,
- (1+x)3 (1+z)3

41.1956,  125.379«,
(1 +x)3 (1+ x)3
41.19506, 54.513a;
(I4+=z)® * (1+1)?

VAN

where we use the fact that

0.91;% < 1.019 for all 1.3 < x < 2
in the forth inequality.

2. case 2 <z < 3.

We can proof the result of this case by using the same argument of 1. and the fact

that
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1
0<q, < <
=% S E0 22 S 511 2)?

L0023
ES,| < -2 < < 0.008,
1+=x 142

1>VarS, >1—2a, >1—2(0.023) = 0.954,

< 0.023,

D EY.P < 10738, + 2.504q,,

=1

1+

d ——— <1.003 f 112<qx<3.
M Dot .
case 3 <z < 7.98.
We note that
o< < ! < - < 0.0125
oy < < <0. .
y 5(14+x)2 — 5(1+3)2
i 0.0125
\ES,| £ £25 < < 0.00313,
LA z=—=(1 H3)

1> VarS, > 1 =20, > 1—2(0.0125) > 0.975,
and > E|Y;,[* < 10395, + 1.819q,,

i=1
From these facts , we have

T

— ES
———— >3-0.00313 = 2.997. 4.9
vVVarS, — (4.9)
_ = =5
To bound |P(S, < xv—j;ﬁ) — @(%H in 1., we use Theorem 4.1(Siganov).

But in this case, we will use Theorem 4.2(Paditz).

Since f(x) = 2.29(1 + 2®) —(1 + #)3 is increasing on [2.997, 00) and f(2.997) > 0,
f)=2291+2%)—(1+2)*>0 for z>2.997.

From this fact and (4.9), we have

1 2.29
x— ES - x—FES, .
1 - 1+ ———=5)3
+ (\/ Vaer) (1+ \/ Vaer>

(4.10)
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By Theorem 4.2(Paditz) and (4.10), we have

_ z—FES, r—ES,
PSS, < ——) — ¢(———
P = s, ~ Y as,)

(31.935) ) " E[Y;,[*
i=1

r—FES,
vV VarS,

(31.935)(2.29) Zn: E|Y; .
(T+ (m))

73.131(1.039@5 + 1.8180495)
(1+ (z — 0.00313))°
73.131(1.0393, + 1.818a,,)
(0.99687 + z)3
(1.0008)3(75.9833, + 132.952q,)
(142
76178, 133.27a,
(2P (1+ap
76.170; 33.318a,,
G+ap ' (A+ap

IN

1+ ( )3

[N

VAN

IN

IA

IN

IA

where we use the fact that

=
T 10008 forall 3< z < 7.98
099687 + 7 — LEEE X

in the fifth inequality.
case 7.98 < x <« 14.
We can proof the result of this case by using the same argument of case 3 < x <
7.98, and the fact that
1 1

T 52p S5 708

Ol 0.0025
[ES: | < 1+ = (1+7.98)
1>VarS, >1-2a, >1—2(0.0025) = 0.995,

Iar £ ¢ < 0.0025,

< 0.000279

> EYi.[P < 1.00763, + 0.78540,,

=1
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r— FES,
VarsS,
1 < 1.423
Il+a23 = (1+2)3
14+

4 — % — 10001
M 9,009 + &

> 7.98 —0.000279 > 7.9797,

on [7.9797, 00),

case r > 14.

We can proof the result of this case by using the same argument of case 3 < z <

7.98, and the fact that

1
<
(A +x)% =~ 5(1+14)
az _ 0.00089

ES.| £ - < 0.00006,
| |_1+:1:_(1+14)_

1>VarS, > 1—2a, >1—2(0.00089) = 0.9983

> E[Yi.l* £ 1.00265, + 0.46790,

i=1

0 << 5 5 < 0.00089,

T ESa 1y 0100006 ~ 14
VVarSy, — ' y
1 T4
< on [14,00),
1+2® = (1+x)3
1
and izlfor:chéL
0.9999 + x

We are now ready to prove the main theorem.

