การวิเคราะห์ลายพิมพ์ดีเอ็นเอร่วมกับองค์ประกอบพอลีแซคคาไรด์ในทุเรียนต่างสายพันธุ์

นางสาว อรอนงค์ หนูชูเชื้อ

สถาบันวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาชีวเวชเคมี ภาควิชาชีวเคมี คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

ANALYSIS OF DNA FINGERPRINT AND POLYSACCHARIDE CONSTITUENT IN DURIAN CULTIVARS

Miss Onanong Nuchuchua

สถาบนวิทยบริการ

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Biomedicinal Chemistry Department of Biochemistry Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2006 Copyright of Chulalongkorn University

Thesis Title	ANALYSIS OF DNA FINGERPRINT AND POLYSACCHARIDE		
	CONSTITUENT IN DURIAN CULTIVARS		
Ву	Miss Onanong Nuchuchua		
Field of Study	Biomedicinal Chemistry		
Thesis Advisor	Associate Professor Sunanta Pongsamart, Ph.D.		
Thesis Co-advisor	Assistant Professor Suchada Sukrong, Ph.D.		

Accepted by the Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Panpen PrampetC-..... Dean of the Faculty of Pharmaceutical Sciences (Associate Professor Pornpen Pramyothin, Ph.D.)

THESIS COMMITTEE

D. Lucievri year Chairman

(Associate Professor Duangdeun Meksuriyen, Ph.D.)

Sunan Porgran L. Thesis Advisor

(Associate Professor Sunanta Pongsamart, Ph.D.)

mehrel Thesis Co-advisor

(Assistant Professor Suchada Sukrong, Ph.D.)

. Jeradanon Member

(Associate Professor Sukanya Jesadanont, Ph.D.)

Maneewan Salesontz. Member

(Assistant Professor Maneewan Suksomthip, Ph.D.)

อรอนงศ์ หนูซูเชื้อ : การวิเคราะห์ลายพิมพ์ดีเอ็นเอร่วมกับองค์ประกอบพอลีแซคคาไรด์ในทุเรียนต่างสาย พันธุ์. (ANALYSIS OF DNA FINGERPRINT AND POLYSACCHARIDE CONSTITUENT IN DURIAN CULTIVARS) อ. ที่ปรึกษา : รศ. ดร. สุนันท์ พงษ์สามารถ, อ.ที่ปรึกษาร่วม : ผศ. ร.ต.อ. หญิง ดร. สุชาดา สุขหร่อง, 116 หน้า.

้สารสกัดเจลพอลีแซคคาไรด์ (PG) จากเปลือกทุเรียน (*Durio zibethinu*s Merr.) ที่มีการศึกษามาก่อนแล้ว พบว่าเป็นสารประเภทเพคตินมีฤทธิ์ต้านเชื้อแบคทีเรียและสามารถกระตุ้นระบบภูมิคุ้มกันได้ สารสกัด PG สามารถ ใช้เป็นสารช่วยเตรียมเภสัชภัณฑ์และอาหาร เช่น เยลลี่ ยาเม็ดเคลือบ แผ่นฟิล์มปิดแผล เจลฆ่าเชื้อและผลิตภัณฑ์เจล ้จุ่มเต้านมวัวป้องกันโรคเต้านมวัวอักเสบ เป็นต้น ผลการทดลองก่อนหน้านี้ที่น่าสนใจคือ PG จากเปลือกทุเรียนพันธุ์ ชะนี่ พื้นเมือง และหมอนทองจากจังหวัดชุมพรมีความแรงในการต้านเชื้อแบคทีเรียแตกต่างกัน ในการศึกษาครั้งนี้มี จุดประสงค์เพื่อศึกษาคุณลักษณะและจำแนกทุเรียนในระดับโมเลกุลของทุเรียนต่างสายพันธุ์และต่างพื้นที่เพาะปลูก ได้แก่ ทุเรียนกระดุมทอง หมอนทอง และซะนี่ จากจังหวัดจันทบุรี และทุเรียนพื้นเมือง หมอนทองและซะนี่ จากจังหวัด ชุมพร และนำข้อมูลมาเปรียบเทียบกับคุณสมบัติของสาร PG ที่มีฤทธิ์ชีวภาพจากทุเรียนต่างสายพันธุ์และต่างพื้นที่ การศึกษาลำดับเบสดีเอ็นเอของยืน *mat*K ในคลอโรพลาสต์ของทูเรียนต่างสายพันธุ์มีความยาวทั้งหมด 1,509 bp เปรียบเทียบกับลำดับเบสของยีน *mat*K ของทุเรียนที่มีการศึกษาก่อนหน้านี้ในฐานข้อมูล GenBank (AY321188) ใน ้ยืน *mat*K ที่ตำแหน่ง 275 ของทุเรียนพันธุ์พื้นเมืองเป็นเบสอะดีนีน (A) หรือ ไซโทซีน (C) ในขณะที่ทุเรียนพันธุ์กระดุม ทอง หมอนทอง และชะนีจากทั้ง 2 จังหวัด เป็นเบสไซโทซีนเหมือนข้อมูลใน GenBank ส่วนที่ตำแหน่งของ 860 และ 862 ของทุเรียนทุกสายพันธุ์เป็นเบสไซโทซีน (C) และไธมีน (T) ตามลำดับ จากข้อมูลของ*mat*K มีความแตกต่างน้อย ้ยังไม่เหมาะสมที่จะใช้เป็นเครื่องหมายทางโมเลกุล จึงทำการศึกษาเพิ่มเติมโดยเทคนิค RAPD ในเบื้องต้นระบุได้ว่ามี การแปรผันทางพันธุกรรมของทุเรียนต่าง<mark>สายพันธุ์และให้รูปแบบดี</mark>เอ็นเอของแต่ละสายพันธุ์ที่มีลักษณะเฉพาะ เมื่อ วิเคราะห์ด้วยวิธี Unweighted pair group method with arithmetic averages หรือ UPGMA สามารถแบ่งทุเรียน ้ออกได้เป็น 2 กลุ่มหลักคือ ทุเรียนพื้นเมืองที่เป็นพันธุ์ดั้งเดิมและทุเรียนสายพันธุ์เพาะปลูก (กระดุมทอง หมอนทอง และซะนี) การวิเคราะห์คุณสมบัติสารสกัด PG พบว่าเปลือกทุเรียนหมอนทองให้ปริมาณ PG และมีความหนืดของ สารละลายมากที่สุดด้วยเช่นกัน (P<0.05) สารละลาย PG ของทุเรียนทุกสายพันธุ์มี pH อยู่ในช่วง 2.437-2.526 PG จากเปลือกทุเรียนพันธุ์กระดุมทองมีปริมาณของน้ำตาล Galacturonic acid มากที่สุดอย่างมีนัยสำคัญ ผลการ ทดลองหาปริมาณของน้ำตาล Galacturonic acid ใน PG ในสายพันธุ์เดียวกันให้ค่าไม่แตกต่างกัน (P>0.05) และ พบว่ามีปริมาณ Galacturonic acid ใน PG แตกต่างกันอย่างมีนัยสำคัญเมื่อสกัดมาจากต่างสายพันธุ์กัน จากผล การทดลองอาจเสนอแนะได้ว่าเทคนิค RAPD สามารถใช้เป็นเครื่องหมายทางโมเลกุลร่วมกับองค์ประกอบของน้ำตาล Galacturonic acid ของ PG ในการจำแนกทุเรียนต่างสายพันธุ์ได้

ภาควิชา	ชีวเคมี	ลายมือชื่อนิสิต0504วก์ หนูกูโ้อ
สาขาวิชา	ชีวเวชเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	2549	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม` Such

##4776619933 : MAJOR BIOMEDICINAL CHEMISTRY KEY WORD: Durio zibethinus / POLYSACCHARIDE ANALYSIS / DNA

FINGERPRINT / matK gene / RAPD

ONANONG NUCHUCHUA : ANALYSIS OF DNA FINGERPRINT AND POLYSACCHARIDE CONSTITUENT IN DURIAN CULTIVARS. THESIS ADVISOR : ASSOC. PROF. SUNANTA PONGSAMART, Ph.D., THESIS COADVISOR : ASST. PROF. SUCHADA SUKRONG, Ph.D., 116 pp.

Polysaccharide Gel (PG) from fruit-rinds of durian (Durio zibethinus Merr.) is a pectic polysaccharide, according to prior studied, the polysaccharide exhibits antibacterial activity and immunomodulatory activity. PG have found to be useful for food and pharmaceutical applications such as jelly, tablet coating, film dressing, antiseptic gel, PG teat dip for protecting bovine mastitis, etc. Interestingly, PG from durian cultivars, 'Chani' 'Pauenmuang' (native cultivar) and 'Monthong' from Chumporn province, have the different bactericidal potency. In this study aimed to characterize and identify the difference between durian cultivars and between cultivated areas in molecular level together with bioactive PG The cultivated-durians, 'Kradumthong', 'Monthong' and 'Chani' from in fruit-rinds. Chanthaburi province; 'Pauenmuang', 'Monthong' and 'Chani' from Chumporn province were investigated. The *mat*K gene in chloroplast genome of these durians was 1,509 bp in length. In comparison with the previous reported in GenBank, accession no. AY321188. The *mat*K of 'Pauenmuang' cultivar presented either adenosine or cytosine substitutions at the position 275, whereas 'Monthong' and 'Chani' cultivars from both provinces, and 'Kradumthong' from Chanthaburi province presented the cytosine substitutions at the same position as same as the previous reported in GenBank. The matK sequences of all tested durian cultivars were also found the cytosine and thymidine substitutions at the position 860 and 862, respectively. The results provided not enough information to characterize the variation of durian cultivars, then the *mat*K gene was not suitable to be used as the molecular marker for durian identification in this study. In addition, the preliminary RAPD study indicated that these durian cultivars exhibited genetic variation. The DNA profiles showed the specific patterns of different durian cultivars. The dendrogram was constructed by unweighted pair group method with arithmetic averages, UPGMA. Durian cultivars can be divided into two main groups, native planted 'Pauenmuang' and commercially cultivated ('Monthong', 'Chani' and 'Kradumthong'). The results of PG analysis showed that PG of 'Monthong' fruit-rinds from both provinces gave the highest percentage of the total yield (P < 0.05) and also the highest viscosity (P < 0.05). The pH range of PG was 2.437-2.526. The important major sugar, galacturonic acid content, in PG from 'Kradumthong' cultivars was the highest. The results of the galacturonic acid content in PG was not significantly different (P>0.05) within the same cultivars, but significantly different (P<0.05) from different durian cultivars. The results suggested that the polymorphic band profiles of RAPD could be used as molecular marker for identification durian cultivars together with the galacturonic acid content in PG in durian-rinds.

Department	Biochemistry	Student's signature.	NANONG NUCHUCH	UA
Field of study	Biomedicinal Chemistry.	Advisor's signature.	Sunand Parge	r
Academic year		Co-advisor's signatu	e Suchar	

ACKNOWLEDGEMENTS

It is very great pleasure to thanks the many people who made this thesis possible.

I would like to express sincere gratitude to my thesis advisor, Assoc. Prof. Dr. Sunanta Pongsamart, for her guidance, support, technical and non-technical advice. Throughout my thesis-writing period. I thank her also for providing me an opportunity to grow as a good student.

It is difficult to overstate my gratitude to my thesis co-advisor, Assist. Prof. Dr. Suchada Sukrong. With her great efforts to explain things clearly and simply. Throughout my thesis-writing period, she provided encouragement, good teaching, and lots of good ideas.

I also wish express deep appreciation to all members of the thesis committee for their suggestions and comments.

I would like to thank the many people who have supported the specimens: the first is Assoc. Prof. Thitirat Panmaung and her relationship (Mrs. Krung) for their kindness to assist and take care of me all the time in Chumporn province, the special thanks to durian plantation owner, Mr. Boonpaem Chaoungsom, Mrs. Dutsadee Tanthasatian and the friend of Mrs. Krung at Lhangsaun district for providing all of durian specimens and knowledgements in this experiment.

Thanks are also due to Chulalongkorn University and the Ministry of University Affairs for granting partial financial support to fulfill this study.

I wish to thank my best friend in Department of Biochemistry and other person whose names have not been mentioned here for helping me get through the difficult times, and for all the emotional support, comraderie, entertainment, and caring they provided.

Lastly, and most importantly, I wish to thank my family, on whose constant encouragement and love. Their unflinching courage and conviction will always inspire me. I thank them also for providing me to grow as a good human.

CONTENTS

Page

ABSTRACT	(Thai)	iv
ABSTRACT	(English)	v
ACKNOWL	EDGEMENTS	vi
CONTENTS		vii
LIST OF TA	BLES	ix
LIST OF FIC	JURES	х
LIST OF AB	BREVIATIONS	xii
CHAPTER		
Ι	GENERAL BACKGROUND	1
	1. Introduction	1
	2. Literature Review	4
	2.1 Molecular marker	4
	2.2 The <i>mat</i> K gene	9
	2.3 Primer design	11
	2.4 Sequence alignment	12
	2.5 Pectin	13
II	MATERIALS AND METHODS	22
	1. Materials	22
	1.1 Chemicals	22
	1.2 Equipments	23
	1.3 Plant specimens	23
	2. Methods	26
	2.1 DNA fingerprint analysis	26
	Preparation of leaf samples	26
	DNA extraction	26
	Primer design	26
	Polymerase chain reaction	27
	Agarose gel electrophoresis	28
	• DNA fingerprint analysis	28

Page

CHAPTER		
	2.2 Analysis of Polysaccharide Gel (PG) from durian	
	fruit-rinds	29
	• Preparation of dried fruit-rinds of durian	29
	• Isolation of PG from dried fruit-rinds of durian	29
	• pH and viscosity of PG	32
	• FT-IR spectra of PG	30
	Galacturonic acid assay in PG	30
	Statistical analysis of PG	31
	2.3 Correlation of DNA fingerprint and PG analysis	
	from fruit-rinds	32
III	RESULTS AND DISCUSSION	33
	1. DNA fingerprint analysis	33
	1.1 DNA extraction	33
	1.2 Primer design	33
	1.3 The <i>mat</i> K amplification, sequencing	
	and sequence alignment	38
	1.4 RAPD analysis	47
	2. Analysis of Polysaccharide Gel (PG) from durian	
	fruit-rinds	54
	2.1 Isolation and yield of PG from dried fruit-rinds	
	of durian	54
	2.2 pH and viscosity of PG	56
	2.3 FT-IR of PG	59
	2.4 Galacturonic acid assay in PG	61
	2.5 Correlation of DNA fingerprint and PG analysis	
	from fruit-rinds	65
IV	CONCLUSION	67
	2S	70
	S	77
VITA		116

LIST OF TABLES

Tabl	le	Page
1.	Durian specimens used in this study are 'Kradumthong',	
	'Monthong' and 'Chani' from Chanthaburi province	24
2.	Durian specimens used in this study are 'Pauenmuang',	
	'Monthong' and 'Chani' from Chumporn province	25
3.	The optimised PCR condition of <i>mat</i> K gene amplification	40
4.	The summarization of nucleotide substitution in <i>mat</i> K sequences	
	of cultivated-durian from Chanthaburi and Chumporn provinces	
	comparing with GenBank database, accession no. AY321188	46
5.	The optimised PCR condition for RAPD analysis	48
6.	The amount of the total band profile and the polymorphic band	
	of each primer from agarose gel electrophoresis	52
7.	Binary code of each primer with 1 or 0 as the "present" or	
	"absent" bands, respectively	52
8.	The percentage of PG yield	55
9.	The pH and viscosity of PG at concentration of 3% w/v PG	58
10.	. The absorbance of D-(+)-galacturonic acid at 525 nm	62
11.	. The galacturonic acid content in PG of durian cultivars	63

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

Figu	Figure		
1.	Commercial durian-fruit (Durio zibethinus Merr.)	2	
2.	The principle of Amplified fragment length polymorphism	7	
3.	The sketching structure of <i>trnK/matK</i> gene in chloroplast genome	10	
4.	The <i>trnK/matK</i> sequences of <i>Durio zibethinus</i> are total 2496 bp		
	in length which reports in GenBank, accession number AY321188	14	
5.	Homogalacturonan structure (HG)	14	
6.	Rhamnogalacturonan I (RGI)	15	
7.	Rhamnogalacturonan II (RG II)	16	
8.	Correlation between viscosity and concentration of pectin	19	
9.	The sketch showing positions on trnK/matK gene of amplified		
	primers	27	
10.	Genomic DNA of durian cultivars performed on 1% agarose gel		
	electrophoresis	35	
11.	The total sequences of <i>trnK/matK</i> gene (2496 bp) have been		
	reported in GenBank, accession no. AY321188	36	
12.	The hybridization of PCR primers, matKD617F and matKD2396R		
	on <i>trnK/mat</i> K gene template	37	
13.	The PCR products of different durian cultivars from Chumporn		
	province were about1,780 bp in length using matKD617F and		
	matKD2396R	41	
14.	The PCR products of different durian cultivars from Chanthaburi		
	province were about1,780 bp in length using matKD617F and		
	matKD2396R	42	
15.	The PCR products of 'Monthong' cultivars from Chanthaburi		
	province were about 1,780 bp in length using matKD617F and		
	<i>mat</i> KD2396R (the annealing temperature at 60°C)	43	

ʻigu	re	Page
16.	The sequence alignment of durian cultivars, 'Kradumthong'	
	(AB289824), 'Monthong' (AB289825) and 'Chani' (AB289826)	
	from Chanthaburi province was compared to matK gene	
	(AY321188) in GenBank database	. 44
17.	The sequence alignment of durian cultivars, 'Monthong'	
	(AB289740), 'Chani' (AB289821), 'Pauenmuang' 1 (AB289822)	
	and 'Pauenmuang' 2 (AB289823) from Chumporn province was	
	compared to matK gene (AY321188) in GenBank database	45
18.	The RAPD profiles were triplicated in the same PCR condition	
	and cycles by using SN06 primer. Electrophoresis was performed	
	on 1.5% agarose gel	49
19.	The RAPD profiles were triplicated in the same PCR condition and	
	cycles by using SN20 primer. Electrophoresis was performed on	
	1.5% agarose gel	50
20.	The RAPD profiles were triplicated in the same PCR condition and	
	cycles by using SO15 primer. Electrophoresis was performed on	
	1.5% agarose gel.	51
21.	Dendrogram of durian cultivars, 'Monthong', 'Chani' and	
	'Kradumthong' from Chanthaburi province, and 'Monthong',	
	'Chani' and 'Pauenmuang' from Chumporn province	53
22.	The aqueous solutions of 3% (w/v) PG	57
	Fourier transform infrared spectra of polysaccharide gel (PG)	
	from durian-fruit rinds of durian cultivars, 'Monthong',	
	'Pauenmuang', 'Chani', and 'Kradumthong' were compared to	
	commercial pectin from citrus fruits (P9135 from Sigma Co.)	
	with the degree of esterification (DE) of 60.97% and the	
	galacturonic content of \geq 74%	60
24.	The standard curve of D-(+)-galacturonic acid versus absorbance	62

LIST OF ABBREVIATIONS

18s rDNA	18s ribosomal RNA gene
AFLP	Amplified fragment length polymorphism
AP-PCR	Arbitrarily primed PCR
BSU	BioService Unit
cpDNA	Chloroplast DNA
DAF	DNA amplification fingerprinting
DE	Degree of esterification
DNA	Deoxyribonucleic acid
ETS	External transcribed spacer
FT-IR	Fourier transform-infrared spectrometry
HG	Homogalacturonan
HM pectins	High-methoxy pectins
IGS	Intergenic spacer
ITS	Internal transcribed spacer
ITS-1	Internal transcribed spacer 1
ITS-2	Internal transcribed spacer 2
LM-pectins	Low-methoxy pectins
matK gene	Gene encoding maturase K
mtDNA	Mitochondial DNA
ndhF gene	Gene encoding NADH dehydrogenase F
nDNA	Nuclear DNA
PAUP	Phylogenetic analysis using parsimony
PCR	Polymerase chain reaction
PCR-RFLP	Polymerase chain reaction- Restriction fragment length
	polymorphism
PG	Polysaccharide gel
RAPD	Random amplified polymorphic DNA
<i>rbc</i> L gene	Gene encoding the large subunit of the ribulose-
	bisphosphate carboxylase
RFLP	Restriction fragment length polymorphism
RGI	Rhamnogalacturonan I

RGII	Rhamnogalacturonan II
RNA	Ribonucleic acid
tRNA ^{Lys}	Transfer RNA of Lysine
trnK gene	Gene encoding tRNA ^{Lys}
UPGMA	Unweighted pair group method with arithmetic averages

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

GENERAL BACKGROUND

1. Introduction

Durio zibethinus Merr. (เด็ม สมิตินันทน์, 2544) belongs to the genus Durio in the family Bombacaceae, in a revision of durio by Kostermans comprises 27 species, all found within areas covering Sri Lanka and a large part of Southeast Asia. At least six species of Durio, D. zibethinus Merr., D. graveolens Becc., D. kutejensis Becc., D. testudinarum Becc., D. dulcis Becc. and D. oxleyanus Griff are considered edible (Somsri and Wangnai, 2006).

Durian (Durio zibethinus Merr.) is a true tropical fruit species. In particular, numerous durian cultivars are grown commercially throughout Southeast Asia. Durian is one of the important fruit crops in Thailand. About 200 durian clones are recognized as cultivars. There are many kinds of cultivated durian such as 'Monthong' (หมอนทอง), 'Chani' (ระนี), 'Kanyao' (ก้านยาว), 'Kradumthong' (กระดุมทอง), 'Kopphikul' (กบพิกุล), 'Phuangmani' (พวงมณี), etc. (Somsri and Wangnai, 2006) including 'Pauenmuang' cultivar, which is the native durian or endemic species. Figure 1 shows fruits of commercially cultivated durian in Thailand. 'Monthong' and 'Chani' are the most commercially cultivated durian. Durian production for commercial is cultivated mainly in the eastern provinces such as Chanthaburi and Rayong, and the southern provinces such as Chumporn. Fruits from both eastern and southern areas are harvested and marketed from April to June and July to September, respectively (Subhadrabandhu and Ketsa, 2001). The durian has an aril fruit with sharp spines on the pericarp. It is ovoid-oblong to round shaped. Fruit weight varies between 1.5 and 4.0 kg for commercial grades. Durian is very popular fruit in Thai people. Because the rind weight is more than half of the total fruit weight, thus, produces several hundred thousand tons of durian-rinds waste every year. Agricultural wastes of durian fruit rinds have found to be used as a source of commercial important plant materials for isolation of antibacterial polysaccharide for pharmaceutical and cosmetic applications.

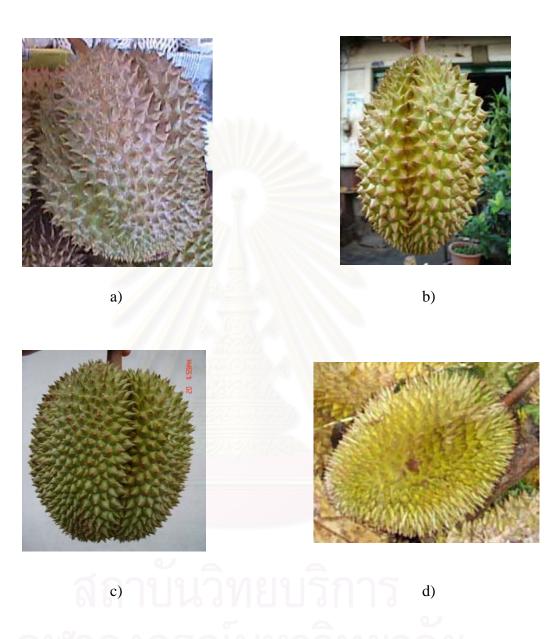


Figure 1. Commercial durian-fruits (*Durio zibethinus* Merr.); (a) 'Monthong', (b) 'Chani', (c) 'Kradumthong' and (d) 'Pauenmuang'.

'Polysaccharide Gel' or PG was first isolated from durian rinds by Pongsamart and Panmaung (1998). PG has been characterized as a pectic polysaccharide (Hokputsa et al., 2004). The major content of PG is a polygalacturonic acid, $(1\rightarrow 4) \alpha$ galacturonic acid chain of 67.9% as a major component, and other neutral sugar side chains which are arabinose (1.2%), rhamnose (4.8%), xylose (0.4%) and galactose (4.9%). Furthermore, glucose as a starch contaminant is also include. PG exhibits the gelling and film forming property. Application of PG in food and pharmaceuticals such as jelly and tablet have been reported (Pongsamart and Panmaung, 1998; Umprayn et al., 1990). PG has also studied as a film dressing for pharmaceutical purposes (Gerddit, 2002). Dressing films prepared from PG attractively enhancing wound healing in pig, dog and cat skin in vivo (Chansiripornchai et al., 2005; Chansiripornchai et al., 2006). Interestingly, PG has antibacterial activity against both gram positive and gram negative bacteria such as Staphylococcus aureus, *Staphylococcus* epidermidis, Escherichia coli, Micrococcus luteus and Bacillus subtilis but it does not inhibit the growth of fungi, Candida albican and Saccharomyces cerevisiae (Lipipan, et al 2002; Pongsamart et al., 2005). PG can be formulated as the oral-fresh film, antiseptic gel, anti-acne gel, etc. (Pongwiwatana, 2005; Paphattarapong, 2005; Lertchaiporn et al., 2006). Moreover, PG has potential to activate cells of the immune system in bovine mammary gland of non-lactating cows (Maktrirat et al., 2006). The post-milking teat dip has been developed from PG, this product expected to be used to protect bovine mastitis disease in cows (Maktrirat et al., 2007). Toxicity studies of PG have also been reported, no toxic effect have found in oral consumption of PG in acute and subchronic toxicity test (Pongsamart et al., 2001; Pongsamart et al., 2002). Interestingly, the previous study of PG from fruitrinds of durian cultivars from Chumporn province has been found that PG from 'Chani' and 'Pauenmuang' has bactericidal activity higher than that of 'Monthong' (Phaunfoong, 2005).

The biological difference could be the diversity of different cultivars according to breeding, planted areas or any major active conpounds. Moreover, the quality of PG varies greatly depending on genetic materials and environmental effects such as the origin of the species, planted location, extraction technique, etc. Unlike chemical studies, DNA marker decreases the environmental factors. DNA-based molecular markers have been widely used for characterization of many organisms in the fields like taxonomy, physiology, embryology, genetics, etc. The markers have been also used as standardization for a production of herbal drugs and correlated to chemical profiles (Joshi et al., 2004). There are many polymorphic molecular markers for identification of related individuals; the *mat*K gene sequences and PCR-RFLP have been used to evaluate the genetic differentiation of cultivated radish (Yamane et al., 2005); RAPD markers have been used for cultivar-identification of apples (Koller et al., 1993), calla lily (Hamada and Hagimori, 1996) and *Dimocarpus longan* subspecies (Yonemoto et al., 2006). The *ndh*F gene and ITS sequences were used in durian identification for the investigation of phylogeny of core Durineae and related family (Nyffeler and Baum, 2000; Nyffeler and Baum, 2001) and the genetic relationships of 56 cultivars of *D. zibethinus* have also characterized by DAF technique (Somsri et al., 2005).

The objectives of this study were to identify different durian cultivars by using the molecular markers together with total polysaccharide analysis. The molecular technique was focused on the *mat*K gene sequencing in chloroplast genome and preliminary studied the RAPD profiles of different cultivated-durians. The durian specimens were 'Monthong', 'Chani', 'Kradumthong' and 'Pauenmuang' cultivars, which were collected from the main production areas, Chanthaburi and Chumporn province, Thailand.

2. Literature reviews

2.1 Molecular markers (Joshi et al., 2004)

The DNA-based molecular markers can be divided into 3 major techniques.

'*Hybridization-based methods*' including Restriction Fragment Length Polymorphisms (RFLP), DNA is digested and hybridized by restriction enzymes and labelled probes, respectively. Polymorphisms are analyzed after hybridization by observing present or absent bands. '*PCR-based methods*' are the amplification of DNA fragments *in vitro* using thermostable DNA polymerase and either random or specific primers. For examples, Random amplified polymorphic DNA (RAPD), Arbitrarily primed PCR (AP-PCR), DNA amplification fingerprinting (DAF), Amplified fragment length polymorphism (AFLP) and Polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP).

'Sequencing-based markers' are DNA sequencing which can efficiently identify single nucleotide polymorphisms (insertion/deletion), depending on organism relationships.

The DNA-based markers have proved their utility in fields like taxonomy, physiology and genetics. As the science of plant genetic progressed, researchers have tried to explore these molecular techniques for their application in commercially important plants such as food crops, horticultural plants and recently in pharmaceutical sciences for the characterization of herbal medicine. According to the identification of species and prediction of the concentration of active phytochemicals are required for quality control of plant materials for pharmaceutical and industrial purposes. For identification of particular plants, the selected-phytochemical markers can correlate with their DNA fingerprint to apply in quality control of raw materials.

2.1.1 Hybridization-based methods

Restriction fragment length polymorphism (RFLP) is an example. RFLP are unequal lengths of DNA fragments obtained by cutting genomic DNA with restriction enzymes at specific sites. On an agarose gel, RFLPs can be visualized using radiolabeled complementary DNA sequences. There is no need for PCR amplification of DNA in this method. A routine southern blot experiment is used instead. Normally, RFLPs are used to identify the origins of a particular plant species, setting the stage for mapping its evolution. There are some problems with the RFLP method of DNA fingerprinting. Firstly, the results do not specifically indicate the chance of a match between two organisms. Secondly, the process involves a lot of money and labor, which not many laboratories can afford. Finally, unlike the microsatellites, a few loci in the assay must suffice (Vasudevan, 2007).

2.1.2 PCR-based markers

(1) Random amplified polymorphic DNA (RAPD)

It is a type of PCR reaction using oligoprimers (8-12 nucleotides). The knowledge of the DNA sequences for the targeted gene is not required. The primers bind somewhere in the sequences as random amplification. The polymorphic bands are performed by agarose gel electrophoresis. RAPD techniques was used as the species-specific markers of five *Derris* species, *D. scandens*, *D. elliptica*, *D. malaccensis*, *D. trifoliata* and *D. reticulata* (Sukrong et al., 2005). Echeverrigaray et al. (2001) were successful to classify the thyme cultivars, Burpee, Blumen, Battle, SEM, Tropical and Isla by RAPD analysis and their essential oil composition. In addition, the chemical content and genomic of Italian garlic and rice were analyzed. The results of Italian garlic found the correlation between its chemicals and genetic materials (Brandolini et al., 2005) but did not found these correlation in Italian rice (Brandolini et al., 2006).

