มอร์โฟเมตรีของใบ ความแปรผันทางพันธุกรรม และวงศ์วานทางวิวัฒนาการของ กวาวเครือขาว Pueraria mirifica ในประเทศไทย

วิทยานิพนธ์นี้เ็็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ

คณะวิทยาศาสตร์ จุพาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2549
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

LEAF MORPHOMETRY, GENETIC VARIATION, AND PHYLOGENY OF WHITE KWAO KRUA Pueraria mirifica IN THAILAND

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science Program in Biotechnology

Faculty of Science
Chulalongkorn University
Academic Year 2006
Copyright of Chulalongkorn University

Thesis title

By
Field of study
Thesis Advisor
Thesis Co-advisor

LEAF MORPHOMETRY, GENETIC VARIATION, AND PHYLOGENY OF WHITE KWAO KRUA Pueraria mirifica IN THAILAND
Mr. Trin Suwanvijitr
Biotechnology
Assistant Professor Chanpen Chanchao, Ph.D.
Associate Professor Wichai Cherdshewasart, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science
(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

ตถณ สุวรรณวิจิตร: มอร์โฟเมตรีของใบ ความแปรผันทางพันธุกรรม และวงศ์วานทางวิวัฒนาการของ กวาวเครือขาว Pueraria mirifica ในประเทศไทย (LEAF MORPHOMETRY, GENETIC VARIATION, AND PHYLOGENY OF WHITE KWAO KRUA Pueraria mirifica IN THAILAND) อ.ที่ปรึกษา: ผศ. คร. จันทร์เพ็ญ จันทร์เจ้า, อ.ที่ปรึกษาร่วม: รศ. ดร. วิชัย เชิดชีวศาสตร์, 156 หน้า

เก็บตัวอย่างของกวาวเครือขาว โดยเก็บใบ ฝัก และดอก จากแหล่งต่างๆ ในประเทศไทยมาใช้ในการ วิเคราะห์ลักษณะทางมอร์โฟเมตรีและทางพันธุกรรมเพื่อหาความสัมพันธ์ว่าสอดคล้องกับข้อมูลของสารเคมีใน หัวกวาวเครือขาวหรือไม่ ผลของการวิเคราะห์ทางมอร์โฟเมตรี พบว่าสามารถแบ่งกลุ่มกวาวเครือขาวได้ โดยมอร์ โฟเมตรีของใบสามารณแยกสายพันธุ์ออกเป็น 5 กลุ่ม ส่วนมอร์โฟเมตรีของฝักแสดงให้เห็นว่าสามารถแบ่งได้เป็น 2 กลุ่ม และมอร์โฟเมตรีของดอกสามารถแยกสายพันธุ์ได้เป็น 3 กลุ่ม ทั้งนี้สามารถสรุปได้ว่าผลของมอร์โฟเมตรี สามารถบ่งบอกความแตกต่างแต่ละสายพันธุ์ใด้ค่อนข้างต่ำ หลังจากนั้นนำข้อมูลมาวิเคราะห์สหสัมพันธ์ต่อค่า ละติจูด และลองจิจูด เพื่อดูถึงความสัมพันธ์ และแนวโน้มการเปลี่ยนแปลงทางมอร์โฟเมตรีของพืชชนิดนี้ใน ประเทศไทย พบว่าทั้งมอร์โฟเมตรีของใบ ฝัก และดอก ล้วนมีความสัมพันธ์ และแนวโน้มต่อค่าละติจูด และ ลองจิจูคที่แตกต่างกัน

ในส่วนการวิเคราะห์ทางพันธุกรรม พิจารณาผลจากลำดับเบสและอาร์เอพีดี ในส่วนของลำดับเบส ทำ การเพิ่มชิ้นส่วนและหาลำดับเบสบนบริเวณ ITS, trnL และ $\operatorname{trnL} \mathrm{L}$ พบว่าลำดับเบสทั้งหมดที่ได้จากทุกสายพันธุ์ แสดงความแปรผันทางพันธุกรรมที่ต่ำ อย่างไรก็ตามค่าไดเวอร์เจนท์ของลำดับเบสของ ITS มีค่าอยู่ระหว่าง 0 25.2% ซึ่งสูงกว่าค่าไดเวอร์เจนท์ของอีก 2 บริเวณ ส่วนผลของอาร์เอพีดีนั้นพบว่า เกิดแบนด์ที่แตกต่างกันทั้งหมด 93 ชิ้น มีค่าเฉลี่ยของระยะห่างทางพันธุกรรมอยู่ในช่วง $0-0.4381$ จากการวิเคราะห์วงศ์วานทางวิวัฒนาการโดย เอ็นเจ 4 วงศ์วาน (3 วงศ์วานโดยลำดับเบสและ 1 วงศ์วานโดยอาร์เอพีดี) พบความแตกต่างของแต่ละวงศ์วาน ถึงแม้ว่าจะพบดีเอ็นเอโพลีมอร์ฟิซึมที่ต่ำ แต่วงศ์วานของอาร์เอพีดีสามารถนำมาใช้ในการจัดกลุ่มสายพันธุ์ กวาวเครือขาวได้สอคคล้องตามจังหวัดและภูมิภาคของประเทศไทยได้

ส่วนการวิเคราะห์ทางองค์ประกอบสารเคมีพวกไอโซฟลาโวนอยด์ สามารณแบ่งกลุ่มสายพันธุ์ กวาวเครือขาวออกเป็น 2 กลุ่ม พบว่าความแปรผันทางองค์ประกอบของสารเคมีของแต่ละสายพันธุ์มีค่าต่ำ และยัง พบอีกว่าความแปรผันดังงล่าวไม่มีความสัมพันธ์ และแนวโน้มใดๆ ต่อค่าละติจูด และลองจิจูด กล่าวโดยสรุปได้ ว่าผลจากการวิเคราะห์ทั้ง 3 รูปเบบแสดงให้เห็นถึงความแปรผันทางสายพันธุ์ของกวาวเครือขาวในประเทศไทย

สาขาวิชา....เทคโนโลยีชีวภาพ. \qquad
ปีการศึกษา.... 2549 ลายมือชื่อนิสิต........97n (x)
 ลายมือชื่ออาจารย์ที่ปรึกษาร่วม \qquad
\#\# 4772302123: MAJOR BIOTECHNOLOGY
KEY WORD: Pueraria mirifica WHITE KWAO KRUA, MORPHOMETRY, GENETIC VARIATION, AND PHYLOGENY

TRIN SUWANVIJITR: LEAF MORPHOMETRY, GENETIC VARIATION, AND PHYLOGENY OF WHITE KWAO KRUA Pueraria mirifica IN THAILAND. THESIS ADVISOR: ASST. PROF. CHANPEN CHANCHAO, Ph.D., CO-ADVISOR: ASSOC. PROF. WICHAI CHERDSHEWASART, Ph.D., 156 pp.

Pueraria mirifica (leaf, pod, and flower) were collected from many localities (cultivars) throughout Thailand for morphometric and genetic analyses in order to evaluate the evolutionary relationship to the chemical (isoflavonoid) analysis. In morphometric analysis, the results showed that all cultivars were moderately classified. The leaf morphometry could separate the cultivars into 5 groups. The pod morphometry indicated that the cultivars belong into 2 groups. In addition, the flower morphometry could classify the cultivars into 3 groups. It could summarize that P. mirifica cultivars have low variation in morphometric approach. Due to correlation analysis, patterns of characterization of P. mirifica in Thailand were determined. The leaf, pod, and flower morphometry of P. mirifica presented that the morphological traits are correlated to angular distances on latitude and longitude.

In genetic analysis, direct sequencing and RAPD were used. About direct sequencing, PCR products of ITS, trnL, and $\operatorname{trnL-F}$ could be amplified and sequenced. All obtained sequences indicated low level of genetic variation among the cultivars in Thailand. However, the sequence divergence of ITS ($0-25.2 \%$) was higher than that of other 2 regions. Due to RAPD, total of 93 polymorphic bands were generated. The average of genefic distance was varied from 0 to 0.4381 . According to 4 NJ phylogenies (3 phylogenies by direct sequencing and 1 phylogeny by RAPD), the obtained topologies were different. Although the genetic polymorphism among cultivars was low, the RAPD tree could moderately illustrate the cultivar classification depending on provinces and regions of Thailand.

In chemical (isoflavonoid) content analysis, it showed 2 classified groups. Remarkably, variation of chemical contents among cultivars was also low. Furthermore, there was no significant correlation in isoflavonoid contents against latitude and longitude. In summary, all 3 analyses indicated low variation among cultivars of P. mirifica in Thailand. 9

จุหาลงกรณ์มหาวิทยาลัย

Field of study...Biotechnology.....
Academic year... 2006

ACKNOWLEDGEMENTS

I am especially grateful to my advisor, Assistant Professor Dr. Chanpen Chanchao, for her suggestions. She always provides me a lot of knowledge and also supports me to do researches.

I would like to thank my co-advisor, Associate Professor Dr. Wichai Cherdshewasart for his advices, comments, and all supports.

My appreciation is also passed to Associate Professor Dr. Somsak Panha, Associate Professor Dr. Nattaya Ngamrojanavanich, and Dr. Tosak Seelanan for serving as thesis committee.

My special thanks is to Assistant Professor Dr. Patchanee Singha-asa, Assistant Professor Dr. Orawan Sattayalai, Assistant Professor Dr. Jessada Denduangboripant, and members of CBCB for laboratory services and other hospitality.

I also thank Mr. Atsalek Rattanawannee and Ms. Ratana Panriansaen for some suggestions, molecular technical supports, and information.

I also thank Department of Biology, Faculty of Science, Chulalongkorn University for the laboratory facilities.

I wish to send my sincere thanks to lab-mates and friends in Biology Department and Biotechnology Program for their friendship, kind assistance, and helpfulness.

Financial supports were from (1) Thailand Research Fund, grants \# MRG4780007, (2) the Center of Excellence in Biodiversity (CEB) under the Research Program on Conservation and Utilization of Biodiversity of Faculty of Science, Chulalongkorn University, (3) Graduate School of Chulalongkorn University, and (4) Biodiversity Research and Training Program (BRT).

Finally, the greatest gratitude is expressed to my family for their encouragement, love, and all supports throughout my life.

CONTENTS

Page
THAI ABSTRACT iv
ENGLISH ABSTRACT v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF FIGURES. ix
LIST OF TABLES. xii
ABBREVIATIONS xiv
CHAPTER I: INTRODUCTION. 1
CHAPTER II: LITERATURE REVIEWS 4
Botanical characteristics, ethnobotany and applications of P. mirifica.... 7
Chemical constituents and bioassay of root extract from P. mirifica.... 8
Distribution and propagation of P. mirifica 12
Morphometric study 14
Genetic variation in plants. 16
CHAPTER III: MATERIALS AND METHODS 24
Morphometric study equipments 24
Genetic study materials 24
Equipments 24
Chemicals 25
Plant materials and sampling collection 27
Morphometric measurement and data analysis $\ldots \ldots \ldots$. 34
Molecular and phylogenetic analyses 34
จฬั DNA extraction........................ค............... 34
Agarose gel electrophoresis 35
PCR Amplification. 36
Purification of the PCR products 37
Direct DNA sequencing 38
Random Amplified Polymorphic DNA technique (RAPD) 38
Phylogenetic analysis 39
Page
CHAPTER IV: RESULTS 40
Morphometric variation 40
Factor analysis 40
Factor analysis of leaf morphometry 40
Factor analysis of pod morphometry 42
Factor analysis of flower morphometry 43
Cluster analysis 45
Cluster analysis of leaf morphometry 45
Cluster analysis of pod morphometry 47
Cluster analysis of flower morphometry 48
Characterization of P. mirifica in Thailand. 49
Leaf morphometry 49
Pod morphometry 52
Flower morphometry 55
Genetic variation 58
DNA extraction 58
PCR amplification 58
Sequence analysis 62
Random Amplified Polymorphic DNA (RAPD) patterns 100
RAPD analysis. 108
Phylogenetic analysis 113
Chemical content analysis 119
Factor analysis of isoflavonoid contents. 121
Cluster analysis of isoflavonoid contents 121
The chemical characterization of P.mirifica in Thailand 123
CHAPTER V: DISCUSSIONS. 125
CHAPTER VI: CONCLUSIONS 132
REFERENCES 134
APPENDICES 140
BIOGRAPHY 156

LIST OF FIGURES

Page
Figure 2.1. P. mirifica plants in the field 5
Figure 2.2. Parts of P. mirifica plant. 6
Figure 2.3. The structures of chemical constituents in P. mirifica root extract. 10
Figure 2.4. The comparison of the structures of isoflavonoid nucleus and Estrogen 11
Figure 2.5. Locations that Subtaeng (2002) surveyed and collected P. mirifica tubers 13
Figure 2.6. Map of nuclear ribosomal DNA internal transcribed spacer (ITS) region in eukaryotes 19
Figure 2.7. Map of chloroplast DNA trnL-F region in plants. Universal primers (a-f) were designed in phylogenetic analysis 19
Figure 3.1. Map for leaf collection of 39 cultivars of P. mirifica among 27 provinces in Thailand. 29
Figure 3.2. Map for pod collection of 14 cultivars of P. mirifica among 11 provinces in Thailand 30
Figure 3.3. Map for flower collection of 11 cultivars of P. mirifica among 8 provinces in Thailand 31
Figure 3.4. Nine morphometric parameters for measurement of collected P. mirifica leaf. 32
Figure 3.5. Three morphometric parameters for measurement of collected P. mirifica pod 33
Figure 3.6. Seven morphometric parameters for measurement of collected P. mirifica flower. 33
Figure 4.1. Position of each region in Thailand. Factor axes of 1 and 2 were derived from Factor analysis of leaf morphometric analysis: ordinate; factor 1 and abscissa; factor 2 41
Figure 4.2. Position of each P. mirifica cultivar in Thailand for podmorphometric analysis. The 3-dimensional scatter plot was constructedon the axes of X-axis (PodL), Y-axis (PodW), and Z-axis (SNP)42
Figure 4.3. Position of each P. mirifica cultivar in Thailand for flower morphometric analysis. Factor axes of 1 and 2 were derived from Factor analysis: ordinate; factor 1 and abscissa; factor 2 44
Figure 4.4. Leaf morphometric dendrogram created by Between-groups linkage method of Cluster analysis 46
Figure 4.5. Pod morphometric dendrogram created by Between-groups linkage method of Cluster analysis 47
Figure 4.6. Flower morphometric dendrogram created by Between-groups linkage method of Cluster analysis 48
Figure 4.7. Geographic trends in leaf morphometry of P. mirifica in
Thailand: abscissa; latitude; the factor score 1 derived from PCA 50
Figure 4.8. Geographic trends in leaf morphometry of P. mirifica in Thailand: abscissa; longitude; the factor score 1 derived from PCA 50
Figure 4.9. Geographic trends in leaf morphometry of P. mirifica in Thailand: abscissa; latitude; the factor score 2 derived from PCA 51
Figure 4.10. Geographic trends in leaf morphometry of P. mirifica in Thailand: abscissa; longitude; the factor score 2 derived from PCA 51
Figure 4.11. Geographic trends in pod morphometry of P. mirifica in Thailand: abscissa; latitude; the Zscore of PodL 53
Figure 4.12. Geographic trends in pod morphometry of P. mirifica in Thailand: abscissa; latitude; the Zscore of PodW 53
Figure 4.13. Geographic trends in pod morphometry of P. mirifica in Thailand: abscissa; latitude; the Zscore of SNP 53
Figure 4.14. Geographic trends in pod morphometry of P. mirifica in
Thailand: abscissa; longitude; the Zscore of PodL 54
Figure 4.15. Geographic trends in pod morphometry of P. mirifica inThailand: abscissa; longitude; the Zscore of PodW...54
Figure 4.16. Geographic trends in pod morphometry of P. mirifica in Thailand: abscissa; longitude; the Zscore of SNP 54
Figure 4.17. Geographic trends in flower morphometry of P. mirifica in Thailand: abscissa; latitude; the factor score 1 derived from PCA 56
Figure 4.18. Geographic trends in flower morphometry of P. mirifica in Thailand: abscissa; longitude; the factor score 1 derived from PCA 56
Figure 4.19. Geographic trends in flower morphometry of P. mirifica in Thailand: abscissa; latitude; the factor score 2 derived from PCA 57
Figure 4.20. Geographic trends in flower morphometry of P. mirifica in Thailand: abscissa; longitude; the factor score 2 derived from PCA 57
Figure 4.21. Genomic DNA on 0.8% agarose gel 58
Figure 4.22. PCR products of ITS on 1.0% agarose gel 59
Figure 4.23. PCR products of $t r n \mathrm{~L}$ on 1.0% agarose gel 59
Figure 4.24. PCR products of trnL-F on 1.0% agarose gel. 60
Figure 4.25. A 687 bp character matrix of 33 cultivars of P. mirifica and 1 cultivar of P. lobata based on nrDNA ITS sequences 63
Figure 4.26. A 397 bp character matrix of 39 cultivars of P. mirifica and 1 cultivar of P. lobata based on trnL sequences 70
Figure 4.27. A 731 bp character matrix of 31 cultivars of P. mirifica and 1 cultivar of P. lobata based on trnL-F sequences 77
Figure 4.28. RAPD patterns amplified by OPA-07 primer on 2.0% agarose gel 101
Figure 4.29. RAPD patterns amplified by OPA-12 primer on 2.0% agarose gel 102
Figure 4.30. RAPD patterns amplified by OPD-02 primer on 2.0\% agarose gel 103
Figure 4.31. RAPD patterns amplified by OPD-16 primer on 2.0\% agarose gel 104
Figure 4.32. RAPD patterns amplified by OPE-01 primer on 2.0\% agarose gel 105
Figure 4.33. A rooted NJ phylogenetic tree or phylogram of ITS region (33 cultivars of P. mirifica in Thailand and 1 cultivar of P. lobata as an outgroup) 115
Figure 4.34. A rooted NJ phylogram of trnL region (39 cultivars of P. mirifica in Thailand and 1 cultivar of P. lobata as an outgroup) 116
Figure 4.35. A rooted NJ phylogenetic tree of trnL-F region (31 cultivars of P. mirifica in Thailand and 1 cultivar of P. lobata as an outgroup) 117
Figure 4.36. A rooted neighbor-joining (NJ) phylogenetic tree based on Nei-Li genetic distances among 33 cultivars of P. mirifica in Thailand and 1 cultivar of P. lobata as an outgroup derived from RAPD patterns 118
Figure 4.37. A dendrogram of isoflavonoid contents created by Between-groups linkage method of Cluster analysis 122
Figure 4.38. Geographic trends in isoflavonoid contents (factor 1) of P. mirifica in Thailand: abscissa and latitude; the factor score 1 was derived by PCA. 124
Figure 4.39. Geographic trends in isoflavonoid contents of P. mirifica in Thailand: abscissa and longitude; the factor score 1 was derived by PCA 124

LIST OF TABLES

Page
Table 2.1. The important chemical constituents in the root extract of P. mirifica 9
Table 3.1. List of sampling collection of P. mirifica in Thailand and P. lobata. The $\sqrt{ }$ symbol represents a collected and analyzed sample 28
Table 3.2. Lists of 5 primers used for PCR amplification and direct sequencing 37
Table 3.3. Lists of 5 arbitrary primers for RAPD 38
Table 4.1. Correlation analysis of geographic trends in leaf morphometric factors of P. mirifica in Thailand derived from Principal Component Analysis 49
Table 4.2. Correlation analysis of geographic trends in pod morphometric factors of P. mirifica in Thailand derived from Principal Component Analysis 52
Table 4.3. Correlation analysis of geographic trends in flower morphometric factors of P. mirifica in Thailand derived from Principal Component Analysis 55
Table 4.4. Summary of PCR amplification of ITS (ITS_1 and ITS_4 primers), $t r n \mathrm{~L}$ (c and d primers) and trnL-F (c and f primers) regions of all P. mirifica samples in Thailand and P. lobata from Japan as outgroup 61
Table 4.5. Percentages of nitrogenous base composition of ITS sequences of 33 cultivars of P. mirifica in Thailand and P. lobata as an outgroup 84
Table 4.6. Percentages of nitrogenous base composition of trnL sequences of 39 cultivars of P. mirifica in Thailand and P. lobata as an outgroup 85
Table 4.7. Percentages of nitrogenous base composition of trnL-F sequences of 31 cultivars of P. mirifica in Thailand and P. lobata as an outgroup 86
Table 4.8. The matrix of pairwise similarity (\%) of ITS sequences from 33 cultivars of P. mirifica in Thailand and P. lobata as an outgroup 87
Table 4.9. The matrix of pairwise similarity (\%) of trnL sequences from 39 cultivars of P. mirifica in Thailand and P. lobata as an outgroup 89
Table 4.10. The matrix of pairwise similarity (\%) of trnL-F sequences from 31 cultivars of P. mirifica in Thailand and P. lobata as an outgroup 92
Table 4.11. The pairwise sequence divergence (\%) of ITS sequences from 33 cultivars of P. mirifica in Thailand and P. lobata as an outgroup 94
Table 4.12. The pairwise sequence divergence (\%) of trnL sequences from 39 cultivars of P. mirifica in Thailand and P. lobata as an outgroup 96
Table 4.13. The pairwise sequence divergence (\%) of trnL-F sequences from 31 cultivars of P. mirifica in Thailand and P. lobata as an outgroup. 98
Table 4.14. Summary of RAPD results of P. mirifica in Thailand and
P. lobata as outgroup by all 5 RAPD primers 106
Table 4.15. Total numbers of RAPD bands or fragments by 5 RAPD primers. Monomorphic and polymorphic bands of 39 cultivars of P. mirifica in Thailand and P. lobata as an outgroup 107
Table 4.16. The average genetic distances (pairwise distances between taxa) of 39 cultivars of P. mirifica in Thailand and P. lobata as an outgroup 108
Table 4.17. Means of isoflavonoid and total contents ($\mathrm{mg} / 100 \mathrm{~g}$) of
P. mirifica tuberous powders collected from 29 locations in Thailand in comparison with P. lobata 120
Table 4.18. Correlation analysis of geographic trends in isoflavonoid contents of P. mirifica in Thailand derived by the PCA of Factor analysis 123

ABBREVIATIONS

A, G, C and T	4 types of nitrogenous bases; Adenine, Guanine, Cytosine and Thymine, respectively that containing in dNTP
bp	base pair
${ }^{\circ} \mathrm{C}$	Degree Celsius
cm	Centimetre
CpDNA	Chloroplast DNA
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleotide triphosphate
EDTA	Ethylene diamine tetra-acetic acid
g	Gram
hr	Hour
ITS	Internal transcribed spacer
kb	kilobase
M	Molar
mg	milligram
min	minute
ml	milliliter
mM	Millimolar
ng	nanogram
$\begin{aligned} & \mathrm{NJ} \\ & \mathrm{~nm} \\ & 6 \end{aligned}$	Neighbour Joining \curvearrowleft Nanometre
nrDNA	nuclear ribosomal DNA ©
GPR	Polymerase Chain Reaction
GAPD	Random Amplified Polymorphic DNA
rpm	revolution per minute
RT	room temperature
sec	second
Tris	Tris (hydroxyl methyl) aminomethane
trnL-F	transfer RNA-Leucine and Phenylalanine intergenic spacer of chloroplast DNA

CHAPTER I

INTRODUCTION

Pueraria mirifica Airy Shaw \& Suvatabandhu (with a Thai name of "White Kwao Krua") which is classified in Family Fabaceae and subtribe Glycininae (the same subtribe as soy bean Glycine max L.) is an indigenous Thai climbing herbal leguminous plants. Its underground tuberous roots are widely used for folk medical therapy such as rejuvenating qualities (Kerr, 1932), estrogen supplements or replacement (Suntara, 1931), anti-tumor activity (Panriansaen, 2005), and cancer prevention (Murkies et al., 1998). This plant species is widely distributed in Thailand and Myanmar especially in the deciduous and mountainous forests in the northern and the western regions of Thailand. It is particularly abundant in Chiangmai (in the north) and Kanchanaburi (in the west) provinces (Panriansaen, 2000). Its tuberous roots are always harvested by native people for a traditional drug preparation. Recently, P. mirifica became popular among Asian people, especially Japanese, Chinese and Thai. for consuming. In addition, chemicals in tuberous roots have been commercially applied for dietary supplement and cosmetics in order to promote physical appearance in breast enlargement, induction of menstruation in women, as well as improvement of the complexion or skin refreshment.

Nowadays, the status of P. mirifica is moderately threatened by rapid and vast deforestation and human invasion that causes decreasing in the population and intraspecific variation. Thus, it should be conserved, cultivated and propagated urgently.

It has been reported that its tuberous roots contain many interesting chemicals identified as phytoestrogens including miroestrol derivatives (Chansakaow et al., 2000^{2}). In 1949, Sukhavachana found that phytoestrogens are mostly similar to female sex hormone or estrogen in quality and structure. Later, isoflavonoids (daidzin, daidzein, genistin, genistein, puerarin, mirificin, kwakhurin, and kwakhurin hydrate) were identified (Pisetpakasit, 1976; Ingham et al., 1986; 1988; 1989; Tham et al., 1998; and Chansakaow et al., 2000^{b}). These chemicals extracted from a tuberous root have a bioactivity on cultured cells. For example, crude extract at high dosage (1,000 $\mathrm{mg} / \mathrm{ml}$) can inhibit the growth of both types of cancer cells, an estrogen receptor positive (ER+) human mammary adenocarcinoma or MCF-7 (Cherdshewasart et al.,

2004 ${ }^{\text {a }}$) and cervical cancer cells or HeLa cells (Cherdshewasart et al., 2004 ${ }^{\text {b }}$). A number of researches are conducted in human (in menopausal women as a clinical trial) and also in experimental animals such as mice (Jones and Pope, 1960; Malaivijitnond et al., 2003 ${ }^{\text {a }}$), rats (Benson et al., 1961; Malaivijitnond et al., 2003 ${ }^{\text {b }}$ and 2004), monkeys (Trisomboon et al., 2004; 2006 ${ }^{\text {a }}$; and $2006^{\text {b }}$). P. mirifica root extract contains high estrogenic activity so it can affect physical appearance, mating behavior, and mental properties in animals and human. Phytoestrogens particularly affect reproductive organs and anatomical traits of female animals and human such as enlargement of uterus, vagina and breast, prolongation of menstrual cycle, and increase of Follicle stimulating hormone (FSH) and Leutinizing hormone (LH) in blood. Moreover, powder of crude extract from P. mirifica can be used as estrogen replacement for menopausal women (Cain, 1960; Muangman and Cherdshewasart, 2001).

Indeed, there are 2 interesting species in the genus Pueraria. The first species is P. lobata (kudzu) which is native to China, Korea and Japan but is introduced as a notorious climbing weed in the US. Other species is P. mirifica which are beneficial in estrogenic-liked properties and in other pharmaceutical applications. Chemical and genetic variation has been more studied in genus Pueraria than in P. lobata. Although a lot of reports were conducted on P. mirifica which is native to Thailand, they are mostly focused on pharmaceutical analysis and bioassay. Few works were based on biological variation.

Recent studies found that P. mirifica collected from different locations in Thailand showed different chemical patterns by Thin Layer Chromatography (TLC) (Panriansaen, 2000). In addition, by High Performance Liquid Chromatography (HPLC), it presented that P. mirifica collected from 28 provinces could exhibit a distinguish variation of isoflavone contents (Subtang, 2002). Furthermore, by MCF-7 proliferation assay, P. mirifica collected from 28 provinces exhibited variation in proliferative effect on MCF-7 cells (Cherdshewasart et al., 2004 ${ }^{\text {a }}$). Chemical constituents and morphological characteristics of P. mirifica populations from various regions in Thailand are different (Panriansaen, 2000 and Subtang, 2002). This may be related to physical and biological environments such as soil components, pH , humidity, temperature, sunlight, and weeds, etc. Also, it is possible that it may be related to genetics.

As mentioned above, crude extracts of tuberous roots collected from various locations perform different bioactivities so it is our interest to find out whether it is related to morphometric and genetic variation or not. Mature leaf was used for morphometric analysis. Principal Component Analysis (PCA) method of Factor analysis and Between-groups linkage method of Cluster analysis in SPSS program for statistical computation were performed. Also, partial sequences of non-coding regions in the nuclear genome (nuclear ribosomal ITS) and in chloroplast genome (trnL and trnL-F) will be analysed. Both analyses will be used to determine the intra-specific relationship among collected cultivars. This work should be benefit in defining the relationship between chemical components, morphometry and genetics of P. mirifica from different locations. Finally, phylogenetic trees by NJ method in PAUP program were constructed.

สถาบันวิทยบริการ

 จุฬาลงกรณ์มหาวิทยาลัย
CHAPTER II

LITERATURE REVIEWS

Pueraria mirifica Airy Shaw et. Suvatabandhu (synonym: Pueraria candollei Wall. ex Benth var. mirifica Airy Shaw et. Suvatabandhu) is a tropical herbal plant (Lakshnakara, 1952) which is classified in family Fabaceae or leguminous plants like soy bean and peas (Suvatti, 1978). People in various parts of Thailand know P. mirifica in different local names such as Thong Kwao, Thong Krua, Hua Kwao, Chan Krua, and White Kwao Krua, most known name. ‘Kwao Krua’ is commonly used for plants in many different genera and species especially for white Kwao Krua (P. mirifica), red Kwao Krua (Butea superba), and black Kwao Krua (Mucuna colletii). P. mirifica was identified in the genus Pueraria and named Pueraria mirifica Airy Shaw \& Suvatabandhu in February 1947. There are a few plant species that look like P. mirifica, e.g. P. lobata or Kudzu which is mostly distributed in China, Korea and Japan. Plant morphology and outstanding organs of P. mirifica are illustrated in Figures 2.1-2.2.

Taxonomy of Pueraria mirifica is identified and classified by Suvatti in 1978.

Figure 2.1. P. mirifica plants in the field.
(A) Root and stem of a young plant in Nakorn Ratchasima province
(B) The growing plants in Ratchaburi province

Figure 2.2. Parts of P. mirifica plant.
(A) Compound leaf of Chiangrai cultivar
(B) Inflorescences or flower bunches of Kanchanaburi cultivar
(C) Young pods of Kanchanaburi cultivar
(D) Tubers of Doi Tao and Chiangdao cultivars (from Chiangmai province)

2.1 Botanical characteristic, ethnobotany, and application of \boldsymbol{P}. mirifica

P. mirifica is a perennial leguminous herb. It is a climbing plant that wraps around large trees or spreads on the ground. It has pinnate tri-foliate compound leaf. Roots are long tuberous or rather globular. The size varies on cultivars or environmental factors. Flowers compose of five petals that look like bluish-purple butterfly and bloom during February to April. Each flower composes of one standard, two keels, and two wings similar to leguminous flower. Inflorescences or flower bunches, about $15-40 \mathrm{~cm}$ long, are racemose type. Pods are typically short or small, slender and covered with brown hairs. They contain 1-5 dark brown or black seeds when completely mature. In 1986, Smitasiri et al. reported that P. mirifica is closely related to Kudzu or P. lobata (Willd.) that is the native species in southern Japan and southeastern China. The different aspects between them are leaf laminar and petiole. Kudzu's leaf and its petiole are typically slightly smaller and more hairy than P. mirifica.

The underground tuberous root extract of P. mirifica have been long recorded as domestic consumption to promote youth in both male and female consumers (Suntara, 1931). In the past, Thai menopausal women in some regions take it for traditional remedies which include the tuber powder of P. mirifica to relieve vasomotor symptoms (hot flashes and night sweats).

Recently, P. mirifica root powder is extracted and admixed in industrial cosmetics such as a firming breast lotion or cream, eye gel, and skin moisturizer. The benefits of skin application are mostly used for anti-wrinkle and breast firming. Additionally, this plant powder was manufactured as a food supplement for anti-aging (Dweck, 2002).
จุฬาลงกรณ์มหาวิทยาลัย

2.2 Chemical constituents and bioassay of root extract from P. mirifica

The root or tuber extract of P. mirifica contains a large number of chemical constituents mostly classified as phytoestrogens that its structure and effect is similar to female sex hormone, estrogen. Miroestrol was first isolated and analyzed to be the most active compound. Its effects are most similar to estrogen. It can affect estrogenreceptor cells in mammalian. Normally, it is found in little amount of roughly $1.5 \mathrm{mg} /$ 100 g dry weight of tuberous root powder (Bound and Pope, 1960). Other chemical constituents are coumestans, isoflavones, chromenes, steroids, sugar alcohols, minerals, sugars, lipids, and others (Nilandihi, 1957). Coumestans, isoflavones, and chromenes can induce estrogenic activity. Recently, deoxymiroestrol was isolated and could provide higher estrogenic potency (about 10 folds) than miroestrol (Chansakaow et al., 2000 ${ }^{\text {a }}$). Isoflavones have 5 remarkable members of puerarin, daidzin, genistin, daidzein and genistein in the extracted powder of P. mirifica tuber (Cherdshewasart et al., 2006). Five compounds of a tuber from various locations of Thailand were distinguished by HPLC fingerprint analysis. It revealed that there was the great chemovariation of isoflavones among a tuber from different locations (Subtang, 2002). Briefly, the important chemical constituents are summarized and listed in Table 2.1. Moreover, figure 2.3 presents the chemical structures of chemical constituents in P. mirifica tuber extract and figure 2.4 shows the comparison of the structures of isoflavonoid nucleus and estrogen.

Most researchers are interested in the effect of tuber extracts to animal model and cell culture. For instance, in female rats, crude extract affects reproductive system distinctly. It can enlarge uterine and vagina and it also can increase LH and FSH level in blood (Malaivijitnond et al., 2004). In female monkeys, themaximized dose (1,000 mg of $P_{\text {p }}$ mirifica extract) can affect a menstrua cycle length. Follicular phase and menstrual cycles are longer than normal condition (Trisomboon et al., 2004). Furthermore, there are many researches on the effect of crude extract to cultured cells. For example, high dose of the tuber extract (100 and $1,000 \mathrm{mg} / \mathrm{ml}$) can inhibit the growth of MCF-7 cell or an estrogen receptor positive (ER +) human mammary adenocarcinoma (Cherdshewasart et al., 2004 ${ }^{\text {a }}$).

Table 2.1. The important chemical constituents in the root extract of P. mirifica.

Category	Chemical constituents	References
Chromenes	Miroestrol Deoxymiroestrol Isomiroestrol	Ingham et al., 1986
Coumestans	Coumestrol Mirificoumestan Mirificoumestan glycol Mirificoumestan hydrate	Ingham et al., 1986; 1988
Isoflavones	Daidzin Daidzein Genistin Genistein Kwakhurin Kwakhurin hydrate Mirificin Puerarin Puerarin 6'- monoacetate	Ingham et al., 1986; 1989
β-sitosterol Stigmatosterol	Hayodom, 1971	
Steroids		

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Isoflavone and Isoflavone glycosides

Daidzein
Daidzin

Puerarin

Genistein
Genistin

Kwakhurin

Coumestans

Coumestrol
Mirificoumestan

Mirificoumestan hydrate

Figure 2.3. The structures of chemical constituents in P. mirifica root extract.
(Ingham et al., 1986)
. ำซาาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

Chromenes

Miroestrol

Deoxymiroestrol

Isomiroestrol
Sterols

Figure 2.3. The structures of chemical constituents in P. mirifica root extract. (continued)

Figure 2.4. The comparison of the structures of isoflavonoid nucleus and estrogen.

