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CHAPTER I

INTRODUCTION

1.1 Introduction and Problem Review

Independent Component Analysis (ICA) or Blind Source Separation (BSS) is a statistical

technique for the separation of n hidden sources from m observed signals (mixtures

or sensors) in an unknown mixing system. The original source signals are assumed

to be mutually independent, called independent components. Let s ∈ Rn represents

an n-dimensional vector of unknown sources. Figure 1.1 shows a simple case of BSS

problem where these sources are linearly mixed by an unknown mixing matrix A ∈

Rm×n in noise-free environment. Given only the mixtures X ∈ Rm. The aim of BSS is

to estimate the mixing matrix, Â, and then to recover the original sources, Ŝ. Since the

dimensions of source, mixture and estimated source are blind in the separation problem.

This results in three types of BSS problems as follows:

• For m = n, the problem is referred to as quadratic, complete, or simply ICA. In

this case, when the mixing matrix A is known, the source signals can be recovered

by S=A−1X.

• For m > n, the problem is said to be undercomplete or overdetermined due to

higher dimensionality of the mixture space. This problem is easily reduced to a

quadratic BSS by discarding some mixtures or by applying preprocessing methods

such as PCA.
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• For m < n, the problem is called overcomplete or underdetermined due to more

sources mixed into less signals.

Mixing
Environment

A

Demixing
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Â

s
1s
2
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n
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x
m

^
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Undercomplete
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Overcomplete
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Standard
ICA

Quadratic/Complete/
Simply ICA
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m>n m<n
m=n

Estimated Sources S
^

Figure 1.1: Three types of BSS/ICA problems.

Overcomplete ICA is a more powerful method which is able to find the underlying

sources from the overcomplete mixtures while the standard ICA techniques fail to model

these data [1]. Therefore, overcomplete ICA is an extension of standard ICA which

generally assumes that the number of sources is less than or equal to the number of

sensors. The main idea in handling the separation problem for overcomplete observed

signals is the use of the sparse representation or sparse coding introduced by Olshausen

and Field [2]. In this representation, it uses as few basis elements as possible. So this

gives an advantage to ICA in case of having more basis vectors than the dimension of

mixtures.

Lewicki and Sejnowski [1] firstly applied the sparse representation to overcomplete

ICA. Lee et al. [3] proposed an algorithm based on the maximum likelihood (ML) prin-

ciple for learning the overcomplete representation of two mixtures. Bofill and Zibulevsky

[4] induced a two-step approach which separately estimated the mixing matrix and the

source signals. In the fist step, a potential function based method was used for estimating
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the mixing matrix. The estimated sources were, then, obtained by using shortest path

algorithm in the second step. This method was very effective for any two-dimensional

observable data space. Theis et al.[6] presented a method for reconstructing more sources

from fewer mixtures. The algorithm was based on an estimated histogram of the sensor

data, and so called histogram-based algorithm. Waheed and Salem [7] used algebraic

independent component analysis (AICA) to find the mixing matrix. In the last two

methods, the source distributions were assumed to be Laplacian distributions. Thus,

the minimum `1-norm technique was used to reconstruct the estimated sources. More-

over, the DUET-type methods in [8, 9] and the TIFROM-type methods in [10, 11] were

proposed to the separation problem by using the ratio of the observed signals in the

time frequency domain. They were based on the connected region of sparse source vec-

tors and consider only two-dimensional spaces of observed signals. In [12], a generalized

Hough transform was applied to identify hyperplanes on observed data for estimating

the mixing matrix. Then, the sources were recovered using the source recovery algorithm

from [4]. The algorithm required to detect the precise intersections of all hyperplanes in

which observed data located. However, in the two-step approach, the step for identifying

the precise mixing matrix is the most difficult and challenging task [5, 12]. In additions,

the case of unknown number of sources was not discussed in those two-step methods.

Recently, only a few of the methods for the underdetermined blind source separation

problem were proposed for the unknown source number case. In [13], an extension of

the DUET and the TIFROM methods was proposed to estimate the unknown mixing

matrix. The algorithm divides data into many sub-matrices and chooses the one with

lowest row variance. Several loops were performed to obtain all possible columns of the

mixing matrix with small row variances. In [14], an unsupervised robust C prototypes

algorithm was used to estimate the mixing matrix and the source number. However, the

algorithm was considered by the condition that the source signals must be sufficiently
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sparse and the situation was in noise-free environment.

In this dissertation, we study the separation of independent components from their

overcomplete mixtures with assumption of sparse signal representations.

1.2 Statement of the Problem

The following issues of overcomplete ICA are investigated.

1. What efficient technique do we use to estimate the mixing matrix for the sparse

mixtures?

2. How can we determine the number of sources mixed into the observed signals?

1.3 Research Objectives

In this dissertation, the objectives of this work are as follows:

1. To propose a new algorithm to estimate the mixing matrix for the separation of

the overcomplete mixtures.

2. To obtain a technique to estimate the number of sources in unknown environment.

1.4 Scopes of the Study

The scopes in this dissertation are as follows:

1. The observed signals are sparse and their distributions are symmetric.

2. The sources are independently distributed.

3. The number of sources is equal or greater than the number of observed signals

(n > m) and (m ≥ 2).



5

4. The source signals are mixed together by an unbiased mixing matrix in the sta-

tionary environment.

1.5 Research Advantages

It is expected that the designed approaches will be:

1. A new unsupervised method is able to separate of overcomplete mixtures.

2. This algorithm can be used for a preprocessing procedure of other signal applica-

tions such as signal recognition.



CHAPTER II

THEORIES AND LITERATURE REVIEWS

In this chapter, the basic concepts of independent component analysis, overcomplete

independent component analysis, the sparse representation of signals, estimation of the

independent components, estimation of the mixing matrix, mean shift procedure, and

the entropy are briefly revised.

2.1 Independence of Signals

The separation of any random signals y1, y2, . . . , yn can be performed with the assump-

tion that the values of yi, i = 1 . . . n, must be statistically independent at all times.

The two random variables yi and yj are said to be statistically independent if knowing

the value of yi does not give any information on the value of yj, for i 6= j [15]. Mathe-

matically, the independence of sources can be defined by the probability densities. The

random variables yi and yj are independent if and only if

p(yi, yj) = pi(yi)pj(yj) (2.1)

This means that the joint probability density function (pdf) of yi and yj, p(yi,yj),

can be factorized as the product of their marginal probability density functions, pi(yi)

and pj(yj).
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2.2 Overcomplete Independent Component Analysis

Given an observed vector x = (x1, x2, . . . , xm), this variable is generated as a linear

mixture of independent components s =(s1,s2,. . . ,sn) by anmxn unknown mixing matrix

A. Thus, the standard ICA model in a noise free case can be defined as follows:

x = As =
n∑

i=1

aisi (2.2)

The above ICA model tries to estimate both the basis vectors, ai, and the source vector,

s, from the observed vectors. The standard ICA generally assumes that n is less than

or equal to m.

A difficult problem in ICA model appears in the situation that there are more sources

than observed signals (n > m). This means that the mixing system is not invertible.

As a result, we could not directly recover the independent components even if we knew

the mixing matrix. This ICA problem is much more complicated and cannot be solved

by ordinary ICA methods because the number of “basis vectors”, ai , is larger than the

dimension of the mixture space of x. The overcomplete ICA can be divided into two

problems: (1) how to estimate the mixing matrix and (2) how to recover the indepen-

dent components. When the basis is overcomplete, the formulation of the likelihood is

difficult. Methods based on Maximum Likelihood (ML) estimation are, therefore, rather

computationally inefficient [15]. Most recent works on overcomplete ICA are usually as-

sumed a priori that the input distribution is sparse. (we will discuss this in more detail

in the next section). Furthermore, a Laplacian prior is usually used for data distribution.

Thus, the problem can be mapped to a standard linear program and the sparse sources

can be estimated by using a linear programming (LP) with `1-norm [1, 15, ?].
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2.3 The Sparse Representation of the Signals

Sparse representation or sparse coding of signals, which can be modeled using matrix

factorization, has recently received a great attention. Most recent works on overcomplete

ICA are usually assumed a priori that the input distribution is sparse which means that

only a few of source data coefficients differs significantly from zero. For a given data

point x = As =
∑n

i=1aisi, if one of the sources, si, is significantly far from zero, the

remaining ones are likely to be close to zero. The density of data in the mixture space

forms a set of cluster along the direction of the basis vector, ai. So, we can estimate

the mixing matrix by finding the direction of maximum distribution using clustering

method.

x
2

x
1

X

Gaussian
prior

X

Laplacian
prior

(a) (b) (c)
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Figure 2.1: (a) Two-dimensional data distribution. (b)-(c) The scaled basis vectors for

the data point x under a Gaussian and Laplacian prior. (d) The rank-order distribution

of 128 entry values (coefficients) of a souce vector s (speech data) under a Gaussian prior

(dashed) and a Laplacian prior (solid).

The sparse data distributions are often modeled by a priori that has high Kurtosis
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such as a Laplacian (P(si) ∝ exp(-α |si|)) [1, 15]. Figure 2.1 (a)-(d) from [1] shows how

different source distributions induce different representations of the data. A scatter plot

of two-dimensional data with three main arms is shown in Figure 2.1 (a). Figure 2.1

(b) and (c) show two different basis vectors for the data point x under Guassian and

Laplcian source distributions, respectively. In Figure 2.1 (d), nearly all entries of speech

signals are non-zero for Gaussian distribution (dash), while a few of them is non-zero

when all source entries have Laplacian distribution (solid).

The great advantage of sparse representation is that since it uses as few “basis”

elements as possible, it is capable of reconstructing the original sources even if the

number of observed signals is smaller than the number of sources under certain weak

conditions. The use of sparse sources provides high quality of the separation results

[1, ?]. Overcomplete ICA performance restrictively depends on the sparseness of sources.

However, many natural signals are sparse. When the original sources are not sufficiently

sparse, a suitable linear transform such as Fourier transform or wavelet transform should

be applied prior for improving the sparsity of signals [1, 4, 17, 18, 19]. Typically, the

observed data in time-frequency domain are represented by using wavelets package [19].

After performing the separation in the transformed domain, the recovered sources are

then transformed back into the original domain.

2.4 Estimation of the Independent Components

Assuming we know the mixing matrix A, a simple method for reconstructing the in-

dependent components can be done by the inverse, ŝ =A−1x, or pseudoinverse of the

mixing matrix, ŝ = At(AAt)−1x. However, in overcomplete ICA, the mixing matrix is

not invertible. The values of the statistically independent components cannot be directly

recovered by simply inverting the mixing matrix. A very popular probabilistic approach
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applied to estimate the independent components is the Maximum Likelihood approach.