Although, RAPD marker is wildly used by many researchers, because the methods were rapid and inexpensive, and do not need too many genetic information. However, the disadventage of this marker is to make it reproducible. The specimens should be replicated in the same and suitable condition to ensure the reproducible pattern (Atienzar and Jha, 2006).

(2) Amplified fragment length polymorphism (AFLP)

AFLP is a highly sensitive method for detecting polymorphisms in DNA, the method originally described by Vos in 1995. Briefly, total DNA is digested with restriction enzymes and ligated by specific adaptors to all restriction fragments. The selective amplification of some of these fragments with primers that have corresponding adaptors and restriction site specific sequences (Figure 2). The band patterns are shown by polyacrylamide gel. AFLP could be successfully used to resolve the correlation of AFLP data with the selected chemicals of *Withania somnifera* (Dhar et al., 2006). AFLP is also capable of determining a large number of polymorphisms.

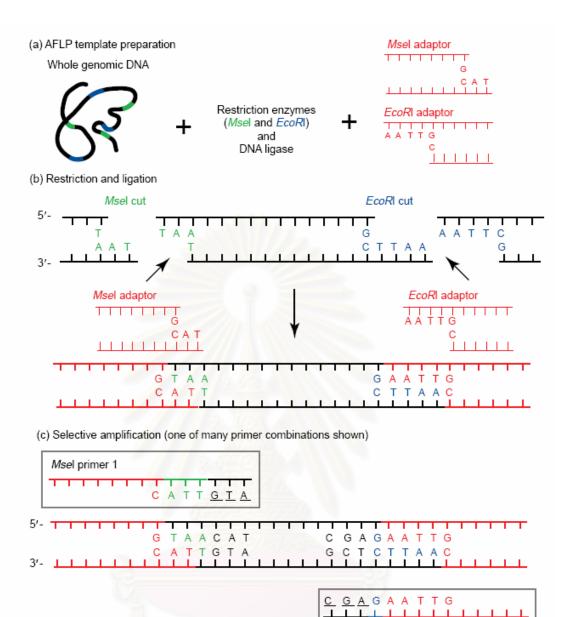


Figure 2. The principle of Amplified fragment length polymorphism. a) The steps of digestion with restriction enzyme, b) Putting the selective adapters and c) The selective PCR amplification (Mueller and Wolfenbarger, 1999).

EcoRI primer 1

2.1.3 Sequencing-based markers (Soltis et al., 1998)

The nucleotide sequencing is one of the most techniques to utilize the phylogenetic history. DNA sequence data are the power of informative tool for molecular systematics, and comparative analysis of DNA sequences is becoming increasingly important in plant systematics. There are two major reasons why nucleotide sequencing is useful in systematics of plants. First, the nucleotides are the basic units of information encoded in organisms. Second, the potential sizes of data sets are immense. However, the disadventage of this technique is expensive for repetition. Furthermore, different genes or parts of the genome might evolve at different rates. The selection of genes or any parts of genome depends on the taxonomic levels.

Unlike animals, plants have three kinds of genomes, the chloroplast genomes (cpDNA) in addition to the nuclear (nDNA) and mitochondial (mtDNA) genomes. The mtDNA is rarely used in molecular markers of plants due to its structure, size, and gene order are various depending on plant species. The nDNA and cpDNA are commonly able to investigate in the molecular systematics and taxonomy of plants. The nDNA is more complexity and repetitive properties. On the other hand, the cpDNA is well suitable for evolutionary and phylogenetic studies above the species level because cpDNA; 1) is a relative abundant component of total DNA, 2) contains primarily single copy genes, 3) has a conservative rate of nucleotide substitution. The most common genes in nDNA is nuclear ribosomal gene consists of a transcribed region that comprises an external transcribed spacer (ETS), followed by 18s rDNA, an internal transcribed spacer (ITS-1), the 5.8s rDNA, a second internal transcribed spacer (ITS-2), and finally the 26s rDNA. Each repeat is separated from the next repeat by an intergenic spacer (IGS). For the most common genes in cpDNA are *rbcL*, *ndh*F, *trnK/mat*K gene, chloroplast ribosomal gene, etc.

For examples, Zhao et al. (2003) and Xia et al. (2005) studied the sequences of 5s-rRNA spacer domain and assess the chemicals of traditional Chinese medicine, *Angelica* (Danggui) and Curcumae, respectively. The *ndh*F gene and ITS sequences were used in durian identification for the investigation of phylogeny of core Durineae and related family (Nyffeler and Baum, 2000; Nyffeler and Baum,

2001). Locust bean gum and guar gum are neutral polysaccharide products (galactomannans) as food additives from *Ceratinia siliqua* and *Cyamopsis tetragonoloba*, respectively. Both gums are basically the same structures. The sequences of ITS regions, ITS-1 and ITS-2 were used as DNA markers to characterize that species (Urdiain et al., 2004; Urdiain et al., 2005).

2.2 The *mat*K gene

The *mat*K gene is named according to its possible maturase function and its location within the *trn*K gene encoding the tRNA^{Lys} (UUU). In Figure 3 illustrates the structure of *trnK/mat*K gene. The *mat*K locates within the intron of the *trn*K (Hilu and Liang, 1997). In plant molecular systematics and evolution, the *mat*K gene is emerging as another valuable gene to study because of its reasonable size, high substitution rate, evenly distributed codon position variation, low transition and transversion ratio, and the easiness of amplification due to its two flanking coding *trn*K gene. Since its high substitution rate has a potential of providing more informative sites, most application of *mat*K in phylogenetic reconstruction has been at the family, genus, species and even population (Soltis et al, 1998). There have been several studies using the *mat*K gene sequences in plant systematics, molecular genetics and chemical assessment.

For instance, Ping et al. (2002) suggested that DNA sequence data of *mat*K gene generated the tree cluster of *Pogostemon cablin* cultivars which were identical to 18s rDNA cluster. They could be combined with plant chemotypes as a quality control for production. The preliminary experiment of Valerianaceae family was reconstructed to study the evolution, based on the various plastid gene including *mat*K gene region (Bell, 2004). However, the chemical of *Aristolochia* species could not relate to their molecular evidence from *mat*K sequence and other chloroplast regions (Silva-Brandao, Solferini and Trigo, 2006). Thus, the *mat*K gene may be useful in this investigation. However, the general background information of this gene of *Durio zibethinus* is available on Genbank (AY321188), however specific cultivars of *Durio* species has not been reported. The *mat*K sequence is shown in the Figure 4.

trnK5'	matK	trnK3'

Figure 3. The sketching structure of *trnK/matK* gene in chloroplast genome.

-					
	g tgcgactagc				
61 ccatcggta					
121 atgtcgtat					
181 aaatcgtct					
241 gagtgaata					
301 ttctgttcg					
361 taatgcggt					
421 tagttattc					
481 aaagatatt					
541 ttyytancc					
601 atagagaat					
661 taccttgtt					
721 tttggttca				_	_
781 tcgccgaca					
841 tgatcatgg					
901 cagttcact					
961 ttctgctaa	-				
1021aatgatatc					
1081ttactcaca	a ggggaagaag	tcgcaaaatc	ccataatttc	caatcaattc	attcaatatt
1141tccttttt					
1201ccccatcca					
1261tttgcattt	a ttacggttct	ctctctacga	gtattgtaat	ttgaagagtt	ttattactcc
1321aaagaaatc					
1381atgtgaata					
1441atcttctgg					
1501agtctttta					
1561ttttaggta	t caaggaaagg	caattctggc	atcaaaggat	aagcctcttc	tgatgaataa
1621gtggaaata	t tactttgtcg	atttatggaa	atattattt	tacgtgcggt	ctcaatcagg
1681aagcgtccg					
1741tgtgcgatt					
1801taatgctat					
1861taaagcgaa	a ttttgtaaca	cattagggca	tcccattagt	aagccgacgt	ggtccgattc
1921ctccgattc					
1981cagtggatc	t tcaaaaaaaa	agagtttgta	tcgaataaaa	tatatacttc	ggctttcttg
2041tgttaaaac	t ttggctcgta	aacacaaaag	tactgtacgt	gcttttttga	aaagattagg
2101ttcggaatt	t ttggaagaat	tctttacgga	agaagaacat	gttttttctt	tgatcttccc
2161aagagtttt	t ttgacttcgc	gaaagttata	tagggtgcga	atttggtatt	tggatattat
2221ttgtatcaa	t gctctggtca	atcatgaatg	attggttatg	aaatcatgta	aattcaaatt
2281caatataaa	a tgggaatttt	tcctaaatga	tgaagagata	acaaaagaat	ttattcagtt
2341ctagtatta					
2401tgagtcctg	t ttagggaata	aattggtttt	agatgtatac	atagagaaag	ccgtgtgcaa
2461tgaaaaatg	c aagcacggtt	tggggaggga	ttttt		

Figure 4. The *trnK/mat*K sequences of *Durio zibethinus* are total 2496 bp in length which reports in GenBank, accession number AY321188. The *mat*K gene sequences are 1,509 bp in length as marked in the blue color at the position of 743 to 2251.

2.3 Primer design (Dieffenbach and Dveksler, 2003)

Several variables must be taken into consideration when designing PCR primers which are:

2.3.1 Primer length

Since both specificity, the temperature and time of annealing are partly dependent on primer length, this parameter is critical for successful PCR amplification. In general, the length of primers between 18 and 24 bases provide a specificity. The annealing temperature is also optimal. The longer primer is more inefficient for annealing. As the results, the yield of PCR products is decrease.

2.3.2 Specificity

The primer specificity depends on the primer length. Primers have a unique sequence within the template DNA that is to be amplified. A primer with highly repetitive sequence will result in a smear when amplifying genomic DNA. However, primer extension will occur at the lower temperature of annealing. If the temperature is too low. Non specific priming may occur which can be extended by the polymerase if there is a short homology at the 3' end. In general, a melting temperature of 55°C -72°C gives the best results.

2.3.3 Complementary primer sequences

Primers need to be designed with absolutely no intra-primer homology such as self-homology, partially double-stranded structures, etc. Inter-primer homology is also important, two primer anneals together, primer dimer formation. Both of them will interfere with annealing to the template.

2.3.4 GC content, polypyrimidine and polypurine stretches

The base composition of primers should be between 45%-55% of GC content. The primer sequence must be chosen such that there is no polyG or polyC that can promote non-specific annealing. PolyA and polyT streches are also to be avoided these will breath and open-up streches of the primer template complex. This can lower the efficiency of amplification. Both polypyrimidine (T, C) and polypurine (A, G) stretches should also be avoided.

2.3.5 3' end

It is well established that the 3' terminal position in PCR primers is essential for the control of mis-priming. A G or C residue at the 3' end is '*GC clamp*', helps to ensure correct binding at the 3' end due to the stronger hydrogen bonding of G/C residue. It also helps to improve the efficacy of the reaction by minimizing any breathing that might occur. At present, there are several online free software programs. For examples, Fast PCR, Primers3 and Primo Pro 3.4. They can calculate many parameters as mentioned above so primer design is so easily. Fast PCR progam was used in this investigation which can be downloaded from http://www.biocenter.helsinki.fi/bi/ Programs/fastpcr.htm.

2.4 Sequence alignment

In bioinformatics, a sequence alignment is a way of arranging the primary sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences. Aligned sequences of nucleotide or amino acid residues are typically represented as rows within a matrix. Alignments are commonly represented both graphically and in text format. In almost all sequence alignment representations, sequences are written in rows arranged so that aligned residues appear in successive columns. In text formats, aligned columns containing identical or similar characters are indicated with a system of conservation symbols. Many sequence visualization programs also use color to display information about the properties of the individual sequence elements; in DNA and RNA sequences, this equates to assigning each

nucleotide its own color. Sequence alignments can be stored in a wide variety of textbased file formats, many of which were originally developed in conjunction with a specific alignment program or implementation. Most web-based tools allow a number of input and output formats, such as FASTA format and GenBank format (Corpet, 1988).

2.5 Pectin (Dumitriu, 1998)

Naturally, pectin is found in the primary cell wall and espectially in the middle lamella, pectins are responsible for the structural properties of fruits and vegetables. Pectin helps to bind cells together and regulates water in the plant. The amount and composition of pectin in plant material vary from one variety of plant to another. Mainly citrus fruits and apples are used as raw materials for manufacturing of commercial pectins.

2.5.1 Molecular structure

Pectin is an important polysaccharide with applications in food, cosmetic and pharmaceutical industries. Pectin is a heterogeneous complex polysaccharide that isolates from plants. The main types of pectic matrix are homogalacturonan (HG), rhamnogalacturonan I (RGI), and rhamnogalacturonan II (RGII). Briefly, the major constituent is linear sequences of 1, 4 linked α -Dgalactopyranosyluronic acid that forms the pectin-backbone, a homogalacturonan (HG). There are regions where galacturonic acid is replaced by (1-2)-linked Lrhamnose in this backbone. From rhamnose, sidechains of various neutral sugars branch off. This type of pectin is called rhamnogalacturonan I. The stretches consist of alternating galacturonic acid and rhamnose called "hairy regions" and others with lower density of rhamnose called "smooth regions". Furthermore, the neutral sugar side chain are also present such as galactose, xylose and arabinose. The last type of pectin is Rhamnogalacturonan II, The backbone of RG-II contains 1,4-linked α -D-GalpA residues which is a highly branched polysaccharide. Their structure are proposed in Figure 5, 6 and 7 (Ridley et al., 2001).

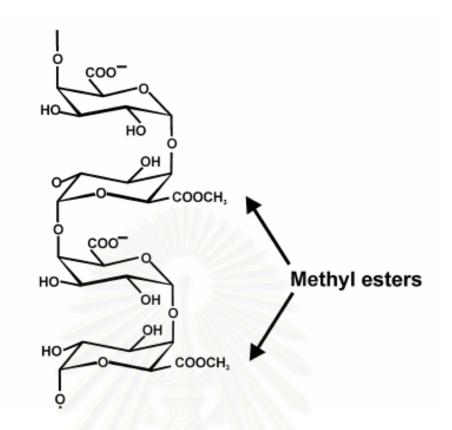


Figure 5. Homogalacturonan structure (HG). HG is a linear polymer of $1 \rightarrow 4$ linked α -D-GalpA residues. Some of the carboxylates of the GalpA residues are esterified with methanol (Ridley et al., 2001).

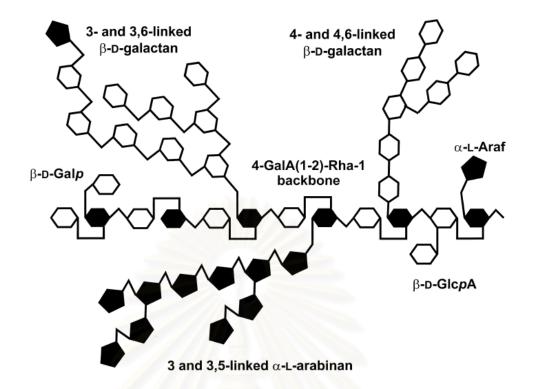


Figure 6. Rhamnogalacturonan I (RGI). The backbone is composed of the disaccharide repeating, galacturonic acid (white) and rhamnose (black), [→4-α-D-GalpA-(→2)-α-L-Rhap-(1→)]. Branched and linear oligosaccharides composed predominantly of α-L Araf and β-D-Galp residues are linked to C4 of some of the Rhap residues (Ridley et al., 2001).

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

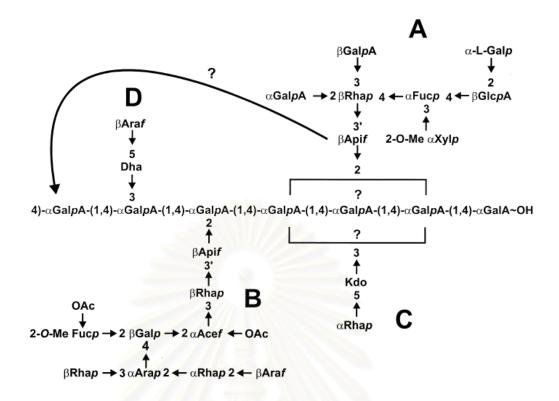


Figure 7. Rhamnogalacturonan II (RG II). Four structurally different oligosaccharide side chains (A–D) are linked to the RG-II backbone (Ridley et al., 2001).

2.5.2 Degree of esterification

In nature, around 80% of carboxyl groups of galacturonic acid are esterified with methanol. This proportion is decreased more or less during pectin extraction. The ratio of esterified to non-esterified galacturonic acid which is the degree of esterification (DE). Pectins are classified as high or low-ester pectins, in short termed HM or LM-pectins, with more or less than half of all the galacturonic acid esterified, respectively. It can determine the behavior of pectin in food applications, especially the solubility and the gel forming characteristics.

2.5.3 The physical properties of pectins

(a) Solubility

Pectin must be completely dissolve to ensure full utilization and to avoid heterogeneous gel formation. Complete dissolution requires dispersion without lumping; if pectin lumps are allowed to form they are extremely difficult to dissolve. Pectin, like any other gelling agent, will not dissolve in media where gelling conditions exist. It is recommended that HM-pectin is dissolved at solids below 20% and preferably in water.

(b) Gelling property

The most important factors which influence the gel formation are temperature, degree of esterification, pH, sugar and other solutes, and calcium ions. HM-pectins require a minimum amount of soluble solids and a pH within a pretty narrow range, around 3.0, in order to form gels. LM-pectins require the presence of a controlled amount of calcium or other divalent cations for gelation and do not require sugar and/or acid.. The degree of esterification of a high ester pectin influences the gelling properties. This difference is reflected in terms of rapid set, medium set and slow set. Furthermore, the gel formation depens on the temperature. Gels form on cooling and melt when heating.

(c) Viscosity

Pectin solutions usually show relatively low viscosities compared to other plant gums and thickeners. Pectin with a high degree of esterification is more viscous in solution than otherwise comparable pectin of lower degree of esterification so the degree of esterification is important for gel application. Viscosity of a pectin solution may be determined for the purpose of obtaining a measure of the molecular weight of the pectin or for evaluating the thickening effect of the pectin. Calcium or other polyvalent ions increase the viscosity of pectin solutions and low ester pectin solutions may even gel if the calcium content exceeds a certain limit. Moreover, the viscosity of pectin solution is also a function of the temperature and pectin concentration as shown in the Figure 8. The viscosity increases exponentially with pectin concentration. However, pH also influences the viscosity of pectin solutions. In a calcium-free solution the viscosity drops when pH is increased.

(d) **pH**

The pK-value of pectin is approximately 3.5. LM-pectins are higher pH-values than high-ester pectins. At low pH-values and elevated temperatures degradation due to hydrolysis of glycosidic links is observed. De-esterification is also favoured by low pH. As the results, pectin becomes slower setting or gradually adapts low ester pectin characteristics. At near to neutral pH (5-6), HM-pectin is stable at room temperature only. As the temperature (or pH) increases, the polysaccharide chains are cleavage, so-called The β -elimination. It is very rapid loss of viscosity and gelling properties.

2.5.4 Characterization of polysaccharide gel (PG) from durian fruitrinds

Polysaccharide gel (PG) from fruit-rinds of *Durio zibethinus* is a pectic polysaccharide. The molecular weight of crude PG is approximately 100-1300 kDa. The sugar compositions of PG are 67.9% of galacturonic acid, 1.2% of arabinose, 0.4% of xylose, 4.9% of galactose and 4.8% of rhamnose. PG is seperated

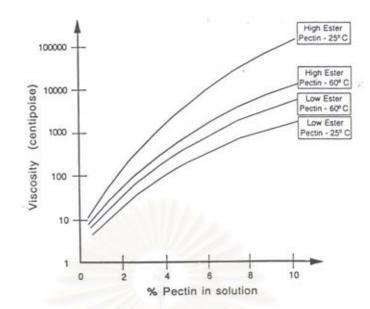


Figure 8. Correlation between viscosity and concentration of pectin.

into two main fractions, 'acidic chain fraction' and 'neutral chain fraction' by DEAE-Sepharose column. The main sugar in acidic chain is 86.2% of galacturonic acid which is 1, 4 linked polygalacturonic acid. Neutral chain consists of 34.9% of galacturonic acid containing other side chain neutral sugar contents more than acidic chain (Hokputsa et al., 2004). In addition, PG has also exhibited the effect on the immune system, the polysaccharide inhibits the heamolysis by complement fixation Bioactivity of PG has been studied, promissing antibacterial and test. immunostimulating activity are elucidated (Lipipan, et al 2002; Pongsamart et al., 2005; Phaunfoong, 2005; Maktrirat et al., 2006). Pharmaceutical applications of PG are established, the following PG products have been prepared: teat dip for protecting bovine mastitis, film dressing for healing wound, antiseptic hand-gel, anti-acne gel (Paphattarapong, 2005; Pongwiwatana, 2005; Chansiripornchai et al., 2006; Lertchaiporn et al. 2006; Maktrirat et al., 2007). Like PG, other pectic substances from medicinal plants has been characterized. For instance, Inngjerdingen, et al. (2005) identified polysaccharide from the aerial parts of Glinus oppositifolius as the pectic polysaccharide, a rhamnogalacturonan backbone, with arabinose and galactose side chains. They also exhibit the complement fixation activities and induced chemotaxis of macrophages, T cells and NK cells. Crude water soluble polysaccharide has been isolated from Angelica sinensis (Oliv.) Diels. Its pectic polysaccharide is fractionated into neutral and acidic polysaccharide by anionexchang chromatography (Sun et al., 2005) like PG of durian rinds.

However, the amount and composition of pectin in plant material vary from one variety of plant to another. Mayworm et al. (2000) examined the polysaccharide contents in seed cell wall of Vochysiaceae family, genus *Callisthene*, *Qualea*, *Salvertia* and *Vochysia* as the phytochemical markers. The neutral sugars, arabinose, galactose, glucose mannose and rhamnose are existed in those pectin. Arabinose is always the predominant component that can be used as a chemical markers of Vochysiaceae family. All of four genus could be divided into 2 main clusters which were *Callisthene* and *Qualea*, and *Salvertia* and *Vochysia* by ANOVA statistics and Chemotaxonomic analysis. Nevertheless, the chemotaxonomic study has limitations because the quality of chemicals varies greatly depending on genetic materials and environmental effects such as the origin of the species, planted location, extraction technique, etc (Joshi et al., 2004).

Thus, the properties of a botanical raw material are not constant. In this experiment PG was isolated from different cultivated durian fruit-rinds, and from different cultivated areas. Determination for PG content and the major sugar composition, galacturonic acid, in PG were carried out. Physical properties of PGs were also investigated such as pH and viscosity. As the results, PG contents were analyzed in combination with DNA profiles, by RAPD technique and *mat*K sequence analysis.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II

MATERIALS AND METHODS

Materials

1. Chemicals

-DNeasy Plant Mini Kits and Geneclean II Kit were obtained from QIAGEN (Germany) and Q-Biogene (USA).

-*Taq* DNA polymerase, deoxynucleotide triphosphates (dNTPs), agarose powder, blue/orange 6X loading dye and 1 Kb DNA ladder, were obtained from Promega (USA).

-50X TAE buffer was obtained from Bio-Rad (Italy).

-Sulfamic acid and Citric acid were analytical reagent grade obtained from Fisher Scienific (UK).

-m-Hydroxydiphenyl was analytical reagent grade obtained from Aldrich (Germany).

-D-(+)-Galacturonic acid monohydrate, hydrochloric acid, sodium hydrogen carbonate, sulfuric acid (96.4% assay), potassium hydroxide and potassium bromide were analytical reagent grade obtained from Merck (Germany).

-Pectin from citrus peel (P9135, galacturonic acid \geq 74.0 %) were obtained from Sigma (Germany).

-Sodium tetraborate was analytical reagent grade obtained from Ajax Finechem (Australia).

-Sodium hydroxide was analytical reagent grade obtained from APS Finechem (Australia).

-Potassium bromide was IR spectroscopic grade obtained from Merck (Germany).

2. Equipments

-Balance, XT 620M, Precisa Instruments Ltd. (Switzerland)

-PCR cycler, Eppendorf Master Cycler, Perkin-Elmer, Co. (USA)

-Gel documentation, Quantity One 1-D Analysis software, Gel Doc XR, Bio-Rad

Laboratories, Inc. (Canada)

-Spectrophotometer, model Educator, Thermo Electron, Co. (USA)

-Rheometer, Rheowin-RV1 software, HAAKE Rheowin (Germany)

-Oven, Mammert (Germany)

-Magnetic stirrer, Model SP 46920-26, Barnstead/Hermolyne (USA)

-Suction apparatus, Buchner Funnel, Aspirator, SIBATA circulating aspirator WJ-

20 (Japan)

-Rotary evaporator, Buchi Rotavapor R-200 (Switzerland)

-DNA electrophoresis, Mini-sub cell electrophoresis chambers with 7x10 cm trays, Bio-Rad Laboratories, Inc. (Canada)

-pH meter, MP 230, Mettler Toledo, LE413, ME 51340 251 (Switzerland)

-FT-IR spectrometer, Spectrum 2000, Model Spectrum GX FT-IR, Perkin-Elmer, Co. (USA)

3. Plant specimens

Leaves and fruits of 29 durian specimens were collected from Chantaburi and Chumporn province, Thailand. Pauenmuang is a native cultivar in Chumporn province. Details are in Table 1 and 2, respectively. Herbarium leaf samples were preserved at the Museum of Natural Medicines, Faculty of Pharmaceutical Sciences, Chulalongkorn University. The specimens were *Durio zibethinus* Merr., which identity to TH. Wongprasert, No. 021-3 (BKF No. 139367) by The Office of Forest and Plant Conservation Research National Park, Wildlife and Plant Conservation Department, Thailand.

Scientific Name* Common nam		Voucher specimens	Location**	Date of collection	
Durio zibethinus Merr.	Kradumthong	DZ - KDJ 1	Dutsadee Manthasatian,	Jan 28, 2005	
		DZ - KDJ 2	Amphoe Klung,		
		DZ - KDJ 3	Chanthaburi province		
		DZ - KDJ 4			
		DZ - KDJ 5			
Durio zibethinus Merr.	Monthong	DZ - MTJ 3	Dutsadee Manthasatian,	Jan 28, 2005	
		DZ - MTJ 4	Amphoe Klung,		
		DZ - MTJ 5	Chanthaburi province		
Durio zibethinus Merr.	Chani	DZ - CNJ 1	Dutsadee Manthasatian,	Jan 28, 2005	
		DZ - CNJ 2	Amphoe Klung,		
		DZ - CNJ 3	Chanthaburi province		
		DZ - CNJ 4			
		DZ - CNJ 5			

Table 1. Durian specimens used in this study are 'Kradumthong', 'Monthong' and 'Chani' from Chanthaburi province.

*เต็ม สมิตินันทน์, 2544

**Appendix A

จุฬาลงกรณ์มหาวิทยาลัย

Scientific Name*	Common name	Voucher specimens	Location**	Date of collection
Durio zibethinus Merr.	Pauenmuang	DZ - PMC O	Amphoe Lhangsaun,	July 25, 2005
		DZ - PMC 1	Chumporn province	
		DZ - PMC 2		
		DZ - PMC 3		
		DZ - PMC 4		
		DZ - PMC 5		
Durio zibethinus Merr.	Monthong	DZ - MTC 1	Boonpaem Chaoungsom	July 26, 2005
		DZ - MTC 2	Tambon Taamsinhg,	
		DZ - MTC 3	Amphoe Muang, Chumporn	
		DZ - MTC 4		
		DZ - MTC 5		
Durio zibethinus Merr.	Chani	DZ - CNC 1	Amphoe Lhangsaun,	July 25, 2005
		DZ - CNC 2	Chumporn province	
		DZ - CNC 3		
		DZ - CNC 4		
		DZ - CNC 5		
*เต็ม สมิตินันทน์, 2544	61			
**Appendix A				

Table 2. Durian specimens used in this study are 'Pauenmuang', 'Monthong' and 'Chani' from Chumporn province.

Methods

1. DNA fingerprint analysis

1.1 Preparation of leaf samples

About 100 mg of fresh leaves of twenty-nine durian specimens were grinded to fine powder in liquid nitrogen before DNA extraction.

1.2 DNA extraction

Total DNA were extracted from fresh leaves by the DNeasy Plant Mini Kit (QIAGEN, Germany). The 50 μ l of DNA solution were purified by Genclean II Kit (Q-Biogene, USA) in three basic steps as follows: binding to silica matrix, washing by alcohol and eluting by TE buffer. Then DNA solution was stored at -20° C for further studies. Total genomic DNA were performed on 1% agarose gel electrophoresis to check quality.

1.3 Primer design

In these studies, the focus was on amplifying the *mat*K gene region embedded in the intron of *trn*K gene of the chloroplast genome. The *trn*K/*mat*K sequences of *Durio zibethinus* were retrieved from GenBank, accession no. AY321188. The primers were designed by freeware program, Fast PCR for *mat*K amplification and sequencing. They were synthesized by Sigma (Germany).

The sequence of the primers are:

matK amplification primers

*mat*KD617F : 5'-tga atc tac ctg tct ccg agg t-3' *mat*KD2396R : 5'-agt gga cta ctc agc caa tcc-3'

matK sequencing primers

walkingB/F8 : 5'-gca ttt att acg gtt ctc tc-3'
walking C/F15 : 5'-atg ata tcg gtg gga ttt gc-3'
walking D/R20 : 5'-cat gat tga cca gag cat tg-3'

1.4 Polymerase chain reaction (PCR) amplification

1.4.1 The matK amplification and sequencing

The *mat*K gene was amplified by PCR techniques. The PCR reaction was carried out in a volume of 50 µl containing 50 mM KCl, 10 mM Tris-HCl (pH 9.0 at 25 °C) and 0.1% Triton X-100, 1.5 mM MgCl₂, 0.2 mM of each dNTPs, 0.5 µM of each specific primers, *mat*KD617F and *mat*KD2396R, 1.5 units of *Taq* DNA polymerase and 100 ng of total genomic DNA. Deionized water was added instead of total DNA in equal volume as a negative control. The thermo cycle profile was 95 °C for 2 minutes; 35 cycles of 95 °C for 40 seconds, 58 °C for 40 seconds, and 72 °C for 2 minutes; final extension for 10 minutes at 72 °C. DNA amplification was performed in an Eppendorf Master Cycler (Perkin-Elmer, Co., USA). The amplified products were further analyzed by agarose gel electrophoresis and sequenced by using sequencing primers, walkingC/F15, walkingB/F8 and walkingD/R20 provided by BioService Unit (BSU), BIOTEC, Thailand. The location of primer are shown in the Figure 9.