2.3 Distribution and propagation of P. mirifica

P. mirifica is an herbal plant that has long been used in traditional medicine in Southeast Asia, especially in Thailand and Myanmar. Panriansaen (2000) presented that this plant could grow on the mountainous forest and sandy soil at roughly 80-800 meters above the sea level. Moreover, P. mirifica herb typically shares the same habitats to Butea superba (red Kwao Krua), teak, and bamboo but it was not distributed in high-dense and evergreen forests. The vine of P. mirifica elongates for climbing over trees or spreads on the ground in an open area. In Thailand, Panriansaen (2000) also reported that P. mirifica is an endemic species that mostly grew in the deciduous or dry forest areas. It is widely distributed in the North, the Northeast, the Central, and the West, especially in Kanchanaburi and Chiangmai provinces. After it has long been surveyed and collected, P. mirifica could be mainly found in 3 areas that are 1) farmland, field, or orchard, 2) natural areas such as the mountainous forest, and 3) national park. Morphological variation between provinces or locations is also found. The distinct difference between P. mirifica from 2 provinces (Kanchanaburi and Chiangmai) was flower color. Flowers of Chiangmai cultivar was darker blue than flowers from Kanchanaburi cultivar. After that, Subtaeng (2002) presented that P. mirifica was widely distributed in at least 28 provinces in Thailand (Figure 2.5). Also, there was the isoflavonoid chemovariation in collected tubers and there was high chemical variety by HPLC analysis.

Sexual reproduction takes place by seed and asexual reproduction is by mean of underground rhizomes and tissue culture.
สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

No.	Province
1	Chiang Rai
2	Chiang Mai
3	Mae Hong Son
4	Phayao
5	Nan
6	Lampang
7	Phrae
8	Lamphun
9	Uttaradit
10	Sukhothai
11	Tak
12	Phitsanulok
13	Phetchabun
14	Kamphaeng Phet
15	Nakhon Sawan
16	Uthai Thani
17	Sakon Nakhon
18	Nong Bua Lam Phu
19	Chaiyaphum
20	Nakhon Ratchasima
21	Saraburi
22	Lopburi
23	Kanchanaburi
24	Phrachinburi
25	Ratchaburi
26	Phetchaburi
27	Prachuap Khiri Khan
28	Chumphon

Figure 2.5. Locations that Subtaeng (2002) surveyed and collected P. mirifica tubers.

2.4 Morphometric study

Morphometry is the measurement of morphological characters or structures and shapes of organisms. Later, it will be analyzed by statistical computation. Morphometry has been used in order to study taxonomic diversity or variation of many organisms such as honeybees, gastropods, fish, etc.

2.4.1. Morphometry in plants

In plants, morphological characters such as leaf, seed, fruit, flower, etc. have been commonly used. For example, Creed (1997) reported the morphological variation in sea grass Halodule wrightii in Rio de Janeiro, Brazil. He found that leaf width, leaf length, sheath length, rhizome diameter, and root density showed higher variation between populations than within the populations.

Perez (2003) presented morphological variation or polymorphism of style (a stalk of female reproductive organ) and perianth (the outer and sterile whorls of a flower) in 7 species of Narcissus which were collected from Spain, Portugal, and Morocco. There was a significant relation between perianth and style although there was widely range in flower morphology.

Swamy et al. (2004) studied on seed morphometry by using scanning electron microscope (SEM) of 10 epiphytic orchid species from the Western Ghats of Karnataka in Southern India. Characters of seeds such as seed surface, size, shape, visibility of embryo, testa (seed coat) cells and structure, curvature, and ridges are varied. Moreover, seed colors were ranged from pale yellow to yellow, brown, and white.

Agustin (2006) studied morphometry of organs and fruit parameters of cherimoya (Annona cherimola Mill.) in Mexico. The multivariate analyses were performed by Principal Component Analysis method (PCA) of Factor analysis and then statistically clustered by the unweighted pair-group method arithmetic average (UPGMA) of Cluster Analysis. Finally, cherimoya could be separated into 4 groups based on Cluster analytical dendrogram.

2.4.2. Morphometry of Pueraria

In genus Pueraria, the study on morphometry is very rare. In P. mirifica, Panriansaen (2000) used some seed characters and shapes of tuberous roots to study
morphometry in populations from Chiangmai and Kanchanaburi only. Both areas were selected because of their abundance. Morphological differences in flower color, seed size, and tuber shape were found.

2.5 Genetic variation in plants

Methods in molecular biology have been used to study genetic diversity. It mostly aims on genetic materials especially DNA that could be found in all living organisms’ cells. There are 3 types of DNA, 1) nuclear DNA (nrDNA), 2) chloroplast DNA (cpDNA) in all plants and 3) mitochondrial DNA (mtDNA) in all Eukaryotes. Genetic analysis of polymorphism in DNA level is considered to be a direct method to investigate inter- and intra-specific genetic variations of living organisms. Nowadays, a lot of molecular approaches have been used for the genetic diversity purpose such as Random Amplified Polymorphic DNA (RAPD), direct DNA sequencing, etc. Also, both types of molecular techniques were used to detect and investigate the variation of P. mirifica in this thesis.

2.5.1. RAPD in studying genetic variation in plants

Because of its advantages such as low cost, easiness and rapidity, RAPD technique has been recently and widely used in genetic variation and phylogenetic studies. In 1995, Mienie et al. used RAPD to identify and investigate 37 cultivars of South African soybean (Glycine max L.) in order to improve commercial seed production and crop certification. Total of 120 random primers and 60 combination primers were used in the reactions. Fourteen primers that could indicate repeatable polymorphisms were selected to identify individual cultivars. Then, amplified fragments were scored as present or absent (1 or 0). Frequency of detected polymorphism was low but cultivar investigation could be distinguished with a combination of the band patterns amplified by selected primers.

Thompson et al. (1998)conducted the study of genetic diversity of soybean (Glycine max) in North America. Accession numbers of the amplified sequences were obtained. Eighteen cultivars were determined to be ancestors while 17 cultivars were identified to be new cultivars. All of them were maintained in the USDA Soybean Germplasm Collection. The genetic relationship among 35 genotypes was calculated from 281 RAPD markers by using simple matching coefficient (SMC) and by expressing as Euclidean distances. The genetic distance among all genotypes was 0.56 and finally cluster analysis was identified as distinct groups from ancestors.

Bautista et al. (2001) used RAPD, RFLP, and SSLP to analyze phylogenetic relationships between cultivated and wild rice in Asia. The result presented that wild cultivars and cultivated rice are apparently varied from each other.

Baranek et al. (2002) evaluated the genetic diversity in 19 Glycine max in the Czech National Collection of Soybean Genotypes. RAPD technique was used and only 22 of 40 random primers showed the polymorphism that was acceptable for an effective characterization of these accessions. One hundred and twenty two reproducible RAPD fragments were generated and 55 bands of them were polymorphic (46\%). The result could be useful for the cultivar selection and plant breeding.

Lakshmi et al. (2002) performed molecular phylogeny and genetic polymorphism in 9 species of mangroves (Rhizophoraceae) collected from the Indian sub-continent. In the past, the taxonomic relationships of the mangroves were usually investigated by morphological analysis. Sometimes, it was unclear and ambiguous because of some complicated and overlapped characteristics. Later, it was analyzed by using 3 techniques: RAPD, restriction fragment length polymorphism (RFLP), and RFLP of polymerase chain reaction (PCR-RFLP) products of chloroplast genes. Some primers were represented as markers. Finally, phylogenetic trees were constructed and analyzed. The result indicated that the sampled mangroves were totally classified into 3 clusters.

Xu and Gai (2003) carried out the genetic diversity of soybeans by RAPD method and could clarify the genetic difference of wild and cultivated soybeans growing in China. There were 21 wild soybeans and 27 cultivated soybeans. It showed that wild soybeans had higher genetic variation than cultivated soybeans. It indicated that genetic variation had been reduced by domestication of wild varieties. Based on genetic similarity coefficient, all of the accessions were classified into 2 major clusters: wild and cultivated varieties. In addition, the results indicated that geographical differentiation played an important role in genetic polymorphism of both wild and cultivated plants.

Wu et al. (2004) investigated the existing population and local distribution of Oryza granulata in Yunnan Province of Southwestern China in order to evaluate and conserve this endangered wild rice species. The genetic diversity among population and within population was determined by using RAPD and inter-simple sequence repeat (ISSR) as molecular markers. In studying among populations, the percentage of
polymorphic bands was 59\% for RAPDs and 64\% for ISSRs. Moreover, in studying within populations, the percentage generated by 2 techniques were 26% in the first population while the percentage were 21% (RAPD) and 22% (ISSRs), respectively in the second population. It also reported that genetic variation among populations of rice is much higher than genetic variation within populations.

Radmann et al. (2006) characterized and analyzed genetic variation of 10 main cultivars of strawberry in Brazil by 26 RAPD markers. Considering 19 selective primers, 14 primers could present polymorphism. From total of 116 bands, 84 bands were polymorphic. The strawberry cultivars were classified into 2 main groups: industry cultivars and fresh fruit market cultivars. Genetic similarity in the group of fresh market cultivars (44-74\%) was less than the similarity in the other group.
2.5.2. DNA sequencing of chloroplast DNA transfer RNA-Leucine and phenylalanine region (cpDNA trnL-F) and nuclear ribosomal DNA internal transcribed spacer region (nrDNAITS) in plants

Nowadays, a great number of intergenic spacer between chloroplast DNA transfer RNA-leucine and phenylalanine region (trnL-F) from various organisms are recorded in GeneBank database and other databases. This region can be practically used and can be probably combined to nuclear ribosomal DNA internal transcribed spacer region (ITS) in order to reveal phylogeny and genetic variation. Both regions are non-coding and conserved. Many researches on phylogeny have been reported by using both regions. For example, Alvarez and Wendel (2003) performed phylogenetic analysis by using ribosomal ITS sequences of 18S-5.8S-26S nuclear ribosomal cistron and constructed plant phylogenetic trees in order to interprete the genetic relationship. In addition, Taberlet et al. (1991) designed primers from the cpDNA, especially in trnL-F region in order to study phylogeny. The maps of ITS, trnL and trnL-F regions are displayed in the figure 2.6 and 2.7 C C C

Figure 2.6. Map of nuclear ribosomal DNA internal transcribed spacer (ITS) region in eukaryotes (White et al., 1990).

Figure 2.7. Map of chloroplast DNA trnL-F region in plants. Universal primers (a-f) were designed in phylogenetic analysis (Taberlet et al., 1991).

จฬาลงกรณมหาวิทยาลย

In early 1990s, molecular phylogenetic researches have been mostly relied on cpDNA rbcL sequence but nowadays they have been relied on nrDNA internal transcribed spacer (ITS), cpDNA trnL-F, and mtDNA instead. ITS regions of nrDNA are always used in studying different taxonomic levels, particular at intraspecific level because of relatively rapid evolutionary rates. The cpDNA (e.g. trnL-F) in plants are usually conserved in terms of genome sizes, structures, gene contents, and linear
orders. Chloroplast genome evolves at a slower rate than nuclear genome but some regions change more rapidly than the average. Briefly, both regions mentioned above are evolutionarily varied. For instance, Taberlet et al. (1991) designed 6 primers to amplify 3 non-coding regions of chloroplast DNA: trnL-F and rbcL. In order to develop universal primers, those designed primers were tried on amplifying DNA from various plant species. The primers worked well on tested DNA of many organisms including algae, bryophytes, pteridophytes, gymnosperms, and angiosperms. It implied that primers were universal for organisms belonging in wide taxa.

Zimmer et al. (2002) conducted phylogenetic analyses of nuclear ITS, and chloroplast DNA trnL intron, trnL-trnF intergenic spacer region, and trnE-trnT intergenic spacer region in Gesnerioideae (Gesneriaceae). Live samples were grown and collected at the Smithsonian's National Museum of Natural History Botany Research Greenhouses, Maryland, USA. By analyzing nrDNA and cpDNA sequences, monophylly of clades of plants in this Family were revealed. The data was strongly supported by statistic calculation.

Schuettpelz and Hoot (2004) investigated phylogeny and biogeography of plants in genus Caltha (Ranunculaceae) which consists of 10 species of perennial herbs. The plants are widely distributed throughout the moist temperate and cold regions of the northern and southern hemispheres. The cpDNA and nrDNA sequences were used to indicate the monophyly (grouping in one branch) of genus Psychrophila and Caltha, to trace the evolutionary history of diplophylly (grouping in 2 branches), and to explore biogeographical hypotheses of the genus. The analysis of these data resulted in a well supported phylogeny.

Yulita et al. (2005) performed the molecular phylogeny of plants in genus Hopea and Shorea (Dipterocarpaceae) by determining the chloroplast DNA $\operatorname{trnL}-\mathrm{F}$ and nuclear ITS regions. Plant materials from the Australian National Herbarium and Harvard University Herbaria were used. The inferred phylogenetic relationships between 2 genera could indicate that Shorea is paraphyletic while Hopea is potentially monophyletic.

Ellison et al. (2006) analysed phylogeny of 255 species of leguminous plants in genus Trifolium based on nuclear ITS and chloroplast trnL intron sequences. Representatives were from 11 genera of vicioid clade (tribes of Cicereae, Trifolieae,
and Vicieae) and Lotus as an outgroup. Disharmony between the nrDNA and cpDNA sequences suggested that there was hybrid speciation.

2.5.3. Genetic variation of plants in genus Pueraria

Researches on genetic variation of plants in genus Pueraria are quite rare. Pappert et al. (2000) reported genetic variation of P. lobata (Kudzu) of 20 populations in southeastern U.S. by using 14 allozyme loci analysis. The polymorphism of loci is 92.9% and overall genetic variation is 0.29 . The average proportions of polymorphic loci and genetic variation within populations were 55.7% and 0.213 , respectively.

Heider et al. (2004) carried out researches on P. montana in the topic of genetic diversity of a neglected crop in North Vietnam. The objective of this study was to develop an appropriate molecular marker to analyze the genetic variation of 5 accessions of P. montana that were collected in Bac Kan province, North Vietnam in order to know a basic understanding of genetic differentiation patterns in this target location. By using RAPD marker, this species illustrated a high polymorphic level of variation with 54.3%.

Sun et al. (2005) presented the genetic variation of P. lobata (Kudzu) that have been a noxious weed in the U.S. and plants in 4 closely related taxa (P. edulis, P. montana, P. phaseoloides, and P. thomsoni) collected from China and the U.S. The data was revealed by Inter-Simple Sequence Repeat Analysis (ISSR) method. The genetic diversity in both native (China) and invasive areas (the U.S.) could apply to the effective biological control standard. ISSR results showed a clear separation of these 5 species. High genetic differentiation was found in P. lobata, P. montana, and P. thomsoni collected from China. High genetic diversity and low population differentiation was found in P. lobata from the U.S. The obtained data supported a hypothesis of multiple introductions from Japan or China into the U.S. It brought to the subsequent gene exchange and recombination theories.

Until present, there is still no research on genetic variation of P. mirifica. Most researches have been focused on bioassay and pharmaceutical tests.

2.5.4. Relevance of plant morphometry and molecular analysis

There are some reports that apply morphometry together with molecular analysis to support each other in order to determine the plant variation. For example,

Hoey et al. (1996) performed the phylogenetic analysis of 17 wild and cultivated pea of genus Pisum in Germany based on 16 morphological characters, allozyme and, RAPD markers. The results showed that cladograms could confirm the close relationships among wild species. Morphological characters, allozyme, and RAPD markers were all together used to organize the pea taxa groupings.

Bailey et al. (2002) carried out the systematic and relationship of Halimolobine plant (Family Brassicaceae). Thirty three species from various locations were analyzed by using 3 loci (trnL-F region, nrDNA ITS, and pistillata intron) and morphological traits (17 morphological characters). The consensus tree contained 5 well-supported halimolobine subclades. Although there is variation in morphological character for classification of this group, the majority of these characters provide some grouping information within the halimolobine clade.

Chowdhury et al. (2002) identified 48 exotic germplasm lines of Thai soybean. All genotypes were classified by 37 morphological markers which could fully generate discrimination of the cultivars. The similarity index using Dice coefficient between cultivars was varied from 0.00 to 0.92 (an average of 0.45). The UPGMA cluster analysis showed 2 groups, first group of 32 cultivars and second of 16 cultivars. DNA of 48 cultivars was amplified by RAPD in order to identify cultivars and determine level of genetic similarity. From all of 80 random primers, 37 primers could reproduce polymorphic RAPD patterns. It indicated that high level of genetic similarities existed in these exotic cultivars. Then, the data were computed by using UPGMA method. Each genotype was clearly identified and separated from others. RAPD based dendrogram revealed that 48 cultivars could be classified into 4 groups.

Szczepaniak et al. (2002) combined 35 morphological characters and AFLP method to analyze intraspecific variation of 4 populations of Elymus repens (L.) or gould (Family Poaceae) collected from different habitats in Poland. Four pairs of selective primers were used to detect 279 AFLP bands. Also, 104 bands presented polymorphic patterns between populations (37.28\%). Cluster analysis based on AFLP fingerprint data showed the individual arrangement in population. The analyses of variance (ANOVA and AMOVA) indicated significantly morphological and genetic differentiation among populations. This study showed that common analysis of genetic diversity and morphology are powerful tools for low-level taxonomic research.

Perez et al. (2003) used flower characters to reveal morphological variation of plants in genus Narcissus. The features were style and perianth (petals or outer whorled parts of flower) of Narcissus 7 species collected from Spain, Portugal, and Morocco. Significant relation between perianth morphology and style polymorphism of the studied species exhibited a wide-ranged morphological features. Based on molecular analysis and phylogeny of chloroplast trnL-F sequence, it could be concluded that 2 heterostylous species (2 or 3 different morphological types of flowers) had an independent origin. Also, it supported the convergence hypothesis of heterostyly in Narcissus spp. Furthermore, the second phylogeny of chloroplast trnTL sequence could help to elucidate some evolutionary transitions in heterostylous species. Style dimorphism appeared in 2 types, the distyly (2 style forms) and style monomorphism.

Compton et al. (2004) conducted 9 different classifications of small plants in genus Cyclamen. Samples were collected from various sites worldwide. These classifications were generated by morphometric and cladistic analyses which were based on morphology, cytology, and DNA sequence of nrDNA ITS and cpDNA trnL intron. Only nrDNA sequence data revealed good resolution. When these 3 data sources were combined together, they provided the stronger resolution and the support for constructing 3 major clades.

Stuessy et al. (2006) presented the phylogenetic implications of plants in subfamily Barnadesioideae (Asteraceae) in Argentina. Generic and specific levels were based on morphological features of corollas (the overall structure of petals of a flower including shape and vascularization) and DNA sequences of ITS region and trnL intron. Molecular phylogeny is more compatible to evolutionary inferences than the morphologicalphylogeny. Highly significant correlation was obtained.
จุหาลงกรณโมหาวิทยาลัย

CHAPTER III

MATERIALS AND METHODS

3.1 Materials

3.1.1 Morphometric study equipments

- Vernia caliper
- Ruler

3.1.2 Genetic study materials

3.1.2.1 Equipments

- Autoclave: model Conbraco (Conbraco Ind. Inc., USA)
- Automatic micropipette: P10, P20, P200, and P1,000 (Gilson, France)
- Centrifuge/vortex: model Centrifuge FVL-2400 (BIOSAN, Latvia)
- Electronic UV transilluminator (Ultra lum Inc., USA)
- Electrophoresis chamber set: model Mupid (Advance Co. Ltd., Japan)
- Freezer $-20^{\circ} \mathrm{C}$
- Incubator (Memmert, Germany)
 -Magnetic stirrer: model PC-320 (Corning, USA)
q- Maxima ultra pure water: model Maxima UF (ELGA, England)
- Microcentrifuge: model Centrifuge pico (SORVALL ${ }^{\circledR}$, Germany)
- Microcentrifuge tubes (0.5 and 1.5 ml)
- Microwave oven: model Sharp carousel R7456 (Sharp, Thailand)
- PCR machine: model GeneAmp® PCR system 2400 (Applied Biosystem, Singapore)
- PCR machine: model GeneAmp® PCR system 9700 (Applied Biosystem, Singapore)
- pH meter: model Cybersean 500 (Eutech cybernatics, Singapore)
- Pipette tips (10, 200, and 1,000 $\mu \mathrm{l}$)
- Polaroid camera: model Direct screen instant camera DS 34 H-34 (Peca products, UK)
- Power supply: EC 5 70-90 LVD CE (E-C Apparatus corporation, USA)
- Thin-wall microcentrifuge tube (0.2 ml)
- Vortex: model MS I Minishaker (IKA-Works, Inc., USA)
- Vortex mixer: model KMC-1300V (Vision scientific Co, Ltd., Korea)
- Whatman laboratory sealing film (Whatman international Ltd., England)

3.1.2.2 Chemicals

- Absolute Ethanol, M.W. $=46.07$ (Merck, Germany)

- Boric acid (Research organicss, USA)

G- DNA HindIII marker, catalog\# SM0101 (Fermentas Life Science, Germany)

- GeneRuler ${ }^{\text {TM }} 100$ bp DNA Ladder, catalog\# SM1143 (Fermentas Life Science, Germany)
- DNeasy® plant mini kit, catalog\# 69104 (QIAGEN UmbH, Germany)
- Ethedium bromide
- Ethanol 95\%, M.W. = 46 (Thailand)
- Ethylene diamine tetra-acetic acid (EDTA), M. W. = 292.2 (Serve feinbiochemica GmbH \& Co., USA)
- Nucleospin® DNA plant kit, catalog\# 740570.50 (Machery-Nagel, Finland)
- PCR Master mix (i-Taq) solution, catalog\# 25028 (iNtRON BIOTECHNOLOGY, Korea)
- Primers or oligonucleotides (Bioservice unit, Thailand.)
- QIAquick® PCR purification kit, catalog\# 28104 (QIAGEN GmbH, Germany)
- Tris-(Hydroxymrtyl)-aminomethane, M.W. = 121.14 (Pharmacia Biotech, USA)

สถาบันวิทยบริการ

3.1.3 Plant materials and sampling collection

Pueraria mirifica samples were collected from 5 parts of Thailand (the North, the Northeast, the Center, the West, and the South) during May to October in 2006.

For morphometric analysis, mature leaves, old brown pods, and blooming flowers were collected. Total of 39 cultivars were sampled within 27 provinces of Thailand (Figure 3.1). Fifty leaves of each cultivar (about 1 meter far from shoot) was collected for measurement with 9 parameters. Ten pods per each site of total 14 cultivars within 11 provinces (Figure 3.2) were taken for measurement with 3 parameters. Furthermore, 10 flowers per each location of total 11 cultivars within 8 provinces (Figure 3.3) were used for measurement with 7 parameters. Moreover, P. lobata (Kudzu) from Japan was also used as an outgroup in order that interspecific differentiation of these sampled could be analysed. Leaves and pods of P. lobata were obtained to fit the above purpose. Unlike leaves and pods, P. lobata flowers could not be collected because it was not the blooming season at the time of harvesting. Numeric data was recorded and used for further statistical computerization.

For genetic analysis, young leaves were collected. Three young leaves were collected from each cultivar. Leaves were stored at $-20^{\circ} \mathrm{C}$.

สถาบันวิทยบริการ

Table 3.1. List of sampling collection of P. mirifica in Thailand and P. lobata.
The $\sqrt{ }$ symbol represents a collected and analyzed sample.

No.	Cultivar	Leaf	Pod	Flower	
1	CM1	\checkmark	\checkmark		
2	CM2	$\sqrt{ }$			
3	CM3	\checkmark	$\sqrt{ }$	$\sqrt{ }$	
4	CM4	\checkmark	\checkmark	\checkmark	
5	CR	\checkmark			
6	LPang	\checkmark	\checkmark		
7	MHS	$\sqrt{ }$	\square		
8	LPoon	$\sqrt{ }$			
9	Nan	\checkmark	\square		
10	PY	\checkmark	\checkmark		
11	P1	\checkmark			
12	P2	$\sqrt{ }$	\square		
13	P3	\checkmark	\checkmark		
14	UTRD				
15	KPP	$\sqrt{ }$	$\sqrt{ }$		
16	LBR	\sqrt{x}	$\sqrt{ }$		
17	NKSW	$\sqrt{ }$			
18	PBoon	$\sqrt{1}(\beta)$			
19	PSNL	$\sqrt{ }$			
20	SR1	\checkmark	$\sqrt{ }$		
21	SR2	$\sqrt{\text { axicice }}$	-	\checkmark	
22	SKHT1	$\sqrt{\text { a }}$	\triangle		
23	SKHT2	a $\sqrt{\text { a }}$	40		
24	UTTN	\checkmark			
25	KC1	- $\sqrt{1}$	$\sqrt{1}$	\checkmark	
26	KC2	$\sqrt{ }$	$\sqrt{\square}$	$\sqrt{ }$	
27	KC3	\checkmark	± 3		
28	PCHBR	\checkmark	$\sqrt{ }$	\checkmark	
29	PJKRK	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
30	RB1	\checkmark	4	$\sqrt{ }$	
31	RB2	$\sqrt{ }$		\checkmark	
32	RB3	$2 \sqrt{ }$	\square		
33	RB4	$19.9 \sqrt{ } 9$	\bigcirc		
34	Tak	-q0	- $\quad \sqrt{ }$		
35	CHYP	$\sqrt{ }{ }^{\circ}$	ล	C $\sqrt{ }$	
36	9 NKRSM	¢ ¢ ${ }^{\text {a }}$	8』n9/er	Qe	
37	SKNK	- 0 vroon	\\| \| - ${ }^{\text {- }}$	O1 \square	
38	CHPn	\checkmark		\checkmark	
39	SRTN	\checkmark			
40	P. Lobata	\checkmark	$\sqrt{ }$		
	Total	40	15	11	

Figure 3.1. Map for leaf collection of 39 cultivars of P. mirifica among 27 provinces in Thailand.

No.	Province	Code name
$1-3$	Chiang Mai	CM1, 3, 4
4	Lampang	LPang
5	Phayao	PY
6	Phrae	P3
7	Kamphaeng Phet	KPP
8	Lopburi	LBR
9	Saraburi	SR1
$10-11$	Kanchanaburi	KC1-2
12	Phetchaburi	PCHBR
13	Prachuap Khiri Khan	PJKRK
14	Tak	Tak

Figure 3.2. Map for pod collection of 14 cultivars of P. mirifica among 11 provinces in Thailand.

No.	Province	Code name
$1-2$	Chiang Mai	CM3-4
3	Saraburi	SR2
$4-5$	Kanchanaburi	KC1-2
6	Phetchaburi	PCHBR
7	Prachuap Khiri Khan	PJKRK
$8-9$	Ratchaburi	RB1-2
10	Chaiyaphum	CHYP
11	Chumphon	CHPn

Figure 3.3. Map for flower collection of 11 cultivars of P. mirifica among 8 provinces in Thailand.

Figure 3.4. Nine morphometric parameters for measurement of collected P. mirifica leaf. Abbreviations used above are PL (petiole length), PD (petiole diameter), RL (rachis length), PLL (petiolet length), TLL (terminal leaflet length), TLB (terminal leaflet breadth), SPL (stipule length), $\left(\mathrm{A}^{\wedge} \mathrm{B}\right)^{\circ}$ - angle of first leaf border, and NPV (number of pairs of primary veins).
จฬาลงกรณ์มมหาวิทยาลัย

Figure 3.5. Three morphometric parameters for measurement of collected P. mirifica pod. Abbreviations used above are PodL (pod length), PodW (pod width), SNP (seed numbers per pod).

Figure 3.6. Seven morphometric parameters for measurement of collected P. mirifica flower (A and B). Abbreviations above are PdcL (pedicel length), PetW (petal width), PetL (petal length), StmL (stamen length), PisL (pistil length), OvrD (ovary diameter), and ClxL (calyx length). Figure 3.6 (B) was from a stereomicroscope with the magnification of 10 x when compared to Figure 3.6 (A).

3.2 Methods

3.2.1 Morphometric measurement and data analysis

Mature leaves were measured by 9 parameters and pods were measured by 3 parameters. In addition, flowers were measured by 7 parameters. Numerical data was recorded and applied to further statistically calculate and analyze.

Statistical analyses for investigating via Principal Component Analysis (PCA) method of Factor analysis (SPSS program for Windows) on the data using all parameters or characters were used. Parameters with higher factor loading scores from various factors would be used in order to provide reduction in the number of parameters. The selected parameters would be used for further cluster analysis in SPSS. After that, between-groups linkage method of the Cluster analysis would be used to calculate the relationship between groups and classify clusters.

3.2.2 Molecular and phylogenetic analyses

3.2.2.1 DNA extraction

Young leaf samples were kept in $-20^{\circ} \mathrm{C}$ freezer for long preservation. DNA extraction was firstly done by using 2 optional Kits.

3.2.2.1.1 DNeasy plant mini kit (Qiagen, catalog\# 69104)

DNA extraction was performed as followed. Young leaves were ground into powder with liquid nitrogen, and $400 \mu \mathrm{l}$ of buffer AP1 and $4 \mu \mathrm{l}$ of $100 \mathrm{mg} / \mathrm{ml}$ RNase A solution were added. Mixture was vortexed, incubated at $65^{\circ} \mathrm{C}$ for 10 min , and occasionally mixed by inverting. Then, $130 \mu \mathrm{l}$ of buffer AP2 was added to this lysate, mixed, and incubated for 5 min on ice. Later, it was centrifuged at 20,000 $\mathrm{xg}(14,000$ $\mathrm{rpm})$ for 5 min . The lysate was applied to a QIAshredder spin-column and centrifuged at $20,000 \mathrm{xg}$ for 2 min . The flow-through fraction was transferred to a new tube and mixed with 1.5 x volume of buffer AP3. The mixture of $650 \mu \mathrm{l}$ was applied to the DNeasy mini spin-column, and then was centrifuged at $6,000 \mathrm{xg}$ for 1 min . The flowthrough was discarded. The remaining sample was added to the spin column and repeatedly centrifuged at $6,000 \mathrm{x}$ for 1 min . The column was placed in a new tube and $500 \mu \mathrm{l}$ of buffer AW was added, and then was centrifuged for another 1 min . Another $500 \mu \mathrm{l}$ of AW buffer was added again, and then was centrifuged at 20,000x g for

2 min . The spin column was transferred to a new tube and $100 \mu \mathrm{l}$ of buffer AE was added onto the DNAeasy membrane of the column. The column was incubated at RT for 5 min and then centrifuged at $6,000 \mathrm{xg}$ for 1 min in order to elute DNA. Finally, DNA was stored at $-20^{\circ} \mathrm{C}$.

3.2.2.1.2 Nucleospin ${ }^{\circledR}$ DNA plant kit (Machinery-Nagel, catalog\# 740570.50)

Briefly, dry weight of young leaves (100 mg) were ground with liquid nitrogen by a pestle and motar. After that it was transferred into a new microcentrifuge tube. The $400 \mu \mathrm{l}$ of buffer C0 was added to the homogenized powder in order to break cells. RNase A solution ($10 \mu \mathrm{l}$) was added and then incubated at $60^{\circ} \mathrm{C}$ for 30 min . The lysate was applied to a Nucleospin ${ }^{\circledR}$ Filter column and then the centrifugation of the mixture was done at $11,000 \mathrm{xg}$ for 5 min . After that, the clear flow through was collected. Clear lysate ($300 \mu \mathrm{l}$) was transferred to a new microcentrifuge tube. Buffer C4 ($300 \mu \mathrm{l}$) and absolute ethanol ($200 \mu \mathrm{l}$) were added (C4 buffer and absolute ethanol must be premixed before used). The sample was loaded into a provided Nucleospin ${ }^{\circledR}$ Plant column and centrifuged at $11,000 \mathrm{xg}$ for 1 min. The flow-through was discarded. Furthermore, a silica membrane in the column must be washed. It was firstly washed by $400 \mu \mathrm{l}$ of buffer CW and centrifuged at 11,000x g for 1 min . Then, about $700 \mu \mathrm{l}$ of buffer C5 were used to wash a silica membrane for the second time. For the third wash, 200μ of buffer C5 was applied to the column and then centrifuged at the same speed for 2 min in order to remove buffer and make the silica membrane dry completely. Finally, highly pure DNA was eluted from the membrane by adding $50 \mu \mathrm{l}$ heated buffer CE, 2x. Finally, the eluted DNA was kept at $-20^{\circ} \mathrm{C}$ until use.

3.2.2.2 Agarose gel electrophoresis

Extracted DNA was checked by electrophoresis of 0.8-1\% (w/v) agarose gel in 1x TBE buffer (0.05 M Tris, 0.05 M Boric acid, and 0.65 M EDTA) as an electric running buffer. An electrophoresis was usually operated at 100 V for 40 min . Lamda Hind III marker was used as a standard DNA marker. Loading sample composed of 5 $\mu \mathrm{l}$ of the extracted DNA and $1 \mu \mathrm{l}$ of loading dye (6x loading dye buffer: 0.25% bromophenol blue, 40% (v / v) glycerol, and diluted in lx TBE running buffer). After that, the gel was stained by $10 \mu \mathrm{~g} / \mathrm{ml}$ Ethedium bromide (EtBr) solution for 5-10 min
and destained in $\mathrm{d}-\mathrm{H}_{2} \mathrm{O}$ for about 20 min . DNA would be visible and photographed under UV light of a UV transilluminator.

3.2.2.3 PCR amplification

Double-stranded DNA of internal transcribed spacer in nuclear ribosomal DNA (ITS region) and 2 regions of the non-coding regions of transfer RNA-LeucinePhenylalanine in the chloroplast DNA (trnL-F) were amplified by using specific primers shown in the Table 3.2. Each PCR reaction mixture contained $10 \mu \mathrm{l}$ of 2 x iTaq Mastermix (comprising all the reagents except the template DNA and primers), 2 $\mu \mathrm{l}$ of both $10 \mu \mathrm{M}$ forward primer and reverse primer, $3 \mu \mathrm{l}$ of 100 ng genomic DNA template, and $3 \mu \mathrm{ld}-\mathrm{H}_{2} \mathrm{O}$ to reach total volume of $20 \mu \mathrm{l}$.

PCR amplification was carried out in GeneAmp PCR 2400 or 9700 System thermal cycler machine (Applied Biosystems). The PCR program was as follows: $94^{\circ} \mathrm{C}$ for 2 min 30 sec and $40-45$ cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 55-60^{\circ} \mathrm{C}$ for 1 min , and $72^{\circ} \mathrm{C}$ for 3 min . Then, the final extension at $72^{\circ} \mathrm{C}$ for 10 min was performed. PCR products were detected by 1% agarose gel submerged in 1x TBE buffer at 100 V for 40 min . Finally, the gel was visualized on UV transilluminator after being soaked in EtBr for 5 min and destained in $\mathrm{d}-\mathrm{H}_{2} \mathrm{O}$ for about 20 min .

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Table 3.2. Lists of 5 primers used for PCR amplification and direct sequencing.

Primer name	Direction	Sequence (5' to 3')	Reference
ITS_1	forward	TCCGTAGGTGAACCTGCGG	White et al., 1990
ITS_4	reverse	TCCTCCGCTTATTGATATGC	White et al., 1990
trnL(UAA)5'exon primer_c	forward	CGAAATCGGTAGACGCTACG	Taberlet et al., 1991
trnL(UAA)3'exon primer_d	reverse	GGGGATAGAGGGACTTGAAC	Taberlet et al., 1991
trnF(GAA) primer_f	reverse	ATTTGAACTGGTGACACGAG	Taberlet et al., 1991

3.2.2.4 Purification of the PCR products

Before direct sequencing, PCR products were purified by using QIAquick PCR purification kit (Qiagen, catalog\# 28104).