4.2 Proof of the main theorem

It suffices to consider only z > 0 as we can simply apply the results to —W,, when
x < 0.
Casel 0<z<1.3.
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Note that for x > 0,

EXI(X] 2 1) + BIX,PI(|X] < 1)
<EXZI(|X)| > 1+2)+ EXPI1 <X <1+2)
+EBIXPI(|X] <1+2) — B X;PI(1 < | X <1+2)
<EXZ(X;| > 1+2)+ EIX)PI(|X:] <1+2)

and for 0 < x < 1.3,
(1+2)3 < (Ls+ 1.3)3<12.167.
From this fact and (1.3), we have
[ Fo(x) — ®(x)]

<41y {EXZ?[(|Xi| > 1)+ BIXPI(X:| < 1)}

=1

IN

41% {EX?](]XA > 14 a)+ BIXi[PI(X)| <1+ x)}
i=1

4.1(12.167) & ! 3
< “Arey ;{EXZI(|X1|_1+x)+E]XZ| 1(x] <1+2)}

" (EXH(X] > 1 BIX,PI(1X;| < 1
< aonoy3{EXEHRIE 1) BIXPIOX < 14a))
Lz (1+z)3 (1+z)3
"CEX(X)| > 1+2)  EBIXPI(X|<1+2)
< 49.89 ! — 4.11
- ;{ (T 1+ )3 } (4.11)
Before proving another cases; we need the equation
4931 2 - ES r—FES
F,(x)—@® < - P01 B L&) 1 o 4—= 4.12
Fula) ~ Bl < oo P, € T el )

for o, <0:11 and = > 1.3.

Firstly, we will show that for o, < 0.11 and x > 1.3, we have

3.319« - _x—FES x— ES,
P(S,<z)—® < 2 4 |P(S, < —32) — d(—5)).
P(S: < 0) = 0(a)] < s + IP(S, < o) 0 )
By proposition 3.4(1) and proposition 4.6(2), we have
r — ESx Qy,

>x—FES,>x—

VVars, (1+2)




which implies

min{x }_ B
vVa TS 14+
From this fact and the fact that
b 2 b —
O(b) — d(a) = L/ eHdt < /ldt (b-a)
V2T Ja \/27‘(’62 a 2me 2
for 0 < a < b, we have
|P(S, < ) — O(z)|
_ r—FES, T2 S, T
= |P(5,; < O Lt O(—E)— @
IP(S, < T = W) £ () — (@)
_ z—ES, z = ES, z— ES
< |P(S, € ——=2) -0 (——2)| + |[P(——=) - D
_ m—ES z— ES,
< |P(S, < of—f£——===
S 1P(5 = ) £ M)
1
* \/ﬁe%[min(w% |\/Var5 Iz % \/VCL’I“S Tars
z—FES T~aES 1 T
< WP < s T s, oo ars.
<P (S z—FES, o x—HS, 1

where we used the fact that

22
ar )2 22 e 2

2@ > (e >

e0.11.—

in the last inequality.
22
Since f(x) =€z —0.933(1+ «) is increasing and f(1:3)

L

7 >0933(1+2) for x>1.3.

Tt s e e

22

> 0.89¢

2.0,

Using the same argument as in (4.16), we also can show that

22

ez >0.193(1 +2)° for z>1.3.
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(4.13)

(4.14)

\/VarS

(4.15)

(4.16)

B \/Vaer :
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From these two facts, proposition 3.4(1) and proposition 4.6(3), we have

1

T

V27(0.89¢%)

VarS,

<

<

<

<

<

ES,
- VVars,
1 ‘ x B x‘ N 1 ’ ES,

V2r(0.89¢% ) VVarsS, V2r(0.89¢%7 ) VVarsS,

1.452a,x o (1+ 1.452c,)
V271(0.89)(0.193)(1 + )3 TaTo V27(0.89)(0.933)(1 + z)
3.373a,x (1 4 1.452(0.11))ay,
(1+2)2  /27(0.89)(0.933)(1 4 z)2
3.373a,  0.5580,
T+ap " (1+a)
3.931a,
e (4.17)

From this fact, (3.29) and (4.15), we have (4.12)
Case 21.3<z<2.
If —2% _>0.011, then

(1+x)?

59452{

EXZI(|X;} > 1+ |z]) A EIX:PI(|X;] <1+ |x|)}

(1 + [a])? (1 + [a])?

> 59.45(0.011)

= 0.654.

From this fact and the fact that

|, (7) — ®(x)] < 0.55

see Chen and Shao |3 .246), we can assume Qe < 0.011. Hence
( , PD-246),

(14 2)?
a, <0.011(142)? < 0.099.

From this fact, (4.12) and proposition 4.7(1), we have

() —

O(z)]

g 49310%_’_‘]3(5 <$—ES$)_®<:U—E5’$)’

- (1+a)? " VVars, VVarS,

< 4.931c,  41.19506, 54.513a,

- (1422 (1422 (1+x)?