It maximizes the posterior probability densities of s, P(s|x,A), which is the probability

of event s after knowing x. For noise-free independent components, P(s) describes the

prior probability densities of the independent components, and P(x|s,A) denotes the

probability of observed signal x, given A and s. Thus, we can obtain an estimation of

the unknown sources as follows:

ŝ = argmaxx=AsP (s|x,A)

= argmaxx=AsP (x|s,A)P (s) (2.3)

Since x is fully determined by s and A and the sources are mutually independent of

each other, the joint probability distribution has the form P(s) =
∏n

i=1P(si). Then, we

can get the maximum likelihood estimator of s as follows:

ŝ = argmaxx=AsP (s)

= argmaxx=As

∏

i

P (si) (2.4)

After taking the logarithm, the product in the equation can be written as the sum of

logarithms as follows:

ŝ = argmaxx=As

∑

i

logP (si) (2.5)

If the source distributions were fixed a priori and assumed to be Laplacian distributed,

that is P(si) = exp(-α|si|), then the maximum log-likelihood estimation is equivalent to

the minimum `1-norm as follows:

ŝ = argmaxx=As

n∑

i=1

log(e−α|si|)

= argmaxx=As(−|s1| − |s2| − · · · − |sn|)

= argix=As|s1| + |s2| + · · · + |sn |

= argmaxx=As ‖s‖1 (2.6)
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where ‖s‖1 =
∑

i |si| defines the `1-norm. Using this expression, s can be uniquely

determined [1, 20]. Choosing the priors to be Laplacian the problem can be achieved by

using a standard linear program as follows:

minx=As

∑

i

|si| = min[1, , 1]T |s| subject to As = x (2.7)

Recently, Li,Cichocki and Amari [18] discussed that it is possible to correctly estimate

the source vector if the number of nonzero entries in the source vector is less than (m+1)
2

.

Furthermore, in their later work [19], they showed that if the number of non-zero entries

is less m then the minimum `1-norm approach can give the unique solution with a

probability of one.

2.5 Estimation of the Mixing Matrix

For the Maximum Likelihood approach, the objective for learning the basis vectors of the

mixing matrix A is to maximize the probability of the data, P(x|A) =
∏N

i=1 P(xi|A).

The marginal probability over the unknown source values is defined as P(x|A) =

∫ −∞

∞
P(x|A, s)P(s)ds. Thus, the basis vectors were learned by performing gradient as-

cent on the log of this probability using the approximation of the integral. The learning

rule can be obtained as follows:

∆A ∝ AAT ∂logP(x|A)

∂A
≈ −A(Φ(ŝ)ŝT + I) (2.8)

where Φ(ŝi)= ∂ log P(ŝi)/∂ ŝi is called the score function and I is the identity matrix.

Since A is not restricted to be square, this method can work on overcomplete ICA but

each gradient step requires the computation of ŝ beforehand by using the minimizing

`1-norm. The derivation of this learning rule was described in [1].

Recently, some methods based on the two-step approach have been proposed for esti-

mation of the mixing matrix for overcomplete case [4, 17, 18, 20, 6, 7]. Unlike a gradient
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type algorithm, in these methods, the estimation of mixing matrix is performed sepa-

rately from the source recovery step. Some algorithms use the geometric separation with

the assumption that sources are zero mean. So, the samples of sources will be trans-

formed by the mixing matrix A into data clusters along transformed coordinate axes

through the origin [21]. Geometric algorithms have recently received some attention be-

cause of their ease of implementation. However, the algorithms using two-step approach

require the sparse representation of data. As described in sparse representation section,

if the signal representation is sparse enough, the density of data in the mixture space

shows a clear tendency to cluster along the directions of basis vectors of the mixing

matrix. Thus, the estimation of the mixing matrix can be performed by finding this

direction using clustering method.

2.6 Mean Shift Procedure

Several non-parametric methods are available for probability density estimation such as

the histogram method, the nearest neighbor method, and kernel estimation. The kernel

estimation method is one of the most popular techniques used for estimating the density.

The mean shift is an unsupervised and non-parametric estimator of density gradient.

The mean shift method has been introduce by Fukunaga and Hosteltler in [23]. Many

interesting and useful properties of the generalized mean shift algorithm were discussed

in [24]. A probabilistic mean shift type algorithm is mentioned in [25]. Comaniciu and

Meer also proved that the mean shift procedure applied to discrete data was guaranteed

to convergence [24, 25]. With the efficient and easy implementation, the mean shift

method was applied to many fields such as image filtering [25], clustering [24, 25, 26],

image segmentation [27], and microarray analysis [28].

Given N data points xi, 1 ≤ i ≤ N in a d-dimensional space, the multivariate mean
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shift vector computed with kernel K in any point x is given by [25].

mh(x) =
1

nx

∑

xi∈Sh(x)

(xi − x) (2.9)

where the region Sh(x) is a hypersphere of radius h containing nx data points and the

kernel is defined as follows:

K(x) =





1
2
c−1
d (d+ 2)(1 − xTx) if xTx = 1

0 otherwise
(2.10)

where cd is the volume of the unit-d-dimensional sphere. It can be shown that the

mean shift vector mh(x) at location x is proportional to the normalized density gradient

estimate computed with kernel K.

mh(x) =
h2

d+ 2

∇̂fK(x)

f̂K(x)
(2.11)

where f̂(x) is the density estimate of a point x with a window radius h and kernel K

defined as follows:

f̂K(x) =
1

Nhd

N∑

i=1

K(
x − xi

h
) (2.12)

The normalization is computed by the density estimate in x obtained with kernel K.

The relation captured in Eq. (2.11) is intuitive. The mean shift vector is aligned with

the gradient estimate of the density and the window of computation is always moved

toward regions of high density.

The Mean Shift algorithm can be described as follows:

1. Choose the radius h of the search window.

2. Initialize the location of the window.

3. Compute the mean shift vector mh(x).

4. Translate the search window by mh(x).

5. Repeat step 3 and step 4 until convergence.
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One characteristic of the mean shift vector is that it always points toward the direc-

tion of the maximum density. The converged centers then correspond to modes or the

centers of the regions of high concentration of data. The mean shift procedure consists

of two steps: the estimation of the gradient of the density function, and the utilization

of the results to form clusters. The details of an implementation of the mean-shift al-

gorithm based on clustering method are provided in [25]. The mean shift based robust

clustering for the number of clusters is automatically obtained by finding the centers of

the densest regions in the space (the modes) (See [26]).

2.7 Entropy

In information theory, information entropy is a measure of the average information

content associated with the outcome of a random variable. Entropy is defined as in the

context of a probabilistic model, and entropy is taken as information content. Consider

a random variable X = xk, k = −K ≤ k ≤ K, where xk is a discrete time number and

(2K+1) is the total number of discrete levels.

Let the event X = xk occur with probability

pk = P (X = xk) (2.13)

with the requirement that,

0 ≤ pk and
K∑

k=−K

pk = 1 (2.14)

Suppose that the event X = xk occurs with probability pk = 1, which therefore requires

that pi = 0 for all i 6= k. In such a situation there is no “surprise” and, therefore, no

“information” conveyed by the occurrence of the event X = xk, since we know that the

message must be. If , on the other hand, the various discrete levels were to occur with

different probabilities and, in particular, the probability pk is low, then there is more
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“surprise” and, therefore, “information” when X takes the value xk rather than another

value xi with higher probability pi, i 6= k. Thus, the words “uncertainly”, “surprise”

and “information” are related. Before the occurrence of the event X = xk occurs, there

are a quantity of surprise. After the occurrence of the event X = xk, there is an increase

in the amount of information. These three amounts are obviously the same. Moreover,

the quantity of information is related to the inverse of the probability of occurrence.

The amount of information gained after observing the even X = xk with probability pk

is defined as the logarithmic function

I(xk) = log(
1

pk

) = −log(pk) (2.15)

where the base of the logarithm is arbitrary. When the natural logarithm is used the

units for information are nats, and when the base 2 logarithm is used the units are bits.

In any case, the definition of information given in 2.15 exhibits the following properties:

1. I(xk) = 0 for pk = 1. Obviously, if we are absolutely certain of the outcome of an

event, there are no information gained by the occurrence.

2. I(xk) ≥ 0 for 0 ≤ pk ≤ 1. That is the occurrence of an event X = xk either

provides some or no information, but it never results in a loss of information.

3. I(xk) > I(xi) for pk < pi. That is, less probable an event is, the more information

are gained through its occurrence. The amount of information I(xk) is a discrete random

variable with probability pk. The mean value of I(xk) over the complete range of 2K+1

discrete values is given by

H(X) = E[I(xk)]

=
K∑

k=−K

pkI(xk)

= −
K∑

k=−K

pklog(pk) (2.16)

The quantify H(X) is called the entropy of a random variable X permitted to take a
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finite set of discrete values; it is so called in recognition of the analogy between the

definition given in Eq. (2.16) and that of entropy in statistical thermodynamics. The

entropy H(X) is a measure of the average amount of information conveyed per message.

Note, however, that the X in H(X) is not an argument of a function but rather a label

for a random variable (see the details in [22]).



CHAPTER III

PROPOSED METHOD

The goal of this work is to consider the underdetermined blind source separation (BSS)

problem of separating n source signals, S, from m observed signals X, when the ob-

servations are a linear combination of the sources using an unknown mixing matrix Â,

X=AS. The underdetermined condition means that the number of source signals is

greater than the number of output signals, n > m. To solve the problem, this disserta-

tion proposes an inner point removal based on information index and perturbed mean

shift algorithm to estimate the columns in the mixing matrix for underdetermined BSS

with the unknown number of sources. The proposed algorithm also gives the estimated

number of sources.

X
Mixing Matrix Estimation

~SP~
X

A

Estimated
Mixing
Matrix

Estimated
Source
Signals

Source
Estimation

Input
Observed
Signals

Enhancing
Basic Components

by
Entropy Estimation

High
Density

Direction
Identification

Inner
Point

Removal

S∧ ∧

Figure 3.1: The overview of all our work.

In this dissertation, a two-step approach for blind source separation is presented.

In the first step, the mixing matrix is estimated by the proposed algorithm. Then,

in the second step, the estimated sources are recovered by using minimum `1-norm

method from the observed signals, X, and the estimated mixing matrix, Â obtained

from the first step. Therefore, this dissertation mainly concentrates on the first step.
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The proposed method consists of three phases: Inner Point Removal, High Density

Direction Identification, and Enhancing Basic Components by Entropy Estimation. In

the first phase, the irrelevant inner points are removed from the input observed signals,

X, and each point of the remaining data is redefined by its corresponding adjacent points

which lay in the same direction. The remaining redefined data from phase 1 is denoted

as X̃. In the next phase, all possible directions of high density regions are identified by

using the perturbed mean shift procedure. This is the extension of the classical mean

shift concept based on clustering technique [25]. The converged mean shift vectors or

sample points are denoted as S̃P. Finally, some points in the same direction are removed

and the high density directions are obtained by using entropy theory. The remaining

high density directions are taken as the directions of the columns of the estimated mixing

matrix, Â, and the number of obtained columns is taken as the estimated number of

sources. The overview of all our works is shown in Figure 3.1.