Briefly, 5x volume of buffer PB (Binding buffer) were added to PCR product and mixed. After that, the mixture was applied to a QIAquick spin column which was placed in a 2 ml collection tube. It was centrifuged at $13,000 \mathrm{rpm}$ for 1 min . Later, the flow-through was discarded. Buffer PE (Wash buffer) of 0.75 ml was added into the column. It was centrifuged at $13,000 \mathrm{rpm}$ for 1 min . The flow-through was discarded again and the column was additionally centrifuged at $13,000 \mathrm{rpm}$ for 1 min . The column was transferred to a new 1.5 ml microcentrifuge tube and $30 \mu \mathrm{l}$ of buffer EB (Elution buffer) was added onto the center of the membrane in the column. Then, the tube was incubated at RT for 1 min before being centrifuged at $13,000 \mathrm{rpm}$ for 1 min again. The elution was saved and stored at $-20^{\circ} \mathrm{C}$.

3.2.2.5 Direct DNA sequencing

Purified PCR product was sent to Bioservice Unit (BSU), National Science and Technology Development Agency (NSTDA), Thailand for DNA sequencing.

3.2.2.6 Random Amplified Polymorphic DNA technique (RAPD)

Five RAPD primers below were selected and presented in Table 3.3 (Mienie et al., 1995).

Table 3.3. Lists of 5 arbitrary primers for RAPD.

Primer	Sequence (5' to 3')	Reference
OPA-07	GAAACGGGTG	Mienie et al. (1995)
OPA-12	TCGGCGATAG	Mienie et al. (1995)
OPD-02	GGACCCAACC	Mienie et al. (1995)
OPD-16	AGGGCGTAAG	Mienie et al. (1995)
OPE-01	CCCAAGGTCC	Mienie et al. (1995)

One PCR reaction mixture contained $5 \mu \mathrm{l}$ of 2 x iTaq Mastermix (comprising all the reagents except the genomic DNA and primers), $2 \mu \mathrm{l}$ of $10 \mu \mathrm{M}$ RAPD primer, $2 \mu \mathrm{l}$ of 20 ng genomic DNA, and added with $1 \mu \mathrm{l}-\mathrm{H}_{2} \mathrm{O}$ to reach total volume of 10 $\mu \mathrm{l}$.

PCR amplification of RAPD was also conducted in GeneAmp PCR 2400 or 9700 System thermal cycler machine (Applied Biosystems). A PCR reaction was performed as follows: $94^{\circ} \mathrm{C}$ for 2 min 30 sec and 45 cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 36^{\circ} \mathrm{C}$ for 1.5 min , and $72^{\circ} \mathrm{C}$ for 3 min . At last, the final extension was performed at $72^{\circ} \mathrm{C}$ for 10 min . PCR products were detected by 2% agarose gel submerged in 1x TBE buffer at 80 V and 1 h 20 min for electrophoresis procedure. Finally, a gel was visualized on UV transilluminator after being soaked in EtBr solution for 5 min and being destained in $\mathrm{d}-\mathrm{H}_{2} \mathrm{O}$ for about 20 min .

3.2.2.7 Phylogenetic analysis

All obtained sequences were aligned by multiple sequence alignment programs i.e. Clustal X or Clustal W (http://www.ebi.ac.uk/clustalw). The data matrix of DNA sequences were analyzed in Phylogenetic Analysis Using Parsimony (PAUP) program version 4.0b10. Phylogenetic analyses are performed by using neighborjoining (NJ) method based on Kimura 2 parameter (K2P) genetic distance. Then, Bootstrap analysis with 1000 replicates was conducted in PAUP in order to evaluate supporting for nodes.

For RAPD analysis, record of 1 (presence of band) and 0 (absence of band) of each amplification of each primer was prepared. The data matrix was analyzed by Nei-Li genetic distance in PAUP. NJ phylogenetic tree building and Bootstrap support were estimated based on Nei-Li distance for RAPD fragments.

สถาบันวิทยบริการ

CHAPTER IV

RESULTS

4.1 Morphometric variation

4.1.1 Factor analysis

In order to reduce the morphometric characters or parameters, the data of all parameters were calculated and analyzed by the Factor analysis in SPSS program. Then, the selected data would be used for Cluster analysis. The Principal Component Analysis (PCA) method of Factor analysis was performed by using the raw data of each morphometric parameter of each sampling cultivar. Then, Factor loading scores could be obtained from the output of this statistic calculation. Only Eigen values that its value is higher than 1.0 would be applied for further analysis (Between-groups linkage method of Cluster analysis).

4.1.1.1 Factor analysis of leaf morphometry

The Factor analysis was conducted and then displayed the output. There were 9 leaf morphometric parameters. There are listed as below.

1. Petiole length - PL
2. Petiole diameter - PD
3. Rachis length - RL

4. Terminal leaflet length - TLL

After the Factor analysis using the data of the 9 morphometric parameters was performed, it could be divided into 2 new factors or groups. Each group contained parameters with Eigen values higher than 1.0. The first factor was accounted for 42.4
\% of total variance and was mainly associated with 6 parameters (PD, TLB, PL, RL, TLL, PLL and A^B). The second factor composed of NPV and SPL. This factor was accounted for 14.6% of total variance.

Figure 4.1 shows a scatter plot of 2 new factor scores generated by Principal Component Analysis (PCA). The Principal Components were obtained from the raw data of 9 morphometric parameters. All parameters were measured from each leaf. P. mirifica in Thailand were coded by regions. Considering figure 4.1, it presents a plot of factor 1 (X-axis) versus factor 2 (Y-axis). A graph shows no grouping structure within P. mirifica in Thailand.

Figure 4.1. Position of each region in Thailand. Factor axes of 1 and 2 were derived from Factor analysis of leaf morphometric analysis: ordinate; factor 1 and abscissa; factor 2.

4.1.1.2 Factor analysis of pod morphometry

Factor analysis was not conducted for pod morphometry because only 3 pod parameters were obtained as listed below. Three-dimensional scatter plot of the raw data was constructed instead.

1. Pod length - PodL
2. Pod width - PodW
3. Seed numbers per pod - SNP

Figure 4.2 shows the scatter plot of the raw data of 3 parameters. All parameters were measured from each P. mirifica pod. Fourteen cultivars of P. mirifica in Thailand were coded by abbreviated names. Figure 4.2 presents the plot of PodL (X-axis), PodW (Y-axis), and SNP (Z-axis), respectively. A graph also shows no clustering structure within P. mirifica in Thailand. Fourteen cultivars of P. mirifica were unclearly separated from each other.

Figure 4.2. Position of each P. mirifica cultivar in Thailand for pod morphometric analysis. The 3-dimensional scatter plot was constructed on the axes of X -axis (PodL), Y-axis (PodW), and Z-axis (SNP).

4.1.1.3 Factor analysis of flower morphometry

Factor analysis was performed and provided the statistic output. There were 7 flower morphometric parameters as listed below.

1. Pedicel length - PdcL
2. Petal width - PetW
3. Petal length - PetL
4. Stamen length - StmL
5. Pistil length - PisL
6. Ovary diameter - OvrD
7. Calyx length - ClxL

After Factor analysis using the means of 7 morphometric parameters was performed, it could also be divided into 2 groups. Each group contained parameters with Eigen values higher than 1.0. The first new group or factor was accounted for 49.9 \% of total variance and was mostly associated to 6 parameters (PetL, StmL, PisL, ClxL, PetW, and OvrD). The second new factor composed of only PdcL. This factor was accounted for 15.8% out of total variance.

Figure 4.3 shows a scatter plot of 2 factor scores generated by Principal Component Analysis (PCA). The Principal Components were obtained from the raw data of all 7 parameters. All parameters were measured from each flower. The 11 cultivars of P. mirifica in Thailand were coded by abbreviated names. Figure 4.3 illustrated a plot of factor 1 (X-axis) versus factor 2 (Y-axis). The graph showed no grouping of P. mirifica in Thailand. Notably, KC1 cultivar from Thongphaphum district in Kanchanaburi province was clearly separated from the rest.

จุหาลงกรณ์มหาวิทยาลัย

Figure 4.3. Position of each P. mirifica cultivar in Thailand for flower morphometric analysis. Factor axes of 1 and 2 were derived from Factor analysis: ordinate; factor 1 and abscissa; factor 2.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

4.1.2 Cluster analysis

Figure 4.4-4.6 represent 3 dendrograms or trees which were constructed by using the Between-groups linkage method of Cluster analysis on Squared Euclidian distances. The factor scores of mean values from Factor analysis were used for leaf and flower morphometries while the standardized mean data were used for pod morphometry. The data were classified by collected locations. The figures present the dendrograms grouped by all P. mirifica cultivars from different locations in Thailand. All dendrograms revealed that all collected P. mirifica could be clustered differently.

4.1.2.1 Cluster analysis of leaf morphometry

Considering a dendrogram of figure 4.4 , it indicated that 39 cultivars of P. mirifica were classified into 5 groups or main branches. The $1^{\text {st }}$ upper group composed of 24 cultivars. The $2^{\text {nd }}$ group composed of 5 cultivars (Chiang Mai 1, Ratchaburi 4, Chiang Mai 4 , Sakon Nakhon, and Lampang cultivars). The $3^{\text {rd }}$ group composed of 4 cultivars (Chiang Rai, Phrae 3, Phayao, and Chiang Mai 3 cultivars). Moreover, the $4^{\text {th }}$ group also composed of 5 cultivars (Phrae 1, Nakhon Sawan, Lopburi, Ratchaburi 1, and 2 cultivars). Lastly, only Uthai Thani cultivar was distinctly classified into the lowest branch or in the $5^{\text {th }}$ group.

Figure 4.4. Leaf morphometric dendrogram created by Between-groups linkage method of Cluster analysis. P. mirifica is classified by collected location names.

4.1.2.2 Cluster analysis of pod morphometry

From a dendrogram of figure 4.5, it indicated that all 14 cultivars of P. mirifica were classified into 2 main branches or groups. The $1^{\text {st }}$ upper group composed of 8 cultivars whereas the $2^{\text {nd }}$ lower group composed of other 6 cultivars.

Figure 4.5. Pod morphometric dendrogram created by Between-groups linkage method of Cluster analysis. P. mirifica is classified by collected location names.

สถาบันวิทยบริการ

4.1.2.3 Cluster analysis of flower morphometry

Due to a dendrogram of figure 4.6, it indicated that 11 cultivars of P. mirifica were classified into 3 groups. The $1^{\text {st }}$ upper group composed of 4 cultivars (Prachuap Kiri Khan, Ratchaburi 2, Chiang Mai 4, and Kanchanaburi 2 cultivars). The $2^{\text {nd }}$ middle group or cluster composed of 6 cultivars. Furthermore, only Kanchanaburi 1 cultivar was clearly separated into the last lower group.

Figure 4.6. Flower morphometric dendrogram created by Between-groups linkage method of Cluster analysis. P. mirifica is classified by collected location names.

สถาบันวิทยบริการ

4.1.3 Characterization of P. mirifica in Thailand

Clinal pattern of characterization of P. mirifica cultivars in Thailand could be revealed. By considering morphometric data, factor scores of leaf together with flower morphometries and the standardized data of pod morphometry were plotted against latitude and longitude. The characterization of cultivars from the South to the North and the West to the East are indicated in the scatter-plotted graphs (Figure 4.74.20). The results of correlation analyses of the factor scores against latitude and longitude were evaluated.

4.1.3.1 Leaf morphometry

Due to figure 4.7-4.10, there was statistically significant correlation between factors 1 and latitude \& longitude as well as between factor 2 and latitude \& longitude ($\mathrm{P} \leq 0.05$). Results of correlation analysis in Table 4.1 revealed that both factor 1 (PD, TLB, PL, RL, TLL, PLL, and A^B parameters) and factor 2 (NPV and SPL parameters) significantly correlated to latitude and longitude.

It could infer that P. mirifica leaves (PD, TLB, PL, RL, TLL, PLL, and A^B parameters) trend to increase in size from the South to the North of Thailand ($\mathrm{R}=$ 0.229). On the other hand, the trend of P. mirifica leaves (NPV and SPL parameters) decreass in size from the South to the North $(R=-0.097)$. Moreover, the trend of all 9 parameters decrease in size from the West to the East of Thailand $(R=-0.175$ and 0.169 , respectively).

Table 4.1. Correlation analysis of geographic trends in leaf morphometric factors of P. mirifica in Thailand. It was derived from Principal Component Analysis (Factor analysis).

Independent variable or predictor	Dependent variable	\mathbf{R} value	P significance
Latitude	Factor 1	$0.229^{* *}$	0.000
	Factor 2	$-0.097^{* *}$	0.000
Longitude	Factor 1	$-0.175^{* *}$	0.000
	Factor 2	$-0.169^{* *}$	0.000

[^0]

Figure 4.7. Geographic trends in leaf morphometry of P. mirifica in Thailand: abscissa; latitude; the factor score 1 derived from PCA. Value labels refer to regions.

Figure 4.8. Geographic trends in leaf morphometry of P. mirifica in Thailand: abscissa; longitude; the factor score 1 derived from PCA. Value labels refer to regions.

Figure 4.9. Geographic trends in leaf morphometry of P. mirifica in Thailand: abscissa; latitude; the factor score 2 derived from PCA. Value labels refer to regions.

Figure 4.10. Geographic trends in leaf morphometry of P. mirifica in Thailand: abscissa; longitude; the factor score 2 derived from PCA. Value labels refer to regions.

4.1.3.2 Pod morphometry

Six scatter plots of the standardized data (Zscore) of PodL, PodW, and SNP parameters against latitude and longitude were illustrated (Figure 4.11-4.16). There was statistically significant correlation in the Z score of PodL ($\mathrm{P} \leq 0.05$). Unlike the Z score of PodL, there was no significant correlation in both latitude and longitude ($\mathrm{P} \geq 0.05$) for the Z score of PodW and SNP. Correlation analysis in Table 4.2 showed that the Z score of PodL significantly correlated to latitude and longitude $(\mathrm{R}=0.209$ and - 0.096, respectively).

It showed that P. mirifica pods (PodL) trend to increase in length from the South to the North but decrease in length from the West to the East of Thailand.

Table 4.2. Correlation analysis of geographic trends in pod morphometric factors of P. mirifica in Thailand derived from standardized data (Zscore).

Independent variable or predictor	Dependent variable Latitude	Zscore of PodL	R value
	Zscore of PodW	P significance	
	Zscore of SNP	$-0.209^{* *}$	0.000
	Zscore of PodL	-0.096^{*}	0.087
	Zscore of PodW	-0.002	0.899
	Zscore of SNP	0.012	0.973

จุฬาลงกรณ์มหาวิทยาลัย

Figure 4.11. Geographic trends in pod morphometry of P. mirifica in Thailand: abscissa; latitude; the Zscore of PodL. Value labels refer to cultivars.

Figure 4.12. Geographic trends in pod morphometry of P. mirifica in Thailand: abscissa; latitude; the Zscore of PodW. Value labels refer to cultivars.

Figure 4.13. Geographic trends in pod morphometry of P. mirifica in Thailand: abscissa; latitude; the Zscore of SNP. Value labels refer to cultivars.

Figure 4.14. Geographic trends in pod morphometry of P. mirifica in Thailand: abscissa; longitude; the Zscore of PodL. Value labels refer to cultivars.

Figure 4.15. Geographic trends in pod morphometry of P. mirifica in Thailand: abscissa; longitude; the Zscore of PodW. Value labels refer to cultivars.

Figure 4.16. Geographic trends in pod morphometry of P. mirifica in Thailand: abscissa; longitude; the Zscore of SNP. Value labels refer to cultivars.

4.1.3.3 Flower morphometry

There was no statistically significant correlation between factor 1 (PetL, StmL, PisL, ClxL, PetW, and OvrD parameters) and factor 2 (PdcL) on latitude ($\mathrm{P} \geq 0.05$). Moreover, factor 2 shows no significant correlation on longitude. Correlation analysis in Table 4.3 presents that only factor 1 was significantly correlated to longitude ($\mathrm{R}=-$ 0.468). Figure 4.17-4.20 present the scatter plots of factor scores (1 and 2) against latitude and longitude.

It indicates that the size of factor 1 (PetL, StmL, PisL, ClxL, PetW, and OvrD) of the flower trends to decrease from the West to the East of Thailand.

Table 4.3. Correlation analysis of geographic trends in flower morphometric factors of P. mirifica in Thailand derived from Principal Component Analysis (PCA) method.

Predictor or independent variable	Dependent variable	R value	P significance
Latitude	Factor 1	0.171	
	Factor 2	-0.027	0.074
	Factor 1	$-0.468 * *$	0.779
	Factor 2	-0.081	0.000

${ }^{* *}$ Correlation is significant at the 0.01 level (2-tailed).
สถาบันวิทยบริการ

Latitude

Figure 4.17. Geographic trends in flower morphometry of P. mirifica in Thailand: abscissa; latitude; the factor score 1 derived from PCA. Value labels refer to cultivars.

Figure 4.18. Geographic trends in flower morphometry of P. mirifica in Thailand: abscissa; longitude; the factor score 1 derived from PCA. Value labels refer to cultivars.

cultivar	
$\bigcirc \mathrm{CHP}$	$\square \mathrm{PCHBR}$
\triangle CHYP	¢PJKRK
FCM3	XRB1
$\triangleright \mathrm{CM} 4$	- RB 2
4 KC 1	+ SR1
- KC2	

Latitude

Figure 4.19. Geographic trends in flower morphometry of P. mirifica in Thailand: abscissa; latitude; the factor score 2 derived from PCA. Value labels refer to cultivars.

Figure 4.20. Geographic trends in flower morphometry of P. mirifica in Thailand: abscissa; longitude; the factor score 2 derived from PCA. Value labels refer to cultivars.

4.2 Genetic variation

4.2.1 DNA extraction

Genomic DNA of P. mirifica fresh young leaf (100 mg) was isolated by DNeasy® Plant Mini kit (QIAGEN, catalog \# 69104) or NucleoSpin® Plant kit (MACHEREY-NAGEL, catalog \# 740 570.50). Genomic DNA at high molecular weight (roughly 23 kb in length) was observed on 0.8% agarose gel (Figure 4.21).

Figure 4.21. Genomic DNA on 0.8\% agarose gel. Lane M represents Lamda Hind III as DNA marker. Lanes 1-4 contain genomic DNA of P. mirifica leaf samples from CM1-4 cultivars (from Chiang Mai province) in Thailand.

4.2.2 PCR amplification

PCR technique is an approach for DNA amplification on specific target sequence by synthesized primers that can polymerize or extend complementary strands of DNA. After 1.0\% agarose gel electrophoresis and EtBr staining, PCR products will be observed under UV light on UV transilluminator. A product size was estimated and compared to DNA standard as marker. In this research, PCR products were amplified under optimum condition by nrDNA ITS, cpDNA trnL, and trnL-F primers. Single sharp bands of expected PCR products were visible on agarose gel (Figure 4.22-4.24). Moreover, in Table 4.4, it summarizes results of PCR amplification of ITS, trnL, and trnL-F regions of all P. mirifica samples in Thailand and P. lobata as outgroup.

Figure 4.22. PCR products of ITS on 1.0% agarose gel. Lane M represents 100 bp ladder as DNA marker. Lanes 1-12 contain PCR products of ITS at about 750 bp in length from P. mirifica leaf samples from different locations in Thailand. DNA was amplified by ITS_1 and ITS_4 primers.

Figure 4.23. PCR products of trnL on 1.0% agarose gel. Lane M represents 100 bp ladder as DNA marker. Lanes 1-11 contain PCR products of trnL at about 550 bp in length from P. mirifica leaf samples from different locations in Thailand. DNA was amplified by c and d primers.

Figure 4.24. PCR products of trnL-F on 1.0% agarose gel. Lane M represents 100 bp ladder as DNA marker. Lanes 1-12 contain PCR products of trnL-F at about $1,000 \mathrm{bp}$ in length from P. mirifica leaf samples from different locations in Thailand. DNA was amplified by c and f primers.

Table 4.4. Summary of PCR amplification of ITS (ITS_1 and ITS_4 primers), trnL (c and d primers) and trnL-F (c and f primers) regions of all P. mirifica samples in Thailand and P. lobata from Japan as outgroup. The $\sqrt{ }$ symbol indicates to a sequence-analyzed sample that was amplified and detected by agarose gel electrophoresis.

Cultivar	ITS	trnL	trnL-F		
CM1	\checkmark	\checkmark	\checkmark		
CM2		\checkmark			
CM3	\checkmark	\checkmark	\checkmark		
CM4	$\sqrt{ }$	\checkmark	\checkmark		
CR		\checkmark	\checkmark		
LPang	\checkmark	$\sqrt{ }$	\checkmark		
MHS	\checkmark	\square			
LPoon	$\sqrt{ }$	$\sqrt{ }$	\checkmark		
Nan	\checkmark	\checkmark			
PY	$\sqrt{ }$	\checkmark			
P1	\checkmark	\checkmark	\checkmark		
P2	$\sqrt{ }$	- 1	\checkmark		
P3	\checkmark	\checkmark	\checkmark		
UTRD		\checkmark			
KPP		\checkmark	\checkmark		
LBR	\checkmark	14.1	\checkmark		
NKSW		$\sqrt{ }$			
PBoon	\checkmark		\checkmark		
PSNL	$\sqrt{ }$	1			
SR1	\checkmark	\checkmark	\checkmark		
SR2	$\sqrt{ }$	1	\checkmark		
SKHT1	$\bigcirc \sqrt{ }$	\checkmark	\checkmark		
SKHT2	\cdots	$\sqrt{ }$			
UTTN	$\checkmark \sqrt{ }$	\checkmark	\checkmark		
KC1	- $\sqrt{ }$	\checkmark	\checkmark		
KC2	- $\sqrt{ }$	\checkmark -	\checkmark		
KC3	\checkmark	\checkmark	\checkmark		
PCHBR	『	$\sqrt{ }$ ص	\checkmark		
PJKRK	$\bigcirc \overbrace{}^{\text {a }}$	9ne\|9V	S?	$0{ }^{2}$	
RB1 6	$6 \\| .1$	- - d d	\\| \quad V		
RB2	\checkmark	- ل	d		
RB39/	$0 \checkmark \sim$	-100才 ${ }^{\text {and }}$	-ln ${ }^{\text {a }}$		
${ }^{\text {RB4 }}$	NI db	d/V ${ }^{\text {d }}$	6		
Tak	\checkmark	\checkmark	$\sqrt{ }$		
CHYP	\checkmark	\checkmark	\checkmark		
NKRSM	\checkmark	\checkmark	\checkmark		
SKNK		\checkmark	\checkmark		
CHPn	\checkmark	\checkmark	\checkmark		
SRTN	\checkmark	\checkmark	\checkmark		
P. lobata	\checkmark	\checkmark	\checkmark		
Total	34	40	32		

4.2.3 Sequence analysis

All PCR products of nrDNA ITS, cpDNA trnL and trnL-F of P. mirifica from 39 collected sites in Thailand and P. lobata from Japan as an outgroup were purified and directly sequenced. Sequences of designed regions were completely trimmed and the consensus was kept. ITS region at 687 bp in length, trnL region at 397 bp in length, and trnL-F region at 731 bp in length were shown in Figure 4.25-4.27. Percentages of nitrogenous base composition (A, C, G, and T) of 3 regions were displayed in Table 4.5-4.7. The A+T contents of these 3 regions were approximately 41.5, 67.4, and 71.1, respectively. On the other hand, trnL and trnL-F regions contained high amount of A and T (67.4 and 71.1) but 41.5 in ITS region instead. There were a lot of base transitions and transversions occured. The pairwise similarity percentages of these sequences are more than 70% (Table 4.8-4.10). The pairwise and multiple sequences alignment comparisons can demonstrate nucleotide variation in the form of single base pair substitution. The percentages of sequence divergences of these regions are variable ($0-25.2 \%$) as presented in Table 4.11-4.13. Considering the similarity percentages and sequence divergences, ITS sequences of each cultivar of P. mirifica that provided lower similarity percentages (72-100 \%) and higher sequence divergence ($0-25.2 \%$) are more variable than the other 2 chloroplast regions. The cpDNA at trnL and trnL-F regions are less variable with higher similarity percentages (92-100\% and $93-100 \%$). And less sequence divergence ($0-7 \%$ and $0-4.7 \%$) was obtained
สถาบันวิทยบริการ

KC2 GGTCGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG
CHPn GGTCGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG GGTCGGGCCG GGCTTCTTCA GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG GGTCGGGCCG GGCTTCTTCA GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG GGG-GGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG GGGCGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG G-TCGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG G-TCGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG GGTCGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG GGTCGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTCT GCCTGTTGCG TTGGGGCGGG GGTCGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG G-TCGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG G---GGGCCG GGCTTCTTCC GTC----CTC CCCCTGCTCT GCCTGTTGCG TTGGGTCGGG GGTCGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG GGTCGGGCCG GGCTTCTTCA GTCCGGCCTC CCCTTGCTTT GCCTGTTGCT TTGGGGCGGG G-TTGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG G-TCGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG G-TCGGGCCG GGCTTCTTCC GTCCGTCCTC CCCTTGCTTT GCCTGTTGCG TTGGGGCGGG

Figure 4.25. A 687 bp character matrix of 33 cultivars of P. mirifica and 1 cultivar of

P. lobata based on nrDNA ITS sequences. Asterisk symbols (*) show that all samples

provide nitrogenous base (A, C, G, and T) consensus or identity.

Figure 4.25. (continued)

KC2 GACTCCCAAC GGCCCGGACA CAGAGCCCCG CGGGCGTTGT CACGACCCAC ATTATT-ATA
CHPn GACTCCCTCC GGCCCGGACA CAGAGCCCCA CCCGCGTTGT CTCGACCCAC ATTATT-TTA
CM3
PCHBR
KC1
MHS
SR1
CM1
CM4 PJKRK
Tak
RB3
SKHTH1
KC3
CHYP
SRTN
LBR
Nan
P1
SKHTH2
PSNL
PBoon
PY
LPang
NKRSM
SR2
Lobata
RB1
KPP
P2
RB2
LPoon
P3
Clustal Co

KC2 CAAAATGACT CTCGGCAACG GATATCTCGG CTCTTGCATC GATGAAGAAC GTACCGAAAT
CHPn CATAATGACT CTCGCCCACG GATATCTCTG CTCTTGCATG GATGAATAAC GAACCGAACT
CM3
PCHBR
KC1
MHS
SR1
CM1
PJKRK
Tak
RB3
SKHTH1
KC3
CHYP
SRTN
LBR
Nan
P1
UTTN
SKHTH2
PSNL
PBoon
PY
LPang
NKRSM
SR2
Lobata
RB1
KPP
P2
RB2
LPoon
P3
Clustal Co GACTCCCTCC GGCCCGGACA CAGAGCCCCA CCCGCGTTGT CTCGACCCAC ATTATT-TTA GACTCCCAAC GGCCCGGAGA CGGTGCCCCG CGGGCGTTGT CACGACGCAC ATTATT-ATA AACTCCCAAC GGCCCGGAGA CGGTGCCCCG CGGGCGTTGT CACGACGCAC ATTATT-ATA AACTCCCAAC GGCCCGGAGA CGGTGCCCCG CGGGCGTTGT CACGACGCAC ATTATT-ATA AACTCCCAAC GGCCCGGAGA CGGTGCCCCG CGGGCGTTGT CACGACGCAC ATTATT-ATA GACTCCCAAC GGCCCGGAAA CGGTGCCCCG CGGGCGTTGT CACGACCCAC ATTATT-ATA GACTCCCAAC GGCCCGGAGA CGGTGCCCCG CGGGCGTTGT CACGACGCAC ATTATT-ATA GACTCCCAAC GGCCCGGAGA CGGTGCCCCG CGGGCGTTGT CACGACGCAC ATTATT-ATA GACTCCCAAC GGCCCGGAGA CGGTGCCCCG CGGGCGTCGT CACGACACAC ACGATTTATA GACTCCCAAC GGCCCGGAGA CGGTGCCCCC CGGGCGTTGT CACGACACAC ATTATT-ATA GACTCCCAAC GGCCCGGAGA CGGAGACCCG CGCGCGTTGT CACTACCCAC ATTATT-ATA GACTCCCAAC GGGCCGGAAA CCGGGGCCCG CGGGCGTTGT CACCACCCAC ATTATT-ATA GACTCCCAAC GGCCCGGAAA CGGGGCCCCC CGGGCGTTGT CACGACCCAC ATTATT-ATC GACTCCCAAC GGCCCGGAAA CGGGGCCCCG GGGGGGTTGT CCCGACCCAC ATTATT-TTA AACTCCCAAC GGCCCGGAGA CGGTGCCCCG CGGGGGTTGT CCCCACCAAC ATTATT-TTT

 CAAAATGACT CTCGGCAACG GATATCTCGG CTCTTGCATC GATGAAGAAC GTAGCGAAAT CAAAATGACT CTCGGCAACG GATATCTCGG CTCTTGCATC GATGAAGAAC GTA-CGAAAT CAAAATGACT CTCGGCAACG GATATCTCGG CTCTTGCATC GATGAAGAAC GTAGCGAAAT CAAAATGACT CTCGGCAACG GATATCTCGG CTCTTGCATC GATGAAGAAC GTAACGAAAT CAAAATGACT CTCGGCAACG GATATCTCGG CTCTTGCATC GATGAAGAAC GTAGCGAAAT CAAAATGACT CTCGGCAACG GATATCTCGG CTCTTGCATC GATGAAGAAC GTAGCGAAAT CAAAATGACT CTCGGCAACG GATATCTCGG CTCTTGCATC GATGAAGAAC GTAGCGAAAT CAAAATGACT CTCGGCAACG GATATCTCGG CTCTTGCATC GATGAAAAAC GTATCGAAAT CAAAATGACT CTCGGTCACG GATATCTCGG TTCTTGCATC GGTGAAGAAC ATAACGAAAT CAAAATGACT CTCGGCAACG GATATCTCGG CTCTTGGATC CATGAAAAAC GTAACGAAAT CAAAATGACT CTCGGCAACG GATATCTCGG CTCTTGGATC GATGAAGAAC GTAACGAAAT CAAAATGACT CTCGGCAACG GAAATCTCGG TTCTTGCATC AATAAAAAAC GTACCGAAAT CAAAATGACT CTCGGCAACG GAAATTTCGG CTCTTGGATC CATGAAAAAC GGAACGAAAT

Figure 4.25. (continued)

KC2
CHPn
CM3 PCHBR
KC1 MHS
SR1
CM1
CM4 PJKRK Tak RB3 SKHTH1 KC3 CHYP SRTN LBR Nan P1 UTTN SKHTH2
PSNL PBoon PY LPang NKRSM SR2 Lobata
RB1 KPP P2 LPoon P3 Clustal Co

KC2
CHPn
CM3
PCHBR
KC1
MHS
SR1
CM4
PJKRK
Tak
RB3
SKHTH1
KC3
CHYP
SRTN
LBR
Nan
P1
UTTN
SKHTH2
PSNL
PBoon
PY
LPang
NKRSM
SR2
Lobata
RB1

KPP

P2
LPoon
P3
Clustal Co

GAGATACTTG GTGTGAATTG AATAATCCCG TGAACCATCC AGTCTTTGAA CGCAAGTTGC GAGATACTTG CTGGGAATTG ATTAATCACG TGCACCATCC AGTCTTTGAT TGCAAGTTGC GCGATACTTG GTGTGAATTG CAGAATCCCG TGAACCATCG AGTCTTTGAA CGCAAGTTGC GCGATACTTG GTGTGAATTG CAAAATCCCG TGAACCATCG AGTCTTTGAA CGCAAGTTGC GCGATACTTG GTGTGAATTG CAAA-TCCCG TGAACCATCG AGTCTTTGAA CGCAAGTTGC GCGATACTTG GTGTGAATTG CAGAATCCCG TGAACCATCC AGTCTTTGAA CGCAAGTTGC GCGATACTTG GTGTGAATTG CAAAATCCCG TGAACCATCG AGTCTTTGAA CGCAAGTTGC GCGATACTTG GTGTGAATTG CAAAATCCCG TGAACCATCG AGTCTTTGAA CGCAAGTTGC GCGATACTTG GTGTGAATTG CAGAATCCCG TGAACCATCG AGTCTTTGAA CGCAAGTTGC GCGATACTTG GTGTGAATTG CAGAATCCCG TGAACCATCG AGTCTTTGAA CGCAAGTTGC GCGATACTTG GGGTGAATTG CAGAATCCCG TGAACCATCT AGTCTTTGAA CGCAAGTTGC GCGATACTTG GTGTGGATTG CAAAATCCCA TGAACCATCA AGTCTTTGAA CGCAAGTTGC GGGATACTTG GTGGGAATTG GAAAATCCCG TGAACCATCC AGTCTTTGAA CGCAAGTTGC GCGATACTTG GTGTGAATTG CAAAATCCCG TGAACCATCC AGTCTTTGAA CGCAAGTTGC GGGATACTTG GGGGGAATTG CAAAATCCCG GGAACCATCA AGTCTTTGAA CGCAAGTTGG

GCCCGAACCC ATT-AAGTGG AGGGAACGCC TGCCTGGGTG TCACACATCG TTACCCCCAC GTCCGACCCC ATT-AAGTGG AGGGAACGCC TGCCTGGCTG GCAGACATCG TTACCCCCAC GCCCGAAGCC ATT-AGGTGG AGGGCACGCC TGCCTGGGTG TCACACATCG TTACCCCCAC GCCCGAAGCC ATT-AGGTGG AGGGCACGCC TGCCTGGGTG GCACACATCG TTACCCCCAC GCCCGAAGCC ATT-AGGTGG AGGGCACGCC TGCCTGGGTG TCACACATCG TTACCCCCAC GCCCGAAGCC ATT-AGGTGG AGGGCACGCC TGCCTGGGTG TCACACATCG TTACCCCCAC GCCCGAAGCC ATT-AGGTGG AGGGCACGCC TGCCTGGGTG TCACACATCG TTACCCCCAC GCCCGAAGCC ATTTAGGCAG AGGGCACGCC TGCCTGGGTG TCACACATCG TTACCCCAAC GCCCCAAACC ATT-ATGTGG AGGGGACGCC TGCCTGGGTG TCACACATCG TTACCCCCAC GCCCGAACCC ATT-ACGTGG AGGGGAAGCC TGCCTGGGTG TGACACATCC TTACCCCCAC GCCCGAAGCC ATT-AAGTGG AGGGCACGCC TGGCTGGGTG GCACACATCG TTACCCCCAC GCCCGAAGCC ATT-AGGTGG AGGGCACGCC TGCCTGGGTG TCACACATCG TTACCCCCAC GCCCGAAGCC ATT-AGGGGG AGGGAACGCC TGCCTGGGGG TCACAAATCG TTACCCCCAC $\underset{* * *}{\text { GCCCCAAACC }}$ ATT-AAGGGG AAGGGACCCC $\underset{* * *}{\text { TGGCTGGGTG }} \underset{*}{\text { GCACACATCG }} \underset{*}{\text { TTACCCCCCC }}$

Figure 4.25. (continued)

