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INTRODUCTION

Whyburn [7], Smithson [5] and Feichtinger [1] presented characterizations of
semi-continuity of multi-valued functions between topological spaces. Their works
motivated Triphop, Harnchoowong and Kemprasit [6] to study multi-valued func-
tions in an algebraic sense. They defined multi-valued homomorphisms between
groups naturally and characterized multi-valued homomorphisms between cyclic
groups. That is, they characterized the elements of MHom(Z, +), MHom((Z, +),
(Zn,+)), MHom((Zy,, +),(Z,+)) and MHom((Z,,, +), (Z,, +)) where MHom(G, G")
is the set of all multi-valued homomorphisms from a group G into a group G,
MHom(G) = MHom(@G, G), (Z,+) is the additive group of integers and (Z,, +)
is the additive group of integers modulo n. These sets were also counted in [6]. Nen-
thein and Lertwichitsilp [4] called an element f € MHom(G, G') a surjective multi-
valued homomorphism if f(G) = G where f(G) = U f(z) and let SMHom(G, G”)

zeCG
denote the set of all surjective multi-valued homomorphisms from G into G’.

The elements of SMHom(Z, +), SMHom((Z, +), (Z,, +)), SMHom((Z,,, +), (Z, +))
and SMHom((Z,, +), (Z,,+)) were characterized in [4] and these sets were also
counted. Youngkhong and Savettaraserance [8] furthered the study of MHom(G, G')
where G’ is either an additive group of real numbers or a multiplicative group of
real numbers.

The semigroup, under composition, of all multi-valued functions from a nonempty
set X into itself is denoted by MF(X). Then MHom(Z, +) and MHom(Z,,, +) are
subsemigroups of MF(Z) and MF(Z,,), respectively.

We organized this thesis as follows:

Chapter I contains basic definitions, known results and notations which will be

used in the remaining chapters. For more details, see [2] and [3].



In Chapter II, we characterize the regular elements of the semigroups
MHom(Z, +) and SMHom(Z, +).

Chapter III gives a characterization determining the regular elements of
MHom(Z,,,+). We prove that MHom(Z,, +) is a regular semigroup if and only
if n is square-free. Moreover, it is shown that SMHom(Z,,, +) is always a regular
semigroup.

Multi-valued homomorphisms between semigroups are defined the same as that
for groups in [6]. In Chapter IV, we determine the regular elements of MHom(5)
where S is any of the following semigroups: a left zero semigroup, a right zero
semigroup, a zero semigroup and a Kronecker semigroup. Here MHom(S) is also
denoted the set of all multi-valued homomorphisms from S into itself.

In the last chapter, regular elements of the semigroup MF(X) are considered
where X is a nonempty set. We provide some remarkable sufficient conditions for
the elements f of the semigroup MF(X) to be regular in terms of the relationship

among the values of f at points in X.



CHAPTER I

PRELIMINARIES

We adopt the following notations:

| X| : the cardinality of a set X,

P(X) : the power setof a set X and P*(X) = P(X) \ {2},
/ : the set of integers,

N or Z*: the set of positive integers and Z$ = Z™ U {0},

R : the set of real numbers,
R . the set of positive real numbers,
Loy, : the set of integers modulo n.

For a nonempty set X, let 7(X) be the full transformation semigroup on X,
that is, the semigroup, under composition, of all functions f : X — X. The

semigroup of binary relations on X under composition is denoted by B(X), then

B(X)={p|p<C X x X},
cgop ={(x,y) | (z,z) € pand (z,y) € o for some z € X}
for-all p,a € B(X),
and we have that T'(X) is a subsemigroup of B(X).
By a multi-valued function from a nonempty set X into a nonempty set Y we

mean a function from X into P*(Y’). Let MF(X) denote the set of all multi-valued

functions from X into itself. Therefore, we have
MF(X) = {p € B(X) | for every z € X, (z,y) € p for some y € X}.

It is clearly seen that MF(X) is a subsemigroup of B(X) containing 7'(X). Also



1x, the identity map on X, is the identity of MF(X). For f € MF(X) and A C X,
let

F4) = | f(a).

acA
It follows that

(go M) =g(flx) = [J g(t) forallzeX.

tef(z)

The range of f € MF(X) is defined to be f(X)(= U f(z)) and it is denoted by

r€X
ranf.

Example 1.1. Let p,0 € B(R) be defined by

p=A{(z,yye R xR |z > 0},

o={(z,y) eRxR |y >0}
Then p € B(R) ~ MF(R) and o € MF(R) ~ T(R). Notice that
o(z)=R" forallz € R,
poc=RxR, cop=R" xR*.

A multi-valued homomorphism from a group G into a group G’ is a multi-

valued function f from G into G’ such that

flay) = f(@)f(y) (={ tr | t € f(z) and 7 € f(y)} )
for all #, y € G.

A surjective multi-valued homomorphism from a group G into a group G’ is a
multi-valued homomorphism f from G into G’ such that

U f@) =a"

zeq
For groups G and G’, let MHom(G, G’) be the set of all multi-valued homomor-
phisms from G into G', and we write MHom(G) for MHom(G, G). Similarly, let



SMHom(G, G’) be the set of all surjective multi-valued homomorphisms from G
into G, and we write SMHom(G) for SMHom(G, G).

Characterizations of multi-valued homomorphisms and surjective multi-valued
homomorphisms between cyclic groups were provided in [6] and [4], respectively.