3.1 Estimating the Mixing Matrix

In this section, the proposed method for identifying the mixing matrix based on infor-

mation index removal and perturbed mean shift algorithm is discussed.

For sparse source signals, at any particular time step, there is only one source signal

appears [1]. These signals after being mixed by a mixing matrix can be viewed as a

distribution of points clearly clustered along the basic independent components or the

columns of the mixing matrix. Obviously, this situation is easy to estimate the number

of columns in the mixing matrix. In this dissertation, the sparseness of the signals

does not require. The actual basic independent components must be identified from

the directions of maximum data density. Many methods based on clustering technique

have been presented to estimate the mixing matrix such as a standard k-mean method,
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Fuzzy-C clustering algorithm and AICA method [7]. However, it is well known that

when the sources are insufficiently sparse, a precise estimate of the mixing matrix is

difficult to handle with the exist clustering based algorithms. This is because they need

a precondition that the sources must be very sparse in the analyzed domain. Moreover,

several methods for estimating the mixing matrix are very sensitive to the irrelevant

inner points. Therefore, in the proposed algorithm, the first task is to identify which data

points contain enough information about the correct directions of the mixing matrix.

All the points for the m-dimensional vector space of the mixtures are observed which

points lie in the sparse regions, and affect the correctness of estimating process. They

may be considered as irrelevant points and must be eliminated. The aim of this part

is to reduce the computational burden of the remaining estimation process, and also to

remove those columns that do not contain much information for estimating the mixing

matrix. After discarding some irrelevant points, in the second task, the remaining points

are used to estimate the number of sources and also the directions of the mixing matrix

by using the perturbed mean shift technique with entropy measure.

3.1.1 Inner Point Removal

The purpose of this section is to observe which data points are irrelevant inner points and

affect the correctness of mixing matrix identification. Since, the directions of the columns

in the mixing matrix correspond to the directions of maximum of data density. Thus,

all the data points are examined. If they contain less information or lie in the sparse

region, then such points are removed to enhance the correctness of basic component

identification. Note that the word “information” in this section has different meaning

from that in the information theory as described in Section 2.7. Since the main process

is to find the filtering threshold for eliminating the points containing less information,
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the first task is to compute the information index of each data point. Before finding the

information index of each point, the adjacent region is firstly sought where all points lie

along the same direction of such point.

To determine which point y lies along the same direction of a considered point x,

the closest distance between such two points is computed by the following equation

D(x,y) =
√
| < y,y > − < x,y >2 | (3.1)

where < ∗, ∗ > denotes the inner product or dot product and a point x is normalized

(i.e it has a unit length). A set of the adjacent points, APx, with respect to the point

x can be defined by the following equation

APx = {yj|D(x,yj) < α, j = 1, . . . , τ} (3.2)

where α is a predefined distant threshold, τ is a predefined window search length, and

Y = {y1,y2, . . . ,yτ} is a set of neighboring points of the point x in the time sequence

of input data set.

N

Y = ( y
1
, ... ,y

τ
 )

x

AP
x
 = { y

j
 | D(x,y

j
) < α, j = 1, ... ,τ }

Figure 3.2: A set of τ connected points around the data point x and the adjacent points

APx.

In Figure 3.2 to find the adjacent points that lie along the same direction of the con-

sidering point x, a set of τ connected points around the point x is selected to Y. Then,

the distance between point x and each selected point yj is computed by using Eq. (3.1).



21

If the distance value D(x,yj) is less than a predefined distant threshold α, then such

data point yj is assigned to a set of adjacent points APx. Consequently, the column

indices in the obtained set of adjacent points APx can be arbitrarily disconnected. Note

that the value of τ is much smaller than the number of input data N (τ << N). Figure

3.3 shows an example of point yj which does not lie along the direction of the consid-

ering point x, because the distance between x and yj is greater than the threshold α,

D(x,yj) > α.

D(x,y
j
)y

j

α

α
x

Figure 3.3: An example of the adjacent point being the same direction of x.

To find the filtering threshold for discarding some irrelevant points, the information

index of each point is quantified by using the dot product between two data vectors.

If the two vectors are co-incident along the same direction and have a unit length,

the absolute value of the dot product is 1. If they are orthogonal to each other, that

absolute value becomes zeros. The absolute dot product value depends on the length

and the different direction of the two vectors. Consequently, the information index of a

considered point is defined by collecting the absolute dot product values between such

point and any points in the set of its adjacent points in the same direction. Note that if

such point lies in the sparse region, then it contains less information for estimating the

directions of mixing matrix.

The information index of any set of adjacent points I
′

(APxi
) is defined as

I
′

(APxi
) =

k∑

j=1

|< xi,yj >| (3.3)
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where k is the size of APxi
. The value of I

′

(APxi
) is large if there are more adjacent

points aligned along the direction of xi, and it is small if xi lies in a region with less

adjacent points aligned along the considered direction. The data points with small

I
′

(APxi
) are discarded because they are located in the direction of sparse region and

are less significant for estimating the directions of the columns of the mixing matrix.

Furthermore, with the use of dot product technique, the points at the region around

zero will have small density and will be removed. The result will not affect the next

estimating process, because, in noisy settings, these points contain less information about

the correct directions of the mixing matrix.

To determine which points will be removed, the average value of all information in-

dices, I
′

avg, and the standard deviation value, I
′

std, of all the information indices I
′

(APxi
)

are computed. Both values are used as a threshold, ϑ, for discarding the irrelevant inner

points as follows:

ϑ = I
′

avg +
I

′

std

2
(3.4)

Any point xi having I(APxi
) less than ϑ, will be discarded. σ/2 is used as a threshold

to filter only the points locating within the half variance. Thus, most remaining points

will be clustered along the directions of maximum data density. This makes it is easy

to identify the actual basic independent components in the next steps.

Before the mixing matrix identification, a new defined point x̃i corresponding xi is

constructed from the summation of all adjacent points in APx. Note that, all points

in APx are the points aligning along the direction of the considered point xi, thus, the

value of the new defined point will be large, if there are many corresponding adjacent

points. After the points containing less information are removed, each remaining point

x̃i is computed by the following equation

x̃i =
k∑

j=1

(xi + yj ∗ sign(< xi,yj >)) (3.5)
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Figure 3.4: Result on the experiment 1 on data set 1. (a) Observed signals. (b) The

remaining data after inner point removal process. (c) The result from high density

direction identification process.

Note that, only point xi whose information index I
′

(APxi
) is larger than or equal to

the filtering threshold, ϑ, is redefined. This process produces the new data points, X̃,

in which each data point has a high density distribution of the adjacent points in the

corresponding direction.
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Figure 3.5: A new defined point x̃ of a point x with APx = y1, . . . ,y5.

Fig 3.5 shows an example of a new defined point x̃ of a point x and its corresponding

adjacent points APx. Let APx = {y1, . . . ,y5} (i.e. D(x,yi) < α,∀yi ∈ APx). There-

fore, a new defined point x̃ of the point x can be represented as

x̃i = (xi + y1) + (xi + y2) + (xi + y3) + (xi + y4) + (xi + y5) (3.6)

Note that, if yi has an opposite direction of the point x, then yi is changed to be −yi.

As depicted with a dash line in the figure, the redefined point x̃ has a few changes in
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the direction to the left side which more the number of adjacent points of the point x

(depicted with a dot line). Since the length of the redefined point x̃ depends on the

number of adjacent points in APxi
and the length of each point yi ∈ APxi

, any direction

that has more the number of points will dominate other directions with smaller adjacent

points. Compared with the original data space (Figure 3.4(a)), the increased sparseness

can be seen in the scatter plots of the new defined data as shown in Figure 3.4(b).

After the points with small information indices are removed, most remaining points in

the obtained space are clustered along the directions of maximum of data density. The

overall algorithm in this phase is described in Algorithm InnerPointRemoval.

Algorithm Inner Point Removal

Input: the set of analyzed data X.

Output: the new set of the redefined data X̃.

Begin

1. For each point xi ∈ X Do

2. Let APxi
be a set of k adjacent points aligning in the direction of xi using Eq. (3.2).

3. Find the information index I
′

(APxi
) of the current point xi by using Eq. (3.3).

4. End.

5. Compute the average value I
′

avg and the standard deviation I
′

std from all information indices

I
′

(APxi
)

6. Find the filtering threshold, ϑ = I
′

avg +
I
′

std

2 .

7. Remove all points xi in which the corresponding information index I
′

(APxi
) is less than ϑ.

8. Compute a new defined value of x̃i of xi and the set of its corresponding adjacent points

APxi
(in step 2) by using Eq. (3.5), for all remaining points xi.

End
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3.1.2 High Density Direction Identification

As shown in Figure 3.4(b), the representation of the remaining data attained from the

previous phase is sparser. Based on this sparseness of the obtained data space, each

column of the mixing matrix can be estimated by finding the directions of maximum

data density. This can be achieved by using the property of mean shift technique.

As described in the previous section, the mean shift vector always points toward the

direction of the maximum increase in the density and the algorithm converges to the

closest high density region. However, because the distribution of some analyzed data

has a high density in the region around zero and the density in an closet region is very

high, the original mean shift procedure may shift some mean shift vectors to the other

closest regions and makes some directions disappeared.
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Figure 3.6: An example of two regions which have more overlapped data.

Figure 3.6 shows two directions of maximum density regions. Assume that, in the

right direction, the density of data in area B is higher than that in area A, i.e., the

density is increased from area A to area B. Let sp(A) be a considered sample point

or mean shift vector, and lies in the right direction of area A. The mean shift vector

sp(A) starts at the location in the area A. After performing k iterations of the original

mean shift procedure, sp(A) is directly replaced with a next computed mean value for

each iteration. sp(A) will be moved toward the area B, denoted by sp(B), because of the
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increase of the density. Moreover, if the area C has the higher density than that of area

B and more data are overlapped between both areas, then, for some next iterations of

mean shift procedure, sp(B) may be moved to area C, denoted by sp(C). Now, sp(C)

changed its direction. As a result, if all the sample mean shift vectors laying in the

right direction have the same behavior as sp(A), then no mean shift vector represents

the high density in the left direction. To avoid this event, in the proposed algorithm, the

length of all mean shift vectors will be preserved. This is the first difference between the

proposed algorithm and other exist clustering methods based on mean shift technique

in [24],[25] and [26]. Moreover, step 10 in Algorithm DirectionIdentifying is used to

perturb each sample point for the convergence as follow

spj =
E(ψj)

‖E(ψj)‖
∗ ‖spj‖ ,∀spj ∈ SP (3.7)

where ψj is a set of x̃i ∈ X̃ that lies in the same direction of spj and E(ψj) is the average

of all points in ψj. Note that, the length of each sample point is no changed. It is

found that the use of the mean of all points in the same direction makes us to get more

smoothing lines than use of a small real value to perturb the points.