_59.444a, 411958,

 (1+2)? (1+x)3

< 59.444,. (4.18)
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Case 3 2 <z <14.
Subcase 3.1. (1 + z)%a, > %

Using the same argument as in (4.16), we can show that
5

ez >0922° for 2 <z <14 (4.19)

By using the same argument of subcase 1.1 in theorem 3.3 with (4.19) and the fact
that

1 1
SO A, (4.20)
g T
we can show that
|F.(x) — ®(z)| < 37.4080,. (4.21)

1
Subcase 3.2. (1+ )%, < 5
Note that for x > 2, we have
1
<
(2% 7 Bilst42)
If 2 <2 < 3, then by proposition 4.7(2) and (4.12), we have

0<as<z 5 < 0.023 < 0.11.

4.931« 3 z—FES r— FES
F, -0 <SPS °) _ p(—=
Fofe) - 0(e)] < e (P8 € ) - o)

o 4931a, A 7354553 i 57.186v,
—O+z2 Oz gy
56.117a,  73.5150,
e P (A=

< 73.5156,. (4.22)

For 3 <z < 7.98 and 7.98 < x < 14 we can use the same argument of the case
2<z<3.

Case4 z > 14.
Follows the argument of case 3 by using the inequality
. 1 1
e% > 602 and — L =1+ - <1.071
x x

instead of (4.19) and (4.20), respectively. O
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Proof of corollary 4.4
fo<z<13.
We used the same argument of case 1 of theorem 4.3 and the fact that (1 + %)3 <
2.327 to get C' = 9.54.
Suppose that x > 1.3. By proposition 3.4(2)
4=

5x§(1+i)25£7

we use the same argument as in (4.16) to show that

(

0.3326= if 1.3< 1 <2,
0.250d: if 2<a <3,
0y < 0.1926:  if 3 <z <7.98,

0.1120: if 7.98 <z <14,

0.0900e it z > 14.
\

From this fact and theorem 4.3, we have

.

0.332(59.45)0: if 1.3<uz <2,
0.250(73.52)0= if 2<w <3,
|[Fo(z) — ®(z)] < if 3< a2 <7.98,

L]

0.112(45.80)d it 798 <z <14,

|8

(59.45)
(73.52)
0.192(76.17)0
(45.80)
(39.39)

\0.090 39.39)d if x> 14,

(

N1

19740 (if 1351 <2,
18.380: if 2<uw <3,

= q14.630: " if 3< <798
5.130: if 7.98 <ux < 14,

3.550: if x> 14.
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Proof of corollary 4.5

By the same reason as of Theorem 4.3, we can assume that x > 0.

fo<z<1.3.

We use the same argument of case 1 in Theorem 4.3 and the fact that 1 4 22 <
1+ 23 <3.197, to get C' = 13.11.

Assume that x > 1.3.

Casel 13<z<2.

Let f(z) = 0.48(1+z)* — (1 + 2?).

Note that f(1.3) >0, f(2) = 0 and f'(x) # 0 for 1.3 < z < 2.

Then f is non-negative function for 1.3 < x < 2 which implies that

1 0.48
< . 4.23
@4+x)3 1423 (4.23)
Using the same argument as in (4.23), we can show that
1 0.48
(4.24)

(L4x)2 = 14 2%
By (4.23 ) and (4.24), we have
al‘ ﬁx

am /6.73
o .
Gt tarap S G 2t 1)

From this fact and Theorem 4.3, we have

am B&D

(1+:L’)2+(1—|—x)3)
o B
< 59.45(0.4
£=59-45(0 8)(1+x2+1+x3)
aI ﬁ.’t

< 128.54
- (1+x2+1—|—x3)

|F, (1) — ®(x)] < 59.45(

Case 2. © > 2.

Follows from case 1 by using the same argument as in (4.23) to show that

< 0.
(1+2)? i (14 2)3 _063(14—1‘2 * 1+x3>’

Ay ﬁx Ay ﬁx

<0.
(1+x)2+ (1+2)? —080('?’(1+:702Jr 1+x3)’




49
a(l? /81?
TETSERNTEE

(1422 (1+4x)32 = 1+22 1+23

<0.876(—2 4 Py ang

1422 14237

incaseof 2<x <3, 3<xr <798, 798 <z <14 and z > 14, respectively. [
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