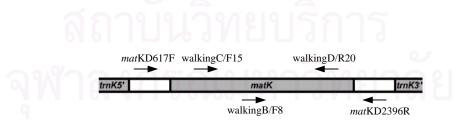


Figure 9. The sketch showing positions on *trnK/matK* gene of amplified primers, *matKD*617F and *matKD*2396R, and sequencing primers, walkingC/F15, walkingB/F8 and walkingD/R20.

1.4.2 RAPD analysis

PCR was performed in a volume of 20 μ l containing 50 mM KCl, 10 mM Tris-HCl (pH 9.0 at 25 °C) and 0.1% Triton X-100, 3 mM MgCl₂, 0.33 mM of each dNTPs, 2 μ M of oligoprimers, SN06 (5'-gag acg cac a-3'), SN20 (5'-ggt gct ccg t-3') and SO15 (5'-tgg cgt cct t-3'), 2 units of *Taq* DNA polymerase and 100 ng of total genomic DNA. DNA amplification was performed in an Eppendorf Master Cycler (Perkin-Elmer, Co., USA). The PCR profile was 95 °C for 4 minutes; 39 cycles of 95 °C for 1 minute, 50 °C for 1 minute, 74 °C for 1 minute; and following to 95 °C for 1 minute, 50 °C for 1 minute, 74 °C for 10 minutes (Atienzar and Jha, 2006). The amplified products were seperated by agarose gel electrophoresis.

1.5 Agarose gel electrophoresis

PCR products were analyzed by electrophoresis in 1.5% agarose gel in 1X TAE buffer (0.04M Tris-acetate, and 1 mM EDTA pH 8.0). The agarose was boiled for 3 minutes and allowed to cool then poured (~60°C) into the assembled tray. The gel was allowed to set for 20 to 30 minutes at room temperature. Loading dye (0.03% bromophenol blue, 0.03% xylene cyanol FF, 0.4% orange G, 15% ficoll® 400, 10 mM Tris-HCl (pH 7.5), and 50 mM EDTA (pH 8.0)) was added to the DNA samples which were then loaded into the wells. The electrophoresis was performed at a constant voltage;100 volt, 20 minutes and 50 volt, 120 minutes for PCR products of *mat*K amplification and RAPD analysis, respectively. The gel was stained with ethidium bromide solution for 30 minutes and destained with deionized water for 20 minutes. Then the gel was determined under ultraviolet (UV) light by Gel documentation (Gel Doc XR, Bio-Rad Laboratories, Inc., Canada).

1.6 DNA fingerprint analysis

1.6.1 matK sequences analysis

The *mat*K gene sequences of all durian cultivars were aligned using multiple sequence alignment (Corpet, 1988) comparing to durian accession no.

AY321188 from GenBank. Finally, all sequences were submitted to DDBJ/EMBL/GenBank database to provide the accession numbers.

1.6.2 RAPD band scoring analysis

The only clear and reproducible bands were scored as "present" or "absent" for each primers and transferred to a binary code with 1 or 0, respectively. Dendrogram was generated using PAUP program package (version 4.0 b4a, Sinauer Assoc.Inc., USA), selecting the unweighted pair-group method with arithmetic averages (UPGMA) algorithym (Sneath and Sokal, 1973 and Sokal and Rohlf, 1981).

2. Analysis of Polysaccharide Gel (PG) from durian fruit-rinds

2.1 Preparation of dried fruit-rinds of durian

Fresh durian fruit-rinds of each 29 specimens were cleaned and ground. One kilogram of ground fresh fruit- rinds was dried by hot air oven at 50 °C until constant weight, about 200 grams of dried weight was obtained. Dried fruit-rinds were kept in room temperature until used.

2.2 Isolation of PG from dried fruit-rinds of durian

PG was extracted from dried durian fruit-rinds of each specimens by hot water extraction. The procedure was carried out using the method modified previously by Pongsamart and Panmaung (1998). Briefly, PG was extracted in boiling water about 30-40 minutes and filtrated. The aqueous extract was concentrated and precipitated by acid-alcohol, filtered and dried at 50°C in hot-air oven and then ground to powder. The percentage yield was calculated. PG was further determined for pH, viscosity, FT-IR spectra and galacturonic acid contents

2.3 pH and viscosity of PG

Solution at 3% w/v PG in distilled water was measured the pH by pH meter and scanned the viscosity at shear rate from 0 to 6000 1/s by Rheometer (Rheowin-RV1 software, HAAKE Rheowin) using C60/1 Ti as a sensor. The shear rate at 10 1/s was used to determine the viscosity of PG in this sudy.

2.4 FT-IR spectra of PG

The infrared spectra of PG were evaluated by Fourier Transform Infrared Spectrometry (FT-IR) (Spectrum 2000, Model Spectrum GX FT-IR). The KBr disc containing PG powder was prepared the ratio of KBr : PG was 75 : 1. The mixture was ground using an agate mortar and pestle to obtain an uniform mixture, speed it in the die of 7 mm diameter and compressed with Qwik Handi-Press. The spectra were scanned in the range of 370-4000 cm⁻¹.

2.5 Galacturonic acid assay in PG

The galacturonic acid contents were determined by spectrophotometry assay using m-hydroxydiphenyl reagent (Filisetti-Cozzi et al.1991). A volume of 0.4 ml of D-(+)-Galacturonic acid standard at 50-250 nmol concentrations was used, a positive control was pectin at 0.01% concentration and PG sample at 0.0125% solution in distilled water was determined. In each test solution was added 40 μ l of 4 M sulfamic acid-potassium sulfamate (pH 1.6) and mixed thoroughly. H₂SO₄ (96.4% assay) containing 75 mM sodium tetraborate (2.4 ml) is then added and vortexed vigorously. The solution mixture was heated for 20 minutes in boiling water, the tubes were capped with marbles. Then the tubes were placed in ice bath to quickly cool to room temperature. After that, 80 μ l of 0.15% (w/v) m-hydroxydiphenyl in 0.5% (w/v) NaOH was overlaid and mixed by vortex. The pink color developed in about 5-10 minutes and was stable for about 1 hour. Absorbance was read at 525 nm by spectrophotometer (model Educator, Thermo Electron, Co., USA).

2.5.1 Standard curve and positive control

D-(+)-Galacturonic acid was dissolved in distilled water containing 50, 100, 150, 200 and 250 nmol as the standard curve.

Pectin (Galacturonic acid \geq 74.0%) was prepared at 0.01% concentration in distilled water as a positive control.

2.5.2 Preparation of PG sample solution

PG solution of each specimens at 0.0125% concentration in distilled water was prepared to measure the galacturonic acid contents.

2.5.3 Calculation

The absorbance of pectin and PG solution was correlated the galacturonic acid in solution (X, nmol) by standard curve and calculated the percentage of galacturonic acid in PG by the formular below.

% Galacturonic acid in PG = (0.42432)X

% Galacturonic acid in Pectin = (0.53040)X

2.6 Statistical analysis of PG

The results of PG analysis; yield, pH, viscosity and galacturonic acid, were analyzed statistically using ONE WAY ANOVA, either LSD or Tukey HSD statistic. The values were considered to be significantly different when the P value was less than 0.05.

3. Correlation of DNA fingerprint and PG analysis from fruit-rinds

The DNA profiles and PG properties of all durian specimens (from Chanthaburi and Chumporn province, Thailand) were compared together.

CHAPTER III

RESULTS AND DISCUSSION

1. DNA fingerprint analysis

1.1 DNA extraction

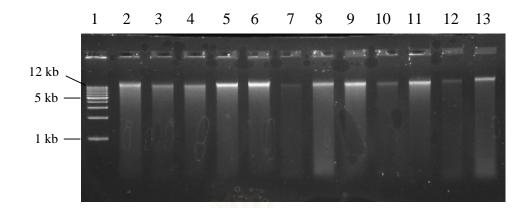
Total genomic DNA was isolated from leaves of *Durio zibethinus* by using the DNeasy Plant Mini Kit, and then DNA in solution was purified by Geneclean II Kit to remove any polysaccharide molecules, because polysaccharide could be one of PCR inhibitors. Polysaccharides are macromolecules containing long chain polymer of monosaccharide units, the structure similar to nucleic acids. Contaminated polysaccharides in DNA preparations interfere with the activity of enzymes DNA polymerases (Kim, 2000; Peist, 2001). Genomic DNA was examined on 1% agarose gel electrophoresis. The size of isolated durian DNA in each cultivar was more than 12 kb as shown in the Figure 10. The purified DNA was stored at – 20°C until used.

1.2 Primer design

The *mat*K gene locates within the *trn*K gene. Nyffeler et al. (2005) have previously reported total *trn*K/*mat*K sequences of *Durio zibethinus* in GenBank, accession number AY321188. In this study, the total *trn*K gene was used as the template for primer design. The primers were designed by Fast PCR program for both *mat*K amplification and DNA sequencing. The first was the *mat*K amplification primers which were the *mat*KD617F and *mat*KD2396R. The second was sequencing primers which were walkingB/F8, walkingC/F15 and walkingD/R20. Their sequences are shown below.

matK amplification primers

*mat*KD617F : 5'-tga atc tac ctg tct ccg agg t-3' *mat*KD2396R : 5'-agt gga cta ctc agc caa tcc-3'


matK sequencing primers

walkingB/F8 : 5'-gca ttt att acg gtt ctc tc-3'
walking C/F15 : 5'-atg ata tcg gtg gga ttt gc-3'
walking D/R20 : 5'-cat gat tga cca gag cat tg-3'

However, the *mat*KD617F and *mat*KD2396R were not only to amplify the PCR products but also the sequencing primers. The positions of PCR and sequencing primers on *trnK/mat*K gene are illustrated in Figure 11. From the picture, the size of PCR products were estimated containing 1,780 bp in length corresponding to complete *mat*K region and partial *trn*K gene. The optimum annealing temperature for PCR amplification was found in the range of 57°-60°C from the calculation of primer design program.

The forward and reverse primers were abbreviated into F and R, respectively. Thus, the *mat*KD617F, walkingB/F8 and walkingC/F15 were forward primers and the reverse primers were *mat*KD2396R and walkingD/R20.

The genomic DNA or even PCR product is a double stranded DNA. Generally, nucleotide sequences should be presented, only by a single strand, in the 5' to 3' direction, from left to right. As the results of primer design, the forward primer sequences were identical to nucleotide sequences of DNA template. According to the fact that DNA replication occurs from 5' to 3' direction. The forward primer (5' to 3') then hybridized into a complementary DNA (3' to 5'). On the other hand, The reverse primer at the 3' end was the reverse complement of the 5' end of another DNA template. The Figure 12 showed the hybridization between DNA template or complementary DNA to PCR primer, *mat*KD617F and *mat*KD2396R.

- Figure 10. Genomic DNA of durian cultivars performed on 1% agarose gel electrophoresis. The size of DNA of each cultivar was more than 12 kb.
 - Lane 1: 1 kb DNA Ladder (the sizes are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 kb, respectively.)
 - Lane 2-3: Kradumthong (Chanthaburi)
 - Lane 4-5: Monthong (Chanthaburi)
 - Lane 6-7: Chani (Chanthaburi)
 - Lane 8-9: Pauenmuang (Chumporn)
 - Lane 10-11: Monthong (Chumporn)
 - Lane 12-13: Chani (Chumporn).

-						
1	ggcttttaag	tgcgactagc	atcttttaca	catttgtatg	aagaaaggga	ttcgttcata
61	ccatcggtac	agtttgtaag	accacgactg	atcctgaaag	gagtggatgg	aaaaaagagc
	atgtcgtatc					
	aaatcgtctt					
	-				-	
	gagtgaataa					
301	ttctgttcgc	aatttgaatg	attacccgat	ctaattaaac	gttaaaaata	aattagtgcc
361	taatgcggta	aaggtttttc	tcatgagtaa	attatcgatt	tttttatgag	tcctaattat
421	tagttattcc	ctttatqqqt	tagacatgaa	tgtgtataag	aagcagtata	ttqataaaqa
	aaagatattt					
	ttyytancca					
JII	ccyytancea			IICataaatta	allayalyyt	aaaayacayy
C 0 1			D617F			
	atagagaatc					
661	taccttgttt	tgactgtatc	gcactatgta	tcatttgata	accgaataga	tcccctatac
721	tttggttcaa	atcgaatttg	aaatggagga	atttcaagta	tatttagaac	taaatagatc
781	tcgccgacat	gatttcctat	acccacttat	ttttcqqqqaq	tatatttatq	cacttgctca
	tgatcatggt					
	cagttcacta					
901	ttctgctaat		aaaalccall	lllgggcac	aacaalaall	lalallelea
	walking C/F15					
	1 <mark>a</mark> atgatatcg					
108	lttactcacaa	ggggaagaag	tcgcaaaatc	ccataatttc	caatcaattc	attcaatatt
114	1tccttttta	gaggacaaat	tctcacattt	aaattatgtg	ttagatgtac	taatacctta
	1ccccatccat					
	welking R/	F8				
126	1tttgcattta	ttaccottat	atatataga	atattataat	ttassasatt	ttattactcc
	laaagaaatct					
138	latgtgaatac	gaatccattt	tcctttttct	ccgtaatcaa	tcttcttatt	tacgatcaac
144	latcttctgga	ttctttcttg	aacgaattaa	tttctatgga	aaaatagagt	atcttgtaga
150	lagtcttttat	aatgattttc	agaacaacct	atggttgttc	aaagaccctt	tcatacattt
	1ttttaggtat					
	lgtggaaatat					
	laagcgtccgt					
	ltgtgcgatta				-	_
	ltaatgctatg					
186	1taaagcgaaa	ttttgtaaca	cattagggca	tcccattagt	aagccgacgt	ggtccgattc
192	1ctccgattct	gatattattg	accgatttgt	gcgtatatgc	agaaatcttt	ctcattatca
	lcagtggatct					
	1tgttaaaact					
	lttcggaattt					
	laagagttttt					
222	lttgtat <mark>caat</mark>			attggttatg	aaatcatgta	aattcaaatt
	► +	——— walkin	ig D/R20			
228	1caatataaaa	tgggaatttt	tcctaaatga	tgaagagata	acaaaagaat	ttattcagtt
	lctagtattaa					
1	J Dalo Bala		Jenegaalaa			D2396R
240	ltgagtcctgt	ttagggaata	aattootttt	agatetatag		
					ucuyuyaady	ccycycycad
240	ltgaaaaatgc	aaycacggtt	cyyyyaggga	LLLLL		

Figure 11. The total sequences of *trnK/mat*K gene (2,496 bp) have been reported in GenBank, accession no. AY321188. The complete *mat*K gene sequences are 1,509 bp in length as marked between 743 to 2251 in the blue color. The positions and directions of primers on the *trnK/mat*K gene are shown in the red color. The underline sequences are start and stop codon, respectively.

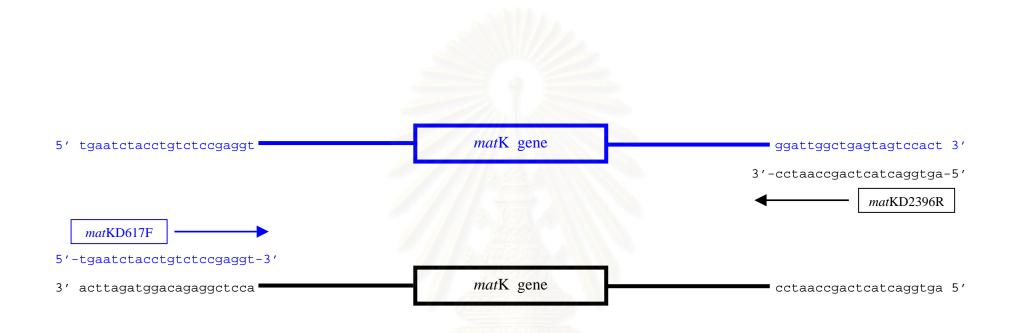
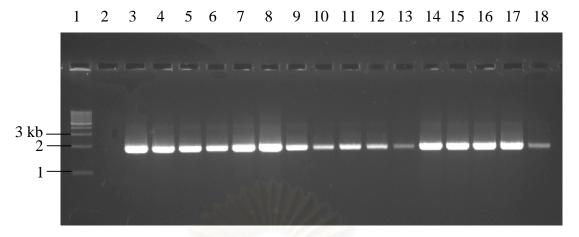


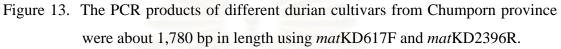
Figure 12. The hybridization of PCR primers, *mat*KD617F and *mat*KD2396R on *trnK/mat*K gene template. The single stranded DNA is the format representation of nucleotides as marked in the blue color.

1.3 The matK amplification, sequencing and sequence alignment

The complete *mat*K gene (including partial *trn*K gene) was amplified by PCR technique using the primers, *mat*KD617F and *mat*KD2396R. The optimum of PCR condition and cycles were described in the Table 3. The annealing temperature at 58°C generated the high yield of PCR products. The 1.5 mM concentration of MgCl₂ was adequate for PCR amplification in this experiment. The PCR products of all durian cultivars from Chumporn and Chanthaburi provinces were about 1,780 bp, performed on 1.5% agarose gel electrophoresis as shown in the Figure 13 and 14, respectively. However, PCR products of some cultivars, 'Kradumthong' (DZ-KDJ 2 and DZ-KDJ 4) and 'Monthong' (DZ-MTJ 3 and DZ-MTJ 4) from Chanthaburi were slightly present. The PCR yields of 'Monthong' were increased when the annealing temperature was adjusted to 60°C as shown in the Figure 15. Although, PCR conditions were varied both MgCl₂ concentration and annealing temperature, two of five 'Kradumthong' samples as shown in Figure 14 were still present slightly.

PCR products were then sequenced by sequencing primers, walkingC/F15, walkingB/F8 and walkingD/R20 provided by BioService Unit (BSU), BIOTEC, Thailand. The fragment sequences of all durian cultivars obtained from each of sequencing primers were aligned by multiple sequence alignment. The results showed that the complete *mat*K gene region was 1,509 bp in length comparable to the previous report in GenBank, accession no. AY321188 of *Durio zibethinus*. Unfortunately, any specific cultivar was not indicated. The multiple sequence alignment of *mat*K sequences of certain durian cultivars from Chanthaburi and Chumporn provinces were illustrated in the Figure 16 and 17, respectively

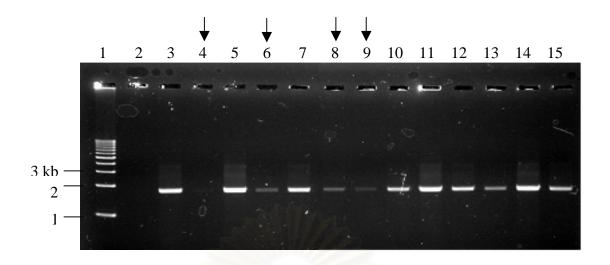

According to the results of the sequence alignment, the cytosine substitutions were found at the position 275 in the *mat*K gene of 'Monthong' and 'Chani' cultivars from both provinces, and 'Kradumthong' from Chanthaburi province. Interestingly, 'Pauenmuang' cultivar presented either adenosine or cytosine substitutions at the same position. In addition, the *mat*K sequences of all tested durian cultivars were also found the cytosine and thymidine substitutions at the position 860 and 862, respectively. Finally, the complete *mat*K sequences of cultivated-durians; 'Monthong', 'Chani' and 'Kradumthong' from Chanthaburi province, and


'Monthong', 'Chani' and 'Pauenmuang' from Chumporn province were deposited in DDBJ/EMBL/GenBank database. The data of base substitution and submissiom were summarized in the Table 4. Hence, The *mat*K alignment of *Adansonia digitata* was outgroup samples as shown in appendix H.

Although the relatively rapid rate of evolution of *mat*K compared to other conservative genes, it is suitable for identification in taxonomic levels at the generic, species and even population, and the flanking trnK is easily designed primers to amplify and sequence total *mat*K gene (Soltis et al, 1998). Even if the *mat*K gene is applicable for studying taxonomy in generic and species levels, according to the characterization of Fagopyrum species (Ohsako and Ohnishi, 2001), the plant systematics of 112 species in Crassulaceae family (Mort et al., 2001), 57 species of Saxifragaceae family (Soltis et al., 2001), Rheum species (Yang et al., 2004), etc. However, the *mat*K gene sequences is also used to evaluate the genetic differentiation of radish cultivars but the relationship between cultivated and wild radishes were still obscure (Yamane et al., 2005). Yamane and co-workers have developed primers to study other gene in chloroplast genome by PCR-RFLP (polymerase chain reactionrestriction fragment length polymorphism). Like radish, matK gene seemed not to give enough information to characterize durian cultivars because the evolution rate of matK is slow and it was only one gene in total genomic DNA. Wissemann and Ritz (2005) used both ITS-1 of nDNA and IGS of atpB-rbcL in cpDNA to study the taxonomy of genus Rosa. Both the matK and ITS sequence data were determined the phylogeny of the large genus Valeriana (Hidalgo et al., 2004). However, the matK was found the base variation at positon 275 in the group of 'Pauenmuang' samples. In this study, RAPD analysis was preliminary examined by using RAPD marker to provide more information for identification of durian cultivars, this technique is simple, inexpensive and the technique does not needed DNA database (Atienzar and Jha, 2006).

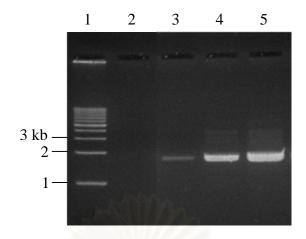
PCR parameters	Optimised condition of <i>mat</i> K gene amplification
PCR buffer	1X (50 mM KCl, 10 mM Tris-HCl (pH 9.0 at 25 °C) and 0.1% Triton X-100)
MgCl ₂ concentration	1.5 mM
Primer concentration	0.5 μ M of each specific primers
dATP, dTTP, dCTP, dGTP mixing	0.2 mM
Taq DNA polymerase Unit	1.5 U
Amount of DNA	100 ng per a reaction
Total volume	50 μL
	First cycle: 95°C for 2 min.
Thermal cycling condition	35 cycles: 95°C for 40 sec, 58°C for 40 sec, 72°C for 2 min.
	Last cycle: 72°C for 10 min.

Table 3. The optimised PCR condition of *mat*K gene amplification.



Lane 1: 1 Kb DNA Ladder.

Lane 2: Negative control.


- Lane 3-8: Six samples of 'Pauenmuang' (DZ-PMC O DZ-PMC 5).
- Lane 9-13: Five samples of 'Monthong' (DZ-MTC 1 DZ-MTC 5).

Lane 14-18: Five samples of 'Chani' (DZ-CNC 1 - DZ-CNC 5).

- Figure 14. The PCR products of different durian cultivars from Chanthaburi province were about 1,780 bp in length using *mat*KD617F and *mat*KD2396R. The arrows above indicated the low yields of PCR products.
 - Lane 1:1 Kb DNA Ladder.Lane 2:Negative control.Lane 3-7:Five samples of 'Kradumthong' (DZ-KDJ 1 DZ-KDJ 5).
 - Lane 8-10: Three samples of 'Monthong' (DZ-MTJ 3 DZ-MTJ 5).
 - Lane 11-15: Five samples of 'Chani' (DZ-CNJ 1 DZ-CNJ 5).

- Figure 15. The PCR products of 'Monthong' cultivars from Chanthaburi province were about 1,780 bp in length using *mat*KD617F and *mat*KD2396R (the annealing temperature at 60°C).
 - Lane 1: 1 Kb DNA Ladder
 - Lane 2: Negative control
 - Lane 3-5: 3 samples of 'Monthong' (DZ-MTJ 3 DZ-MTJ 5).

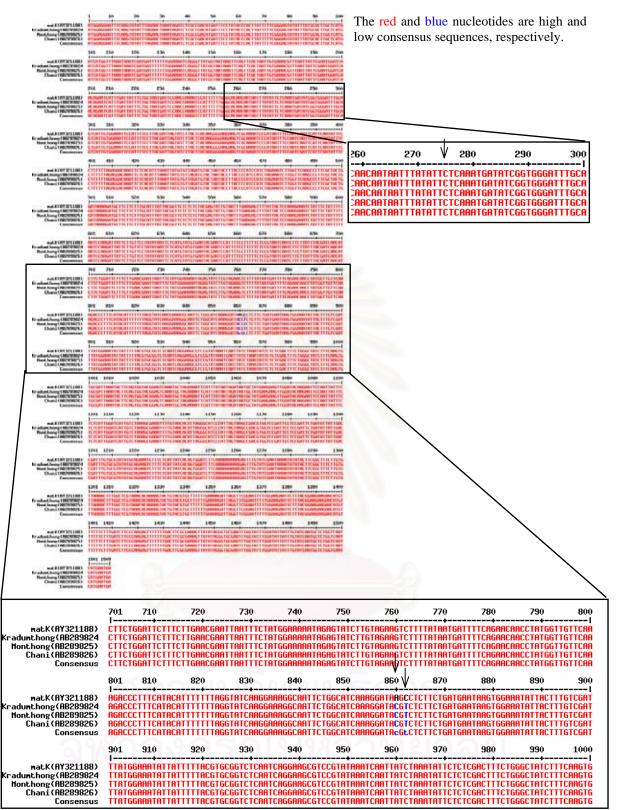


Figure 16. The sequence alignment of durian cultivars, 'Kradumthong' (AB289824),
'Monthong' (AB289825) and 'Chani' (AB289826) from Chanthaburi province was compared to *mat*K gene (AY321188) in GenBank database. The complete *mat*K gene was 1509 bp in length.

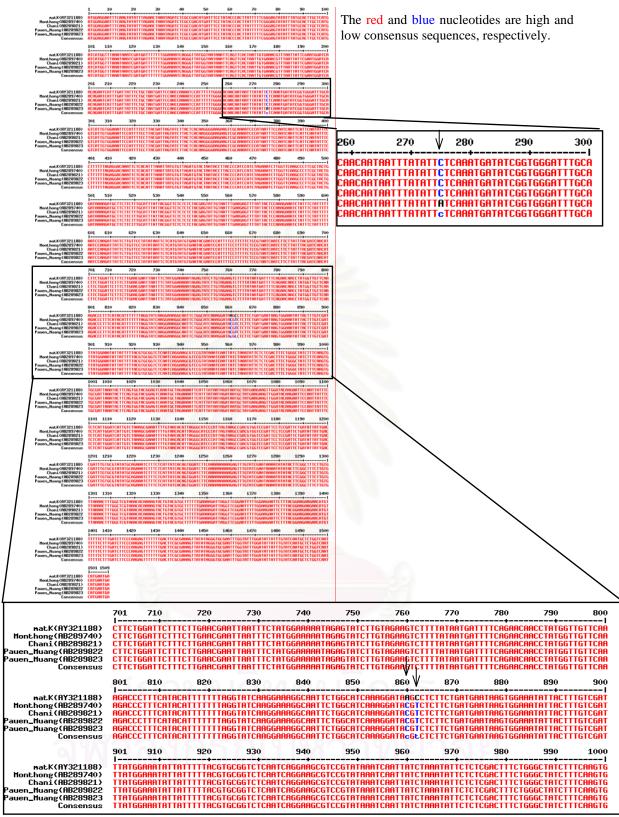


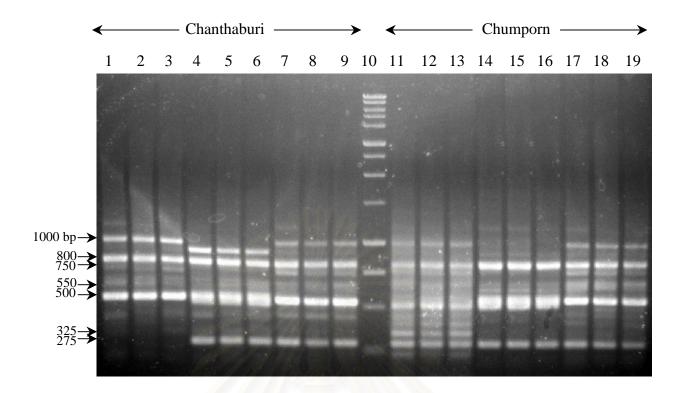
Figure 17. The sequence alignment of durian cultivars, 'Monthong' (AB289740), 'Chani' (AB289821), 'Pauenmuang'1 (AB289822) and 'Pauenmuang'2 (AB289823) from Chumporn province was compared to *mat*K gene (AY321188) in GenBank database. The complete *mat*K gene was 1,509 bp in length.

 Table 4. The summarization of nucleotide substitution in *mat*K sequences of cultivated-durian from Chanthaburi and Chumporn provinces comparing with GenBank database, accession no. AY321188.

Smaalag	Ducuin con	Caltingan	Nucl	Nucleotide positions			
Species	Provinces	Cultivars	275	860	862	 Accession no. 	
Durio zibethinus Murr.	GenBank database	non-identified	С	А	С	AY321188	
		Kradumthong	*	С	Т	AB289824	
	Chanthaburi	Monthong	*	С	Т	AB289825	
		Chani	*	С	Т	AB289826	
	0	Monthong	*	С	Т	AB289740	
	Chumpon	Chani	*	С	Т	AB289821	
	Chumporn	Pauenmuang 1	*	С	Т	AB289822	
		Pauenmuang 2	А	С	Т	AB289823	

Asterisks (*) show the sequence identical to AY321188

1.4 RAPD analysis


Four random primer sets (20 primers per each set), SN01-20, SD01-20, SO01-20 and OPA 01-20 were scanned. The polymorphic band patterns of preliminary RAPD analysis were generated by only three oligoprimers, SN06 (5'-gag acg cac a-3'), SN20 (5'-ggt gct ccg t-3') and SO15 (5'-tgg cgt cct t-3') by PCR condition according to the Table 5. The fragments of PCR products were performed on 1.5% agarose gel electrophoresis as shown in the Figure 18, 19 and 20. Each sample was triplicated in the same PCR condition and reaction. The ranges of DNA fragments of primers, SN06, SN20 and SO15 were about 230-1,000, 300-1,250 and 250-2,300, respectively. The SN06 primer generated the clear unique profiles of cultivated-durians that were 1,000, 800 and 550 bp of 'Kradumthong', 800, 550 and 275 bp of 'Monthong', 1,000, 800, 750, 550 and 275 bp of 'Chani' and 1,000, 800, 750, 500, 325 and 275 bp of 'Pauenmuang'. They were indicated by one direction arrows in Figure 18. The SN06 primer also produced the polymorphic bands of different durian cultivars, which were indicated by one direction arrows as illustrated in Figure 19. However, the profiles of SO15 primers were obscure.