It is obvious that each mean shift vector is converged to the closest region of high con-

centration of data. As shown in Figure 3.4(c), the converged mean shift vectors, denoted

by S̃P, form the lines in the direction of the maximum density. The detailed algorithm

of the direction estimation is described in the Algorithm DirectionIdentifying.

3.1.3 Enhancing Basic Components by Entropy Estimation

In this phase, the converged sample points obtained from the perturbed mean shift

algorithm in high density direction identification process are separated into different

direction groups, denoted by G. There are the points in same group locating in the same

direction. For each group, the maximum eigenvalue λk is computed and represented as
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Algorithm DirectionIdentifying

Input: the redefined data X̃.

Output:the converged sample points S̃P.

Begin

1. Initial a set of sample points SP from the input data X̃.

2. Repeat

3. Repeat

4. For each sample point spj Do

5. Let NBS be a set neighboring points of spj using a spherical window of radius h.

6. Compute the mean NBSavg of all points in NBS.

7. Update the current sample points using the equation spj = NBSavg
‖NBSavg‖ ∗ ‖spj‖.

8. End.

9. Until The number of sample points changed is less than a small threshold value.

10. Perturb each sample point spj using Eq.(3.7)

11. Until No sample point is changed.

End

the area of the corresponding group gk. Any group k whose λk is less than a preset

threshold β1 is removed. Then, the density of each remaining group is calculated by

using the following equation

zk =
ngk

λk

, k = 1 . . . K (3.8)

here ngk
is the number of member points in group k and K be the number of groups in

different directions.

To determine that any group is suitable to represent the direction of maximum den-

sity (i.e. direction of columns of mixing matrix), the entropy of each group is computed
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as follows

pk =
zk∑K

j=1 zj

, j = 1 . . . Kandk = 1 . . . K (3.9)

where pk is the probability of group k, and
∑K

k=1 pk = 1. Any group whose entropy

is less than a predefined entropy threshold β2 is removed. This enhancing process is

summarized in AlgorithmPointRefining. The eigenvectors with maximum variance

of remaining groups are obtained and denoted by Â, and the number of columns in Â

is then taken as the estimated number of sources.

Algorithm PointRefining

Input: the converged sample points S̃P.

Output:the estimated mixing matrix Â.

Begin

1. Cluster the converged sample points ŜP into different direction groups denoted by G,

where the member points in each group are the sample points that lie in the same

direction (locating in the same line).

2. Compute the maximum eigenvalue λk from the member points in each group gk,∀gk ∈ G

3. Remove group gk whose λk is smaller than β1.

4. Find the density zk of each group gk by using Eq. (3.8).

5. Compute the information entropy and remove group gk where the

information pklogpk < β2

6. Find eigenvector ek with highest variance for each remaining group gk, and store in Â.

End
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3.2 An Example of Mixing Matrix Detection

This section shows an example of how the estimated mixing matrix is identified on data

set 1 (Figure 3.7). The input data set X consists of three observed signals linearly mixed

from five simulated source signals S with the following normalized mixing matrix A ∈

R3×5.

A =




0.8412 −0.0298 −0.0750 −0.1735 −0.7240

−0.5025 0.8305 −0.8294 0.3621 0.4088

0.1997 0.5563 0.5536 0.9158 −0.5556




(3.10)
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Figure 3.7: Data set 1 (a) Five simulated source signals (b) Three observed signals.

The five source signals are generated from five normal distributions, N(0, 1), as shown

in the first column of Figure 3.7(a). Each source signal contains 20,000 points with the

value range [-5,5] and only 10% of sparse source vectors. That is, the entries of 18,000

columns of source matrix S have a uniform distribution and other 2,000 columns have

only one nonzero entry and four zeros entries and also have the uniform distribution.
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Furthermore, the column indices of the 2,000 columns in the matrix S are disconnected.

Thus, the 2,000 columns are divided into five sets containing 400 columns each and the

ith entries of the ith set have nonzero values. The column indices of the 400 columns of

the ith set are as follows: (i−1)×10+1, (i−1)×10+51, . . . , (i−1)×10+1, 951, i = 1 . . . 5.

Figure 3.4(a) is the scatter plot of three observed signals X.

The algorithm starts with finding the information indices of all points and, then, the

filtering threshold ϑ is computed to discard irrelevant inner points. Figure 3.4(b) shows

the results after inner point removal process with the window search length τ = 200.

The sparseness in scatter plot makes the mixing directions clearly identifiable because

the points containing less information are discarded and the points around the zero are

also removed. In the next process, with the property of mean shift method all the sample

points is, then, shift to the directions of the maximum increase in the density. The result

shows in Figure 3.4(c). Finally, the points being the same or opposite in direction are

removed by using Algorithm PointRefining. Thus, the estimated mixing matrix Â

is obtained as shown below

Â =




0.0321 −0.1727 −0.8396 −0.0748 0.7234

−0.8315 0.3617 0.5049 −0.8287 −0.4129

−0.5546 0.9161 −0.2011 0.5547 0.5533




(3.11)

The number of columns in the recovered mixing matrix is equal to that of the actual

mixing matrix. But the estimated mixing matrix, Â, exhibits permutation and also sign

reversal for some sources.



CHAPTER IV

EXPERIMENTAL RESULTS

The proposed algorithm has been implemented and tested for the validity and perfor-

mance on a 1.33 GHz Intel Pentium IV based computer with 512 MB of RAM. In the

proposed algorithm, there exist five parameters which should be preset. Eigenvalue

threshold, β1, and entropy threshold, β2, are related to the density of data. Let λmax

= max(λk), where λk represents the variance of data in direction k. β1 can be set to a

fraction of λmax to remove some directions with small length and number of points. β2 is

a small value to remove some directions which less effect to the entropy. Window search

length, τ can be set to be any positive integer much less the number of data points N .

Distant threshold, α, and window radius, h, are related to the precise direction of the

mixing matrix estimation. They should be set to make sure that all directions can be

identified by the proposed algorithm. In all experiments, all parameter values used in

all experiments are shown in the Table 4.1.

4.1 Performance Measures

To validate the performance of the algorithm, the difference between the estimated mix-

ing matrix Â and the actual mixing matrix A is measured by using Algebraic Matrix-

Distance Index (AMDI) proposed in [7].

Assume that both the actual mixing matrix A and the estimated mixing matrix Â

are column normalized (i.e. the norm of the columns in the matrices is one). Then,
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Table 4.1: The parameters used in the experiments.

Parameter Selected Value

Window search length, τ 0.01N

Distant threshold, α π/180 ≈ 0.0175

Window radius, h π/180 ≈ 0.0175

Eigenvalue threshold, β1 0.1λmax

Entropy threshold, β2 0.05

Algebraic Matrix-Distance Index (AMDI) between A and Â is defined as follows:

AMDI(A, Â) =
n−

∑
maxrows(|Â

T ∗ A|)

n
+
n−

∑
maxcols(|Â

T ∗ A|)

n
(4.1)

where n is the number of sources. With the property of dot product, if two unit vectors

are in the same direction, the value becomes one. Therefore, if the columns of the

estimated mixing matrix Â are very close to the columns of the actual mixing matrix

A, the AMDI index approaches zero.

The AMDI has the following properties:

• 0 ≤ AMDI (A,Â) ≤ 2;AMDI (A,Â) = 2 only if both matrices are orthogonal to

each other in the n-dimensional space.

• AMDI (A,Â) = AMDI (Â,A).

4.2 Experimental Design

The experiments in this dissertation consist of five parts. Experiment 1 was performed

on all data sets to compare the proposed method and the literatures [13] and [14], for

the unknown source number case of the underdetermined blind source separation prob-
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lem. Moreover, the experiment was also used to show the performance of the proposed

algorithm on the data sets with the small fraction of sparse source vectors and the dis-

connected region of sparse source vectors. Experiment 2 was performed on three sets

of speech signals to illustrate the detail results each phase of the proposed algorithm.

Moreover, the obtained results were compared to the results from a standard k-mean

method and AICA method. In experiment 3, the proposed algorithm was performed on

six speech signals of data set 8. The comparison of the proposed method and k-mean

method was discussed again in both time domain and frequency domain. Experiment

4 was used to measure the performance of the proposed algorithm on the data set in

noisy environment. The last experiment showed the relationship between the percent

of sparse vectors in source matrix S, the window search length parameter τ and the

average value of information indices, I
′

avg, of all the information indices I
′

(APxi
). The

details of each experiment are explained in the next sections.

The data sets used in all experiments are given details in Table 4.2. They consist

of two groups: four synthetic data sets in the first four rows and four real speech data

sets in the remaining rows. The second column displays the number of sample points

contained in each data set. The number of sources and the number of observed signals of

each data set are demonstrated in the second and third columns. The fraction of sparse

source vectors of each data set is illustrated in the last column, except the speech data

sets on the last four rows.

4.2.1 Synthetic Data Sets

Each synthetic data set was in 3-dimensional data space and contained 20,000 (N) points

with the value range [-5,5]. The four synthetic data sets were generated with the different

percents of sparse source vectors, a vector with only one nonzero entry, as depicted in
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Table 4.2: Data sets.

Number of Number of Number of Percent of

Sample Points Sources Observed Signals Sparse Vectors

Data set 1 20,000 5 3 10%

Data set 2 20,000 5 3 20%

Data set 3 20,000 5 3 50%

Data set 4 20,000 10 3 10%

Data set 5 62,500 3 2 -

Data set 6 62,500 6 3 -

Data set 7 23,000 3 2 -

Data set 8 30,000 6 3 -

the last column of the first four rows in Table 4.2. Each source signal was generated

from a normal distribution, N(0, 1). In additions, the indices of all the sparse source

columns of each data set were not disjointed as described in Section 3.2.

• Data set 1 was of three observed signals X linearly mixed from five synthetic

source signals S with 10% of the sparse sources vectors and a random and normal-

ized mixing matrix A ∈ R3×5 as follows

A =




0.8412 −0.0298 −0.0750 −0.1735 −0.7240

−0.5025 0.8305 −0.8294 0.3621 0.4088

0.1997 0.5563 0.5536 0.9158 −0.5556




(4.2)

The five source signals and three observed signals of this data set are illustrated

in Figure 3.7.
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• Data set 2 and data set 3 were of three observed signals. They were linearly

mixed from two different sets of five synthetic source signals with 20%, and 50%

of sparse source vectors, respectively. Both data sets were mixed with the same

mixing matrix A in Eq.(4.2).

• Data set 4 was of three observed signals linearly mixed from ten synthetic sources

signals with 10% of the sparse sources vectors and a randomly mixing matrix

A ∈ R3×10 as shown below

A =

�����
�

0.6206 0.0765 0.4253 −0.8558 0.8412 −0.0298 −0.0750 −0.1735 −0.7240 0.1594

0.7619 −0.5920 −0.0675 0.4717 −0.5025 0.8305 −0.8294 0.3621 0.4088 −0.9029

−0.1856 0.8023 0.9025 0.2126 0.1997 0.5563 0.5536 0.9158 −0.5556 −0.3991

� ����
�

4.2.2 Real Speech Data Sets

Four speech data sets including data sets 5, 6, 7 and 8 are presented in the last four

rows of Table 4.2).