If f,g € MHom(G), then for all z,y € G,

(g0 )(zy) = 9(f(zy))

I
1N
e
o
=
s

= (goN@)(go f)(y).

and g, f € SMHom(G) implies that (go f)(G) = g(f(G)) = g(G) = G. This shows
that MHom(G) and SMHom(G) is closed under composition. Hence MHom(G)
is a subsemigroup of MF(G) and SMHom(G) is a subsemigroup of MHom(G).
Observe that 1 is the identity of the semigroup MHom(G) and SMHom(G). In
addition, Hom(G) is a subsemigroup of 7'(G) and MHom(G) where Hom(G) is the
semigroup, under-composition, of all homomorphisms of G into itself.

In this thesis, we also define multi-valued homomorphisms between semigroups
analogously, that is, a multi-valued homomorphism from a semigroup S into a

semigroup S’ is a multi-valued function f from S into S’ such that
flxy) = f(2)f(y) (={tr |t € flx)andr € f(y)})
for all z,y € S.

For semigroups S and S’ let MHom (.S, S”) be the set of all multi-valued homomor-
phisms of S into S’; and we write MHom(S) for MHom(.S, S). We can see from the



above proof that MHom(.S) is a subsemigroup of MF(S) containing the identity
1g. Also, Hom(S) is a subsemigroup of both 7'(S) and MHom(S) where Hom(S)

is the semigroup, under composition, of all homomorphisms from S into itself.

Example 1.2. For a € R, let f, be the multi-valued function from R into R
defined by
fa(x) = (a,00) for all z € R.

It is clear that f, is a multi-valued homomorphism from the group (R, +) into itself
if and only if @ = 0. We also have that f, is a multi-valued homomorphism from

the semigroup (R, -) into itself if and only if @ = 0 or a = 1. Hence

{ falaeR {0} } € MF(R) ~ MHom(R, +),
{ foJa eRx{0,1} } € MF(R) \ MHom(R, -).

A semigroup S with zero 0 is called a zero semigroup if zy = 0 for all z,y € S.

A semigroup S is called a left [right] zero semigroup if
xy =z ley=y| forall z,y € S.
A Kronecker semigroup S is a semigroup with zero 0 such that

& T

0 if v #vy.

Ty =

An element a of a semigroup .S is said to be reqular if a = axa for some z € S,
and S is called a reqular semigroup if every element-of S is regular. It'is well-known
that T'(X) is a regular semigroup for every set X ([2], page 4 and [3], page 63).
The set of all regular elements of a semigroup is denoted by Reg(.S).

Example 1.3. From Example 1.2, f, o f, = f, for every a € R. Then f, is a
regular element in the semigroup MF(R) for every a € R. In particular, f; is a

regular element of MHom(R, +) and f and f; are regular elements of MHom(RR, -).



If g(x) = {z,x + 1} for all z € R, then ¢ € MF(R) which is not regular. To
see this, suppose that g = go hog for some h € MF(R). Then for every z € R,

{z,z+ 1} = g(v)
=gohog(x)
=goh({z,z+1})
= g(h({z;z + 1}))
= g(h(z))Ug(h(z + 1)),

which implies that g(h(x)) € {z,z + 1} for every & € R. But |g(h(z))| > 2
for every x € R, so g(h(z)) = {a,2 + 1} for all x € R. Hence for any = €
R, g(h(x)) Ug(h(x + 1)) ={z,a+ 1} U{z+ 1,2+ 2} = {z,z + 1,z + 2} which

contradicts the above equalities.

An integer a is called square-free if for every & € Z~ {0}, 2? | a (2? divides a)
implies that x = +£1.
The congruence class modulo n of x € Z will be denoted by = and let Z, be

the set of all congruence classes modulo n. Then
Z,=40,1,....n—1}={Z |z €Z } and |Z,| = n.

For ky,..., k. € Z, not all zero, let (ki,...,k,) denote the greatest common
divisor of kq, ..., k,.
We recall the following basic facts.
(1) For a,b € Z, a and b are relatively prime (or (a,b) = 1) if and only if ax+by = 1
for some z,y € Z.
(2) For'a,b,k,l € Z, k% 0 and ] # 0, if k | (a+b), [ | k and [ | a, then [ | b.
(3) For a,;b,k € Z and k # 0, if k | ab, then | b.
(4) For k,l € Z, not both zero,

ko
( a)

KZ+17 = (k,)Z and  kZ, +1Z, = (k,1)Z,.

(5) For k € Z, kZ,, = (k,n)Zy,.



CHAPTER 11

REGULAR ELEMENTS OF SEMIGROUPS OF
MULTI-VALUED HOMOMORPHISMS OF (Z,+)

In this chapter, we give characterizations of the regular elements of the semi-
groups MHom(Z, +) and SMHom(Z, +).
For a subsemigroup H of (Z, 4+ ) containing 0 and a € Z, define the multi-valued

function from Z into itself by
Fr.(x)=ax+ H forall x € Z.

The following known results will be referred.

Theorem 2.1 ([6]). The following statements hold.
(i) If H is a subsemigroup of (Z,+) containing 0, then H C Z$, H C Zg or
H = kZ for some k € Z.
(il) MHom(Z,+) ={Fn. | H is a subsemigroup of (Z,+) containing 0 and
a € Z}.
(iii) |MHom(Z,+)| = N,.

Theorem 2.2 ([4]). Let H be a subsemigroup of (Z,+) containing 0. Then Fy , €
SMHom(Z,+) if and only if
(i) a is relatively prime to some h € H and

(ii) a = 0 implies H = 7Z.

Theorem 2.3 ([4]). For k,a € Z, Fyz,, € SMHom(Z,+) if and only if k and a

are relatively prime.

Theorem 2.4 ([4]). |SMHom(Z,+)| = N,.