The only clear, strong and reproducible bands were scored as "present" or "absent" for each primers and transferred to a binary code with 1 or 0, respectively. Table 6 and 7 are summary of the total and polymorphic bands, and binary code of each primer for durian cultivars from both Chanthaburi and Chumporn provinces. Dendrogram of all durian specimens was generated using binary code by PAUP program. The dendrogram was the relationship of durian cultivars as shown in Figure 21. From that picture, the durian specimens can be divided into two main groups. The first was 'Pauenmuang' which was the native cultivars. The second was commercially cultivated durians which were 'Kradumthong', 'Monthong' and 'Chani' from Chanthaburi and/or Chumporn province. In addition, the results among cultivated-durian groups were subdivided into 3 groups. Group I was 'Kradumthong' (Chanthaburi) and 'Chani' (Chumporn). Group II was 'Monthong' from Chanthaburi and Chumporn provinces and the last was Group III, 'Chani' from Chanthaburi province. In assumption, Group I should be 'Chani' from both two provinces whereas Group III should belong to 'Kradumthong'.

PCR parameters	Optimised condition of RAPD analysis (Atienzar and Jha, 2006)
PCR buffer	1X (50 mM KCl, 10 mM Tris-HCl (pH 9.0 at 25 °C) and 0.1% Triton X-100)
MgCl ₂ concentration	3 mM
Primer concentration	2 μM
dATP,dTTP,dCTP,dGTP mixing	0.33 mM
Taq DNA polymerase Unit	2 U
Amount of DNA	100 ng per a reaction
Total volume	20 µL
Thermal cycling condition	 First cycle: 95°C for 4 min. 39 cycles: 95°C for 1 min, 50°C for 1 min, 74°C for 1 min. Last cycle: 95°C for 1 min, 50°C for 1 min, 74°C for 10 min.

Table 5. The optimised PCR condition for RAPD analysis

- Figure 18. The RAPD profiles were triplicated in the same PCR condition and cycles by using SN06 primer. Electrophoresis was performed on 1.5% agarose gel.
 - Lane 1-3: 'Kradumthong'
 - Lane 4-6: 'Monthong'
 - Lane 7-9: 'Chani'
 - Lane 10: 1 Kb DNA Ladder (10000, 8000, 6000, 5000, 4000, 3000, 2500, 2000, 1500, 1000, 750, 500 and 250/253 bp from top to bottom)
 - Lane 11-13: 'Pauenmuang'
 - Lane 14-16: 'Monthong'
 - Lane 17-19: 'Chani'

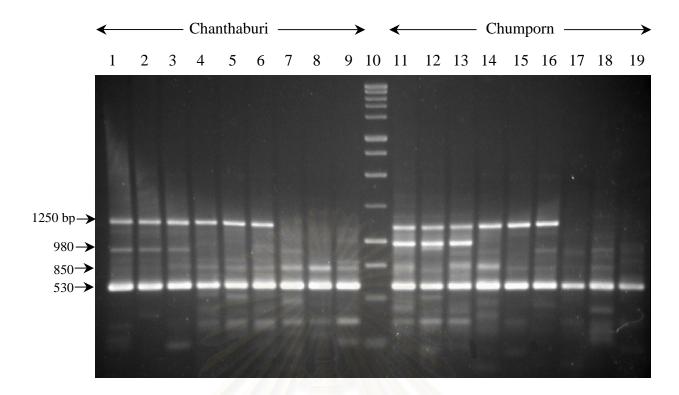


Figure 19. The RAPD profiles were triplicated in the same PCR condition and cycles by using SN20 primer. Electrophoresis was performed on 1.5% agarose gel.

0	
Lane 1-3:	'Kradumthong'
Lane 4-6:	'Monthong'
Lane 7-9:	'Chani'
Lane 10:	1 Kb DNA Ladder (10000, 8000, 6000, 5000, 4000, 3000,
	2500, 2000, 1500, 1000, 750, 500 and 250/253 bp from top
	to bottom)
Lane 11-13:	'Pauenmuang'
Lane 14-16:	'Monthong'

Lane 17-19: 'Chani'

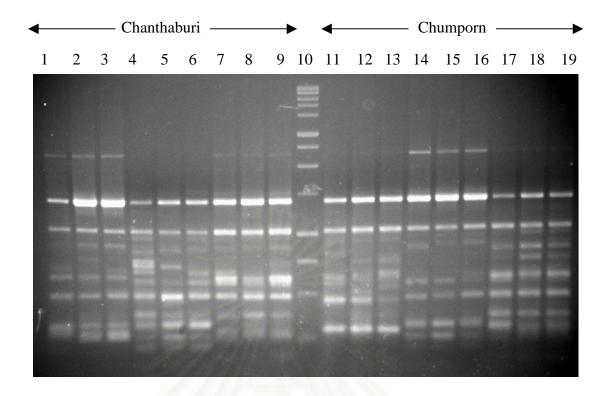


Figure 20. The RAPD profiles were triplicated in the same PCR condition and cycles by using SO15 primer. Electrophoresis was performed on 1.5% agarose gel.

e e	
Lane 1-3:	'Kradumthong'
Lane 4-6:	'Monthong'
Lane 7-9:	'Chani'
Lane 10:	1 Kb DNA Ladder (10000, 8000, 6000, 5000, 4000, 3000,
	2500, 2000, 1500, 1000, 750, 500 and 250/253 bp from top
	to bottom)
Lane 11-13:	'Pauenmuang'
Lane 14-16:	'Monthong'

Lane 17-19: 'Chani'

Primers Total band			Polym	orphic b	oand/primer		
	per primer	Chanthaburi			Chu	mporn	
		Kradumthong	Monthon	g Chani 🛛	Pauenmuang	Monthon	g Chani
SN06	13	4	8	7	10	6	8
SN20	7	4	4	3	5	4	1
SO15	14	7	7	9	7	8	8
Total	34	15	19	19	22	18	17

Table 6. The amount of the total band profile and the polymorphic band of eachprimer from agarose gel electrophoresis.

Table 7. Binary code of each primer with 1 or 0 as the "present" or "absent" bands, respectively.

Province	Primers	SN06	SN20	SO15
Chanthaburi	Kradumthong	1010101000000	1011010	01101010100101
	Monthong	0110111010110	1001110	01100001101101
	Chani	1011101010010	0000111	11111001101010
Chumporn	Pauenmuang	1011100111111	1100111	01110110010010
	Monthong	0110111000010	1010110	11101001100101
	Chani	1111101010010	0000010	01101110101100

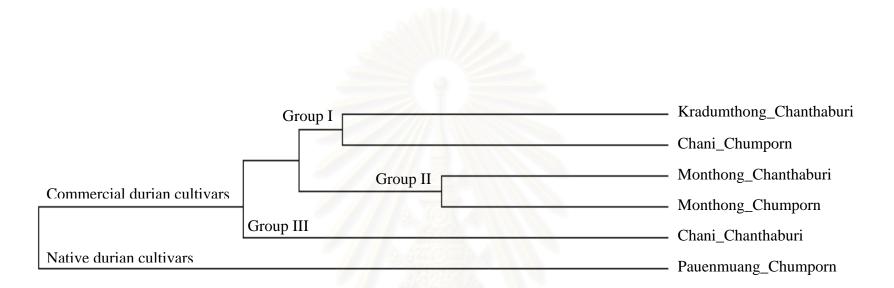


Figure 21. Dendrogram of durian cultivars, 'Monthong', 'Chani' and 'Kradumthong' from Chanthaburi province, and 'Monthong', 'Chani' and 'Pauenmuang' from Chumporn province.

The preliminary RAPD study demonstrated the molecular variation of durian cultivars, even between same cultivars but different location. In previous study, Somsri et al (2005) investigated the phylogeny of genus *Durio* and fifty six cultivars of *D. zibethinus*. They suggested that fifty six cultivars of *D. zibethinus* were very nearly relationship, they were almost identical. Thus, not only the amount of primers should be increased but also the outgroup plant samples within Bombacaceae family should be investigated. The bootstap tree should be also estimated for each clade of an observed tree by Felsenstein method (1985). Efron, et al (1996) showed that Felsenstein's method is not biased.

2. Analysis of Polysaccharide Gel (PG) from durian fruit-rinds

2.1 Isolation and yield of PG from dried fruit-rinds of durian

In this experiment, the total yield of dried powder of PG isolated from fruit-rinds of different durian cultivars including 'Kradumthong', 'Monthong' and 'Chani' from Chanthaburi province; 'Pauenmuang', 'Monthong' and 'Chani' from Chumporn province was 8.501±0.984%, 8.586±1.370%, 9.152±1.163%, 7.448±0.925%, 9.287±1.279% and 7.774±1.173% (w/w) of dried fruit-rinds, respectively. The number of raw data were shown in appendix D. Table 8 illustrated the percentage of yield and statistic analysis of PG yield. PG yield of 'Monthong' (commercially cultivated) from Chumporn gave significantly higher percent yield than that of 'Pauenmuang' and 'Chani' cultivars (naturally cultivated) in the same province (P < 0.05). On the other hand, the PG yield of three durian cultivars cultivated commercially from Chanthaburi province was not significant difference from each other and also not significant difference from that of 'Monthong' cultivated commercially from Chumporn (P > 0.05). PG yield of 'Chani' cultivated commercially from Chanthaburi provinces was higher than that of 'Chani' cultivated naturally from Chumporn province, whereas the PG yields of 'Monthong' cultivated commercially from the two provinces were not significantly different. All samples from Chanthaburi and 'Monthong' from Chumporn province were collected within durian plantation for commercial seemed to produce high PG yield of fruit-rinds, whereas naturally planted 'Pauenmuang' and 'Chani' from Chumporn seemed to provide low PG yield.

Table 8. The percentage of PG yield.

Provinces	Cultivars	% yield	Plantation
Chanthaburi	Kradumthong	$8.501 \pm 0.984^{a,b}$	Commercially
	Monthong	$8.586 \pm 1.370^{a, b}$	Commercially
	Chani	9.152 ± 1.163 ^a	Commercially
Chumporn	Pauenmuang	7.448 ± 0.925 ^b	Naturally
	Monthong	9.287 ± 1.279 ^a	Commercially
	Chani	7.774 ± 1.173 ^b	Naturally

a, b = the significant difference between groups (P < 0.05)

An aqueous solutions of PG from 'Kradumthong', 'Pauenmuang', 'Chani' and 'Monthong' from either Chanthaburi or Chumporn province were dark orange, light brown, orange and slightly yellow respectively as shown in the Figure 22.

2.2 pH and viscosity of PG

The 3% w/v solution of PG in distilled water was measured the pH value by pH meter. The pH values of durian cultivars, 'Kradumthong', 'Monthong' and 'Chani' from Chanthaburi province, and 'Pauenmuang', 'Monthong' and 'Chani' from Chumporn province as shown in Table 9 were 2.526±0.782, 2.471±0.794, 2.437±0.049, 2.463±0.119, 2.491±0.089 and 2.499±0.059, respectively. The acid pH values were observed in PG solutions because the polysaccharide gel composes high content of polygalacturonic acid which is a weak acid compound. The pKa value of pectin of different degree of esterification (DE) ranges from 3.5 to 4.10 (Hou et al., 1999).

The viscosity of 3% w/v PG solutions was scanned at shear rate from 0 to 6000 1/s by Rheometer (Rheowin-RV1 software, HAAKE Rheowin) using C60/1 Ti as the sensor. The shear rate at 10 1/s was used to measure the viscosity of PG in this Table 9 shows the viscosity of PG from different durian cultivars, study. 'Kradumthong', 'Monthong' and 'Chani' from Chanthaburi province, and 'Pauenmuang', 'Monthong' 'Chani' Chumporn province were and from 577.989±547.261, 832.271±409.011, 705.929±449.796, 491.011±272.117, 1135.091±996.238 and 407.371±219.943 cPs, respectively. The broad ranges of viscosity were obtained. The PG of 'Monthong' from both provinces gave the highest viscosity (P < 0.05).

The viscosity of a pectin solution may be determined for the purpose of estimating the molecular weight of pectin or for evaluating the thickening effect of pectin. The viscosity of PG depended on size of the polysaccharide structure, and the process of isolation also effected the size of PG product. The pH also influences the

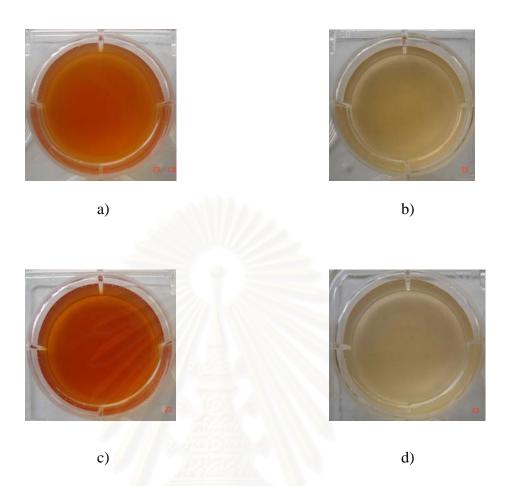


Figure 22. The aqueous solutions of 3% (w/v) PG. a) 'Kradumthong', b) 'Pauenmuang', c) 'Chani' and d) 'Monthong'.

Provinces	Cultivars	рН	Viscosity (cP)
Chanthaburi	Kradumthong	2.526 ± 0.782	$577.989 \pm 547.261 \ ^{b}$
	Monthong	2.471 ± 0.794	$832.271 \pm 409.011 \ ^{a}$
	Chani	2.437 ± 0.049	$705.929 \pm 449.796 \ ^{b}$
Chumporn	Pauenmuang	2.463 ± 0.119	491.011 ± 272.117 ^b
	Monthong	2.491 ± 0.089	$1135.091 \pm 996.238 \ ^{a}$
	Chani	2.499 ± 0.059	407.371 ± 219.943 ^b

Table 9. The pH and viscosity of PG at concentration of 3% w/v PG.

a, b = significant difference between groups (P < 0.05).

viscosity of pectin solutions. In a calcium-free solution the viscosity drops when pH is increased. The same result was also observed with PG from fruit-rinds of 'Monthong' (Lertchaiporn, 2003; Paphattarapong, 2005). However, CP Kelco ApS company suggested that the viscosity should be determined in a calcium-free solution at a fixed pH. The information received on Feb 27, 2007 from the website, www.cpkelco.com. In this study, pH and viscosity of PG solution were measured only at 3% PG at room temperature at pH ranges of each extracted sample were 2.4-2.6.

2.3 FT-IR spectra

Infrared spectra of PG was determined by using a Fourier Transform Infrared Spectrometry (FT-IR). PG powder was directly examined using KBr disc. IR spectra of PG from 'Kradumthong', 'Monthong' and 'Chani' cultivars from Chanthaburi province, and 'Pauenmuang', 'Monthong' and 'Chani' cultivars from Chumporn province were compared with the spectrum of commercial pectin from citrus fruits (P9135 from Sigma company) with the degree of esterification (DE) of 60.97% and the galacturonic content of \geq 74%. The FT-IR spectra of pectin standard and PG sample were illustrated in Figure 23. It was found that the profiles of FT-IR spectra of PG from durian cultivars were identical to that of the pectin standard from citrus fruits, suggested that PG from each durian cultivars was pectic polysaccharide. The 1260-830 cm⁻¹ region, which is referred to as the "finger print" region of polysaccharide, is unique to a PG sample. For polysaccharide this region is dominated by ring vibrations overlapped with streching vibrations of (C-OH) side groups and the (C-O-C) glycosidic bond vibration. The main absorbance regions are at 1,150, 1,103 and 1015 cm⁻¹. The specific bands at 1,747 and 1,640 indicated the ester carbonyl (COOR) and carboxylate ion (COO-) groups, respectively, (Sun et al, 2005; Fang et al., 2006). The results of FT-IR spectras were identical to FT-IR spectra of pectic polysaccharide PG characterization as prior previous studied (Gerddit, 2002). The results showed that PG extracted from different durian cultivars and different cultivated areas gave a pectic polysaccharide with identical profiles of FT-IR spectra (Figure 23).

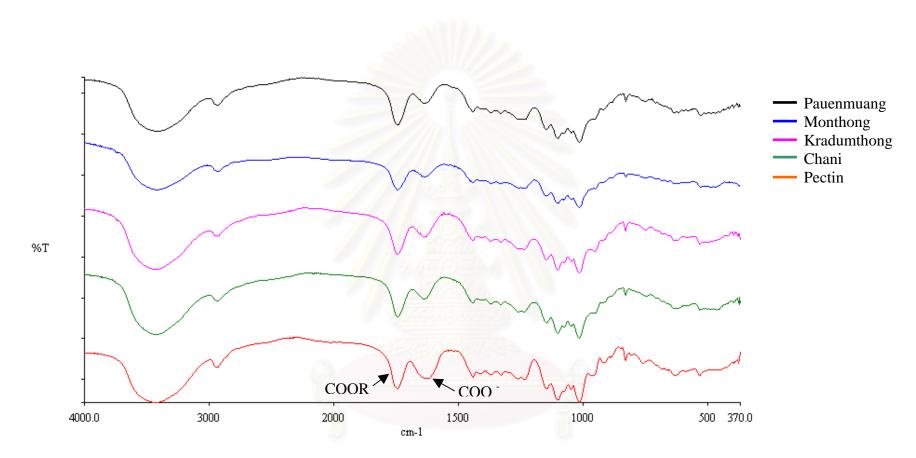


Figure 23. Fourier transform infrared spectra of polysaccharide gel (PG) from durian-fruit rinds of cultivars, 'Monthong', 'Pauenmuang', 'Chani', and 'Kradumthong' were compared to commercial pectin (P9135 from Sigma Co.) with the degree of esterification (DE) of 60.97% and the galacturonic content of ≥ 74%.

2.4 Galacturonic acid assay in PG

Galacturonic acid component in PG was analyzed by spectrophotometry assay using m-hydroxydiphenyl reagent (Filisetti-Cozzi et al.1991). D-(+)-Galacturonic acid standard at 50, 100, 150, 200 and 250 nmol concentrations, pectin (Galacturonic acid \geq 74.0 %) at 0.01% concentration as a positive control and PG sample at 0.0125% solution in distilled water was determined. The concentration of galacturonic acid standard was plotted against absorbance at 525 nm. Absorbance of various concentration of standard was shown in Table 10 and the standard curve was plotted (Figure 24). Galacturonic acid in PG samples and pectin was determined by using the correlation of its absorbance and galacturonic acid concentration in solution from standard curve. The percentages of galacturonic acid in pectin and PG were calculated by the formular below. The X (nmol) was multipled with 0.53040 or 0.42432 for the calculation of galacturonic acid component in pectin standard or PG, respectively.

> % Galacturonic acid in Pectin = (0.53040) X % Galacturonic acid in PG = (0.42432) X

galacturonic acid composition in PG of durian cultivars, The 'Kradumthong', 'Monthong' and 'Chani' from Chanthaburi province, and 'Pauenmuang', 'Monthong and 'Chani' from Chumporn province was 84.740±10.323%. 65.813±5.841%, 59.370±9.558%, 64.330±6.674%, 66.097±10.197% and 54.351±9.459%, respectively, data are shown in the Table 11. The number of raw data were shown in appendix E. The component of galacturonic acid in commercial pectin (Galacturonic acid \geq 74%) was 94.588±10.718%. The galacturonic acid content in fruit-rinds of durian was different between cultivars. The results in Table 11 showed that PG from 'Kradumthong' composed of the highest galacturonic acid content. The lower galacturonic acid content was 'Monthong', 'Pauenmuang' and 'Chani', respectively. However, the galacturonic acid contents in PG of 'Pauenmuang' naturally cultivated and 'Monthong' commercially cultivated from different areas were not significant difference. Galacturonic acid content in PG

Galacturonic acid (nmol)	Absorbance, 525 nm
0	0
50	0.09
100	0.19
150	0.28
200	0.39
250	0.52

Table 10. The absorbance of D-(+)-galacturonic acid at 525 nm.

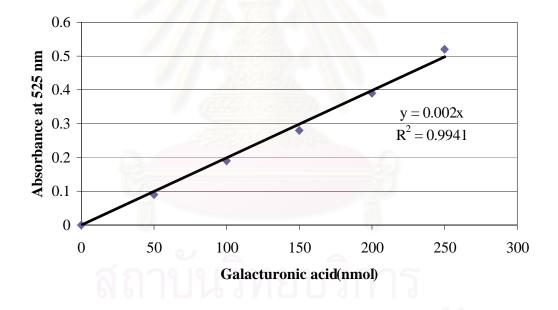


Figure 24. The standard curve of D-(+)-galacturonic acid versus absorbance.

Provinces	Cultivars	% galacturonic acid	Plantation
Chanthaburi	Kradumthong	84.740 ± 10.323^{a}	Commercially
	Monthong	$65.813 \pm 5.841^{\rm \ b,c}$	Commercially
	Chani	$59.370 \pm 9.558^{c,d}$	Commercially
Chumporn	Pauenmuang	64.330 ± 6.674 ^{b, c}	Naturally
	Monthong	66.097 ± 10.197 ^b	Commercially
	Chani	54.351 ± 9.459^{d}	Naturally

Table 11. The galacturonic acid content in PG of durian cultivars.

a, b, c and d = the significant difference between groups (P < 0.05).

of 'Monthong' cultivar commercially cultivated from the two provinces was not significant difference. Galacturonic acid content in PG of 'Chani' commercially cultivated from Chanthaburi and 'Chani' naturally cultivated from Chumporn was also not significantly different. In this study suggested that the galacturonic acid components in PG of the same cultivars but different planted areas, 'Monthong' or 'Chani' were not significant difference, but galacturonic acid contents in PG of different cultivars such as 'Kradumthong', 'Monthong' and 'Chani' were significantly different. A comparison of galacturonic acid in PG between cultivars 'Monthong' and 'Chani', and planted areas can be summarized as follow:

Comparison	Cultivars	Areas	% Galacturonic acid in PG
Monthong (Chanthaburi) Chani (Chumporn)	Different	Different	Significant difference
Monthong (Chumporn) Chani (Chanthaburi)	Different	Different	Significant difference
Monthong (Chumporn) Chani (Chumporn)	Different	Same	Significant difference
Monthong (Chanthaburi) Chani (Chanthaburi)	Different	Same	No significant difference

The galacturonic acid in PG of three groups were significantly difference except the case of 'Monthong' (Chanthaburi) and 'Chani' (Chanthaburi). Because the gene expression of any metabolites depends on two factors. Firstly is genetic materials which referred to as the variation of different cultivars. Secondly is the environmental effects which meaned the planted areas including fertilizer used in commercial durian production. However, m-hydroxydiphenyl reagent was analyzed total uronic acid (Filisetti-Cozzi et al.1991). The percentage of galacturonic acid in PG of 'Kradumthong', 'Chani' and 'Pauenmuang' in this study might be included other uronic acids such as glucoronic acid, mannuronic acid, etc. Although, PG from 'Monthong' was not found other uronic acids (Gerddit, 2002; Hokputsa, 2004). The high resolution techniques should be used to ensure the galacturonic acid content in PG and other sugar components. The techniques were a gas chromatographic (GC) method (Jones and Albersheim, 1972), a high-performance liquid chromatographic (HPLC) method or a liquid chromatography-mass spectrometry (LC-MS) (Sánchez-Machado et al, 2003).

Although, the galacturonic acid content in PG of 'Kradumthong' was the hightest value, but the pH value of its PG solution was not significantly different between cultivars.

2.5 Correlation of DNA fingerprint and PG analysis from fruit-rinds

According to the dendrogram of RAPD analysis suggested that durian cultivars, 'Monthong', 'Chani', 'Kradumthong' and 'Pauenmuang' had the variation of genetic materials. The results of the present study indicated that the composition of galacturonic acid in PG varied in accordance with the different durian cultivars (P < 0.05). The galacturonic acid content in PG might be the influence of the genetic materials. Nevertheless, the broad standard deviation (SD) of galactuoronic acid values maybe also indicated the variation of the environment factors of durian fruits such as extraction condition, fruit ripening, etc. On the other side, the yield of PG depended on the maintainance of commercially plantation of durian, espectially the PG yield of 'Chani' from naturally and commercially cultivated areas.

Normally, the correlation between chemicals and genetic materials was not successful like Italian rice (Brandolini et al., 2006), but achieved in Italian garlic (Brandolini et al., 2005). The DNA-based marker is appropriate for fast and simple techniques to identify two food additive polysaccharide, locust bean gum and guar gum, besides the chemically different ratio of galactose and mannose (Urdiain et al., 2004; Urdiain et al., 2005). Although the galacturonic acid content in PG did not relate to the durian classification of dendrogram analysis. However, RAPD analysis has just preliminary studied. The more number of the oligoprimers as well as the amount of durian samples should be examined. As the results, the polymorphic band profiles of RAPD may be used as the molecular marker together with galacturonic acid content in PG for characterization and identification of durian cultivars. The limitation of RAPD is reproducible, the optimized PCR condition should be confirmed by repeating the PCR reaction (Atienzar and Jha, 2006). Finally, other sugar components of PG should be entirely determined or estimated to ratio of sugar, like the galactose and mannose ratios of locust bean gum and guar gum.

CHAPTER IV

CONCLUSION

1. DNA fingerprint analysis

The matK gene and sequencing: The completed matK gene of durian cultivars, 'Kradumthong', 'Monthong', 'Chani' and 'Pauenmuang' were 1,509 bp in length. The nucleotide substitutions were occured at the position of 275, 860 and 862 compared with matK sequences of Durio zibethinus in GenBank, accession no. AY321188. The matK of 'Pauenmuang' cultivar presented either adenosine or cytosine substitutions at the position 275, whereas 'Monthong' and 'Chani' cultivars from both provinces, and 'Kradumthong' from Chanthaburi province presented the cytosine substitutions at the same position as same as the previous in GenBank. The matK sequences of all durian cultivars were also found the cytosine and thymidine substitutions at the position 860 and 862, respectively. The matK gene was not represented a suitable molecular markers for durian identification in this study. However, the new *mat*K sequences in this study have been deposited on DDBJ/EMBL/GenBank database in accession no. AB289824, AB289825, AB289826, AB289822, AB289823, AB289740, and AB289821 for durian cultivars, 'Kradumthong', 'Monthong' and 'Chani' from Chanthaburi, and 'Pauenmuang' (cytosine substitution at the position 275), 'Pauenmuang' (adenine substitution at the position 275) 'Monthong' and 'Chani' from Chumporn province, respectively.

RAPD analysis: The RAPD technique generated the polymorphic band patterns of durian cultivars, 'Kradumthong', 'Monthong', 'Chani' and 'Pauenmuang' with the three primers, SN06, SN20 and SO15. The SN06 primer generated the clear unique profiles of cultivated-durians which were 1,000, 800 and 550 bp of 'Kradumthong', 800, 550 and 275 bp of 'Monthong', 1,000, 800, 750, 550 and 275 bp of 'Chani' and 1,000, 800, 750, 500, 325 and 275 bp of 'Pauenmuang'. The DNA fragments were analyzed to binary code, 1 and 0 for present and absent bands, respectively, and then constructed to the dendrogram using PAUP program. As the result of the dendrogram, the durian specimens were divided into two main groups,

naturally cultivated or 'Pauenmuang' cultivar and commercially cultivated durian cultivars. The commercially cultivated durian cultivars were subdivided into 3 minor groups. Group I was 'Kradumthong' (Chanthaburi) and 'Chani' (Chumporn). Group II was 'Monthong' from Chanthaburi and Chumporn provinces and the last was Group III, 'Chani' from Chanthaburi province. However, the RAPD can be used as the molecular marker for identification of cultivated-durians by using polymorphic band patterns, but the more number of primers should be investigated.

2. Analysis of PG in fruit-rinds

The yield of PG: In this experiment, the total yield of PG isolated from fruitrinds of durian cultivars, 'Kradumthong', 'Monthong' and 'Chani' from Chanthaburi province; 'Pauenmuang', 'Monthong' and 'Chani' from Chumporn province was $8.501\pm0.984\%$, $8.586\pm1.370\%$, $9.152\pm1.163\%$, $7.448\pm0.925\%$, $9.287\pm1.279\%$ and $7.774\pm1.173\%$ by weight of dried fruit-rinds, respectively. PG from the fruit rinds of 'Monthong' gave the highest yield. The percentage of PG yield perhaps depended on durian plantation according to the total PG yield of 'Chani' cultivated commercially from Chanthaburi gave higher PG yield (P < 0.05) than that of 'Chani' cultivated naturally from Chumporn. Commercially planted gave high total yield of PG in durian fruit-rinds

pH and viscosity of PG: The pH values of durian cultivars at 3% w/v PG, 'Monthong' and 'Chani' from Chanthaburi province, and 'Kradumthong', 'Pauenmuang', 'Monthong' and 'Chani' from Chumporn province were 2.526±0.782, 2.471±0.794, 2.437±0.049, 2.463±0.119, 2.491±0.089 and 2.499±0.059, respectively. Although, the galacturonic acid content in PG of 'Kradumthong' was the hightest value but pH in its PG solution was not significantly the lowest among other cultivars. The viscosity of PG from different durian cultivars, 'Kradumthong', 'Monthong' and 'Chani' from Chanthaburi province, and 'Pauenmuang', 'Monthong' and 'Chani' from Chumporn province were 577.989±547.261, 832.271±409.011, 705.929±449.796, 491.011±272.117, 1135.091±996.238 and 407.371±219.943 cPs, respectively. PG solution of 'Monthong' gave the highest viscosity (P < 0.05).