• Data Set 5 was obtained from http : //www.egr.msu.edu/results/ijcnn2003 [7].

Each of three speech source signals contained 62,500 sample points. These speech

source signals, S were mixed into two observed signals X with a randomly mixing

matrix A ∈ R2×3 as follows

A =




0.7071 −0.4472 −0.9487

0.7071 0.8944 0.3162




• Data set 6 also is speech signals from [7]. But this data set is of two observed sig-

nals X mixed from six speech signals S with a randomly mixing matrix A ∈ R3×6

as follows

A =




0.6206 0.0765 0.4253 −0.8558 0.9965 0.1594

0.7619 −0.592 −0.0675 0.4717 −0.0646 −0.9029

−0.1856 0.8023 0.9025 0.2126 −0.0523 −0.3991
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Figure 4.1: Data set 5 (a) Three speech signals from [7]. (b) Two observed signals.
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Figure 4.2: Data set 6 (a) Six speech signals from [7]. (b) Three observed signals.

• Data set 7 from http : //www.cnl.salk.edu/˜tewon/Over [3] was of two observed

signals X. Each signal contained 23,000 sample points as shown in Figure. 4.3.

They were mixed from three speech source signals S by using the following mixing

matrix A ∈ R2×3.

A =




0 0.7071 0.7071

1 0.7071 −0.7071




• Data set 8 was of six speech source signals S from the TIMIT database as demon-

strated in Figure 4.4(a). All signals contained 30,000 sample points each and were
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Figure 4.3: Data set 7 (a) Three speech signals from [3]. (b) Two observed signals.

mixed in three observed signals the X (Figure 4.4(b)) by using a 3×6 dimensional

mixing matrix A ∈ R3×6 which was selected randomly and, then, normalized to

unit length as follows.

A =




−0.7481 −0.5355 −0.3513 −0.5701 −0.2204 −0.8431

−0.6431 0.6187 0.9346 −0.6691 0.1883 −0.0494

0.1638 −0.5748 −0.0560 −0.4769 −0.9571 0.5354
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Figure 4.4: Data set 8 (a) Six speech signals from TIMIT database. (b) Three observed

signals.
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4.3 Experiment 1

The result of the proposed algorithm will be compared with an extension of the DUET

and TIFROM algorithms [13] and a unified method [14] based on an unsupervised robust

C prototypes (URCP) algorithm [29]. In order to perform the comparison, parameters

for both algorithms, [13] and [14], are set in different values as illustrated in Table 4.3.

For the extension of the DUET and TIFROM algorithms [13], the second row is

the given parameter values which were proposed in [13]. For implementing division

operation in the algorithm, Li et al. suggested that ξ2 should be set as a fraction of Q2

(e.g., ξ2 = 0.1Q2), where Q2 was the maximum of the amplitude of the entries of the

data matrix. M0 was the numbers of bins, which depended on users to make sure that

the direction of mixing matrix can be detected (as seen the details of parameter sets in

[13]). But from this experimental result shown in Table 4.5 using another real speech

signals, it is found that the parameter given in the [13] cannot produce the satisfactory

results for all real speech signals. Then, the next three rows are the other parameter

values which used in this experiment in order to improve the result for the extension of

the DUET and TIFROM algorithms.

For a unified method [14] based on an unsupervised robust C prototypes (URCP)

algorithm [29], although the URCP algorithm required some parameters which should

be set in advance: α, ε and Cmax [29], Frigui et al. concluded that varying α between

3 and 10 had a small affect on points with small weights. The value of ε was used to

check the similarity of two clusters and any value between 0.2 and 0.5 for ε yield similar

results. In order to perform the comparison, the parameter values suggested in [29] were

assigned, i.e. α = 3.5 and ε = 0.25. In additions, Cmax could be any number that was

larger than the expected number of clusters containing in the data set. A very large

number of Cmax only made the URCP algorithm slower. From this experiment, if the
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initial cluster number, Cmax, was set equal to the actual number of sources (n), the

estimated mixing matrices did not give any satisfactory results even the several times

using the unified method were performed. Therefore, the three cases with the different

choices of Cmax = 2n, 3n, and 4n were set to perform the unified method as shown in

the last three rows of Table 4.3. Similar to the k-mean method, the convergent result of

the unified method depended on the initialization. The unified method was performed in

several times for each case of Cmax. The result with minimum AMDI value was selected

to show in Table 4.4 and Table 4.5.

Table 4.3: List of algorithms with parameters for comparison of overcomplete ICA al-

gorithms in unknown source number case.

Algorithm Name Parameter Value

algo. 1 Proposed algorithm see Table 4.1

algo. 2.1 An extension of the DUET and TIFROM algorithms M0 = 400, ξ2 = 0.1Q2

algo. 2.2 An extension of the DUET and TIFROM algorithms M0 = 400, ξ2 = 0.05Q2

algo. 2.3 An extension of the DUET and TIFROM algorithms M0 = 200, ξ2 = 0.1Q2

algo. 2.4 An extension of the DUET and TIFROM algorithms M0 = 200, ξ2 = 0.05Q2

algo. 3.1 A unified method Cmax = 2n

algo. 3.2 A unified method Cmax = 3n

algo. 3.3 A unified method Cmax = 4n

Table 4.4 shows the comparison results for the synthetic data sets which include data

sets 1, 2, 3 and 4, having number of sources (n) equals to 5, 5, 5 and 10, respectively.

Four data sets are generated with 10%, 20%, 50%, and 10% of sparse source vectors as

described in Section 4.2.1. For each data set (or each column), the table provides the

estimated number of sources n̂ and the AMDI value between A and Â. The results from
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the proposed algorithm is demonstrated in the first row and the remaining rows shows

the results obtained from the literatures [13] and [14]. First, consider the estimated

number of sources n̂, it can be seen that the estimated number of sources n̂ from the

proposed method equals to the actual number of sources n for all data sets. Second, for

the result of the extension of the DUET and TIFROM algorithms (algo. 2.1 to algo.

2.4), the estimated number of sources n̂ equals to the actual number of sources n for all

data sets when the value of parameter ξ2 is reduced to 0.05Q2, as shown in rows 3 and 5.

However, with over decreasing the value of parameter ξ2, it is found that the estimated

number of sources will be increased. For an example, when ξ2 is set to 0.001Q2 and M0

= 200, the estimated number of sources, n̂, for the four synthetic data sets are 22, 21,

12, and 32, respectively. Hence, all estimated numbers of sources are higher than the

actual number of sources n for all data sets. Third, for the result of the unified method

(algo. 3.1 to algo. 3.3), the estimated number of sources n̂ is higher than the actual

number of sources n for all data sets.

Consider the AMDI value representing the difference between the actual mixing

matrix A and the estimated mixing matrix Â. First, the proposed algorithm can suc-

cessfully detect the mixing matrices for all data sets, although the percent of sparse

source vectors in data sets 1 and 4 is very small. The AMDI values from the proposed

algorithm are very small for all data sets. The results show that all estimated mixing

matrices are very close to the actual mixing matrices. Second, for the results of the

extension of the DUET and TIFROM algorithms (algo. 2.1 to algo. 2.4), all AMDI

values are also very small for all data sets when ξ2 is reduced to 0.05Q2. Third, the

results of the unified method (algo. 3.1 to algo. 3.3) are shown in the last three rows.

The algorithm gives the good estimated mixing matrix Â with small AMDI values only

on data set 3 which has highest percent of sparse sources vectors, 50% of source column

vectors having only one none-zero entry.
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Consider the Cmax value for the unified method [14]. Higher Cmax values give the

smaller AMDI values as seen in row 6 and row 8. However, the AMDI values of case

Cmax = 3n are smaller than ones of the case Cmax = 4n because the good initialization

is very close to the columns of the actual mixing matrix in the Cmax = 3n. In additions,

with over specifying of initial value of Cmax, the estimated number of sources is higher

respect to higher initial value Cmax. Therefore, the unified method fails to provide the

good estimated number of sources when Cmax value is increased.

Table 4.4: The difference between the actual mixing matrix A and the estimated mixing

matrix Â, AMDI value, and the estimated source number, n̂, for synthetic data set 1 to

data set 4.

Data Set 1 Data Set 2 Data Set 3 Data Set 4

(n=5) (n=5) (n=5) (n=10)

AMDI(A,Â) n̂ AMDI(A,Â) n̂ AMDI(A,Â) n̂ AMDI(A,Â) n̂

algo. 1 6.38E-06 5 3.11E-06 5 9.63E-06 5 1.20E-04 10

algo. 2.1 2.20E-10 5 3.09E-11 5 1.64E-11 5 4.50E-01 6

algo. 2.2 6.47E-09 5 1.09E-09 5 7.88E-11 5 4.18E-08 10

algo. 2.3 2.55E-08 5 5.57E-09 5 1.92E-09 5 4.50E-01 6

algo. 2.4 2.57E-07 5 1.76E-08 5 4.85E-10 5 1.45E-06 10

algo. 3.1 3.04E-02 10 1.07E-02 9 1.89E-03 7 3.34E-02 18

algo. 3.2 8.14E-04 14 0.00 11 0.00 7 9.22E-03 29

algo. 3.3 1.89E-02 20 3.81E-03 15 5.65E-06 11 9.55E-03 38

Concluding remarks for the comparison results on Table 4.4, the unified method

gives a smaller AMDI value when the percent of the sparsity increase as seen from the

results on all data sets in the last three rows. If the fraction of sparse source column



42

vectors of data is very small, the unified method fails to provide the precise estimated

mixing matrix Â and the estimated number of sources as seen from the result on data

set 1 and data set 4 with only 10% of sparse source vectors. However, when the unified

method is tested on another new data set with 80% of sparse source vectors, it is found

that the unified method gives very small AMDI values with 2.92E-04, 1.92E-04, and

1.52E-04 for the cases of Cmax with 2n, 3n, and 4n, respectively. Moreover, the unified

method also gives the correct source number for all cases on the new data set with 80%

of sparse source vectors. Therefore, it can be concluded that the performance of the

unified method depends on the sparseness of sources.

On the other hand, the results from the extension of the DUET and TIFROM algo-

rithms are more efficient than ones of the unified method for all synthetic data sets. In

other words, the algorithm relaxes the condition of sparseness in the unified method.

In order to confirm the performance of the proposed method to the real speech data

sets, this experiment is evaluated again with data sets 5, 6, 7 and 8 as described in

Section 4.2.2. Table 4.5 illustrates the comparison of the results from the proposed

algorithm and the literatures [13] and [14]. Consider the estimated number of sources n̂,

the proposed method produces the correct numbers of sources for all data sets (as shown

in the first row). On the other hand, the results from other methods fail to estimate the

number of sources for all real speech data sets. Moreover, the proposed method gives

all good estimated mixing matrices Â with small AMDI values.