	430	440	450	460	470	480
KC2	GCAAACAAAT	GT---CTCAC	ACAACAGA--	-CGTTCTG	CGTAGTAAGG	TGCACGCTGA
CHPn	CCAAACAAAT	GT---CTGAC	ACGACAGA--	-CGTTCTG	TGTAGTAAGG	TGGATGCTGA
CM3	GCAAACAAAT	GT---CTCAC	ACGACAGA--	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
PCHBR	GCAAACAAAT	GT---CTCAC	ACGACAGA--	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
KC1	GCAAACAAAT	GT---CTCAC	ACGACAGA--	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
MHS	GCAAACAAAT	GT---CTCAC	ACGACAGA--	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
SR1	GCAAACAAAT	GT---CTCAC	ACGACAGA--	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
CM1	GCAAACAAAT	GT---CTCAC	ACGACAGA--	--CGTTCTG	CGTAGTAGGG	TGCACGCTGA
CM4	GCAAACAAAT	GT---CTCAC	ACGACAGA--	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
PJKRK	GCAAACAAAT	GT---CTCAC	ACGACAGA--	--CGTTCTG	CGTAGTAGGG	TGCACGCTGA
Tak	GCAAACAAAT	GT---CTCAC	ACGACAGA--	--CGTTCTG	CGTAGTAGGG	TGCACGCTGA
RB3	GCAAACAAAT	GT---CTCAC	ACGACAGA--	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
SKHTH1	GCAAACAAAT	GT---CTCAC	ACGACAAA -	--CGTTCTG	CGTAGTAGGG	TGCACGCTGA
KC3	GCAAACAAAT	GT---CTCAC	ACGACAAA--	-CGATCTG	CGTAGTAGGG	TGCACGCTGA
CHYP	GCAAACAAAT	GT---CTCAC	ACGACAGA-	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
SRTN	GCAAACAAAT	GT---CTCAC	ACGACAGA-	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
LBR	GCAAACAAAT	GT---CTCAC	ACGACAGA	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
Nan	GCAAACAAAT	GT---CTCAC	ACGACAGA	--CGTTCTG	CGTAGTAGGG	TGCACGCTGA
P1	GCAAACAAAT	GT---CTCAC	ACGACAGA	--CGTTCTG	CGTAGTAGGG	TGCACGCTGA
UTTN	GCAAACAAAT	GT---CTCAC	ACGACAGA	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
SKHTH2	GCAAACAAAT	GT---CTCAC	ACGACAGA	---CGTTCTG	CGTAGTAGGG	TGCACGCTGA
PSNL	GCAAACAAAT	GT---CTCAC	ACGACAGA-	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
PBoon	GCAAACAAAT	GT---CTCAC	ACGACAGA	- CGTTCTG	CGTAGTAGGG	TGCACGCTGA
PY	CCAAACAAAT	GT---CTCAC	ACGACAGA-	---CGTTCTG	CGTAGTAGGG	TGGACGCTGA
LPang	GCAAACAAAT	GT---CTCAC	ACGACAGA -	-GGTTCTG	CGTAGTAGGG	TGCACGCTGA
NKRSM	GCAAACAAAT	GT---CTCGC	ATCACAGA	CGTTCTG	CGTAGTATGG	TGCACGCTAA
SR2	GCAAACAAAT	GT---CTCAC	ACGACAGA	-CGTTCTG	CGTAGTAGGG	TGCACGCTGA
Lobata	GCAAACAGAC	GT---CCCAC	ACGACGGC	CGTT--G	CGTGGTAGGG	TGCACGCTGA
RB1	GCAAACAAAT	GT---CTCAC	ACGACAAA	- CATTCTG	CGTAGTAAGG	TGCACGCTGA
KPP	GCAAACAAAT	GT---CTCAG	ACGACAAA-	- CATTCAG	CGTATGAGGG	TGCACGCTGA
P2	CCAAACAAAT	GG---CTCAC	ACCACAAAA-	-GTTCTG	CGTAATAAGG	TGGACGCTGA
RB2	GCAAACAAAT	gTtttctcac	ACAAAAGA--	TCTTCTG	AGTAGGATGG	AGGACGATCA
LPoon	CCAAACAAAG	GT---CTCAA	ACAAAAAA-	-CGTTCTG	CGAAAAAGGG	GGCACGTTAA
P3	CCAAAAAAAT	GG---CTCAC	ACGAAAAAAG	TTCTGTTCTG	TTAGGGAGGG	GGCAAACTTA
Clustal Co			* $1 /$ asild		* **	*

KC2
CHPn
CM3
PCHBR
KC1
MHS
SR1
CM4
PJKRK
Tak
RB3
SKHTH1
KC3
CHYP
SRTN
LBR
Nan
P1
UTTN
SKHTH2
PSNL
PBoon
PY
LPang
NKRSM
SR2
Lobata
RB1

KPP

P2
RB2
LPoon
P3
Clustal Co

CCTCCCGCGA GCACCGTCTC GCGGTTGGTT GAAAATCAAG TTCGTGGCCG AGTGAGCCGT CCTACCTCCA GCACCGTCTC GCGGTTGGTT GAAAAAAAAG TTCGTGCCCG AGTGAGCCGT CCTCCCGCGA GCACCGTCTC GCGGTTGGTT GAAAATCGAG TTCGTGGCCG AGTACGCCGT CCTCCCGCGA GCACCGTCTC GCGGTTGGTT GAAAATCAAG TTCGTGGCCG AGTACGCCGT CCTCCCGCGA GCACCGTCTC GCGGTTGGTT GAAAATCGAG TTCGTGGCCG AGTACGCCGT CCTCCCGCGA GCACCGTCTC GCGGTTGGTT GAAAATCGAG TTCGTGGCCG AGTACGCCGT CCTCCCGCGA GCACCGTCTC GCGGTTGGTT GAAAAACAAC TTCGTGGCCG ACTACGCCGT CCTCCCGCGA GCACCGTCTC GTGGTTGGTT GAAAATCGAG TTCGTGGCCG AGTGCGCCGT CCTCCCGCGA GCACCGTCTC GCGGTTGGTT GAAAAACAAG TTCGTGGCCG AGTGCGCCGT CCTCCCGCGA GCACCGTCTC GCGGTTGGTT GAAAATCGAG TTCGTGGCCG AGTGCGCCGT CCTCACGCGA GCACCGTCTC GTGGTTGGTT GAAAATCGAA TTCGTGGCCG AGTGCACCGT CCTCCCGCGA GCACCGTCTC GCGGTTGGTT GAAAATCGAG TTCGTGGCCG AGTGCGCCGT CCTCCCGCGA GCGGCGTCTC GCGGTTGGTT GAAAATCGAG TTCGCGGCCG AGCACGCCGT CCTCCCGCGA GCACCGTCTC GCGGTTGGTT GAAAATCGAG TTCATGGCCG AGAACGCCGT CCTCCCGCGA GCACCGGCTC GCGGTTGGGT GAAAATCAAA ATCGAGGCCG AGGGCGACGG ACTCCCGCGA GCACCGTCTC GCGGTTGGTT GAAAATCCAG TTCCTGGCCC AATGCCCCCT CCCCCCGGGA GCGCCTCCTC GCGGGTGGAA AAAAAAATAC TTCGCGGACC AAAGCGCCCT CCTCCCGGGA GAACCGTCTC GGGGTTGGTT AAAAATCAAT TTCGGGGCCA AATGCCCCGG CCTCCAGCAA GGACCGGCGT TGGGTTGAAA AAAAATTTCG TGCCCGATCG AGCGCGCCTA

Figure 4.25. (continued)

KC2 GATAAAATGG TGGATGAACA ACGCTCGATA CCAATCAAGC GCCGCGACTC GGTCGGCTCC CHPn GATAAAATGG TGGATGAACA ACGCTCGATA CCAATCACGC GCCGCTACTC GGTCGGCTCC GG-AAAATGG TGGATGAGCA ACGCTCGAGA CCAATCACGC GCCGCGACTC GGTCGGCTCC GATAAAATGG TGGATGAGCA ACGCTCGAGA CCAATCACGC GCCGCGACTC GGTCGGCTCC GATAAAATGA TGGATGAGCA ACGCTCGAGA CCAATCACGC GGCGCGACTC GTTCGGCTCC GATAAAATGG TGGATGAGCA ACGCTCGAGA CCAATCACGC GCCGCGACTC GGTCGGCTCC GATAAAATGG TGGATGAGCA ACGCTCGAGA CCAATCACGC GCCGCGACTC GGTCGGCTCC GATAAAATGG TGGATGAGCA ACGCTCGAGA CCAATCACGC GCCGCGACTC GGTCGGCTCC GATAAAATGG TGGATGAGCA ACGCTCGAGA CCAATCACGC GCCGCGACTC GGTCGGTTCC GATAAAATGG TGGATGAGCA ACGCTCGAGA CCAATCACGC GCCGCGACTC GGTCGGCTCC GATAAAATGG TGGATGAGCA ACGCTCGAGA CCAATCACGC GCTGCGACTC GGTCCGCGAA GATAAAATGG TGGATGAGAA ACGCTCGAGA CCAATCACGC GCCGCGACTC GGTCGGCTCC GATAAAATGG AGGAGGAGCA ACACTCAAGA CCAATCACGC GCCGCGACTC GGACGGGTCC GATAAAATGG GGGAAGAACA ACGCTCGAAA ACAATCACGC GCCGCTACTC GGTCGGGTCC GAAAAAATGG GGGAAGAACA ACCCTCAAGA AACATCACGC GCCACGACTC CGGCTGCTCA GAAAAAATGG GGGATAAGCA ACGTTCGAAA CCAATCACGG GCCGGGACTC GGTCGGTTCC AATGGAGGGA TGAACAAGCA ACGGTCCAAA TCAATCACCG GCCCTGGCTC GGTTCGGTCC

KC2 GGACTCCTCC A--..-CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC ACTCTCAACG
CHPn
CM3
PCHBR
KC1
MHS
SR1
CM1
PJKRK
Tak
RB3
SKHTH1
KC3
CHYP
SRTN
LBR
Nan
P1
SKHTH2
PSNL

LPang NKRSM
SR2
Lobata
RB1
KPP
P2
RB2
LPoon
P3
Clustal Co

GGACTCATCC C------TC ACCCTATATT GACTCCTCTT C-CGTGAGAC ACTCTCTACC GGACTCCTCC A------CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A-...--CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A-------CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A------CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A-...-.-CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A------CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A----.--CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A------CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A-------CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A------CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A------CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A------CG ACCCTATAAT GGCTCTTCTT C-GGGGAGAA GATCTCAACG GGACTCCTCC A-------CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A------CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A--.--CG ACCCTATAGT GCCTCCTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A-NCG ACCCTATAGT GCCTCCTCTT C-GGGGAGAC CCTCTCAACG GGACTCCTCC A-....-CG ACCCTATAGT GCCTCCTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A-...--CG ACCCTATAGT GCCTCCTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A------CG ACCCTATAGT GCCTCCTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A-------CG ACCCTATAGT GCCTCCTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A--.--CG ACCCTATAGT GCCTCCTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A-...-CG ACCCTATAGT GCCTCCTCTT C-GGGGAGAC GCTCTCAACG GGACTCCTCC A-...-CG ACCCTATAGT GCCTCCTCTT CCGGGGAGAC GCTCTCAACG GGACTCCTCC A------CG ACCCTATAGT GCCTCGTCTT C-GGGGAGAC GATCTCAACG GGACTCCTCC A------CG ACCCTATATA GCCTCTCCTT C-TGGGAGAC ACTCTCTACA GGACTCCCTG ATTGATGACG ACCCTACAGT GCG-CCTCCT CTCCGGAGAC GCTCTCTACG GGACTCCTCC A-------CG ACCCTATAGT GCCTCTTCTT C-GGGGAGAC ACTCTCAACG GGATTCCTCC A------CC ACCCTAAAGT GACTCCTCTT C-CGGGAGAC GCTCACACTC GGAATCCTCC A-------CG AACCTATAGT GGCTCCTCTT C-CGGGAAAA GCTCTCAACG CGACTCCCCC A-------CC AAACTATAGC GCCTCTTCTT G-GGGGAGAT CCTCTCAAAA GGATTCCTCC A-------CA ACCCTATAGG GCCCCCCCTT C-GGGGGAAA GTCTCCAACA TCATCCCTAC C------CT $\underset{\star}{ }$ AACCT----G GCCTGTCTTT CGGGGGAGGG ATTCTCTCTA

Figure 4.25. (continued)

KC2 CHPn CM3 PCHBR KC1 MHS SR1 CM1 CM4 PJKRK Tak
RB3 SKHTH1
KC3
CHYP SRTN LBR Nan P1 UTTN SKHTH2
PSNL PBoon PY LPang NKRSM SR2 Lobata
RB1 KPP P2
RB2 LPoon
P3
Clustal Co

AGACCTCAGG -TCAGGCGGG GCTACCC AGACCTCACG -TCAGGCGGG GCTACCC AGACCTCAGG -TCAGGCGGG GCTACCC AGACCTCAGG - TCAGGCGGG GCTACCC AGACCTCAGG -TCAGGCGGG GCTACCC AGACCTCAGG -TCAGGCGGG GCTACCC AGACCTCAGG - TCAGGCGGG GCTACCC AGACCTCAGG -TCAGGCGGG GCTACCC AGACCTCATG -TCAGGCGGG GCTACCC AGACCTCAGG -TCAGGCGGG GCTACCC AGACCTCAGG -TCAGGCGGG GCTACCC AGACCTCAGG - TCAGGCGGG GCTACCC AGACCTCAGG GTCAGGGGGG GCTACCC AGACCTCAGG -TCAGGCGGG GCTACCC AGACCTCAGG - TCAGGCGGG GCTACCC AGACCTCAGG TTCAGGGGGG GCTACCC AGACCTCAGG -TCAGGCGGG GCTACCC AGACCTCTCG - TGAGGCGGG GGTACCC AGACCTCAGG -TCAGGCGGG GCTACCC AGACCTCAGG - TCAGGCGGG GCTACCC AGACCTCAAG -TCAAGGGGG GGTACCC AAACCTCCAG - GCAGGGGGG GCTACCC AGACCTCTCG -GGAGGGGGG GCCCCCC AAACCTCCGG -TCGGGCGGG GTTACCC AAACCT-AAG -TCAGGGGGG GGCGCCC

Figure 4.25. (continued)

$$
\cdots|\cdots|_{10} \cdots|\cdots|_{20} \cdots|\cdots|_{30} \cdots|\cdots|_{40} \cdots|\cdots|_{50} \cdots|\cdots|_{60}
$$

CM3 TCAATGGAAG CTGTTCTAAC AAACGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAAAG TCAATGGAAG CTGTTCTAAC AAACGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAAAG PSNL TCAATGGAAG CTGTTCTAAC AAACGGAGTT GACGATTTTT CCTTTTTGCA TTATGAAAAG RB2 TCAATGGAAG CTGTTCTAAC AAACGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAAAG RB3 TCAATGGAAG CTGTTCTAAC AAACGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAAAG
P1 TCAATGGAAG CTGTTCTAAC AAACGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAAAG SKHT2 TCAATGGAAG CTGTTCTAAC AAACGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAAAG
SRTN TCAATGGAAG CTGTTCTAAC AAACGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAAAG
SR1
UTTN
SKNK
CR
Tak
KC1
CM4
LBR
PCHBR
KC2
SR2
Lobata
P3
P2
SKHT1
CM1
NKRSM
CHYP
RB1
PBoon
PJKRK
KPP
LPang
KC3
LPoon
CHPn
TCAATGGAAG CTGTTCTAAC AAACGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAAAG
CM2 TCTCTGGTCC CTGTTTTCCC AAAGGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAAAG
RB4 TCTATGGAAG CTGTTCTAAC AAACGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAAAG
MHS TCTCTGGAAG CTGTTCTAAC AAACGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAAAG
Nan TCTCTGGAAG CTGTTCTAAC AAAGGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAGAG
NKSW TCAATGGAAG CTGTTCTAAC AAACGGAGTT GACGATTTTT CCTTTTTGCA TTAGGAAAAG
Clustal Co ** ** * * ** ** ********** ******** *** *** *

Figure 4.26. A 397 bp character matrix of 39 cultivars of P. mirifica and 1 cultivar of
P. lobata based on trnL sequences. Asterisk symbols (*) show that all samples provide nitrogenous base (A, C, G, and T) consensus or identity.
จุฬาลงกรณโมหาวิทยาลัย

CM3 AATCCTTCCA TCAAAATTCC AGGAATGGAT CAAAGATAAA CATATATATA CTGAAATACT

PY
PSNL
RB2
RB3
P1
SKHT2
SRTN
SR1
UTTN
SKNK
CR
Tak
KC1
CM4
LBR
PCHBR
KC2
SR2
Lobata
P3
P2
SKHT1
CM1
NKRSM
CHYP
RB1
PBoon
PJKRK
KPP
LPang
KC3
LPoon
CHPn
UTRD
CM2
RB4
MHS
Nan
NKSW
Clustal Co AATCCTTCCA TCAAAATTCC AGGAATGGAT CAAAGATAAA CATATATATA CTGAAATACT AATCCTTCCA TCAAAATTCG GGGAATGGAT CAAAGATAAA CATATATATA CTGAAATACT AATCCTTCCA TCAAAATTCC AGGAATGGAT CAAAGATAAA CATATATATA CTGAAATACT AATACTTCCA TCAAAATTCC AGGAATGGAT CAAAGATAAA CATATATATA CTGAAATACT AATCCTTCCA TCAAAATTCC AGGAATGGAT CAAAGATAAA CATATATATA CTGAAATACT AATCCGTCCA TCAAAATTCC AGGAATGGAT CAAAGATAAA CATATATATA CTGAAATACT AATCCTTCCA TCAAAATTCC AGGAATGGAT CAAAGATAAA CATATATATA CTGACATACT AATCCTTCCA TCAAAATTCC AGGAATGGAT CAAAGATAAA CATATATATA CTGAAATACT AATCCTTCCA TCAAAATTCC AGGAATGGAT CAAAGATAAA CATATATATA CTGAAATACT

Figure 4.26. (continued)

	130	140	150	160	170	180
CM3	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
PY	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
PSNL	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
RB2	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
RB3	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
P1	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
SKHT2	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
SRTN	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
SR1	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
UTTN	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
SKNK	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
CR	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
Tak	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
KC1	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
CM4	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
LBR	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
PCHBR	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
KC2	ATTTCAATTG	ATTAATGAAG	ATCC-TTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
SR2	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
Lobata	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATAAAAATA	TTCACAAATG	AAAGATGTGA
P3	ATTTCAATTG	ATTAATGAGG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
P2	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TCACAAATG	AAAGATGTGA
SKHT1	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
CM1	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	AAATG	AAAGATGTGA
NKRSM	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
CHYP	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
RB1	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
PBoon	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
PJKRK	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
KPP	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
LPang	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
KC3	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
LPoon	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
CHPn	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
UTRD	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
CM2	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
RB4	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
MHS	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
Nan	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
NKSW	ATTTCAATTG	ATTAATGAAG	TCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
Clustal Co						

Figure 4.26. (continued)

CM3 ATCAAATCAA TTCCAAGTTG AAGAAAAGAT GGAATATTCA TTGATCAAAT TATTCACTCC

PY
PSNL
RB2
RB3
P1
SKHT2
SRTN
SR1
UTTN
SKNK
CR
Tak
KC1
CM4
LBR PCHBR
KC2
SR2
Lobata
P3
P2
SKHT1
CM1
NKRSM
CHYP
RB1
PBoon
PJKRK
KPP
LPang
KC3
LPoon
CHPn
UTRD
CM2
RB4
MHS
Nan
NKSW
Clustal Co ATCAAATCAA TTCCAAGTTG AAGAAAAGAT GGAATATTCA TTGATCAAAT TATTCACTCC ATCAA---- TTCCAAGTTG AAGAAAAGAT GGAATATTCA TTGATCAAAT TATTCACTCC ATCAAATCAA TTCCAAGTTG AAGAAAAGAT GGAATATTCA TTGATCAAAT TATTCACTCC

Figure 4.26. (continued)
CM3 ATCATAATCT GATAGATCCC TTGAAGA----TTAATCAG ACGAGAATAA AGATAGAGTC
PY ATCATAATCT GATAGATCCC TTGAAGA-----TTAATCAG ACGAGAATAA AGATAGAGTC
PSNL ATCATAATCT GATAGATCCC TTGAAGA----TTAATCAG ACGAGAATAA AGATAGAGTC
RB2 ATCATAATCT GATAGATCCC TTGAAGA-----TTAATCAG ACGAGAATAA AGATAGAGTC
RB3 ATCATAATCT GATAGATCCC TTGAAGA----tTAATCAG ACGAGAATAA AGATAGAGTC
P1
SKHT2
SRTN
SR1
UTTN
SKNK
CR
Tak
KC1
CM4
LBR
PCHBR
KC2
SR2
Lobata
P3
P2
SKHT1
CM1
NKRSM
CHYP
RB1
PBoon
PJKRK
KPP
LPang
KC3
LPoon
CHPn
UTRD
CM2
RB4
MHS
Nan
NKSW
Clustal Co
ATCATAATCT GATAGATCCC TTGAAGA-----TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA----TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA -. ---TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA-. - -TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA--- -TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA-.- - TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA-----TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA-----TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGAACT GATTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA-----TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA-.- --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA-.- --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA ... --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA--- - TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA-.. - - TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA--- - TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA -...-TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA-.---TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA -.. --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA… --TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA----TTAATCAG ACGAGAATAA AGATAGAGTC
ATCATAATCT GATAGATCCC TTGAAGA… - TTAATCAG ACGAGAATAA AGATAGAGTC

Figure 4.26. (continued)
 CTATTCTACA TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTCGAC
CM3 CTATTCTACA TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTCGAC

PY	CTATTCTACA TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTCGAC
PSNL	CTATTCTACA TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTCGAC

RB2 CTATTCTACA TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTCGAC RB3 CTATTCTACA TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTCGAC CTATTCTACA TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTCGAC
MHS CTATTCTACA TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTCGAC

Nan

 CTATTCTACA TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTCGAC
NKSW

Clustal Co

CTATTCTACA TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTCGAC

Figure 4.26. (continued)
จุฬาลงกรณ์มหาวิทยาลัย

CM3 TTAAGAAATC GTGAGGGTTC AAGTCCCTCT ATCCCCA

PY
PSNL
RB2
RB3
P1
SKHT2
SRTN
SR1
UTTN
SKNK
CR
Tak
KC1
CM4
LBR PCHBR
KC2
SR2
Lobata
P3
P2
SKHT1
CM1
NKRSM
CHYP
RB1
PBoon
PJKRK
KPP
LPang
KC3
LPoon
CHPn
UTRD
CM2
RB4
MHS
Nan
NKSW
Clustal Co

TTAAGAAATC GTGAGGGTTC AAGTCCCTCT ATCCCCA ********** ********** ********** *******

Figure 4.26. (continued)

	10	20	030	40		
P1	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
SKHT2	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
SRTN	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
RB2	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
RB3	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
CM1	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
NKRSM	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
CHYP	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
RB1	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
CM3	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
CHPn	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
KC3	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
LPoon	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
KPP	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
LPang	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
PBoon	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
PJKRK	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
P2	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
SKHT1	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
PCHBR	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
KC2	TCTGGGGTCC	CCAAATAAAA	AAACGGGGTG	GAGCTTTTTT	TCTTTTTGGA	TTAAGAAAAT
SR2	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
Lobata	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
P3	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
LBR	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
SR1	TCGGGGGAAG	CTGTTCTAAC	GAGCGGGGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
UTTN	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
SKNK	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
CR	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
Tak	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
KC1	TCAATGGAAG	CTGTTCTAAC	AGACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
CM4	TCAATGGAAG	CTGTTCTAAC	AAACGGAGTT	GACGATTTTT	CCTTTTTGCA	TTAGGAAAAG
Clustal Co	** **		*** **	**		*** **

Figure 4.27. A 731 bp character matrix of 31 cultivars of P. mirifica and 1 cultivar of P. lobata based on trnL-F sequences. Asterisk symbols (*) show that all samples provide nitrogenous base (A, C, G, and T) consensus or identity.

	70	80	90	100	110	120
P1	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
SKHT2	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	Catatatata	CTGAAATACT
SRTN	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
RB2	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
RB3	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
CM1	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
NKRSM	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
CHYP	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
RB1	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
CM3	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	Catatatata	CTGAAATACT
CHPn	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
KC3	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
LPoon	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
KPP	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
LPang	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
PBoon	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
PJKRK	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
P2	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
SKHT1	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
PCHBR	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
KC2	AATACTTCGA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	Catatatata	CTGAAATACT
SR2	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
Lobat	AATCCGTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
P3	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGAGAAA	CATATATATA	CTGACATACT
LBR	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
SR1	AATCCTTCCA	TCAAAATTCG	GGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
UTTN	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	Catatatata	CTGAAATACT
SKNK	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
CR	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
Tak	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	catatatata	CTGAAATACT
KC1	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
CM4	AATCCTTCCA	TCAAAATTCC	AGGAATGGAT	CAAAGATAAA	CATATATATA	CTGAAATACT
Clustal Co			*********	*********		*******
	130			160	170	180
P1	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	AATG	AAGATGTGA
SKHT2	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
SRTN	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
RB2	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
RB3	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
CM1	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
NKRSM	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
CHYP	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
RB1	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
CM3	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
CHPn	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
KC3	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
LPoon	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
KPP	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
LPang	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
PBoon	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
PJKRK	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
P2	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
SKHT1	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
PCHBR	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAA	AAGATGTGA
KC2	ATTTCAATTG	ATTAATGAAG	ATCC-TTTG	GATCAAAATA	TCACAAAT	AAGATGTGA
SR2	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAGATGTGA
Lobata	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATAAAAATA	TTCACAAATG	AAAGATGTGA
P3	ATTTCAATTG	ATTAATGAGG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
LBR	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
SR1	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
UTTN	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
SKNK	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
CR	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
Tak	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
KC1	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
CM4	ATTTCAATTG	ATTAATGAAG	ATCCATTTGT	GATCAAAATA	TTCACAAATG	AAAGATGTGA
Clustal Co						

Figure 4.27. (continued)

P1 ATCAAATCAA TTCCAAGTTG AAGAAAAGAT GGAATATTCA TTGATCAAAT TATTCACTCC SKHT2 SRTN ATCAAATCAA TTCCAAGTTG AAGAAAAGAT GGAATATTCA TTGATCAAAT TATTCACTCC ATCAA $-\cdots$ TTCCAAGTTG AAGAAAAGAT GGAATATTCA TTGATCAAAT TATTCACTCC ATCAAATCAA TTCCAAGTTG AAGAAAAGAT GGAATATTCA TTGATCAAAT TATTCACTCC

ATCATAATCT GATAGATCCC TTGAAGA -. - --TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA-.- --TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA-----TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA… -- TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA -. - --TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA-----TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA-----TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA-- -TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA-. - -TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA----TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA-- - TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA-.- - TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA----TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGAACT GATTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCCG ACGAGAATAA AGGTAGAGTC ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA-----TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC ATCATAATCT GATAGATCCC TTGAAGA--- --TTAATCAG ACGAGAATAA AGATAGAGTC

Clustal Co

TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTC SKHT2

CTATTCTACA TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTCGAC CTATTCTACA TGTCAATACC GACAACAATG AAATTTATAG TAAGAGGAAA ATCCGTCGAC

TTAAGAAATC GTGAGGGTTC AAGTCCCTCT ATCCCCAAAA GGCCTGTTTA ACTTTCTAAT TTAAGAAATC GTGAGGGTTC AAGTCCCTCT ATCCCCAAAA GGCCTCTTTA ACTTTCTAAT TTAAGAAATC GTGAGGGTTC AAGTCCCTCT ATCCCCAAAA GGCCTGTTTA ACTTTCTAAT TTAAGAAATC GTGAGGGTTC AAGTCCCTCT ATCCCCAAAA GACCTGTTTA ACTTTCTAAT TTAAGAAATC GTGAGGGTTC AAGTCCCTCT ATCCCCAAAA GGCCTGTTTA ACTTTCTAAT Clustal Co

* *** **** **********

Figure 4.27. (continued)

	30	440	450	460	470	480
P1	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
SKHT2	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
SRTN	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
RB2	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
RB3	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
CM1	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
NKRSM	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
CHYP	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
RB1	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
CM3	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
CHPn	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
KC3	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
LPoon	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
KPP	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTAT--
LPang	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTAT
PBoon	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
PJKRK	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
P2	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
SKHT1	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
PCHBR	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
KC2	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
SR2	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
Lobata	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
P3	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTAGG	TGTTTTATTC	AGCTTTATAT
LBR	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
SR1	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
UTTN	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
SKNK	TTTTTCCCAT	ATCСТСТСТА	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
CR	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
Tak	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
KC1	TTTTTCCCAT	ATCCTCTCTA	TCTITAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
CM4	TTTTTCCCAT	ATCCTCTCTA	TCTTTAAGTC	GTTATTTATG	TGTTTTATTC	AG-TTTATAT
Clustal Co						

P1
SKHT2
SRTN
RB2
RB3
CM1
NKRSM
CHYP
RB1
CM3
KC3
LPoon
KPP
LPang
PBoon
PJKRK
P2
SKHT1
PCHBR
KC2
SR2
Lobata
P3
LBR
SR1
UTTN
SKNK
CR
Tak
KC1
CM4
TCAGTTTATT CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCAAA AATTTCTTAT --------T CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCAAA AATTTCTTAT --TCAGTTTATT CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCAAA AATTTCTTAT TCAGTTTATT CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCAAA AATTTCTTAT
TCAGTTTATT CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCAAA AATTTCTTAT
TCAGTTTATT CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCAAA AATTTCTTAT TCAGTTTATT CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCAAA AATTTCTTAT TCAGTTTATT CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCAAA AATTTCTTAT TCAGTTTATT CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCAAA AATTTCTTAT TCAGTTTATT CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCAAA AATTTCTTAT TCAGTTTATT CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCGAA CGTTTCTTAT TCAGTTTATT CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCAAA AATTTCTTAT TCAGTTTATT CTTTCACAAC TAAATTGGAA TTTGTCTTTT TATTTTCAAA AATTTCTTAT

Figure 4.27. (continued)

Figure 4.27. (continued)

GCC-TTTTTT T GCC-TTTTTT T GCC-TTTTTT T GCC-TTTTTT T GTC-TTTTTT T GTC-TTTTTT T GTC-TTTTTT T GCC-TTTTTT T GCC-TTTTTT T GCC-TTTTTT T GCC-TTTTTT T GTC-TTTTTT T GCC-TTTTTT T G-C-TTTTTT T GTC-TTTTTT T GTC-TTTTTT T GCC-TTTTTT T GTC-TTTTTT T $\begin{array}{ll}\text { GCC-TTTTTT T } \\ \text { GTC-TTTTTT T } \\ \text { GTC-TTTTTT } & T\end{array}$ GTC-TTTTTT T
GTC-TTTTTT T G-CC-TTTTT T GTCCTTTTTT T GTC-TTTTTT T GTC-TTTTTT T GTCTTTTTTT T GCC-TTTTTT T GTC--TTTTT T GCC-TTTTTT T GCC-TTTTTT T GTC-TTTTTT T
Clustal Co
Figure 4.27. (continued)

Table 4.5. Percentages of nitrogenous base composition of ITS sequences of 33 cultivars of P. mirifica in Thailand and P. lobata as an outgroup.

Cul ti var/Base	A	C	G	T
CMI	20.458	31.145	27.786	20.611
CMB	20.336	31.346	27.829	20.489
CMA	20.458	31.298	27.634	20.611
LPang	20.700	31.507	27.245	20.548
MHS	20.611	31.298	27.481	20.611
LPoon	24.159	29.205	27.982	18.654
Nan	20.274	31.250	28.049	20.427
PY	20.611	31.603	27.634	20.153
P1	20.336	31.804	27.676	20.183
P2	23.547	30.122	26.758	19.572
P3	23.206	29.618	27.023	20.153
KPP	23.511	30.687	27.176	18.626
LBR	20.336	31.346	27.982	20.336
PBoon	20.305	31.450	27.786	20.458
PSNL	20.305	31.603	27.786	20.305
SR1	20.611	31.298	27.481	20.611
SR2	20.489	31.346	27.217	20.948
SKHT1	20.611	31.298	27.481	20.611
SKHT2	20.305	31.450	27.786	20.458
UTTN	20.336	31.498	27.676	20.489
KC1	20.458	31.298	27.634	20.611
KC2	22.443	31.298	25.649	20.611
KC3	21.679	30.992	26.718	20.611
PCHBR	20.458	31.298	27.634	20.611
PJ KRK	20.763	31.298	27.328	20.611
RB1	22.137	31.145	25.802	20.916
RB2	23.896	31.050	25.723	19.330
RB3	20.611	31.298	27.481	20.611
Tak	20.827	31.394	27.106	20.674
CHYP	20.305	30.992	27.939	20.763
NKRSM	21.069	30.840	27.176	20.916
CHPn	20.763	32.824	23.664	22.748
SRTN	20.458	31.145	27.786	20.611
P. /obata	20.509	31.737	28.892	18.862
Mean	21.114	31.200	27.295	20.391
		20.3		

สถาบนวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลย

Table 4.6. Percentages of nitrogenous base composition of trnL sequences of 39 cultivars of P. mirifica in Thailand and P. lobata as an outgroup.

Cul ti var/ Base	A	C	G	T
CML	38.776	16. 837	15. 561	28. 827
CMR	37.245	17. 347	15. 561	29.847
CMB	38.776	16. 837	15. 561	28.827
CMA	38.776	16. 837	15. 561	28.827
CR	38.776	16. 837	15. 561	28.827
LPang	38.776	16. 837	15. 561	28.827
MHS	38. 265	17. 092	15. 561	29. 082
LPoon	38.776	16. 837	15. 561	28.827
Nan	37. 913	16. 794	16. 285	29. 008
PY	38.677	17.048	15.522	28. 753
P1	38.776	16.837	15. 561	28.827
P2	38.776	16.837	15.561	28.827
P3	37. 659	17. 303	16. 285	28. 753
UTRD	38.776	16. 837	15.561	28.827
KPP	38.776	16. 837	15. 561	28.827
LBR	38.776	16. 837	15. 561	28.827
NKSW	38.776	16. 837	15. 561	28.827
PBoon	38.776	16. 837	15. 561	28.827
PSNL	37.245	17. 857	15. 816	29. 082
SR1	37. 340	16. 624	17. 391	28. 645
SR2	38. 776	16. 837	15. 561	28. 827
SKHT1	38. 776	16. 837	15. 561	28.827
SKHT2	38.776	16. 837	15. 561	28.827
UTN	38.776	16.837	15.561	28.827
KC1	38.520	16. 837	15.816	28. 827
KC2	38.875	16. 368	16. 113	28. 645
KC3	38.776	16.837	15.561	28.827
PCHBR	38.776	16. 837	15. 561	28.827
PJ KRK	38.776	16. 837	15. 561	28.827
RB1	38.776	16. 837	15.561	28.827
RB2	38.776	16. 837	15.561	28.827
RB3	38.776	16. 837	15. 561	28.827
RB4	38. 010	16.837	16. 071	29.082
Tak	38.776	16.837	15.561	28.827
CHYP	38.776	16.837	15. 561	28.827
NKRSM ©	38.776	16.837	15. 561	28.827
SKNK \cap - $1038.776 \cap 16.837 \sim 15.561 \sim 28.827$				
CHPn	38.776	16.837	15. 561	28.827
SRTN	38.776	16.837	15. 561	28.827
$\begin{array}{ll}\text { P. I obata } & 38.776\end{array}$		$16.582 \sim 16.071$		28.571
Mean 9	38.575	16.874	15.694	28.857
- 61	6 100		\|	6

Table 4.7. Percentages of nitrogenous base composition of trnL-F sequences of 31 cultivars of P. mirifica in Thailand and P. lobata as an outgroup.