Galacturonic acid content in PG: The galacturonic acid composition in PG of durian cultivars, 'Kradumthong', 'Monthong' and 'Chani' from Chanthaburi province, and 'Pauenmuang', 'Monthong' and 'Chani' from Chumporn province was 84.740±10.323%, 65.813±5.841%, 59.370±9.558%, 64.330±6.674%, 66.097±10.197% and 54.351±9.459%, respectively. The highest galacturonic acid content in PG was from 'Kradumthong' (P < 0.05), followed by galacturonic acid content in PG from 'Monthong', 'Pauenmuang' and 'Chani', respectively. Galacturonic acid in PG of 'Monthong' and 'Chani' from different provinces was not significant difference (P > 0.05). The content of galacturonic acid in PG of 'Pauenmuang' was not significantly different from Monthong. However, mhydroxydiphenyl reagent is analyzed total uronic acid (Tullia et al. 1991) so the high resolution techniques should be studied to ensure the galacturonic acid content in PG and other sugar components. Although, PG from 'Monthong' was not found other uronic acids (Gerddit, 2002; Hokputsa, 2004).

3. Correlation of DNA fingerprint and PG from fruit-rinds

The polymorphic band profiles of RAPD may be used as the specific marker together with the galacturonic acid content in PG. Moreover, the more number of the oligoprimers as well as the amount of durian samples should be examined. Finally, other sugar constituent should be also determined.

REFERENCES

- Atienzar, F. A., and Jha, A. N. 2006. The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: A critical review. <u>Mutation Research</u>. 613(2-3): 76-102.
- Bell, C. D. 2004. Preliminary phylogeny of Valerianaceae (Dipsacales) inferred from nuclear and chloroplast DNA sequence data. <u>Molecular Phylogenetics and</u> <u>Evoluion</u>. 31: 340-350.
- Brandolini, V., et al. 2005. Chemical and genomic combined approach applied to the characterization and identification of Italian Allium sativum L. Journal of <u>Agricultural and Food Chemistry</u>. 53: 678-683.
- Brandolini, V., et al. 2006. Chemometrical characterization of four Italian rice varieties based on genetic and chemical analysis. <u>Journal of Agricultural and Food Chemistry</u>. 54: 9985-9991.
- Chansiripornchai, P., Pongsamart, S., Nakchat, O., Pramatwinai, C., and Rangsipipat,
 A. 2005. The efficiency of polysaccharide gel extracted from fruit-hulls of durian (*Durio zibethinus* L.) for wound healing in pig skin. <u>Acta Horticulturae</u>.
 679: 37-43.
- Chansiripornchai, P., Pongsamart, S., Nakchat, O., Pramatwinai, C. and Rangsipipat,
 A. 2006. Comparative efficiency of durian polysaccharide gel dressing patches for would healing in pig and dog skin *In Vivo*. <u>Acta Pharmacologica Sinica</u>. 1: 54.
- Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. <u>Nucleic</u> <u>Acids Research</u>. 16(22): 10881-10890.
- Dhar, R. S., et al. 2006. Phytochemical and genetic analysis in selected chemotypes of Withania somnifera. <u>Phytochemistry</u>. 67: 2269-2276.
- Dieffenbach, C. W., and Dveksler, G. S. 2003. <u>PCR Primer</u>: A Laboratory Manual (2nd ed.). New York : Cold Spring Harbor.
- Dumitriu, S. 1998. <u>Polysaccharide: structural diversity and functional versatility</u>. New York : Marcel Dekker, Inc.

- Echeverrigaray, S., et al. 2001. Correlation between the chemical and genetic relationships among commercial thyme cultivars. Journal of Agricultural and Food Chemistry. 49: 4220-4223.
- Efron, B., Halloran, E., and Holmes, S. 1996. Bootstrap confidence levels for phylogenetic trees. <u>The National Academy of Sciences of the USA</u>. 93(23): 13429-13434.
- Fang, X., Jiang, B., and Wang, X. 2006. Purification and partial characterization of an acidic polysaccharide with complement fixing ability from the stems of *Avicennia marina*. Journal of Biochemistry and Molecular Biology. 39(5): 546-555.
- Felsenstein, J. 1985. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. <u>Evolution</u>. 39(4): 783-791.
- Filisetti-Cozzi, T. M. C. C., and Carpita, N. C. 1991. Measurement of uronic acids without interference from neutral sugars. <u>Analytical Biochemistry</u>. 197: 157-162.
- Gerddit, W. 2002. <u>Polysaccharide gel from dried fruit-hulls of durian as dressing-patch</u>. Master's Thesis. Department of Biochemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University.
- Hamada, K., and Hagimori, M. 1996. RAPD-based method for cultivarsidentification of calla lily (*Zantedeschia* spp.). <u>Scientia Horticulture</u>. 65: 215-218.
- Hidalgo, O., Garnatje, T., Susanna, A., and Mathez, J. 2004. Phylogeny of Valerianaceae based on *matK* and ITS markers, with reference to *matK* individual polymorphism. <u>Annals of Botany</u>. 93: 283-293.
- Hilu, K. W., and Liang, H. 1997. The *mat*K gene: sequence variation and application in plant systematics. <u>American Journal of Botany</u>. 84(6): 830-839.
- Hokputsa, S., et al. 2004. Water-soluble polysaccharides with pharmaceutical importance from Durian rinds (Durio zibethinus Murr.): isolation, fractionation, characterization and bioactivity. <u>Carbohydrate polymers</u>. 56: 471-481.
- Hou, W., Chang, W., and Jiang, C. 1999. Qualitative distinction of carboxyl group distributions in pectins with ruthenium red. <u>Botanical Bulletin of Academia</u> <u>Sinica</u>. 40: 115-119.

- Inngjerdingen, K. T., et al. 2005. Bioactive pectic polysaccharides from *Glinus oppositifolius* (L.) Aug. DC., a malian medicinal plant, isolation and partial characterization. Journal of Ethanopharmacology. 101: 204-214.
- Jones, T. M., and Albersheim, P. 1972. A Gas Chromatographic Method for the Determination of Aldose and Uronic Acid Constituents of Plant Cell Wall Polysaccharides. <u>Plant Physiology</u>. 49: 926-936.
- Joshi, K., Chavan, P., Warude, D., and Patwardhan, B. 2004. Molecular Markers in Herbal Drug Technology. <u>Current Science</u>. 87(2): 159-163.
- Kim, S., Labbe, R.G., and Ryu, S. 2000. Inhibitory Effects of Collagen on the PCR for Detection of *Clostridium perfringens*. <u>Applied and Environmental</u> <u>Microbiology</u>. 66(3): 1213-1215.
- Koller, B., Lehmann, A., McDermott, J.M., and Gessler, C. 1993. Identification of apple cultivars using RAPD markers. <u>Theoretical and Applied Genetics</u>. 85: 901-904.
- Lertchaiporn, J. 2003. <u>Gelling and film-forming properties of polysaccharide gel</u> <u>from fruit-hulls of durian</u>. Master's Thesis. Department of Biochemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University.
- Lertchaiporn, J., Tachatawepisarn, T., and Pongsamart, S. 2006. Oral film products of antibacterial polysaccharide gel from durian-rind as a film former. <u>The Science of Product Design and Pharmaceutical Technology</u>. Asian Pharmaceutics Graduate Congress on Sep 25-27, 2006, Singapore.
- Lipipan, V., Nantawanit, N., and Pongsamart, S. 2002. Antimicrobial activity (*in vitro*)of polysaccharide gel from durian fruit-hulls. <u>Songklanakarin Journal of Science and Technology</u>. 24(1): 31-38.
- Maktrirat, M., Ajariyakhajorn, K., and. Pongsamart, S. 2006. Immunomodulatory effect of polysaccharide gel from durian rinds on bovine mammary gland. <u>The Thai Journal of Pharmaceutical Sciences</u>. 30: 86.
- Maktrirat, M., Ajariyakhajorn, K., Chansiripornchai, P., and Pongsamart, S. 2007. Bactericidal effect of post-milking teat dip prepared from polysaccharide gel from durian rinds on streptococci isolates from bovine mastitis. <u>International</u> <u>Workshop on Medical and Aromatic Plants</u>, January 15-18, 2007, Lotus Pang Suan Kaew Hotel, Chiang Mai, Thailand.

- Mayworm, M. A. S., Buckeridge, M. S., and Salatino, A. 2000. Monomer composition of polysaccharides of seed cell walls and the taxonomy of the Vochysiaceae. <u>Phytochemistry</u>. 55: 581-587.
- Mort, M. E., et al. 2001. Phylogenetic relationships and evolution of Crassulaceae inferred from *mat*K sequence data. <u>American Journal of Botany</u>. 88(1): 76-91.
- Mueller, U. G., and Wolfenbarger, L. L. 1999. AFLP genotyping and fingerprinting (review). <u>Tree</u>. 14(10): 389-394.
- Nyffeler, R., and Baum, D. A. 2000. Phylogenetic relationships of the durians (Bombacaceae-Durineae or/Marvaceae/Helicteroideae/Durineae) based on chloroplast and nuclear ribosomal DNA sequences. <u>Plant Systematics and Evolution</u>. 224: 55-82.
- Nyffeler, R., and Baum, D.A. 2001. Systematics and character evolution in Durio s. lat. (Marvaceae/Helicteroideae/Durineae or Bombacaceae-Durineae). Organisms Diversity and Evolution. 1: 165-178.
- Nyffeler, R., et al. 2005. Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences. <u>Organisms Diversity and</u> <u>Evolution</u>. 5(2): 109-123.
- Ohsako, T., and Ohnishi, O. 2001. Nucleotide sequence variation of the chloroplast trnK/matK region in two wild Fagopyrum (Polygonaceae) species, *F. leptopodum* and *F. statice*. <u>Genes and Genetic Systems</u>. 76: 39-46.
- Paphattarapong, N. 2005. <u>Antibacterial activity of anti-acne preparation of polysaccharide gel from durian fruit-hulls</u>. Master's Thesis. Department of Biochemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University.
- Peist, R., Honsel, D., Twieling, G., and Löffert, D. 2001. PCR inhibitors in plant DNA preparations. <u>QIAGEN News</u>. 3: 7-9.
- Phaunfoong, T. 2005. <u>Antibacterial activity of durian fruit-hull polysaccharide gel</u> <u>against bacterial isolates from bovine mastitis</u>. Master's Thesis. Department of Biochemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University.
- Ping, L. Y., et al. 2002. DNA profiling of *Pogostemon cablin* chemotypes differing in essential oil composition. <u>Yaoxue Xuebao</u>. 37(4): 304-308.
- Pongsamart, S., and Panmaung, T. 1998. Isolation of polysaccharides from fruithulls of durian (*Durio zibethinus* L.). <u>Songklanakarin Journal of Science and</u> <u>Technology</u>. 20(3): 323-332.

- Pongsamart, S., Lipipan, V., Nantawanit, N., and Lertchaiporn, J. 2005. Novel water soluble antibacterial dressing of durian polysaccharide gel. <u>Acta</u> <u>Horticulturae</u>. 678: 65-73.
- Pongsamart, S., Sukrong, S., and Tawatsin, A. 2001. The Determination of toxic effects at a high oral dose of polysaccharide gel extracts from fruit-hulls of Durian (*Durio zibethinus* L.) in mice and rats. <u>Songklanakarin Journal of Science and Technology</u>. 23(1): 55-62.
- Pongsamart, S., Tawatsin, A., and Sukrong, S. 2002. Long-term consumption of polysaccharide gel from durian fruit-hulls in mice. <u>Songklanakarin Journal of</u> <u>Science and Technology</u>. 24(4): 649-661.
- Pongwiwatana, U. 2005. <u>Antimicrobial activity of antiseptic gel from durian</u> <u>polysaccharide</u>. Master's Thesis. Department of Biochemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University.
- Ridley, B. L., O'Neill, M. A., and Mohnen, D. 2001. Pectin: structure, biosynthesis, and oligogalacturonide-related signaling. <u>Phytochemistry</u>. 57: 929-967.
- Sánchez-Machado, D. I., López-Cervantes, J., Paseiro-Losada, P., and Simal-Lozano,
 J. 2003. Determination of the uronic acid composition of seaweed dietary
 fibre by HPLC. <u>Biomedical Chromatography</u>. 18(2): 90-97.
- Silva-Brandao, K. L., Solferini, V. N., and Trigo, J. R. 2006. Chemical and phylogenetic relationship among *Aristolochia* L. (Aristolochiaceae) from southeastern Brazil. <u>Biochemical Systematics and Ecology</u>. 34: 291-302.
- Sneath, P.H.A., and Sokal, R.R. 1973. <u>Numerical Taxonomy</u>. Freeman, San Francisco, CA. p. 230-234.
- Sokal, R.R., and Rohlf, F.J. 1981. <u>Biometry 2nd ed</u>. W.H. Freeman and Company. New York. p. 859.
- Soltis, D. E., Soltis, P. S., and Doyle, J. F. (1998). <u>Molecular Systematics of Plants II</u> <u>DNA sequencing</u>. Massachusetts: Kluwer.
- Soltis, D.E., et al. 2001. Phylogenetic relationships and evolution in Chrysosplenium (Saxifragaceae) based on *mat*K sequence data. <u>American Journal of Botany</u>. 88(5): 883-893.
- Somsri, S., and Wangnai, V. (2006). <u>Amazing Thai Durian</u>. Bangkok: Royal Flora Ratchaphruek 2006.

- Somsri, S., Sakuanrungsirikul, S., Ngam-Ngern, W., and Wongvarat, T. 2005. Identification of Durian (*Durio* spp.) cultivars, clones by DNA Amplification Fingerprinting. <u>Thai Agricultural Research Journal</u>. 23(2): 188-210.
- Subhadrabandhu, S. and Ketsa, S. (2001). <u>DURIAN King of Tropical Fruit</u>. Daphne Brasell Associates, Ltd. and CABI publishing, New York.
- Sukrong, S., et al. 2005. DNA fingerprinting of medicinally used *Derris* species by RAPD molecular markers. <u>The Thai Journal of Pharmaceutical Sciences</u>. 29(3-4): 155-163.
- Sun, Y, Tang, J., Gu, X, and Li, D. 2005. Water-soluble polysaccharides from Angelica sinensis (Oliv.) Diels: preparation, characterization and bioactivity. <u>Biological Macromolecules</u>. 36: 283-289.
- Sun, Y., Tang, J., Gu, X., and Li, D. 2005. Water-soluble polysaccharides from Angelica sinensis (Oliv.) Diels: Preparation, Characteriztion and Bioactivity. <u>Biological Macromolecule</u>. 36: 283-289.
- Umprayn, K., Kaitmonkong, R., and Pongsamart, S. 1990. The studies of durian rind extracts as an aqueous binder II : Evaluation of tabletts properties. <u>The Thai</u> <u>Journal of Pharmaceutical Sciences</u>. 15(3): 173-186.
- Urdiain, M., et al. 2004. Identification of Two Additives, Locust Bean Gum (E-410) and Guar Gum (E-412), in Food Products by DNA-based Methods. <u>Food</u> <u>Additives and Contaminants</u>. 21(7): 619-625.
- Urdiain, M., et al. 2005. New Method of DNA Isolation from Two Food Additives Suitable for Authentication in Polymerase Chain Reaction Assays. Journal of <u>Agricultural and Food Chemistry</u>. 53: 3345-3347.
- Vasudevan, H. 2007. <u>DNA fingerprinting in the standardization of herbd and nutraceuticals</u> [Online]. Available from : <u>http://www.scq.ubc.ca/?p=286</u> [cited 15-March-2007].
- Vos, P., et al. 1995. AFLP: a new technique for DNA fingerprinting. <u>Nucleic Acids</u> <u>Research</u>. 23(21): 4407-4414.
- Wissemann, V., and Ritz, C. M. 2005. The genus *Rosa*(Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and *atpB-rbcL* intergenic spacer (IGS) versus conventional taxonomy. <u>Botanical Journal of the Linnean</u> <u>Society</u>. 147(3): 275-290.

- Yamane, K., Lu, N., and Ohnishi, O. 2005. Chloroplast DNA variations of cultivated radish and its wild relative. <u>Plant Science</u>. 168: 627-634.
- Yang, D., Fushimi, H. Cai, S., and Komatsu, K. 2004. Molecular analysis of *Rheum* species used as rhei rhizoma based on the chloroplast *mat*K gene sequences and its application for identification. <u>Biological Pharmaceutical Bulletin</u>. 27(3): 375-383.
- Yonemoto, Y., Chowdhury, A.K., Kato, H., and Macha, M. 2006. Cultivars identification and their genetic relationships in *Dimacarpus longan* subspecies based on RAPD markers. <u>Scientia Horticulturae</u>. 109: 147-152.
- ส่วนพฤษศาสตร์ป่าไม้. 25<mark>44. ชื่อพรรณไม้แห่งประเทศไทย เต็ม สมิตินันทน์</mark>. กรุงเทพมหานคร: บริษัท ประชาชน จำกัด.

APPENDICES

APPENDIX A

Table A1. Lists of durian plantation owner.

No.	Durian plantation owner	เจ้าของสวนทุเรียน
1	Mrs. Dutsadee Manthasatian	สวนคุณดุษฎี มันตเสถียร
	Amphoe Klung, Chanthaburi province	อำเภอ ขลุง จังหวัด จันทบุรี
2	Amphoe Lhangsaun, Chumporn province	อ. หลังสวน จ. ชุมพร
3	Mr. Boonpaem Chaoungsom	สวนนายดาบตำรวจ บุญเพิ่ม ช่วงสม
	Tambon Taamsinhg, Amphoe Muang,	244 หมู่6 ต.ถ้ำสิงห์ อ. เมือง ชุมพร
	Chumporn province	

APPENDIX B

Reagents

1. 4 M sulfamic acid-potassium sulfamate (pH 1.6), total volume of 25 ml

The weight of sulfamic acid is 9.709 g. It is added with a half of total volume of water (12.5 ml). Then, pH is adjusted to 1.6 by saturated KOH. The final concentration will be reached to 4 M sulfamic acid-potassium sulfamate at pH 1.6, total volume of 25 ml.

 H₂SO₄ (96.4% assay) containing 75 mM sodium tetraborate, total volume of 1000 ml

The weight of sodium tetraborate is 15.103 g. It is stirred overnight in H_2SO_4 (96.4% assay). The solution should be prepared in 1000 ml of volumetric flask. The final concentration will be reached to 75 mM sodium tetraborate in 96.4% of H_2SO_4 .

3. 0.15% (w/v) m-hydroxydiphenyl in 0.5% (w/v) NaOH, total volume of 10 ml

The weight of m-hydroxydiphenyl is 15 mg. It is dissolved in 0.5% (w/v) NaOH. The solution should be prepared in 10 ml of volumetric flask. The final concentration will be reached to 0.15% (w/v) m-hydroxydiphenyl in 0.5% (w/v) NaOH. The solution should be freshly prepared.

APPENDIX C

1. Galacturonic calculation

1.1 Pectin standard

The 400 μ l of pectin solution at 0.01% w/v concentration is

Solution volume	1 ml	composes of pectin matter	0.1 mg
Solution volume		composes of pectin matter	0.1 mg
So, Solution volume	400 µl	composes of pectin matter	0.04 mg

400 μl of pectin standard is determined the galacturonic acid content in solution (X) by standard curve of D-galacturonic acid at 525 nm.

pectin matter	0.04 mg	composes of galacturonic acid	X nmol
pectin matter	100 mg	composes of galacturonic acid	(2500)X nmol

Note: The molecular weight of D-galacturonic acid is 212.16 g/mol.

The weight of galacturonic acid in pectin is	$(212.16) (2500 \times 10^{-9})(X)$	g
The weight of galacturonic acid in pectin is	$(212.16) (2500 \times 10^{-9})(X)$	g
So, The weight of galacturonic acid in pectin is	(0.5304)X	mg

Finally:

% galacturonic acid (in 100 mg pectin) = (0.5304) X

1.2 PG sample

The 400 μl of PG solution at 0.0125% w/v concentration is

Solution volume	100 ml	composes of PG matter	0.0125 g
Solution volume	1 ml	composes of PG matter	0.125 mg

Solution volume	1000 µl	composes of PG matter	0.125 mg
So, Solution volume	400 µl	composes of PG matter	0.05 mg

 $400 \ \mu l \ of \ PG \ solution \ is \ determined \ the \ galacturonic \ acid \ content \ in solution (X) \ by \ standard \ curve \ of \ D-galacturonic \ acid \ at \ 525 \ nm.$

PG matter	0.05 mg	composes of galacturonic acid	X nmol
PG matter	100 mg	composes of galacturonic acid	(2000)X nmol

Note: The molecular weight of D-galacturonic acid is 212.16 g/mol.

The weight of galacturonic acid in PG is	$(212.16)x(2000 \times 10^{-9})(X)$	g
The weight of galacturonic acid in PG is	$(212.16)x(2000 \times 10^{-9})(X)$	g
So, The weight of galacturonic acid in PG is	(0.42432)X	mg

Finally, <u>% galacturonic acid (in 100 mg PG)</u> = (0.42432) X

APPENDIX D

Province	Cultivars	Ν	% yield of PG
Chanthaburi	Kradumthong	13	7.96 9.84 7.54 8.10 9.55 9.90 7.63
			6.69 8.31 9.06 9.44 8.18 8.32
	Monthong	8	7.19 7.33 8.10 8.79 11.61 8.48 8.93
			8.27
	Chani	17	8.90 9.92 9.82 7.77 10.86 9.23 9.55
			10.43 11.32 9.65 8.77 8.90 8.41 8.05
			8.24 9.11 6.67
Chumporn	Pauenmuang	10	6.12 5.99 7.43 8.28 8.22 7.28 7.61
			8.84 7.86 6.87
	Monthong	19	9.73 9.30 10.87 9.76 9.46 10.90
			10.79 10.56 7.28 7.44 8.79 8.59 8.80
			10.68 10.1 10.38 7.55 7.57 7.92
	Chani	18	6.50 8.97 6.55 7.38 9.26 7.97 9.20
			8.42 10.35 6.70 6.76 6.55 7.68 8.36
			6.77 8.39 6.39 7.72

Table D1. The data of the total yield of PG

N = Number of data

The statistics of the total yield of PG

Oneway

Descriptives

Total_yield

	N	Mean	Std.	95% Co Interval	nfidence for Mean	Minimum	Maximum
	1	Ivican	Deviation	Lower Bound	Upper Bound	Ivininum	Waximum
Kradumthong_ Chanthaburi	13	8.5014	.98447	7.9065	9.0963	6.69	9.90
Monthong_ Chanthaburi	8	8.5864	1.37098	7.4402	9.7325	7.19	11.61
Chani_ Chanthaburi	17	9.1515	1.16330	8.5534	9.7496	6.67	11.32
Pauenmuang_ Chumporn	10	7.4483	.92464	6.7869	8.1097	5.99	8.84
Monthong_ Chumporn	19	9.2869	1.27953	8.6702	9.9037	7.28	10.90
Chani_ Chumporn	18	7.77 <mark>4</mark> 4	1.17273	7.1912	8.3576	6.39	10.35
Total	85	8.5372	1.32038	8.2524	8.8220	5.99	11.61

ANOVA

Total_yield					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	39.463	5	7.893	5.828	.000
Within Groups	106.984	79	1.354		
Total	146.447	84	<u> </u>		
	51-141	9 1 9 1 9 /			

จุฬาลงกรณ์มหาวิทยาลย

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Total_yield Tukey HSD

		Mean Difference	Std.	Sig.	95% Con Inte	
(I) Cultivars	(J) Cultivars	(I-J)	Error	Sig.	1	
(I) Cultivals	(J) Cultivars	(1 5)			Lower Bound	Upper Bound
Kradumthong	Monthong_Chanthaburi	08499	.52292	1.000	-1.6124	1.4424
_Chanthaburi	Chani Chanthaburi	65014	.32292	.655	-1.9025	.6022
	Pauenmuang_Chumporn	1.05308	.48948	.033	-1.9025	2.4828
	Monthong_Chumporn	78556	.41886	.425	-2.0090	.4379
	Chani_Chumporn	78330	.41880	.425	-2.0090	.4 <i>379</i> 1.9642
Monthong	Kradumthong_Chanthaburi					
-	0=	.08499	.52292	1.000	-1.4424	1.6124
_ Chanthaburi	Chani_Chanthaburi	56515	.49894	.866	-2.0225	.8922
	Pauenmuang_Chumporn	1.13807	.55200	.318	4742	2.7504
	Monthong_Chumporn	70057	.49046	.710	-2.1331	.7320
	Chani_Chumporn	.81199	.49448	.574	6323	2.2563
Chani	Kradumthong_Chanthaburi	.65014	.42876	.655	6022	1.9025
_ Chanthaburi	Monthong_Chanthaburi	.56515	.49894	.866	8922	2.0225
	Pauenmuang_Chumporn	1.70323(*)	.46377	.006	.3486	3.0578
	Monthong_Chumporn	13542	.38850	.999	-1.2702	.9993
	Chani_Chumporn	1.37714(*)	.39357	.010	.2276	2.5267
Pauenmuang	Kradumthong_Chanthaburi	-1.05308	.48948	.272	-2.4828	.3766
_Chumporn	Monthong_Chanthaburi	-1.13807	.55200	.318	-2.7504	.4742
	Chani_Chanthaburi	-1.70323(*)	.46377	.006	-3.0578	3486
	Monthong_Chumporn	-1.83865(*)	.45464	.002	-3.1666	5107
	Chani_Chumporn	32609	.45897	.980	-1.6667	1.0145
Monthong	Kradumthong_Chanthaburi	.78556	.41886	.425	4379	2.0090
_ Chumporn	Monthong_Chanthaburi	.70057	.49046	.710	7320	2.1331
_	Chani_Chanthaburi	.13542	.38850	.999	9993	1.2702
	Pauenmuang_Chumporn	1.83865(*)	.45464	.002	.5107	3.1666
	Chani_Chumporn	1.51256(*)	.38277	.002	.3946	2.6306
Chani	Kradumthong_Chanthaburi	72700	.42356	.525	-1.9642	.5102
_ Chumporn	Monthong_Chanthaburi	81199	.49448	.574	-2.2563	.6323
_	Chani_Chanthaburi	-1.37714(*)	.39357	.010	-2.5267	2276
	Pauenmuang_Chumporn	.32609	.45897	.980	-1.0145	1.6667
	Monthong_Chumporn	-1.51256(*)	.38277	.002	-2.6306	3946

* The mean difference is significant at the .05 level.