Lemma 2.5. For k,l,a,b € 7Z,

Flkalyz,ab if k#0 oral #0,

FOZ,ab ka’ =0=al.

Frz.oFizp =

Proof. We have that for z € Z,

Fiz,0Fiz,0(2) = Fyzq(bx 4 IZ)
= a(bx +1Z) + kZ

= abx + alZ + kZ

.
abx + (k,al)Z if £ 0 or al # 0,
\abx+OZ if k=al =0,

;

F(k,al)Z,ab if k 7é 0 or al 7é 0,

L FOZ,ab if k=al=0.

O

Lemma 2.6. If H is a subsemigroup of (Z,4+) containing 0. Then Fyo, Fg1 and
Fy 1 are regular elements of MHom(Z,+).

Proof. Note that H + H = H and —H — H = —H. Since for every x € H,

FuoFpo(r) =Fuo(0+H)=Fuo(H)=0H + H=H = Fy(z),
FuiFpa(o) =Fpi(c+ H)=1o+H)+H=0+H=Fpy(v),
Fy Foy 1Fy_1(x)=Fy 1 F pg_1(—z+H)

=Fy 1((-1)(~x+ H) - H)

= Fy_1(z— H — H)

=(-1)(r—H—-H)+H
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it follows that FH,OFH,O = FH,O> FH,lFH,l = FH,l and FH,lefH,leH,fl = FH,fl'

Hence Fpo, Fu1 and Fjy _; are regular elements of MHom(Z, +). O
k

Lemma 2.7. Let k,a € Z and k # 0. If (a, m) =1, then Fyz, ts reqular in
,a

MHom(Z,+).

. k ke
Proof. Since | a, —— | = 1, there are b,c € Z such that ab + = 1. Then
(k,a) (k,a)

k
) | (ab—1), so k| (k,a)(ab — 1) which implies that &k | a(ab — 1). Thus

a’b — a € kZ. Hence for every z € Z, a’bx — ax € kZ. Therefore
for every x € Z, a*bx + kZ = ax + KZ,
that is, Fiz 426 = Fiz,.. By Lemma 2.5,
Frz.a bz pFiz.a = Frz.aFipk)z0a = Flkak,bk)z,026
= Fiz.020 = Frza-
Hence Fiz, is regular in MHom(Z, +). O

Theorem 2.8. Let H be a subsemigroup of (Z,+) containing 0 and a € Z. Then
Fy . is a reqular element of MHom(Z,+) if and only if one of the following two
statements holds.

(i) a€{0,1,—1}.

(ii) H = kZ for some k € Z ~ {0} and a and

are relatively prime.

k
(k,a)
Proof. By Theorem 2.1(i),-H C Zq, H C Zy or H = kZ for some k € Z ~ {0}.
Assume that Fp, is a regular element of MHom(Z; +). By Theorem 2.1(ii), there
are a subsemigroup K of (Z,+) containing 0 and b € Z such that Fy o F yFrq =
Fy 4. Then for every » € Z,

ar + H = Fp .(2)
= FuoFkpFuq(z)
= FH’GFK’Z,(CL.I + H)

= Fyo(b(az + H) + K)
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=a(blar+H)+ K)+H

= a’bx + abH + oK + H.
In particular,
H=a0+ H = a*0 + abH + aK + H = abH + oK + H.

Hence for every x € H, ax + H = a*bx + H, so a+ H = a*b+ H. Since 0 € H, we

have
a’b—a € H and a —a’b € H. (1)

Cases 1: H C Z$ or H € Z,. Then by (1), a*b = a. Thus a(ab — 1) = 0. Since
a,b € Z, it follows that a= 0, a=b=1or a = b= —1. Hence a € {0,1,—1}.

Cases 2: H = kZ for some k € Z ~. {0}. From (1), we have a?b — a € kZ. Thus
k| (a*h — a), hence | (ab—1). It follows that ab — 1 = ( ) ¢ for some

O R

k
(k,a) (k,a)

¢ € Z. Therefore

so we deduce that (a,
1.

L
(k,a)
The converse follows directly from Lemma 2.6 and Lemma 2.7. O
Corollary 2.9. |Reg(MHom(Z,+))| = |MHom(Z,+) ~ Reg(MHom(Z, +))|
= |[MHom(Z,+)| = Ro.
Proof. Since for all distinct k,l-€ ZT, kZ # IZ, we have that for a,b € Z,
Frza(0)= k% # {Zi=F175(0):

Thus Fyz,. # Fizp for all distinet k,1 € Z* and for all a,b € Z. Since

2
(1, %) =1 and (k, (k:];i,k)> =k for all k € Z*, by Theorem 2.8, we have

{Fiza | k € Z'} C Reg(MHom(Z, +)),

{Feezr | k € Z" and k > 1} € MHom(Z, +) \ Reg(MHom(Z, +)).
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Consequently,

o = [{Fiz1 | k € Z7}| < [Reg(MHom(Z, +))], (1)

No = [{Fiezx | K € ZT and k > 1}| < [MHom(Z, +) \ Reg(MHom(Z, +))|. (2)

Theorem 2.1(iii), (1) and (2) yield the fact that
|Reg(MHom(Z, +))| = IMHom(Z, 4+) ~ Reg(MHom(Z, +))| = [MHom(Z, +)| = R.
U

Theorem 2.10. Reg(SMHom(Z,+))
={Fp. | H is a subsemigroup of (Z,+) containing 0}
U{Fu -1 | H is a subsemigroup of (Z,+) containing 0}
U{Fiza | k,a € Z, k #0 and (k,a) = 1}.

Proof. Let H be a subsemigroup of (Z, +) containing 0. By Theorem 2.2, we have
that F 1, Fg -1, F-g -1 € SMHom(Z, +). From the proof of Lemma 2.6,

FH,lFH,l = FH,l and FH,—1F—H,—1FH,—1 = FH,—la

so Fy 1, Fy 1 € Reg(SMHom(Z, +)).

Next, let k,a € Z be such that k # 0 and (k,a) = 1. Then by Theorem 2.2,
Fiz.o € SMHom(Z,+). Let b, c € Z be such that ab+ kc = 1. Then k | (ab — 1),
so k| (a*b — a). Hence a®bx — ax'€ kZ for all v € Z, 50 a*bx+ kZ = ax + kZ for

all x € Z. Hence Fyy o2p = Fiz,4. From the proof of Lemma 2.7, we have
Bz o linsFreg o = Frz 4

Since ab + kc = 1, we have (b, k) = 1. Thus Fyz, € SMHom(Z,+) by Theorem
2.2. Hence Fjz, is a regular element of SMHom(Z, +).

For the reverse inclusion, let H be a subsemigroup of (Z,+) containing 0 and

a € Z such that Fy, € Reg(SMHom(Z, +)). Then Fy, € Reg(MHom(Z, +)). By



13

Theorem 2.8, H and a satisfy one of the following conditions.

(i) a€{0,1,—-1}.

(ii) H = kZ for some k € Z ~ {0} and <a, ﬁ) =1

If a = 0, then by Theorem 2.2, H =Z, so Fy, = Fz, and (1,a) = 1. If H = kZ
for some k € Z~ {0}, then Fy, = Fyz, € SMHom(Z, +), so (k,a) = 1 by Thorem
2.3.

Hence the proof is complete. O

Corollary 2.11. |Reg(SMHom(Z,+))| = |SMHom(Z, +) ~ Reg(SMHom(Z,+))|
= |SMHom(Z,+)| = Ro

Proof. Since {Fyz1 | k € Z7} € Reg(SMHom(Z, +)) by Theorem 2.10, it follows
that

Ry = [{Fiza | k € ZT} < [Reg(SMHom(Z, +))|. (1)

Also, by Theorem 2.2 and Theorem 2.10, {Fzg,a |a € Z~{1,—1}} C SMHom(Z, +)~
Reg(SMHom(Z, +)). But Fys (1) = a + Zg and a = min(a + Zg) for all a € Z,

so we have Fy+  # Fy. , for all distinct a,b € Z. Therefore
Ro = {Fyt . | @ € ZX AL, =1}}| < [SMHom(Z, +) N\ Reg(SMHom(Z, +))[.  (2)
Hence from Theorem 2.4, (1) and (2), we have

|Reg(SMHom(Z;+))| = [SMHom(Z;+) ~ Reg(SMHom(Z, +))|



CHAPTER III

REGULAR ELEMENTS OF SEMIGROUPS OF
MULTI-VALUED HOMOMORPHISMS OF (Z,,+)

The regular elements of the semigroup MHom(Z,,, +) are characterized in this

chapter. Then this characterization is applied to characterize the regularity of the

semigroup MHom(Z,,, +) in terms of n. Moreover, it is shown that the semigroup

SMHom(Z,, +) is always regular.

If k,a € Z, define the multi-valued function I , from Z,

Ito(T) = T + kZ,, . for all x € Z.

The following known results will be used.

Theorem 3.1 ([6]). MHom(Z,,+) = {Ixa. | k,a € Z}.

Theorem 3.2 ([6]). The following statements hold.
(i) Ifk,1leZt k|n,l|n,ac{0,1,...)k—1}, b€{0,1,
Iivo = Iy, then k=1 and a = 0.

(i) MHom(Zy;+) ={ Ika | k €ZT,k | n and a € {0,1,...

(i) [MHom(Zn, +)] = > k.

kezZ+
kn

Note that in Theorem 3.2, (iii) is directly obtained from (i)

into itself by

o, l—1} and

ok —1}}.

and (ii).

Theorem 3.3 ([4]). SMHom(Z,,,+) = {I}. | k,a € Z and (n,k,a) = 1}.

To characterize the regular elements of MHom(Z,,, +), the following three lem-

mas are needed.
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t
Lemma 3.4. If r;s,t € Z, r # 0 and t # 0 are such that r | (s, m), then
87

r? | t.

t
Proof. From the assumption, r | s and r | s Then r(s,t) | t. Hence r | s and

I

r | t which implies that 7 | (s,t), and thus r? | r(s,t). But r(s,¢) | t,so7? | t. [

Lemma 3.5. For k,l,a,b € Z,

I(k,aty,ab if k#0 oral #0,

Lo, Wik 1. — (.

Inolip =

Proof. For x € Z,

LoDy (T) = I o (bx +1%,,)
= a(bx 4+ 1Z,) + kZ,

= abr + alZy, + k7,
abx + (k,al)Z, = Igay a(T)  if k#0oral #0,

abz + 0Zg= Iy () if k=al =0,
so the lemma is proved. O

Lemma 3.6. If k,l,a,b € Z are such that Iy, = I}, then kZ, = lZ, and (n,k) |
(@ —Db).

Proof. We have that kZ;, = I},,(0) =1;5(0) = {Z;. Then Iy o = I;.p, so @ + kZ,, =
I1o(1) = I14(1) = b+ kZ,. Hence a — b = kt for some t € Z, thus n | (a — b — kt).
Since (n,k) | n-and (n, k)| kt; it follows that (n, k)| (a = b): O
Theorem 3.7. Fork,a € Z, I}, is a reqular element of the semigroup MHom(Z,, +)

(n, k)
(n,k,a)

if and only if a and are relatively prime.

Proof. First, assume that Iy, is a regular element of MHom(Z,,, +). Then there

are l, b € Z such that [k,a = Ik,aIl,bIk,a- By Lemma 35, Ik,aIl,b[k,a = 1sa2p for some



16
k
s € Z, and so by Lemma 3.6, (n, k) | (a*b—a). This implies that ((n,T)) | (ab—1).
n, k,a
(n, k)

(n, k)
(n7k7a> (n,k,a)
relatively prime.

Therefore ab +

t = 1 for some t € Z. Consequently, a and are

(n, k)
(n,k,a)

c = 1. It follows that for every x € Z,

Conversely, assume that a and are relatively prime. Then there are

(n, k)

(n,k,a)

b, c € Z such that ab +

(a2b —a)x = (ab — 1)ax

2 (%(—c)ax)

€ (n,k)Z, = kZp.

Consequently, a?bx + kZ, = ax + kZ,, for every x € Z. By Lemma 3.5,

Lo pi))a2s = Ieaze i k #0,
Ik,ajk,b[k@ F—

[O,aQb - Ik,a2b lf k - 0
Thus for every x € Z, Ijolpplia(T) = a?bx + kZ, = ax + kZ, = I4(T), so

I ol plio = Iro. Hence Iy, is a regular element of MHom(Z,,, +), as desired. [

Corollary 3.8. Let QF be the set of all square-free positive integers. Then the

following statements hold.

(i) Reg(MHom(Z,,+))

={ .| ke€eZ" k|naec{0,1,....,k—1} and (a, k ):1}

={ .| k€eQFk|nandac{0,1,....k—1}}

U{ Lo | kEZ"NQF k| n,a€{0,1,...,k—1} and (a, k ):1}
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(ii) |Reg(M Hom(Zy,+))|

:Zk+ Z ]{aE{O,l,...,k—l}l(G,Wl{b):l}‘

keQF keZT\QF

Proof. (i) The first equality follows from Theorem 3.2(ii) and Theorem 3.7 and the
second equality is obtained from Lemma 3.4.

(ii) is obtained from (i) and Theorem 3.2(i). O

Theorem 3.9. The semigroup M Hom(Z,,,+) is reqular if and only if n is square-

free.

Proof. From Theorem 3.1 and Theorem 3.7, we have respectively that

MHom (Z,,, +) = {Ixa | k,a € Z}

and

Reg(MHom(Z,,,+)) = {Ix. | k,a € Z and (a, (in;gki)) =1}.

First, assume that n is not square-free. Then there exists an integer r > 1 such

(n=l) = (n2) =r

which implies by Theorem 3.7 that ,,, € MHom(Z,,+) ~\ Reg(MHom(Z,, +)).

that 72|n. Then

This proves that if MHom(Z,, +) is a regular semigroup, then n is square-free.
For the converse, assume that n is square-free. Then £ is square-free for every

k € Z* with k |'n. Therefore we deduce from Corollary 3.8(i) that
Reg(MHom(Z,,,4)) = {lta | Kk € Z", k| nand a € {0,1,...,k = 1}}.

By Theorem 3.2(ii), we have Reg(MHom(Z,,, +)) = MHom(Z,, +). Hence
MHom(Z,, +) is a regular semigroup. O

The following corollary is obtained directly from Theorem 3.2(iii) and Theorem

3.9.
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Corollary 3.10. For any prime p, M Hom(Z,,+) is a reqular semigroup of order
1+p.

Example 3.11. By Theorem 3.2(iii) and Theorem 3.9, MHom(Zg, +) is a regular
semigroup of order 1 + 2+ 3+ 6 = 12.
By Corollary 3.8(ii),

IReg(MHom(Zag, +))| = (1 +2+5+10) + [{a € {0,1,2,3} | (a, i) =1}

(4,a)
+ Ha € {0,1,...,19} | (a, (2?{)&)) =1}
=18 +(3 + 15)
= 36

since for a € {0, 1, 2, 3},

(a, (ﬁa)) —1eae{0,1,3},

and for a € {0,1,...,19},

20
a, —1aac{0,1,3,4,5,7,8,9,11,12,13,15,16,17, 19}.
(20,a)

By Theorem 3.2(iii),
|MHom(Zso, +)\Reg(MHom(Zso, +))| = (1 +2+4+5+10+20) — 36

=42 - 36 = 6.

Theorem 3.12. For every n € N, SMHom(Z,,, +)-is a reqular semigroup.

Proof. Let k,a € Z be such that I} , € SMHom(Z,, +). By Theorem 3.3, (n, k,a) =
1. Then ((n, k),a) = 1, so there are b, ¢ € Z such that

ab+ (n,k)c =1, (1)
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Hence for every x € Z,

(a?b — a)x = (ab — 1)ax
= —(n,k)cax from (1)

€ (n,k)Z,, = kZ,,
which implies that
for every z € Z, a2bx 4 kZ, = az + kZ,. (2)
By Lemma 3.5,

](k:,a(k,bk:)),cﬂb v Ik,azb if k 7& 07
Ik:,a]k,bjk,a F (3)

IO,a2b — Ik,a2b lf k’ - O

Then from (2) and (3), we have

for every © € Z, (I olpplr.)(T) = a?bx + kZ,
=az + kZ,
= [}..(T).
Hence Iy, = Ipalkplpa. From (1), (n,k,b) = ((n,k),6) = 1. Thus I, €

SMHom(Z,,, +) by Theorem 3.3.
This proves that SMHom(Z,,, +) is a regular semigroup, as desired. O



CHAPTER IV

MULTI-VALUED HOMOMORPHISMS OF CERTAIN
SEMIGROUPS

In this chapter, we are concerned with the following semigroups: left zero
semigroups, right zero semigroups, zero semigroups and Kronecker semigroups.
We characterize the multi-valued homomorphisms of these semigroups.

Recall that MF(S) and MHom(S) denote the set of all multi-valued functions

of S and the set of all multi-valued homomorphisms of S, respectively.

Theorem 4.1. (i) If S is a left zero semigroup, then MHom(S) = MF(S), that is,
every multi-valued function of S is a multi-valued homomorphism.

(ii) If S is a right zero semigroup, then MHom(S) = MF(S).

Proof. (i) Since xy = x for all z,y € S, it follows that AB = A for all nonempty
subsets A and B of S. Then for f € ME(S),

flay) = f(x) = f(z)f(y) forall zy € S.

Therefore we deduce that-MHom(.S) = MF(.9).
(ii) Since zy = y for all x,y € S, we have similarly that for every f € MF(S5),

f(ay) = fy) = f(@)f(y) forallz,y€S.
Hence MHom(S) = MF(S5). O
Theorem 4.2. Let S be a zero semigroup. Then

MHom(S) = {f € MF(S) | f(0) = {0}}.
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Proof. Since xy = 0 for all z,y € S, it follows that AB = {0} for all nonempty
subsets A and B of S. If f € MHom(S), then

£(0) = £(00) = f(0)£(0) = {0}
Hence MHom(S) C {f € MF(S) | f(0) = {0}}. For the reverse inclusion, let
f € MF(S) be such that f(0) = {0}. If 2,y € S, then

flzy) = f(0) =10} =F(2) f(y),
so f € MHom(S). Therefore {f € MF(S) | f(0) = {0}} € MHom(S), and hence
the theorem is proved. O

x ifxr=uy,
Let S be a Kronecker semigroup. Since xy = we have that

0 ifz#uvy,
for all nonempty subsets A and B of S,

|A| >1or |B| > 1= AB = (AN B) U{0}, (1)
A if A= B,

|A|=|B|=1 = AB = (2)
{0} if A+ B,

0eAor0e B = AB=(AnB)U{0}. (3)

For f € MF(S), let
Z2(f) ={zeS10€ f()}.

To characterize the elements of MHom(.S) where .S is a Kronecker semigroup,

the following lemmas are needed.

Lemma 4.3. Let S be a Kronecker semigroup and f € MHom(S).. Then for every
reSNZ(f), |f(z) =1

Proof. If x € S is such that |f(z)| > 1, then by (1),
0€ flx)f(z) = flzx) = f(2),

so x € Z(f). Hence for every x € S\ Z(f), |f(x)] = 1. O
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Lemma 4.4. Let S be a Kronecker semigroup and f € MHom(S). If 0 ¢ Z(f),
then |f(0)] =1 and f(z) = f(0) for allxz € S.

Proof. Since 0 ¢ Z(f), by Lemma 4.3, |f(0)] = 1. But 0 ¢ f(0), so f(0) = {a} for

some a € S\ {0}. Hence for every x € S,

{a} = f(0) = f(0x) = [(0)f(z) = {a}f(x),
Since a # 0, from (1) and (2), we have f(z) = {a} for all x € S. O

Lemma 4.5. Let S be a Kronecker semigroup and f € MHom(S). If 0 € Z(f),
then for all distinct z,y € S X Z(f), f(x) # f(y).

Proof. Let x,y € S~ Z(f) be distinct. Then zy = 0, so

0 f(0) = fzy) = f(x)f(y).

By Lemma 4.3, |f(z)| = |f(y)] = 1. We also have that f(z) # {0} # f(y). It
follows from (2) that f(z) # f(y)- O

Lemma 4.6. Let S be a Kronecker semigroup and f € MHom(S). If |Z(f)| > 1,
then 0 € Z(f) and

flz)n f(y) = f(0) for all distinct =,y € Z(f).

Proof. Let x,y € Z(f) bedistinct. Then zy = 0, 0 € f(z) and 0 € f(y). From
(3),
0€ flz)Nfly) =f(=)f(y) = flzy) = f(0),

and thus 0 € Z(f). O

Lemma 4.7. Let S be a Kronecker semigroup and f € MHom(S). If 0 € Z(f)
and |S N Z(f)| > 1, then f(0) ={0} and f(Z(f)) N f(S\Z(f)) = 2.
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Proof. Let x,y € S\ Z(f) be distinct. Then zy = 0. By Lemma 4.3 and Lemma
4.5, |f(x)| = |f(y)| =1 and f(z) # f(y). Therefore we have

f(0) = f(zy) = f(z)f(y) = {0}.

Suppose that f(Z(f)) N f(SNZ(f)) # 2. Let s € f(Z(f)) N f(S~Z(f)). Then
s € f(t)N f(u) for some t € Z(f) and u € S~ Z(f). Since u € S\ Z(f) and
s € f(u), we have that s # 0. But

s =ss € f(t)f(u)= f(tu) = f(0) = {0},
so we have a contradiction. Therefore f(Z(f))Nf(SNZ(f)) = @, as desired. O

Lemma 4.8. Let S be a Kronecker semigroup and f € MHom(S). If 0 € Z(f)
and S\ Z(f) = {a}, then

a 0 7 a) C f(Z ,
f(o){f()u{} f Ha) S FZ(P)

{0} if fla) & F(Z(f)).

Proof. Since a ¢ Z(f), 0 ¢ f(a). By Lemma 4.3, |f(a)| = 1.

Case 1: f(a) C f(Z(f)). Then f(a) C f(z) forsomez € Z(f),s00 € f(x)\ f(a).
Hence by (1)

[(0) = flax) = f(a)f(x) = f(a) U{0}.

Case 2: f(a) € f(Z(f)). Since0-€ Z(f), f(a) € f(0). But |f(a)] =1, so we
have from (3) that

f(0) = f(a0) = f(a) f(0)={0}.

Therefore the lemma is proved. O

Theorem 4.9. Let S be a Kronecker semigroup and f € MF(S). Then [ €
MHom(S) if and only if one of the following two conditions holds.

(i) 0¢ Z(f), |f(0)] =1 and f(z) = f(0) for allx € S.
(i) 0 € Z(f) and
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a) |f(x)| =1 for every x € S~ Z(f),
b) f(x) # f(y) for all distinct z,y € S\ Z(f),

(
(
(¢) f(z) N fy) = f(0) for all distinct z,y € Z(f),
(
(

/\A

d) [N Z(N > 1 = f(0) = {0} and fF(Z(f)) N f(S~ Z(f)) = & and
e) SN Z(f) ={a} = f(0) = ()U{O}iff()cf( (f)) and
f0) = {0} if f(a) £ f(Z
Proof. Assume that f € MHom(S). If 0 ¢ Z(f), then (i) holds by Lemma 4.4.
Next, assume that 0 € Z(f). We have that (a), (b), (c), (d) and (e) hold by
Lemma 4.3, Lemma 4.5, Lemma 4.6, Lemma 4.7 and Lemma 4.8, respectively.
For the converse, assume that f satisfies (i) or (ii). To show that f € MHom(S5),

let u,v € S.

Case 1: f satisfies (i), that is, [f(0)| = 1 and f(z) = f(0) for all z € S. Then
f(0)£(0) = f(0) and f(u) = f(0) = f(v), s

Case 2: f satisfies (ii).
Subcase 2.1: w,v € S~ Z(f). By (a), [f(v)] = |f(v)| = 1. If u = v, then
f(u) = f(v), so

Assume that u #v. Hence

f(uv) = f(0)
= {0} by (d)
= f(u)f(v) by (b).

Subcase 2.2: u,v € Z(f). Then 0 € f(u)N f(v). If u=v, then f(uv) = f(u)

and by (3), f(u)f(v) = f(u)f(u) = f(u). Thus f(uv) = f(u)f(v). Assume that
u # v. Then f(uv) = f(0) and



f(u)f(v) = fu) N f(v) by (2)
= £(0) by (c).
Hence f(uv) = f(u)f(v).
Subcase 2.3: u € Z(f), v € S~ Z(f) and |S ~ Z(f)| > 1. Then
f(uv) = £(0)
= {0} by (d)

= flu)f(v)since f(Z(f))Nf(S~ Z(f)) = 2.

Subcase 2.4: u € Z(f), S~ Z(f) = {v} and f(v) C f(Z(f)).

|f(v)| = 1. Then f(v) C f(w) for some w € Z(f). If w = u, then

f(uv) = f(0)
= f(w)U{0} by (e)
= f(u)f(v) by (3) and the facts that

fw) S f(w) = f(u)
and 0 € f(u).

Next, assume that w # u. Then
f(uv) = f(0)
=4(v) Ui0}, by (e),

and
F(0) = F (W) £() by (@)
which intply that f(v) C f(u). Hence
J@)f(v) = (f(u) N f(©))U{0} by (3) and the fact
that 0 € f(u)
= f(v) U {0} since f(v) € f(u).

25

By (a),
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Consequently, f(uv) = f(u)f(v).
Subcase 2.5: u € Z(f), S\ Z(f) = {v} and f(v) € f(Z(f)). Since |f(v)| = 1
by (a), it follows that f(v) N f(u) = @. Hence f(u)f(v) = {0}, by (3), so
fluww) = f(0) = {0} = f(u)f(v).
Hence the theorem is proved. O

Two direct remarkable consequences of Theorem 4.9 are the following corollar-
ies.
Corollary 4.10. Let S be a Kronecker semigroup, f € MF(S) and 0 ¢ f(0).
Then f € MHom(S) if and only if there is an element a € S ~ {0} such that
f(z) = f(0) ={a} forallx € S.
Corollary 4.11. Let S be a Kronecker semigroup and ¢ : S~ {0} — S~ {0} a
bijection. If f(0) = {0} and f(x) = {¢(x)} for allx € S\{0}, then f € MHom(S).

Example 4.12. Let (Z,*) be a Kronecker semigroup with zero 0, that is,

= if r =y,
TARY =
0 if z=Au
Define f, g € MF(Z) by
(
27, if x is even,
fz) =
\ {z}~ Aif xis odd,
)
{0, z} if x is even,
9(@) =
\ {z} if z is odd.

Then Z(f) =2Z = Z(9), Z~Z(f) =2Z+1=7Z~Z(g), f(0) =2Z, f(z)N f(y) =
f(0) and g(z) Ng(y) = ¢(0) for all x,y € 2Z. Moreover, f(2Z) N f(2Z + 1) = &
and ¢(2Z) N g(2Z + 1) = @. However, f(0) = 2Z and ¢(0) = {0}. It follows from
Theorem 4.9 that f ¢ MHom(Z, x) but ¢ € MHom(Z, ).



CHAPTER V

SOME REGULAR ELEMENTS OF THE SEMIGROUP
OF MULTI-VALUED FUNCTIONS OF A SET

In this chapter, some sufficient conditions for the regularity of the elements of
MF(X) are given where X is a nonempty set.

We know that T'(X), the full transformation semigroup on X, is a regular
subsemigroup of MF(X) for every nonempty set X. We first give some examples
of regular elements of MF(X ) in MF(X) \ 7'(X) and some nonregular elements of
MF(X).

Example 5.1. (i) If f € MF({1,2,3}) is defined by
F) ={1,2}, f(2) ={2,3}, f(3) ={3,1}, (1)

then f is not regular in MF({1,2,3}). To show this, suppose that f = fgf for
some g € MF({1,2,3}). Then

{12} = f(1) = (f9) (1) = fg({1,2})) = f(g(1) U g(2)), (2)
{2,3} = f(2) = (f9.)(2) = f(9({2,3})) = f(9(2) Ug(3)). (3)

Therefore (1) and (2) imply g(1) = ¢g(2) = {1} and (1) and (3) imply ¢(2) =
g(3) ={2}. This is a contradiction:
(i) Let f € MF({1,2,3,4}) be defined by

f() ={1,2,3}, f(2) = {1,3} and f(3) = {2} = f(4).
Define g € MF({1,2,3}) by

9(1) = {2}, 9(2) = {3}, 9(3) = {2}, 9(4) = {4}.
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Then we have

(fgf)(1) = fg({1,2,3}) = F({2,3}) = {1,2,3} = (1),
(f9£)(2) = fg({1,3}) = f(2),

(f9f)(3) = fg(2) = f(3),

(f9f)(4) = f9(2) = f(3) = f(4).

Hence f = fgf, so f is a regular element of MF({1,2,3}).
Notice that f in Example 5.1(ii) satisfies the fact that

ranf = {1,2,3};
M /@ Nf@2) =7/

1€£(8)

N A= F0) TGN ) = F3).= f(4),

2€f(t)

() f®) Nf(2)= £(2)-

3cf(t)

Hence f has the property that

for every x € ranf, ﬂ f(t) = f(2') for some 2’ € X. (I)
ze f(t)

Observe that f in Example 5.1(i) does not satisfy (I)-
The following theorem shows that the property (I) of f € MF(X) is sufficient

for f to be regular in MF(X) where X is any nonempty set.

Theorem 5.2. Let X be a nonempty set and f € MF(X). If for every x € ranf,

ﬂ f(t) Y for some ¥’ € X, then [ is a regular element of the semigroup

teX
zEf(t)

MF(X).
Proof. Assume that

for every x € ranf, there is an element 2’ € X such that

M £ = (). (1)

teX
x€f(t)
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Define ¢ € MF(X) by
! ifrve f,
o(z) = { {z'} x € ran )
{z} if X \ranf.

To show that fgf = f, that is, (fgf)(y) = f(y) for all y € X, let y € X be given.
If x € f(y), then = € ranf, so

T € ﬂ f(t) = f(x") from (1)

. = f gl from (2)
C (fg)(f(y)) since x € f(y)
= (f9f) ().

This shows that f(y) € (fgf)(y). Since

(f9N)w) = (F9)(f(y))
=f( ) 9@)

tef(y)

= |J fla®)

tef(y)
= U @) by (2) and the fact that
tef(y) t € f(y) Cranf

— U ( ﬂ f(r)) from (1)
tef(y) tg?{%

c | rw

tef(y)
= f(y),

we deduce that (fgf)(y) = f(y). Hence f is a regular element of MF(X), as
desired. O

We have a direct consequence of Theorem 5.2 as follows:
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Corollary 5.3. Let X be a nonempty set and f € MF(X). If for all z,y € ranf,
either f(x) N f(y) = @ or f(x) = f(y), then f is a reqular element of M F(X).

Also, we have

Corollary 5.4. Let X be a finite nonempty set and f € MF(X). If for all x,y €
wanf, either (i) f(z) N f(y) = & or (i), f(z) C f(y) or [(y) C f(x), then [ is
reqular in MF(X).

Proof. Let x € ranf and let A= {t € X | z € f(t)}. Since X is finite, A is finite.
But z € f(t)N f(t') for all £, € A, so by assumption, f(t) C f(t') or f(t') C f(t)
for all t,¢' € A. Hence {f(t) | ¢ € A} contains a smallest element under inclusion

(Q), say f(to) where g € A. Hence ﬂ f(t) = f(to). By Theorem 5.2, we deduce
zef(t)
that f is a regular element of MF (X). O

The following example shows that the converse of Theorem 5.2 is not generally

true.

Example 5.5. Let f € MF((0,00)) be defined by
f(z) = (z,00) for all z € (0,00).
Then ranf = (0, 00) and for z € (0, c0),

(f)(x) = f((x,00))
=nld1r@

te(x,00)

= |J (t.o0)
te(x,00)

= (iL’,OO) = f(x)a

so f is regular in MF((0, 00)). If € (0, 00)(= ranf), then

ﬂ f(t) = ﬂ (t,00) = [x,00) # f(y) forally € X.

z€f(t) z€(t,00)
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The following example shows that the finiteness of X cannot be omitted in

Corollary 5.4.

Example 5.6. Let f € MF([0,1)) be defined by
f(z)=[0,1— g) for all = € [0,1).

Then for all x,y € [0,1), f(x) C f(y) or f(y) C f(z). Note that 0 € f(x) for every
z € [0,1).

Suppose that f is regular in MF([0,1)). Then there exists an element g €
MF([0,1)) such that fgf = f. Let a € ¢(0). Then there exists an element
b € [0,1) such that 0 < a < b < 1. It follows that f(b) C f(a) and f(b) # f(a).
Since a € ¢g(0) and 0 € f(b), we have

fla) < f(g(0)) € fgf(b) = f(b),

which is a contradiction. Therefore f is not regular in MF([0,1)).
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