Cul ti var/Base	A	C	G	T
CM1	35.883	15.716	12.935	35.466
CMB	34.566	16.501	13.229	35.704
CMA	36.022	15.716	12.796	35.466
CR	35.475	16.201	12.849	35.475
LPang	36.017	15.960	12.853	35.169
LPoon	35.556	16.250	12.778	35.417
P1	35.524	16.084	12.867	35.524
P2	36.061	15.673	12.760	35.506
P3	34.167	16.667	14.028	35.139
KPP	36.299	15.819	12.853	35.028
LBR	35.655	16.156	12.813	35.376
PBoon	36.111	15.694	12.778	35.417
SR1	34.170	15.760	13.808	36.262
SR2	35.972	15.833	12.778	35.417
SKHT1	36.022	15.855	12.796	35.327
SKHTT	35.425	16.039	12.831	35.704
UTTN	35.408	15.906	12.863	35.823
KC1	35.744	15.994	12.935	35.327
KC2	35.894	15.363	13.128	35.615
KC3	35.744	15.994	12.796	35.466
PCHBR	35.794	15.877	12.813	35.515
PJ KRK	35.744	16.134	12.796	35.327
RB1	35.744	16.134	12.796	35.327
RB2	35.844	15.900	12.831	35.425
RB3	36.111	15.694	12.778	35.417
Tak	35.972	15.833	12.778	35.417
CHYP	35.972	15.972	12.778	35.278
NKRSM	36.022	15.577	12.935	35.466
SKNK	35.794	15.877	12.813	35.515
CHPn	34.314	17.227	13.025	35.434
SRTN	35.744	16.134	12.796	35.327
P. / obata	36.123	15.621	13.110	35.146
Mean	35.654	15.973	12.929	35.445

สถาบนวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Table 4.8. The matrix of pairwise similarity (\%) of ITS sequences from 33 cultivars of P. mirifica in Thailand and P. lobata as an outgroup.

Cul ti var	CMI	CMR	CMB	CMA	CR	LPang	MHS	LPoon
CM1	-	-	-	-	-	-	-	-
CMB	99	-	-	-	-	-	-	-
CMA	99	99	-	-	-	-	-	-
LPang	98	98	98	-	-	-	-	-
MHS	99	99	99	98	-	-	-	-
LPoon	87	87	87	88	87	-	-	-
Nan	98	98	99	98	98	88	-	-
PY	98	98	98	98	98	88	98	-
P1	99	99	99	98	99	87	99	98
P2	89	89	90	91	89	86	90	90
P3	81	81	81	81	81	81	81	81
KPP	89	89	89	90	89	83	89	89
LBR	99	99	99	99	99	87	99	98
PBoon	99	99	99	99	99	88	99	98
PSNL	99	99	99	99	99	88	99	98
SR1	99	99	99	98	100	87	98	98
SR2	98	97	98	97	98	88	97	97
SKHT1	99	99	99	98	99	88	98	98
SKHT2	99	99	99	99	99	88	99	99
UTTN	99	99	99	99	99	88	99	99
KC1	99	99	100	98	99	87	99	98
KC2	96	96	96	96	96	88	96	96
KC3	97	97	97	96	97	87	96	97
PCHBR	99	99	100	98	99	87	99	98
PJ KRK	99	99	99	98	99	87	98	98
RB1	96	96	96	96	96	87	96	95
RB2	87	88	88	88	87	83	87	88
RB3	99	99	99	98	99	87	98	98
Tak	99	99	99	98	99	88	98	98
CHYP	99	99	99	98	99	87	98	98
NKRSM	97	97	98	97	97	87	97	97
CHPn	87	87	87	87	87	80	97	88
SRTN	99	99	99	98	99	87	99	98
P. /obata	90	90	90	89	90	79	89	89

Cul ti var	P1	P2	P3	KPP	LBR	PBoon	PSNL	SR1
P1	-	-	-	-	-	-	-	-
P2	90	-	-	-	-	-	-	-
P3	81	80	-	-	-	-	-	-
KPP	89	84	77	-	-	-	-	-
LBR	99	90	81	89	-	-	-	-
PBoon	99	90	81	89	99	-	-	-
PSNL	99	90	81	89	99	99	-	-
SR1	99	89	81	89	99	99	99	-
SR2	97	88	81	88	97	98	98	98
SKHT1	99	90	81	89	99	99	99	99
SKHT2	99	90	81	89	99	99	99	99
UTN	99	90	81	89	99	99	99	99
KC1	99	90	81	09	99	99	99	99
KC2	96	90	81	88	96	96	96	96
KC3	97	89	81	88	97	97	97	97
PCHBR	99	90	81	89	99	99	99	99
PJ KRK	99	90	81	89	99	99	99	99
RB1	96	89	81	88	96	96	96	96
RB2	87	86	79	82	87	88	87	87
RB3	99	89	81	89	99	99	99	99
Tak	98	90	81	89	98	99	99	99
CHYP	99	89	81	89	99	99	99	99
NKRSM	97	89	81	88	98	98	98	97
CHPn	87	83	76	81	87	87	87	87
SRTN	99	90	81	89	99	99	99	99
P. /obata	90	81	72	81	90	90	90	90

Table 4.8. (continued)

Cul ti var	SR2	SKHT1	UTTN	KC1	KC2	KC3	PCHBR	PJ KRK
SR2	-	-	-	-	-	-	-	-
SKHT1	98	-	-	-	-	-	-	-
SKHT2	98	99	-	-	-	-	-	-
UTTN	98	99	100	-	-	-	-	-
KC1	98	99	99	99	-	-	-	-
KC2	95	96	96	96	96	-	-	-
KC3	96	98	97	97	97	94	-	-
PCHBR	98	99	99	99	100	96	97	-
PJ KRK	97	99	99	99	99	96	97	99
RB1	95	97	96	96	96	95	95	96
RB2	88	87	88	88	88	87	87	88
RB3	98	99	99	99	99	96	97	99
Tak	97	99	99	99	99	96	97	99
CHYP	97	99	99	99	99	96	97	99
NKRSM	96	97	98	98	98	95	96	98
CHPn	87	87	87	87	87	90	86	87
SRTN	98	99	99	99	99	96	97	99
P. Iobata	88	90	90	90	90	87	88	90

Cul ti var	PJ KRK	RB1	RB2	RB3	Tak	CHYP	NKRSM	CHPn
PJ KRK	-	-	-	-	-	-	-	-
RB1	96	-	-	-	-	-	-	-
RB2	88	86	-	-	-	-	-	-
RB3	99	96	87	-	-	-	-	-
Tak	99	96	88	99	-	-	-	-
CHYP	99	96	87	99	98	-	-	-
NKRSM	98	95	87	97	97	98	-	-
CHPn	87	86	79	87	87	87	86	-
SRTN	99	96	88	99	99	99	98	87
P. Iobata	89	87	79	90	89	89	88	79

Cul t i var	SRTN	P. I obata
SRTN	-	-
P. I Obata	89	-

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Table 4.9. The matrix of pairwise similarity (\%) of trnL sequences from 39 cultivars of P. mirifica in Thailand and P. lobata as an outgroup.

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

Table 4.9. (continued)

Cultivar	Nan	PY	P1	P2	P3	UTRD	KPP	LBR
Nan	-	-	-	-	-	-	-	-
PY	98	-	-	-	-	-	-	-
P1	98	100	-	-	-	-	-	-
P2	98	100	100	-	-	-	-	-
P3	98	99	99	99	-	-	-	-
UTRD	98	100	100	100	99	-	-	-
KPP	98	100	100	100	99	100	-	-
LBR	98	100	100	100	99	100	100	-
NKSW	98	100	100	100	99	100	100	100
PBoon	98	100	100	100	99	100	100	100
PSNL	98	99	99	99	98	99	99	99
SR1	97	97	97	97	96	97	97	97
SR2	98	100	100	100	99	100	100	100
SKHT1	98	100	100	100	99	100	100	100
SKHT2	98	100	100	100	99	100	100	100
UTTN	98	100	100	100	99	100	100	100
KC1	98	99	99	99	98	99	99	99
KC2	92	92	92	92	91	92	92	92
KC3	98	100	100	100	99	100	100	100
PCHBR	98	100	100	100	99	100	100	100
PJ KRK	98	100	100	100	99	100	100	100
RB1	98	100	100	100	99	100	100	100
RB2	98	100	100	100	99	100	100	100
RB3	98	100	100	100	99	100	100	100
RB4	99	99	99	99	98	99	99	99
Tak	98	100	100	100	99	100	100	100
CHYP	98	100	100	100	99	100	100	100
NKRSM	98	100	100	100	99	100	100	100
SKNK	98	100	100	100	99	100	100	100
CHPn	98	100	100	100	99	100	100	100
SRTN	98	100	100	100	99	100	100	100
P. I obata	97	98	- 98	98	97	98	98	98

Cul ti var	NKSW	PBoon	PSNL	SR1	SR2	SKHT1	SKHT2	UTTN
NKSW	-	-	-	-	-	-	-	-
PBoon	100	-	-	-	-	-	-	-
PSNL	99	99	-	-	-	-	-	-
SR1	97	97	97	-	-	-	-	-
SR2	100	100	99	97	-	-	-	-
SKHT1	100	100	99	97	100	-	-	-
SKHT2	100	100	99	97	100	100	-	-
UTTN	100	100	99	97	100	100	100	-
KC1	99	99	99	97	99	99	99	99
KC2	92	92	92	91	92	92	92	92
KC3	100	100	99	97	100	100	100	100
PCHBR	100	100	99	97	100	100	100	100
PJKRK	100	100	99	97	100	100	100	100
RB1	100	0100	99	97	100	100	100	100
RB2	100	100	99	97	100	100	100	100
RB3	100	100	99	97	100	100	100	100
RB4	99	99	99	97	99	99	99	99
Tak	100	100	99	97	100	100	100	100
CHYP	100	100	99	97	100	100	100	100
NKRSM	100	100	99	97	100	100	100	100
SKNK 0	100	100	99	97	100	100	100	100
CHPn	100	100	99	97	100	100	100	100
SRTN	100	100	99	97	100	100	100	100
P. Iobata	98	98	97	95	98	98	98	98

Table 4.9. (continued)

Cul ti var	KC1	KC2	KC3	PCHBR	PJ KRK	RB1	RB2	RB3
KC1	-	-	-	-	-	-	-	-
KC2	92	-	-	-	-	-	-	-
KC3	99	92	-	-	-	-	-	-
PCHBR	99	92	100	-	-	-	-	-
PJ KRK	99	92	100	100	-	-	-	-
RB1	99	92	100	100	100	-	-	-
RB2	99	92	100	100	100	100	-	-
RB3	99	92	100	100	100	100	100	-
RB4	99	92	99	99	99	99	99	99
Tak	99	92	100	100	100	100	100	100
CHYP	99	92	100	100	100	100	100	100
NKRSM	99	92	100	100	100	100	100	100
SKNK	99	92	100	100	100	100	100	100
CHPn	99	92	100	100	100	100	100	100
SRTN	99	92	100	100	100	100	100	100
P. Iobata	97	90	98	98	98	98	98	98

Cul ti var	RB4	Tak	CHYP	NKRSM	SKNK	CHPn	SRTN	P. /obat a
RB4	-	-	-	-	-	-	-	-
Tak	99	-	-	-	-	-	-	-
CHYP	99	100	-	-	-	-	-	-
NKRSM	99	100	100	-	-	-	-	-
SKNK	99	100	100	100	-	-	-	-
CHPn	99	100	100	100	100	-	-	-
SRTN	99	100	100	100	100	100	-	-
P. /obata	97	98	98	98	98	98	98	-

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวิทยาลัย }
\end{gathered}
$$

Table 4.10. The matrix of pairwise similarity (\%) of trnL-F sequences from 31 cultivars of P. mirifica in Thailand and P. lobata as an outgroup.

Cul ti var	CML	CMB	CMA	CR	LPang	LPoon	P1	P2
CM1	-	-	-	-	-	-	-	-
CMB	98	-	-	-	-	-	-	-
CM4	99	98	-	-	-	-	-	-
CR	98	97	99	-	-	-	-	-
LPang	99	97	99	98	-	-	-	-
LPoon	99	99	98	98	99	-	-	-
P1	99	99	98	98	99	99	-	-
P2	99	98	99	99	99	99	99	-
P3	97	96	96	96	97	96	97	97
KPP	99	97	99	98	99	99	99	100
LBR	99	99	98	98	99	98	99	99
PBoon	99	98	99	98	99	99	99	100
SR1	96	95	97	97	96	96	96	97
SR2	99	98	99	98	99	99	99	99
SKHT1	99	99	98	98	99	99	99	99
SKHT2	99	98	98	97	98	98	99	99
UTTN	98	98	99	99	98	98	98	98
KC1	98	98	99	99	98	98	98	99
KC2	95	94	94	94	94	94	94	95
KC3	99	99	98	98	99	99	99	99
PCHBR	99	99	99	98	99	98	99	99
PJ KRK	99	99	98	98	99	99	99	99
RB1	99	99	98	98	99	99	99	99
RB2	99	98	98	98	98	98	99	99
RB3	99	98	99	98	99	99	99	100
Tak	98	98	99	99	98	98	98	99
CHYP	99	98	99	98	99	99	99	99
NKRSM	99	98	98	98	99	99	99	99
SKNK	98	98	99	98	98	98	98	99
CHPn	97	98	97	96	97	98	97	97
SRTN	99	99	98	98	99	99	99	99
P. Iobata	97	97	97	96	97	97	97	98

Cul ti var	P3	KPP	LBR	PBoon	SR1	SR2	SKHT1	SKHT2
P3	-	-	-	-	-	-	-	-
KPP	97	-	-	-	-	-	-	-
LBR	97	99	-	-	-	-	-	-
PBoon	97	100	99	-	-	-	-	-
SR1	94	96	96	97	-	-	-	-
SR2	97	99	99	99	96	-	-	-
SKHT1	97	99	99	99	96	99	-	-
SKHT2	96	98	98	99	96	99	99	-
UTTN	96	98	98	98	97	99	98	98
KC1	96	98	98	98	97	99	98	98
KC2	93	95	94	95	93	95	95	94
KC3	97	99	99	99	96	99	99	98
PCHBR	97	99	98	99	97	99	99	98
PJ KRK	97	99	99	99	96	99	99	98
RB1	97	99	99	99	96	99	99	99
RB2	96	99	98	99	96	99	99	98
RB3	97	100	99	100	97	99	99	99
Tak	96	99	98	99	97	98	99	98
CHYP	96	99	99	99	96	99	99	99
NKRSM	97	99	99	99	96	99	99	99
SKNK	96	98	98	99	97	98	99	98
CHPn	95	97	97	97	95	97	97	97
SRTN	96	99	99	99	96	99	99	98
P. /obata	95	97	97	98	94	98	97	97

Table 4.10. (continued)

Cul ti var	UTN	KC1	KC2	KC3	PCHBR	PJ KRK	RB1	RB2
UTTN	-	-	-	-	-	-	-	-
KC1	99	-	-	-	-	-	-	-
KC2	94	94	-	-	-	-	-	-
KC3	98	98	95	-	-	-	-	-
PCHBR	99	98	95	99	-	-	-	-
PJ KRK	98	98	95	99	99	-	-	-
RB1	98	98	95	99	99	99	-	-
RB2	98	98	94	98	99	99	99	-
RB3	98	98	95	99	99	99	99	99
Tak	99	99	94	98	99	99	98	98
CHYP	98	98	95	99	99	99	99	99
NKRSM	98	98	95	99	99	99	99	98
SKNK	99	98	94	98	98	98	98	98
CHPn	97	97	93	97	97	97	97	97
SRTN	98	98	95	99	99	99	99	99
P. /obata	97	97	93	97	97	97	97	97

Cul ti var	RB3	Tak	CHYP	NKRSM	SKNK	CHPn	SRTN	P. / obat a
RB3	-	-	-	-	-	-	-	-
Tak	99	-	-	-	-	-	-	-
CHYP	99	99	-	-	-	-	-	-
NKRSM	99	98	99	-	-	-	-	-
SKNK	99	99	99	98	-	-	-	-
CHPn	97	97	97	97	96	-	-	-
SRTN	99	98	99	99	98	98	-	-
P. /obata	98	97	97	98	97	96	98	-

สถาบนวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Table 4.11. The pairwise sequence divergence (\%) of ITS sequences from 33 cultivars of P. mirifica in Thailand and P. lobata as an outgroup.

Cul ti var	CMI	CMB	CMA	LPang	MHS	LPoon	Nan	PY
CML	-	-	-	-	-	-	-	-
CMB	0.305	-	-	-	-	-	-	-
CMA	0.153	0.153	-	-	-	-	-	-
LPang	1.220	1.219	1.067	-	-	-	-	-
MHS	0.305	0.305	0.153	1.219	-	-	-	-
LPoon	12.236	12.112	12.082	11.478	12.235	-	-	-
Nan	1.070	1.071	0.917	1.219	1.070	12.088	-	-
PY	1.374	1.374	1.221	1.678	1.374	11.929	1.529	-
P1	0.764	0.764	0.611	1.069	0.763	12.080	0.918	1.223
P2	9.972	9.977	9.819	8.745	9.971	13.315	09.677	9.053
P3	18.961	18.989	18.807	18.466	18.962	19.285	18.502	18.652
KPP	10.840	10.850	10.687	9.928	10.840	16.975	10.540	10.840
LBR	0.611	0.611	0.458	0.916	0.611	11.938	0.459	1.070
PBoon	0.458	0.458	0.306	0.762	0.458	11.797	0.763	0.917
PSNL	0.611	0.611	0.458	0.915	0.611	11.929	0.764	1.069
SR1	0.305	0.305	0.153	1.219	0.000	12.235	1.070	1.374
SR2	1.990	1.994	1.836	2.598	1.989	12.538	2.297	2.754
SKHT1	0.305	0.305	0.153	1.219	0.305	11.929	1.070	1.374
SKHT2	0.458	0.458	0.305	0.762	0.458	11.777	0.611	0.916
UTTN	0.459	0.459	0.305	0.763	0.458	11.774	0.613	0.918
KC1	0.153	0.153	0.000	1.067	0.153	12.082	0.917	1.221
KC2	3.511	3.514	3.359	3.355	3.511	12.687	3.823	3.664
KC3	2.290	2.292	2.137	3.203	2.290	12.845	3.058	2.748
PCHBR	0.153	0.153	0.000	1.067	0.153	12.082	0.917	1.221
PJ KRK	0.458	0.458	0.305	1.067	0.458	12.082	1.224	1.527
RB1	3.206	3.211	3.053	3.811	3.206	13.608	3.825	4.122

Cultivar	P1	P2	P3	KPP	LBR	PBoon	PSNL	SR1
P1	-	-	-	-	-	-	-	-
P2	9.810	-	-	-	-	-	-	-
P3	19.106	20.205		-	-	-	-	-
KPP	10.094	15.165	23.141	-	-	-	-	-
LBR	0.460	9.517	18.670	10.544	-	-	-	-
PBoon	0.307	9.375	18.836	10.399	0.154	-	-	-
PSNL	0.458	9.667	18.959	10.534	0.306	0.154	-	-
SR1	0.763	9.971	18.962	10.840	0.611	0.458	0.611	-
SR2	2.141	10.880	18.485	11.469	1.991	1.841	1.989	1.989
SKHT1	0.763	9.665	18.652	10.534	0.611	0.458	0.611	0.305
SKHT2	0.305	9.514	18.805	10.382	0.153	0.000	0.153	0.458
UTN	0.306	9.504	18.798	10.400	0.154	0.000	0.153	0.458
KC1	0.611	9.819	18.807	10.687	0.458	0.306	0.458	0.153
KC2	3.664	9.807	19.427	11.603	3.515	3.359	3.511	3.511
KC3	2.750	10.577	19.724	11.756	2.597	2.445	2.595	2.290
PCHBR	0.611	9.819	18.807	10.687	0.458	0.306	0.458	0.153
PJKRK	0.916	9.817	18.498	10.687	0.763	0.611	0.763	0.458
RB1	3.667	10.727	18.806	11.603	3.513	3.362	3.511	3.206
RB2	12.065	13.454	21.878	17.581	11.932	11.623	11.914	11.907
RB3	0.763	9.971	18.652	10.840	0.611	0.458	0.611	0.305
Tak	1.072	9.701	18.409	10.430	0.920	0.767	0.919	0.614
CHYP	0.917	10.125	18.961	10.382	0.763	0.612	0.763	0.763
NKRSM	2.139	10.427	19.736	11.603	1.985	1.833	1.985	2.137
CHPn	12.528	16.242	24.958	18.168	12.386	12.226	12.366	12.672
SRTN	0.611	9.819	18.805	10.382	0.458	0.306	0.458	0.458
P. /obata	8.251	17.145	25.243	17.110	8.219	8.208	8.077	8.387

Table 4.11. (continued)

Cul ti var	SR2	SKHT1	UTTN	KC1	KC2	KC3	PCHBR	PJ KRK
SR2	-	-	-	-	-	-	-	-
SKHT1	1.989	-	-	-	-	-	-	-
SKHT2	1.836	0.458	-	-	-	-	-	-
UTTN	1.835	0.458	0.000	-	-	-	-	-
KC1	1.836	0.153	0.305	0.305	-	-	-	-
KC2	4.584	3.511	3.359	3.359	3.359	-	-	-
KC3	3.669	1.985	2.443	2.445	2.137	5.191	-	-
PCHBR	1.836	0.153	0.305	0.305	0.000	3.359	2.137	-
PJ KRK	2.142	0.458	0.611	0.611	0.305	3.511	2.443	0.305
RB1	4.587	2.901	3.359	3.362	3.053	4.885	4.885	3.053
RB2	11.749	11.907	11.759	11.753	11.755	12.511	12.670	11.755
RB3	1.989	0.305	0.458	0.458	0.153	3.511	2.290	0.153
Tak	2.303	0.614	0.767	0.767	0.461	3.223	2.301	0.461
CHYP	2.142	0.763	0.611	0.612	0.611	3.664	2.748	0.611
NKRSM	3.517	2.137	1.832	1.834	1.985	4.580	3.664	1.985
CHPn	12.528	12.672	12.214	12.223	12.519	9.771	13.588	12.519
SRTN	1.836	0.458	0.305	0.305	0.305	3.359	2.443	0.305
P. Iobata	9.651	8.387	8.230	8.242	8.231	11.496	10.411	8.231

Cul ti var	PJ KRK	RB1	RB2	RB3	Tak	CHYP	NKRSM	CHPn
PJ KRK	-	-	-	-	-	-	-	-
RB1	3.359	-	-	-	-	-	-	-
RB2	11.755	12.972	-	-	-	-	-	-
RB3	0.153	3.206	11.907	-	-	-	-	-
Tak	0.154	3.374	11.654	0.307	-	-	-	-
CHYP	0.916	3.664	12.060	0.763	1.074	-	-	-
NKRSM	1.985	4.885	12.361	2.137	2.147	1.985	-	-
CHPn	12.672	13.435	19.983	12.672	12.409	12.824	13.740	-
SRTN	0.611	3.359	11.755	0.458	0.768	0.305	1.985	12.519
P. Iobata	8.544	10.895	18.384	8.387	8.724	8.836	10.079	19.592

Cul ti var	SRTN	P. l obat a
SRTN	-	-
P. lobata	8.531	-

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Table 4.12. The pairwise sequence divergence (\%) of trnL sequences from 39 cultivars of P. mirifica in Thailand and P. lobata as an outgroup.

Cul ti var	CML	CMR	CMB	CMA	CR	LPang	MHS	LPoon
CML	-	-	-	-	-	-	-	-
CMR	2.551	-	-	-	-	-	-	-
CMB	0.000	2.551	-	-	-	-	-	-
CMA	0.000	2.551	0.000	-	-	-	-	-
CR	0.000	2.551	0.000	0.000	-	-	-	-
LPang	0.000	2.551	0.000	0.000	0.000	-	-	-
MHS	0.51	2.041	0.51	0.51	0.51	0.51	-	-
LPoon	0.000	2.551	0.000	0.000	0.000	0.000	0.510	-
Nan	1.026	2.044	1.026	1.026	1.026	1.026	0.517	1.026
PY	0.000	2.556	0.000	0.000	0.000	0.000	0.509	0.000
P1	0.000	2.551	0.000	0.000	0.000	0.000	0.510	0.000
P2	0.000	2.551	0.000	0.000	0.000	0.000	0.510	0.000
P3	1.272	3.817	1.272	1.272	1.272	1.272	1.781	1.272
UTRD	0.000	2.551	0.000	0.000	0.000	0.000	0.510	0.000
KPP	0.000	2.551	0.000	0.000	0.000	0.000	0.510	0.000
LBR	0.000	2.551	0.000	0.000	0.000	0.000	0.510	0.000
NKSW	0.000	2.551	0.000	0.000	0.000	0.000	0.510	0.000
PBoon	0.000	2.551	0.000	0.000	0.000	0.000	0.510	0.000
PSNL	1.786	4.337	1.786	1.786	1.786	1.786	2.296	1.786
SR1	1.794	3.832	1.794	1.794	1.794	1.794	1.791	1.794
SR2	0.000	2.551	0.000	0.000	0.000	0.000	0.510	0.000
SKHT1	0.000	2.551	0.000	0.000	0.000	0.000	0.510	0.000
SKHT2	0.000	2.551	0.000	0.000	0.000	0.000	0.510	0.000
UTTN	0.000	2.551	0.000	0.000	0.000	0.000	0.510	0.000
KC1	0.255	2.806	0.255	0.255	0.255	0.255	0.765	0.255
KC2	6.388	6.126	6.388	6.388	6.388	6.388	6.129	6.388

Cul ti var	Nan	PY	P1	P2	P3	UTRD	KPP	LBR
Nan	-	-	-	-	-	-	-	-
PY	1.027	-	-	-	-	-	-	-
P1	1.026	0.000	-	-	-	-	-	-
P2	1.026	0.000	0.000	-	-	-	-	-
P3	2.292	1.269	1.272	1.272	-	-	-	-
UTRD	1.026	0.000	0.000	0.000	1.272	-	-	-
KPP	1.026	0.000	0.000	0.000	1.272	0.000	-	-
LBR	1.026	0.000	0.000	0.000	1.272	0.000	0.000	-
NKSW	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
PBoon	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
PSNL	2.811	1.781	1.786	1.786	3.053	1.786	1.786	1.786
SR1	2.303	1.793	1.794	1.794	3.064	1.794	1.794	1.794
SR2	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
SKHT1	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
SKHT2	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
UTTN	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
KC1	1.280	0.254	0.255	0.255	1.527	0.255	0.255	0.255
KC2	6.651	6.398	6.388	6.388	7.660	6.388	6.388	6.388
KC3	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
PCHBR	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
PJ KRK	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
RB1	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
RB2	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
RB3	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
RB4	1.535	1.018	1.020	1.020	2.292	1.020	1.020	1.020
Tak	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
CHYP	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
NKRSM	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
SKNK	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
CHPn	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
SRTN	1.026	0.000	0.000	0.000	1.272	0.000	0.000	0.000
P. /obata a	1.549	0.520	0.517	0.517	1.798	0.517	0.517	0.517

Table 4.12. (continued)

Cul ti var	NKSW	PBoon	PSNL	SR1	SR2	SKHT1	SKHT2	UTTN
NKSW	-	-	-	-	-	-	-	-
PBoon	0.000	-	-	-	-	-	-	-
PSNL	1.786	1.786	-	-	-	-	-	-
SR1	1.794	1.794	3.580	-	-	-	-	-
SR2	0.000	0.000	1.786	1.794	-	-	-	-
SKHT1	0.000	0.000	1.786	1.794	0.000	-	-	-
SKHT2	0.000	0.000	1.786	1.794	0.000	0.000	-	-
UTTN	0.000	0.000	1.786	1.794	0.000	0.000	0.000	-
KC1	0.255	0.255	2.041	2.049	0.255	0.255	0.255	0.255
KC2	6.388	6.388	7.919	6.398	6.388	6.388	6.388	6.388
KC3	0.000	0.000	1.786	1.794	0.000	0.000	0.000	0.000
PCHBR	0.000	0.000	1.786	1.794	0.000	0.000	0.000	0.000
PJ KRK	0.000	0.000	1.786	1.794	0.000	0.000	0.000	0.000
RB1	0.000	0.000	1.786	1.794	0.000	0.000	0.000	0.000
RB2	0.000	0.000	1.786	1.794	0.000	0.000	0.000	0.000
RB3	0.000	0.000	1.786	1.794	0.000	0.000	0.000	0.000
RB4	1.020	1.020	2.806	2.558	1.020	1.020	1.020	1.020
Tak	0.000	0.000	1.786	1.794	0.000	0.000	0.000	0.000
CHYP	0.000	0.000	1.786	1.794	0.000	0.000	0.000	0.000
NKRSM	0.000	0.000	1.786	1.794	0.000	0.000	0.000	0.000
SKNK	0.000	0.000	1.786	1.794	0.000	0.000	0.000	0.000
CHPn	0.000	0.000	1.786	1.794	0.000	0.000	0.000	0.000
SRTN	0.000	0.000	1.786	1.794	0.000	0.000	0.000	0.000
P. / obata	0.517	0.517	2.321	2.314	0.517	0.517	0.517	0.517

Cul ti var	KC1	KC2	KC3	PCHBR	PJ KRK	RB1	RB2	RB3
KC1	-	-	-	-	-	-	-	-
KC2	6.643	-	-	-	-	-	-	-
KC3	0.255	6.388	-	-	-	-	-	-
PCHBR	0.255	6.388	0.000	-	-	-	-	-
PJ KRK	0.255	6.388	0.000	0.000	-	-	-	-
RB1	0.255	6.388	0.000	0.000	0.000	-	-	-
RB2	0.255	6.388	0.000	0.000	0.000	0.000	-	-
RB3	0.255	6.388	0.000	0.000	0.000	0.000	0.000	-
RB4	1.276	6.896	1.020	1.020	1.020	1.020	1.020	1.020
Tak	0.255	6.388	0.000	0.000	0.000	0.000	0.000	0.000
CHYP	0.255	6.388	0.000	0.000	0.000	0.000	0.000	0.000
NKRSM	0.255	6.388	0.000	0.000	0.000	0.000	0.000	0.000
SKNK	0.255	6.388	0.000	0.000	0.000	0.000	0.000	0.000
CHPn	0.255	6.388	0.000	0.000	0.000	0.000	0.000	0.000
SRTN	0.255	6.388	0.000	0.000	0.000	0.000	0.000	0.000
P. / obata	0.773	6.980	0.517	0.517	0.517	0.517	0.517	0.517

Cul ti var	RB4	Tak	CHYP	NKRSM	SKNK	CHPn	SRTN	Lobat a
RB4	-	-	-	-	-	-	-	-
Tak	1.020	-	-	-	-	-	-	-
CHYP	1.020	0.000	-	-	-	-	-	-
NKRSM	1.020	0.000	0.000	-	-	-	-	-
SKNK	1.020	0.000	0.000	0.000	$0-$	-	-	-
CHPn	1.020	0.000	0.000	0.000	0.000	-	-	-
SRTN	1.020	0.000	0.000	0.000	0.000	0.000	-	-
P. / obata	1.542	0.517	0.517	0.517	0.517	0.517	0.517	-

Table 4.13. The pairwise sequence divergence (\%) of trnL-F sequences from 31
cultivars of P. mirifica in Thailand and P. lobata as an outgroup.

Cul ti var	CMI	CMB	CM4	CR	LPang	LPoon	P1	P2
CMI	-	-	-	-	-	-	-	-
CMB	1. 144	-	-	-	-	-	-	-
CMH	0. 279	1. 302	-	-	-	-	-	-
CR	0.706	1. 303	0.422	-	-	-	-	-
LPang	0. 282	1. 157	0.283	0.428	-	-	-	-
LPoon	0.834	0. 998	0.838	0.984	0.562	-	-	-
P1	0. 560	0. 856	0.566	0.708	0.285	0.558	-	-
P2	0. 139	1. 148	0. 139	0.566	0.141	0.694	0. 422	-
P3	2. 388	3. 121	2. 519	2. 535	2. 547	3. 077	2. 665	2. 382
KPP	0. 141	1. 026	0.141	0.571	0.142	0. 566	0. 288	0.000
LBR	0.840	1. 720	0.987	1. 275	0.993	1. 255	1. 267	0.841
PBoon	0. 139	1. 148	0.139	0.566	0. 141	0. 694	0.422	0.000
SR1	2. 255	3. 004	1.826	2. 379	2. 291	2. 673	2. 405	2. 112
SR2	0. 139	1. 145	0.279	0.706	0.281	0.833	0.420	0.139
SKHT1	0.418	1. 007	0.419	0.847	0.424	0.695	0. 281	0. 278
SKHT2	0. 559	1. 141	0.844	1. 271	0.852	1. 116	0. 560	0.700
UTTN	0.976	1. 856	0.280	0. 838	1. 133	1. 670	1. 261	0. 974
KC1	0. 559	1. 295	0.418	0.838	0.707	0. 979	0. 562	0. 560
KC2	3. 769	4. 712	3.648	4. 085	3. 823	4. 321	4. 064	3. 624
KC3	0.140	0.999	0.421	0.706	0. 283	0.834	0.561	0.141
PCHBR	0.977	1.431	0.842	1. 126	0.991	1. 252	0.980	0.835
PJ KRK	0.557	1. 004	0.423	0.705	0.562	0.834	0. 560	0.418
RB1	0.556	1. 004	0.561	0.848	0.562	0.834	0. 560	0.418
RB2	0.838	1. 143	0.701	0. 989	0.709	1. 114	0.420	0.698
RB3	0. 139	1. 148	0.139	0.566	0.141	0. 694	0.422	0.000
Tak	0.559	1. 302	0.139	-0.700	0.568	0. 838	0.566	0.419
CHYP	0.418	1. 151	0.419	0.706	0.422	0. 696	0.422	0.278
NKRSM	0. 139	1. 287	0.417	2.844	0.422	0.972	0.699	0.277
SKNK	1. 123	1. 597	0.697	1. 257	1. 141	1. 261	0.990	0.981
CHPn	1. 844	2. 004	1. 994	1. 989	1. 723	1. 701	1. 702	1. 851
SRTN	0.696	1. 007	0.701	1. 126	0.704	0.973	0.559	0.557
P. Iobata	1. 124	1. 598	1. 131	1.421	1. 135	1. 412	1. 273	0.982

Cul ti var	P3	KPP	LBR	PBoon	SR1	SR2	SKHT1	SKHT2
P3	-	-	-	-	-	-	-	-
KPP	2.406	-	-	-	-	-	-	-
LBR	3.226	0.852	-	-	-	-	-	-
PBoon	2.384	0.000	0.841	-	-	-	-	-
SR1	4.075	2.151	2.814	2.115	-	-	-	-
SR2	2.242	0.140	0.979	0.139	2.255	-	-	-
SKHT1	2.661	0.142	1.119	0.278	2.398	0.417	-	-
SKHT2	2.944	0.571	1.400	0.700	2.538	0.698	0.560	-
UTTN	2.798	0.993	1.673	0.976	1.812	0.836	1.256	1.256
KC1	2.659	0.426	1.406	0.560	2.382	0.419	0.559	0.840
KC2	5.897	3.682	3.925	3.626	4.509	3.765	3.908	4.341
KC3	2.381	0.142	0.977	0.141	2.111	0.280	0.419	0.699
PCHBR	3.078	0.850	0.701	0.836	2.390	0.975	0.697	1.260
PJ KRK	2.661	0.284	0.978	0.418	2.248	0.557	0.418	0.839
RB1	2.525	0.284	1.259	0.418	2.394	0.417	0.418	0.838
RB2	3.083	0.569	1.543	0.698	2.686	0.837	0.558	0.839
RB3	2.384	0.000	0.841	0.000	2.115	0.139	0.278	0.700
Tak	2.655	0.285	1.265	0.419	1.962	0.559	0.419	0.843
CHYP	2.664	0.142	0.838	0.278	2.395	0.417	0.278	0.701
NKRSM	2.677	0.281	0.980	0.278	2.403	0.417	0.556	0.698
SKNK	2.943	0.857	1.126	0.982	1.956	1.122	0.983	1.410
CHPn	3.943	1.739	2.114	1.851	3.534	1.846	1.850	1.978
SRTN	2.795	0.426	1.119	0.557	2.395	0.696	0.557	0.979
P. / obata	3.394	0.992	1.557	0.982	3.126	1.122	1.123	1.553

Table 4.13. (continued)

Cul ti var	UTTN	KC1	KC2	KC3	PCHBR	PJ KRK	RB1	RB2
UTTN	-	-	-	-	-	-	-	-
KC1	0.557	-	-	-	-	-	-	-
KC2	4.329	4.068	-	-	-	-	-	-
KC3	1.114	0.842	3.776	-	-	-	-	-
PCHBR	1.395	1.262	4.048	0.697	-	-	-	-
PJ KRK	0.976	0.560	3.767	0.278	0.697	-	-	-
RB1	1.116	0.559	4.047	0.278	0.976	0.279	-	-
RB2	1.677	0.700	4.338	0.840	1.258	0.696	0.838	-
RB3	0.976	0.560	3.626	0.141	0.836	0.418	0.418	0.698
Tak	0.419	0.418	3.925	0.701	1.121	0.421	0.561	0.701
CHYP	1.254	0.560	3.906	0.419	1.116	0.419	0.419	0.698
NKRSM	1.255	0.839	3.914	0.282	1.114	0.696	0.696	0.975
SKNK	0.975	0.978	4.075	0.985	0.841	0.843	0.985	1.268
CHPn	2.390	1.985	5.378	1.975	2.409	1.986	1.986	2.128
SRTN	1.533	0.839	4.046	0.557	1.253	0.695	0.697	0.836
P. I obata	1.970	1.417	4.656	1.128	1.829	1.268	1.268	1.411

Cul ti var	RB3	Tak	CHYP	NKRSM	SKNK	CHPn	SRTN	Lobat a
RB3	-	-	-	-	-	-	-	-
Tak	0.419	-	-	-	-	-	-	-
CHYP	0.278	0.419	-	-	-	-	-	-
NKRSM	0.278	0.697	0.556	-	-	-	-	-
SKNK	0.982	0.558	0.982	1.260	-	-	-	-
CHPn	1.851	1.993	1.850	1.989	2.278	-	-	-
SRTN	0.557	0.701	0.557	0.834	0.984	1.422	-	-
P. / obata	0.982	1.273	1.125	0.985	1.847	2.447	1.126	-

4.2.4 Random Amplified Polymorphic DNA (RAPD) patterns

Five RAPD primers i.e. OPA-07, OPA-12, OPD-02, OPD-16 and OPE-01, were randomly chosen for this study. RAPD patterns showed that there were polymorphic in collected cultivars. DNA of 6 cultivars could not be amplified DNA by any primer. They are CM2 (Chiang Dao, Chiang Mai), Nan, P3 (Wang Chin, Phrae), LBR (Lopburi), NKSW (Nakhon Sawan), and PSNL (Phitsanulok). Each of 5 RAPD primers was used to amplify all cultivars. Patterns of amplification were displayed by agarose gel electrophoresis. Size of amplified bands was estimated by comparing to 100 bp ladder Marker (Figure 4.28-4.32). The pattern of each primer performance was rather clearly different. This indicates the polymorphic in samples. Most of results indicated that DNA of P. lobata and some cultivars of P. mirifica was hardly been amplified by the selected RAPD primers. The size range of amplified bands by each primer was between 250 bp and 1.5 kb . In each cultivar, a result was recorded and analyzed whether a band was present or absent. If a band was present, it was recorded as 1 . If it was absent, it was noted as 0 . The binary information was used for further analysis. Summary of RAPD results from all 5 RAPD primers on $39 P$. mirifica cultivars and P. lobata (outgroup) were shown (Table 4.14).