Homogeneous Subsets

Total_yield

Tukey l	HSD
---------	-----

Cultivars	Ν	Subset for	alpha = .05
	19	1	2
Pauenmuang_Chumporn	10	7.4483	
Chani_Chumporn	18	7.7744	
Kradumthong_Chanthaburi	13	8.5014	8.5014
Monthong_Chanthaburi	8	8.5864	8.5864
Chani_Chanthaburi	17		9.1515
Monthong_Chumporn	19		9.2869
Sig.		.145	.531

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 12.795.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

APPENDIX E

Chanthaburi Kradumthong 36 98.264 98.264 102.73 96.030 96.030 96.030 82.631 91.564 89.331 69.231 73.698 66.998 71.464 66.998 89.331 91.564 91.564 98.264 93.797 78.164 73.698 80.397 71.464 75.931 71.464 89.331	Province	Cultivars	Ν	% gala	cturonic	acid of	PG	
69.231 73.698 66.998 71.464 66.998 89.331 91.564 91.564 98.264 93.797 93.797 78.164 73.698 80.397 71.464 75.931 71.464 89.331 89.331 89.331 84.864 87.097 87.097 80.397 82.631 82.631 58.597 68.699 70.720 60.617 78.802 72.741 66.679 66.679 72.741 62.638 62.638 70.720 68.597 62.638 62.639 72.741 66.679 65.576 58.597 62.638 62.638 62.638 70.720 65.577 67.505 67.505 72.741 63.648 67.505 65.576 69.434 69.434 63.648 67.505 69.434 63.648 69.434 69.434 65.933 63.648 69.434 63.648 69.434 63.448 69.434 65.912 63.648 67.505 63.648 53.856 53.856 53.856 66.912 63.648	Chanthaburi	Kradumthong	36	98.264	98.264	102.73	96.030	96.030
89.331 91.564 98.264 93.797 93.797 78.164 73.698 80.397 71.464 75.931 71.464 89.331 89.331 89.331 84.864 87.097 80.397 80.397 82.631 82.631 21.04 86.699 70.720 60.617 78.802 72.741 66.679 66.679 72.741 62.638 72.741 66.670 66.679 62.638 62.638 72.741 66.670 65.676 65.576 65.576 66.679 72.741 73.292 73.292 65.577 67.505 67.503 71.363 54.004 63.648 65.577 69.434 69.434 63.648 67.502 52.224 44.064 48.960 53.856 65.774 55.488 51.589 65.488 55.488 54.892 57.120 65.774 65.294 55.488 55.488 54.892 57.120 65.775 65.775 65.775 65.775 57.120 65.776 55.775 55.783				96.030	82.631	91.564	89.331	69.231
Nonthong93.79778.16473.69880.39771.46484.86487.09780.30189.33189.33189.33184.86487.09787.09780.39782.63182.63158.59768.69970.72060.61778.80272.74166.67966.67972.74162.63862.63870.72068.59762.63862.63862.63870.72058.59762.63862.63972.74154.50758.59765.57767.50572.74171.36354.00463.64865.57771.36354.00463.64865.57769.43463.64867.50569.43463.64869.43475.07252.22444.06448.96053.85666.71265.78063.64853.78654.78251.42866.91265.93863.64855.48852.24475.04252.24255.48854.8452.24475.04252.24255.48853.48452.24475.04252.24255.48853.48452.24475.04252.24255.48853.48452.24475.04450.59255.48853.64852.74175.04552.24255.48853.64853.74175.04552.24255.48853.64853.74175.04552.24255.48853.64853.74175.04552.24255.48853.64853.64175.04552.24255.488<				69.231	73.698	66.998	71.464	66.998
Monthong 21 75.931 71.464 89.331 89.331 89.331 Monthong 21 58.597 68.699 70.720 60.617 78.802 72.741 66.679 66.679 72.741 62.638 62.638 70.720 58.597 62.638 62.638 72.741 66.679 58.597 62.638 62.638 62.638 70.720 58.597 62.638 62.639 72.741 66.679 58.597 62.638 62.638 72.741 73.292 73.292 65.577 67.505 67.505 71.363 54.004 63.648 65.577 67.505 69.434 63.648 67.505 69.434 63.648 69.434 65.973 63.648 69.434 73.400 65.716 75.072 52.224 44.064 48.960 53.856 68.757 65.780 63.648 63.488 51.488 52.244 64.912 65.280 48.960 47.328 52.488 53.486 52.244 65.488				89.331	91.564	91.564	98.264	93.797
Nonthong 21 84.864 87.097 87.097 80.397 82.631 12.63 58.597 68.699 70.720 60.617 78.802 12.741 66.679 66.679 72.741 62.638 12.63 70.720 68.597 62.638 62.638 12.63 70.720 58.597 62.638 62.638 12.63 70.700 58.597 62.638 62.638 12.64 72.741 66.670 58.597 62.638 66.679 12.741 73.292 73.292 65.576 67.505 67.505 12.741 61.04 73.292 63.648 65.577 67.505 12.741 61.04 63.648 67.505 69.434 69.434 12.94 71.363 54.040 63.648 65.577 67.505 12.94 75.071 52.244 43.064 63.648 63.648 63.648 63.648 63.648 63.648 63.648 63.648 63.648 63.648 63.648 63.648 63.648 63.648 63.648 63.648				93.797	78.164	73.698	80.397	71.464
Monthong 21 82.631 72.741 68.699 70.720 60.617 78.802 72.741 66.679 66.679 72.741 62.638 62.638 70.720 58.597 62.638 62.638 56.576 58.597 64.658 66.679 66.679 72.741 54.004 58.597 64.658 66.679 72.741 71.363 54.004 63.648 65.577 67.505 Chani 49 73.292 73.292 65.577 67.505 69.434 63.648 67.505 69.434 63.648 69.434 69.434 63.648 67.505 69.434 63.648 69.434 63.648 75.072 52.224 44.064 48.960 53.856 66.912 65.809 48.960 47.328 52.244 65.438 61.328 54.38 54.232 54.164 47.328 50.592 55.488 54.68 52.244 62.441 52.424 55.488 63.648 54.645 74.041 5				75.931	71.464	89.331	89.331	89.331
Monthong 21 58.597 68.699 70.720 60.617 78.802 72.741 66.679 66.679 72.741 62.638 62.638 70.720 58.597 62.638 62.638 56.570 58.597 64.658 66.679 66.679 72.741 72.741 72.741 72.741 67.505 67.507 Chani 49 73.292 73.292 65.577 67.505 69.434 63.648 67.505 69.434 69.434 69.434 69.434 63.648 67.505 69.434 63.648 69.434 69.434 75.072 52.224 44.064 48.960 53.856 58.752 63.648 53.856 58.752 57.120 66.912 65.280 48.960 47.328 44.064 47.328 50.592 55.488 55.488 52.224 55.488 47.328 45.696 44.064 58.752 610000 55.488 47.328 45.696 44.064 58.752 610000 55.488				84.864	87.097	87.097	80.397	82.631
Relation 72.741 66.679 72.741 62.638 62.638 70.720 58.597 62.638 62.638 56.576 58.597 64.658 66.679 66.679 72.741 73.292 65.577 67.505 67.505 71.363 54.004 63.648 65.577 69.434 63.648 67.505 69.434 63.648 69.434 63.648 67.505 69.434 63.648 69.434 75.072 52.224 44.064 48.960 53.856 58.752 63.648 53.856 58.752 57.120 66.912 65.280 48.960 47.328 40.64 47.328 50.592 55.488 55.488 52.224 64.912 65.480 45.696 44.064 58.752 62.4243 52.224 55.488 63.648 53.856 63.648 63.648 55.488 63.648 52.224 75.99 60.881 63.648 71.808 75.711 64.99 59.036 60.881 63.648				82.631				
62.638 70.720 58.597 62.638 62.638 56.576 58.597 64.658 66.679 66.679 72.741 72.741 71.363 54.004 63.648 65.577 67.505 71.363 54.004 63.648 65.577 67.505 69.434 63.648 67.505 69.434 63.648 69.434 69.434 63.648 67.505 69.434 63.648 69.434 76.704 75.072 52.224 44.064 48.960 53.856 58.752 63.648 53.856 58.752 57.120 66.912 65.280 48.960 47.328 44.064 47.328 50.592 55.488 52.224 55.488 47.328 55.488 52.224 55.488 47.328 55.488 53.856 55.488 47.328 55.488 53.485 62.612 52.224 55.488 63.648 75.771 55.488 63.648 71.808 75.711 65.912 50.385 63.648 71.808		Monthong	21	58.597	68.699	70.720	60.617	78.802
56.576 58.597 64.658 66.679 66.679 72.741 72.741 73.292 65.577 67.505 67.505 71.363 54.004 63.648 65.577 69.434 69.434 63.648 67.505 69.434 63.648 69.434 69.434 63.648 67.505 69.434 63.648 69.434 63.648 65.770 52.224 44.064 48.960 53.856 58.752 63.648 53.856 58.752 57.120 66.912 65.280 48.960 47.328 44.064 47.328 50.592 55.488 55.488 52.224 55.488 47.328 55.488 55.488 52.488 62.912 52.224 55.488 55.488 52.24 55.488 47.328 55.488 51.488 52.488 63.649 54.649 55.488 51.488 53.486 53.486 61.912 52.224 55.488 63.648 54.649 55.771 61.914 54.925 52.488 63.648				72.741	66.679	66.679	72.741	62.638
FChani72.7414973.29273.29265.57767.50567.50571.36354.00463.64865.57769.43463.64867.50569.43463.64869.43469.43455.93363.64869.43473.44076.70475.07252.22444.06448.96053.85658.75263.64853.85658.75257.12066.91265.28048.96047.32844.06447.32850.59255.48855.48852.22455.48847.32845.69644.06458.752610mpornPauenmang6059.03660.88163.64871.80875.77158.75260.29860.38460.31460.91263.64860.91263.64871.80875.771				62.638	70.720	58.597	62.638	62.638
Chani 49 73.292 73.292 65.577 67.505 67.505 71.363 54.004 63.648 65.577 69.434 63.648 67.505 69.434 69.434 69.434 55.933 63.648 69.434 76.704 75.072 52.224 64.064 48.960 53.856 58.752 63.648 53.856 58.752 57.120 66.912 65.280 48.960 44.064 44.064 47.328 50.592 55.488 55.488 52.224 66.912 65.280 48.960 44.064 58.752 65.488 47.328 55.488 55.488 52.224 55.488 47.328 55.488 63.648 58.752 Chumporn Pauenmuang 60 59.036 60.881 63.648 71.808 75.771 65.759 60.298 60.384 66.912 50.364 66.912 63.648 51.488 63.648				56.576	58.597	64.658	66.679	66.679
71.363 54.004 63.648 65.577 69.434 63.648 67.505 69.434 63.648 69.434 55.933 63.648 69.434 73.440 76.704 75.072 52.224 44.064 48.960 53.856 58.752 63.648 53.856 58.752 57.120 66.912 65.280 48.960 47.328 44.064 47.328 50.592 55.488 55.488 52.224 42.432 52.224 55.488 63.648 58.752 60.912 65.933 65.938 63.648 52.224 55.488 47.328 55.488 55.488 52.224 55.488 47.328 45.696 44.064 58.752 42.432 52.224 55.488 63.648 58.752 75.771 58.752 60.298 60.384 66.912 63.648				72.741				
63.648 67.505 69.434 63.648 69.434 55.933 63.648 69.434 73.440 76.704 75.072 52.224 44.064 48.960 53.856 58.752 63.648 53.856 58.752 57.120 66.912 65.280 48.960 47.328 44.064 47.328 50.592 55.488 55.488 52.224 55.488 47.328 45.696 44.064 58.752 61.012 52.224 55.488 53.486 52.224 65.488 47.328 55.488 55.488 52.224 65.488 47.328 55.488 63.648 58.752 75.491 52.224 55.488 63.648 58.752 75.492 52.488 55.488 63.648 58.752 75.493 60.881 63.648 71.808 75.771 58.752 60.298 60.384 66.912 63.648		Chani	49	73.292	73.292	65.577	67.505	67.505
55.933 63.648 69.434 73.440 76.704 75.072 52.224 44.064 48.960 53.856 58.752 63.648 53.856 58.752 57.120 66.912 65.280 48.960 47.328 44.064 47.328 50.592 55.488 55.488 52.224 55.488 47.328 55.488 55.488 52.224 42.432 52.224 55.488 63.648 58.752 Chumporn Pauenmuang 60 59.036 60.881 63.648 71.808 75.771 58.752 60.298 60.384 66.912 60.384 66.912 63.648				71.363	54.004	63.648	65.577	69.434
75.072 52.224 44.064 48.960 53.856 58.752 63.648 53.856 58.752 57.120 66.912 65.280 48.960 47.328 44.064 47.328 50.592 55.488 55.488 52.224 55.488 47.328 45.696 44.064 58.752 60.912 52.224 55.488 55.488 52.224 55.488 47.328 45.696 44.064 58.752 42.432 52.224 55.488 63.648 58.752 Chumporn Pauenmuang 60 59.036 60.881 63.648 71.808 75.771 58.752 60.298 60.384 66.912 63.648 63.648 63.648				63.648	67.505	69.434	63.648	69.434
58.752 63.648 53.856 58.752 57.120 66.912 65.280 48.960 47.328 44.064 47.328 50.592 55.488 55.488 52.224 55.488 47.328 45.696 44.064 58.752 42.432 52.224 55.488 63.648 58.752 Chumporn Pauenmuang 60 59.036 60.881 63.648 71.808 75.771 58.752 60.298 60.384 66.912 63.648 63.648 63.648 63.648				55.933	63.648	69.434	73.440	76.704
66.91265.28048.96047.32844.06447.32850.59255.48855.48852.22455.48847.32845.69644.06458.75242.43252.22455.48863.64855.771ChumpornPauenmuang6059.03660.29860.38466.91263.648				75.072	52.224	44.064	48.960	53.856
47.32850.59255.48855.48852.22455.48847.32845.69644.06458.75242.43252.22455.48863.648ChumpornPauenmuang6059.03660.88163.64871.80875.77158.75260.29860.38466.91263.648				58.752	63.648	53.856	58.752	57.120
55.488 47.328 45.696 44.064 58.752 42.432 52.224 55.488 63.648 57.71 Chumporn Pauenmuang 60 59.036 60.298 60.384 66.912 63.648				66.912	65.280	48.960	47.328	44.064
42.432 52.224 55.488 63.648 Chumporn Pauenmuang 60 59.036 60.881 63.648 71.808 75.771 58.752 60.298 60.384 66.912 63.648				47.328	50.592	55.488	55.488	52.224
Chumporn Pauenmuang 60 59.036 60.881 63.648 71.808 75.771 58.752 60.298 60.384 66.912 63.648				55.488	47.328	45.696	44.064	58.752
58.752 60.298 60.384 66.912 63.648				42.432	52.224	55.488	63.648	
	Chumporn	Pauenmuang	60	59.036	60.881	63.648	71.808	75.771
66.912 70.105 71.808 72.741 77.485				58.752	60.298	60.384	66.912	63.648
				66.912	70.105	71.808	72.741	77.485
60.384 60.617 60.617 63.648 71.464				60.384	60.617	60.617	63.648	71.464
78.164 57.586 57.586 63.648 63.648				78.164	57.586	57.586	63.648	63.648
68.544 69.231 71.808 78.164 60.881				68.544	69.231	71.808	78.164	60.881

Table E1. The data of the total galacturonic acid content in PG

62.726 63.648 65.280 69.710 72.741 47.328 48.494 53.598 53.598 60.617 62.531 51.365 57.120 62.016 63.648 66.679 69.710 63.648 65.770 65.770 66.415 66.679 69.710 70.105 60.298 60.298 60.617 60.617 63.648 69.231 Monthong 57 69.231 71.464 78.164 49.132 44.665 53.598 55.832 49.132 66.998 82.631 87.097 73.698 58.065 58.065 60.298 63.648 61.880 61.880 53.596 60.126 63.648 70.720 74.256 81.607 71.363 65.577 61.880 61.880 61.880 72.488 72.488 74.256 81.007 71.363 65.577 61.719 52.076 52.076 67.505 65.577 71.363 79.078 94.44 48.218 61.719 61.719 52.076 52.076 67.505							
62.531 51.365 57.120 62.016 63.648 66.679 69.710 63.648 65.770 65.770 66.415 66.679 69.710 70.105 60.298 60.298 60.617 60.617 63.648 69.231 Monthong 57 69.231 71.464 78.164 49.132 44.665 53.598 55.832 49.132 66.998 82.631 87.097 73.698 58.065 58.065 60.298 63.648 61.800 61.880 63.648 61.880 63.648 70.720 74.256 70.720 74.256 86.632 63.648 70.720 74.256 81.632 63.648 74.256 81.007 71.363 65.577 61.719 65.577 63.648 59.791 75.220 81.007 82.935 79.078 69.434 48.218 61.719 61.719 52.076 57.505 65.577 65.576 71.363 79.078 69.434 48.218 61.719 61.719 52.056			62.726	63.648	65.280	69.710	72.741
66.679 69.710 63.648 65.770 60.298 66.415 66.679 69.710 70.105 60.298 60.298 60.617 60.617 63.648 69.231 Monthong 57 69.231 71.464 78.164 49.132 44.665 53.598 55.832 49.132 66.998 82.631 87.097 73.698 58.065 58.065 60.298 53.598 60.112 61.880 53.640 63.648 63.648 61.880 61.880 53.040 63.648 70.700 74.256 70.700 74.256 86.632 63.648 74.256 81.007 71.363 65.577 61.719 65.577 63.648 59.079 75.200 81.007 82.935 79.078 59.44 82.913 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.576 75.535			47.328	48.494	53.598	53.598	60.617
66.415 66.679 69.710 70.105 60.298 Monthong 57 69.231 71.464 78.164 49.132 44.665 53.598 55.332 49.132 66.998 82.631 87.097 73.698 58.065 58.065 60.298 53.598 60.112 61.880 53.646 61.880 63.648 61.880 61.880 53.648 63.648 70.702 74.256 70.702 74.256 86.632 63.648 61.880 61.880 72.488 72.488 70.720 74.256 81.007 71.363 65.577 61.789 65.577 63.648 79.078 79.078 75.202 81.007 82.935 79.078 59.071 75.202 81.007 82.935 79.078 59.44 48.218 61.719 61.719 52.076 57.070 67.505 65.577 71.363 79.078 59.44 48.218 61.719 58.597 50.516 51.518 39.168 39.168 39.168			62.531	51.365	57.120	62.016	63.648
60.298 60.617 60.617 63.648 69.231 Monthong 57 69.231 71.464 78.164 49.132 44.665 53.598 55.832 49.132 66.998 82.631 87.097 73.698 58.065 58.065 60.298 53.598 60.112 61.880 56.576 61.880 63.648 61.880 61.880 53.040 63.648 70.720 74.256 70.720 74.256 86.632 63.648 74.256 61.880 72.488 72.488 74.256 81.007 71.363 65.577 61.719 65.577 63.648 59.791 75.220 81.007 82.935 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 52.443 39.168 34.272 39.168 30.168 55.488 39.168 34.272 39.168 39.168 32.640 44.064 56.576 58.597 56.576			66.679	69.710	63.648	65.770	65.770
Monthong 57 69.231 71.464 78.164 49.132 44.665 53.598 55.832 49.132 66.998 82.631 87.097 73.698 58.065 58.065 60.298 53.598 60.112 61.880 56.576 61.880 63.648 61.880 61.880 53.040 63.648 70.720 74.256 70.720 74.256 86.632 63.648 74.256 61.880 72.488 72.488 74.256 81.007 71.363 65.577 61.719 65.577 63.648 52.076 67.505 65.577 71.363 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 52.448 39.168 34.272 39.168 39.168 32.640 44.064 56.576 58.597 56.576 74.761 68.699 65.576 58.597 52.535 52.535 52.535 52.535 58.597 52.535			66.415	66.679	69.710	70.105	60.298
53.598 55.832 49.132 66.998 82.631 87.097 73.698 58.065 58.065 60.298 53.598 60.112 61.880 56.576 61.880 63.648 61.880 61.880 53.040 63.648 70.720 74.256 70.720 74.256 86.632 63.648 74.256 61.880 72.488 72.488 74.256 81.007 71.363 65.577 61.719 65.577 63.648 59.791 75.220 81.007 82.935 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 52.448 39.168 34.272 39.168 39.168 32.640 44.064 56.576 74.525 50.514 50.514 58.597 60.617 58.597 56.576 74.761 68.699 62.576 58.597 52.535 52.535 54.555 72.741 66.679 46.473 50.514 50.514			60.298	60.617	60.617	63.648	69.231
87.097 73.698 58.065 58.065 60.298 53.598 60.112 61.880 56.576 61.880 63.648 61.880 61.880 53.040 63.648 70.720 74.256 70.720 74.256 86.632 63.648 74.256 61.880 72.488 72.488 74.256 81.007 71.363 65.577 61.719 65.577 63.648 59.791 75.220 81.007 82.935 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 52.488 39.168 34.272 39.168 39.168 39.168 34.272 39.168 39.168 39.168 34.272 58.597 56.576 74.761 68.699 52.535 50.514 50.514 58.597 56.576 58.597	Monthong	57	69.231	71.464	78.164	49.132	44.665
53.598 60.112 61.880 56.576 61.880 63.648 61.880 61.880 53.040 63.648 70.720 74.256 70.720 74.256 86.632 63.648 74.256 61.880 72.488 72.488 74.256 81.007 71.363 65.577 61.719 65.577 63.648 59.791 75.220 81.007 82.935 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 52.076 52.076 65.576 63.648 53.488 39.168 34.272 39.168 39.168 32.640 44.064 56.576 58.597 50.514 50.514 50.514 50.514 56.576 56.576 58.597 52.535 52.535 52.535			53.598	55.832	49.132	66.998	82.631
63.648 61.880 61.880 53.040 63.648 70.720 74.256 70.720 74.256 86.632 63.648 74.256 61.880 72.488 72.488 74.256 81.007 71.363 65.577 61.719 65.577 63.648 59.791 75.220 81.007 82.935 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 52.516 64.064 56.576 58.597 56.576 74.761 68.699 68.699 52.535 50.514 50.514 50.514 58.597 50.514 66.679 46.473 50.514 50.515 54.555 72.741 46.473 52.535			87.097	73.698	58.065	58.065	60.298
70.720 74.256 70.720 74.256 86.632 63.648 74.256 61.800 72.488 72.488 74.256 81.007 71.363 65.577 61.719 65.577 63.648 59.791 75.220 81.007 82.935 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 52.076 67.605 65.576 71.363 79.078 52.518 39.168 34.272 39.168 39.168 52.404 44.064 56.576 58.597 56.576 74.761 68.699 68.699 52.535 50.514 50.514 50.514 50.514 50.514 66.679 46.473 52.535 54.555 72.741 72.741 54.555 52.535			53.598	<u>60.11</u> 2	61.880	56.576	61.880
63.648 74.256 61.880 72.488 72.488 74.256 81.007 71.363 65.577 61.719 65.577 63.648 59.791 75.220 81.007 82.935 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 55.488 39.168 34.272 39.168 63.648 55.488 39.168 34.272 39.168 39.168 32.640 44.064 56.576 58.597 56.576 74.761 68.699 68.699 52.535 50.514 50.514 58.597 60.617 66.679 46.473 50.514 60.617 56.576 58.597 52.535 52.535 54.555 72.741 46.473 52.535 52.535 54.555 72.741 72.741 54.555 58.597 54.555 54.555 50.514 54.555 54.555 52.535			63.648	61.880	61.880	53.040	63.648
74.256 81.007 71.363 65.577 61.719 65.577 63.648 59.791 75.220 81.007 82.935 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 52.076 67.505 65.577 71.363 79.078 52.076 52.076 67.505 65.577 71.363 79.078 52.076 52.076 67.505 65.576 71.363 39.168 39.168 39.168 34.272 39.168 39.168 39.168 32.640 44.064 56.576 58.597 50.514 50.514 58.597 60.617 56.576 58.597 52.535 52.535 54.555 72.741 46.473 52.535 52.535 54.555 72.741 72.741 54.555 52.535 54.555 52.535			70.720	74.256	70.720	74.256	86.632
65.577 63.648 59.791 75.220 81.007 82.935 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 79.078 39.168 34.272 39.168 63.648 55.488 39.168 34.272 39.168 39.168 32.640 44.064 56.576 58.597 56.576 74.761 68.699 68.699 52.535 50.514 50.514 58.597 60.617 66.679 46.473 50.514 60.617 56.576 58.597 52.535 52.535 54.555 72.741 46.473 52.535 52.535 54.555 72.741 72.741 54.555 58.597 54.555 54.555 54.555 50.514 54.555 54.555 52.535 54.555 52.535			63.648	74.256	61.880	72.488	72.488
82.935 79.078 69.434 48.218 61.719 61.719 52.076 52.076 67.505 65.577 71.363 79.078 79.078 39.168 39.168 34.272 39.168 63.648 63.648 55.488 39.168 34.272 39.168 39.168 32.640 44.064 56.576 58.597 56.576 74.761 68.699 68.699 52.535 50.514 50.514 60.617 56.576 58.597 52.535 50.514 60.617 56.576 58.597 52.535 42.432 42.432 40.411 46.473 52.535 52.535 54.555 72.741 72.741 54.555 58.597 54.555 44.453 50.514 54.555 58.597 54.555 54.555 50.514 54.555 54.555 52.535 52.535			74.256	81.007	71.363	65.577	61.719
61.719 52.076 52.076 67.505 65.577 71.363 79.078 71.363 79.078 Chani 54 63.648 63.648 55.488 39.168 34.272 39.168 39.168 32.640 44.064 56.576 58.597 56.576 74.761 68.699 68.699 52.535 50.514 50.514 58.597 60.617 66.679 46.473 50.514 60.617 56.576 58.597 52.535 42.432 40.411 46.473 52.535 54.555 72.741 72.741 54.555 58.597 54.555 54.555 50.514 54.555 54.555 52.535 54.555 52.535			65.577	63.648	59.791	75.220	81.007
71.36379.078Chani5463.64863.64855.48839.16834.27239.16839.16832.64044.06456.57658.59756.57674.76168.69968.69952.53550.51450.51458.59760.61766.67946.47350.51460.61756.57658.59752.53542.43240.41146.47352.53552.53554.55572.74172.74154.55558.59754.55544.45350.51454.55552.53554.55552.53554.55552.53554.55552.53552.535			82.935	79.078	69.434	48.218	61.719
Chani5463.64863.64855.48839.16834.27239.16839.16832.64044.06456.57658.59756.57674.76168.69968.69952.53550.51450.51458.59760.61766.67946.47350.51460.61756.57658.59752.53542.43242.43240.41146.47352.53552.53554.55572.74172.74154.55558.59754.55544.45350.51454.55552.63864.65856.57648.49454.55554.55552.53552.535			61.719	52.076	52.076	67.505	65.577
39.16839.16832.64044.06456.57658.59756.57674.76168.69968.69952.53550.51450.51458.59760.61766.67946.47350.51460.61756.57658.59752.53542.43240.41146.47352.53554.55572.74172.74154.55558.59754.55544.45350.51454.55558.59754.55556.57648.49454.55554.55552.53552.535			71.363	79.078			
58.59756.57674.76168.69968.69952.53550.51450.51458.59760.61766.67946.47350.51460.61756.57658.59752.53542.43242.43240.41146.47352.53552.53554.55572.74172.74154.55558.59754.55544.45350.51454.55552.63864.65856.57648.49454.55554.55552.53552.535	Chani	54	63.648	63.648	55.488	39.168	34.272
52.53550.51450.51458.59760.61766.67946.47350.51460.61756.57658.59752.53542.43242.43240.41146.47352.53552.53554.55572.74172.74154.55558.59754.55544.45350.51454.55562.63864.65856.57648.49454.55554.55552.53552.535			39.168	39.168	32.640	44.064	56.576
66.67946.47350.51460.61756.57658.59752.53542.43242.43240.41146.47352.53552.53554.55572.74172.74154.55558.59754.55544.45350.51454.55562.63864.65856.57648.49454.55554.55552.53552.535			58.597	56.576	74.761	68.699	68.699
58.59752.53542.43242.43240.41146.47352.53552.53554.55572.74172.74154.55558.59754.55544.45350.51454.55562.63864.65856.57648.49454.55554.55552.53552.535			52.535	50.514	50.514	58.597	60.617
46.47352.53552.53554.55572.74172.74154.55558.59754.55544.45350.51454.55562.63864.65856.57648.49454.55554.55552.53552.535			66.679	46.473	50.514	60.617	56.576
72.74154.55558.59754.55544.45350.51454.55562.63864.65856.57648.49454.55554.55552.53552.535			58.597	52.535	42.432	42.432	40.411
50.51454.55562.63864.65856.57648.49454.55554.55552.53552.535			46.473	52.535	52.535	54.555	72.741
48.494 54.555 54.555 52.535 52.535			72.741	54.555	58.597	54.555	44.453
			50.514	54.555	62.638	64.658	56.576
58.597 60.617 56.576 58.597			48.494	54.555	54.555	52.535	52.535
			58.597	60.617	56.576	58.597	

N = Number of data

The statistics of the total galacturinic acid content of PG

Oneway

Descriptives

Galacturonic_a	iciu						
	N Mean		Std. Deviation	95% Confidence Interval for Mean		Minimum	Maximum
			Deviation	Lower Bound	Upper Bound		
Kradumthong_ Chanthaburi	36	84.73993	10.323440	81.24698	88.23288	66.998	102.730
Monthong_ Chanthaburi	21	65.81290	5.841214	63.15401	68.47179	56.576	78.802
Chani_ Chanthaburi	49	59.36968	9.558395	56.62419	62.11517	42.432	76.704
Pauenmuang_ Chumporn	60	64.32990	6.674380	62.60572	66.05407	47.328	78.164
Monthong_ Chumporn	57	66.09646	10.196949	63.39084	68.80207	44.665	87.097
Chani_ Chumporn	54	54.35107	9.459066	51.76924	56.93290	32.640	74.761
Total	277	64.63564	12.592911	63.14613	66.12515	32.640	102.730

Galacturonic_acid

ANOVA

Galacturonic_acid

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	21777.417	5	4355.483	53.673	.000
Within Groups	21991.052	271	81.148		
Total	43768.469	276			
ົລ	ถาบน	วท	ยบรก'	าร	

จุฬาลงกรณ่มหาวิทยาลัย

Post Hoc Tests

Multiple Comparisons

(I) Cultivars	(J) Cultivars	Mean	Std. Error	Sig.	95% Con Inte	
()		Difference (I-J)		0	Lower Bound	Upper Bound
Kradumthong _Chanthaburi	Monthong_Chanthaburi Chani_Chanthaburi	18.927032(*) 25.370253(*)	2.473517 1.977418	.000 .000	11.82748 19.69461	26.02659 31.04589
	Pauenmuang_ Chumporn	20.410032(*)	1.899097	.000	14.95919	25.86087
	Monthong_ Chumporn	18.643473(*)	1.917746	.000	13.13911	24.14784
	Chani_ Chumporn	30.388861(*)	1.938258	.000	24.82562	35.95210
Monthong	Kradumthong_Chanthaburi	-18.927032(*)	2.473517	.000	-26.02659	-11.82748
_Chanthaburi	Chani_Chanthaburi	6.443221	2.349523	.070	30044	13.18688
	Pauenmuang_ Chumporn	1.483000	2.283997	.987	-5.07259	8.03859
	Monthong_ Chumporn	283559	2.299527	1.000	-6.88372	6.31661
	Chani_ Chumporn	11.461829(*)	2.316661	.000	4.81249	18.11117
Chani	Kradumthong_Chanthaburi	-25.370253(*)	1.977418	.000	-31.04589	-19.69461
_Chanthaburi	Monthong_Chanthaburi	-6.443221	2.349523	.070	-13.18688	.30044
	Pauenmuang_ Chumporn	-4.960220	1.734515	.051	-9.93867	.01823
	Monthong_ Chumporn	-6.726779(*)	1.754914	.002	-11.76378	-1.68978
	Chani_ Chumporn	5.018608	1.777305	.057	08266	10.11988
Pauenmuang	Kradumthong_Chanthaburi	-20.410032(*)	1.899097	.000	-25.86087	-14.95919
_ Chumporn	Monthong_Chanthaburi	-1.483000	2.283997	.987	-8.03859	5.07259
	Chani_Chanthaburi	4.960220	1.734515	.051	01823	9.93867
	Monthong_ Chumporn	-1.766559	1.666166	.897	-6.54883	3.01571
	Chani_ Chumporn	9.978829(*)	1.689734	.000	5.12891	14.82875
Monthong	Kradumthong_Chanthaburi	-18.643473(*)	1.917746	.000	-24.14784	-13.13911
_ Chumporn	Monthong_Chanthaburi	.283559	2.299527	1.000	-6.31661	6.88372
	Chani_Chanthaburi	6.726779(*)	1.754914	.002	1.68978	11.76378
	Pauenmuang_ Chumporn	1.766559	1.666166	.897	-3.01571	6.54883
	Chani_ Chumporn	11.745388(*)	1.710667	.000	6.83538	16.65539
Chani	Kradumthong_Chanthaburi	-30.388861(*)	1.938258	.000	-35.95210	-24.82562
_ Chumporn	Monthong_Chanthaburi	-11.461829(*)	2.316661	.000	-18.11117	-4.81249
N N	Chani_Chanthaburi	-5.018608	1.777305	.057	-10.11988	.08266
9	Pauenmuang_ Chumporn	-9.978829(*)	1.689734	.000	-14.82875	-5.12891
	Monthong_ Chumporn	-11.745388(*)	1.710667	.000	-16.65539	-6.83538

Dependent Variable: Galacturonic_acid Tukey HSD

* The mean difference is significant at the .05 level.