The extension of the DUET and TIFROM algorithms gives the good results for the

estimated mixing matrix only on data set 5 and data 7. For data set 8, all cases of the

extension of the DUET and TIFROM algorithms grant the unfortunate results both the

AMDI value and n̂. However, for data set 8 when the value of ξ2 is vary from 0.001Q2

to 0.1Q2 and M0 = 200, the smallest AMDI value with 0.002 can be found in the case

of ξ2=0.001Q2. However, the value is still high and the obtained source number (n̂ =
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Table 4.5: The difference between the actual mixing matrix A and the estimated mixing

matrix Â, AMDI value, and the estimated source number, n̂, for real speech data set 5

to data set 8.

Data Set 5 Data Set 6 Data Set 7 Data Set 8

(n=3) (n=6) (n=3) (n=6)

AMDI(A,Â) n̂ AMDI(A,Â) n̂ AMDI(A,Â) n̂ AMDI(A,Â) n̂

algo. 1 7.40E-06 3 1.78-03 6 1.92E-05 3 1.93E-04 6

algo. 2.1 1.29E-07 125 2.00 0 6.78E-02 34 2.00 0

algo. 2.2 2.43E-05 85 2.06E-01 7 1.06E-04 81 2.00 0

algo. 2.3 3.77E-06 79 8.00E-02 9 4.72E-05 57 2.00 0

algo. 2.4 7.59E-06 67 9.59E-04 41 2.57E-04 56 2.00 0

algo. 3.1 7.12E-04 6 5.32E-02 10 1.19E-03 6 4.21E-02 12

algo. 3.2 1.45E-04 6 2.65E-03 18 4.18E-04 8 6.36E-03 18

algo. 3.3 1.19E-04 10 2.01E-02 24 4.03E-04 11 1.87E-02 24

36) is higher the actual source number (n = 6). For data set 6, although the AMDI

value is smallest, compared to other tests, but the estimated number of sources is very

high. Third, the unified method (algo. 3.1 to algo. 3.3) gives the good estimated mixing

matrix Â with the small values of AMDI only for two dimensional data set 5 and data

set 7, especially when the initial cluster number, Cmax, is increased. Similar to the result

on synthetic data in the previous table, the estimated source number is increased for the

high value of Cmax.

Like the extension of the DUET and TIFROM algorithms, the unified method cannot

estimate the number of sources for all speech data sets. Moreover, the unified method

fails to estimate the precise mixing matrix for data set 6 and data set 8.
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Note that, for computing the AMDI value, if the estimated number of sources or the

column numbers of the estimated mixing matrix Â is higher than the column number

of the actual mixing matrix A, then the sub-matrix Â which is close to the mixing

matrix A is selected to compute the AMDI value between A and Â. Therefore, even

the estimated number of sources is very high, if there exists the actual mixing matrix A

as the subset of Â, then the AMDI value between A and Â is small.

For the results in row 5 (algo. 2.4) of the extension of the DUET and TIFROM

algorithms on data sets 5, 6 and 7, the column numbers of Â, n̂, are 67, 41, and

56, while the column numbers of the actual mixing matrices A, n, are 3, 6, and 3,

respectively. Since all results give higher column number of mixing matrices Â, only 3,

6 and 3 columns of Â which are close to the corresponding actual mixing matrices A

are selected from Â to compute the AMDI values for data sets 5, 6 and 7, respectively.

Note that, for data set 8, the extension of the DUET and TIFROM algorithms cannot

find any column of the estimated mixing matrix Â, i.e. n̂ = 0. As a result, the AMDI

value of data set 8 is 2.00 which is the maximum error value of AMDI.

In the similar way, for the results in last row (algo. 3.3) of the unified method on

data sets 5, 6, 7 and 8, the column numbers of Â, n̂, are 10, 24, 11, and 24, while

the column numbers of the actual mixing matrix A, n, are 3, 6, 3, and 6, respectively.

Therefore, only 3, 6, 3, and 6 columns of Â which are close to the corresponding actual

mixing matrices A are selected from Â to compute the AMDI values.

4.4 Experiment 2

The purpose of this experiment is to demonstrate some detail results from the proposed

algorithm on real speech data sets. The obtained results also were compared to the

results of the standard k-mean method and AICA method. In order to perform the
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comparison, the proposed algorithm was tested on data set 5 and data set 6 used in [7]

with AICA method (see the details of these two data sets in Section 4.2.2). In both

experiments of these two data sets, the parameter τ to find the filtering threshold for

inner point removal process was set to 625 that equals to 0.01*N , where N = 62,500

being the number of sample points of the analyzed data set.

Figure 4.5 shows the scatter plot of two observed signals (a), the remaining data

obtained from inner point removal process (b), and, the result from high density direction

identification process of data set 5 on the first row and data set 6 on the bottom. As

shown in the figures, all directions with high concentrate of data can be detected. All

columns of the mixing matrix can be estimated by refining the points which lay in the

same direction.
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Figure 4.5: Results on data set 5 (top) and data set 6 (bottom). (a) Observed signals.

(b) The remaining data after inner point removal process. (c) The result from high

density direction identification process.

After applying the proposed algorithm, the obtained mixing matrices were compared

with the results presented in [7] with the AICA method as shown in the first and the

second rows of Table 4.6. Moreover, the standard k-mean method was performed to
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estimate the mixing matrix A. From k cluster centers, the sub-matrix Â which was

close to the mixing matrix A was given. The difference between the estimated mixing

matrix Â and the actual matrix A was, then, represented by AMDI value. Since the

convergence of the k-mean method depends on the initialization, the k-mean method

was performed in several times for each case. The minimum AMDI value of each case

was selected to show in Table 4.6. As seen in the table, the AMDI values obtained by

the proposed algorithm are smaller than the results of both the AICA method and the

k-mean method.

Table 4.6: The difference between the estimated mixing matrix Â and the actual mixing

matrix A on data set 5 and data set 6, AMDI value.

(Data Set 5) (Data Set 6)

(n=3) (n=6)

The proposed method 7.40E-06 0.0018

The AICA method < 0.001 0.0103

k-mean method, k=n 0.0340 0.0892

k-mean method, k=2n 0.0008 0.0149

k-mean method, k=3n 0.0015 0.0091

To estimate source signals, the minimum `1-norm solution is applied to observed

signals X and the estimated mixing matrix Â. The signal-to-noise ratio (SNR) recon-

struction index in [30] is, then, used to evaluate the estimated sources

SNRi = 10log
||si(t)||

2

||ŝi(t) − si(t)||2
, i = 1 . . . n. (4.3)

where || ∗ ||2 is the sum of squares over discrete time t and n is the number of sources

mixed in the observed signals.
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From data set 5, the SNR reconstruction indices of three estimated signals are 13.03,

15.07, and 25.21 dB. For six estimated sources signals of data set 6, they are 10.80,

12.68, 12.47, 9.66, 10.48 and 12.16 dB.
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Figure 4.6: Result on data set 7. (a) Observed signals. (b) The remaining data after

inner point removal process. (c) The result from high density direction identification

process.

Moreover, another test is to compare with the single step approach for overcom-

plete source separation using Maximum Likelihood (ML) approach [3]. The proposed

algorithm was tested on data set 7. The original speech source signals are depicted in

Figure 4.6 (as given detail in Section 4.2.2). After estimating the mixing matrix by the

proposed algorithm, the results are illustrated in Figure 4.6. The AMDI value represent-

ing the difference between the estimated mixing matrix Â and the actual matrix A is

1.92E-05. Since it is very small, the estimated mixing matrix is very close to the original

mixing matrix A. Moreover, the number of columns in the estimated mixing matrix is

equal to the number of sources, S, mixed in the observed signals,X. Then, the `1-norm

method is used to recover the three source signals. The signal-to-noise ratio (SNR) for

the separation is 13.09, 20.83, and 22.52 dB, respectively. These results are similar to

the results obtained from the ML approach [3]: 15.71, 19.61, and 20.42 dB.
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4.5 Experiment 3

This experiment was performed for estimating mixing matrix process in both time do-

main and time frequency domain on speech data set 8, as demonstrated in Figure 4.4.

The results of proposed algorithm were compared to the results gained from the stan-

dard k-mean algorithm. After applying the proposed algorithm, the six columns of the

estimated mixing matrix was obtained. As shown in Table 4.7, the AMDI value is very

small and the estimated number of sources is equal to the actual number of sources. For

comparison, after normalizing all column vectors to the unit length, the k-mean clus-

tering algorithm is used to estimate the mixing matrix A. Again the k-mean method

is performed several times and the minimum error case is selected. When the number

of clusters is set to six, the high value of AMDI result shows that the standard k-mean

method cannot find the satisfactory results. Moreover, the difference choices of k =

12, 18 and 24 are set to the number of clusters to perform the k-mean method. The

difference between A and Â of each case is presented in the second column of Table 4.7.

Table 4.7: The difference between the estimated mixing matrix and the actual mixing

matrix with AMDI value in time domain and Time Frequency domain, AMDI value.

Time Domain Time Frequency Domain

The proposed method 2.15E-04 1.42E-04

K-mean method, k=6 0.0954 0.0988

K-mean method, k=12 0.0146 0.0127

K-mean method, k=18 0.0037 0.0074

K-mean method, k=24 0.0019 0.0017

Furthermore, both methods are performed in the time-frequency domain by using
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the single-level Daubechies wavelet packets transform. The result is presented in the

third column of Table 4.7. In the transformed domain, the error value of the estimated

mixing matrix from both methods is also very small. However, the AMDI value is less

than 0.001 and also smaller than all the AMDI values obtained by the standard k-mean

clustering algorithm.

4.6 Experiment 4

This experiment was tested on speech data sets 5, 6, 7, and 8 (as described in section

4.2.2). The aim of this experiment was to test the performance in the noisy environment.

Each data set was tested under 20-dB SNR additive Gaussian noise and was added with

five different noise sets. The result of each test is shown in Table 4.8. The second

and third columns show the AMDI value and the estimated number of sources in time

domain. The last two columns show the results in time-frequency domain by using the

single-level Daubechies wavelet packets transform.

From the results in Table 4.8, the difference between the estimated mixing matrix Â

and the actual matrix A with AMDI value of each test is very small, except the results

on data set 6. However, all AMDI values time-frequency domain are very small. That

is the estimated mixing matrix Â is close to the actual mixing matrix A. Moreover, the

estimated number of sources, n̂, for each test is equal to the actual number of sources,

n.

4.7 Experiment 5

This experiment was tested on data sets 1, 2, 3, and 4 (as described in Section 4.2.1).

Figure 4.7 shows the relationship between the percent of sparse vectors in source matrix

S, the parameter τ and the average value, Ī, of all the information indices I
′

(APxi
).
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Note that the average value I
′

avg (see in Section 3.1.1) and the parameter τ is used in

the inner point removal process. The four data sets are tested by using the different

choices of τ = 50, 100, . . . , 500. The result shows that when using the same size of τ ,

the value of Ī of data set 3 is the highest because this synthetic data set has the highest

fraction of sparse source vectors compared to other data sets. Moreover, the average

value Ī corresponds to the size of τ . When the size of τ increases, the number of data

points being in the same direction is also increased.
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Figure 4.7: The relationship between the percent of sparse source vectors, the size of

parameter τ , and the average value of the information index (I
′

avg) .

Consider the data set 4 which has the same percentage of the sparse source vectors

as data set 1. Since the number of source signals mixed in the data set 4 is higher,

by using the same τ , the value of Ī of data set 4 is very small and less than that of

data set 1. This result is given because the data set 4 has the smaller number of sparse

vectors. As mentioned in the previous section, if the sources are not sparse enough,

the precise mixing matrix is difficult to estimate. However, after the points with small

information indices are removed the average value of all information indices, it is found
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that I
′

avg of the remaining points is increased as shown in Figure 4.8. From this result,

the average value of information indices, I
′

avg, depends on the fraction of sparse source

vectors. Since the average value of informative, I
′

avg, increases after applying the inner

point removal process, this means that the fraction of the sparse source vectors should

be also increased. Then, the mixing matrix can be easily identified.
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Figure 4.8: The average value of information index before and after the inner point

removal process.

After applying the algorithm on data set 4 using τ = 50, 100, . . . , 500 to find the

information indices in the inner point removal process. Then, all points containing less

information are removed and the remaining points are used to identify the mixing matrix

by using our perturbed mean shift method. The column number of the estimated mixing

matrix is shown in Figure 4.9(a) for each choice of τ . The algorithm is able to select the

result by looking for a longer range of values of τ that yield the same number of columns

in the estimated mixing matrix. As seen in Figure 4.9(b), the difference between the

estimated mixing matrix Â and the actual matrix A also approaches zeros when the

selected choice of τ is greater than or equal 200.
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Figure 4.9: By using the different choices of τ for synthetic data set 4. (a) The number

of estimated sources. (b) The difference between the actual mixing matrix A and the

estimated mixing matrix Â, AMDI value

Moreover, the proposed algorithm was tested on data set 5 to data set 8 by using

τ = 50, 100, . . . , 500. Table 4.9 and Table 4.10 show the difference between the actual

mixing matrix A and the estimated mixing matrix Â, AMDI value, and the estimated

source number, n̂, in time domain and time frequency domain, respectively. From the

results on data set 7 and data set 8 in Table 4.9, the proposed algorithm gives the good

estimated mixing matrix, Â with small AMDI value and the same estimated source

number n̂, when the size of window search length τ is increase. However, in time

frequency domain, the estimated source number, n̂, of each test is not far from the

actual source number n. Moreover, the difference between the actual mixing matrix A

and the estimated mixing matrix Â with AMDI value of each test is very small. That is

the estimated mixing matrix Â is very close to the actual mixing matrix A with small

size of τ as shown in Table 4.10.
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4.8 Complexity Analysis

Since, this dissertation mainly focuses on the estimating mixing matrix part. The com-

putational complexity is computed only the sum of three phases of the proposed algo-

rithm of estimating the mixing matrix. The computational complexity is described in

the following.

1. Complexity of Phase 1: Inner Point Removal.

In Phase 1, the algorithm consists of three steps. In the first step, the algorithm

uses window search length algorithm to find the set of adjacent points (APx) and

also compute the information index of each data point. Assume that the input

data contains N points and the window search length (τ) = M. Consequently, the

amount of computational load is MN , where M << N . In the second step, the

filtering threshold is computed and then removes the data points containing the

information indices less than the threshold. The amount of computational load

of this step is N . In the last step, each remaining data point is redefined with

its corresponding adjacent points (APx) . This step consumes the computational

of MN1, where N1 is the number of remaining points and N1 < N . Then, the

computational complexity of Phase 1 is O(MN +N +MN1) = O(MN).

2. Complexity of Phase 2: High Density Direction Identification.

In Phase 2, the perturbed mean shift is applied to identify all possible directions

of high concentrate of data. At first, a set of sample points or mean shift vectors,

SP, is defined to reduce the computational load. In additions, after the mean shift

algorithm converges, each converged sample point is perturbed with data laying

in its corresponding direction. The perturbed mean shift procedure is repeated

until the convergence is stable. The amount of computational load of the process

is M1N1 + M1N1, where M1 is the number of sample points and M1 << N1.
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Therefore, the computational complexity of Phase 2 is kO(M1N1), where k is the

number of iterations to perform the perturbed mean shift algorithm for stable

convergence.

3. Complexity of Phase 3: Information Entropy Estimation.

After the convergence of the proposed algorithm in phase 2, the converged sample

points, ŜP are taken as the all possible directions of high data density. In this

phase, the algorithm is to refine some points in ŜP which lie in the same direction.

At first, the algorithm clusters the points into k different groups where all points

in the same group lie along in the same direction. In this step, the amount of

computation is M 2
1 . Because of M1 << N1, the amount of computation in this

step is less than M1N1. In the second step, the eigenvalue and information entropy

are computed to refine some directions having small member points. This step also

uses the amount of computation less than M1N1. As a result, the computational

complexity of Phase 3 becomes O(M1N1).

Thus, the overall complexity of the proposed algorithm is O(Phase1+Phase2+Phase3)

= O(MN +M1N1 +M1N1) = O(MN).
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Table 4.8: Result of each test in noisy environment.

Time Domain Time Frequency Domain

AMDI(A,Â) (n̂) AMDI(A,Â) (n̂)

Data set 5 1.10E-05 3 1.71E-05 3

(n=3) 1.98E-05 3 9.81E-06 3

5.06E-06 3 1.99E-05 3

6.27E-06 3 3.01E-05 3

6.66E-06 3 1.29E-05 3

Data set 6 1.12E-02 9 2.96E-04 6

(n=6) 2.49E-02 8 3.82E-04 6

2.52E-02 6 2.64E-04 6

2.36E-02 6 5.42E-04 6

2.47E-02 5 2.35E-04 6

Data set 7 3.20E-06 3 3.98E-04 3

(n=3) 3.78E-06 3 2.39E-04 3

1.30E-04 4 1.31E-05 3

1.05E-05 3 2.97E-04 3

2.69E-06 3 6.02E-04 3

Data set 8 3.75E-04 6 8.29E-04 6

(n=6) 8.26E-04 6 2.58E-04 6

3.44E-04 7 5.06E-04 6

3.24E-04 6 1.56E-04 6

3.86E-04 6 4.26E-04 6
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Table 4.9: The difference between the actual mixing matrix A and the estimated mixing

matrix Â, AMDI value, and the estimated source number, n̂, using τ = 50, 100, . . . , 500

in time domain.

Size of τ Data set 5 Data set 6 Data set 7 Data set 8

(n=3) (n=6) (n=3) (n=6)

AMDI(A,Â) n̂ AMDI(A,Â) n̂ AMDI(A,Â) n̂ AMDI(A,Â) n̂

50 7.42E-06 5 2.45E-03 8 4.56E-05 4 2.73E-04 6

100 2.44E-05 4 2.10E-02 5 7.57E-06 3 2.66E-04 6

150 7.88E-05 4 1.57E-03 9 4.62E-05 4 3.52E-04 6

200 3.83E-05 4 1.72E-03 8 6.47E-06 3 3.17E-04 6

250 2.48E-05 4 1.70E-03 8 7.68E-05 3 2.80E-04 6

300 5.66E-05 3 1.83E-03 6 8.48E-05 3 2.15E-04 6

350 3.77E-05 4 1.04E-03 7 7.77E-05 3 2.28E-04 6

400 1.60E-05 4 2.13E-03 8 6.91E-05 3 3.11E-04 6

450 1.38E-05 4 1.91E-03 8 6.61E-05 3 2.48E-04 6

500 1.70E-05 3 2.55E-02 6 5.83E-05 3 2.77E-04 6



57

Table 4.10: The difference between the actual mixing matrix A and the estimated mixing

matrix Â, AMDI value, and the estimated source number, n̂, using τ = 50, 100, . . . , 500

in time frequency domain.

Size of τ Data set 5 Data set 6 Data set 7 Data set 8

(n=3) (n=6) (n=3) (n=6)

AMDI(A,Â) n̂ AMDI(A,Â) n̂ AMDI(A,Â) n̂ AMDI(A,Â) n̂

50 2.34E-06 4 2.23E-04 6 1.06E-04 4 8.87E-05 6

100 4.85E-05 4 1.12E-04 6 1.97E-04 4 1.14E-04 6

150 2.36E-05 4 2.37E-04 6 2.09E-04 3 1.30E-04 6

200 2.70E-05 4 3.78E-04 6 2.19E-04 3 1.64E-04 6

250 1.70E-05 3 1.44E-04 6 3.63E-04 3 1.30E-04 6

300 1.44E-05 3 2.72E-04 6 2.94E-04 3 1.44E-04 6

350 1.13E-05 3 2.17E-04 6 4.57E-04 3 1.96E-04 7

400 1.42E-05 3 1.35E-04 7 4.50E-04 3 1.07E-04 7

450 8.70E-06 3 2.03E-04 6 1.86E-04 3 1.72E-04 7

500 1.01E-05 3 1.77E-04 6 1.24E-04 3 1.83E-04 7



CHAPTER V

CONCLUSION

In this dissertation, an unsupervised learning algorithm for underdetermined blind source

separation is proposed. The proposed algorithm for estimating the mixing matrix has

been designed into three phases. In Phase 1, the inner points which locate in the sparse

region is identified and removed by using window based learning. Each remaining point

is also redefined by its corresponding adjacent points. It is found that the result obtained

of this phase shows sparser than the original analyzed input data. So, it is easy to find the

directions of the maximum data density by using a clustering method. Perturbed mean

shift method based on clustering technique is applied to identify all possible directions of

high concentrate data. Then, all possible directions are grouped into different groups in

which the members of each group lie in the same direction. Finally, the entropy measure

is used to obtain the optimal number of sources. The time complexity of the algorithm

is O(MN), where N is the number of data points and M is the size of window search

length τ , as described in Chapter 4. After the mixing matrix is estimated, a standard

linear programming algorithm is used to recover the source matrix.

From the experimental results, the proposed algorithm is able to perform on under-

determined blind source separation problem when the number of sources is unknown.

The proposed algorithm can also work on the speech signals under 20-dB SNR additive

Gaussian noise. The algorithm provides better results than a standard k-mean, AICA

method, an extension of DUET and TIFROM method and a unified method. Moreover,
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the estimated number of sources obtained from the proposed algorithm is very close to

the actual number of sources. The main contributions of our proposed method can be

summarized as follows:

• The proposed algorithm is able to estimate the mixing matrix when the number

of sources is unknown. The accuracy of the estimated mixing matrix is very high.

The proposed algorithm also gives a better result than a standard k-mean method

and AICA method.

• The proposed algorithm also find the number of sources.

• The proposed algorithm can work well even if the percent of sparse source vectors

is very small and the indices of the sparse source vectors are not connected This

means that the algorithm can be used in a wide range of data or signals.

• The algorithm can estimate the mixing matrix from observed signals under 20-dB

SNR additive Gaussian noise. As the results of all experiments, an estimating

mixing matrix can be identified with high and the estimated number of sources is

very close to the actual number of sources.

In order to check the limitation of the proposed algorithm for the closest direction

detection of the mixing matrix, the experiment was performed by using the first two

speech source signals of data set 8 (Figure 4.4 (a)). They were linearly mixed with five

different mixing matrices A ∈ R2×2. The two columns of the five mixing matrices

are set to have the difference in direction equals to 1, 2, 3, 4, and 5 degrees. Table

5.1 shows the AMDI values for the mixing matrix estimation. Only the results of 3, 4

and 5 degrees are illustrated in the last three columns because the proposed algorithm

totally fails to identify the two closest columns of the mixing matrix for 1 and 2 degrees.

The first two columns show the parameter values of α used in the inner point removal
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process, and α used in the mean shift procedure. The results show that the proposed

algorithm can identify the two closest columns of the mixing matrix when the parameter

window radius h is set to be π
180 and the difference in direction of the two columns of

the mixing matrix is higher than 3 degrees. The results are displayed in the first and

third row of Table 5.1. However, the algorithm can correctly estimate the two closest

directions of the mixing matrix for 3 degrees when window radius h is set to 0.5 π
180 .

Table 5.1: The results of two closest directions of mixing matrix for 3 4 and 5 degrees.

Distant Threshold (α) Window Radius (h) AMDI(A,Â)

3 degree 4 degree 5 degree

π
180

π
180 - 4.69E-05 2.76E-05

π
180 0.5 π

180 3.12E-06 3.86E-06 1.83E-06

0.5 π
180

π
180 - 2.22E-05 2.20E-05

0.5 π
180 0.5 π

180 9.38E-07 1.10E-05 4.24E-07

Finally, the future works should be stated as follows:

• Adaptive parameter values should be used in the future experiment to find proper

values of each data set.

• The experiment should be repeated with more number of sources in order to in-

crease reliability of experimental result.

• The detail on pre-processing for transforming data to TF domain should be further

considered.

• For source recovery step, it is found that the `1-norm method dose not give a good

separation even a precise mixing matrix is estimated as shown in Experiment 2.
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Thus, more researches on source estimation should be studied.

• Applications of ICA problem should be further considered.



References

[1] Lewicki, M. S. and Sejnowski, T. J. Learning Overcomplete Representations. Neural

Computation. 12(2000):337-365.

[2] Olshausen, B. A. and Field, D. J. Sparse Coding with an Overcomplete Basis Set: a

Strategy Employed by V1?. Vision Research. 37(1997):33113325.

[3] Lee, T., Lewicki, M. S., Girolami, M. and Sejnowski, T. J. Blind Source Separation of

More Sources Than Mixtures Using Overcomplete Representations. IEEE Signal

Processing Letters. 6(1999):87-90.

[4] Bofill, P. and Zibulevsky, M. Blind Separation of More Sources than Mixtures Using

the Sparsity of Their Short Term Fourier Transform. Proceedings of International

Workshop on Independent Component Analysis and Blind Signal Separation.

(2000):87-92.

[5] Georgiev, P. G., Theis, F. J., and Cichocki, A. Blind Source Separation and

Sparse Component Analysis of Overcomplete Mixtures. Proceedings of IEEE

International Conference on Acoustics, Speech, Signal Processing (ICASSP).

5(2004):493-496.

[6] Theis, F. J., Puntonet, C. and Lang, E. W. A Histogram-Based Overcomplete

ICA Algorithm. Proceedings of the 4th International Conference on Independent

Component Analysis and Blind Signal Separation. (2003):1071-1076.

[7] Waheed, K. and Salem, F. M. Algebraic Independent Component Analysis: an

Approach for Separation of Overcomplete Speech mixtures. IEEE International

Conference on Neural Networks. 1(2003):775-780.

[8] Jourjine, A., Rickard, S. and Yilmaz, O. Blind Separation of Disjoint Orthogonal



63

Signals: Demixing N Sources from 2 Mixtures. IEEE International Conference

on Acoustics, Speech, Signal Processing (ICASSP). 5(2000):29852988.

[9] Yilmaz, O. and Rickard, S. Blind Separation of Speech Mixtures via Time-Frequency

Masking. IEEE Transaction on Signal Processing. 52,7(2004):1830-1847.

[10] Abrard, F., Deville, Y. and White, P. From Blind Source Separation to Blind

Source Cancellation in the Underdetermined Case: A New Approach Based on

Time-Frequency Analysis. Proceedings of the 3rd International Conference on

Independent Component Analysis Signal Separation (ICA). (2001):734739.

[11] Abrard, F. and Deville, Y. Blind Separation of Dependent Sources using the Time-

Frequency Ratio of Mixtures Approach. Proceedings of the 7th International

Symposium on Signal Processing Applications (ISSPA). (2003):14.

[12] Theis, F. J., Georgiev, P. G., and Cichocki, A. Robust Overcomplete Matrix Recov-

ery for Sparse Source using a Generalized Hough Transform. Proceedings of the

12th European Symposium on Artificial Neural Networks (ESANN). (2004):223-

232.

[13] Li, Y., Amari, S., Cichocki, A., Ho, D. W. C. and Xie, S. Underdetermined Blind

Source Separation Based on Sparse Representation. IEEE Transactions on Signal

Processing. 54,2(2006):423-437.

[14] Lv, Q. and Zhang X. A unified Method for Blind Separation of Sparse Sources With

Unknown Source Number. IEEE Signal Processing Letters. 13,1(2006):49-51.

[15] Hyvarinen, A., Karhunen, J. and E. Oja. Independent Component Analysis. A

Wiley-Interscience Publication. 2002.

[16] Chen, S. S., Donoho, D. L. and M. A. Saunders. Atomic Decomposition by Basis

Pursuit. SIAM Journal of Scientific Computing. 20(1998):33-61.



64

[17] Bofill, P. and Zibulevsky, M. Underdetermined Blind Source Separation using Sparse

Representations. Signal Processing. 81(2001):2353-2362.

[18] Li, Y., Cichocki, A. and Amari, S. Sparse Component Analysis for Blind Source

Separation with Less Sensors Than Sources. Proceedings of the 4th International

Symposium on Independent Component Analysis and Blind Signal Separation.

(2003):89-94.

[19] Li, Y., Cichocki, A. and Amari, S. Analysis of Sparse Representation and Blind

Source Separation. Neural Computation. 16(2004):1-42.

[20] Theis, F. J. and Lang, E. W. Formalization of Two-Step Approach to Overcom-

plete BSS. Proceedings of the International Conference on Signal and Image

Processing. (2002):207-212.

[21] Theis, F. J., Jung, A., Puntonet, C. G. and Lang, E. W. Linear geometric

ICA:Fundamentals and Algorithms. Neural Computation. 15(2002):1-21.

[22] Haykin, S. Neural Network a Comprehensive Foundation. 2nd ed. Prentice Hall,

1999.

[23] Fukunaga, K. and Hostetler, L. D. The Estimation of the Gradient of a Den-

sity Function, with Applications in Pattern Recognition. IEEE Transactions on

Information Theory. 21(1975):32-40.

[24] Cheng, Y. Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on

Pattern Analysis and Machine Intelligence. 17(1995):790-799.

[25] Comaniciu, D. and Meer, P. Distribution Free Decomposition of Multivariate Data.

Pattern Analysis and Applications. 2(1999):pp22-30.

[26] Comaniciu, D. and Meer, P. Mean Shift: A Robust Approach Toward Feature



65

Space Analysis. IEEE transactions on Pattern Analysis and Machine Intelligence.

24,5(2002):603-619.

[27] Comaniciu, D. and Meer, P. Robust Analysis of Feature Spaces: Color Image

Segmentation. IEEE International Conference on Computer Vision and Pattern

Recognition. (1997):750-755.

[28] Barash, D. and Comaniciu, D. Meanshift Clustering for DNA Microarray Analysis.

IEEE International Conference on Computational Systems Bioinformatics (CSB).

(2004):578-579.

[29] Frigui H. and R. Krishnapuram, R. A Robust Algorithm for Automatic Extraction

of an Unknown Number of Clusters from Noisy Data. Pattern Recognition Letter.

17(1996):12231232.

[30] Bofill, P. Underdetermined Blind Separation of Delayed Sound Sources in the Fre-

quency Domain. Neurocomputing. 55(2003):627-641.



66

Biography

Name: Miss Benjamas PANYANGAM.

Date of Birth: 1st October, 1973.

Educations:

• Ph.D. Candidate in Computer Science, Department of Mathematics, Chulalongkorn

University, Thailand, (June 2002 - May 2007)

• M.Sc. Program in Computer Science, Faculty of Science, Prince of SongKla Uni-

versity, Thailand (June 1999 - May 2002).

• B.Sc. Program in Computer Science, Faculty of Science, Chiang Mai University,

Thailand (June 1992 - May 1996).

Publication papers:

• B. Panyangam, K. Chinnasarn, and C. Lursinsap. Estimating Columns of Under-

determined Mixing Matrix by Information Index Removal and Perturbed Mean

Shift Algorithm. Proceedings of the 3rd International Conference on Natural Com-

putation (ICNC), Haikou, China, 2007. Accepted and scheduled to appear in

August 2007.

Scholarship: The National Science and Technology Development Agency (NSTDA)

of Thailand.


	Cover (Thai)     
	Cover (English)
	Accepted    
	Abstract (Thai)   
	Abstract  (English)       
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	1.1 Introduction and Problem Review
	1.2 Statement of the Problem
	1.3 Research Objectives
	1.4 Scopes of the Study
	1.5 Research Advantages

	CHAPTER II THEORIES AND LITERATURE REVIEWS
	2.1 Independence of Signals
	2.2 Overcomplete Independent Component Analysis
	2.3 The Sparse Representation of the Signals
	2.4 Estimation of the Independent Components
	2.5 Estimation of the Mixing Matrix
	2.6 Mean Shift Procedure
	2.7 Entropy

	CHAPTER III PROPOSED METHOD
	3.1 Estimating the Mixing Matrix
	3.2 An Example of Mixing Matrix Detection

	CHAPTER IV EXPERIMENTAL RESULTS
	4.1 Performance Measures
	4.2 Experimental Design
	4.3 Experiment 1
	4.4 Experiment 2
	4.5 Experiment 3
	4.6 Experiment 4
	4.7 Experiment 5
	4.8 Complexity Analysis

	CHAPTER V CONCLUSION
	References
	Vita   