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

Figure 4.28. RAPD patterns amplified by OPA-07 primer on 2.0% agarose gel. Lane M represents 100 bp ladder as DNA marker. Lanes 1-39 contain RAPD products of 39 cultivars of P. mirifica in Thailand and lane 40 represents RAPD product of P. lobata as an outgroup.

Figure 4.29. RAPD patterns amplified by OPA-12 primer on 2.0% agarose gel. Lane M represents 100 bp ladder as DNA marker. Lanes 1-39 contain RAPD products of 39 cultivars of P. mirifica in Thailand and lane 40 represents RAPD product of P. lobata as an outgroup.

Figure 4.30. RAPD patterns amplified by OPD-02 primer on 2.0% agarose gel. Lane M represents 100 bp ladder as DNA marker. Lanes 1-39 contain RAPD products of 39 cultivars of P. mirifica in Thailand and lane 40 represents RAPD product of P. lobata as an outgroup.

Figure 4.31. RAPD patterns amplified by OPD-16 primer on 2.0% agarose gel. Lane M represents 100 bp ladder as DNA marker. Lanes 1-39 contain RAPD products of 39 cultivars of P. mirifica in Thailand and lane 40 represents RAPD product of P. lobata as an outgroup.

Figure 4.32. RAPD patterns amplified by OPE-01 primer on 2.0\% agarose gel. Lane M represents 100 bp ladder as DNA marker. Lanes 1-39 contain RAPD products of 39 cultivars of P. mirifica in Thailand and lane 40 represents RAPD product of P. lobata as an outgroup.

Table 4.14. Summary of RAPD results of P. mirifica in Thailand and P. lobata as outgroup by all 5 RAPD primers. The V symbol represents to a sample that was generated band by agarose gel electrophoresis and was used for RAPD analysis.

\qquad	OPA-07	OPA-12	OPD-02	OPD-16	OPE-01
CM1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CM2					
CM3		\checkmark	$\sqrt{ }$	\checkmark	\checkmark
CM4		\checkmark	\checkmark		
CR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LPang	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
MHS	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark
LPoon	\square	$\sqrt{ }$	1	\checkmark	\checkmark
Nan	-	-	-		
PY	-	\checkmark	\checkmark	\checkmark	\checkmark
P1		\checkmark	\checkmark	\checkmark	\checkmark
P2	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
P3			\square		
UTRD		\checkmark	\checkmark	\checkmark	\checkmark
KPP		$\sqrt{ }$	\checkmark	\checkmark	\checkmark
LBR		\square	\square		
NKSW		5	-		
PBoon	$\sqrt{ }$	1	\checkmark	\checkmark	\checkmark
PSNL		(xic)			
SR1	$\sqrt{ }$	+ 才	\checkmark	\checkmark	\checkmark
SR2			\checkmark	\checkmark	\checkmark
SKHT1			\checkmark		
SKHT2			\checkmark		
UTTN		\checkmark	\checkmark		
KC1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
KC2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
KC3	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark
PCHBR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PJKRK	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RB1	$\sqrt{ }$ ¢	-	\checkmark	\checkmark	\checkmark
RB2	$\bigcirc \sqrt{0.19}$	$1 \sim d n o$	$1)^{\text {d }}$	$\sim \sqrt{ }$	\checkmark
RB3 b	b V ${ }^{\text {a }}$	- d $\sqrt{\text { l }}$	\square	d $\sqrt{ }$	\checkmark
RB4	\checkmark	\checkmark	\checkmark	$\sqrt{0}$	\checkmark
Tak	$\bigcirc \sqrt{ }$	$\checkmark^{\sqrt{2}}$	\checkmark	\downarrow	\checkmark
CHYP	0 V	\checkmark	\downarrow	\checkmark	\checkmark
NKRSM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SKNK	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CHPn	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SRTN	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
P. lobata			\checkmark		
Total	24	30	34	29	29

Total of 93 RAPD fragments or bands by all 5 primers (OPA-07, OPA-12, OPD-02, OPD-16 and OPE-01) were consistently generated. Both monomorphic and polymorphic fragments were displayed in Table 4.15. The OPA-07 primer presented RAPD bands ranging from 250 bp to 1.5 kb . It provided total of 21 consistent and reproducible bands. Also those bands are polymorphic. The OPA-12 primer generated bands ranging from 250 bp to 1.5 kb . Also, it presented total of 20 reproducible bands that composed of 20 polymorphic bands. The OPD-02 primer produced 17 RAPD bands ranging from 250 bp to 1.3 kb and also provided 17 polymorphic bands. The OPD-16 primer generated 20 bands ranging from 250 bp to 1.5 kb and presented 20 polymorphic bands. The OPE-01 primer displayed 15 bands ranging from 250 to 1.3 kb and also provided 15 polymorphic bands. Considering amplified products from all 5 primers, all obtained bands were polymorphic. It indicated that the selected primers were useful in determining the genetic variation and the relationships among cultivars.

Table 4.15. Total numbers of RAPD bands or fragments by 5 RAPD primers. Monomorphic and polymorphic bands of 39 cultivars of P. mirifica in Thailand and P. lobata as an outgroup.

RAPD primer	Number of total band	Number of monomorphic band	Number of polymorphic band	
OPA-07	(1) 21	0 (0\%)	21 (100\%)	
OPA-12	$5 \longdiv { 2 0 }$	0 (0\%)	20 (100\%)	
OPD-02	17	0 (0\%)	17 (100\%)	
OPD-16	20	0 (0\%)	20 (100\%)	
OPE-01	ค $9^{15} 9$ ค	e\\| ${ }^{0}(0 \%) \bigcirc$ S	15 (100\%)	
Total 6	0-93100	$\square 0$ (0\%)	93 (100\%)	

จุฬาลงกรณมหาวทยาลย

4.2.5 RAPD analysis

All RAPD products of 39 cultivars of P. mirifica in Thailand and 1 cultivar of P. lobata as an outgroup were analyzed. Genetic distances (pairwise distances based on Nei-Li distance in PAUP program) which were further used in NJ phylogenetic construction were listed in Table 4.16. The distances were varied from 0 to 0.4381 (Mean $=0.1861$). They reveal that the 5 primers used in this study could provide moderate information in the genetic variation of P. mirifica.

Table 4.16. The average genetic distances (pairwise distances between taxa) of 39 cultivars of P. mirifica in Thailand and P. lobata as an outgroup. The data was revealed by RAPD and then calculated by PAUP.

Cultivar	CMI	CMR	CMB	CMA	CR	LPang	MHS	LPoon	Nan
CMI	-			-	-	-	-	-	-
CMR	0			-		-	-	-	-
CMB	0.2143	0	-	-	-	-	-	-	-
CMA	0.1429	0	0.0952	-		-	-	-	-
CR	0.2571	0	0.2619	0.2619	-	-	-	-	-
LPang	0.1905	0	0.2024	0.1429	0.2	-	-	-	-
MHS	0.1714	0	0.2619	0.2619	0.2381	0.2095	-	-	-
LPoon	0.1786	0	0.2024	0.2381	0.25	0.1905	0.1786	-	-
Nan	0	0	0	0	0	0	0	0	-
PY	0.2024	0	0.131	0.1667	0.2262	0.1429	0.1786	0.1429	0
P1	0.2286	0	0.1548	0.1905	0.2191	0.2476	0.2286	0.1905	0
P2	0.2286	0	0.1429	0.2143	0.2	0.1714	0.2286	0.131	0
P3	0	0	0	0	0	0	0	0	0
UTRD	0.2738	0	0.2976	0.4048	0.2976	0.381	0.3214	0.2857	0
KPP	0.2762	0	0.2738	0. 3095	0.3238	0.2952	0.3524	0.2857	0
LBR	0	0	0	0	0	0	0	0	0
NKSW	0	0	0	0	0	0	0	0	0
PBoon	0.2	0	0.2143	0.2381	0. 3048	0.2571	0.2381	0.1786	0
PSNL	0	0	0	0	0	0	0	0	0
SR1	0.2476	0	0.2024	0.2857	0.2571	0.2667	0.1905	0.1905	0
SR2	0.2381	0	0.0635	0	0.3175	0.2698	0.254	0.1746	0
SKHT1	0.0476	0	0	0	0.2381	0.0952	0.2381	0.0952	0
SKHT2	0.0476	0	0	0	0.2381	0.0952	0.2381	0.0952	0
UTTN	0.1191	0	0.0714	0.1191	0.2381	0.2143	0.2857	0.2143	0
KC1	0.2667	0	0.25	0.2619	0.3143	0.2667	0.3048	0.3333	0
KC2	0.3143	0	0.2857	0.3095	0.3429	0.2381	0.2952	0.2976	0
KC3	0.3429	0	0.2738	0.2619	0.2952	0.2857	0.3238	0.3095	0
PCHBR	0.3143	0	0.2857	0.381	0.2857	0.3143	0.3333	0.3452	0
PJ KRK	0.3429	0	0.2738	0.3333	0.2952	0.2857	0.3048	0.2619	0
RB1	0.3619	0	0.2976	0.3095	0.3333	0.3619	0.3238	0.2619	0
RB2	0.3905	0	0.3214	0.4286	0.3238	0.3524	0.3143	0.3333	0
RB3	0.3238	0	0.2381	0.4048	0.2191	0.2667	0.2857	0.25	0
RB4	0.4	0	0.2619	0.381	0.3143	0.3048	0.3238	0.3214	0
Tak	0.3048	0	0.25	0.3333	0.2762	0.2667	0.2476	0.2143	0
CHYP	0.3048	0	0.2857	0.4286	0.2571	0.2857	0.3238	0.25	0
NKRSM	0.2762	0	0.2857	0.4286	0.2286	0.2381	0.3143	0.2262	0
SKNK	0.3905	0	0.3214	0.4048	0.3238	0.2952	0.3333	0.2381	0
CHPn	0.3143	0	0.2857	0.2619	0.2857	0.2762	0.3714	0.2976	0
SRTN	0.4	0	0.2619	0.4048	0.3333	0.3048	0.3429	0.25	0
P. Iobata	0.0476	0	0	0	0.2381	0.0952	0.2381	0.0952	0

Table 4.16. (continued)

Cul tivar	PY	P1	P2	P3	UTRD	KPP	LBR	NKSW	PBoon
CMI	-	-	-	-	-	-	-	-	-
CMR	-	-	-	-	-	-	-	-	-
CMB	-	-	-	-	-	-	-	-	-
CMA	-	-	-	-	-	-	-	-	-
CR	-	-	-	-	-	-	-	-	-
LPang	-	-	-	-	-	-	-	-	-
MHS	-	-	-	-	-	-	-	-	-
LPoon	-	-	-	-	-	-	-	-	-
Nan	-	-	-	-	-	-	-	-	-
PY	-	-	-	-	-	-	-	-	-
P1	0.1667	-	-	-	-	-	-	-	-
P2	0.0833	0.2095	-	-	-	-	-	-	-
P3	0	0	0		-	-	-	-	-
UTRD	0.2619	0.2857	0.2976	0	-	-	-	-	-
KPP	0.3095	0.2762	0.3333	0	0.2143	-	-	-	-
LBR	0	0	0	0	0	0	-	-	-
NKSW	0	0	0	0	0	0	0	-	-
PBoon	0.2262	0.2	0.2762	0	0. 2738	0.2286	0	0	-
PSNL	0	0	0	0	0	0	0	0	0
SR1	0.2143	0.1905	0.2286	0	0.2381	0.2381	0	0	0. 1619
SR2	0.1905	0.1587	0.2064	0	0.2222	0.2857	0	0	0.1905
SKHT1	0.0952	0.1429	0.1905	0	0.1905	0.1905	0	0	0.0952
SKHT2	0.0952	0.1429	0.1905	0	0.1905	0.1905	0	0	0.0952
UTTN	0.1905	0.2143	0.2381	0	0.3333	0.2381	0	0	0.2143
KC1	0.2619	0.3048	0.2667	0	0.3571	0.3524	0	0	0.2952
KC2	0.25	0.2952	0.2952	0	0.3214	0.3429	0	0	0.2857
KC3	0.2381	0.2476	0.2857	0	0.2857	0.2762	0	0	0.2952
PCHBR	0.3452	0.2571	0.3524	0	0.3214	0.2476	0	0	0.2857
PJ KRK	0.2619	0.3238	0.3048	0	0.3333	0.2952	0	0	0.3333
RB1	0.3095	0.3238	0.3429	0	0.3095	0.2952	0	0	0.2762
RB2	0.3333	0.2762	0.3333	0	0.3095	0.2476	0	0	0.2667
RB3	0.2262	0.2667	0.2476	0	0.2738	0.2762	0	0	0.2381
RB4	0.2976	0.3048	0.3048	0	0.3452	0.3524	0	0	0.2571
Tak	0.1905	0.2286	0.2857	0	0.2619	0.2571	0	0	0.2571
CHYP	0.2738	0.2667	0.2667	0	0.25	0.2571	0	0	0.2571
NKRSM	0.25	0.2571	0.2191	0	0.2976	0.2667	0	0	0.2476
SKNK	0.2857	0.2952	0.3143	0	0.3095	0.3048	0	0	0.3238
CHPn	0.2738	0.2571	0.2571	0	0.3214	0.3238	0	0	0.3048
SRTN	0.2262	0.2667	0.2857	0	0.2976	0.3143	0	0	0.3143
P. Iobata	0.0952	0.1429	0.1905	0	0.1905	0.1905	0	0	0.0952

Table 4.16. (continued)

Cul ti var	PSNL	SR1	SR2	SKHT1	SKHT2	UTTN	KC1	KC2	KC3
CMI	-	-	-	-	-	-	-	-	-
CMR	-	-	-	-	-	-	-	-	-
CMB	-	-	-	-	-	-	-	-	-
CM	-	-	-	-	-	-	-	-	-
CR	-	-	-	-	-	-	-	-	-
LPang	-	-	-	-	-	-	-	-	-
MHS	-	-	-	-	-	-	-	-	-
LPoon	-	-	-	-	-	-	-	-	-
Nan	-	-	-	-	-	-	-	-	-
PY	-	-	-			-	-	-	-
P1	-	-	-			-	-	-	-
P2	-	-	-	-	-	-	-	-	-
P3	-	-	-	-	-	-	-	-	-
UTRD	-	-			-	-	-	-	-
KPP	-	-	-	-	-	-	-	-	-
LBR	-	-	-	-	-	-	-	-	-
NKSW	-		-	-	-	-	-	-	-
PBoon	-	-		-	-	-	-	-	-
PSNL	-		-	$-$	-	-	-	-	-
SR1	0	-		(1-)	-		-	-	-
SR2	0	0.1905				-	-	-	-
SKHT1	0	0.2381	0	$\bar{k}(5)$	-	-	-	-	-
SKHT2	0	0.2381	0	0		-	-	-	-
UTN	0	0.2619	0 -	0	0	-	-	-	-
KC1	0	0.3048	0.3175	0.2857	0.2857	0.3333	-	-	-
KC2	0	0.2952	0.3175	0.3333	0.3333	0. 381	0.2571	-	-
KC3	0	0.2857	0.3333	0.3333	0.3333	0.3333	0.2667	0.1619	-
PCHBR	0	0.2571	0.3175	0.381	0.381	0.3095	0.3333	0.3238	0.2571
PJ KRK	0	0.3429	0.2857	0.2381	0.2381	0.3095	0.2857	0.2952	0.2667
RB1	0	0.2857	0. 254	0.1905	0.1905	0.1905	0.4381	0.3905	0.3429
RB2	0	0.2381	0.3333	0.381	0. 381	0.3095	0.3714	0.3048	0.2762
RB3	0	0.2286	0.254	0.3333	0.3333	0.2857	0.3619	0.2191	0.2286
RB4	0	0.2667	0.254	0.2857	0.2857	0.3571	0.3429	0.3333	0.3619
Tak	0	0.2286	0.2222	0.1429	0.1429	0.2619	0.3429	0.3143	0.2857
CHYP	0	0.2286	0.3016	0.3333	0.3333	0.3095	0.3429	0.2762	0.2857
NKRSM	0	0.2381	0.3175	0.381	0.381	0.3095	0.3143	0.2476	0.2762
SKNK	0	0.2381	0.2698	0.2381	0.2381	0.381	0.3524	0.3048	0.2952
CHPn	0	0.2762	0.3016	0.2857	0.2857	0.2857	0.3524	0.3048	0.2762
SRTN	0	0.2286	0.2698	0.2857	0.2857	0.381	0.3429	0.3143	0.3048
P. Iobata	0	0.2381	0	0	0	0	0.2857	0.3333	0.3333

Table 4.16. (continued)

Cul ti var	PCHBR	PJ KRK	RB1	RB2	RB3	RB4	Tak	CHYP	NKRSM
CMI	-	-	-	-	-	-	-	-	-
CM2	-	-	-	-	-	-	-	-	-
CMB	-	-	-	-	-	-	-	-	-
CMA	-	-	-	-	-	-	-	-	-
CR	-	-	-	-	-	-	-	-	-
LPang	-	-	-	-	-	-	-	-	-
MHS	-	-	-	-	-	-	-	-	-
LPoon	-	-	-	-	-	-	-	-	-
Nan	-	-	-	-	-	-	-	-	-
PY	-	-	-	-	-	-	-	-	-
P1	-	-	-	-	-	-	-	-	-
P2	-	-	-	-	-	-	-	-	-
P3	-	-	-	-	-	-	-	-	-
UTRD	-	-		-	-	-	-	-	-
KPP	-	-		-	-	-	-	-	-
LBR	-	-		-	-		-	-	-
NKSW	-			-	-	-	-	-	-
PBoon	-	-		-	-	-	-	-	-
PSNL	-		-		-	-	-	-	-
SR1	-	-		-	-		-	-	-
SR2	-	-	-		-	-	-	-	-
SKHT1	-	-	-		-	-	-	-	-
SKHT2	-	-			-	-	-	-	-
UTTN	-		-		-	-	-	-	-
KC1	-	-		-	-	-	-	-	-
KC2	-	-		-	-	-	-	-	-
KC3	-	-		-	-	-	-	-	-
PCHBR	-	-	-	-	-	-	-	-	-
PJ KRK	0.2762	-	-	-	-	-	-	-	-
RB1	0.2762	0.2667	-	-	-	-	-	-	-
RB2	0.2476	0.2762	0.2381	-	-	-	-	-	-
RB3	0.2571	0.2476	0.2667	0.181	-		-	-	-
RB4	0.2571	0.2857	0.2286	0.2571	0.2286	-	-	-	-
Tak	0.2381	0.2286	0.2476	0.2571	0.2095	0.2286	-	-	-
CHYP	0.2191	0.2667	0.2857	0.2	0.1714	0.2286	0.2095	-	-
NKRSM	0.2476	0.2191	0.2571	0.2095	0.1619	0.2381	0.2	0.0857	-
SKNK	0.2857	0.2762	0.3524	0.2476	0.2762	0.2571	0.2	0.2191	0.2286
CHPn	0.3238	0.3714	0.3143	0.3048	0.3524	0.3333	0.3333	0.2571	0.2095
SRTN	0.2762	0.2286	0.3429	0.2571	0.2476	0.2857	0.1905	0.2476	0.2381
P. Iobata	0.381	0.2381	0.1905	0.381	0.3333	0.2857	0.1429	0.3333	0.381

Table 4.16. (continued)

4.2.6 Phylogenetic analysis

The sequences of PCR products of nrDNA ITS, cpDNA $t r n \mathrm{~L}$ and $t r n \mathrm{~L}-\mathrm{F}$ of P. mirifica from many collected sites in Thailand and P. lobata from Japan were used for phylogenetic analysis. Genetic distances were calculated and created in PAUP. Phylogenetic trees were constructed by neighbor-joining method (NJ in PAUP). The Bootstrap supporting-values (in PAUP) are computated and displayed on nodes of the tree for confirming the strength of branch. Figure 4.33-4.36 presented 4 phylogenetic trees from 3 sequence regions and RAPD. P. lobata was used as an outgroup for all generated trees. According to all phylogenetic trees, their topologies were so different. Each group had many inconsistent branches (without Bootstrap values) and some strong branches (with Bootstrap values) that would be presented below and interpreted further.

Considering on an ITS tree, there are many minor groups of cultivars that were classified and had the bootstrap supports on their nodes. Subgroup 1, Lopburi and Nan cultivars were clustered by low bootstrap value (51). Subgroup 2, Mae Hong Son and Saraburi 1 (Phra Phutthabat district) cultivars were also paired (65). Subgroup 3, Chaiyaphum and Surat Thani cultivars were unfirmly paired (53). Cultivars of Lamphun and Phrae 3 (Wang Chin district) were firmly paired (93) and both cultivars were also grouped together with Phrae 2 (Song district) cultivar (52) in subgroup 4. At last, Kanchanaburi 2 (Sai Yok district) and Chumphon cultivars were grouped together (91) in subgroup 5 .

A trnL phylogeny was divided into many minor groups. There was only one subgroup that had the bootstrap support on the node. In subgroup 1, two cultivars of Kanchanaburi 2 (Sai Yok district) and Chiang Mai 2 (Chiang Dao district) were packed with low bootstrap value (57).

A trnL-F tree was further illustrated by some supported branches. There was only one subgroup that had the bootstrap support on the node. In the subgroup 1, Saraburi 1 (Phra Phutthabat district) and Kanchanaburi 2 (Sai Yok district) cultivars were aggregated together with the high value (90).

RAPD phylogram was separated into many inconsistent branches but there are some supported branches. First, Chiang Mai 1 (Chai Prakan district) and Mae Hong Son cultivars were contained in subgroup 1 with low bootstrap value (50). Second, Kanchanaburi 2 (Sai Yok district) and Kanchanaburi 3 (Sai Yok district) cultivars were grouped (80) in subgroup 2. Considering subgroup 3, Sakon Nakhon and Surat

Thani cultivars were formed a pair (75). In subgroup 4, Chaiyaphum and Nakhon Ratchasima cultivars were also firmly clustered (85).

Figure 4.33. A rooted NJ phylogenetic tree or phylogram of ITS region (33 cultivars of P. mirifica in Thailand and P. lobata as an outgroup) based on K2P genetic distance. The Bootstrap supporting-values are shown on the branches of the phylogenetic tree.

NJ

Figure 4.34. A rooted NJ phylogram of trnL region (39 cultivars of P. mirifica in Thailand and P. lobata as an outgroup) based on K2P genetic distance. The Bootstrap supporting-values are illustrated on the branches of tree.

Figure 4.35. A rooted NJ phylogenetic tree of $\operatorname{trnL}-\mathrm{F}$ region (31 cultivars of P. mirifica in Thailand and P. lobata as an outgroup) based on K2P genetic distance. The Bootstrap supporting-values are noted on the branches of tree.

Figure 4.36. A rooted neighbor-joining (NJ) phylogenetic tree based on Nei-Li genetic distances among 33 cultivars of P. mirifica in Thailand and 1 cultivar of P. lobata as an outgroup derived from RAPD patterns. The Bootstrap supporting-values are above the braches.

4.3 Chemical content analysis

Root or tuber of P. mirifica is a storage organ of metabolic compound. Chemical constituents vary due to genetic and external factors. Recently, Cherdshewasart et al. (2007) presented the isoflavonoid contents in extracted powders of P. mirifica tuberous roots from many locations in Thailand and of P. lobata as an outgroup as listed in Table 4.17.

From these statistically analyzed data, we used them in our study in order to calculate and classify P. mirifica cultivars based on the chemical contents by using the PCA method of Factor analysis (for data reduction). Later, Cluster analysis (for grouping or classification) was used in order to analyze and compare to the morphometric and genetic results.

สถาบันวิทยบริการ

Table 4.17. Means of isoflavonoid and total contents ($\mathrm{mg} / 100 \mathrm{~g}$) of P. mirifica tuberous powders collected from 29 locations in Thailand in comparison with P. lobata (Cherdshewasart et al., 2007).

No.	Abbrev.	Province	Puerarin	Daidzin	Genistin	Daidzein	Genistein	Total
1	CM1	Chiang Mai	16.13	8.01	13.92	3.42	0.79	42.26
2	CM2	Chiang Mai	10.96	12.37	20.99	4.33	1.34	49.98
3	CM3	Chiang Mai	28.36	28.7	58.38	4.05	1.1	120.6
4	CR	Chiang Rai	20.02	8.61	29.58	2.16	0.5	60.87
5	LPang	Lampang	20.85	15.28	29.03	6.27	2.54	73.97
6	MHS	Mae Hong Son	36.99	17.63	55.44	7.52	1.54	119.12
7	LPoon	Lamphun	33.18	28.35	84.13	8.59	0.76	155
8	Nan	Nan	5.32	2.36	7.62	3.31	0	18.61
9	PY	Phayao	12.91	8.46	32.43	3.03	0.73	57.56
10	P3	Phrae	25.2	10.55	30.61	5.45	1.34	73.16
11	UTRD	Uttaradit	30.25	13.69	10.27	7.88	0	62.96
12	KPP	Kamphaeng Phet	15.44	7.01	18.5	2.31	0.46	43.71
13	LBR	Lopburi	19.5	6.84	39.47	2.42	0.98	69.21
14	NKSW	Nakhon Sawan	13.34	16.28	27.71	4.7	0.72	62.75
15	PBoon	Phetchabun	9.4	10.48	15.54	8.11	1.29	44.83
16	PSNL	Phitsanulok	35.24	12.26	26.53	8.36	1.63	84.02
17	SR1	Saraburi	10.87	13.11	29.03	2.74	0.83	56.59
18	SR2	Saraburi	23.42	17.92	37.94	4.86	0.87	85.01
19	SKHT1	Sukhothai	14.12	25.09	51.43	11.16	0.73	102.52
20	UTTN	Uthai Thani	10.85	21.7	50.17	16.48	3.66	102.86
21	KC1	Kanchanaburi	8.33	4.01	13.69	4.01	0.62	30.67
22	PCHBR	Phetchaburi	13.19	20.82	37.56	6	1.13	78.71
23	PJKRK	Prachuap Khiri Khan	10.42	9.62	30.31	2.11	0.59	53.05
24	RB1	Ratchaburi	8.85	15.39	51.15	6.84	2.54	84.77
25	Tak	Tak	29.06	8.97	43.86	4.56	1.15	87.6
26	CHYP	Chaiyaphum	15.83	12.91	29.48	7.02	1.89	67.13
27	NKRSM	Nakhon Ratchasima	13.09	5.61	24.15	1.2	0.21	44.27
28	SKNK	Sakon Nakhon	87.05	11.48	14.83	4.78	1.42	119.57
29	CHPn	Chumphon	8.45	7.38	34.17	2.64	0.07	52.7
	P. lobata	13.13	32.69	5.39	1.08	72.55		
30	25.63	10.34	0.81	91.57				

จุฬาลงกรณ์มหาวิทยาลัย

4.3.1 Factor analysis of isoflavonoid contents

Factor analysis was conducted and showed the output. All 5 parameters contained Eigen values higher than 1.0. Those parameters were puerarin, daidzin, genistin, daidzein, and genistein. Factor analysis with the above 5 chemical parameters was performed. All were classified into 1 factor or group. The factor also contained parameters with Eigen values higher than 1.0 and counted for 51.6 \% of total variance. A scatter plot of a factor against a factor could not be created because there was only one factor.

4.3.2 Cluster analysis of isoflavonoid contents

Only 1 new factor or group was used to computerize by Cluster analysis. By considering isoflavonoid contents, it could generate a dendrogram in order to classify P. mirifica cultivars in Thailand (Figure 4.37). The dendrogram suggested that all cultivars were classified into 2 main groups: the minor group containing 6 cultivars of Chiang Mai 3, Mae Hong Son, Ratchaburi 1, Sukhothai 1, Lamphun, and Uthai Thani; and the major group containing other 23 cultivars.

สถาบันวิทยบริการ

Figure 4.37. A dendrogram of isoflavonoid contents created by Between-groups linkage method of Cluster analysis. P. mirifica is classified by collected locations or alumam ลถาบนวทยบรการ

4.3.3 The chemical characterization of P. mirifica in Thailand.

Isoflavonoid contents of P. mirifica cultivars in Thailand were conducted. For exploring the clinal patterns in the isoflavonoid-contented characterization of P. mirifica, the factor score (only factor 1) was plotted against latitude and longitude. The transitions of characters from the South to the North and the West to the East are indicated in the scatter plots (Figure 4.38-4.39).

Results of Correlation analysis of factor scores against latitude and longitude are summarized in Table 4.18. There was no statistically significant correlation ($\mathrm{P} \geq 0.05$) between factor 1 (puerarin, daidzin, genistin, daidzein, and genistein parameters) and latitude \& longitude. The result revealed that these chemicals were not significantly correlated to latitude and longitude.

Table 4.18. Correlation analysis of geographic trends in isoflavonoid contents of P. mirifica in Thailand derived by the PCA of Factor analysis.

Independent variable or predictor	Dependent variable	R value	P significance
Latitude	Factor 1	0.066	0.732
Longitude	Factor 1		0.353

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

Figure 4.38. Geographic trends in isoflavonoid contents (factor 1) of P. mirifica in Thailand: abscissa and latitude. Factor score 1 was derived by PCA. Value labels refer to sampling sites or cultivars.

Figure 4.39. Geographic trends in isoflavonoid contents of P. mirifica in Thailand: abscissa and longitude. Factor score 1 was derived by PCA. Value labels refer to sampling sites or cultivars.

CHAPTER V

DISCUSSIONS

Considering collection localities, Pueraria mirifica are more widely distributed in the North, the Center, and the West than in other parts of Thailand. It is possible that those 3 areas are mainly the deciduous or dry forests and mountainous areas. It should be preferably suitable habitats for this species. P. mirifica was rarely found in the East and the South. This may be related to the character of areas since those areas are mainly evergreen forests. Due to our work, 39 cultivars were collected within 27 provinces (Figure 3.1-3.3). Mature leaf, pod, and flowers were collected for morphometric analysis. It was easier to collect mature leaves when compared to collect pods and flowers. It is because leaves have been found throughout the year whereas the flowers and pods have been only found during February to April of the year (Panriansaen, 2000). Although it was harder to collect flowers, it always confirmed us that we got the correct samples since flowers of P. mirifica are very distinguishing from other plants. In case of being uncertain in collecting a sample, tuberous root would be obtained and cut to investigate the species. The amount of collected pods and flowers may not be sufficient in analysis. That brings to the possibility that they could not be good representatives. Furthermore, the surveys in this research usually took place in May to October, 2006. In the future, field surveys should be conducted more often and more localities should be visited. In addition, more parts of plants including tuberous roots should be collected. Due to Figure 2.5, the distribution of P.mirifica in our research was as same as that was reported in Subtaeng (2002). Although P. lobata (Kudzu) was used as an outgroup in order to additionally determine inter-specific differentiation, its flowers were not collected during the survey period because of not blooming season.

Morphometric parameters were selected in order to investigate size and shape of plant organs (Figure 3.4-3.6). The used parameters such as leaf length, leaf width, and pedicel length were partly similar to the research of Creed (1997) that studied about the morphological variation in sea grass and the research of Agustin (2006) that conducted the morphometric study of cherimoya (Annona cherimola Mill.). Due to scatter plots in Figure 4.1-4.3, Factor analyses of leaf, pod, and flower morphometries
revealed that there was no grouping structure among cultivars of P. mirifica in Thailand. Then, cluster analyses and dendrograms of 3 morphometries presented that P. mirifica could be clustered differently (Figure 4.4-4.6). Considering the leaf morphometric dendrogram in Figure 4.4, 39 P. mirifica cultivars were distinctly classified into 5 groups. Remarkably, Uthai Thani cultivar was separated clearly from the others. It might be that the size of its leaf was the smallest to be clustered with others. The Uthai Thani cultivar was separated outstandingly from the others. It might be that leaves in the smallest size of Uthai Thani cultivar were related to the local climate which is rather high in humidity. P. mirifica propagation usually takes place in low humidity. The climate of Uthai Thani province may affect the growth of this plant which brings to the smallest size of leaves. In pod cluster analysis, the dendrogram was classified 14 cultivars into 2 groups. Both clusters could not separate the cultivars depending on geographic distribution. It could imply that the pod shape and size of P. mirifica in Thailand is not significantly different or 3 pod parameters used in this study could not show morphometric variation. In addition, the flower morphometric dendrogram could classify 11 cultivars into 3 clusters and remarkably could separate Kanchanaburi 1 cultivar (Thongphaphum district) from other P. mirifica cultivars. Its flower size was the largest. It may be that the climate and geography might be very appropriate to its growth. Other 2 groups were not considerably different in flower morphological traits. It can summarize that P. mirifica cultivars have low morphometric variation.

The correlation analyses of the morphometric factor scores against latitude and longitude displayed clinal patterns of characterization of P. mirifica in Thailand (Figure 4.7-4.20). From the leaf morphometry, 7 leaf parameters (PD, TLB, PL, RL, TLL, PLL, and $\mathrm{A}^{\wedge} B$) trended to increase in size from the South to the North of Thailand. It probably depends on the cold weather and mountainous geography in the North which is more suitable for the growth of P. mirifica. On the other hand, the trend of NPV and SPL parameters decreased in size from the South to the North. It showed that number of pair of veins (NPV) and stipule length (SPL) of P. mirifica leaves in the southern region was likely larger than those in the northern region. Both parameters do not statistically correspond to the above 7 parameters. Moreover, the trend of all 9 parameters decreased in leaf size from the West to the East of Thailand. The dry weather and deciduous forest of the West may be suitable to the growth of P. mirifica. Also, higher altitude and mountainous areas in the West may be preferable
for the growth which brings to larger stems and larger leaves. Considering the pod morphometry, it increased in pod length (PodL parameter) from the South to the North. In contrast, it decreased in PodL from the West to the East or it depended on longitude. The dry, cold climate as well as deciduous, mountainous forest of the North and the West may lead to the higher metabolic storage in seeds of pods and more suitable for the growth. Also, this probably leads to larger in size of seeds and in length of pods. At last, the flower morphometric correlation analysis showed that the size in 6 flower parameters (PetL, StmL, PisL, ClxL, PetW, and OvrD) trended to decrease from the West to the East of Thailand. The dry weather and deciduous, mountainous area of the West is suitable to the growth of P. mirifica. It may lead to the larger size of the flower. In this research, it can be summarized that latitude and longitude changes have an influence to the leaf, pod, and flower morphologies.

For genetic analysis, a fresh young leaf was used for DNA extraction since its cells are easier to be broken or lysed than the cells of mature leaf and other parts of plants. Large amount of genomic DNA was obtained at high molecular weight and clearly visible as a single band on 0.8\% agarose gel (Figure 4.21). After that, nrDNA ITS, cpDNA trnL, and trnL-F regions were amplified by PCR. Universal primers used in this research were based on Taberlet et al. (1991) and White et al. (1990). Taberlet et al. (1991) designed universal primers from the cpDNA, especially in trnLF region in order to study phylogeny. Also, White et al. (1990) presented some universal primers on ribosomal nuclear DNA, including ITS. Under optimum PCR conditions, expected single bands of P. mirifica cultivars were obtained (Figure 4.224.24). Failed amplification of PCR of some cultivars may be from some contaminants such as phenol, polysaccharides, etc. and degraded DNA.

Considering the sequences of amplified PCR products, ITS sequences of each cultivar were more variable than other 2 regions because of lower similarity percentages $(72-100 \%)$ and more sequence divergence $(0-25 \%)$. The results coincided to the location of the genes in the genome. The ITS region is a ribosomal nuclear DNA sequence that is highly varied while the chloroplast region is less variable and more conserved. These cpDNA trnL and trnL-F regions indicated low levels of intraspecific genetic variation (sequence divergence of $0-7 \%$ and $0-4.7 \%$). Although it presented low polymorphism, it was still capable for studying in genetic diversity. However, other high variable non-coding regions which can illustrate high
polymorphic characteristics should be applied to determine the intra-specific variation in the future.

For an additional genetic experiment, RAPD method was conducted via PCR amplification by 5 random primers based on Mienie et al. (1995) who studied about identification of South African soybean cultivars. These selected primers designed from soy bean could be successfully amplified P. mirifica DNA. It may be that soybean is closely related to P. mirifica. Figure 4.28-4.32 showed band patterns of RAPD from all P. mirifica cultivars and an outgroup (P. lobata). Each primer can identify an individual among cultivars. In the future, more RAPD primers and the combinations of those 5 primers should be performed since, in our work, there were 6 cultivars those their DNA could be not amplified at all. In overall, 93 polymorphic bands could be generated and be sufficient enough to detect genetic variation. The average genetic distances based on Nei-Li distances that were used in NJ phylogenetic construction is displayed in Table 4.16. The distances were varied from 0 to 0.4381 and the mean value was 0.1861 . They reveal that those 5 RAPD primers can make moderately clear for evaluating the genetic polymorphism of P. mirifica in Thailand. In different species, Heider et al. (2004) studied genetic diversity of P. montana by using RAPD. It was found that high genetic variation was observed. It could be concluded that RAPD was an effective technique for the intra-specific phylogenetic study.

According to phylogenetic analyses, Figure 4.33 - 4.36 presented 4 phylogenetic trees created by NJ method in PAUP. The sequences from those 3 regions and RAPD patterns were used. The genetic distance calculation based on K2P distance (for sequencing) and Nei-Li distances (for RAPD) was performed before generating phylogeny. Bootstrap supporting-values were calculated and showed on nodes of branches in order to show branch strength on the tree. The bootstrap supporting values could display on a branch if the value was in the range of 50 to 100 . If it was equal to 100 (maximum value), the relation of taxa in the branch was ultimately confirmed. According to the 4 NJ phylograms, they were different in topology. Many branches of each tree which were evaluated by bootstraps were not strong. Moreover, all trees showed low genetic polymorphism among P. mirifica cultivars, especially trnL tree.

From the ITS tree, it could apparently classify some cultivars in the northern region of Thailand (Lamphun, Phrae 2, and 3) into subgroup 4. It could imply that
these cultivars in the North are similar in the ITS sequences so they were located closely on their branches. However, they were distinctly different from the others. The rest of cultivars such as subgroup 2 and 3 were located closely on the top of the tree. It showed that many cultivars were rather similar in the sequences.

The trnL phylogeny was divided into many short branches but it could show only one supported subgroup. Most of cultivars could not be distinguished because the sequences were similar especially in several cultivars on the bottom of this tree. It is probably that this cpDNA region is highly conserved. On the other hand, some cultivars were different in sequences and clearly separated from the others. For example, Chiang Mai 2 and Kanchanaburi 2 (from the North and the West) were formed together in subgroup 1. It might be that both cultivars trend to become into a new subspecies.

The trnL-F phylogram illustrated one supported branch. These sequences showed more polymorphism than trnL sequences because the former sequences are longer. Many members in the tree presented low polymorphic and located closely on the branches. From subgroup 1, Saraburi 1 and Kanchanaburi 2 cultivars (from the Center and the West) were aggregated together with distinct variation. From both CpDNA trees revealed that Kanchanaburi 2 cultivar might be a new subspecies.

The RAPD dendrogram presents many inconsistent branches but there are some unambiguous branches. Moderate genetic polymorphism is found. Cultivars from the same provinces and parts of Thailand [such as (1) Kanchanaburi 1-3 and (2) Ratchaburi 1-4] are clustered closely or in the same minor branch. Although RAPD results present moderate genetic differentiation, they are efficient enough for genetic classification among cultivars.

From all 4 phylogenetio trees, it could be summarized that low molecular genetic differentiation among the cultivars is probably a result of low differences in their heredity but some cultivars clearly differ from the others e.g. Kanchanaburi 2. It indicated that most of cultivars were not isolated by distance or geographic border. However, RAPD marker could be practical in some genetic differentiations and in cultivar classification depending to provinces and regions.

About analysis of chemical content variation, the data was mainly based on Cherdshewasart et al. (2007). They presented the comparison of isoflavonoid contents of P. mirifica root extracted powder from many localities in Thailand and of P. lobata as an outgroup as in Table 4.17. The data was used for Factor analysis and Cluster
analysis in order to resolve whether isoflavonoid contents are related to morphological and genetic data or not. Five types of isoflavonoids (puerarin, daidzin, genistin, daidzein, and genistein) were used and 29 cultivars of P. mirifica were applied. Scatter plots of factor scores could not be constructed because factor score produced only 1 factor. The dendrogram was created and the result indicated that there were 2 classified groups. The minor group contained 6 cultivars of Chiang Mai 3, Mae Hong Son, Ratchaburi 1, Sukhothai 1, Lamphun, and Uthai Thani which were separated from the others (in major group). These cultivars had high amount of some isoflavonoids, especially genistin. It is probably caused by a good condition of soils in their areas and it is probably involved in the role of genetics. Furthermore, the characterization was also analyzed by using correlation analysis. The result revealed that the contents of puerarin, daidzin, genistin, daidzein, and genistein did not correlate significantly to latitude and longitude (Figure 4.38-4.39). It indicated that the chemical characterization was classified deliberately across latitude and longitude changes. Alternatively, this tuber chemical quantity did not depend on latitude and longitude levels but perhaps depended strongly on local environments and genetic traits.

From the comparison of morphometric and genetic analyses, the details of each analysis were different but the genetic analysis could show the better variation and inter-cultivar classification than other analysis. Four NJ phylogenetic trees could indicate the evolutionary relation. RAPD technique could amplify genomic DNA randomly and present the variation and classification more apparently. However, both analyses detected low level of variation in P. mirifica.

From the comparison of morphometric and chemical analyses, cultivars can be classified differently. Lower variation was also detected in the chemical analysis because its dendrogram could classify samples into 2 groups only. The leaf morphometric and chemical-contented (isoflavonoid) dendrograms shared some similar result. For example, Uthai Thani cultivar was distinctly separated into the bottom group which was different from the others. Although leaves of Uthai Thani cultivar were small or the growth was not good, some isoflavonoid contents in the tuber were high. It can explain that the local environmental factors probably enhance the chemical constituents. Consequently, not only genetics play the important role in the plant phenotypes but other factors also do.

From the comparison of genetic and chemical analyses, both did not show the relationship or similarity to each other. The genetic part displayed higher polymorphism than other. Many cultivars show low diversity in chemical constituents. This probably results from low intra-specific genetic polymorphism of P. mirifica in Thailand.

CHAPTER VI

CONCLUSIONS

1. From the Factor and Cluster analyses of morphometry, P. mirifica cultivars from various localities in Thailand can be classified and clustered. First, leaf morphometry can separate P. mirifica cultivars into 5 groups. Second, pod morphometry could completely classify P. mirifica cultivars into 2 clusters. Third, flower morphometry could distinguish those cultivars into 3 groups. Briefly, it could summarize that P. mirifica cultivars have low morphometric variation.
2. In correlation analysis of morphometry, leaf morphometry presented that 7 leaf parameters (PD, TLB, PL, RL, TLL, PLL, and A^B) trended to increase from the South to the North of Thailand. On the other hand, NPV and SPL parameters trended to decrease from the South to the North. Moreover, all 9 leaf parameters trended to decrease in size from the West to the East of Thailand. From pod morphometry, it presented that it increased in pod length (PodL parameter) from the South to the North. In contrast, it decreased in PodL length from the West to the East. From flower morphometry, the size in 6 parameters (PetL, StmL, PisL, ClxL, PetW, and OvrD) trended to decrease from the West to the East of Thailand.
3. The sequences of PCR products of ITS, trnL, and trnL-F regions indicated low level of genetic variation among cultivars of P. mirifica in Thailand. However, the sequence divergence of ITS ($0-25.2 \%$) is the highest to the sequence divergence of other 2 regions.
4. Due to RAPD analysis, total of 93RAPD fragments generated by 5 RAPD primers were all reproducibly polymorphic bands. The average genetic distances of $39 P$. mirifica cultivars and 1 cultivar of P. lobata (outgroup) varied from 0 to 0.4381 .
5. According to 4 NJ phylogenetic trees (3 trees from sequencing and 1 tree from RAPD), their topologies were different. The genetic diversity could be partially observed from the trees even though low genetic diversity was obtained. Briefly,

RAPD phylogeny showed better result in cultivar classification according to provinces and regions of Thailand.
6. Considering the chemical (isoflavonoids) content analysis, the result also showed 2 groups. The minor group contains 6 cultivars of Chiang Mai 3, Mae Hong Son, Ratchaburi 1, Sukhothai 1, Lamphun, and Uthai Thani. The major group composed of the rest. Remarkably, variation of these chemical contents among cultivars was low. Moreover, there was no significant correlation between the isoflavonoid contents and angular distances on latitude and longitude.
7. From all analyses, morphometric and chemical content analyses could not well determine the variation of P. mirifica cultivars in Thailand. On the other hand, the genetic analysis was more practical to analyze the variation and classification of P. mirifica cultivars in Thailand, especially RAPD.
8. These 3 analyses did not relate to each other except some results of leaf morphometry and chemical content analysis. They could separate Uthai Thani cultivar from the others.

สถาบันวิทยบริการ

REFERENCES

Agustin, J. A., Andres, F. G., Angel, R. N. and Priego, A. F. B. 2006. Morphometry of the organs of cherimoya (Annona cherimola Mill.) and analysis of fruit parameters for the characterization of cultivars, and Mexican germplasm selections. Scientia Horticulturae 107(4): 337-346.

Alvarez , I. and Wendel , J.F. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417-434.

Bailey, C. D., Price, R. A. and Doyle, J. J. 2002. Systematics of the Halimolobine Brassicaceae evidence from three loci and morphology. Systematic Botany 27(2): 318-332.

Baranek, M., Kadlec, M., Raddova, J., Vachun, M. and Pidra, M.. 2002. Evaluation of genetic diversity in 19 Glycine max (L.) Merr. accessions included in the Czech National Collection of Soybean Genotypes. Czech Journal Genetic Plant Breeding 38(2): 69-74.

Bautista, N. S., Solis, R., Kamijima, O., and Ishii, T. 2001. RAPD, RFLP, and SSLP analyses of phylogenetic relationships between cultivated and wild rice. Genes Genetic System. 76: 71-79.

Bound, D. G. and Pope, G. S. 1960. Light absorption and chemical properties of miroestrol, the oestrogenic substance of Pueraria mirifica. Journal of the Chemical Society 3196-3705.
Cain, J. C. 1960. Miroestrol: an estrogen from the plant Pueraria mirifica. Nature 158: 774-777.
Chansakaew, S., Ishikawa, T., Seki, H., Sekine, K., Okada, M. and Chaichantipyuth, C. 2000a. Identification of deoxymiroestrol as the actual rejuvenation
a principle of Kwao Keur", Pueraria mirifica. The known miroestrol may be an artifact. Journal of Natural Products 63: 173-175.
Chansakaew, S., Ishikawa, T., Seki, H., Sekine, K., Okada, M., Higuchi, Y and Chaichantipyuth, C. 2000b. Isoflavonoids from Pueraria mirifica and their estrogenic activity. Planta Medica 66: 572-575.

Cherdshewasart , W., Cheewasopit, W. and Picha, P. 2004a. The differential antiproliferation effect of white (Pueraria mirifica), red (Butea superb), and
black (Mucuna collettii) Kwao Krua plants on the growth of MCF-7 cells. Journal of Ethnopharmacology 93: 255-260.

Cherdshewasart , W., Cheewasopit, W. and Picha, P. 2004b. Anti-proliferation effects of the white (Pueraria mirifica), red (Butea superba), and black (Mucuna collettii) Kwao Krua plants on the growth of HeLa cells. Journal of Scientific Research of Chulalongkorn University 29 (1):27-32.

Cherdshewasart, W., Subtang, S. and Dahlan, W. 2006. Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. Journal of Phamaceutical and Biomedical Analysis [Epub ahead of print]
Cherdshewasart, W., Subtang, S. and Dahlan, W. 2007. Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. Journal of Phamaceutical and Biomedical Analysis 43: 428-434.

Chowdhury, A. K., Srinives, P., Tongpamnak, P., Saksoong, P. and Chatwachirawong, P. 2002. Genetic Relationship among Exotic Soybean Introductions in Thailand: Consequence for Varietal Registration. Science Asia 28: 227-239.

Compton, J. A., Clennett, J. C. B. and Culham, A. 2004. Nomenclature in the dock. Overclassification leads to instability: a case study in the horticulturally important genus Cyclamen (Myrsinaceae). Botanical Journal of the Linnean Society 146: 339-349.
Creed, J. C. 1997. Morphological variation in the seagrass Halodule wrightii near its southern distributional limit. Aquatic Botany 59: 163-172.
Dweck, A. C. 2002. The Pueraria family with special interest in Pueraria mirifica. PersonabCare Magazine 3(1):7-10.
Ellison, N. W., Liston, A., Steiner,J. J., Williams, W. M. and Taylor, N. L. 2006. Molecular phylogenetics of the clover genus (Trifolium-Leguminosae). Molecular Phylogenetics and Evolution 39: 688-705.

Hayodom, M. 1971. Constituents of the tuberous roots of Pueraria mirifica. Master's Thesis, Chulalongkorn University. 33 pp. (in Thai)

Heider, B., Fischer, E., Berndl, T. and Kraft, R. S. 2004. Pueraria montana Genetic Diversity of a Neglected Crop in North Vietnam. Deutscher Tropentag. October 5-7, 2004. Germany.

Hoey, B. K., Crowe, K. R., Jones, V. M. and Polans, N. O. 1996. A phylogenetic analysis of Pisum based on morphological characters, and allozyme and RAPD markers. Theoretical and Applied Genetics 92: 92-100.
Ingham, J. L., Tahara, S and Dziedzic, S.Z 1986. A chemical investigation of Pueraria mirifica root. Z Naturforsh Ser C 41: 403-408.

Ingham, J. L., Tahara, S and Dziedzic, S.Z 1988. Coumestan from the roots of Puerari mirifica root. Zeitschrift fur Naturforschung Section C: Biosciences 43: 5-10.

Ingham, J. L., Tahara, S. and Dziedzic, S. Z. 1989. Minor isoflavones from the root of Pueraria mirifica . Zeitschrift fur Naturforschung Section C: Biosciences 44 (9/10): 724-726.

Jones, H. E. H., and Pope, G. S. 1960. A study of the action of miroestrol and other oestrogens on the reproductive tract of the immature female mouse. Jounal of Endocrinology 20: 229-235.

Kerr, A., 1932. A reputed rejuvenator. Journal of Siam Society Natural History 8: 336-338.

Lakshmi, M., Parani, M. and Parida, A. 2002. Molecular marker assisted intraspecific variation and species relationships in the Indian mangrove tribe Rhizophoreae. Aquatic Botany 74: 201-217.

Lakshnakara, K. M. C. and Suvatabandhu, K. 1952. A new species of Pueraria (leguminosae) from Thailand, yielding and oestrogenic principle. Kew Bulletin: 263-266.

Malaivijitnond, S., Jaroenporn, S., Wattanasemkit, K. and Cherdshewasart, W. 2003a. Biotechnology of phytoestrogen-rich; Pueraria mirifica: XII Effects of Pueraria mirifica on fertility in mice, The $29^{\text {th }}$ Congress on Science and Technology of Thailand at Khonkaen University, 20-22 October 2003. Thailands

Malaivijitnond, S., Jaroenporn, S., Wattanasemkit, K. and Cherdshewasart, W. 2003b. Biotechnology of Phytoestrogen-rich; Pueraria mirifica: XIII Sex differences in response of anterior pituitary to P. mirifica phytoestrogens in rats. The $29^{\text {th }}$ Congress on Science and Technology of Thailand at Khonkaen University, 20-22 October, 2003. Thailand.

Malaivijitnond, S., Kiatthaipipat, P., Cherdshewasart, W., Watanabe, G. and Taya, K. 2004. Different effects of Pueraria mirifica, a herb containing phytoestrogens, on LH and FSH secretion in gonadectomized female and male rats. Journal of Pharmacological Sciences 96: 428-435.
Mienie, C.M.S., Smit, M.A. and Pretorius, P.J. 1995. Use of random amplified polymorphic DNA for identification of South African soybean cultivars. Field Crops Research 43: 43-49.

Muangman, V. and Cherdshewasart, W. 2001. Clinical trail of the phytoestrogen-rich herb, Pueraria mirifica as a crude drug in the treatment of symtoms in menopausal women. Siriraj Hospital Gazette 53: 300-309.
Murkies, A. L., Wilcox, G. and Davis, S. R. 1998. Clinical review 92-Phytoestrogen. The Journal of Clinical Endocrinology \& Metabolism 83: 297-303.

Nilandihi, T., Kamthong, B., Isarasena, K. and Shiengthong, D. 1957. Constituents of the tuberous roots of Pueraria mirifica. Zeitschrift fur Naturforschung Section C: Biosciences 5: 41.
Panriansaen, R. 2000. Characterization of Pueraraia mirifica populations from various parts of Thailand. Master's Thesis, Chulalongkorn University.
Panriansaen, R. 2005. Evaluation of preventive and antitumor activities of Pueraraia mirifica and Butea superba in DMBA-induced mammary carcinoma in the rat. Doctor 's Thesis, Chulalongkorn University, 184 pp.

Pappert, R. A., Hamrick, J. L., and Donovan, L. A. 2000. Genetic variation in Pueraria lobata (Fabaceae), an introduced, clonal, and invasive plant of the Southern United States. American Journal of Botany. 87(9): 1240-1245.
Perez, R., Vargas, P. and Arroyo, J. 2003. Convergent evolution of flower polymorphism in Narcissus spp. (Amaryllidaceae). New Phytologist 161: 235-252.
Pisetpakasit, R.1976. A Pharmaconostical study of Pueraria mirifica. Master's thesis, Chulalongkorn University (in Thai).
Radmann, E. B., Bianchi, V. J., Oliveira, R. P., and Fachinello, J. C. 2006. Characterization and genetic diversity of strawberry cultivars. Horticultura Brasileira 26: 84-87.
Schuettpelz, E. and Hoot, S. B. 2004. Phylogeny and biogeography of Caltha (Ranunculaceae) based on chloroplast and nuclear DNA sequences. American Journal of Botany 91(2): 247-253.

Smitasiri, Y. and Wungjai, C. 1986. Some biological aspects of Pueraria mirifica :1) flower, pod and seed. Journal of the Science Faculty of Chiang Mai University 14 (1) : 67-74.

Stuessy, T. F. and Urtubey, E. 2006. Phylogenetic implications of corolla morphology in subfamily Barnadesioideae (Asteraceae) Flora 201: 340-352.

Subtang, S. 2002. Comparative isoflavone HPLC fingerprints from the extracts of White Kwao Krua Pueraria mirifica in Thailand Master’s Thesis, Chulalongkorn University. 165 pp.
Sukhavachana, P. 1949. The comparison of the effects from Pueraria mirifica extract with estrogenic Hormone. J Med Assoc Thai 3: 104-110 (in Thai).

Sun, J. H., Li, Z. C., Jewett, D. K., Britton, K. O., Ye, W. H. and GE, X. J. 2005. Genetic diversity of Pueraria lobata (kudzu) and closely related taxa as revealed by inter-simple sequence repeat analysis. European Weed Research Society Weed Research 45: 255-260.

Suntara, A. 1931. The remedy pamphlet of Kwao Krua tuber of Luanganusarnsuntarakromkarnphiset Chiang Mai: Upatipongsa Press Chiang Mai. pp. 113 (in Thai).
Suvatti, C. 1978. Flora of Thailand Thailand, Kurusapha Ladpro press: 680.
Swamy, K. K., Kumar, H. N. K., Ramakrishna, T. M. and Ramaswamy, S. N. 2004. Studies on Seed Morphometry of Epiphytic Orchids from Western Ghats of Karnataka. Taiwania, 49(2): 124-140.

Szczepaniak, M., Cieslak, E. and Bednarek, P. T. 2002. Morphological and AFLP variation of Elymus repens (L.) gould (Poaceae). Cellular \& Molecular Biology Letters 7: 547-558.
Tham, D. M.,Gardner, D. D. and Haskell, W. L. 1998. Clinical review 97-potential health benefits of dietary phytoestrogen-a review of the clinical, epidemiological, and mechanistic evidence. The Journal of Clinical Endocrinology \& Metabolism 83: 2223-2235.

Taberlet, P., Gielly, L., Pautou, G. and Bouvet, J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105-1109.

Thompson, J. A., Nelson, R. L. and Vodkin, L. O. 1998. Identification of diverse soybean germplasm using RAPD markers. Published in Crop Science 38:1348-1355.

Trisomboon, H., Malaivijitnond, S., Watanabe, G. and Taya, Kazuyoshi. 2004. Estrogenic effects of Pueraria mirifica on the mentrual cycle and hormonerelated ovarian functions in cyclic female monkeys. Journal of Pharmacological Sciences 94: 51-59.

Trisomboon, H., Malaivijitnond, S., Watanabe, G., Cherdshewasart, W. and Taya, K.2006a. The estrogenic effect of Pueraria mirifica on gonadotropin levels in aged monkeys. Journal of Endocrin 29: 129-134.

Trisomboon,H., Malaivijitnond, S., Cherdshewasart, W., Watanabe, G. and Taya, K. 2006b. Effect of Pueraria mirifica on the sexual skin coloration of aged enopausal cynomolgus monkeys. Journal of Reproductive Development 52: 537-542.

White, T. J., Bruns, T., Lee, S. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Protocols: A Guide to Methods and Applications in PCR: 315-322.

Wu, C. J., Cheng, Z. Q., Huang, X. Q., Yin, S. H., Cao, K M. and Suna, C. R. 2004. Genetic diversity among and within populations of Oryza granulata from Yunnan of China revealed by RAPD and ISSR markers: implications for conservation of the endangered species Plant Science 167: 35-42.
Xu, D. H. and Gai, J. Yo 2003. Genetic diversity of wild and cultivated soybeans growing in China reveāled by/RAPD analysis. Plant Breeding 122: 503-506.

Yulita, K. S., Bayer, R. J. and West, J. G. 2005. Molecular phylogenetic study of Hopea and Shorea (Dipterocarpaceae): Evidence from the trnL-trnF and internal transcribed spacer regions. Plant Species Biology 20: 167-182.

Zimmer, E. A., Roalson, E. H., Skog, L. E., Boggan, J. K and Idnurm, A. 2002. Phylogenetic relationships in the Gesnerioideae (Gesneriaceae) based on nrDNA ITS and cpDNA trnL-F and trnE-T spacer region sequences. American Journal of Botany 89(2): 296-311.

Appendix I

Leaf collection of $\mathbf{3 9}$ cultivars of \boldsymbol{P}. mirifica named after provinces in Thailand and 1 cultivar of P. Iobata from Japan as an outgroup.

No.	Cultivar name (District or Amphoe)	Region	Code name	Latitude	Longitude
1	Chiang Mai (Chai Prakan)	Upper North	CM1	19.77836075	99.21592127
2	Chiang Mai (Chiang Dao)	Upper North	CM2	19.67760402	99.35225743
3	Chiang Mai (Doi Tao)	Upper North	CM3	17.96186458	98.72826792
4	Chiang Mai (Mae Rim)	Upper North	CM4	19.27717846	99.25072582
5	Chiang Rai (Mae Suai)	Upper North	CR	19.90144316	99.89506227
6	Lampang (Thoen)	Lower North	LPang	17.6307864	99.36539475
7	Mae Hong Son (Khun Yuam)	Upper North	MHS	18.85139782	98.77673184
8	Lamphun (Ban Hong)	Lower North	LPoon	18.36070438	98.87164331
9	Nan (Wiang Sa)	Lower North	Nan	18.36142298	100.6870832
10	Phayao (Chiang Muan)	Upper North	PY	19.14100835	99.96437119
11	Phrae (Den Chai)	Lower North	P1	18.06727241	100.0358257
12	Phrae (Song)	Lower North	P2	18.06727241	100.0358257
13	Phrae (Wang Chin)	Lower North	P3	17.78747373	100.0355448
14	Uttaradit (Mueang)	Lower North	UTRD	17.46098692	100.0968728
15	Kamphaeng Phet (Khlong Lan)	Upper Center	KPP	16.20503292	99.5428352
16	Lopburi (Mueang)	Lower Center	صLBR	14.81690937	100.6455167
17	Nakhon Sawan (Tak Fa) \square	Lower Center	NKSW	15.67911881	100.1826022
18	Phetchabun (Lom Kao)	Upper Center	PBoon	16.53098045	101.634185
19	Phitsanulok (Wang Thong)	Upper Center	PSNL	16.67563786	100.2390678
20	Saraburi (Phra Phutthabat)	Lower Center	SR1	14.66788586	100.6796166
21	Saraburi (Muak Lek)	Lower Center	SR2	14.41052332	100.8329079
22	Sukhothai (Mueang)	Upper Center	SKHT1	16.88383483	100.0043662
23	Sukhothai (Si Satchanalai)	Upper Center	SKHT2	17.50889576	99.72903387
24	Uthai Thani (Thap Than)	Lower Center	UTTN	15.28094893	100.0645104

No.	Cultivar name (District or Amphoe)	Region	Code name	Latitude	Longitude
25	Kanchanaburi (Thong Pha Phum)	Lower West	KC1	14.51041877	99.203658
26	Kanchanaburi (Sai Yok 1)	Lower West	KC2	14.51041877	99.203658
27	Kanchanaburi (Sai Yok 2)	Lower West	KC3	14.51041877	99.203658
28	Phetchaburi (Nong Ya Plong)	Lower West	PCHBR	13.09554768	99.96776581
29	Prachuap Khiri Khan (Mueang)	Lower West	PJKRK	11.70129703	99.85350351
30	Ratchaburi (Pak Tho 1)	Lower West	RB1	13.58179855	99.63931274
31	Ratchaburi (Pak Tho 2)	Lower West	RB2	13.58179855	99.63931274
32	Ratchaburi (Pak Tho 3)	Lower West	RB3	13.58179855	99.63931274
33	Ratchaburi (Pak Tho 4)	Lower West	RB4	13.58179855	99.63931274
34	Tak (Mae Ramat)	Upper West	Tak	16.76589489	98.78510624
35	Chaiyaphum (Chatturat)		CHYP	15.61229749	101.7635475
36	Nakhon Ratchasima (Pak Chong)	Lower North-east	NKRSM	15.08416653	101.9700012
37	Sakon Nakhon (Kut Bak)	Upper North-east	SKNK	16.95847364	104.0141878
38	Chumphon (Tha Sae)	Upper South	CHPn	10.22179855	99.06516782
39	Surat Thani (Ban Ta Khun)	Lower South	SRTN	9.104019165	99.38684082
40	P. lobata from Hiroshima in Japan (Miyoshi city)	West	Lobata	34.80500000	132.8600000

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Pod collection of $\mathbf{1 4}$ cultivars of \boldsymbol{P}. mirifica named after provinces in Thailand and 1 cultivar of \boldsymbol{P}. Iobata from Japan as an outgroup.

No.	Cultivar name (District or Amphoe)	Region	Code name	Latitude	Longitude
1	Chiang Mai (Chai Prakan)	North	CM1	19.77836075	99.21592127
2	Chiang Mai (Doi Tao)	North	CM3	17.96186458	98.72826792
3	Chiang Mai (Mae Rim)	North	CM4	19.27717846	99.25072582
4	Lampang (Thoen)	North	LPang	17.6307864	99.36539475
5	Phayao (Chiang Muan)	North	PY	19.14100835	99.96437119
6	Phrae (Wang Chin)	Center	KPP	16.20503292	99.5428352
7	Kamphaeng Phet (Khlong Lan)	Center	LBR	14.81690937	100.6455167
8	Lopburi (Mueang)	Wenter	SR1	14.66788586	100.6796166
9	Saraburi (Phra Phutthabat)	KC1	14.51041877	99.203658	
10	Kanchanaburi (Thong Pha Phum)	West	100.0355448		
11	Kanchanaburi (Sai Yok 1)	West	KC2	14.51041877	99.203658
12	Phetchaburi (Nong Ya Plong)	West	PCHBR	13.09554768	99.96776581
13	Prachuap Khiri Khan (Mueang)	West	PJKRK	11.70129703	99.85350351
14	Tak (Mae Ramat)	West	Tak	16.76589489	98.78510624
15	P. lobata from Hiroshima in Japan (Miyoshi city)				
		West	Lobata	34.80500000	132.86000000

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Flower collection of $\mathbf{1 1}$ cultivars of \boldsymbol{P}. mirifica named after provinces in Thailand (exclude P. lobata).

No.	Cultivar name (District or Amphoe)	Region	Code name	Latitude	Longitude
1	Chiang Mai (Doi Tao)	North	CM3	17.96186458	98.72826792
2	Chiang Mai (Mae Rim)	North	CM4	19.27717846	99.25072582
3	Saraburi (Muak Lek)	Center	SR2	14.41052332	100.8329079
4	Kanchanaburi (Thong Pha Phum)	West	KC1	14.51041877	99.203658
5	Kanchanaburi (Sai Yok 1)	West	KC2	14.51041877	99.203658
6	Phetchaburi (Nong Ya Plong)	West	PCHBR	13.09554768	99.96776581
7	Prachuap Khiri Khan (Mueang)	West	PJKRK	11.70129703	99.85350351
8	Ratchaburi (Pak Tho 1)	West	RB1	13.58179855	99.63931274
9	Ratchaburi (Pak Tho 2)	West	RB2	13.58179855	99.63931274
10	Chaiyaphum (Chatturat)	North-east	CHYP	15.61229749	101.7635475
11	Chumphon (Tha Sae)	South	CHPn	10.22179855	99.06516782

สถาบันวิทยบริการ

Appendix II

Descriptive statistics from 9 leaf parameters of 39 P. mirifica cultivars in
Thailand and P. lobata as an outgroup. (Mean \pm Standard error)

No.	Source	PL	PD	RL	PLL	TLL	TLB	SPL	AB	NPV
1	CM1	$\begin{gathered} 35.27 \pm \\ 1.06 \end{gathered}$	$\begin{gathered} 0.45 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 5.47 \pm \\ 0.14 \\ \hline \end{gathered}$	$\begin{gathered} 1.15 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 22.59 \pm \\ 0.28 \end{gathered}$	$\begin{gathered} 19.27 \pm \\ 0.31 \end{gathered}$	$\begin{gathered} 0.58 \pm \\ 0.02 \end{gathered}$	$\begin{gathered} 23.16 \pm \\ 0.74 \end{gathered}$	$\begin{gathered} 5.67 \pm \\ 0.10 \end{gathered}$
2	CM2	$\begin{gathered} 25.75 \pm \\ 1.16 \\ \hline \end{gathered}$	$\begin{gathered} 0.34 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 5.45 \pm \\ 0.19 \\ \hline \end{gathered}$	$\begin{gathered} 0.99 \pm \\ 0.03 \\ \hline \end{gathered}$	$\begin{gathered} 21.53 \pm \\ 0.36 \\ \hline \end{gathered}$	$\begin{gathered} 16.00 \pm \\ 0.37 \\ \hline \end{gathered}$	$\begin{gathered} 0.37 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 29.83 \pm \\ 1.13 \\ \hline \end{gathered}$	$\begin{gathered} 6.81 \pm \\ 0.13 \\ \hline \end{gathered}$
3	CM3	$\begin{gathered} 32.44 \pm \\ 0.80 \end{gathered}$	$\begin{gathered} 0.44 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 7.68 \pm \\ 0.15 \end{gathered}$	$\begin{gathered} 0.93 \pm \\ 0.02 \\ \hline \end{gathered}$	$\begin{gathered} 24.34 \pm \\ 0.39 \\ \hline \end{gathered}$	$\begin{gathered} 20.59 \pm \\ 0.41 \\ \hline \end{gathered}$	$\begin{gathered} 0.42 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 23.76 \pm \\ 0.86 \end{gathered}$	$\begin{gathered} 7.84 \pm \\ 0.12 \end{gathered}$
4	CM4	$\begin{gathered} \hline 21.14 \pm \\ 1.01 \end{gathered}$	$\begin{gathered} 0.27 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 5.00 \pm \\ 0.15 \\ \hline \end{gathered}$	$\begin{gathered} 0.96 \pm \\ 0.02 \end{gathered}$	$\begin{gathered} 18.62 \pm \\ 0.52 \end{gathered}$	$\begin{gathered} 14.08 \pm \\ 0.49 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.31 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 36.50 \pm \\ 0.79 \\ \hline \end{gathered}$	$\begin{gathered} 5.22 \pm \\ 0.10 \\ \hline \end{gathered}$
5	CR	$\begin{gathered} 23.02 \pm \\ 1.03 \end{gathered}$	$\begin{array}{\|c} \hline 0.32 \pm \\ 0.01 \\ \hline \end{array}$	$\begin{gathered} 4.47 \pm \\ 0.24 \end{gathered}$	$\begin{gathered} 0.80 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 20.24 \pm \\ 0.33 \end{gathered}$	$\begin{gathered} 15.54 \pm \\ 0.31 \end{gathered}$	$\begin{gathered} 0.36 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 21.50 \pm \\ 0.76 \end{gathered}$	$\begin{gathered} 7.89 \pm \\ 0.17 \end{gathered}$
6	LPang	$\begin{gathered} 31.44 \pm \\ 0.85 \end{gathered}$	$\begin{gathered} 0.37 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 5.30 \pm \\ 0.14 \end{gathered}$	$\begin{gathered} 0.84 \pm \\ 0.02 \end{gathered}$	$\begin{gathered} 23.17 \pm \\ 0.24 \end{gathered}$	$\begin{gathered} 15.80 \pm \\ 0.18 \end{gathered}$	$\begin{gathered} 0.52 \pm \\ 0.02 \\ \hline \end{gathered}$	$\begin{gathered} 33.84 \pm \\ 0.53 \end{gathered}$	$\begin{gathered} 5.06 \pm \\ 0.08 \end{gathered}$
7	MHS	$\begin{gathered} 21.24 \pm \\ 0.90 \\ \hline \end{gathered}$	$\begin{gathered} 0.31 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 4.74 \pm \\ 0.15 \\ \hline \end{gathered}$	$\begin{gathered} 0.84 \pm \\ 0.02 \\ \hline \end{gathered}$	$\begin{gathered} 20.28 \pm \\ 0.57 \\ \hline \end{gathered}$	$\begin{gathered} \hline 15.81 \pm \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} 0.34 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 19.06 \pm \\ 0.60 \\ \hline \end{gathered}$	$\begin{gathered} 5.93 \pm \\ 0.10 \\ \hline \end{gathered}$
8	LPoon	$\begin{gathered} 27.92 \pm \\ 0.78 \end{gathered}$	$\begin{gathered} 0.40 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 5.92 \pm \\ 0.14 \\ \hline \end{gathered}$	$\begin{gathered} 0.75 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 22.76 \pm \\ 0.41 \end{gathered}$	$\begin{gathered} 19.16 \pm \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} 0.47 \pm \\ 0.02 \end{gathered}$	$\begin{gathered} 17.02 \pm \\ 0.64 \end{gathered}$	$\begin{gathered} 5.90 \pm \\ 0.11 \\ \hline \end{gathered}$
9	Nan	$\begin{gathered} 24.14 \pm \\ 1.01 \\ \hline \end{gathered}$	$\begin{gathered} 0.32 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 4.71 \pm \\ 0.16 \end{gathered}$	$\begin{gathered} 0.94 \pm \\ 0.02 \\ \hline \end{gathered}$	$\begin{gathered} 19.47 \pm \\ 0.39 \end{gathered}$	$\begin{gathered} 14.46 \pm \\ 0.43 \end{gathered}$	$\begin{gathered} 0.35 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 22.54 \pm \\ 0.83 \end{gathered}$	$\begin{gathered} 7.35 \pm \\ 0.08 \end{gathered}$
10	PY	$\begin{gathered} 21.92 \pm \\ 0.77 \\ \hline \end{gathered}$	$\begin{gathered} 0.26 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 5.62 \pm \\ 0.17 \\ \hline \end{gathered}$	$\begin{gathered} 0.77 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 17.24 \pm \\ 0.33 \\ \hline \end{gathered}$	$\begin{gathered} 14.48 \pm \\ 0.36 \\ \hline \end{gathered}$	$\begin{gathered} 0.34 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 24.91 \pm \\ 1.02 \\ \hline \end{gathered}$	$\begin{gathered} 6.44 \pm \\ 0.08 \end{gathered}$
11	P1	$\begin{gathered} 18.52 \pm \\ 0.38 \end{gathered}$	$\begin{gathered} 0.22 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 6.28 \pm \\ 0.13 \end{gathered}$	$\begin{gathered} 0.64 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 16.51 \pm \\ 0.26 \end{gathered}$	$\begin{gathered} 14.63 \pm \\ 0.21 \end{gathered}$	$\begin{gathered} 0.48 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 26.98 \pm \\ 0.51 \end{gathered}$	$\begin{gathered} 7.85 \pm \\ 0.12 \end{gathered}$
12	P2	$\begin{gathered} 20.06 \pm \\ 0.58 \\ \hline \end{gathered}$	$\begin{gathered} 0.28 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 5.91 \pm \\ 0.15 \end{gathered}$	$\begin{array}{\|c\|} \hline 0.67 \pm \\ 0.01 \\ \hline \end{array}$	$\begin{gathered} 20.97 \pm \\ 0.39 \end{gathered}$	$\begin{gathered} 16.99 \pm \\ 0.33 \\ \hline \end{gathered}$	$\begin{gathered} 0.39 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 24.50 \pm \\ 0.75 \end{gathered}$	$\begin{gathered} \hline 5.78 \pm \\ 0.11 \end{gathered}$
13	P3	$\begin{gathered} 23.71 \pm \\ 0.43 \end{gathered}$	$\begin{gathered} 0.35 \pm \\ 0.01 \end{gathered}$	$\begin{array}{\|c\|} \hline 6.78 \pm \\ \hline 0.12 \\ \hline \end{array}$	$\begin{gathered} 0.68 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} \hline 19.94 \pm \\ 0.26 \\ \hline \end{gathered}$	$\begin{gathered} 18.84 \pm \\ 0.33 \end{gathered}$	$\begin{gathered} 0.18 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 24.16 \pm \\ 1.03 \end{gathered}$	$\begin{gathered} 7.96 \pm \\ 0.13 \end{gathered}$
14	UTRD	$\begin{gathered} \hline 28.58 \pm \\ 0.76 \\ \hline \end{gathered}$	$\begin{gathered} 0.39 \pm \\ 0.01 \end{gathered}$	$\begin{aligned} & 5.62 \pm \\ & 0.15 \\ & \hline \end{aligned}$	$\begin{gathered} 0.92 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 23.22 \pm \\ 0.39 \\ \hline \end{gathered}$	$\begin{gathered} 18.67 \pm \\ 0.29 \\ \hline \end{gathered}$	$\begin{gathered} 0.49 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 25.46 \pm \\ 0.90 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.68 \pm \\ 0.16 \end{gathered}$
15	KPP	$\begin{gathered} 28.12 \pm \\ 0.70 \\ \hline \end{gathered}$	$\begin{gathered} 0.39 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 4.97 \pm \\ 0.12 \end{gathered}$	$\begin{gathered} 0.98 \pm \\ 0.02 \\ \hline \end{gathered}$	$\begin{gathered} 23.29 \pm \\ 0.34 \\ \hline \end{gathered}$	$\begin{gathered} 17.95 \pm \\ 0.26 \\ \hline \end{gathered}$	$\begin{gathered} 0.41 \pm \\ 0.02 \\ \hline \end{gathered}$	$\begin{gathered} 30.30 \pm \\ 0.83 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.14 \pm \\ 0.14 \\ \hline \end{gathered}$
16	LBR	$\begin{gathered} 16.31 \pm \\ 0.48 \\ \hline \end{gathered}$	$\begin{gathered} 0.28 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 4.65 \pm \\ 0.15 \\ \hline \end{gathered}$	$\begin{gathered} 0.96 \pm \\ 0.02 \end{gathered}$	$\begin{gathered} 15.65 \pm \\ 0.28 \\ \hline \end{gathered}$	$\begin{gathered} 14.17 \pm \\ 0.25 \\ \hline \end{gathered}$	$\begin{gathered} 0.29 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 26.72 \pm \\ 0.68 \end{gathered}$	$\begin{gathered} \hline 8.41 \pm \\ 0.14 \\ \hline \end{gathered}$
17	NKSW	$\begin{gathered} 23.77 \pm \\ 0.64 \\ \hline \end{gathered}$	$\begin{gathered} 0.27 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 5.29 \pm \\ 0.16 \end{gathered}$	$\begin{gathered} 0.56 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 14.65 \pm \\ 0.17 \\ \hline \end{gathered}$	$\begin{gathered} 13.93 \pm \\ 0.15 \\ \hline \end{gathered}$	$\begin{gathered} 0.31 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 35.90 \pm \\ 0.72 \\ \hline \end{gathered}$	$\begin{gathered} 8.00 \pm \\ 0.11 \end{gathered}$
18	PBoon	$\begin{gathered} 26.23 \pm \\ 0.88 \\ \hline \end{gathered}$	$\begin{gathered} 0.22 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 6.54 \pm \\ 0.19 \\ \hline \end{gathered}$	$\begin{gathered} 0.72 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 16.24 \pm \\ 0.37 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 12.42 \pm \\ 0.29 \\ \hline \end{array}$	$\begin{gathered} 0.27 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 37.28 \pm \\ 0.26 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.80 \pm \\ 0.08 \\ \hline \end{gathered}$
19	PSNL	$\begin{gathered} 22.38 \pm \\ 1.13 \end{gathered}$	$\begin{gathered} 0.18 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 4.91 \pm \\ 0.16 \\ \hline \end{gathered}$	$\begin{gathered} 0.73 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 16.70 \pm \\ 0.24 \end{gathered}$	$\begin{gathered} \hline 12.26 \pm \\ 0.23 \\ \hline \end{gathered}$	$\begin{array}{r} 0.26 \pm \\ -0.01 \\ \hline \end{array}$	$\begin{gathered} 38.82 \pm \\ 0.32 \\ \hline \end{gathered}$	$\begin{gathered} 6.19 \pm \\ 0.06 \\ \hline \end{gathered}$
20		$\begin{array}{\|c\|} \hline 21.20 \pm \\ 0.51 \\ \hline \end{array}$	$\begin{gathered} 0.33 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 6.24 \pm \\ 0.09 \\ \hline \end{array}$	$0.91 \pm$ 0.02 0.85	$\begin{gathered} 22.54 \pm \\ 0.31 \\ \hline \end{gathered}$	$\begin{gathered} 18.29 \pm \\ 0.26 \\ \hline \end{gathered}$	$\begin{gathered} 0.37 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 38.96 \pm \\ 0.60 \\ \hline \end{gathered}$	$\begin{gathered} 6.94 \pm \\ 0.07 \\ \hline \end{gathered}$
21	SR2	$\begin{gathered} 19.53 \pm \\ 0.61 \\ \hline \end{gathered}$	$0.33 \pm$ 0.01	$\begin{gathered} \hline 5.50 \pm \\ 0.13 \\ \hline \end{gathered}$	$\begin{gathered} 0.89 \pm \\ 0.03 \end{gathered}$	$\begin{gathered} 21.03 \pm \\ 0.43 \\ \hline \end{gathered}$	$\begin{gathered} 17.95 \pm \\ 0.41 \end{gathered}$	$0.00 \pm$ 0.01	$\begin{gathered} \hline 20.04 \pm \\ 0.68 \\ \hline \end{gathered}$	$\begin{gathered} 6.60 \pm \\ 0.10 \\ \hline \end{gathered}$
22	SKHT1	$\begin{array}{\|c\|} \hline 35.76 \pm \\ 0.86 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0.40 \pm \\ 0.01 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5.31 \pm \\ 0.18 \\ \hline \end{array}$	$\begin{gathered} 0.94 \pm \\ 0.02 \\ \hline \end{gathered}$	$\begin{array}{r} 23.58 \pm \\ 0.34 \\ \hline \end{array}$	$\begin{gathered} 18.03 \pm \\ 0.31 \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \pm \\ 0.02 \\ \hline \end{gathered}$	$\begin{gathered} 26.62 \pm \\ 0.78 \\ \hline \end{gathered}$	$\begin{gathered} 6.46 \pm \\ 0.09 \\ \hline \end{gathered}$
23	SKHT2	$\begin{gathered} 23.93 \pm \\ 0.62 \end{gathered}$	$\begin{gathered} 0.31 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 5.75 \pm \\ 0.11 \end{gathered}$	$\begin{gathered} 0.67 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 22.89 \pm \\ 0.43 \end{gathered}$	$\begin{gathered} 18.00 \pm \\ 0.34 \\ \hline \end{gathered}$	$\begin{gathered} 0.28 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 30.12 \pm \\ 0.58 \end{gathered}$	$\begin{gathered} 6.88 \pm \\ 0.11 \end{gathered}$
24	UTTN	$\begin{gathered} 18.21 \pm \\ 0.44 \end{gathered}$	$\begin{gathered} 0.19 \pm \\ 0.00 \end{gathered}$	$\begin{gathered} 4.35 \pm \\ 0.11 \end{gathered}$	$\begin{gathered} 0.48 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 14.40 \pm \\ 0.24 \end{gathered}$	$\begin{gathered} 10.07 \pm \\ 0.20 \\ \hline \end{gathered}$	$\begin{gathered} 0.44 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 29.02 \pm \\ 0.56 \end{gathered}$	$\begin{gathered} 5.39 \pm \\ 0.07 \end{gathered}$
25	KC1	$\begin{gathered} 32.59 \pm \\ 1.13 \end{gathered}$	$\begin{gathered} 0.44 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 6.58 \pm \\ 0.13 \\ \hline \end{gathered}$	$\begin{gathered} 0.98 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 21.67 \pm \\ 0.34 \\ \hline \end{gathered}$	$\begin{gathered} 20.71 \pm \\ 0.56 \\ \hline \end{gathered}$	$\begin{gathered} 0.73 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 29.60 \pm \\ 0.98 \end{gathered}$	$\begin{gathered} \hline 6.05 \pm \\ 0.06 \end{gathered}$
26	KC2	$\begin{gathered} 28.52 \pm \\ 0.81 \end{gathered}$	$\begin{gathered} 0.31 \pm \\ 0.00 \end{gathered}$	$\begin{gathered} 4.02 \pm \\ 0.12 \end{gathered}$	$\begin{gathered} 0.81 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 17.83 \pm \\ 0.28 \end{gathered}$	$\begin{gathered} 15.40 \pm \\ 0.20 \end{gathered}$	$\begin{gathered} 0.61 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 25.22 \pm \\ 0.62 \end{gathered}$	$\begin{gathered} 6.72 \pm \\ 0.13 \\ \hline \end{gathered}$
27	KC3	$\begin{gathered} 21.18 \pm \\ 0.66 \\ \hline \end{gathered}$	$\begin{gathered} 0.26 \pm \\ 0.00 \\ \hline \end{gathered}$	$\begin{gathered} 5.00 \pm \\ 0.13 \\ \hline \end{gathered}$	$\begin{gathered} 0.75 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 20.00 \pm \\ 0.27 \\ \hline \end{gathered}$	$\begin{gathered} 14.43 \pm \\ 0.20 \\ \hline \end{gathered}$	$\begin{gathered} 0.48 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 29.10 \pm \\ 0.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.96 \pm \\ 0.11 \\ \hline \end{gathered}$
28	PCHBR	$\begin{gathered} 22.54 \pm \\ 0.69 \\ \hline \end{gathered}$	$\begin{gathered} 0.30 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 5.64 \pm \\ 0.13 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.72 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 20.80 \pm \\ 0.28 \\ \hline \end{gathered}$	$\begin{gathered} 14.30 \pm \\ 0.21 \\ \hline \end{gathered}$	$\begin{array}{r} 0.25 \pm \\ 0.01 \\ \hline \end{array}$	$\begin{gathered} 31.70 \pm \\ 0.49 \\ \hline \end{gathered}$	$\begin{gathered} 5.56 \pm \\ 0.06 \\ \hline \end{gathered}$

No.	Source	PL	PD	RL	PLL	TLL	TLB	SPL	AB	NPV
29	PJKRK	$\begin{gathered} 18.23 \pm \\ 0.62 \\ \hline \end{gathered}$	$\begin{gathered} 0.31 \pm \\ 0.00 \\ \hline \end{gathered}$	$\begin{gathered} 4.84 \pm \\ 0.13 \\ \hline \end{gathered}$	$\begin{gathered} 0.70 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 23.05 \pm \\ 0.31 \\ \hline \end{gathered}$	$\begin{gathered} 14.51 \pm \\ 0.22 \\ \hline \end{gathered}$	$\begin{gathered} 0.36 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 38.17 \pm \\ 0.57 \\ \hline \end{gathered}$	$\begin{gathered} 6.33 \pm \\ 0.11 \end{gathered}$
30	RB1	$\begin{gathered} 16.02 \pm \\ 0.38 \end{gathered}$	$\begin{gathered} 0.20 \pm \\ 0.00 \\ \hline \end{gathered}$	$\begin{gathered} 5.01 \pm \\ 0.09 \\ \hline \end{gathered}$	$\begin{gathered} 0.54 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 18.72 \pm \\ 0.23 \end{gathered}$	$\begin{gathered} 10.66 \pm \\ 0.14 \end{gathered}$	$\begin{gathered} 0.48 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 32.78 \pm \\ 0.48 \\ \hline \end{gathered}$	$\begin{gathered} 7.47 \pm \\ 0.09 \\ \hline \end{gathered}$
31	RB2	$\begin{gathered} 11.85 \pm \\ 0.47 \\ \hline \end{gathered}$	$\begin{gathered} 0.19 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 2.99 \pm \\ 0.09 \\ \hline \end{gathered}$	$\begin{gathered} 0.41 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 12.36 \pm \\ 0.25 \\ \hline \end{gathered}$	$\begin{gathered} 7.78 \pm \\ 0.21 \end{gathered}$	$\begin{gathered} 0.35 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 35.90 \pm \\ 0.77 \\ \hline \end{gathered}$	$\begin{gathered} 7.93 \pm \\ 0.15 \\ \hline \end{gathered}$
32	RB3	$\begin{gathered} \hline 29.96 \pm \\ 0.91 \\ \hline \end{gathered}$	$\begin{gathered} 0.34 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} \hline 7.03 \pm \\ 0.12 \\ \hline \end{gathered}$	$\begin{gathered} 0.91 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 18.68 \pm \\ 0.29 \\ \hline \end{gathered}$	$\begin{gathered} 15.04 \pm \\ 0.25 \\ \hline \end{gathered}$	$\begin{gathered} 0.36 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} \hline 6.26 \pm \\ 0.75 \\ \hline \end{gathered}$	$\begin{gathered} 7.03 \pm \\ 0.12 \end{gathered}$
33	RB4	$\begin{gathered} 33.82 \pm \\ 0.78 \end{gathered}$	$\begin{gathered} 0.47 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 7.98 \pm \\ 0.13 \end{gathered}$	$\begin{gathered} 1.02 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 24.61 \pm \\ 0.32 \end{gathered}$	$\begin{gathered} 18.81 \pm \\ 0.21 \\ \hline \end{gathered}$	$\begin{gathered} 0.79 \pm \\ 0.02 \\ \hline \end{gathered}$	$\begin{gathered} 27.00 \pm \\ 0.59 \\ \hline \end{gathered}$	$\begin{gathered} 4.78 \pm \\ 0.07 \end{gathered}$
34	Tak	$\begin{gathered} 25.67 \pm \\ 0.91 \\ \hline \end{gathered}$	$\begin{gathered} 0.37 \pm \\ 0.00 \\ \hline \end{gathered}$	$\begin{gathered} 5.87 \pm \\ 0.17 \\ \hline \end{gathered}$	$\begin{gathered} 0.88 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 19.71 \pm \\ 0.47 \\ \hline \end{gathered}$	$\begin{gathered} 18.61 \pm \\ 0.36 \\ \hline \end{gathered}$	$\begin{gathered} 0.61 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 37.98 \pm \\ 0.66 \\ \hline \end{gathered}$	$\begin{gathered} 5.83 \pm \\ 0.08 \\ \hline \end{gathered}$
35	CHYP	$\begin{gathered} 31.45 \pm \\ 0.90 \\ \hline \end{gathered}$	$\begin{gathered} 0.40 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.04 \pm \\ 0.15 \\ \hline \end{gathered}$	$\begin{gathered} 0.77 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} \hline 20.59 \pm \\ 0.27 \\ \hline \end{gathered}$	$\begin{gathered} \hline 17.03 \pm \\ 0.25 \\ \hline \end{gathered}$	$\begin{gathered} 0.47 \pm \\ 0.03 \\ \hline \end{gathered}$	$\begin{gathered} 28.89 \pm \\ 0.49 \\ \hline \end{gathered}$	$\begin{gathered} 7.55 \pm \\ 0.18 \\ \hline \end{gathered}$
36	NKRSM	$\begin{gathered} 17.64 \pm \\ 0.33 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.28 \pm \\ 0.00 \\ \hline \end{gathered}$	$\begin{gathered} 4.32 \pm \\ 0.07 \\ \hline \end{gathered}$	$\begin{gathered} 0.61 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 15.39 \pm \\ 0.19 \\ \hline \end{gathered}$	$\begin{gathered} 14.82 \pm \\ 0.21 \\ \hline \end{gathered}$	$\begin{gathered} 0.13 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 21.18 \pm \\ 0.59 \\ \hline \end{gathered}$	$\begin{gathered} 6.80 \pm \\ 0.07 \\ \hline \end{gathered}$
37	SKNK	$\begin{gathered} 27.53 \pm \\ 0.95 \\ \hline \end{gathered}$	$\begin{gathered} 0.30 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 4.64 \pm \\ 0.14 \\ \hline \end{gathered}$	$\begin{gathered} 1.00 \pm \\ 0.03 \\ \hline \end{gathered}$	$\begin{gathered} 19.77 \pm \\ 0.45 \\ \hline \end{gathered}$	$\begin{gathered} 15.10 \pm \\ 0.37 \\ \hline \end{gathered}$	$\begin{gathered} 0.37 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 28.86 \pm \\ 0.76 \\ \hline \end{gathered}$	$\begin{gathered} 5.43 \pm \\ 0.07 \\ \hline \end{gathered}$
38	CHPn	$\begin{gathered} 22.69 \pm \\ 0.87 \\ \hline \end{gathered}$	$\begin{gathered} 0.37 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 5.57 \pm \\ 0.16 \\ \hline \end{gathered}$	$\begin{gathered} 1.03 \pm \\ 0.02 \\ \hline \end{gathered}$	$\begin{gathered} 20.58 \pm \\ 0.35 \end{gathered}$	$\begin{gathered} \hline 16.72 \pm \\ 0.32 \\ \hline \end{gathered}$	$\begin{gathered} 0.60 \pm \\ 0.03 \\ \hline \end{gathered}$	$\begin{gathered} 25.34 \pm \\ 0.70 \\ \hline \end{gathered}$	$\begin{gathered} 6.30 \pm \\ 0.08 \\ \hline \end{gathered}$
39	SRTN	$\begin{gathered} 19.99 \pm \\ 0.55 \\ \hline \end{gathered}$	$\begin{gathered} 0.26 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 5.48 \pm \\ 0.14 \\ \hline \end{gathered}$	$\begin{gathered} 0.78 \pm \\ 0.02 \\ \hline \end{gathered}$	$\begin{gathered} 21.22 \pm \\ 0.38 \\ \hline \end{gathered}$	$\begin{gathered} 14.71 \pm \\ 0.36 \\ \hline \end{gathered}$	$\begin{gathered} 0.39 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 30.42 \pm \\ 0.63 \\ \hline \end{gathered}$	$\begin{gathered} 7.09 \pm \\ 0.12 \\ \hline \end{gathered}$
40	Lobata	$\begin{gathered} 15.27 \pm \\ 0.51 \\ \hline \end{gathered}$	$\begin{gathered} 0.22 \pm \\ 0.00 \\ \hline \end{gathered}$	$\begin{gathered} 4.39 \pm \\ 0.10 \end{gathered}$	$\begin{gathered} 0.54 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 12.36 \pm \\ 0.21 \\ \hline \end{gathered}$	$\begin{gathered} 11.46 \pm \\ 0.22 \\ \hline \end{gathered}$	$\begin{gathered} 0.27 \pm \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} 23.64 \pm \\ 0.34 \\ \hline \end{gathered}$	$\begin{gathered} 5.23 \pm \\ 0.06 \\ \hline \end{gathered}$
	1 mean	24.37	0.32	5.47	0.81	19.92	15.79	0.41	28.09	6.64
	al SD.	5.73	0.08	0.97	0.17	3.02	2.83	0.14	6.84	0.92
	al SE.	0.92	0.01	0.16	0.03	0.48	0.45	0.02	1.10	0.15
	Max.	35.76	0.47	- 7.98	1.15	24.61	20.71	0.79	38.96	8.41
	Min.	11.85	0.18	2.99	0.41	12.36	7.78	0.13	6.26	4.78

สถาบันวิทยบริการ

จฬาลงกรณ์มหาวิทยาลัย

Descriptive statistics from 3 pod parameters of 14 P. mirifica cultivars in
Thailand and P. lobata as an outgroup (Mean \pm Standard error).

No.	Source	PodL	PodW	SNP
1	CM1	7.45 ± 0.21	1 ± 0.02	3.33 ± 0.20
2	CM3	2.95 ± 0.08	0.78 ± 0.01	1.75 ± 0.10
3	CM4	4.78 ± 0.35	0.79 ± 0.01	2 ± 0.28
4	LPang	6.01 ± 0.15	0.74 ± 0.01	4.33 ± 0.20
5	PY	4.49 ± 0.31	0.93 ± 0.01	2 ± 0.19
6	P3	7.27 ± 0.31	0.99 ± 0.01	3.8 ± 0.25
7	KPP	4.87 ± 0.16	0.73 ± 0.01	3.34 ± 0.17
8	LBR	5.17 ± 0.43	1.02 ± 0.02	2.1 ± 0.23
9	SR1	3.42 ± 0.12	0.77 ± 0.01	2.34 ± 0.15
10	KC1	6.78 ± 0.26	1 ± 0.02	3.55 ± 0.25
11	KC2	3.59 ± 0.29	0.9 ± 0.02	1.5 ± 0.19
12	PCHBR	5.61 ± 0.13	0.95 ± 0.01	3.54 ± 0.16
13	PJKRK	4.88 ± 0.26	0.77 ± 0.01	2.87 ± 0.34
14	Tak	5.55 ± 0.12	0.9 ± 0.01	2.74 ± 0.18
15	Loba	8.57 ± 0.10	1.61 ± 0.04	1.94 ± 0.11
Total mean		5.43	0.93	2.74
Total SD.		1.58	0.22	0.87
Total SE.		0.41	0.06	0.22
Max.		8.57	1.61	4.33
Min.		2.95	0.73	1.5

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Descriptive statistics from 7 flower parameters of $\mathbf{1 1}$ cultivars of \boldsymbol{P}. mirifica in Thailand. (Mean \pm Standard error)

No.	Cultivar	StmL	PisL	OvrD	ClxL	PdcL	PetW	PetL
1	CM 3	1.18 ± 0.01	1.14 ± 0.03	0.06 ± 0.00	0.63 ± 0.01	0.35 ± 0.01	1.16 ± 0.01	1.37 ± 0.02
2	CM 4	1.41 ± 0.05	1.34 ± 0.05	0.12 ± 0.01	0.89 ± 0.01	0.41 ± 0.01	1.24 ± 0.02	1.6 ± 0.02
3	SR 2	1.05 ± 0.02	1.09 ± 0.14	0.04 ± 0.00	0.63 ± 0.01	0.44 ± 0.02	0.93 ± 0.02	1.17 ± 0.01
4	KC 1	1.23 ± 0.01	1.16 ± 0.02	0.06 ± 0.00	0.78 ± 0.01	0.7 ± 0.04	1.06 ± 0.02	1.49 ± 0.02
5	KC 2	1.4 ± 0.02	1.25 ± 0.03	0.04 ± 0.00	0.97 ± 0.01	0.24 ± 0.01	1.19 ± 0.05	1.42 ± 0.03
6	PCHBR	1.16 ± 0.05	1.14 ± 0.07	0.04 ± 0.00	0.87 ± 0.03	0.43 ± 0.01	1.04 ± 0.01	1.33 ± 0.03
7	PJKRK	1.39 ± 0.01	1.55 ± 0.03	0.07 ± 0.00	0.97 ± 0.01	0.37 ± 0.01	1.24 ± 0.01	1.5 ± 0.02
8	RB 1	1.11 ± 0.02	1.12 ± 0.03	0.04 ± 0.00	0.84 ± 0.01	0.51 ± 0.01	1.1 ± 0.02	1.4 ± 0.04
9	RB 2	1.54 ± 0.02	1.47 ± 0.04	0.06 ± 0.00	0.94 ± 0.03	0.36 ± 0.01	1.12 ± 0.02	1.51 ± 0.02
10	CHYP	1.05 ± 0.01	1.09 ± 0.01	0.05 ± 0.00	0.51 ± 0.01	0.36 ± 0.02	0.99 ± 0.02	1.05 ± 0.02
11	CHPn	1.07 ± 0.01	1.12 ± 0.01	0.04 ± 0.00	0.63 ± 0.01	0.45 ± 0.01	1.09 ± 0.01	1.16 ± 0.02
Total mean		1.24	1.22	0.06	0.79	0.42	1.11	1.36
Total SD.		0.17	0.16	0.02	0.16	0.12	0.10	0.17
Total SE.		0.05	0.05	0.01	0.05	0.04	0.03	0.05
Max.		1.54	1.55	0.12	0.97	0.7	1.24	1.6
Min.	1.05	1.09	0.04	0.51	0.24	0.93	1.05	

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

Appendix III

Factor analysis

Factor analysis from 9 leaf parameters of 39 cultivars of \boldsymbol{P}. mirifica.

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. Bartlett's Test of Approx. Chi-Square	.832	
Sphericity	df	6276.634
	Sig.	36

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	3.815	42.393	42.393	$\bigcirc 3.815$	42.393	42.393	3.654	40.603	40.603
2	1.312	14.573	56.966	1.312	14.573	56.966	1.473	16.363	56.966
3	. 831	9.228	66.194						
4	. 812	9.023	75.217	182					
5	. 709	7.882	83.099	(8) 110					
6	. 576	6.396	89.495	तice					
7	. 413	4.592	94.086						
8	. 300	3.331	97.418		1				
9	. 232	2.582	100.000						

Extraction Method: Principal Component Analysis.

Rotated Component Matrix ${ }^{=}$

	Component	
	1	2
Zscore(pd)	. 852	213
Zscore(tlb)	. 851	
Zscore(til)	. 708	267
Zscore(pl)	. 706	. 139
Zscore(rl)	. 680	-. 161
Zscore(pll)	. 626	. 350
Zscore(ab)	-. 506	. 406
Zscore(npv)		-. 764
Zscore(spl)	304	. 662

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 3 iterations.

Component Transformation Matrix

Component	1	2
1	967	.254
2	-254	.967

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

Component Plot in Rotated space

Factor analysis from 7 flower parameters of $\mathbf{1 1}$ cultivars of \boldsymbol{P}. mirifica

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling		
Adequacy.	.717	
Bartlett's Test of	Approx. Chi-Square	345.226
Sphericity	df	21
	Sig.	.000

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	\% of Variance	Cumulative \%	Total	\% ofVariance	Cumulative \%	Total	\% of Variance	Cumulative \%
1	3.494	49.910	49.910	3.494	49.910	49.910	3.389	48.421	48.421
2	1.107	15.814	65.724	1.107	15.814	65.724	1.211	17.304	65.724
3	. 939	13.408	79.132						
4	.613	8.757	87.889						
5	. 426	6.087	93.976	2					
6	. 274	3.920	97.896						
7	. 147	2.104	100.000						

Extraction Method: Principal ComponentAnalysis.

a. 2 components extracted.

Rotated Component Matrix ${ }^{\text {a }}$

	Component	
	1	2
Zscore(petl)	.911	.191
Zscore(stml)	.829	-.276
Zscore(cll)	.814	
Zscore(petw)	.702	-.350
Zscore(pistl)	.612	-.142
Zscore(ovrd)	.582	
Zscore(pdcl)		.973

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 3 iterations.

Component Transformation Matrix

Component	1	2
1	.978	-.209
2	.209	.978

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

Component plot in Rotated Space

Factor analysis from 5 chemical parameters of 29 cultivars of P. mirifica

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Adequacy.		
		.579
Eartett's Test of	Approx. Chi-Square	
Sphericity	df	49.891
	Sig.	10

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total	\% of Variance	Cumulative \%	Total	\% of Variance	Cumulative $\%$
1	2.582	51.647	51.647	2.582	51.647	51.647
2	.980	19.604	71.252			
3	.894	17.883	89.135			
4	.378	7.562	96.696			
5	.165	3.304	100.000			

Extraction Method: Principal Component Analysis.

Component Matrix ${ }^{\text {a }}$

	Compone nt
	1
Daidzin	.872
Daidzein	.824
Genistin	.769
Genistein	.709
Puerarin	.221

Extraction Method: Principal Component Analysis.
a. 1 components extracted.

Rotated Component Matrix ${ }^{\text {a }}$
a. Only one component was extracted.

The solution cannot be rotated.

จุฬาลงกรณ์มหาวิทยาลัย

Appendix IV

A. Reagent preparation

Agarose gel electrophoresis

1) $1 \%(\mathrm{w} / \mathrm{v})$ agarose gel

- agarose 0.25 g
- 1x TBE buffer 25 ml

2) 10x Tris Boric EDTA buffer (TBE buffer), pH 8.0

- Tris aminomethane (50 mM) 108 g
- Boric acid (50 mM) 50.4 g
- EDTA (0.65 mM) 7.44 g

Adjust pH to 8.0 and make a total volume to $1,000 \mathrm{ml}$ by $\mathrm{d}-\mathrm{H}_{2} \mathrm{O}$. Then, the buffer will be stirred by a magnetic stirrer. Finally, this buffer will be diluted to be 1x TBE before use. For example, 100 ml of 10 x TBE must be diluted by adding 900 ml of $\mathrm{d}-\mathrm{H}_{2} \mathrm{O}$.

สถาบันวิทยบริการ

BIOGRAPHY

Mr. Trin Suwanvijitr was born on October $12^{\text {th }}, 1981$ in Mueang district, Songkhla province, Thailand. He finished his high school level from Triam Udom Suksa School in 2000, Bangkok. He graduated the Bachelor Degree of Science in Biology from Department of Biology, Faculty of Science, Chulalongkorn University in 2004. Then, He has been a graduate student in the Master's Degree in Biotechnology program, Faculty of Science, Chulalongkorn University since 2004.

Research publications:

Suwanvijitr, T., Chanchao, C., and Cherdshewasart, W. (2005) Leaf morphometry, genetic variation, and phylogeny of white Kwao Krua Pueraria mirifica in Thailand. Abstract. The $10^{\text {th }}$ Biological Sciences Graduate Congress, National University of Singapore, Singapore. 43.
Suwanvijitr, T., Chanchao, C., and Cherdshewasart, W. (2006) Leaf morphometry, genetic variation, and phylogeny of white Kwao Krua Pueraria mirifica in Thailand. Abstract. The KMITL International Conference on Science and Applied Science 2006, Bangkok, Thailand. 33.

Suwanvijitr, T., Chanchao, C., and Cherdshewasart, W. (2006). Leaf morphometry, genetic variation, and phylogeny of white Kwao Krua Pueraria mirifica in Thailand. Abstract. The $14^{\text {th }}$ Faculty of Science Congress, Chulalongkorn University, Bangkok, Thailand. 116.
Suwanvijitr, T., Chanchao, C., and Cherdshewasart, W. (2006). Leaf morphometry, genetic variation, and phylogeny of white Kwao Krua Pueraria mirifica in Thailand. Abstract. $10^{\text {th }}$ BRT Annual Conference. Krabi, Thailand. 44.

[^0]: ** Correlation is significant at the 0.01 level (2-tailed).