Homogeneous Subsets

Galacturonic_acid

Tukey HSD

Cultivars	N		Subset for	alpha = .05	
Cultivals	11	1	2	3	4
Chani_ Chumporn	54	54.35107			
Chani_Chanthaburi	49	59.36968	59.36968		
Pauenmuang_ Chumporn	60		64.32990	64.32990	
Monthong_Chanthaburi	21			65.81290	
Monthong_Chumporn	57		-	66.09646	
Kradumthong_Chanthaburi	36				84.73993
Sig.		.127	.135	.951	1.000

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 40.395.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

APPENDIX F

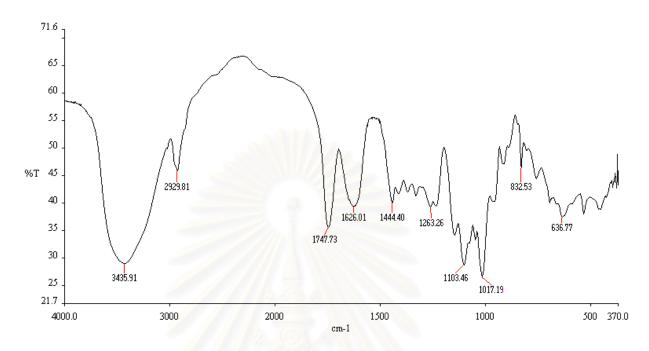


Figure F1. FT-IR spectra of pectin from citrus fruits.

1 de	Wavelength (cm ⁻¹)	%T	-
	3435.91	28.98	-
	2929.81	45.86	
	1747.73	35.59	
	1626.01	39.41	
	1444.4	39.99	
	1263.26	39.32	
	1103.46	28.78	
	1017.19	26.61	
	832.53	46.4	
	636.77	37.41	

Table F1. The band intensity of pectin from citrus fruits.

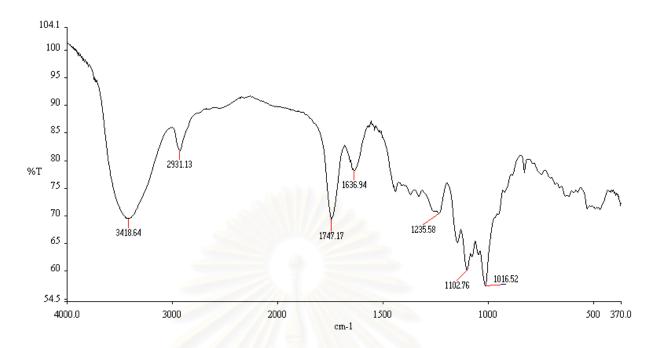


Figure F2. FT-IR spectra of 'Monthong' cultivar.

-	Wavelength (cm ⁻¹)	%T	
	3418.64	69.5	
	2931.13	81.73	
	1747.17	69.28	
	1636.94	78.16	
	1235.58	70.44	
	1102.76	60.17	
M 101	1016.52	57.29	

Table F2. The band intensity of 'Monthong' cultivar.

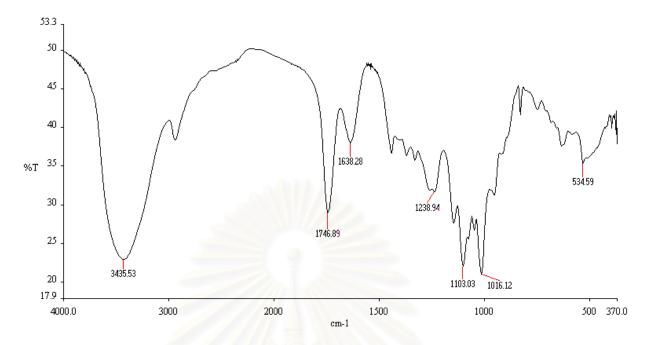


Figure F3. FT-IR spectra of 'Chani' cultivar.

_	Wavelength (cm ⁻¹)	%T	
	3435.53	22.91	
	1746.89	28.96	
	1638.28	37.96	
	1238.94	31.67	
	1103.03	22.05	
	1016.12	21.02	
JN 197	534.59	35.22	

Table F3. The band intensity of 'Chani' cultivar.

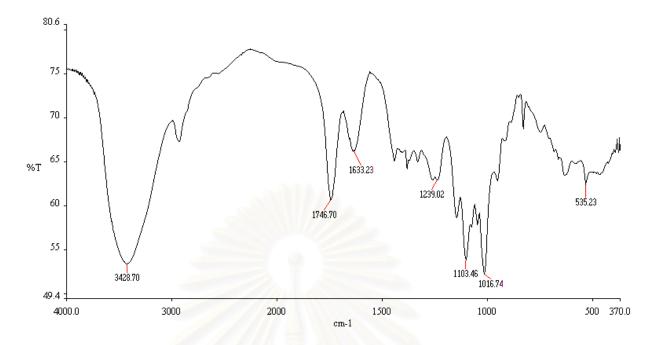


Figure F4. FT-IR spectra of 'Pauenmuang' cultivar.

_	Wavelength (cm ⁻¹)	%T	
	3428.7	53.39	
	1746.7	60.64	
	1633.23	66.19	
	1239.02	62.9	
	1103.46	53.85	
	1016.74	52.24	
JN 197	535.23	62.43	

Table F4. The band intensity of 'Pauenmuang' cultivar.

Figure F5. FT-IR spectra of 'Kradumthong' cultivar.

0	Wavelength (cm ⁻¹)	%T
	3433.33	23.26
	1746.98	28.93
	1640.66	35.24
	1103.24	22.97
	1015.94	21.85
AM [9]	534.61	32.66
ิลถ ฬาล	1015.94	21.85

Table F5. The band intensity of 'Kradumthong' cultivar.

APPENDIX G

1. The data of DNA Sequencing which was submitted to DDBJ database

1.1 Kradumthong from Chanthaburi

EntryID: 20070109001548.48858		
[Contact Pers	on]	
E-mail:	ssukrong@hotmail.com	
Name:	Suchada Sukrong	
Institution:	Chulalongkorn university	
Department:	Pharmacognosy	
Country:	Thailand	
City:	Bangkok	
Street:	Phayathai	
Zip code:	10330	
Phone:	662218 <mark>8364</mark>	
Fax:	6622188357	

submitter(s): Suchada Sukrong

[Hold-date]	
Immediate release:	No
Hold-date:	2007/12/31
Kind of data:	General data

[REFERENCE No.1]

Status:	In Preparation
Status.	minopulation

Year: 2007

Title:DNA fingerprint analysis of Durian cultivars selected in Thaicomparing their polysaccharide contents

author(s): S Sukrong, S Pongsamart

[Sequence]

length: 1509

Sequence:

1	atggaggaat	ttcaagtata	tttagaacta	aatagatctc	gccgacatga	tttcctatac
61	ccacttattt	ttcgggagta	tatttatgca	cttgctcatg	atcatggttt	aaataaatcg
121	atgattttt	tggaaaatca	gggttatggt	aataaattca	gttcactaat	tgtgaaacgt
181	ttaattattc	gaatggatca	acagaatcat	ttgattattt	ctgctaatga	ttccaaccaa
241	aatccatttt	ttgggcacaa	caataattta	tattctcaaa	tgatatcggt	gggatttgca
301	gtcattgtgg	aaattccatt	ttccttacga	ttagtatctt	actcacaagg	ggaagaagtc
361	gcaaaatccc	ataatttcca	atcaattcat	tcaatatttc	cttttttaga	ggacaaattc
421	tcacatttaa	attatgtgtt	agatgtacta	ataccttacc	ccatccatct	agaaatcttg
481	gttcaagccc	ttcgctactg	gataaaagat	gcttcttctt	tgcatttatt	acggttctct
541	ctctacgagt	attgtaattt	gaagagtttt	attactccaa	agaaatctat	ttctattttt
601	aatccaagat	tattcttgtt	cctatataat	tctcatgtat	gtgaatacga	atccattttc
661	ctttttctcc	gtaatcaatc	ttcttattta	cgatcaacat	cttctggatt	ctttcttgaa
721	cgaattaatt	tctatggaaa	aatagagtat	cttgtagaag	tcttttataa	tgattttcag
781	aacaacctat	ggttgttcaa	agaccctttc	atacattttt	ttaggtatca	aggaaaggca
841	attctggcat	caaaggatac	gtctcttctg	atgaataagt	ggaaatatta	ctttgtcgat
901	ttatggaaat	attatttta	cgtgcggtct	caatcaggaa	gcgtccgtat	aaatcaatta
961	tctaaatatt	ctctcgactt	tctgggctat	ctttcaagtg	tgcgattaaa	tacttcagtg
102	lgtacggagtc	aaatgctaga	aaattcattt	ataatagata	atgctatgaa	gaagttggat
108	lacaagaattc	caattatttc	tctcattgga	tcattgtcta	aagcgaaatt	ttgtaacaca
114	lttagggcatc	ccattagtaa	gccgacgtgg	tccgattcct	ccgattctga	tattattgac
120	lcgatttgtgc	gtatatgcag	aaatctttct	cattatcaca	gtggatcttc	aaaaaaaag
126	lagtttgtatc	gaataaaata	tatacttcgg	ctttcttgtg	ttaaaacttt	ggctcgtaaa
132	lcacaaaagta	ctgtacgtgc	tttttgaaa	agattaggtt	cggaattttt	ggaagaattc
138	ltttacggaag	aagaacatgt	ttttttttg	atcttcccaa	gagtttttt	gacttcgcga
144	laagttatata	gggtgcgaat	ttggtatttg	gatattattt	gtatcaatgc	tctggtcaat
150	lcatgaatga					

[Organism]

organism Durio zibethinus mol_type genomic DNA collected_by Suchada Sukrong collection_date 2005 country Thailand:Chantaburi Kradumthong cultivar identified_b Suchada Sukrong organelle plastid:chloroplast specimen_voucher Kradumthong Genetic code 11

[CDS Feature No.1] Location 1..1509 ยบริการ หาวิทยาลัย product maturaseK gene matK transl_table 11 translation

MEEFQVYLELNRSRRHDFLYPLIFREYIYALAHDHGLNKSMIFLENQGYGNKFSSLIVKRLIIRMDQQN HLIISANDSNQNPFFGHNNNLYSQMISVGFAVIVEIPFSLRLVSYSQGEEVAKSHNFQSIHSIFPFLED KFSHLNYVLDVLIPYPIHLEILVQALRYWIKDASSLHLLRFSLYEYCNLKSFITPKKSISIFNPRLFLF LYNSHVCEYESIFLFLRNQSSYLRSTSSGFFLERINFYGKIEYLVEVFYNDFQNNLWLFKDPFIHFFRY QGKAILASKDTSLLMNKWKYYFVDLWKYYFYVRSQSGSVRINQLSKYSLDFLGYLSSVRLNTSVVRSQM LENSFIIDNAMKKLDTRIPIISLIGSLSKAKFCNTLGHPISKPTWSDSSDSDIIDRFVRICRNLSHYHS GSSKKKSLYRIKYILRLSCVKTLARKHKSTVRAFLKRLGSEFLEEFFTEEEHVFSLIFPRVFLTSRKLY RVRIWYLDIICINALVNHE

note an open reading frame (ORF) located within the intron of the transfer RNA gene for lysine

1.2 Monthong from Chanthaburi

EntryID: 20070108235842.22750

[Contact Person] E-mail: ssukrong@hotmail.com Name: Suchada Sukrong Chulalongkorn university Institution: Department: Pharmacognosy Country: Thailand City: Bangkok Street: Phayathai 10330 Zip code: 6622188364 Phone: Fax: 6622188357 submitter(s): Suchada Sukrong

[Hold-date] Immediate release: No Hold-date: 2007/12/31 Kind of data: General data

[REFERENCE No.1]	
Status:	In Preparation
Year:	2007
Title:	DNA fingerprint analysis of Durian cultivars selected in Thai
	comparing their polysaccharide contents
author(s):	S Sukrong, S Pongsamart

[Sequence]

1509

Sequence:

length:

1	. atggaggaat	ttcaagtata	tttagaacta	aatagatctc	gccgacatga	tttcctatac
61	. ccacttattt	ttcgggagta	tatttatgca	cttgctcatg	atcatggttt	aaataaatcg
121	. atgattttt	tggaaaatca	gggttatggt	aataaattca	gttcactaat	tgtgaaacgt
181	. ttaattattc	gaatggatca	acagaatcat	ttgattattt	ctgctaatga	ttccaaccaa
241	. aatccatttt	ttgggcacaa	caataattta	tattctcaaa	tgatatcggt	gggatttgca
301	. gtcattgtgg	aaattccatt	ttccttacga	ttagtatctt	actcacaagg	ggaagaagtc
361	gcaaaatccc	ataatttcca	atcaattcat	tcaatatttc	cttttttaga	ggacaaattc
421	. tcacatttaa	attatgtgtt	agatgtacta	ataccttacc	ccatccatct	agaaatcttg
481	gttcaagccc	ttcgctactg	gataaaagat	gcttcttctt	tgcatttatt	acggttctct
541	. ctctacgagt	attgtaattt	gaagagtttt	attactccaa	agaaatctat	ttctattttt
601	aatccaagat	tattcttgtt	cctatataat	tctcatgtat	gtgaatacga	atccattttc
661	. ctttttctcc	gtaatcaatc	ttcttattta	cgatcaacat	cttctggatt	ctttcttgaa
721	. cgaattaatt	tctatggaaa	aatagagtat	cttgtagaag	tcttttataa	tgattttcag
781	aacaacctat	ggttgttcaa	agaccctttc	atacatttt	ttaggtatca	aggaaaggca
841	. attctggcat	caaaggatac	gtctcttctg	atgaataagt	ggaaatatta	ctttgtcgat
901	. ttatggaaat	attatttta	cgtgcggtct	caatcaggaa	gcgtccgtat	aaatcaatta
961	. tctaaatatt	ctctcgactt	tctgggctat	ctttcaagtg	tgcgattaaa	tacttcagtg
102	lgtacggagtc	aaatgctaga	aaattcattt	ataatagata	atgctatgaa	gaagttggat
108	lacaagaattc	caattatttc	tctcattgga	tcattgtcta	aagcgaaatt	ttgtaacaca
114	lttagggcatc	ccattagtaa	gccgacgtgg	tccgattcct	ccgattctga	tattattgac
120	lcgatttgtgc	gtatatgcag	aaatctttct	cattatcaca	gtggatcttc	aaaaaaaag
126	lagtttgtatc	gaataaaata	tatacttcgg	ctttcttgtg	ttaaaacttt	ggctcgtaaa
132	lcacaaaagta	ctgtacgtgc	tttttgaaa	agattaggtt	cggaattttt	ggaagaattc
138	ltttacggaag	aagaacatgt	tttttctttg	atcttcccaa	gagtttttt	gacttcgcga
144	laagttatata	gggtgcgaat	ttggtatttg	gatattattt	gtatcaatgc	tctggtcaat
150	lcatgaatga					

[Organism]

organism	Durio zibethinus
mol_type	genomic DNA
collected_by	Suchada Sukrong
collection_date	2005
country	Thailand:Chantaburi

cultivar	Monthong
identified_by	Suchada Sukrong
organelle	plastid:chloroplast
specimen_voucher	Monthong1
Genetic code	11

[CDS Feature No.1]

Location	11509
product	maturaseK
gene	matK
transl_table	11
translation	

MEEFQVYLELNRSRRHDFLYPLIFREYIYALAHDHGLNKSMIFLENQGYGNKFSSLIVKRLIIRMDQQN HLIISANDSNQNPFFGHNNNLYSQMISVGFAVIVEIPFSLRLVSYSQGEEVAKSHNFQSIHSIFPFLED KFSHLNYVLDVLIPYPIHLEILVQALRYWIKDASSLHLLRFSLYEYCNLKSFITPKKSISIFNPRLFLF LYNSHVCEYESIFLFLRNQSSYLRSTSSGFFLERINFYGKIEYLVEVFYNDFQNNLWLFKDPFIHFFRY QGKAILASKDTSLLMNKWKYYFVDLWKYYFYVRSQSGSVRINQLSKYSLDFLGYLSSVRLNTSVVRSQM LENSFIIDNAMKKLDTRIPIISLIGSLSKAKFCNTLGHPISKPTWSDSSDSDIIDRFVRICRNLSHYHS GSSKKKSLYRIKYILRLSCVKTLARKHKSTVRAFLKRLGSEFLEEFFTEEEHVFSLIFPRVFLTSRKLY RVRIWYLDIICINALVNHE

note an open reading frame (ORF) located within the intron of the transfer RNA gene for lysine

1.3 Chani from Chanthaburi

EntryID: 20070109000746.66658

[Contact Person]E-mail:ssukrong@hotmail.comName: SuchadaSukrongInstitution:Chulalongkorn universityDepartment:PharmacognosyCountry:ThailandCity:BangkokStreet:Phayathai

Zip code:	10330
Phone:	6622188364
Fax:	6622188357
submitter(s):	Suchada Sukrong

[Hold-date]

Immediate release:	No
Hold-date:	2007/12/31
Kind of data:	General data

[REFERENCE No.1]

Status:	In Preparation
Year:	2007
Title:	DNA fingerprint analysis of Durian cultivars selected in Thai
	comparing their polysaccharide contents
author(s):	S Sukrong, S Pongsamart

[Sequence]

1509

Sequence:

length:

```
1 atggaggaat ttcaagtata tttagaacta aatagatctc gccgacatga tttcctatac
 61 ccacttattt ttcgggagta tatttatgca cttgctcatg atcatggttt aaataaatcg
121 atgatttttt tggaaaatca gggttatggt aataaattca gttcactaat tgtgaaacgt
181 ttaattattc gaatggatca acagaatcat ttgattattt ctgctaatga ttccaaccaa
241 aatccatttt ttgggcacaa caataattta tattctcaaa tgatatcggt gggatttgca
301 gtcattgtgg aaattccatt ttccttacga ttagtatctt actcacaagg ggaagaagtc
361 gcaaaatccc ataatttcca atcaattcat tcaatatttc cttttttaga ggacaaattc
421 tcacatttaa attatgtgtt agatgtacta ataccttacc ccatccatct agaaatcttg
481 gttcaagccc ttcgctactg gataaaagat gcttcttctt tgcatttatt acggttctct
541 ctctacgagt attgtaattt gaagagtttt attactccaa agaaatctat ttctattttt
601 aatccaagat tattcttgtt cctatataat tctcatgtat gtgaatacga atccattttc
661 ctttttctcc gtaatcaatc ttcttattta cgatcaacat cttctggatt ctttcttgaa
721 cgaattaatt tctatggaaa aatagagtat cttgtagaag tcttttataa tgattttcag
781 aacaacctat ggttgttcaa agaccctttc atacattttt ttaggtatca aggaaaggca
841 attctggcat caaaggatac gtctcttctg atgaataagt ggaaatatta ctttgtcgat
901 ttatggaaat attatttta cgtgcggtct caatcaggaa gcgtccgtat aaatcaatta
961 tetaaatatt etetegaett tetgggetat ettteaagtg tgegattaaa taetteagtg
1021gtacggagtc aaatgctaga aaattcattt ataatagata atgctatgaa gaagttggat
1081acaagaattc caattatttc tctcattgga tcattgtcta aagcgaaatt ttgtaacaca
1141ttagggcatc ccattagtaa gccgacgtgg tccgattcct ccgattctga tattattgac
1201cgatttgtgc gtatatgcag aaatctttct cattatcaca gtggatcttc aaaaaaaaag
1261agtttgtatc gaataaaata tatacttcgg ctttcttgtg ttaaaacttt ggctcgtaaa
1321cacaaaagta ctgtacgtgc ttttttgaaa agattaggtt cggaattttt ggaagaattc
```

1381tttacggaag aagaacatgt tttttctttg atcttcccaa gagttttttt gacttcgcga 1441aagttatata gggtgcgaat ttggtatttg gatattattt gtatcaatgc tctggtcaat 1501catgaatga

[Organism]	
organism	Durio zibethinus
mol_type	genomic DNA
collected_by	Suchada Sukrong
collection_date	2005
country	Thailand:Chantaburi
cultivar	Chani
identified_by	Suchada Sukrong
organelle	plastid:chloroplast
specimen_voucher	Chani1
Genetic code	11

[CDS Feature No.1]Location1..1509productmaturaseKgenematKtransl_table11translation

MEEFQVYLELNRSRRHDFLYPLIFREYIYALAHDHGLNKSMIFLENQGYGNKFSSLIVKRLIIRMDQQN HLIISANDSNQNPFFGHNNNLYSQMISVGFAVIVEIPFSLRLVSYSQGEEVAKSHNFQSIHSIFPFLED KFSHLNYVLDVLIPYPIHLEILVQALRYWIKDASSLHLLRFSLYEYCNLKSFITPKKSISIFNPRLFLF LYNSHVCEYESIFLFLRNQSSYLRSTSSGFFLERINFYGKIEYLVEVFYNDFQNNLWLFKDPFIHFFRY QGKAILASKDTSLLMNKWKYYFVDLWKYYFYVRSQSGSVRINQLSKYSLDFLGYLSSVRLNTSVVRSQM LENSFIIDNAMKKLDTRIPIISLIGSLSKAKFCNTLGHPISKPTWSDSSDSDIIDRFVRICRNLSHYHS GSSKKKSLYRIKYILRLSCVKTLARKHKSTVRAFLKRLGSEFLEEFFTEEEHVFSLIFPRVFLTSRKLY RVRIWYLDIICINALVNHE

note an open reading frame (ORF) located within the intron of the transfer RNA gene for lysine

1.4 Pauenmuang1 from Chumporn

EntryID: 20070108233400.40228

[Contact Person]	
E-mail:	ssukrong@hotmail.com
Name:	Suchada Sukrong
Institution:	Chulalongkorn university
Department:	Pharmacognosy
Country:	Thailand
City:	Bangkok
Street:	Phayathai
Zip code:	10330
Phone:	6622188364
Fax:	6622188357
submitter(s):	Suchada Sukrong

[Hold-date]

Immediate release:	No
Hold-date:	2007/12/31
Kind of data:	General data

[REFERENCE No.1]

Status:	In Preparation
Year:	2007
Title:	DNA fingerprint analysis of Durian cultivars selected in Thai
	comparing their polysaccharide contents
author(s):	S Sukrong, S Pongsamart

[Sequence]	
length:	1509

Sequence:

1	atagaggaat	ttcaaqtata	+++aaaata	aatagatata	aaaaaataa	tttaatataa
	00 00		5	5	5 5 5	
		ttcgggagta	-			-
	-	tggaaaatca			-	
181	ttaattattc	gaatggatca	acagaatcat	ttgattattt	ctgctaatga	ttccaaccaa
241	aatccatttt	ttgggcacaa	caataattta	tattctcaaa	tgatatcggt	gggatttgca
301	gtcattgtgg	aaattccatt	ttccttacga	ttagtatctt	actcacaagg	ggaagaagtc
361	gcaaaatccc	ataatttcca	atcaattcat	tcaatatttc	cttttttaga	ggacaaattc
421	tcacatttaa	attatgtgtt	agatgtacta	ataccttacc	ccatccatct	agaaatcttg
481	gttcaagccc	ttcgctactg	gataaaagat	gcttcttctt	tgcatttatt	acggttctct
541	ctctacgagt	attgtaattt	gaagagtttt	attactccaa	agaaatctat	ttctattttt
601	aatccaagat	tattcttgtt	cctatataat	tctcatgtat	gtgaatacga	atccattttc
661	ctttttctcc	gtaatcaatc	ttcttattta	cgatcaacat	cttctggatt	ctttcttgaa
721	cgaattaatt	tctatggaaa	aatagagtat	cttgtagaag	tcttttataa	tgattttcag
781	aacaacctat	ggttgttcaa	agaccctttc	atacatttt	ttaggtatca	aggaaaggca
841	attctggcat	caaaggatac	gtctcttctg	atgaataagt	ggaaatatta	ctttgtcgat
901	ttatggaaat	attatttta	cgtgcggtct	caatcaggaa	gcgtccgtat	aaatcaatta
961	tctaaatatt	ctctcgactt	tctgggctat	ctttcaagtg	tgcgattaaa	tacttcagtg
102	lgtacggagtc	aaatgctaga	aaattcattt	ataatagata	atgctatgaa	gaagttggat
		caattatttc				
114	lttagggcatc	ccattagtaa	gccgacgtgg	tccgattcct	ccgattctga	tattattgac
		gtatatgcag				
126	lagtttgtatc	gaataaaata	tatacttcqq	ctttcttgtg	ttaaaacttt	ggctcgtaaa
		ctgtacgtgc				
	_	aagaacatgt	_			
		gggtgcgaat				
	lcatqaatqa	<u> </u>	ccjjcacccj	Jacaccacce	Jeacedaege	cccjjccaac
± 0 0.	eacgaacga					

[Organism]

organism	Durio zibethinus
mol_type	genomic DNA
collected_by	Suchada Sukrong
collection_date	2005
country	Thailand:Chumporn
cultivar	Pauenmuang
identified_by	Suchada Sukrong
organelle	plastid:chloroplast
specimen_voucher	Pauenmuang
Genetic code	

[CDS Feature No.1]

Location	11509
product	maturaseK
gene	matK
transl_table	11

translation

50

MEEFQVYLELNRSRRHDFLYPLIFREYIYALAHDHGLNKSMIFLENQGYGNKFSSLIVKRLIIRMDQQN HLIISANDSNQNPFFGHNNNLYSQMISVGFAVIVEIPFSLRLVSYSQGEEVAKSHNFQSIHSIFPFLED KFSHLNYVLDVLIPYPIHLEILVQALRYWIKDASSLHLLRFSLYEYCNLKSFITPKKSISIFNPRLFLF LYNSHVCEYESIFLFLRNQSSYLRSTSSGFFLERINFYGKIEYLVEVFYNDFQNNLWLFKDPFIHFFRY QGKAILASKDTSLLMNKWKYYFVDLWKYYFYVRSQSGSVRINQLSKYSLDFLGYLSSVRLNTSVVRSQM LENSFIIDNAMKKLDTRIPIISLIGSLSKAKFCNTLGHPISKPTWSDSSDSDIIDRFVRICRNLSHYHS GSSKKKSLYRIKYILRLSCVKTLARKHKSTVRAFLKRLGSEFLEEFFTEEEHVFSLIFPRVFLTSRKLY RVRIWYLDIICINALVNHE

note an open reading frame (ORF) located within the intron of the transfer RNA gene for lysine

1.5 Pauenmuang2_Chumporn

EntryID: 20070108234909.49564

[Contact Person]	
E-mail:	ssukrong@hotmail.com
Name:	Suchada Sukrong
Institution:	Chulalongkorn university
Department:	Pharmacognosy
Country:	Thailand
City:	Bangkok
Street:	Phayathai
Zip code:	10330
Phone:	6622188364
Fax:	6622188357
submitter(s):	Suchada Sukrong

[Hold-date]	
Immediate release:	No
Hold-date:	2007/12/31
Kind of data:	General data

[REFERENCE No.1]

Status:	In Preparation
Year:	2007
Title:	DNA fingerprint analysis of Durian cultivars selected in Thai
	comparing their polysaccharide contents
author(s):	S Sukrong, S Pongsamart

[Sequence]

1509

Sequence:

length:

1	atggaggaat	ttcaagtata	tttagaacta	aatagatctc	gccgacatga	tttcctatac
61	ccacttattt	ttcgggagta	tatttatgca	cttgctcatg	atcatggttt	aaataaatcg
121	atgattttt	tggaaaatca	gggttatggt	aataaattca	gttcactaat	tgtgaaacgt
181	ttaattattc	gaatggatca	acagaatcat	ttgattattt	ctgctaatga	ttccaaccaa
241	aatccatttt	ttgggcacaa	caataattta	tattatcaaa	tgatatcggt	gggatttgca
301	gtcattgtgg	aaattccatt	ttccttacga	ttagtatctt	actcacaagg	ggaagaagtc
361	gcaaaatccc	ataatttcca	atcaattcat	tcaatatttc	cttttttaga	ggacaaattc
421	tcacatttaa	attatgtgtt	agatgtacta	ataccttacc	ccatccatct	agaaatcttg
481	gttcaagccc	ttcgctactg	gataaaagat	gcttcttctt	tgcatttatt	acggttctct
541	ctctacgagt	attgtaattt	gaagagtttt	attactccaa	agaaatctat	ttctattttt
601	aatccaagat	tattcttgtt	cctatataat	tctcatgtat	gtgaatacga	atccattttc
661	ctttttctcc	gtaatcaatc	ttcttattta	cgatcaacat	cttctggatt	ctttcttgaa
721	cgaattaatt	tctatggaaa	aatagagtat	cttgtagaag	tcttttataa	tgattttcag
781	aacaacctat	ggttgttcaa	agaccctttc	atacattttt	ttaggtatca	aggaaaggca
841	attctggcat	caaaggatac	gtctcttctg	atgaataagt	ggaaatatta	ctttgtcgat
901	ttatggaaat	attatttta	cgtgcggtct	caatcaggaa	gcgtccgtat	aaatcaatta
961	tctaaatatt	ctctcgactt	tctgggctat	ctttcaagtg	tgcgattaaa	tacttcagtg
102	1gtacggagtc	aaatgctaga	aaattcattt	ataatagata	atgctatgaa	gaagttggat
108	lacaagaattc	caattatttc	tctcattgga	tcattgtcta	aagcgaaatt	ttgtaacaca
114	1ttagggcatc	ccattagtaa	gccgacgtgg	tccgattcct	ccgattctga	tattattgac
120	1cgatttgtgc	gtatatgcag	aaatctttct	cattatcaca	gtggatcttc	aaaaaaaag
126	lagtttgtatc	gaataaaata	tatacttcgg	ctttcttgtg	ttaaaacttt	ggctcgtaaa
132	lcacaaaagta	ctgtacgtgc	tttttgaaa	agattaggtt	cggaattttt	ggaagaattc
138	ltttacggaag	aagaacatgt	tttttctttg	atcttcccaa	gagtttttt	gacttcgcga
144	laagttatata	gggtgcgaat	ttggtatttg	gatattattt	gtatcaatgc	tctggtcaat
150	lcatgaatga					

[Organism]	
organism	Durio zibethinus
mol_type	genomic DNA
collected_by	Suchada Sukrong
collection_date	2005
country	Thailand:Chumporn
cultivar	Pauenmuang
identified_by	Suchada Sukrong

plastid:chloroplast
Pauenmuang
11
11509
maturaseK
matK

11

transl_table

translation

MEEFQVYLELNRSRRHDFLYPLIFREYIYALAHDHGLNKSMIFLENQGYGNKFSSLIVKRLIIRMDQQN HLIISANDSNQNPFFGHNNNLYYQMISVGFAVIVEIPFSLRLVSYSQGEEVAKSHNFQSIHSIFPFLED KFSHLNYVLDVLIPYPIHLEILVQALRYWIKDASSLHLLRFSLYEYCNLKSFITPKKSISIFNPRLFLF LYNSHVCEYESIFLFLRNQSSYLRSTSSGFFLERINFYGKIEYLVEVFYNDFQNNLWLFKDPFIHFFRY QGKAILASKDTSLLMNKWKYYFVDLWKYYFYVRSQSGSVRINQLSKYSLDFLGYLSSVRLNTSVVRSQM LENSFIIDNAMKKLDTRIPIISLIGSLSKAKFCNTLGHPISKPTWSDSSDSDIIDRFVRICRNLSHYHS GSSKKKSLYRIKYILRLSCVKTLARKHKSTVRAFLKRLGSEFLEEFFTEEEHVFSLIFPRVFLTSRKLY RVRIWYLDIICINALVNHE

note an open reading frame (ORF) located within the intron of the transfer RNA gene for lysine

1.6 Monthong_Chumporn

EntryID: 20070108223220.40395

[Contact Person]	
E-mail:	ssukrong@hotmail.com
Name: Suchada	Sukrong
Institution:	Chulalongkorn university
Department:	Pharmacognosy
Country:	Thailand
City:	Bangkok
Street:	Phayathai
Zip code:	10330
Phone:	6622188364
Fax:	6622188357

submitter(s): Suchada Sukrong

[Hold-date]	
Immediate release:	No
Hold-date:	2007/07/08
Kind of data:	General data

[REFERENCE No.1]

Status:	In Preparation
Year:	2007
Title:	DNA fingerprint analysis of Durian cultivars selected in Thai
	comparing their polysaccharide contents
author(s):	s Sukrong, S Pongsamart

[Sequence]

1509

Sequence:

length:

1	atggaggaat	ttcaagtata	tttagaacta	aatagatctc	gccgacatga	tttcctatac
61	ccacttattt	ttcgggagta	tatttatgca	cttgctcatg	atcatggttt	aaataaatcg
121	atgattttt	tggaaaatca	gggttatggt	aataaattca	gttcactaat	tgtgaaacgt
181	ttaattattc	gaatggatca	acagaatcat	ttgattattt	ctgctaatga	ttccaaccaa
241	aatccatttt	ttgggcacaa	caataattta	tattctcaaa	tgatatcggt	gggatttgca
301	gtcattgtgg	aaattccatt	ttccttacga	ttagtatctt	actcacaagg	ggaagaagtc
361	gcaaaatccc	ataatttcca	atcaattcat	tcaatatttc	cttttttaga	ggacaaattc
421	tcacatttaa	attatgtgtt	agatgtacta	ataccttacc	ccatccatct	agaaatcttg
481	gttcaagccc	ttcgctactg	gataaaagat	gcttcttctt	tgcatttatt	acggttctct
541	ctctacgagt	attgtaattt	gaagagtttt	attactccaa	agaaatctat	ttctattttt
601	aatccaagat	tattcttgtt	cctatataat	tctcatgtat	gtgaatacga	atccattttc
661	ctttttctcc	gtaatcaatc	ttcttattta	cgatcaacat	cttctggatt	ctttcttgaa
721	cgaattaatt	tctatggaaa	aatagagtat	cttgtagaag	tcttttataa	tgattttcag
781	aacaacctat	ggttgttcaa	agaccctttc	atacatttt	ttaggtatca	aggaaaggca
841	attctggcat	caaaggatac	gtctcttctg	atgaataagt	ggaaatatta	ctttgtcgat
901	ttatggaaat	attatttta	cgtgcggtct	caatcaggaa	gcgtccgtat	aaatcaatta
961	tctaaatatt	ctctcgactt	tctgggctat	ctttcaagtg	tgcgattaaa	tacttcagtg
102	lgtacggagtc	aaatgctaga	aaattcattt	ataatagata	atgctatgaa	gaagttggat
1083	lacaagaattc	caattatttc	tctcattgga	tcattgtcta	aagcgaaatt	ttgtaacaca
114	lttagggcatc	ccattagtaa	gccgacgtgg	tccgattcct	ccgattctga	tattattgac
120	lcgatttgtgc	gtatatgcag	aaatctttct	cattatcaca	gtggatcttc	aaaaaaaag
126	lagtttgtatc	gaataaaata	tatacttcgg	ctttcttgtg	ttaaaacttt	ggctcgtaaa
132	lcacaaaagta	ctgtacgtgc	tttttgaaa	agattaggtt	cggaattttt	ggaagaattc
1383	ltttacggaag	aagaacatgt	ttttttttg	atcttcccaa	gagtttttt	gacttcgcga
144	laagttatata	gggtgcgaat	ttggtatttg	gatattattt	gtatcaatgc	tctggtcaat
150	lcatgaatga					
	5 6					

[Organism]	
organism	Durio zibethinus
mol_type	genomic DNA
collected_by	Suchada Sukrong
collection_date	2005
country	Thailand:Chumporn
cultivar	Monthong
identified_by	Suchada Sukrong
organelle	plastid:chloroplast
specimen_voucher	Monthong
Genetic code	11

[CDS Feature No.1]

Location	11509		
product	maturaseK		
gene	matK		
transl_table	11		

translation

MEEFQVYLELNRSRRHDFLYPLIFREYIYALAHDHGLNKSMIFLENQGYGNKFSSLIVKRLIIRMDQQN HLIISANDSNQNPFFGHNNNLYSQMISVGFAVIVEIPFSLRLVSYSQGEEVAKSHNFQSIHSIFPFLED KFSHLNYVLDVLIPYPIHLEILVQALRYWIKDASSLHLLRFSLYEYCNLKSFITPKKSISIFNPRLFLF LYNSHVCEYESIFLFLRNQSSYLRSTSSGFFLERINFYGKIEYLVEVFYNDFQNNLWLFKDPFIHFFRY QGKAILASKDTSLLMNKWKYYFVDLWKYYFYVRSQSGSVRINQLSKYSLDFLGYLSSVRLNTSVVRSQM LENSFIIDNAMKKLDTRIPIISLIGSLSKAKFCNTLGHPISKPTWSDSSDSDIIDRFVRICRNLSHYHS GSSKKKSLYRIKYILRLSCVKTLARKHKSTVRAFLKRLGSEFLEEFFTEEEHVFSLIFPRVFLTSRKLY RVRIWYLDIICINALVNHE

note an open reading frame (ORF) located within the intron of the transfer RNA gene for lysine

1.7 Chani_Chumporn

EntryID: 20070108231721.41046

[Contact Person]E-mail:ssukrong@hotmail.comName:Suchada SukrongInstitution:Chulalongkorn university

Department:	Pharmacognosy
Country:	Thailand
City:	Bangkok
Street:	Phayathai
Zip code:	10330
Phone:	6622188364
Fax:	6622188357
submitter(s):	Suchada Sukrong

[Hold-date]	
Immediate release:	No
Hold-date:	2007/12/31
Kind of data:	General data

[REFERENCE No.1]

Status:	In Preparation
Year:	2007
Title:	DNA fingerprint analysis of Durian cultivars selected in Thai
	comparing their polysaccharide contents
author(s):	S Sukrong, S Pongsamart

[Sequence]

length: 1509

Sequence:

1	atggaggaat	ttcaagtata	tttagaacta	aatagatctc	gccgacatga	tttcctatac
61	ccacttattt	ttcgggagta	tatttatgca	cttgctcatg	atcatggttt	aaataaatcg
121	atgattttt	tggaaaatca	gggttatggt	aataaattca	gttcactaat	tgtgaaacgt
181	ttaattattc	gaatggatca	acagaatcat	ttgattattt	ctgctaatga	ttccaaccaa
241	aatccatttt	ttgggcacaa	caataattta	tattctcaaa	tgatatcggt	gggatttgca
301	gtcattgtgg	aaattccatt	ttccttacga	ttagtatctt	actcacaagg	ggaagaagtc
361	gcaaaatccc	ataatttcca	atcaattcat	tcaatatttc	ctttttaga	ggacaaattc
421	tcacatttaa	attatgtgtt	agatgtacta	ataccttacc	ccatccatct	agaaatcttg
481	gttcaagccc	ttcgctactg	gataaaagat	gcttcttctt	tgcatttatt	acggttctct
541	ctctacgagt	attgtaattt	gaagagtttt	attactccaa	agaaatctat	ttctattttt
601	aatccaagat	tattcttgtt	cctatataat	tctcatgtat	gtgaatacga	atccattttc
661	ctttttctcc	gtaatcaatc	ttcttattta	cgatcaacat	cttctggatt	ctttcttgaa
721	cgaattaatt	tctatggaaa	aatagagtat	cttgtagaag	tcttttataa	tgattttcag
781	aacaacctat	ggttgttcaa	agaccctttc	atacatttt	ttaggtatca	aggaaaggca
841	attctggcat	caaaggatac	gtctcttctg	atgaataagt	ggaaatatta	ctttgtcgat
901	ttatggaaat	attatttta	cgtgcggtct	caatcaggaa	gcgtccgtat	aaatcaatta
961	tctaaatatt	ctctcgactt	tctgggctat	ctttcaagtg	tgcgattaaa	tacttcagtg

1021gtacggagtc aaatgctaga aaattcattt ataatagata atgctatgaa gaagttggat 1081acaagaattc caattattc tctcattgga tcattgtcta aagcgaaatt ttgtaacaca 1141ttagggcatc ccattagtaa gccgacgtgg tccgattcct ccgattctga tattattgac 1201cgattgtgc gtatatgcag aaatctttct cattatcaca gtggatcttc aaaaaaaaag 1261agtttgtatc gaataaaata tatacttcgg ctttcttgtg ttaaaacttt ggctcgtaaa 1321cacaaaagta ctgtacgtgc ttttttgaaa agattaggtt cggaattttt ggaagaattc 1381tttacggaag aagaacatgt tttttctttg atcttcccaa gagtttttt gacttcgcga 1441aagttatata gggtgcgaat ttggtatttg gatattatt gtatcaatgc tctggtcaat 1501catgaatga

[Organism]

organism	Durio zibethinus
mol_type	genomic DNA
collected_by	Suchada Sukrong
collection_date	2005
country	Thailand:Chumporn
cultivar	Chani
identified_by	Suchada Sukrong
organelle	plastid:chloroplast
specimen_voucher	Chani
Genetic code	11

[CDS Feature No.1]

Location	11509
product	maturaseK
gene	matK
transl_table	11
translation	

MEEFQVYLELNRSRRHDFLYPLIFREYIYALAHDHGLNKSMIFLENQGYGNKFSSLIVKRLIIRMDQQN HLIISANDSNQNPFFGHNNNLYSQMISVGFAVIVEIPFSLRLVSYSQGEEVAKSHNFQSIHSIFPFLED KFSHLNYVLDVLIPYPIHLEILVQALRYWIKDASSLHLLRFSLYEYCNLKSFITPKKSISIFNPRLFLF LYNSHVCEYESIFLFLRNQSSYLRSTSSGFFLERINFYGKIEYLVEVFYNDFQNNLWLFKDPFIHFFRY QGKAILASKDTSLLMNKWKYYFVDLWKYYFYVRSQSGSVRINQLSKYSLDFLGYLSSVRLNTSVVRSQM LENSFIIDNAMKKLDTRIPIISLIGSLSKAKFCNTLGHPISKPTWSDSSDSDIIDRFVRICRNLSHYHS GSSKKKSLYRIKYILRLSCVKTLARKHKSTVRAFLKRLGSEFLEEFFTEEEHVFSLIFPRVFLTSRKLY RVRIWYLDIICINALVNHE

note an open reading frame (ORF) located within the intron of the transfer RNA gene for lysine

APPENDIX H

	1	10	20	30	40	50	60
Adansonia_digitata_A	 2282278			таратараа	AGATCTCGTCGA	CATCATTIC	 1919171
D_zibethinus_AY32118	ATGGAGG	AATTTCA	AGTATATTT	IGAACTAAAT	AGATCTCG <mark>C</mark> CGA	CATGATTTC	CTATAC
Kradu n thong Monthong					AGATCTCG <mark>C</mark> CGA Agatctcg <mark>c</mark> cga		
Chani	ATGGAGG	AATTTCA	AGTATATTI	IGAACTAAAT	AGATCTCG <mark>C</mark> CGA	CATGATTTC	CTATAC
Pauenmuang1 Pauenmuang2					AGATCTCG <mark>C</mark> CGA Agatctcg <mark>c</mark> cga		
Consensus					RGATCTCGcCGA		
	61	70	80	90	100	110	120
Adansonia_digitata_A	 	TTTTTCG	GCACTATAT	татесастт	GCTCATGATCAT	GGTTTAAAT	
D_zibethinus_AY32118	CCACTTA	TTTTTCG	GGAGTATAT	TATGCACTT	GCTCATGATCAT	GGTTTAAAT	AAATCG
Kradu n thong Monthong	CCACTTA CCACTTA		iggagta t at iggagta t at		GCTCATGATCAT GCTCATGATCAT		AAATCG AAATCG
Chani	CCACTTA	TTTTTCG	GGAGTATAT	TATGCACTT	GCTCATGATCAT	GGTTTAAAT	AAATCG
Pauen n uang1 Pauen n uang2	CCACTTA		IGGHG I H I H I IGGAGTATAT		GCTCATGATCAT GCTCATGATCAT		HHHICG AAATCG
Consensus	CCACTTA	TTTTTCG	GGAGTATAT	TATGCACTT	GCTCATGATCAT	GGTTTAAAT	AAATCG
	121	130	140	150	160	170	180
Adansonia_digitata_A	ATGATTT	TTTTGGA			RAATTCAGTTCA	-	AAACGT
D_zibethinus_AY32118					RAATTCAGTTCA		
Kradumthong Monthong					AAATTCAGTTCA Aaattcagttca		
Chani	ATGATTT	TTTTGGA			RAATTCAGTTCA		AAACGT
Pauen n uan <mark>g1</mark> Pauen n uang2					RAATTCAGTTCA RAATTCAGTTCA		
Consensus	ATGATTT	TTTTGGA	AAATCAGGG	ITATG <mark>e</mark> taati	RAATTCAGTTCA	ICTAATTGTG	AAACGT
	181	190	200	210	220	230	240
Adansonia_digitata_A	TTAATTA	TTCGAAT	GGATCAACA	GAATCATTTA	ATTATTTCTGCT	AATGATTCC	AACCAA
D_zibethinus_AY32118	TTAATTA		adirionitoni		ATTATTTCTGCT		
Kradu n thong Monthong					ATTATTTCTGCT Attatttctgct		
Chani Pauen n uang1					ATTATTTCTGCT ATTATTTCTGCT		
Pauenmuang2					ATTATTTCTGCT		
Consensus	TTAATTA	TTCGAAT	GGATCAACA	GAATCATTTg	ATTATTTCTGCT	AATGATTCC	AACCAA
	241	250	260	270	V 280	290	300
Adansonia_digitata_A	AATCCAT	TTTTTGG	GCACAACAA	RATTTG TAT	T <mark>C</mark> TCAAATGATA	ITCGGCGGGA	TTTGCA
D_zibethinus_AY32118 Kradumthong	AATCCAT	TTTTTGG	iGCACAACAAT iscoroocoo	raattt <mark>a</mark> tat Gatttatat	T <mark>C</mark> TCAAATGATA TCTCAAATGATA	TCGGTGGGA	TTTGCA
Monthong	AATCCAT	TTTTTGG	IGCACAACAA	raattt <mark>a</mark> tat	T <mark>c</mark> tcaaatgata	ITCGGTGGGA	TTTGCA
Chani Pauen m uang1					T <mark>c</mark> tcaaatgata Tctcaaatgata		
Pauenmuang2	AATCCAT	TTTTTGG	IGCACAACAA	raattt <mark>a</mark> tat	TATCAAATGATA	ITCGGTGGGA	TTTGCA
Consensus	HHTCCHT	TITIGG	IGCACAACAA	IAATTTaTAT	TCTCAAATGATA	ITCGGEGGGA	ITTGCA
		310 0	- 320	330	340 🔍		360
Adansonia_digitata_A					GTATCTTACTCA		-
D_zibethinus_A¥32118 Kradumthong					GTATCTTACTCA Gtatcttactca		
Monthong	GTCATTG	TGGAAAT	TCCATTTTC	CTTACGATTA	GTATCTTACTCA	ICAAGGGGAA	GAAGTC
Chani Pauen m uang1					GTATCTTACTCA Gtatcttactca		
Pauenmuang2	GTCATTG	TGGAAAT	TCCATTTC	CTTACGATTA	GTATCTTACTCA	ICAAGGGGAA	GAAGTC
Consensus	GICHIIG	IGGHHHI	ICCHIIIIC	CITHCGHITH	GTATCTTACTCA	ICHHGGGGHHI	GHHG I C
	361 	370 +	380	390	400	410	420
Adansonia_digitata_A	GCAAAAT	CTCATAR			ATATTTCCTTT	TTAGAGGAC	AAATTC
D_zibethinus_A¥32118 Kradunthong					ATATTTCCTTTI Atatttccttti		
Monthong	GCAAAAT	CCCATAR	ITTT <mark>C</mark> CAATCI	ATTCATTCA	ATATTTCCTTTT Atatttcctttt	TTAGAGGAC	AAATTC
Chani Pauen n uang1	GCAAAAT	CCCATAR	ITTT <mark>C</mark> CAATCI	ATTCATTCA	ATATTTCCTTTI	TTAGAGGAC	AAATTC
Pauenmuang2 Consensus					ATATTTCCTTTT Atatttcctttt		
LONSENSUS	ucnnini i			INTERN ICH	111111111111	IIIIIIIIIIIIII	nnni It

	421 430	440	450	460	470	480
Adansonia_digitata_A		igtgttaga	TGTACTAATAC	CTCACCCCAT	CCATCTAGAAA	ITCTTG
D_zibethinus_AY32118 Kradumthong	TCACATTTAAATTA	GTGTTAGA		CTTACCCCAT	CCATCTAGAAA	TCTTG
Monthong Chani	TCACATTTAAATTA1 TCACATTTAAATTA1					
Pauen n uang1 Pauen n uang2	TCACATTTAAATTA1 TCACATTTAAATTA1		TGTACTAATAC TGTACTAATAC			
Consensus	TCACATTTAAATTAT	GTGTTAGA	TGTACTAATAC	CTLACCCCAT	CATCTAGAAA	ITCTTG
	481 490	500	510	520	530	540 1
Adansonia_digitata_A D_zibethinus_A¥32118	GTTCAAGCCCTTCGC					
Kradunthong	GTTCAAGCCCTTCGC	TACTGGAT	AAAAGATGCTT	CTTCTTTGCA	TTTATTACGGT	TCTCT
Honthong Chani	GTTCAAGCCCTTCGC	TACTGGAT	RAAAGATGCTT	CTTCTTTGCA	TTTATTACGGT	TCTCT
Pauen n uang1 Pauen n uang2	GTTCAAGCCCTTCGC GTTCAAGCCCTTCGC					
Consensus	GTTCAAGCCCTTCGC	TACTGGaTI	RAAAGAT GCTT	CTTCTTTGCA	ITTATTACGGT	TCTCT
	541 550	560	570	580	590 +	600
Adansonia_digitata_A D_zibethinus_AY32118	CTCTACGAGTATTGT CTCTACGAGTATTGT					
Kradunthong	CTCTACGAGTATTG	AATTTGAA	GAGTTTTATTA	CTCCAAAGAA	ATCTATTTCTA	TTTTT
Monthong Chani	CTCTACGAGTATTGT CTCTACGAGTATTGT	AATTTGAA	GAGTTTTATTA	CTCCAAAGAA	ATCTATTTCTA	ITTTT
Pauen n uang1 Pauen n uang2	CTCTACGAGTATTGT CTCTACGAGTATTGT					
Consensus	CTCTACGAGTATTGT	AATTTGAA	GAGTTTTATTA	CTCCAAAGAA	ATCTATTTCLA	ITTTT
	601 610	620	630	640	650 +	660
Adansonia_digitata_A D_zibethinus_AY32118	AATCCAAGATTATTC					
Kradunthong	AATCCAAGATTATTC	TTGTTCCT	ATATAAT TCTC	ATGTATGTGA	ATACGAATCCA	ITTTTC
Monthong Chani	AATCCAAGATTATTC AATCCAAGATTATTC					
Pauenmuang1 Pauenmuang2	AATCCAAGATTATTC AATCCAAGATTATTC					
Consensus	AATCCAAGATTATTC					
	661 670	680	690	700	710	720
Adansonia_digitata_A D_zibethinus_A¥32118			TCATTTACGAT			
Kradunthong	CTTTTTCTCCGTAA	CAATCTTC	TATTTACGAT	CAACATCTTC	TGGATTCTTTC	TTGAA
Monthong Chani	CTTTTTCTCCGTAA CTTTTTCTCCGTAA		TATTTACGAT			
Pauen n uang1 Pauen n uang2	CTTTTTCTCCGTAA					
Consensus	CTTTTTCTCCGTAA					
	721 730	740	750	760	770	780
Adansonia_digitata_A	CGAATTTATTTCTAT				I TATAATGATT	TTCAG
D_zibethinus_AY32118 Kradumthong	CGAATTAATTTCTAT		AGAGTATCTT <mark>g</mark> Agagtatctt <mark>g</mark>		TATAATGATT	TTCAG
Monthong Chani	CGAATTAATTTCTAT CGAATTAATTTCTAT					
Pauenmuang1 Pauenmuang2	CGAATTAATTTCTAT CGAATTAATTTCTAT	GGAAAAAAT	AGAGTATCTT <mark>g</mark>	TAGAAGT <mark>C</mark> TT	TTATAATGATT	TTCAG
Consensus	CGAATTaATTTCTAT					
	781 790	800	810	820	830	840
Adansonia_digitata_A	AACAACCTATGGTTO					
D_zibethinus_A¥32118 Kradumthong	AACAACCTATGGTTO AACAACCTATGGTTO					
Monthong Chani	AACAACCTATGGTTE AACAACCTATGGTTE					
Pauennuang1 Pauennuang2	AACAACCTATGGTTC	ittcaaaga	CCCTTTCATAC	ATTTTTAG	GTATCAAGGAA	AGGCA
Consensus	AACAACCTATGGTTC					

			J				
	841	850	¥ ₩ 038	870	880	890	900
Adansonia_digitata_A	•	-	-	-	-	RATATTACTT	
D_zibethinus_A¥32118	ATTCT	GGCATCAAA	GATAAGCCI	ICTTCTGATGA	ATAAGTGGA	RATATTACTT	TGTCGAT
Kradu n thong Monthong						RATATTACTTI RATATTACTTI	
Chani Pauen n uang1						RATATTACTTI RATATTACTTI	
Pauenmuang2	ATTCT	GGCATCAAA	GGATACGTC1	ICTTCTGATGA	ATAAGTGGA	AATATTACTT	TGTCGAT
Consensus	ATTCT	GGCaTCAAA	gGATAcGtC1	ICTTCTGATG	iataag t ggai	RATATTACTT	FGTCGAT
	901	910	920	930	940	950	960
Adansonia_digitata_A	TTATG	GCAATATCA	TTTTACATO	GTGGTCTCAAT	rcaggaagag	TCCGTATAAA	TCAATTA
D_zibethinus_AY32118 Kradumthong						TCCGTATAAA1 TCCGTATAAA1	
Monthong						TCCGTATAAA1 TCCGTATAAA1	
Chani Pauen m uang1	TTATG	G <mark>A</mark> AATAT <mark>T</mark> A	ITTTTAC <mark>G</mark> T(G <mark>CGGTCTCAA</mark> 1	icaggaag <mark>c</mark> g1	TCCGTATAAA 1	TCAATTA
Pauenmuang2 Consensus						TCCGTATAAA1 TCCGTATAAA1	
concentrate							
		+			-	1010	
Adansonia_digitata_A D_zibethinus_AY32118						GATTAAATCC1 GATTAAAT <mark>A</mark> C1	
Kradunthong	TCTAA	ATATTCTCT	CGACTTTCT	GGCTATCTT	ICAAGTGT <mark>G</mark> CO	GATTAAAT <mark>a</mark> C1	TTCAGTG
Monthong Chani						Gattaaat <mark>a</mark> ci Gattaaat <mark>a</mark> ci	
Pauennuang1 Pauennuang2						G <mark>attaaata</mark> ci Gattaaat <mark>a</mark> ci	
Pauenmuang2 Consensus						GATTAAATaC1	
	1021	1030	1040	1050	1060	1070	1080
	1	+	+	+	+	+	
Adansonia_digitata_A D_zibethinus_A¥32118						CTATGAAGAA(CTATGAAGAA(
Kradu n thong Monthong						CTATGAAGAA(CTATGAAGAA(
Chani	GTACG	GAGTCAAAT	GCTAGAAAA	TTCATTTATA	ITAGATAATG	CTATGAAGAAG	GTTGGAT
Pauen n uang1 Pauen n uang2						CTATGAAGAA(CTATGAAGAA(
Consensus	GTACG	GAGTCAAAT	GCTAGAAAA	TCATTATA	TAGATAATG	CTATGAAGAAG	GTTGGAT
	1081	1090	1100		1120	1130	1140
Adansonia_digitata_A	ACAAG					CGAAATTTTG	
D_zibethinus_AY32118 Kradumthong						CGAAATTTTG1 CGAAATTTTG1	
Monthong	ACAAG	AATTCCAAT	TATTTCTCT	CATTGGATCAT	TGTCTAAAG	CGAAATTTTG	TAACACA
Chani Pauen m uang1						CGAAATTTTG1 CGAAATTTTG1	
Pauenmuang2 Consensus						CGAAATTTTG1 CGAAATTTTG1	
Consensus	TU.	10.0	n m		1.0		
	1141	1150	1160	1170	1180 +	1190	1200
Adansonia_digitata_A D_zibethinus_A¥32118						ATTCTGATATT ATTCTGATATT	
Kradumthong						ATTCTGATATI	
Monthong Chani						ATTCTGATATI Attctgatati	
Pauen n uang1	TTAGG	GCATCCCAT	FAGTAAGCCO	GACGTGG <mark>TCC</mark> (ATTCCTCCG	ATTCTGATATI	TATTGAC
Pauenmuang2 Consensus						ATTCTGATATI Attctgatati	
	1201	1210	1220	1230	1240	1250	1260
	I	+	+	+	+	+	
Adansonia_digitata_A D_zibethinus_AY32118						GATCTTCAAAA GATCTTCAAAA	
Kradunthong	CGATT	TGTGCGTAT	ATGCAGAAA	ICTTTCTCATI	ATCACAGTG	GATCTTCAAAA	AAAAAAAG
Monthong Chani						GATCTTCAAAA GATCTTCAAAA	
Pauen n uang1 Pauen n uang2						GATCTTCAAAA GATCTTCAAAA	
Consensus						GATCTTCAAAA	

	1261	1270	1280	1290	1300	1310	1320
Adansonia_digitata_A	AGTTT	GTATCGA	таааататат	ACTICGGITT	TETTGTGTTA	AAACTTTGGCI	CGTABA
D_zibethinus_AY32118	AGTTT	GTATCGAR	TAAAATATAT	ACTTCGG <mark>C</mark> TT	TCTTGTGTTA	AAACTTTGGC	rcgtara
Kradunthong			ITAAAATATAT				
Monthong			TAAAATATAT				
Chani Naurana A			ITAAAATA T AT ITAAAATA T AT				
Pauen n uang1 Pauen n uang2			TAAAATATAT				
Consensus			таааататат				
	1321	1330	1340	1350	1360	1370	1380
	•	-	+	-		•	
Adansonia_digitata_A			TACGTGCTTT				
D_zibethinus_A¥32118 Kradu n thong			itacgtgc t tt itacgtgc t tt				
Monthong			TACGTGCTTT				
Chani			TACGTGCTTT				
Pauen n uang1	CACAA	AAGTACT	TACGTGCTTT	TTTGAAAAGA	TTAGGTTCGG	AATTTTTGGAA	AGAATTC
Pauenmuang2			TACGTGCTTT				
Con s ensus	CACAA	iaagtact(TACGTGCTTT	TTTGAAAAGA	TTAGGTTCGG	AATTTTTGGAA	AGAATTC
	1381	1390	1400	1410	1420	1430	1440
		1330	1400	1410		1430	1440
Adansonia_digitata_A		-	AAGAAGAACA	TGTTTTTTCT	TTGATCTTCC	CAAGAGTTTT	TTTACT
D_zibethinus_AY32118			GAAGAACA				
Kradunthong			GAAGAACA				
Monthong			GAAGAACA				
Chani Bauanauna 1			GAAGAACA				
Pauen n uang1 Pauen n uang2			GAAGAACA				
Consensus			GAAGAACA				
							•
	1441	1450	1460	1470	1480	1490	1500
	-	+	+	+	*	+	
Adansonia_digitata_A D_zibethinus_AY32118			ATAGGGGACG				
Kradumthong			rataggg <mark>tg</mark> cg rataggg <mark>tg</mark> cg				
Monthong			ATAGGGTGCG				
Chani			ATAGGGTGCG				
Pauen n uang1	TCGCG	AAAGTTAT	ATAGGG <mark>TG</mark> CG	AATTTGGTAT	TTGGATATTA	<mark>ettgtatcaa</mark> t	FGCTCTG
Pauenmuang2			ATAGGG <mark>tg</mark> cg				
Consensus	TCGCG	aaagttat	ATAGGG <mark>lg</mark> CG	AATTTGGTAT	TTGGATATTA	ITTGTATCAA	IGCTCTG
	1501	1510 15	46				
		1510 1:					
Adansonia_digitata_A		TCATGAA					
D_zibethinus_AY32118		TCATGAA					
Kradunthong		TCATGAA					
Monthong		TCATGAAT					
Chani Pauermuard		itcatgaia1 Itcatgaia1					
Pauenmuang1 Pauenmuang2		TCATGAA					
Consensus		TCATGAA					
		0.0	TUL				

Figure H1. The sequence alignment of durian cultivars, 'Kradumthong' 'Monthong', 'Chani', 'Pauenmuang'1 and 'Pauenmuang'2 was compared to *mat*K gene of *Adansonia digitata* (AY321168) in GenBank database as out group samples.

Miss Onanong Nuchuchua was born on March 28, 1982 in Bangkok, Thailand. She graduated Bechelor's Degree in Biochemistry in 2003 from Department of Biochemistry, Faculty of Science, Chulalongkorn University.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย